xref: /freebsd/sys/kern/uipc_usrreq.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	distinguish datagram size limits from flow control limits in SEQPACKET
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 /*
105  * Locking key:
106  * (l)	Locked using list lock
107  * (g)	Locked using linkage lock
108  */
109 
110 static uma_zone_t	unp_zone;
111 static unp_gen_t	unp_gencnt;	/* (l) */
112 static u_int		unp_count;	/* (l) Count of local sockets. */
113 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114 static int		unp_rights;	/* (g) File descriptors in flight. */
115 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118 
119 struct unp_defer {
120 	SLIST_ENTRY(unp_defer) ud_link;
121 	struct file *ud_fp;
122 };
123 static SLIST_HEAD(, unp_defer) unp_defers;
124 static int unp_defers_count;
125 
126 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct timeout_task unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158 static u_long	unpdg_recvspace = 4*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
164     "SOCK_STREAM");
165 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
166 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
167     "SOCK_SEQPACKET");
168 
169 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
170 	   &unpst_sendspace, 0, "Default stream send space.");
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
172 	   &unpst_recvspace, 0, "Default stream receive space.");
173 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
174 	   &unpdg_sendspace, 0, "Default datagram send space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
176 	   &unpdg_recvspace, 0, "Default datagram receive space.");
177 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
178 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
180 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
181 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
182     "File descriptors in flight.");
183 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
184     &unp_defers_count, 0,
185     "File descriptors deferred to taskqueue for close.");
186 
187 /*
188  * Locking and synchronization:
189  *
190  * Three types of locks exit in the local domain socket implementation: a
191  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
192  * global locks, the list lock protects the socket count, global generation
193  * number, and stream/datagram global lists.  The linkage lock protects the
194  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
195  * held exclusively over the acquisition of multiple unpcb locks to prevent
196  * deadlock.
197  *
198  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
199  * allocated in pru_attach() and freed in pru_detach().  The validity of that
200  * pointer is an invariant, so no lock is required to dereference the so_pcb
201  * pointer if a valid socket reference is held by the caller.  In practice,
202  * this is always true during operations performed on a socket.  Each unpcb
203  * has a back-pointer to its socket, unp_socket, which will be stable under
204  * the same circumstances.
205  *
206  * This pointer may only be safely dereferenced as long as a valid reference
207  * to the unpcb is held.  Typically, this reference will be from the socket,
208  * or from another unpcb when the referring unpcb's lock is held (in order
209  * that the reference not be invalidated during use).  For example, to follow
210  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
211  * as unp_socket remains valid as long as the reference to unp_conn is valid.
212  *
213  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
214  * atomic reads without the lock may be performed "lockless", but more
215  * complex reads and read-modify-writes require the mutex to be held.  No
216  * lock order is defined between unpcb locks -- multiple unpcb locks may be
217  * acquired at the same time only when holding the linkage rwlock
218  * exclusively, which prevents deadlocks.
219  *
220  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
221  * protocols, bind() is a non-atomic operation, and connect() requires
222  * potential sleeping in the protocol, due to potentially waiting on local or
223  * distributed file systems.  We try to separate "lookup" operations, which
224  * may sleep, and the IPC operations themselves, which typically can occur
225  * with relative atomicity as locks can be held over the entire operation.
226  *
227  * Another tricky issue is simultaneous multi-threaded or multi-process
228  * access to a single UNIX domain socket.  These are handled by the flags
229  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
230  * binding, both of which involve dropping UNIX domain socket locks in order
231  * to perform namei() and other file system operations.
232  */
233 static struct rwlock	unp_link_rwlock;
234 static struct mtx	unp_list_lock;
235 static struct mtx	unp_defers_lock;
236 
237 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
238 					    "unp_link_rwlock")
239 
240 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
241 					    RA_LOCKED)
242 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243 					    RA_UNLOCKED)
244 
245 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
246 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
247 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
248 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
249 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
250 					    RA_WLOCKED)
251 
252 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
253 					    "unp_list_lock", NULL, MTX_DEF)
254 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
255 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
256 
257 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
258 					    "unp_defer", NULL, MTX_DEF)
259 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
260 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
261 
262 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
263 					    "unp_mtx", "unp_mtx",	\
264 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
265 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
266 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
267 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
268 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
269 
270 static int	uipc_connect2(struct socket *, struct socket *);
271 static int	uipc_ctloutput(struct socket *, struct sockopt *);
272 static int	unp_connect(struct socket *, struct sockaddr *,
273 		    struct thread *);
274 static int	unp_connect2(struct socket *so, struct socket *so2, int);
275 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
276 static void	unp_dispose(struct mbuf *);
277 static void	unp_shutdown(struct unpcb *);
278 static void	unp_drop(struct unpcb *, int);
279 static void	unp_gc(__unused void *, int);
280 static void	unp_scan(struct mbuf *, void (*)(struct file *));
281 static void	unp_discard(struct file *);
282 static void	unp_freerights(struct file **, int);
283 static void	unp_init(void);
284 static int	unp_internalize(struct mbuf **, struct thread *);
285 static void	unp_internalize_fp(struct file *);
286 static int	unp_externalize(struct mbuf *, struct mbuf **);
287 static int	unp_externalize_fp(struct file *);
288 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
289 static void	unp_process_defers(void * __unused, int);
290 
291 /*
292  * Definitions of protocols supported in the LOCAL domain.
293  */
294 static struct domain localdomain;
295 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
296 static struct pr_usrreqs uipc_usrreqs_seqpacket;
297 static struct protosw localsw[] = {
298 {
299 	.pr_type =		SOCK_STREAM,
300 	.pr_domain =		&localdomain,
301 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
302 	.pr_ctloutput =		&uipc_ctloutput,
303 	.pr_usrreqs =		&uipc_usrreqs_stream
304 },
305 {
306 	.pr_type =		SOCK_DGRAM,
307 	.pr_domain =		&localdomain,
308 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
309 	.pr_ctloutput =		&uipc_ctloutput,
310 	.pr_usrreqs =		&uipc_usrreqs_dgram
311 },
312 {
313 	.pr_type =		SOCK_SEQPACKET,
314 	.pr_domain =		&localdomain,
315 
316 	/*
317 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
318 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
319 	 * that supports both atomic record writes and control data.
320 	 */
321 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
322 				    PR_RIGHTS,
323 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
324 },
325 };
326 
327 static struct domain localdomain = {
328 	.dom_family =		AF_LOCAL,
329 	.dom_name =		"local",
330 	.dom_init =		unp_init,
331 	.dom_externalize =	unp_externalize,
332 	.dom_dispose =		unp_dispose,
333 	.dom_protosw =		localsw,
334 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
335 };
336 DOMAIN_SET(local);
337 
338 static void
339 uipc_abort(struct socket *so)
340 {
341 	struct unpcb *unp, *unp2;
342 
343 	unp = sotounpcb(so);
344 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
345 
346 	UNP_LINK_WLOCK();
347 	UNP_PCB_LOCK(unp);
348 	unp2 = unp->unp_conn;
349 	if (unp2 != NULL) {
350 		UNP_PCB_LOCK(unp2);
351 		unp_drop(unp2, ECONNABORTED);
352 		UNP_PCB_UNLOCK(unp2);
353 	}
354 	UNP_PCB_UNLOCK(unp);
355 	UNP_LINK_WUNLOCK();
356 }
357 
358 static int
359 uipc_accept(struct socket *so, struct sockaddr **nam)
360 {
361 	struct unpcb *unp, *unp2;
362 	const struct sockaddr *sa;
363 
364 	/*
365 	 * Pass back name of connected socket, if it was bound and we are
366 	 * still connected (our peer may have closed already!).
367 	 */
368 	unp = sotounpcb(so);
369 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
370 
371 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
372 	UNP_LINK_RLOCK();
373 	unp2 = unp->unp_conn;
374 	if (unp2 != NULL && unp2->unp_addr != NULL) {
375 		UNP_PCB_LOCK(unp2);
376 		sa = (struct sockaddr *) unp2->unp_addr;
377 		bcopy(sa, *nam, sa->sa_len);
378 		UNP_PCB_UNLOCK(unp2);
379 	} else {
380 		sa = &sun_noname;
381 		bcopy(sa, *nam, sa->sa_len);
382 	}
383 	UNP_LINK_RUNLOCK();
384 	return (0);
385 }
386 
387 static int
388 uipc_attach(struct socket *so, int proto, struct thread *td)
389 {
390 	u_long sendspace, recvspace;
391 	struct unpcb *unp;
392 	int error;
393 
394 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
395 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
396 		switch (so->so_type) {
397 		case SOCK_STREAM:
398 			sendspace = unpst_sendspace;
399 			recvspace = unpst_recvspace;
400 			break;
401 
402 		case SOCK_DGRAM:
403 			sendspace = unpdg_sendspace;
404 			recvspace = unpdg_recvspace;
405 			break;
406 
407 		case SOCK_SEQPACKET:
408 			sendspace = unpsp_sendspace;
409 			recvspace = unpsp_recvspace;
410 			break;
411 
412 		default:
413 			panic("uipc_attach");
414 		}
415 		error = soreserve(so, sendspace, recvspace);
416 		if (error)
417 			return (error);
418 	}
419 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
420 	if (unp == NULL)
421 		return (ENOBUFS);
422 	LIST_INIT(&unp->unp_refs);
423 	UNP_PCB_LOCK_INIT(unp);
424 	unp->unp_socket = so;
425 	so->so_pcb = unp;
426 	unp->unp_refcount = 1;
427 
428 	UNP_LIST_LOCK();
429 	unp->unp_gencnt = ++unp_gencnt;
430 	unp_count++;
431 	switch (so->so_type) {
432 	case SOCK_STREAM:
433 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
434 		break;
435 
436 	case SOCK_DGRAM:
437 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
438 		break;
439 
440 	case SOCK_SEQPACKET:
441 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
442 		break;
443 
444 	default:
445 		panic("uipc_attach");
446 	}
447 	UNP_LIST_UNLOCK();
448 
449 	return (0);
450 }
451 
452 static int
453 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
454 {
455 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
456 	struct vattr vattr;
457 	int error, namelen;
458 	struct nameidata nd;
459 	struct unpcb *unp;
460 	struct vnode *vp;
461 	struct mount *mp;
462 	char *buf;
463 
464 	unp = sotounpcb(so);
465 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
466 
467 	if (soun->sun_len > sizeof(struct sockaddr_un))
468 		return (EINVAL);
469 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
470 	if (namelen <= 0)
471 		return (EINVAL);
472 
473 	/*
474 	 * We don't allow simultaneous bind() calls on a single UNIX domain
475 	 * socket, so flag in-progress operations, and return an error if an
476 	 * operation is already in progress.
477 	 *
478 	 * Historically, we have not allowed a socket to be rebound, so this
479 	 * also returns an error.  Not allowing re-binding simplifies the
480 	 * implementation and avoids a great many possible failure modes.
481 	 */
482 	UNP_PCB_LOCK(unp);
483 	if (unp->unp_vnode != NULL) {
484 		UNP_PCB_UNLOCK(unp);
485 		return (EINVAL);
486 	}
487 	if (unp->unp_flags & UNP_BINDING) {
488 		UNP_PCB_UNLOCK(unp);
489 		return (EALREADY);
490 	}
491 	unp->unp_flags |= UNP_BINDING;
492 	UNP_PCB_UNLOCK(unp);
493 
494 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
495 	bcopy(soun->sun_path, buf, namelen);
496 	buf[namelen] = 0;
497 
498 restart:
499 	NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
500 	    UIO_SYSSPACE, buf, td);
501 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
502 	error = namei(&nd);
503 	if (error)
504 		goto error;
505 	vp = nd.ni_vp;
506 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
507 		NDFREE(&nd, NDF_ONLY_PNBUF);
508 		if (nd.ni_dvp == vp)
509 			vrele(nd.ni_dvp);
510 		else
511 			vput(nd.ni_dvp);
512 		if (vp != NULL) {
513 			vrele(vp);
514 			error = EADDRINUSE;
515 			goto error;
516 		}
517 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
518 		if (error)
519 			goto error;
520 		goto restart;
521 	}
522 	VATTR_NULL(&vattr);
523 	vattr.va_type = VSOCK;
524 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
525 #ifdef MAC
526 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
527 	    &vattr);
528 #endif
529 	if (error == 0)
530 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
531 	NDFREE(&nd, NDF_ONLY_PNBUF);
532 	vput(nd.ni_dvp);
533 	if (error) {
534 		vn_finished_write(mp);
535 		goto error;
536 	}
537 	vp = nd.ni_vp;
538 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
539 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
540 
541 	UNP_LINK_WLOCK();
542 	UNP_PCB_LOCK(unp);
543 	VOP_UNP_BIND(vp, unp->unp_socket);
544 	unp->unp_vnode = vp;
545 	unp->unp_addr = soun;
546 	unp->unp_flags &= ~UNP_BINDING;
547 	UNP_PCB_UNLOCK(unp);
548 	UNP_LINK_WUNLOCK();
549 	VOP_UNLOCK(vp, 0);
550 	vn_finished_write(mp);
551 	free(buf, M_TEMP);
552 	return (0);
553 
554 error:
555 	UNP_PCB_LOCK(unp);
556 	unp->unp_flags &= ~UNP_BINDING;
557 	UNP_PCB_UNLOCK(unp);
558 	free(buf, M_TEMP);
559 	return (error);
560 }
561 
562 static int
563 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
564 {
565 	int error;
566 
567 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
568 	UNP_LINK_WLOCK();
569 	error = unp_connect(so, nam, td);
570 	UNP_LINK_WUNLOCK();
571 	return (error);
572 }
573 
574 static void
575 uipc_close(struct socket *so)
576 {
577 	struct unpcb *unp, *unp2;
578 
579 	unp = sotounpcb(so);
580 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
581 
582 	UNP_LINK_WLOCK();
583 	UNP_PCB_LOCK(unp);
584 	unp2 = unp->unp_conn;
585 	if (unp2 != NULL) {
586 		UNP_PCB_LOCK(unp2);
587 		unp_disconnect(unp, unp2);
588 		UNP_PCB_UNLOCK(unp2);
589 	}
590 	UNP_PCB_UNLOCK(unp);
591 	UNP_LINK_WUNLOCK();
592 }
593 
594 static int
595 uipc_connect2(struct socket *so1, struct socket *so2)
596 {
597 	struct unpcb *unp, *unp2;
598 	int error;
599 
600 	UNP_LINK_WLOCK();
601 	unp = so1->so_pcb;
602 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
603 	UNP_PCB_LOCK(unp);
604 	unp2 = so2->so_pcb;
605 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
606 	UNP_PCB_LOCK(unp2);
607 	error = unp_connect2(so1, so2, PRU_CONNECT2);
608 	UNP_PCB_UNLOCK(unp2);
609 	UNP_PCB_UNLOCK(unp);
610 	UNP_LINK_WUNLOCK();
611 	return (error);
612 }
613 
614 static void
615 uipc_detach(struct socket *so)
616 {
617 	struct unpcb *unp, *unp2;
618 	struct sockaddr_un *saved_unp_addr;
619 	struct vnode *vp;
620 	int freeunp, local_unp_rights;
621 
622 	unp = sotounpcb(so);
623 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
624 
625 	UNP_LINK_WLOCK();
626 	UNP_LIST_LOCK();
627 	UNP_PCB_LOCK(unp);
628 	LIST_REMOVE(unp, unp_link);
629 	unp->unp_gencnt = ++unp_gencnt;
630 	--unp_count;
631 	UNP_LIST_UNLOCK();
632 
633 	/*
634 	 * XXXRW: Should assert vp->v_socket == so.
635 	 */
636 	if ((vp = unp->unp_vnode) != NULL) {
637 		VOP_UNP_DETACH(vp);
638 		unp->unp_vnode = NULL;
639 	}
640 	unp2 = unp->unp_conn;
641 	if (unp2 != NULL) {
642 		UNP_PCB_LOCK(unp2);
643 		unp_disconnect(unp, unp2);
644 		UNP_PCB_UNLOCK(unp2);
645 	}
646 
647 	/*
648 	 * We hold the linkage lock exclusively, so it's OK to acquire
649 	 * multiple pcb locks at a time.
650 	 */
651 	while (!LIST_EMPTY(&unp->unp_refs)) {
652 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
653 
654 		UNP_PCB_LOCK(ref);
655 		unp_drop(ref, ECONNRESET);
656 		UNP_PCB_UNLOCK(ref);
657 	}
658 	local_unp_rights = unp_rights;
659 	UNP_LINK_WUNLOCK();
660 	unp->unp_socket->so_pcb = NULL;
661 	saved_unp_addr = unp->unp_addr;
662 	unp->unp_addr = NULL;
663 	unp->unp_refcount--;
664 	freeunp = (unp->unp_refcount == 0);
665 	if (saved_unp_addr != NULL)
666 		free(saved_unp_addr, M_SONAME);
667 	if (freeunp) {
668 		UNP_PCB_LOCK_DESTROY(unp);
669 		uma_zfree(unp_zone, unp);
670 	} else
671 		UNP_PCB_UNLOCK(unp);
672 	if (vp)
673 		vrele(vp);
674 	if (local_unp_rights)
675 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
676 }
677 
678 static int
679 uipc_disconnect(struct socket *so)
680 {
681 	struct unpcb *unp, *unp2;
682 
683 	unp = sotounpcb(so);
684 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
685 
686 	UNP_LINK_WLOCK();
687 	UNP_PCB_LOCK(unp);
688 	unp2 = unp->unp_conn;
689 	if (unp2 != NULL) {
690 		UNP_PCB_LOCK(unp2);
691 		unp_disconnect(unp, unp2);
692 		UNP_PCB_UNLOCK(unp2);
693 	}
694 	UNP_PCB_UNLOCK(unp);
695 	UNP_LINK_WUNLOCK();
696 	return (0);
697 }
698 
699 static int
700 uipc_listen(struct socket *so, int backlog, struct thread *td)
701 {
702 	struct unpcb *unp;
703 	int error;
704 
705 	unp = sotounpcb(so);
706 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
707 
708 	UNP_PCB_LOCK(unp);
709 	if (unp->unp_vnode == NULL) {
710 		UNP_PCB_UNLOCK(unp);
711 		return (EINVAL);
712 	}
713 
714 	SOCK_LOCK(so);
715 	error = solisten_proto_check(so);
716 	if (error == 0) {
717 		cru2x(td->td_ucred, &unp->unp_peercred);
718 		unp->unp_flags |= UNP_HAVEPCCACHED;
719 		solisten_proto(so, backlog);
720 	}
721 	SOCK_UNLOCK(so);
722 	UNP_PCB_UNLOCK(unp);
723 	return (error);
724 }
725 
726 static int
727 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
728 {
729 	struct unpcb *unp, *unp2;
730 	const struct sockaddr *sa;
731 
732 	unp = sotounpcb(so);
733 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
734 
735 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
736 	UNP_LINK_RLOCK();
737 	/*
738 	 * XXX: It seems that this test always fails even when connection is
739 	 * established.  So, this else clause is added as workaround to
740 	 * return PF_LOCAL sockaddr.
741 	 */
742 	unp2 = unp->unp_conn;
743 	if (unp2 != NULL) {
744 		UNP_PCB_LOCK(unp2);
745 		if (unp2->unp_addr != NULL)
746 			sa = (struct sockaddr *) unp2->unp_addr;
747 		else
748 			sa = &sun_noname;
749 		bcopy(sa, *nam, sa->sa_len);
750 		UNP_PCB_UNLOCK(unp2);
751 	} else {
752 		sa = &sun_noname;
753 		bcopy(sa, *nam, sa->sa_len);
754 	}
755 	UNP_LINK_RUNLOCK();
756 	return (0);
757 }
758 
759 static int
760 uipc_rcvd(struct socket *so, int flags)
761 {
762 	struct unpcb *unp, *unp2;
763 	struct socket *so2;
764 	u_int mbcnt, sbcc;
765 	u_long newhiwat;
766 
767 	unp = sotounpcb(so);
768 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
769 
770 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
771 		panic("uipc_rcvd socktype %d", so->so_type);
772 
773 	/*
774 	 * Adjust backpressure on sender and wakeup any waiting to write.
775 	 *
776 	 * The unp lock is acquired to maintain the validity of the unp_conn
777 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
778 	 * static as long as we don't permit unp2 to disconnect from unp,
779 	 * which is prevented by the lock on unp.  We cache values from
780 	 * so_rcv to avoid holding the so_rcv lock over the entire
781 	 * transaction on the remote so_snd.
782 	 */
783 	SOCKBUF_LOCK(&so->so_rcv);
784 	mbcnt = so->so_rcv.sb_mbcnt;
785 	sbcc = so->so_rcv.sb_cc;
786 	SOCKBUF_UNLOCK(&so->so_rcv);
787 	UNP_PCB_LOCK(unp);
788 	unp2 = unp->unp_conn;
789 	if (unp2 == NULL) {
790 		UNP_PCB_UNLOCK(unp);
791 		return (0);
792 	}
793 	so2 = unp2->unp_socket;
794 	SOCKBUF_LOCK(&so2->so_snd);
795 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
796 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
797 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
798 	    newhiwat, RLIM_INFINITY);
799 	sowwakeup_locked(so2);
800 	unp->unp_mbcnt = mbcnt;
801 	unp->unp_cc = sbcc;
802 	UNP_PCB_UNLOCK(unp);
803 	return (0);
804 }
805 
806 static int
807 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
808     struct mbuf *control, struct thread *td)
809 {
810 	struct unpcb *unp, *unp2;
811 	struct socket *so2;
812 	u_int mbcnt_delta, sbcc;
813 	u_int newhiwat;
814 	int error = 0;
815 
816 	unp = sotounpcb(so);
817 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
818 
819 	if (flags & PRUS_OOB) {
820 		error = EOPNOTSUPP;
821 		goto release;
822 	}
823 	if (control != NULL && (error = unp_internalize(&control, td)))
824 		goto release;
825 	if ((nam != NULL) || (flags & PRUS_EOF))
826 		UNP_LINK_WLOCK();
827 	else
828 		UNP_LINK_RLOCK();
829 	switch (so->so_type) {
830 	case SOCK_DGRAM:
831 	{
832 		const struct sockaddr *from;
833 
834 		unp2 = unp->unp_conn;
835 		if (nam != NULL) {
836 			UNP_LINK_WLOCK_ASSERT();
837 			if (unp2 != NULL) {
838 				error = EISCONN;
839 				break;
840 			}
841 			error = unp_connect(so, nam, td);
842 			if (error)
843 				break;
844 			unp2 = unp->unp_conn;
845 		}
846 
847 		/*
848 		 * Because connect() and send() are non-atomic in a sendto()
849 		 * with a target address, it's possible that the socket will
850 		 * have disconnected before the send() can run.  In that case
851 		 * return the slightly counter-intuitive but otherwise
852 		 * correct error that the socket is not connected.
853 		 */
854 		if (unp2 == NULL) {
855 			error = ENOTCONN;
856 			break;
857 		}
858 		/* Lockless read. */
859 		if (unp2->unp_flags & UNP_WANTCRED)
860 			control = unp_addsockcred(td, control);
861 		UNP_PCB_LOCK(unp);
862 		if (unp->unp_addr != NULL)
863 			from = (struct sockaddr *)unp->unp_addr;
864 		else
865 			from = &sun_noname;
866 		so2 = unp2->unp_socket;
867 		SOCKBUF_LOCK(&so2->so_rcv);
868 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
869 			sorwakeup_locked(so2);
870 			m = NULL;
871 			control = NULL;
872 		} else {
873 			SOCKBUF_UNLOCK(&so2->so_rcv);
874 			error = ENOBUFS;
875 		}
876 		if (nam != NULL) {
877 			UNP_LINK_WLOCK_ASSERT();
878 			UNP_PCB_LOCK(unp2);
879 			unp_disconnect(unp, unp2);
880 			UNP_PCB_UNLOCK(unp2);
881 		}
882 		UNP_PCB_UNLOCK(unp);
883 		break;
884 	}
885 
886 	case SOCK_SEQPACKET:
887 	case SOCK_STREAM:
888 		if ((so->so_state & SS_ISCONNECTED) == 0) {
889 			if (nam != NULL) {
890 				UNP_LINK_WLOCK_ASSERT();
891 				error = unp_connect(so, nam, td);
892 				if (error)
893 					break;	/* XXX */
894 			} else {
895 				error = ENOTCONN;
896 				break;
897 			}
898 		}
899 
900 		/* Lockless read. */
901 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
902 			error = EPIPE;
903 			break;
904 		}
905 
906 		/*
907 		 * Because connect() and send() are non-atomic in a sendto()
908 		 * with a target address, it's possible that the socket will
909 		 * have disconnected before the send() can run.  In that case
910 		 * return the slightly counter-intuitive but otherwise
911 		 * correct error that the socket is not connected.
912 		 *
913 		 * Locking here must be done carefully: the linkage lock
914 		 * prevents interconnections between unpcbs from changing, so
915 		 * we can traverse from unp to unp2 without acquiring unp's
916 		 * lock.  Socket buffer locks follow unpcb locks, so we can
917 		 * acquire both remote and lock socket buffer locks.
918 		 */
919 		unp2 = unp->unp_conn;
920 		if (unp2 == NULL) {
921 			error = ENOTCONN;
922 			break;
923 		}
924 		so2 = unp2->unp_socket;
925 		UNP_PCB_LOCK(unp2);
926 		SOCKBUF_LOCK(&so2->so_rcv);
927 		if (unp2->unp_flags & UNP_WANTCRED) {
928 			/*
929 			 * Credentials are passed only once on SOCK_STREAM
930 			 * and SOCK_SEQPACKET.
931 			 */
932 			unp2->unp_flags &= ~UNP_WANTCRED;
933 			control = unp_addsockcred(td, control);
934 		}
935 		/*
936 		 * Send to paired receive port, and then reduce send buffer
937 		 * hiwater marks to maintain backpressure.  Wake up readers.
938 		 */
939 		switch (so->so_type) {
940 		case SOCK_STREAM:
941 			if (control != NULL) {
942 				if (sbappendcontrol_locked(&so2->so_rcv, m,
943 				    control))
944 					control = NULL;
945 			} else
946 				sbappend_locked(&so2->so_rcv, m);
947 			break;
948 
949 		case SOCK_SEQPACKET: {
950 			const struct sockaddr *from;
951 
952 			from = &sun_noname;
953 			if (sbappendaddr_locked(&so2->so_rcv, from, m,
954 			    control))
955 				control = NULL;
956 			break;
957 			}
958 		}
959 
960 		/*
961 		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
962 		 * datagram size and back-pressure for SOCK_SEQPACKET, which
963 		 * can lead to undesired return of EMSGSIZE on send instead
964 		 * of more desirable blocking.
965 		 */
966 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
967 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
968 		sbcc = so2->so_rcv.sb_cc;
969 		sorwakeup_locked(so2);
970 
971 		SOCKBUF_LOCK(&so->so_snd);
972 		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
973 			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
974 		else
975 			newhiwat = 0;
976 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
977 		    newhiwat, RLIM_INFINITY);
978 		so->so_snd.sb_mbmax -= mbcnt_delta;
979 		SOCKBUF_UNLOCK(&so->so_snd);
980 		unp2->unp_cc = sbcc;
981 		UNP_PCB_UNLOCK(unp2);
982 		m = NULL;
983 		break;
984 
985 	default:
986 		panic("uipc_send unknown socktype");
987 	}
988 
989 	/*
990 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
991 	 */
992 	if (flags & PRUS_EOF) {
993 		UNP_PCB_LOCK(unp);
994 		socantsendmore(so);
995 		unp_shutdown(unp);
996 		UNP_PCB_UNLOCK(unp);
997 	}
998 
999 	if ((nam != NULL) || (flags & PRUS_EOF))
1000 		UNP_LINK_WUNLOCK();
1001 	else
1002 		UNP_LINK_RUNLOCK();
1003 
1004 	if (control != NULL && error != 0)
1005 		unp_dispose(control);
1006 
1007 release:
1008 	if (control != NULL)
1009 		m_freem(control);
1010 	if (m != NULL)
1011 		m_freem(m);
1012 	return (error);
1013 }
1014 
1015 static int
1016 uipc_sense(struct socket *so, struct stat *sb)
1017 {
1018 	struct unpcb *unp, *unp2;
1019 	struct socket *so2;
1020 
1021 	unp = sotounpcb(so);
1022 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1023 
1024 	sb->st_blksize = so->so_snd.sb_hiwat;
1025 	UNP_LINK_RLOCK();
1026 	UNP_PCB_LOCK(unp);
1027 	unp2 = unp->unp_conn;
1028 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1029 	    unp2 != NULL) {
1030 		so2 = unp2->unp_socket;
1031 		sb->st_blksize += so2->so_rcv.sb_cc;
1032 	}
1033 	sb->st_dev = NODEV;
1034 	if (unp->unp_ino == 0)
1035 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1036 	sb->st_ino = unp->unp_ino;
1037 	UNP_PCB_UNLOCK(unp);
1038 	UNP_LINK_RUNLOCK();
1039 	return (0);
1040 }
1041 
1042 static int
1043 uipc_shutdown(struct socket *so)
1044 {
1045 	struct unpcb *unp;
1046 
1047 	unp = sotounpcb(so);
1048 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1049 
1050 	UNP_LINK_WLOCK();
1051 	UNP_PCB_LOCK(unp);
1052 	socantsendmore(so);
1053 	unp_shutdown(unp);
1054 	UNP_PCB_UNLOCK(unp);
1055 	UNP_LINK_WUNLOCK();
1056 	return (0);
1057 }
1058 
1059 static int
1060 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1061 {
1062 	struct unpcb *unp;
1063 	const struct sockaddr *sa;
1064 
1065 	unp = sotounpcb(so);
1066 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1067 
1068 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1069 	UNP_PCB_LOCK(unp);
1070 	if (unp->unp_addr != NULL)
1071 		sa = (struct sockaddr *) unp->unp_addr;
1072 	else
1073 		sa = &sun_noname;
1074 	bcopy(sa, *nam, sa->sa_len);
1075 	UNP_PCB_UNLOCK(unp);
1076 	return (0);
1077 }
1078 
1079 static struct pr_usrreqs uipc_usrreqs_dgram = {
1080 	.pru_abort = 		uipc_abort,
1081 	.pru_accept =		uipc_accept,
1082 	.pru_attach =		uipc_attach,
1083 	.pru_bind =		uipc_bind,
1084 	.pru_connect =		uipc_connect,
1085 	.pru_connect2 =		uipc_connect2,
1086 	.pru_detach =		uipc_detach,
1087 	.pru_disconnect =	uipc_disconnect,
1088 	.pru_listen =		uipc_listen,
1089 	.pru_peeraddr =		uipc_peeraddr,
1090 	.pru_rcvd =		uipc_rcvd,
1091 	.pru_send =		uipc_send,
1092 	.pru_sense =		uipc_sense,
1093 	.pru_shutdown =		uipc_shutdown,
1094 	.pru_sockaddr =		uipc_sockaddr,
1095 	.pru_soreceive =	soreceive_dgram,
1096 	.pru_close =		uipc_close,
1097 };
1098 
1099 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1100 	.pru_abort =		uipc_abort,
1101 	.pru_accept =		uipc_accept,
1102 	.pru_attach =		uipc_attach,
1103 	.pru_bind =		uipc_bind,
1104 	.pru_connect =		uipc_connect,
1105 	.pru_connect2 =		uipc_connect2,
1106 	.pru_detach =		uipc_detach,
1107 	.pru_disconnect =	uipc_disconnect,
1108 	.pru_listen =		uipc_listen,
1109 	.pru_peeraddr =		uipc_peeraddr,
1110 	.pru_rcvd =		uipc_rcvd,
1111 	.pru_send =		uipc_send,
1112 	.pru_sense =		uipc_sense,
1113 	.pru_shutdown =		uipc_shutdown,
1114 	.pru_sockaddr =		uipc_sockaddr,
1115 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1116 	.pru_close =		uipc_close,
1117 };
1118 
1119 static struct pr_usrreqs uipc_usrreqs_stream = {
1120 	.pru_abort = 		uipc_abort,
1121 	.pru_accept =		uipc_accept,
1122 	.pru_attach =		uipc_attach,
1123 	.pru_bind =		uipc_bind,
1124 	.pru_connect =		uipc_connect,
1125 	.pru_connect2 =		uipc_connect2,
1126 	.pru_detach =		uipc_detach,
1127 	.pru_disconnect =	uipc_disconnect,
1128 	.pru_listen =		uipc_listen,
1129 	.pru_peeraddr =		uipc_peeraddr,
1130 	.pru_rcvd =		uipc_rcvd,
1131 	.pru_send =		uipc_send,
1132 	.pru_sense =		uipc_sense,
1133 	.pru_shutdown =		uipc_shutdown,
1134 	.pru_sockaddr =		uipc_sockaddr,
1135 	.pru_soreceive =	soreceive_generic,
1136 	.pru_close =		uipc_close,
1137 };
1138 
1139 static int
1140 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1141 {
1142 	struct unpcb *unp;
1143 	struct xucred xu;
1144 	int error, optval;
1145 
1146 	if (sopt->sopt_level != 0)
1147 		return (EINVAL);
1148 
1149 	unp = sotounpcb(so);
1150 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1151 	error = 0;
1152 	switch (sopt->sopt_dir) {
1153 	case SOPT_GET:
1154 		switch (sopt->sopt_name) {
1155 		case LOCAL_PEERCRED:
1156 			UNP_PCB_LOCK(unp);
1157 			if (unp->unp_flags & UNP_HAVEPC)
1158 				xu = unp->unp_peercred;
1159 			else {
1160 				if (so->so_type == SOCK_STREAM)
1161 					error = ENOTCONN;
1162 				else
1163 					error = EINVAL;
1164 			}
1165 			UNP_PCB_UNLOCK(unp);
1166 			if (error == 0)
1167 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1168 			break;
1169 
1170 		case LOCAL_CREDS:
1171 			/* Unlocked read. */
1172 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1173 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1174 			break;
1175 
1176 		case LOCAL_CONNWAIT:
1177 			/* Unlocked read. */
1178 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1179 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1180 			break;
1181 
1182 		default:
1183 			error = EOPNOTSUPP;
1184 			break;
1185 		}
1186 		break;
1187 
1188 	case SOPT_SET:
1189 		switch (sopt->sopt_name) {
1190 		case LOCAL_CREDS:
1191 		case LOCAL_CONNWAIT:
1192 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1193 					    sizeof(optval));
1194 			if (error)
1195 				break;
1196 
1197 #define	OPTSET(bit) do {						\
1198 	UNP_PCB_LOCK(unp);						\
1199 	if (optval)							\
1200 		unp->unp_flags |= bit;					\
1201 	else								\
1202 		unp->unp_flags &= ~bit;					\
1203 	UNP_PCB_UNLOCK(unp);						\
1204 } while (0)
1205 
1206 			switch (sopt->sopt_name) {
1207 			case LOCAL_CREDS:
1208 				OPTSET(UNP_WANTCRED);
1209 				break;
1210 
1211 			case LOCAL_CONNWAIT:
1212 				OPTSET(UNP_CONNWAIT);
1213 				break;
1214 
1215 			default:
1216 				break;
1217 			}
1218 			break;
1219 #undef	OPTSET
1220 		default:
1221 			error = ENOPROTOOPT;
1222 			break;
1223 		}
1224 		break;
1225 
1226 	default:
1227 		error = EOPNOTSUPP;
1228 		break;
1229 	}
1230 	return (error);
1231 }
1232 
1233 static int
1234 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1235 {
1236 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1237 	struct vnode *vp;
1238 	struct socket *so2, *so3;
1239 	struct unpcb *unp, *unp2, *unp3;
1240 	int error, len;
1241 	struct nameidata nd;
1242 	char buf[SOCK_MAXADDRLEN];
1243 	struct sockaddr *sa;
1244 
1245 	UNP_LINK_WLOCK_ASSERT();
1246 
1247 	unp = sotounpcb(so);
1248 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1249 
1250 	if (nam->sa_len > sizeof(struct sockaddr_un))
1251 		return (EINVAL);
1252 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1253 	if (len <= 0)
1254 		return (EINVAL);
1255 	bcopy(soun->sun_path, buf, len);
1256 	buf[len] = 0;
1257 
1258 	UNP_PCB_LOCK(unp);
1259 	if (unp->unp_flags & UNP_CONNECTING) {
1260 		UNP_PCB_UNLOCK(unp);
1261 		return (EALREADY);
1262 	}
1263 	UNP_LINK_WUNLOCK();
1264 	unp->unp_flags |= UNP_CONNECTING;
1265 	UNP_PCB_UNLOCK(unp);
1266 
1267 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1268 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1269 	    UIO_SYSSPACE, buf, td);
1270 	error = namei(&nd);
1271 	if (error)
1272 		vp = NULL;
1273 	else
1274 		vp = nd.ni_vp;
1275 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1276 	NDFREE(&nd, NDF_ONLY_PNBUF);
1277 	if (error)
1278 		goto bad;
1279 
1280 	if (vp->v_type != VSOCK) {
1281 		error = ENOTSOCK;
1282 		goto bad;
1283 	}
1284 #ifdef MAC
1285 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1286 	if (error)
1287 		goto bad;
1288 #endif
1289 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1290 	if (error)
1291 		goto bad;
1292 
1293 	unp = sotounpcb(so);
1294 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1295 
1296 	/*
1297 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1298 	 * and to protect simultaneous locking of multiple pcbs.
1299 	 */
1300 	UNP_LINK_WLOCK();
1301 	VOP_UNP_CONNECT(vp, &so2);
1302 	if (so2 == NULL) {
1303 		error = ECONNREFUSED;
1304 		goto bad2;
1305 	}
1306 	if (so->so_type != so2->so_type) {
1307 		error = EPROTOTYPE;
1308 		goto bad2;
1309 	}
1310 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1311 		if (so2->so_options & SO_ACCEPTCONN) {
1312 			CURVNET_SET(so2->so_vnet);
1313 			so3 = sonewconn(so2, 0);
1314 			CURVNET_RESTORE();
1315 		} else
1316 			so3 = NULL;
1317 		if (so3 == NULL) {
1318 			error = ECONNREFUSED;
1319 			goto bad2;
1320 		}
1321 		unp = sotounpcb(so);
1322 		unp2 = sotounpcb(so2);
1323 		unp3 = sotounpcb(so3);
1324 		UNP_PCB_LOCK(unp);
1325 		UNP_PCB_LOCK(unp2);
1326 		UNP_PCB_LOCK(unp3);
1327 		if (unp2->unp_addr != NULL) {
1328 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1329 			unp3->unp_addr = (struct sockaddr_un *) sa;
1330 			sa = NULL;
1331 		}
1332 
1333 		/*
1334 		 * The connecter's (client's) credentials are copied from its
1335 		 * process structure at the time of connect() (which is now).
1336 		 */
1337 		cru2x(td->td_ucred, &unp3->unp_peercred);
1338 		unp3->unp_flags |= UNP_HAVEPC;
1339 
1340 		/*
1341 		 * The receiver's (server's) credentials are copied from the
1342 		 * unp_peercred member of socket on which the former called
1343 		 * listen(); uipc_listen() cached that process's credentials
1344 		 * at that time so we can use them now.
1345 		 */
1346 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1347 		    ("unp_connect: listener without cached peercred"));
1348 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1349 		    sizeof(unp->unp_peercred));
1350 		unp->unp_flags |= UNP_HAVEPC;
1351 		if (unp2->unp_flags & UNP_WANTCRED)
1352 			unp3->unp_flags |= UNP_WANTCRED;
1353 		UNP_PCB_UNLOCK(unp3);
1354 		UNP_PCB_UNLOCK(unp2);
1355 		UNP_PCB_UNLOCK(unp);
1356 #ifdef MAC
1357 		mac_socketpeer_set_from_socket(so, so3);
1358 		mac_socketpeer_set_from_socket(so3, so);
1359 #endif
1360 
1361 		so2 = so3;
1362 	}
1363 	unp = sotounpcb(so);
1364 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1365 	unp2 = sotounpcb(so2);
1366 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1367 	UNP_PCB_LOCK(unp);
1368 	UNP_PCB_LOCK(unp2);
1369 	error = unp_connect2(so, so2, PRU_CONNECT);
1370 	UNP_PCB_UNLOCK(unp2);
1371 	UNP_PCB_UNLOCK(unp);
1372 bad2:
1373 	UNP_LINK_WUNLOCK();
1374 bad:
1375 	if (vp != NULL)
1376 		vput(vp);
1377 	free(sa, M_SONAME);
1378 	UNP_LINK_WLOCK();
1379 	UNP_PCB_LOCK(unp);
1380 	unp->unp_flags &= ~UNP_CONNECTING;
1381 	UNP_PCB_UNLOCK(unp);
1382 	return (error);
1383 }
1384 
1385 static int
1386 unp_connect2(struct socket *so, struct socket *so2, int req)
1387 {
1388 	struct unpcb *unp;
1389 	struct unpcb *unp2;
1390 
1391 	unp = sotounpcb(so);
1392 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1393 	unp2 = sotounpcb(so2);
1394 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1395 
1396 	UNP_LINK_WLOCK_ASSERT();
1397 	UNP_PCB_LOCK_ASSERT(unp);
1398 	UNP_PCB_LOCK_ASSERT(unp2);
1399 
1400 	if (so2->so_type != so->so_type)
1401 		return (EPROTOTYPE);
1402 	unp->unp_conn = unp2;
1403 
1404 	switch (so->so_type) {
1405 	case SOCK_DGRAM:
1406 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1407 		soisconnected(so);
1408 		break;
1409 
1410 	case SOCK_STREAM:
1411 	case SOCK_SEQPACKET:
1412 		unp2->unp_conn = unp;
1413 		if (req == PRU_CONNECT &&
1414 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1415 			soisconnecting(so);
1416 		else
1417 			soisconnected(so);
1418 		soisconnected(so2);
1419 		break;
1420 
1421 	default:
1422 		panic("unp_connect2");
1423 	}
1424 	return (0);
1425 }
1426 
1427 static void
1428 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1429 {
1430 	struct socket *so;
1431 
1432 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1433 
1434 	UNP_LINK_WLOCK_ASSERT();
1435 	UNP_PCB_LOCK_ASSERT(unp);
1436 	UNP_PCB_LOCK_ASSERT(unp2);
1437 
1438 	unp->unp_conn = NULL;
1439 	switch (unp->unp_socket->so_type) {
1440 	case SOCK_DGRAM:
1441 		LIST_REMOVE(unp, unp_reflink);
1442 		so = unp->unp_socket;
1443 		SOCK_LOCK(so);
1444 		so->so_state &= ~SS_ISCONNECTED;
1445 		SOCK_UNLOCK(so);
1446 		break;
1447 
1448 	case SOCK_STREAM:
1449 	case SOCK_SEQPACKET:
1450 		soisdisconnected(unp->unp_socket);
1451 		unp2->unp_conn = NULL;
1452 		soisdisconnected(unp2->unp_socket);
1453 		break;
1454 	}
1455 }
1456 
1457 /*
1458  * unp_pcblist() walks the global list of struct unpcb's to generate a
1459  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1460  * sequentially, validating the generation number on each to see if it has
1461  * been detached.  All of this is necessary because copyout() may sleep on
1462  * disk I/O.
1463  */
1464 static int
1465 unp_pcblist(SYSCTL_HANDLER_ARGS)
1466 {
1467 	int error, i, n;
1468 	int freeunp;
1469 	struct unpcb *unp, **unp_list;
1470 	unp_gen_t gencnt;
1471 	struct xunpgen *xug;
1472 	struct unp_head *head;
1473 	struct xunpcb *xu;
1474 
1475 	switch ((intptr_t)arg1) {
1476 	case SOCK_STREAM:
1477 		head = &unp_shead;
1478 		break;
1479 
1480 	case SOCK_DGRAM:
1481 		head = &unp_dhead;
1482 		break;
1483 
1484 	case SOCK_SEQPACKET:
1485 		head = &unp_sphead;
1486 		break;
1487 
1488 	default:
1489 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1490 	}
1491 
1492 	/*
1493 	 * The process of preparing the PCB list is too time-consuming and
1494 	 * resource-intensive to repeat twice on every request.
1495 	 */
1496 	if (req->oldptr == NULL) {
1497 		n = unp_count;
1498 		req->oldidx = 2 * (sizeof *xug)
1499 			+ (n + n/8) * sizeof(struct xunpcb);
1500 		return (0);
1501 	}
1502 
1503 	if (req->newptr != NULL)
1504 		return (EPERM);
1505 
1506 	/*
1507 	 * OK, now we're committed to doing something.
1508 	 */
1509 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1510 	UNP_LIST_LOCK();
1511 	gencnt = unp_gencnt;
1512 	n = unp_count;
1513 	UNP_LIST_UNLOCK();
1514 
1515 	xug->xug_len = sizeof *xug;
1516 	xug->xug_count = n;
1517 	xug->xug_gen = gencnt;
1518 	xug->xug_sogen = so_gencnt;
1519 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1520 	if (error) {
1521 		free(xug, M_TEMP);
1522 		return (error);
1523 	}
1524 
1525 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1526 
1527 	UNP_LIST_LOCK();
1528 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1529 	     unp = LIST_NEXT(unp, unp_link)) {
1530 		UNP_PCB_LOCK(unp);
1531 		if (unp->unp_gencnt <= gencnt) {
1532 			if (cr_cansee(req->td->td_ucred,
1533 			    unp->unp_socket->so_cred)) {
1534 				UNP_PCB_UNLOCK(unp);
1535 				continue;
1536 			}
1537 			unp_list[i++] = unp;
1538 			unp->unp_refcount++;
1539 		}
1540 		UNP_PCB_UNLOCK(unp);
1541 	}
1542 	UNP_LIST_UNLOCK();
1543 	n = i;			/* In case we lost some during malloc. */
1544 
1545 	error = 0;
1546 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1547 	for (i = 0; i < n; i++) {
1548 		unp = unp_list[i];
1549 		UNP_PCB_LOCK(unp);
1550 		unp->unp_refcount--;
1551 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1552 			xu->xu_len = sizeof *xu;
1553 			xu->xu_unpp = unp;
1554 			/*
1555 			 * XXX - need more locking here to protect against
1556 			 * connect/disconnect races for SMP.
1557 			 */
1558 			if (unp->unp_addr != NULL)
1559 				bcopy(unp->unp_addr, &xu->xu_addr,
1560 				      unp->unp_addr->sun_len);
1561 			if (unp->unp_conn != NULL &&
1562 			    unp->unp_conn->unp_addr != NULL)
1563 				bcopy(unp->unp_conn->unp_addr,
1564 				      &xu->xu_caddr,
1565 				      unp->unp_conn->unp_addr->sun_len);
1566 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1567 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1568 			UNP_PCB_UNLOCK(unp);
1569 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1570 		} else {
1571 			freeunp = (unp->unp_refcount == 0);
1572 			UNP_PCB_UNLOCK(unp);
1573 			if (freeunp) {
1574 				UNP_PCB_LOCK_DESTROY(unp);
1575 				uma_zfree(unp_zone, unp);
1576 			}
1577 		}
1578 	}
1579 	free(xu, M_TEMP);
1580 	if (!error) {
1581 		/*
1582 		 * Give the user an updated idea of our state.  If the
1583 		 * generation differs from what we told her before, she knows
1584 		 * that something happened while we were processing this
1585 		 * request, and it might be necessary to retry.
1586 		 */
1587 		xug->xug_gen = unp_gencnt;
1588 		xug->xug_sogen = so_gencnt;
1589 		xug->xug_count = unp_count;
1590 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1591 	}
1592 	free(unp_list, M_TEMP);
1593 	free(xug, M_TEMP);
1594 	return (error);
1595 }
1596 
1597 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1598     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1599     "List of active local datagram sockets");
1600 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1601     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1602     "List of active local stream sockets");
1603 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1604     CTLTYPE_OPAQUE | CTLFLAG_RD,
1605     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1606     "List of active local seqpacket sockets");
1607 
1608 static void
1609 unp_shutdown(struct unpcb *unp)
1610 {
1611 	struct unpcb *unp2;
1612 	struct socket *so;
1613 
1614 	UNP_LINK_WLOCK_ASSERT();
1615 	UNP_PCB_LOCK_ASSERT(unp);
1616 
1617 	unp2 = unp->unp_conn;
1618 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1619 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1620 		so = unp2->unp_socket;
1621 		if (so != NULL)
1622 			socantrcvmore(so);
1623 	}
1624 }
1625 
1626 static void
1627 unp_drop(struct unpcb *unp, int errno)
1628 {
1629 	struct socket *so = unp->unp_socket;
1630 	struct unpcb *unp2;
1631 
1632 	UNP_LINK_WLOCK_ASSERT();
1633 	UNP_PCB_LOCK_ASSERT(unp);
1634 
1635 	so->so_error = errno;
1636 	unp2 = unp->unp_conn;
1637 	if (unp2 == NULL)
1638 		return;
1639 	UNP_PCB_LOCK(unp2);
1640 	unp_disconnect(unp, unp2);
1641 	UNP_PCB_UNLOCK(unp2);
1642 }
1643 
1644 static void
1645 unp_freerights(struct file **rp, int fdcount)
1646 {
1647 	int i;
1648 	struct file *fp;
1649 
1650 	for (i = 0; i < fdcount; i++) {
1651 		fp = *rp;
1652 		*rp++ = NULL;
1653 		unp_discard(fp);
1654 	}
1655 }
1656 
1657 static int
1658 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1659 {
1660 	struct thread *td = curthread;		/* XXX */
1661 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1662 	int i;
1663 	int *fdp;
1664 	struct file **rp;
1665 	struct file *fp;
1666 	void *data;
1667 	socklen_t clen = control->m_len, datalen;
1668 	int error, newfds;
1669 	int f;
1670 	u_int newlen;
1671 
1672 	UNP_LINK_UNLOCK_ASSERT();
1673 
1674 	error = 0;
1675 	if (controlp != NULL) /* controlp == NULL => free control messages */
1676 		*controlp = NULL;
1677 	while (cm != NULL) {
1678 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1679 			error = EINVAL;
1680 			break;
1681 		}
1682 		data = CMSG_DATA(cm);
1683 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1684 		if (cm->cmsg_level == SOL_SOCKET
1685 		    && cm->cmsg_type == SCM_RIGHTS) {
1686 			newfds = datalen / sizeof(struct file *);
1687 			rp = data;
1688 
1689 			/* If we're not outputting the descriptors free them. */
1690 			if (error || controlp == NULL) {
1691 				unp_freerights(rp, newfds);
1692 				goto next;
1693 			}
1694 			FILEDESC_XLOCK(td->td_proc->p_fd);
1695 			/* if the new FD's will not fit free them.  */
1696 			if (!fdavail(td, newfds)) {
1697 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1698 				error = EMSGSIZE;
1699 				unp_freerights(rp, newfds);
1700 				goto next;
1701 			}
1702 
1703 			/*
1704 			 * Now change each pointer to an fd in the global
1705 			 * table to an integer that is the index to the local
1706 			 * fd table entry that we set up to point to the
1707 			 * global one we are transferring.
1708 			 */
1709 			newlen = newfds * sizeof(int);
1710 			*controlp = sbcreatecontrol(NULL, newlen,
1711 			    SCM_RIGHTS, SOL_SOCKET);
1712 			if (*controlp == NULL) {
1713 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1714 				error = E2BIG;
1715 				unp_freerights(rp, newfds);
1716 				goto next;
1717 			}
1718 
1719 			fdp = (int *)
1720 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1721 			for (i = 0; i < newfds; i++) {
1722 				if (fdalloc(td, 0, &f))
1723 					panic("unp_externalize fdalloc failed");
1724 				fp = *rp++;
1725 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1726 				unp_externalize_fp(fp);
1727 				*fdp++ = f;
1728 			}
1729 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1730 		} else {
1731 			/* We can just copy anything else across. */
1732 			if (error || controlp == NULL)
1733 				goto next;
1734 			*controlp = sbcreatecontrol(NULL, datalen,
1735 			    cm->cmsg_type, cm->cmsg_level);
1736 			if (*controlp == NULL) {
1737 				error = ENOBUFS;
1738 				goto next;
1739 			}
1740 			bcopy(data,
1741 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1742 			    datalen);
1743 		}
1744 		controlp = &(*controlp)->m_next;
1745 
1746 next:
1747 		if (CMSG_SPACE(datalen) < clen) {
1748 			clen -= CMSG_SPACE(datalen);
1749 			cm = (struct cmsghdr *)
1750 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1751 		} else {
1752 			clen = 0;
1753 			cm = NULL;
1754 		}
1755 	}
1756 
1757 	m_freem(control);
1758 	return (error);
1759 }
1760 
1761 static void
1762 unp_zone_change(void *tag)
1763 {
1764 
1765 	uma_zone_set_max(unp_zone, maxsockets);
1766 }
1767 
1768 static void
1769 unp_init(void)
1770 {
1771 
1772 #ifdef VIMAGE
1773 	if (!IS_DEFAULT_VNET(curvnet))
1774 		return;
1775 #endif
1776 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1777 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1778 	if (unp_zone == NULL)
1779 		panic("unp_init");
1780 	uma_zone_set_max(unp_zone, maxsockets);
1781 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1782 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1783 	    NULL, EVENTHANDLER_PRI_ANY);
1784 	LIST_INIT(&unp_dhead);
1785 	LIST_INIT(&unp_shead);
1786 	LIST_INIT(&unp_sphead);
1787 	SLIST_INIT(&unp_defers);
1788 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1789 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1790 	UNP_LINK_LOCK_INIT();
1791 	UNP_LIST_LOCK_INIT();
1792 	UNP_DEFERRED_LOCK_INIT();
1793 }
1794 
1795 static int
1796 unp_internalize(struct mbuf **controlp, struct thread *td)
1797 {
1798 	struct mbuf *control = *controlp;
1799 	struct proc *p = td->td_proc;
1800 	struct filedesc *fdescp = p->p_fd;
1801 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1802 	struct cmsgcred *cmcred;
1803 	struct file **rp;
1804 	struct file *fp;
1805 	struct timeval *tv;
1806 	int i, fd, *fdp;
1807 	void *data;
1808 	socklen_t clen = control->m_len, datalen;
1809 	int error, oldfds;
1810 	u_int newlen;
1811 
1812 	UNP_LINK_UNLOCK_ASSERT();
1813 
1814 	error = 0;
1815 	*controlp = NULL;
1816 	while (cm != NULL) {
1817 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1818 		    || cm->cmsg_len > clen) {
1819 			error = EINVAL;
1820 			goto out;
1821 		}
1822 		data = CMSG_DATA(cm);
1823 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1824 
1825 		switch (cm->cmsg_type) {
1826 		/*
1827 		 * Fill in credential information.
1828 		 */
1829 		case SCM_CREDS:
1830 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1831 			    SCM_CREDS, SOL_SOCKET);
1832 			if (*controlp == NULL) {
1833 				error = ENOBUFS;
1834 				goto out;
1835 			}
1836 			cmcred = (struct cmsgcred *)
1837 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1838 			cmcred->cmcred_pid = p->p_pid;
1839 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1840 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1841 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1842 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1843 			    CMGROUP_MAX);
1844 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1845 				cmcred->cmcred_groups[i] =
1846 				    td->td_ucred->cr_groups[i];
1847 			break;
1848 
1849 		case SCM_RIGHTS:
1850 			oldfds = datalen / sizeof (int);
1851 			/*
1852 			 * Check that all the FDs passed in refer to legal
1853 			 * files.  If not, reject the entire operation.
1854 			 */
1855 			fdp = data;
1856 			FILEDESC_SLOCK(fdescp);
1857 			for (i = 0; i < oldfds; i++) {
1858 				fd = *fdp++;
1859 				if (fd < 0 || fd >= fdescp->fd_nfiles ||
1860 				    fdescp->fd_ofiles[fd] == NULL) {
1861 					FILEDESC_SUNLOCK(fdescp);
1862 					error = EBADF;
1863 					goto out;
1864 				}
1865 				fp = fdescp->fd_ofiles[fd];
1866 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1867 					FILEDESC_SUNLOCK(fdescp);
1868 					error = EOPNOTSUPP;
1869 					goto out;
1870 				}
1871 
1872 			}
1873 
1874 			/*
1875 			 * Now replace the integer FDs with pointers to the
1876 			 * associated global file table entry..
1877 			 */
1878 			newlen = oldfds * sizeof(struct file *);
1879 			*controlp = sbcreatecontrol(NULL, newlen,
1880 			    SCM_RIGHTS, SOL_SOCKET);
1881 			if (*controlp == NULL) {
1882 				FILEDESC_SUNLOCK(fdescp);
1883 				error = E2BIG;
1884 				goto out;
1885 			}
1886 			fdp = data;
1887 			rp = (struct file **)
1888 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1889 			for (i = 0; i < oldfds; i++) {
1890 				fp = fdescp->fd_ofiles[*fdp++];
1891 				*rp++ = fp;
1892 				unp_internalize_fp(fp);
1893 			}
1894 			FILEDESC_SUNLOCK(fdescp);
1895 			break;
1896 
1897 		case SCM_TIMESTAMP:
1898 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1899 			    SCM_TIMESTAMP, SOL_SOCKET);
1900 			if (*controlp == NULL) {
1901 				error = ENOBUFS;
1902 				goto out;
1903 			}
1904 			tv = (struct timeval *)
1905 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1906 			microtime(tv);
1907 			break;
1908 
1909 		default:
1910 			error = EINVAL;
1911 			goto out;
1912 		}
1913 
1914 		controlp = &(*controlp)->m_next;
1915 		if (CMSG_SPACE(datalen) < clen) {
1916 			clen -= CMSG_SPACE(datalen);
1917 			cm = (struct cmsghdr *)
1918 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1919 		} else {
1920 			clen = 0;
1921 			cm = NULL;
1922 		}
1923 	}
1924 
1925 out:
1926 	m_freem(control);
1927 	return (error);
1928 }
1929 
1930 static struct mbuf *
1931 unp_addsockcred(struct thread *td, struct mbuf *control)
1932 {
1933 	struct mbuf *m, *n, *n_prev;
1934 	struct sockcred *sc;
1935 	const struct cmsghdr *cm;
1936 	int ngroups;
1937 	int i;
1938 
1939 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1940 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1941 	if (m == NULL)
1942 		return (control);
1943 
1944 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1945 	sc->sc_uid = td->td_ucred->cr_ruid;
1946 	sc->sc_euid = td->td_ucred->cr_uid;
1947 	sc->sc_gid = td->td_ucred->cr_rgid;
1948 	sc->sc_egid = td->td_ucred->cr_gid;
1949 	sc->sc_ngroups = ngroups;
1950 	for (i = 0; i < sc->sc_ngroups; i++)
1951 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1952 
1953 	/*
1954 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1955 	 * created SCM_CREDS control message (struct sockcred) has another
1956 	 * format.
1957 	 */
1958 	if (control != NULL)
1959 		for (n = control, n_prev = NULL; n != NULL;) {
1960 			cm = mtod(n, struct cmsghdr *);
1961     			if (cm->cmsg_level == SOL_SOCKET &&
1962 			    cm->cmsg_type == SCM_CREDS) {
1963     				if (n_prev == NULL)
1964 					control = n->m_next;
1965 				else
1966 					n_prev->m_next = n->m_next;
1967 				n = m_free(n);
1968 			} else {
1969 				n_prev = n;
1970 				n = n->m_next;
1971 			}
1972 		}
1973 
1974 	/* Prepend it to the head. */
1975 	m->m_next = control;
1976 	return (m);
1977 }
1978 
1979 static struct unpcb *
1980 fptounp(struct file *fp)
1981 {
1982 	struct socket *so;
1983 
1984 	if (fp->f_type != DTYPE_SOCKET)
1985 		return (NULL);
1986 	if ((so = fp->f_data) == NULL)
1987 		return (NULL);
1988 	if (so->so_proto->pr_domain != &localdomain)
1989 		return (NULL);
1990 	return sotounpcb(so);
1991 }
1992 
1993 static void
1994 unp_discard(struct file *fp)
1995 {
1996 	struct unp_defer *dr;
1997 
1998 	if (unp_externalize_fp(fp)) {
1999 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2000 		dr->ud_fp = fp;
2001 		UNP_DEFERRED_LOCK();
2002 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2003 		UNP_DEFERRED_UNLOCK();
2004 		atomic_add_int(&unp_defers_count, 1);
2005 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2006 	} else
2007 		(void) closef(fp, (struct thread *)NULL);
2008 }
2009 
2010 static void
2011 unp_process_defers(void *arg __unused, int pending)
2012 {
2013 	struct unp_defer *dr;
2014 	SLIST_HEAD(, unp_defer) drl;
2015 	int count;
2016 
2017 	SLIST_INIT(&drl);
2018 	for (;;) {
2019 		UNP_DEFERRED_LOCK();
2020 		if (SLIST_FIRST(&unp_defers) == NULL) {
2021 			UNP_DEFERRED_UNLOCK();
2022 			break;
2023 		}
2024 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2025 		UNP_DEFERRED_UNLOCK();
2026 		count = 0;
2027 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2028 			SLIST_REMOVE_HEAD(&drl, ud_link);
2029 			closef(dr->ud_fp, NULL);
2030 			free(dr, M_TEMP);
2031 			count++;
2032 		}
2033 		atomic_add_int(&unp_defers_count, -count);
2034 	}
2035 }
2036 
2037 static void
2038 unp_internalize_fp(struct file *fp)
2039 {
2040 	struct unpcb *unp;
2041 
2042 	UNP_LINK_WLOCK();
2043 	if ((unp = fptounp(fp)) != NULL) {
2044 		unp->unp_file = fp;
2045 		unp->unp_msgcount++;
2046 	}
2047 	fhold(fp);
2048 	unp_rights++;
2049 	UNP_LINK_WUNLOCK();
2050 }
2051 
2052 static int
2053 unp_externalize_fp(struct file *fp)
2054 {
2055 	struct unpcb *unp;
2056 	int ret;
2057 
2058 	UNP_LINK_WLOCK();
2059 	if ((unp = fptounp(fp)) != NULL) {
2060 		unp->unp_msgcount--;
2061 		ret = 1;
2062 	} else
2063 		ret = 0;
2064 	unp_rights--;
2065 	UNP_LINK_WUNLOCK();
2066 	return (ret);
2067 }
2068 
2069 /*
2070  * unp_defer indicates whether additional work has been defered for a future
2071  * pass through unp_gc().  It is thread local and does not require explicit
2072  * synchronization.
2073  */
2074 static int	unp_marked;
2075 static int	unp_unreachable;
2076 
2077 static void
2078 unp_accessable(struct file *fp)
2079 {
2080 	struct unpcb *unp;
2081 
2082 	if ((unp = fptounp(fp)) == NULL)
2083 		return;
2084 	if (unp->unp_gcflag & UNPGC_REF)
2085 		return;
2086 	unp->unp_gcflag &= ~UNPGC_DEAD;
2087 	unp->unp_gcflag |= UNPGC_REF;
2088 	unp_marked++;
2089 }
2090 
2091 static void
2092 unp_gc_process(struct unpcb *unp)
2093 {
2094 	struct socket *soa;
2095 	struct socket *so;
2096 	struct file *fp;
2097 
2098 	/* Already processed. */
2099 	if (unp->unp_gcflag & UNPGC_SCANNED)
2100 		return;
2101 	fp = unp->unp_file;
2102 
2103 	/*
2104 	 * Check for a socket potentially in a cycle.  It must be in a
2105 	 * queue as indicated by msgcount, and this must equal the file
2106 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2107 	 */
2108 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2109 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2110 		unp->unp_gcflag |= UNPGC_DEAD;
2111 		unp_unreachable++;
2112 		return;
2113 	}
2114 
2115 	/*
2116 	 * Mark all sockets we reference with RIGHTS.
2117 	 */
2118 	so = unp->unp_socket;
2119 	SOCKBUF_LOCK(&so->so_rcv);
2120 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2121 	SOCKBUF_UNLOCK(&so->so_rcv);
2122 
2123 	/*
2124 	 * Mark all sockets in our accept queue.
2125 	 */
2126 	ACCEPT_LOCK();
2127 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2128 		SOCKBUF_LOCK(&soa->so_rcv);
2129 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2130 		SOCKBUF_UNLOCK(&soa->so_rcv);
2131 	}
2132 	ACCEPT_UNLOCK();
2133 	unp->unp_gcflag |= UNPGC_SCANNED;
2134 }
2135 
2136 static int unp_recycled;
2137 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2138     "Number of unreachable sockets claimed by the garbage collector.");
2139 
2140 static int unp_taskcount;
2141 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2142     "Number of times the garbage collector has run.");
2143 
2144 static void
2145 unp_gc(__unused void *arg, int pending)
2146 {
2147 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2148 				    NULL };
2149 	struct unp_head **head;
2150 	struct file *f, **unref;
2151 	struct unpcb *unp;
2152 	int i, total;
2153 
2154 	unp_taskcount++;
2155 	UNP_LIST_LOCK();
2156 	/*
2157 	 * First clear all gc flags from previous runs.
2158 	 */
2159 	for (head = heads; *head != NULL; head++)
2160 		LIST_FOREACH(unp, *head, unp_link)
2161 			unp->unp_gcflag = 0;
2162 
2163 	/*
2164 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2165 	 * is reachable all of the sockets it references are reachable.
2166 	 * Stop the scan once we do a complete loop without discovering
2167 	 * a new reachable socket.
2168 	 */
2169 	do {
2170 		unp_unreachable = 0;
2171 		unp_marked = 0;
2172 		for (head = heads; *head != NULL; head++)
2173 			LIST_FOREACH(unp, *head, unp_link)
2174 				unp_gc_process(unp);
2175 	} while (unp_marked);
2176 	UNP_LIST_UNLOCK();
2177 	if (unp_unreachable == 0)
2178 		return;
2179 
2180 	/*
2181 	 * Allocate space for a local list of dead unpcbs.
2182 	 */
2183 	unref = malloc(unp_unreachable * sizeof(struct file *),
2184 	    M_TEMP, M_WAITOK);
2185 
2186 	/*
2187 	 * Iterate looking for sockets which have been specifically marked
2188 	 * as as unreachable and store them locally.
2189 	 */
2190 	UNP_LINK_RLOCK();
2191 	UNP_LIST_LOCK();
2192 	for (total = 0, head = heads; *head != NULL; head++)
2193 		LIST_FOREACH(unp, *head, unp_link)
2194 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2195 				f = unp->unp_file;
2196 				if (unp->unp_msgcount == 0 || f == NULL ||
2197 				    f->f_count != unp->unp_msgcount)
2198 					continue;
2199 				unref[total++] = f;
2200 				fhold(f);
2201 				KASSERT(total <= unp_unreachable,
2202 				    ("unp_gc: incorrect unreachable count."));
2203 			}
2204 	UNP_LIST_UNLOCK();
2205 	UNP_LINK_RUNLOCK();
2206 
2207 	/*
2208 	 * Now flush all sockets, free'ing rights.  This will free the
2209 	 * struct files associated with these sockets but leave each socket
2210 	 * with one remaining ref.
2211 	 */
2212 	for (i = 0; i < total; i++) {
2213 		struct socket *so;
2214 
2215 		so = unref[i]->f_data;
2216 		CURVNET_SET(so->so_vnet);
2217 		sorflush(so);
2218 		CURVNET_RESTORE();
2219 	}
2220 
2221 	/*
2222 	 * And finally release the sockets so they can be reclaimed.
2223 	 */
2224 	for (i = 0; i < total; i++)
2225 		fdrop(unref[i], NULL);
2226 	unp_recycled += total;
2227 	free(unref, M_TEMP);
2228 }
2229 
2230 static void
2231 unp_dispose(struct mbuf *m)
2232 {
2233 
2234 	if (m)
2235 		unp_scan(m, unp_discard);
2236 }
2237 
2238 static void
2239 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2240 {
2241 	struct mbuf *m;
2242 	struct file **rp;
2243 	struct cmsghdr *cm;
2244 	void *data;
2245 	int i;
2246 	socklen_t clen, datalen;
2247 	int qfds;
2248 
2249 	while (m0 != NULL) {
2250 		for (m = m0; m; m = m->m_next) {
2251 			if (m->m_type != MT_CONTROL)
2252 				continue;
2253 
2254 			cm = mtod(m, struct cmsghdr *);
2255 			clen = m->m_len;
2256 
2257 			while (cm != NULL) {
2258 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2259 					break;
2260 
2261 				data = CMSG_DATA(cm);
2262 				datalen = (caddr_t)cm + cm->cmsg_len
2263 				    - (caddr_t)data;
2264 
2265 				if (cm->cmsg_level == SOL_SOCKET &&
2266 				    cm->cmsg_type == SCM_RIGHTS) {
2267 					qfds = datalen / sizeof (struct file *);
2268 					rp = data;
2269 					for (i = 0; i < qfds; i++)
2270 						(*op)(*rp++);
2271 				}
2272 
2273 				if (CMSG_SPACE(datalen) < clen) {
2274 					clen -= CMSG_SPACE(datalen);
2275 					cm = (struct cmsghdr *)
2276 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2277 				} else {
2278 					clen = 0;
2279 					cm = NULL;
2280 				}
2281 			}
2282 		}
2283 		m0 = m0->m_act;
2284 	}
2285 }
2286 
2287 /*
2288  * A helper function called by VFS before socket-type vnode reclamation.
2289  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2290  * use count.
2291  */
2292 void
2293 vfs_unp_reclaim(struct vnode *vp)
2294 {
2295 	struct socket *so;
2296 	struct unpcb *unp;
2297 	int active;
2298 
2299 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2300 	KASSERT(vp->v_type == VSOCK,
2301 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2302 
2303 	active = 0;
2304 	UNP_LINK_WLOCK();
2305 	VOP_UNP_CONNECT(vp, &so);
2306 	if (so == NULL)
2307 		goto done;
2308 	unp = sotounpcb(so);
2309 	if (unp == NULL)
2310 		goto done;
2311 	UNP_PCB_LOCK(unp);
2312 	if (unp->unp_vnode == vp) {
2313 		VOP_UNP_DETACH(vp);
2314 		unp->unp_vnode = NULL;
2315 		active = 1;
2316 	}
2317 	UNP_PCB_UNLOCK(unp);
2318 done:
2319 	UNP_LINK_WUNLOCK();
2320 	if (active)
2321 		vunref(vp);
2322 }
2323 
2324 #ifdef DDB
2325 static void
2326 db_print_indent(int indent)
2327 {
2328 	int i;
2329 
2330 	for (i = 0; i < indent; i++)
2331 		db_printf(" ");
2332 }
2333 
2334 static void
2335 db_print_unpflags(int unp_flags)
2336 {
2337 	int comma;
2338 
2339 	comma = 0;
2340 	if (unp_flags & UNP_HAVEPC) {
2341 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2342 		comma = 1;
2343 	}
2344 	if (unp_flags & UNP_HAVEPCCACHED) {
2345 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2346 		comma = 1;
2347 	}
2348 	if (unp_flags & UNP_WANTCRED) {
2349 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2350 		comma = 1;
2351 	}
2352 	if (unp_flags & UNP_CONNWAIT) {
2353 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2354 		comma = 1;
2355 	}
2356 	if (unp_flags & UNP_CONNECTING) {
2357 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2358 		comma = 1;
2359 	}
2360 	if (unp_flags & UNP_BINDING) {
2361 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2362 		comma = 1;
2363 	}
2364 }
2365 
2366 static void
2367 db_print_xucred(int indent, struct xucred *xu)
2368 {
2369 	int comma, i;
2370 
2371 	db_print_indent(indent);
2372 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2373 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2374 	db_print_indent(indent);
2375 	db_printf("cr_groups: ");
2376 	comma = 0;
2377 	for (i = 0; i < xu->cr_ngroups; i++) {
2378 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2379 		comma = 1;
2380 	}
2381 	db_printf("\n");
2382 }
2383 
2384 static void
2385 db_print_unprefs(int indent, struct unp_head *uh)
2386 {
2387 	struct unpcb *unp;
2388 	int counter;
2389 
2390 	counter = 0;
2391 	LIST_FOREACH(unp, uh, unp_reflink) {
2392 		if (counter % 4 == 0)
2393 			db_print_indent(indent);
2394 		db_printf("%p  ", unp);
2395 		if (counter % 4 == 3)
2396 			db_printf("\n");
2397 		counter++;
2398 	}
2399 	if (counter != 0 && counter % 4 != 0)
2400 		db_printf("\n");
2401 }
2402 
2403 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2404 {
2405 	struct unpcb *unp;
2406 
2407         if (!have_addr) {
2408                 db_printf("usage: show unpcb <addr>\n");
2409                 return;
2410         }
2411         unp = (struct unpcb *)addr;
2412 
2413 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2414 	    unp->unp_vnode);
2415 
2416 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2417 	    unp->unp_conn);
2418 
2419 	db_printf("unp_refs:\n");
2420 	db_print_unprefs(2, &unp->unp_refs);
2421 
2422 	/* XXXRW: Would be nice to print the full address, if any. */
2423 	db_printf("unp_addr: %p\n", unp->unp_addr);
2424 
2425 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2426 	    unp->unp_cc, unp->unp_mbcnt,
2427 	    (unsigned long long)unp->unp_gencnt);
2428 
2429 	db_printf("unp_flags: %x (", unp->unp_flags);
2430 	db_print_unpflags(unp->unp_flags);
2431 	db_printf(")\n");
2432 
2433 	db_printf("unp_peercred:\n");
2434 	db_print_xucred(2, &unp->unp_peercred);
2435 
2436 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2437 }
2438 #endif
2439