xref: /freebsd/sys/kern/uipc_usrreq.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/eventhandler.h>
69 #include <sys/fcntl.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 static struct domain localdomain;
109 
110 static uma_zone_t	unp_zone;
111 static unp_gen_t	unp_gencnt;	/* (l) */
112 static u_int		unp_count;	/* (l) Count of local sockets. */
113 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114 static int		unp_rights;	/* (g) File descriptors in flight. */
115 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118 
119 struct unp_defer {
120 	SLIST_ENTRY(unp_defer) ud_link;
121 	struct file *ud_fp;
122 };
123 static SLIST_HEAD(, unp_defer) unp_defers;
124 static int unp_defers_count;
125 
126 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct timeout_task unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_maxdgram = 2*1024;
158 static u_long	unpdg_recvspace = 16*1024;	/* support 8KB syslog msgs */
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
163     "Local domain");
164 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
165     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "SOCK_SEQPACKET");
173 
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
175 	   &unpst_sendspace, 0, "Default stream send space.");
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
177 	   &unpst_recvspace, 0, "Default stream receive space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
179 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpdg_recvspace, 0, "Default datagram receive space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
183 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
186 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
187     "File descriptors in flight.");
188 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
189     &unp_defers_count, 0,
190     "File descriptors deferred to taskqueue for close.");
191 
192 /*
193  * Locking and synchronization:
194  *
195  * Several types of locks exist in the local domain socket implementation:
196  * - a global linkage lock
197  * - a global connection list lock
198  * - the mtxpool lock
199  * - per-unpcb mutexes
200  *
201  * The linkage lock protects the global socket lists, the generation number
202  * counter and garbage collector state.
203  *
204  * The connection list lock protects the list of referring sockets in a datagram
205  * socket PCB.  This lock is also overloaded to protect a global list of
206  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
207  * messages.  To avoid recursion, such references are released by a dedicated
208  * thread.
209  *
210  * The mtxpool lock protects the vnode from being modified while referenced.
211  * Lock ordering rules require that it be acquired before any PCB locks.
212  *
213  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
214  * unpcb.  This includes the unp_conn field, which either links two connected
215  * PCBs together (for connected socket types) or points at the destination
216  * socket (for connectionless socket types).  The operations of creating or
217  * destroying a connection therefore involve locking multiple PCBs.  To avoid
218  * lock order reversals, in some cases this involves dropping a PCB lock and
219  * using a reference counter to maintain liveness.
220  *
221  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
222  * allocated in pr_attach() and freed in pr_detach().  The validity of that
223  * pointer is an invariant, so no lock is required to dereference the so_pcb
224  * pointer if a valid socket reference is held by the caller.  In practice,
225  * this is always true during operations performed on a socket.  Each unpcb
226  * has a back-pointer to its socket, unp_socket, which will be stable under
227  * the same circumstances.
228  *
229  * This pointer may only be safely dereferenced as long as a valid reference
230  * to the unpcb is held.  Typically, this reference will be from the socket,
231  * or from another unpcb when the referring unpcb's lock is held (in order
232  * that the reference not be invalidated during use).  For example, to follow
233  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
234  * that detach is not run clearing unp_socket.
235  *
236  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
237  * protocols, bind() is a non-atomic operation, and connect() requires
238  * potential sleeping in the protocol, due to potentially waiting on local or
239  * distributed file systems.  We try to separate "lookup" operations, which
240  * may sleep, and the IPC operations themselves, which typically can occur
241  * with relative atomicity as locks can be held over the entire operation.
242  *
243  * Another tricky issue is simultaneous multi-threaded or multi-process
244  * access to a single UNIX domain socket.  These are handled by the flags
245  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
246  * binding, both of which involve dropping UNIX domain socket locks in order
247  * to perform namei() and other file system operations.
248  */
249 static struct rwlock	unp_link_rwlock;
250 static struct mtx	unp_defers_lock;
251 
252 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
253 					    "unp_link_rwlock")
254 
255 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
256 					    RA_LOCKED)
257 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
258 					    RA_UNLOCKED)
259 
260 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
261 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
262 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
263 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
265 					    RA_WLOCKED)
266 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
267 
268 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
269 					    "unp_defer", NULL, MTX_DEF)
270 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
271 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
272 
273 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
274 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
275 
276 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
277 					    "unp", "unp",	\
278 					    MTX_DUPOK|MTX_DEF)
279 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
280 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
281 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
282 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
283 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
284 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
285 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
286 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
287 
288 static int	uipc_connect2(struct socket *, struct socket *);
289 static int	uipc_ctloutput(struct socket *, struct sockopt *);
290 static int	unp_connect(struct socket *, struct sockaddr *,
291 		    struct thread *);
292 static int	unp_connectat(int, struct socket *, struct sockaddr *,
293 		    struct thread *, bool);
294 typedef enum { PRU_CONNECT, PRU_CONNECT2 } conn2_how;
295 static void	unp_connect2(struct socket *so, struct socket *so2, conn2_how);
296 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
297 static void	unp_dispose(struct socket *so);
298 static void	unp_shutdown(struct unpcb *);
299 static void	unp_drop(struct unpcb *);
300 static void	unp_gc(__unused void *, int);
301 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void	unp_discard(struct file *);
303 static void	unp_freerights(struct filedescent **, int);
304 static int	unp_internalize(struct mbuf **, struct thread *,
305 		    struct mbuf **, u_int *, u_int *);
306 static void	unp_internalize_fp(struct file *);
307 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int	unp_externalize_fp(struct file *);
309 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *,
310 		    int, struct mbuf **, u_int *, u_int *);
311 static void	unp_process_defers(void * __unused, int);
312 
313 static void
314 unp_pcb_hold(struct unpcb *unp)
315 {
316 	u_int old __unused;
317 
318 	old = refcount_acquire(&unp->unp_refcount);
319 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
320 }
321 
322 static __result_use_check bool
323 unp_pcb_rele(struct unpcb *unp)
324 {
325 	bool ret;
326 
327 	UNP_PCB_LOCK_ASSERT(unp);
328 
329 	if ((ret = refcount_release(&unp->unp_refcount))) {
330 		UNP_PCB_UNLOCK(unp);
331 		UNP_PCB_LOCK_DESTROY(unp);
332 		uma_zfree(unp_zone, unp);
333 	}
334 	return (ret);
335 }
336 
337 static void
338 unp_pcb_rele_notlast(struct unpcb *unp)
339 {
340 	bool ret __unused;
341 
342 	ret = refcount_release(&unp->unp_refcount);
343 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
344 }
345 
346 static void
347 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
348 {
349 	UNP_PCB_UNLOCK_ASSERT(unp);
350 	UNP_PCB_UNLOCK_ASSERT(unp2);
351 
352 	if (unp == unp2) {
353 		UNP_PCB_LOCK(unp);
354 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static void
364 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
365 {
366 	UNP_PCB_UNLOCK(unp);
367 	if (unp != unp2)
368 		UNP_PCB_UNLOCK(unp2);
369 }
370 
371 /*
372  * Try to lock the connected peer of an already locked socket.  In some cases
373  * this requires that we unlock the current socket.  The pairbusy counter is
374  * used to block concurrent connection attempts while the lock is dropped.  The
375  * caller must be careful to revalidate PCB state.
376  */
377 static struct unpcb *
378 unp_pcb_lock_peer(struct unpcb *unp)
379 {
380 	struct unpcb *unp2;
381 
382 	UNP_PCB_LOCK_ASSERT(unp);
383 	unp2 = unp->unp_conn;
384 	if (unp2 == NULL)
385 		return (NULL);
386 	if (__predict_false(unp == unp2))
387 		return (unp);
388 
389 	UNP_PCB_UNLOCK_ASSERT(unp2);
390 
391 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
392 		return (unp2);
393 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
394 		UNP_PCB_LOCK(unp2);
395 		return (unp2);
396 	}
397 	unp->unp_pairbusy++;
398 	unp_pcb_hold(unp2);
399 	UNP_PCB_UNLOCK(unp);
400 
401 	UNP_PCB_LOCK(unp2);
402 	UNP_PCB_LOCK(unp);
403 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
404 	    ("%s: socket %p was reconnected", __func__, unp));
405 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
406 		unp->unp_flags &= ~UNP_WAITING;
407 		wakeup(unp);
408 	}
409 	if (unp_pcb_rele(unp2)) {
410 		/* unp2 is unlocked. */
411 		return (NULL);
412 	}
413 	if (unp->unp_conn == NULL) {
414 		UNP_PCB_UNLOCK(unp2);
415 		return (NULL);
416 	}
417 	return (unp2);
418 }
419 
420 static void
421 uipc_abort(struct socket *so)
422 {
423 	struct unpcb *unp, *unp2;
424 
425 	unp = sotounpcb(so);
426 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
427 	UNP_PCB_UNLOCK_ASSERT(unp);
428 
429 	UNP_PCB_LOCK(unp);
430 	unp2 = unp->unp_conn;
431 	if (unp2 != NULL) {
432 		unp_pcb_hold(unp2);
433 		UNP_PCB_UNLOCK(unp);
434 		unp_drop(unp2);
435 	} else
436 		UNP_PCB_UNLOCK(unp);
437 }
438 
439 static int
440 uipc_accept(struct socket *so, struct sockaddr **nam)
441 {
442 	struct unpcb *unp, *unp2;
443 	const struct sockaddr *sa;
444 
445 	/*
446 	 * Pass back name of connected socket, if it was bound and we are
447 	 * still connected (our peer may have closed already!).
448 	 */
449 	unp = sotounpcb(so);
450 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
451 
452 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
453 	UNP_PCB_LOCK(unp);
454 	unp2 = unp_pcb_lock_peer(unp);
455 	if (unp2 != NULL && unp2->unp_addr != NULL)
456 		sa = (struct sockaddr *)unp2->unp_addr;
457 	else
458 		sa = &sun_noname;
459 	bcopy(sa, *nam, sa->sa_len);
460 	if (unp2 != NULL)
461 		unp_pcb_unlock_pair(unp, unp2);
462 	else
463 		UNP_PCB_UNLOCK(unp);
464 	return (0);
465 }
466 
467 static int
468 uipc_attach(struct socket *so, int proto, struct thread *td)
469 {
470 	u_long sendspace, recvspace;
471 	struct unpcb *unp;
472 	int error;
473 	bool locked;
474 
475 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
476 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
477 		switch (so->so_type) {
478 		case SOCK_STREAM:
479 			sendspace = unpst_sendspace;
480 			recvspace = unpst_recvspace;
481 			break;
482 
483 		case SOCK_DGRAM:
484 			STAILQ_INIT(&so->so_rcv.uxdg_mb);
485 			STAILQ_INIT(&so->so_snd.uxdg_mb);
486 			TAILQ_INIT(&so->so_rcv.uxdg_conns);
487 			/*
488 			 * Since send buffer is either bypassed or is a part
489 			 * of one-to-many receive buffer, we assign both space
490 			 * limits to unpdg_recvspace.
491 			 */
492 			sendspace = recvspace = unpdg_recvspace;
493 			break;
494 
495 		case SOCK_SEQPACKET:
496 			sendspace = unpsp_sendspace;
497 			recvspace = unpsp_recvspace;
498 			break;
499 
500 		default:
501 			panic("uipc_attach");
502 		}
503 		error = soreserve(so, sendspace, recvspace);
504 		if (error)
505 			return (error);
506 	}
507 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
508 	if (unp == NULL)
509 		return (ENOBUFS);
510 	LIST_INIT(&unp->unp_refs);
511 	UNP_PCB_LOCK_INIT(unp);
512 	unp->unp_socket = so;
513 	so->so_pcb = unp;
514 	refcount_init(&unp->unp_refcount, 1);
515 
516 	if ((locked = UNP_LINK_WOWNED()) == false)
517 		UNP_LINK_WLOCK();
518 
519 	unp->unp_gencnt = ++unp_gencnt;
520 	unp->unp_ino = ++unp_ino;
521 	unp_count++;
522 	switch (so->so_type) {
523 	case SOCK_STREAM:
524 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
525 		break;
526 
527 	case SOCK_DGRAM:
528 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
529 		break;
530 
531 	case SOCK_SEQPACKET:
532 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
533 		break;
534 
535 	default:
536 		panic("uipc_attach");
537 	}
538 
539 	if (locked == false)
540 		UNP_LINK_WUNLOCK();
541 
542 	return (0);
543 }
544 
545 static int
546 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
547 {
548 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
549 	struct vattr vattr;
550 	int error, namelen;
551 	struct nameidata nd;
552 	struct unpcb *unp;
553 	struct vnode *vp;
554 	struct mount *mp;
555 	cap_rights_t rights;
556 	char *buf;
557 
558 	if (nam->sa_family != AF_UNIX)
559 		return (EAFNOSUPPORT);
560 
561 	unp = sotounpcb(so);
562 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
563 
564 	if (soun->sun_len > sizeof(struct sockaddr_un))
565 		return (EINVAL);
566 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
567 	if (namelen <= 0)
568 		return (EINVAL);
569 
570 	/*
571 	 * We don't allow simultaneous bind() calls on a single UNIX domain
572 	 * socket, so flag in-progress operations, and return an error if an
573 	 * operation is already in progress.
574 	 *
575 	 * Historically, we have not allowed a socket to be rebound, so this
576 	 * also returns an error.  Not allowing re-binding simplifies the
577 	 * implementation and avoids a great many possible failure modes.
578 	 */
579 	UNP_PCB_LOCK(unp);
580 	if (unp->unp_vnode != NULL) {
581 		UNP_PCB_UNLOCK(unp);
582 		return (EINVAL);
583 	}
584 	if (unp->unp_flags & UNP_BINDING) {
585 		UNP_PCB_UNLOCK(unp);
586 		return (EALREADY);
587 	}
588 	unp->unp_flags |= UNP_BINDING;
589 	UNP_PCB_UNLOCK(unp);
590 
591 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
592 	bcopy(soun->sun_path, buf, namelen);
593 	buf[namelen] = 0;
594 
595 restart:
596 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
597 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
598 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
599 	error = namei(&nd);
600 	if (error)
601 		goto error;
602 	vp = nd.ni_vp;
603 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
604 		NDFREE_PNBUF(&nd);
605 		if (nd.ni_dvp == vp)
606 			vrele(nd.ni_dvp);
607 		else
608 			vput(nd.ni_dvp);
609 		if (vp != NULL) {
610 			vrele(vp);
611 			error = EADDRINUSE;
612 			goto error;
613 		}
614 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
615 		if (error)
616 			goto error;
617 		goto restart;
618 	}
619 	VATTR_NULL(&vattr);
620 	vattr.va_type = VSOCK;
621 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
622 #ifdef MAC
623 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
624 	    &vattr);
625 #endif
626 	if (error == 0)
627 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
628 	NDFREE_PNBUF(&nd);
629 	if (error) {
630 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
631 		vn_finished_write(mp);
632 		if (error == ERELOOKUP)
633 			goto restart;
634 		goto error;
635 	}
636 	vp = nd.ni_vp;
637 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
638 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
639 
640 	UNP_PCB_LOCK(unp);
641 	VOP_UNP_BIND(vp, unp);
642 	unp->unp_vnode = vp;
643 	unp->unp_addr = soun;
644 	unp->unp_flags &= ~UNP_BINDING;
645 	UNP_PCB_UNLOCK(unp);
646 	vref(vp);
647 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
648 	vn_finished_write(mp);
649 	free(buf, M_TEMP);
650 	return (0);
651 
652 error:
653 	UNP_PCB_LOCK(unp);
654 	unp->unp_flags &= ~UNP_BINDING;
655 	UNP_PCB_UNLOCK(unp);
656 	free(buf, M_TEMP);
657 	return (error);
658 }
659 
660 static int
661 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
662 {
663 
664 	return (uipc_bindat(AT_FDCWD, so, nam, td));
665 }
666 
667 static int
668 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
669 {
670 	int error;
671 
672 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
673 	error = unp_connect(so, nam, td);
674 	return (error);
675 }
676 
677 static int
678 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
679     struct thread *td)
680 {
681 	int error;
682 
683 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
684 	error = unp_connectat(fd, so, nam, td, false);
685 	return (error);
686 }
687 
688 static void
689 uipc_close(struct socket *so)
690 {
691 	struct unpcb *unp, *unp2;
692 	struct vnode *vp = NULL;
693 	struct mtx *vplock;
694 
695 	unp = sotounpcb(so);
696 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
697 
698 	vplock = NULL;
699 	if ((vp = unp->unp_vnode) != NULL) {
700 		vplock = mtx_pool_find(mtxpool_sleep, vp);
701 		mtx_lock(vplock);
702 	}
703 	UNP_PCB_LOCK(unp);
704 	if (vp && unp->unp_vnode == NULL) {
705 		mtx_unlock(vplock);
706 		vp = NULL;
707 	}
708 	if (vp != NULL) {
709 		VOP_UNP_DETACH(vp);
710 		unp->unp_vnode = NULL;
711 	}
712 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
713 		unp_disconnect(unp, unp2);
714 	else
715 		UNP_PCB_UNLOCK(unp);
716 	if (vp) {
717 		mtx_unlock(vplock);
718 		vrele(vp);
719 	}
720 }
721 
722 static int
723 uipc_connect2(struct socket *so1, struct socket *so2)
724 {
725 	struct unpcb *unp, *unp2;
726 
727 	if (so1->so_type != so2->so_type)
728 		return (EPROTOTYPE);
729 
730 	unp = so1->so_pcb;
731 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
732 	unp2 = so2->so_pcb;
733 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
734 	unp_pcb_lock_pair(unp, unp2);
735 	unp_connect2(so1, so2, PRU_CONNECT2);
736 	unp_pcb_unlock_pair(unp, unp2);
737 
738 	return (0);
739 }
740 
741 static void
742 uipc_detach(struct socket *so)
743 {
744 	struct unpcb *unp, *unp2;
745 	struct mtx *vplock;
746 	struct vnode *vp;
747 	int local_unp_rights;
748 
749 	unp = sotounpcb(so);
750 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
751 
752 	vp = NULL;
753 	vplock = NULL;
754 
755 	UNP_LINK_WLOCK();
756 	LIST_REMOVE(unp, unp_link);
757 	if (unp->unp_gcflag & UNPGC_DEAD)
758 		LIST_REMOVE(unp, unp_dead);
759 	unp->unp_gencnt = ++unp_gencnt;
760 	--unp_count;
761 	UNP_LINK_WUNLOCK();
762 
763 	UNP_PCB_UNLOCK_ASSERT(unp);
764  restart:
765 	if ((vp = unp->unp_vnode) != NULL) {
766 		vplock = mtx_pool_find(mtxpool_sleep, vp);
767 		mtx_lock(vplock);
768 	}
769 	UNP_PCB_LOCK(unp);
770 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
771 		if (vplock)
772 			mtx_unlock(vplock);
773 		UNP_PCB_UNLOCK(unp);
774 		goto restart;
775 	}
776 	if ((vp = unp->unp_vnode) != NULL) {
777 		VOP_UNP_DETACH(vp);
778 		unp->unp_vnode = NULL;
779 	}
780 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
781 		unp_disconnect(unp, unp2);
782 	else
783 		UNP_PCB_UNLOCK(unp);
784 
785 	UNP_REF_LIST_LOCK();
786 	while (!LIST_EMPTY(&unp->unp_refs)) {
787 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
788 
789 		unp_pcb_hold(ref);
790 		UNP_REF_LIST_UNLOCK();
791 
792 		MPASS(ref != unp);
793 		UNP_PCB_UNLOCK_ASSERT(ref);
794 		unp_drop(ref);
795 		UNP_REF_LIST_LOCK();
796 	}
797 	UNP_REF_LIST_UNLOCK();
798 
799 	UNP_PCB_LOCK(unp);
800 	local_unp_rights = unp_rights;
801 	unp->unp_socket->so_pcb = NULL;
802 	unp->unp_socket = NULL;
803 	free(unp->unp_addr, M_SONAME);
804 	unp->unp_addr = NULL;
805 	if (!unp_pcb_rele(unp))
806 		UNP_PCB_UNLOCK(unp);
807 	if (vp) {
808 		mtx_unlock(vplock);
809 		vrele(vp);
810 	}
811 	if (local_unp_rights)
812 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
813 
814 	switch (so->so_type) {
815 	case SOCK_DGRAM:
816 		/*
817 		 * Everything should have been unlinked/freed by unp_dispose()
818 		 * and/or unp_disconnect().
819 		 */
820 		MPASS(so->so_rcv.uxdg_peeked == NULL);
821 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
822 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
823 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
824 	}
825 }
826 
827 static int
828 uipc_disconnect(struct socket *so)
829 {
830 	struct unpcb *unp, *unp2;
831 
832 	unp = sotounpcb(so);
833 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
834 
835 	UNP_PCB_LOCK(unp);
836 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
837 		unp_disconnect(unp, unp2);
838 	else
839 		UNP_PCB_UNLOCK(unp);
840 	return (0);
841 }
842 
843 static int
844 uipc_listen(struct socket *so, int backlog, struct thread *td)
845 {
846 	struct unpcb *unp;
847 	int error;
848 
849 	MPASS(so->so_type != SOCK_DGRAM);
850 
851 	/*
852 	 * Synchronize with concurrent connection attempts.
853 	 */
854 	error = 0;
855 	unp = sotounpcb(so);
856 	UNP_PCB_LOCK(unp);
857 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
858 		error = EINVAL;
859 	else if (unp->unp_vnode == NULL)
860 		error = EDESTADDRREQ;
861 	if (error != 0) {
862 		UNP_PCB_UNLOCK(unp);
863 		return (error);
864 	}
865 
866 	SOCK_LOCK(so);
867 	error = solisten_proto_check(so);
868 	if (error == 0) {
869 		cru2xt(td, &unp->unp_peercred);
870 		solisten_proto(so, backlog);
871 	}
872 	SOCK_UNLOCK(so);
873 	UNP_PCB_UNLOCK(unp);
874 	return (error);
875 }
876 
877 static int
878 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
879 {
880 	struct unpcb *unp, *unp2;
881 	const struct sockaddr *sa;
882 
883 	unp = sotounpcb(so);
884 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
885 
886 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
887 	UNP_LINK_RLOCK();
888 	/*
889 	 * XXX: It seems that this test always fails even when connection is
890 	 * established.  So, this else clause is added as workaround to
891 	 * return PF_LOCAL sockaddr.
892 	 */
893 	unp2 = unp->unp_conn;
894 	if (unp2 != NULL) {
895 		UNP_PCB_LOCK(unp2);
896 		if (unp2->unp_addr != NULL)
897 			sa = (struct sockaddr *) unp2->unp_addr;
898 		else
899 			sa = &sun_noname;
900 		bcopy(sa, *nam, sa->sa_len);
901 		UNP_PCB_UNLOCK(unp2);
902 	} else {
903 		sa = &sun_noname;
904 		bcopy(sa, *nam, sa->sa_len);
905 	}
906 	UNP_LINK_RUNLOCK();
907 	return (0);
908 }
909 
910 static int
911 uipc_rcvd(struct socket *so, int flags)
912 {
913 	struct unpcb *unp, *unp2;
914 	struct socket *so2;
915 	u_int mbcnt, sbcc;
916 
917 	unp = sotounpcb(so);
918 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
919 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
920 	    ("%s: socktype %d", __func__, so->so_type));
921 
922 	/*
923 	 * Adjust backpressure on sender and wakeup any waiting to write.
924 	 *
925 	 * The unp lock is acquired to maintain the validity of the unp_conn
926 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
927 	 * static as long as we don't permit unp2 to disconnect from unp,
928 	 * which is prevented by the lock on unp.  We cache values from
929 	 * so_rcv to avoid holding the so_rcv lock over the entire
930 	 * transaction on the remote so_snd.
931 	 */
932 	SOCKBUF_LOCK(&so->so_rcv);
933 	mbcnt = so->so_rcv.sb_mbcnt;
934 	sbcc = sbavail(&so->so_rcv);
935 	SOCKBUF_UNLOCK(&so->so_rcv);
936 	/*
937 	 * There is a benign race condition at this point.  If we're planning to
938 	 * clear SB_STOP, but uipc_send is called on the connected socket at
939 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
940 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
941 	 * full.  The race is benign because the only ill effect is to allow the
942 	 * sockbuf to exceed its size limit, and the size limits are not
943 	 * strictly guaranteed anyway.
944 	 */
945 	UNP_PCB_LOCK(unp);
946 	unp2 = unp->unp_conn;
947 	if (unp2 == NULL) {
948 		UNP_PCB_UNLOCK(unp);
949 		return (0);
950 	}
951 	so2 = unp2->unp_socket;
952 	SOCKBUF_LOCK(&so2->so_snd);
953 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
954 		so2->so_snd.sb_flags &= ~SB_STOP;
955 	sowwakeup_locked(so2);
956 	UNP_PCB_UNLOCK(unp);
957 	return (0);
958 }
959 
960 static int
961 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
962     struct mbuf *control, struct thread *td)
963 {
964 	struct unpcb *unp, *unp2;
965 	struct socket *so2;
966 	u_int mbcnt, sbcc;
967 	int error;
968 
969 	unp = sotounpcb(so);
970 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
971 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
972 	    ("%s: socktype %d", __func__, so->so_type));
973 
974 	error = 0;
975 	if (flags & PRUS_OOB) {
976 		error = EOPNOTSUPP;
977 		goto release;
978 	}
979 	if (control != NULL &&
980 	    (error = unp_internalize(&control, td, NULL, NULL, NULL)))
981 		goto release;
982 
983 	unp2 = NULL;
984 	if ((so->so_state & SS_ISCONNECTED) == 0) {
985 		if (nam != NULL) {
986 			if ((error = unp_connect(so, nam, td)) != 0)
987 				goto out;
988 		} else {
989 			error = ENOTCONN;
990 			goto out;
991 		}
992 	}
993 
994 	UNP_PCB_LOCK(unp);
995 	if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
996 		UNP_PCB_UNLOCK(unp);
997 		error = ENOTCONN;
998 		goto out;
999 	} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1000 		unp_pcb_unlock_pair(unp, unp2);
1001 		error = EPIPE;
1002 		goto out;
1003 	}
1004 	UNP_PCB_UNLOCK(unp);
1005 	if ((so2 = unp2->unp_socket) == NULL) {
1006 		UNP_PCB_UNLOCK(unp2);
1007 		error = ENOTCONN;
1008 		goto out;
1009 	}
1010 	SOCKBUF_LOCK(&so2->so_rcv);
1011 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1012 		/*
1013 		 * Credentials are passed only once on SOCK_STREAM and
1014 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1015 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1016 		 */
1017 		control = unp_addsockcred(td, control, unp2->unp_flags, NULL,
1018 		    NULL, NULL);
1019 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1020 	}
1021 
1022 	/*
1023 	 * Send to paired receive port and wake up readers.  Don't
1024 	 * check for space available in the receive buffer if we're
1025 	 * attaching ancillary data; Unix domain sockets only check
1026 	 * for space in the sending sockbuf, and that check is
1027 	 * performed one level up the stack.  At that level we cannot
1028 	 * precisely account for the amount of buffer space used
1029 	 * (e.g., because control messages are not yet internalized).
1030 	 */
1031 	switch (so->so_type) {
1032 	case SOCK_STREAM:
1033 		if (control != NULL) {
1034 			sbappendcontrol_locked(&so2->so_rcv, m,
1035 			    control, flags);
1036 			control = NULL;
1037 		} else
1038 			sbappend_locked(&so2->so_rcv, m, flags);
1039 		break;
1040 
1041 	case SOCK_SEQPACKET:
1042 		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1043 		    &sun_noname, m, control))
1044 			control = NULL;
1045 		break;
1046 	}
1047 
1048 	mbcnt = so2->so_rcv.sb_mbcnt;
1049 	sbcc = sbavail(&so2->so_rcv);
1050 	if (sbcc)
1051 		sorwakeup_locked(so2);
1052 	else
1053 		SOCKBUF_UNLOCK(&so2->so_rcv);
1054 
1055 	/*
1056 	 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1057 	 * it would be possible for uipc_rcvd to be called at this
1058 	 * point, drain the receiving sockbuf, clear SB_STOP, and then
1059 	 * we would set SB_STOP below.  That could lead to an empty
1060 	 * sockbuf having SB_STOP set
1061 	 */
1062 	SOCKBUF_LOCK(&so->so_snd);
1063 	if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1064 		so->so_snd.sb_flags |= SB_STOP;
1065 	SOCKBUF_UNLOCK(&so->so_snd);
1066 	UNP_PCB_UNLOCK(unp2);
1067 	m = NULL;
1068 out:
1069 	/*
1070 	 * PRUS_EOF is equivalent to pr_send followed by pr_shutdown.
1071 	 */
1072 	if (flags & PRUS_EOF) {
1073 		UNP_PCB_LOCK(unp);
1074 		socantsendmore(so);
1075 		unp_shutdown(unp);
1076 		UNP_PCB_UNLOCK(unp);
1077 	}
1078 	if (control != NULL && error != 0)
1079 		unp_scan(control, unp_freerights);
1080 
1081 release:
1082 	if (control != NULL)
1083 		m_freem(control);
1084 	/*
1085 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1086 	 * for freeing memory.
1087 	 */
1088 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1089 		m_freem(m);
1090 	return (error);
1091 }
1092 
1093 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1094 static inline bool
1095 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1096 {
1097 	u_int bleft, mleft;
1098 
1099 	/*
1100 	 * Negative space may happen if send(2) is followed by
1101 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1102 	 */
1103 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1104 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1105 		return (false);
1106 
1107 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1108 		return (false);
1109 
1110 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1111 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1112 
1113 	return (bleft >= cc && mleft >= mbcnt);
1114 }
1115 
1116 /*
1117  * PF_UNIX/SOCK_DGRAM send
1118  *
1119  * Allocate a record consisting of 3 mbufs in the sequence of
1120  * from -> control -> data and append it to the socket buffer.
1121  *
1122  * The first mbuf carries sender's name and is a pkthdr that stores
1123  * overall length of datagram, its memory consumption and control length.
1124  */
1125 #define	ctllen	PH_loc.thirtytwo[1]
1126 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1127     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1128 static int
1129 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1130     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1131 {
1132 	struct unpcb *unp, *unp2;
1133 	const struct sockaddr *from;
1134 	struct socket *so2;
1135 	struct sockbuf *sb;
1136 	struct mbuf *f, *clast;
1137 	u_int cc, ctl, mbcnt;
1138 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1139 	int error;
1140 
1141 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1142 
1143 	error = 0;
1144 	f = NULL;
1145 	ctl = 0;
1146 
1147 	if (__predict_false(flags & MSG_OOB)) {
1148 		error = EOPNOTSUPP;
1149 		goto out;
1150 	}
1151 	if (m == NULL) {
1152 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1153 			error = EMSGSIZE;
1154 			goto out;
1155 		}
1156 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1157 		if (__predict_false(m == NULL)) {
1158 			error = EFAULT;
1159 			goto out;
1160 		}
1161 		f = m_gethdr(M_WAITOK, MT_SONAME);
1162 		cc = m->m_pkthdr.len;
1163 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1164 		if (c != NULL &&
1165 		    (error = unp_internalize(&c, td, &clast, &ctl, &mbcnt)))
1166 			goto out;
1167 	} else {
1168 		/* pr_sosend() with mbuf usually is a kernel thread. */
1169 
1170 		M_ASSERTPKTHDR(m);
1171 		if (__predict_false(c != NULL))
1172 			panic("%s: control from a kernel thread", __func__);
1173 
1174 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1175 			error = EMSGSIZE;
1176 			goto out;
1177 		}
1178 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1179 			error = ENOBUFS;
1180 			goto out;
1181 		}
1182 		/* Condition the foreign mbuf to our standards. */
1183 		m_clrprotoflags(m);
1184 		m_tag_delete_chain(m, NULL);
1185 		m->m_pkthdr.rcvif = NULL;
1186 		m->m_pkthdr.flowid = 0;
1187 		m->m_pkthdr.csum_flags = 0;
1188 		m->m_pkthdr.fibnum = 0;
1189 		m->m_pkthdr.rsstype = 0;
1190 
1191 		cc = m->m_pkthdr.len;
1192 		mbcnt = MSIZE;
1193 		for (struct mbuf *mb = m; mb != NULL; mb = mb->m_next) {
1194 			mbcnt += MSIZE;
1195 			if (mb->m_flags & M_EXT)
1196 				mbcnt += mb->m_ext.ext_size;
1197 		}
1198 	}
1199 
1200 	unp = sotounpcb(so);
1201 	MPASS(unp);
1202 
1203 	/*
1204 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1205 	 * and avoid this lock, which is not only extraneous, but also being
1206 	 * released, thus still leaving possibility for a race.  We can easily
1207 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1208 	 * is more difficult to invent something to handle so_error.
1209 	 */
1210 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1211 	if (error)
1212 		goto out2;
1213 	SOCK_SENDBUF_LOCK(so);
1214 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1215 		SOCK_SENDBUF_UNLOCK(so);
1216 		error = EPIPE;
1217 		goto out3;
1218 	}
1219 	if (so->so_error != 0) {
1220 		error = so->so_error;
1221 		so->so_error = 0;
1222 		SOCK_SENDBUF_UNLOCK(so);
1223 		goto out3;
1224 	}
1225 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
1226 		SOCK_SENDBUF_UNLOCK(so);
1227 		error = EDESTADDRREQ;
1228 		goto out3;
1229 	}
1230 	SOCK_SENDBUF_UNLOCK(so);
1231 
1232 	if (addr != NULL) {
1233 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
1234 			goto out3;
1235 		UNP_PCB_LOCK_ASSERT(unp);
1236 		unp2 = unp->unp_conn;
1237 		UNP_PCB_LOCK_ASSERT(unp2);
1238 	} else {
1239 		UNP_PCB_LOCK(unp);
1240 		unp2 = unp_pcb_lock_peer(unp);
1241 		if (unp2 == NULL) {
1242 			UNP_PCB_UNLOCK(unp);
1243 			error = ENOTCONN;
1244 			goto out3;
1245 		}
1246 	}
1247 
1248 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
1249 		c = unp_addsockcred(td, c, unp2->unp_flags, &clast, &ctl,
1250 		    &mbcnt);
1251 	if (unp->unp_addr != NULL)
1252 		from = (struct sockaddr *)unp->unp_addr;
1253 	else
1254 		from = &sun_noname;
1255 	f->m_len = from->sa_len;
1256 	MPASS(from->sa_len <= MLEN);
1257 	bcopy(from, mtod(f, void *), from->sa_len);
1258 	ctl += f->m_len;
1259 
1260 	/*
1261 	 * Concatenate mbufs: from -> control -> data.
1262 	 * Save overall cc and mbcnt in "from" mbuf.
1263 	 */
1264 	if (c != NULL) {
1265 #ifdef INVARIANTS
1266 		struct mbuf *mc;
1267 
1268 		for (mc = c; mc->m_next != NULL; mc = mc->m_next);
1269 		MPASS(mc == clast);
1270 #endif
1271 		f->m_next = c;
1272 		clast->m_next = m;
1273 		c = NULL;
1274 	} else
1275 		f->m_next = m;
1276 	m = NULL;
1277 #ifdef INVARIANTS
1278 	dcc = dctl = dmbcnt = 0;
1279 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
1280 		if (mb->m_type == MT_DATA)
1281 			dcc += mb->m_len;
1282 		else
1283 			dctl += mb->m_len;
1284 		dmbcnt += MSIZE;
1285 		if (mb->m_flags & M_EXT)
1286 			dmbcnt += mb->m_ext.ext_size;
1287 	}
1288 	MPASS(dcc == cc);
1289 	MPASS(dctl == ctl);
1290 	MPASS(dmbcnt == mbcnt);
1291 #endif
1292 	f->m_pkthdr.len = cc + ctl;
1293 	f->m_pkthdr.memlen = mbcnt;
1294 	f->m_pkthdr.ctllen = ctl;
1295 
1296 	/*
1297 	 * Destination socket buffer selection.
1298 	 *
1299 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
1300 	 * destination address is supplied, create a temporary connection for
1301 	 * the run time of the function (see call to unp_connectat() above and
1302 	 * to unp_disconnect() below).  We distinguish them by condition of
1303 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
1304 	 * that condition, since, again, through the run time of this code we
1305 	 * are always connected.  For such "unconnected" sends, the destination
1306 	 * buffer would be the receive buffer of destination socket so2.
1307 	 *
1308 	 * For connected sends, data lands on the send buffer of the sender's
1309 	 * socket "so".  Then, if we just added the very first datagram
1310 	 * on this send buffer, we need to add the send buffer on to the
1311 	 * receiving socket's buffer list.  We put ourselves on top of the
1312 	 * list.  Such logic gives infrequent senders priority over frequent
1313 	 * senders.
1314 	 *
1315 	 * Note on byte count management. As long as event methods kevent(2),
1316 	 * select(2) are not protocol specific (yet), we need to maintain
1317 	 * meaningful values on the receive buffer.  So, the receive buffer
1318 	 * would accumulate counters from all connected buffers potentially
1319 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
1320 	 */
1321 	so2 = unp2->unp_socket;
1322 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
1323 	SOCK_RECVBUF_LOCK(so2);
1324 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
1325 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
1326 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
1327 			    uxdg_clist);
1328 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
1329 		sb->uxdg_cc += cc + ctl;
1330 		sb->uxdg_ctl += ctl;
1331 		sb->uxdg_mbcnt += mbcnt;
1332 		so2->so_rcv.sb_acc += cc + ctl;
1333 		so2->so_rcv.sb_ccc += cc + ctl;
1334 		so2->so_rcv.sb_ctl += ctl;
1335 		so2->so_rcv.sb_mbcnt += mbcnt;
1336 		sorwakeup_locked(so2);
1337 		f = NULL;
1338 	} else {
1339 		soroverflow_locked(so2);
1340 		error = (so->so_state & SS_NBIO) ? EAGAIN : ENOBUFS;
1341 		if (f->m_next->m_type == MT_CONTROL)
1342 			unp_scan(f->m_next, unp_freerights);
1343 	}
1344 
1345 	if (addr != NULL)
1346 		unp_disconnect(unp, unp2);
1347 	else
1348 		unp_pcb_unlock_pair(unp, unp2);
1349 
1350 	td->td_ru.ru_msgsnd++;
1351 
1352 out3:
1353 	SOCK_IO_SEND_UNLOCK(so);
1354 out2:
1355 	if (c)
1356 		unp_scan(c, unp_freerights);
1357 out:
1358 	if (f)
1359 		m_freem(f);
1360 	if (c)
1361 		m_freem(c);
1362 	if (m)
1363 		m_freem(m);
1364 
1365 	return (error);
1366 }
1367 
1368 /*
1369  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
1370  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
1371  * and needs to be linked onto uxdg_peeked of receive socket buffer.
1372  */
1373 static int
1374 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
1375     struct uio *uio, struct mbuf **controlp, int *flagsp)
1376 {
1377 	ssize_t len = 0;
1378 	int error;
1379 
1380 	so->so_rcv.uxdg_peeked = m;
1381 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
1382 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
1383 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
1384 	SOCK_RECVBUF_UNLOCK(so);
1385 
1386 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1387 	if (psa != NULL)
1388 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1389 
1390 	m = m->m_next;
1391 	KASSERT(m, ("%s: no data or control after soname", __func__));
1392 
1393 	/*
1394 	 * With MSG_PEEK the control isn't executed, just copied.
1395 	 */
1396 	while (m != NULL && m->m_type == MT_CONTROL) {
1397 		if (controlp != NULL) {
1398 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
1399 			controlp = &(*controlp)->m_next;
1400 		}
1401 		m = m->m_next;
1402 	}
1403 	KASSERT(m == NULL || m->m_type == MT_DATA,
1404 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1405 	while (m != NULL && uio->uio_resid > 0) {
1406 		len = uio->uio_resid;
1407 		if (len > m->m_len)
1408 			len = m->m_len;
1409 		error = uiomove(mtod(m, char *), (int)len, uio);
1410 		if (error) {
1411 			SOCK_IO_RECV_UNLOCK(so);
1412 			return (error);
1413 		}
1414 		if (len == m->m_len)
1415 			m = m->m_next;
1416 	}
1417 	SOCK_IO_RECV_UNLOCK(so);
1418 
1419 	if (flagsp != NULL) {
1420 		if (m != NULL) {
1421 			if (*flagsp & MSG_TRUNC) {
1422 				/* Report real length of the packet */
1423 				uio->uio_resid -= m_length(m, NULL) - len;
1424 			}
1425 			*flagsp |= MSG_TRUNC;
1426 		} else
1427 			*flagsp &= ~MSG_TRUNC;
1428 	}
1429 
1430 	return (0);
1431 }
1432 
1433 /*
1434  * PF_UNIX/SOCK_DGRAM receive
1435  */
1436 static int
1437 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1438     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1439 {
1440 	struct sockbuf *sb = NULL;
1441 	struct mbuf *m;
1442 	int flags, error;
1443 	ssize_t len = 0;
1444 	bool nonblock;
1445 
1446 	MPASS(mp0 == NULL);
1447 
1448 	if (psa != NULL)
1449 		*psa = NULL;
1450 	if (controlp != NULL)
1451 		*controlp = NULL;
1452 
1453 	flags = flagsp != NULL ? *flagsp : 0;
1454 	nonblock = (so->so_state & SS_NBIO) ||
1455 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1456 
1457 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1458 	if (__predict_false(error))
1459 		return (error);
1460 
1461 	/*
1462 	 * Loop blocking while waiting for a datagram.  Prioritize connected
1463 	 * peers over unconnected sends.  Set sb to selected socket buffer
1464 	 * containing an mbuf on exit from the wait loop.  A datagram that
1465 	 * had already been peeked at has top priority.
1466 	 */
1467 	SOCK_RECVBUF_LOCK(so);
1468 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
1469 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
1470 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
1471 		if (so->so_error) {
1472 			error = so->so_error;
1473 			so->so_error = 0;
1474 			SOCK_RECVBUF_UNLOCK(so);
1475 			SOCK_IO_RECV_UNLOCK(so);
1476 			return (error);
1477 		}
1478 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1479 		    uio->uio_resid == 0) {
1480 			SOCK_RECVBUF_UNLOCK(so);
1481 			SOCK_IO_RECV_UNLOCK(so);
1482 			return (0);
1483 		}
1484 		if (nonblock) {
1485 			SOCK_RECVBUF_UNLOCK(so);
1486 			SOCK_IO_RECV_UNLOCK(so);
1487 			return (EWOULDBLOCK);
1488 		}
1489 		error = sbwait(so, SO_RCV);
1490 		if (error) {
1491 			SOCK_RECVBUF_UNLOCK(so);
1492 			SOCK_IO_RECV_UNLOCK(so);
1493 			return (error);
1494 		}
1495 	}
1496 
1497 	if (sb == NULL)
1498 		sb = &so->so_rcv;
1499 	else if (m == NULL)
1500 		m = STAILQ_FIRST(&sb->uxdg_mb);
1501 	else
1502 		MPASS(m == so->so_rcv.uxdg_peeked);
1503 
1504 	MPASS(sb->uxdg_cc > 0);
1505 	M_ASSERTPKTHDR(m);
1506 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1507 
1508 	if (uio->uio_td)
1509 		uio->uio_td->td_ru.ru_msgrcv++;
1510 
1511 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
1512 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
1513 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
1514 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
1515 	} else
1516 		so->so_rcv.uxdg_peeked = NULL;
1517 
1518 	sb->uxdg_cc -= m->m_pkthdr.len;
1519 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
1520 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
1521 
1522 	if (__predict_false(flags & MSG_PEEK))
1523 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
1524 
1525 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
1526 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
1527 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
1528 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
1529 	SOCK_RECVBUF_UNLOCK(so);
1530 
1531 	if (psa != NULL)
1532 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1533 	m = m_free(m);
1534 	KASSERT(m, ("%s: no data or control after soname", __func__));
1535 
1536 	/*
1537 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1538 	 * queue.
1539 	 *
1540 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1541 	 * in the first mbuf chain on the socket buffer.  We call into the
1542 	 * unp_externalize() to perform externalization (or freeing if
1543 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
1544 	 * without MT_DATA mbufs.
1545 	 */
1546 	while (m != NULL && m->m_type == MT_CONTROL) {
1547 		struct mbuf *cm;
1548 
1549 		/* XXXGL: unp_externalize() is also dom_externalize() KBI and
1550 		 * it frees whole chain, so we must disconnect the mbuf.
1551 		 */
1552 		cm = m; m = m->m_next; cm->m_next = NULL;
1553 		error = unp_externalize(cm, controlp, flags);
1554 		if (error != 0) {
1555 			SOCK_IO_RECV_UNLOCK(so);
1556 			unp_scan(m, unp_freerights);
1557 			m_freem(m);
1558 			return (error);
1559 		}
1560 		if (controlp != NULL) {
1561 			while (*controlp != NULL)
1562 				controlp = &(*controlp)->m_next;
1563 		}
1564 	}
1565 	KASSERT(m == NULL || m->m_type == MT_DATA,
1566 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1567 	while (m != NULL && uio->uio_resid > 0) {
1568 		len = uio->uio_resid;
1569 		if (len > m->m_len)
1570 			len = m->m_len;
1571 		error = uiomove(mtod(m, char *), (int)len, uio);
1572 		if (error) {
1573 			SOCK_IO_RECV_UNLOCK(so);
1574 			m_freem(m);
1575 			return (error);
1576 		}
1577 		if (len == m->m_len)
1578 			m = m_free(m);
1579 		else {
1580 			m->m_data += len;
1581 			m->m_len -= len;
1582 		}
1583 	}
1584 	SOCK_IO_RECV_UNLOCK(so);
1585 
1586 	if (m != NULL) {
1587 		if (flagsp != NULL) {
1588 			if (flags & MSG_TRUNC) {
1589 				/* Report real length of the packet */
1590 				uio->uio_resid -= m_length(m, NULL);
1591 			}
1592 			*flagsp |= MSG_TRUNC;
1593 		}
1594 		m_freem(m);
1595 	} else if (flagsp != NULL)
1596 		*flagsp &= ~MSG_TRUNC;
1597 
1598 	return (0);
1599 }
1600 
1601 static bool
1602 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1603 {
1604 	struct mbuf *mb, *n;
1605 	struct sockbuf *sb;
1606 
1607 	SOCK_LOCK(so);
1608 	if (SOLISTENING(so)) {
1609 		SOCK_UNLOCK(so);
1610 		return (false);
1611 	}
1612 	mb = NULL;
1613 	sb = &so->so_rcv;
1614 	SOCKBUF_LOCK(sb);
1615 	if (sb->sb_fnrdy != NULL) {
1616 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1617 			if (mb == m) {
1618 				*errorp = sbready(sb, m, count);
1619 				break;
1620 			}
1621 			mb = mb->m_next;
1622 			if (mb == NULL) {
1623 				mb = n;
1624 				if (mb != NULL)
1625 					n = mb->m_nextpkt;
1626 			}
1627 		}
1628 	}
1629 	SOCKBUF_UNLOCK(sb);
1630 	SOCK_UNLOCK(so);
1631 	return (mb != NULL);
1632 }
1633 
1634 static int
1635 uipc_ready(struct socket *so, struct mbuf *m, int count)
1636 {
1637 	struct unpcb *unp, *unp2;
1638 	struct socket *so2;
1639 	int error, i;
1640 
1641 	unp = sotounpcb(so);
1642 
1643 	KASSERT(so->so_type == SOCK_STREAM,
1644 	    ("%s: unexpected socket type for %p", __func__, so));
1645 
1646 	UNP_PCB_LOCK(unp);
1647 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1648 		UNP_PCB_UNLOCK(unp);
1649 		so2 = unp2->unp_socket;
1650 		SOCKBUF_LOCK(&so2->so_rcv);
1651 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1652 			sorwakeup_locked(so2);
1653 		else
1654 			SOCKBUF_UNLOCK(&so2->so_rcv);
1655 		UNP_PCB_UNLOCK(unp2);
1656 		return (error);
1657 	}
1658 	UNP_PCB_UNLOCK(unp);
1659 
1660 	/*
1661 	 * The receiving socket has been disconnected, but may still be valid.
1662 	 * In this case, the now-ready mbufs are still present in its socket
1663 	 * buffer, so perform an exhaustive search before giving up and freeing
1664 	 * the mbufs.
1665 	 */
1666 	UNP_LINK_RLOCK();
1667 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1668 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1669 			break;
1670 	}
1671 	UNP_LINK_RUNLOCK();
1672 
1673 	if (unp == NULL) {
1674 		for (i = 0; i < count; i++)
1675 			m = m_free(m);
1676 		error = ECONNRESET;
1677 	}
1678 	return (error);
1679 }
1680 
1681 static int
1682 uipc_sense(struct socket *so, struct stat *sb)
1683 {
1684 	struct unpcb *unp;
1685 
1686 	unp = sotounpcb(so);
1687 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1688 
1689 	sb->st_blksize = so->so_snd.sb_hiwat;
1690 	sb->st_dev = NODEV;
1691 	sb->st_ino = unp->unp_ino;
1692 	return (0);
1693 }
1694 
1695 static int
1696 uipc_shutdown(struct socket *so)
1697 {
1698 	struct unpcb *unp;
1699 
1700 	unp = sotounpcb(so);
1701 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1702 
1703 	UNP_PCB_LOCK(unp);
1704 	socantsendmore(so);
1705 	unp_shutdown(unp);
1706 	UNP_PCB_UNLOCK(unp);
1707 	return (0);
1708 }
1709 
1710 static int
1711 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1712 {
1713 	struct unpcb *unp;
1714 	const struct sockaddr *sa;
1715 
1716 	unp = sotounpcb(so);
1717 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1718 
1719 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1720 	UNP_PCB_LOCK(unp);
1721 	if (unp->unp_addr != NULL)
1722 		sa = (struct sockaddr *) unp->unp_addr;
1723 	else
1724 		sa = &sun_noname;
1725 	bcopy(sa, *nam, sa->sa_len);
1726 	UNP_PCB_UNLOCK(unp);
1727 	return (0);
1728 }
1729 
1730 static int
1731 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1732 {
1733 	struct unpcb *unp;
1734 	struct xucred xu;
1735 	int error, optval;
1736 
1737 	if (sopt->sopt_level != SOL_LOCAL)
1738 		return (EINVAL);
1739 
1740 	unp = sotounpcb(so);
1741 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1742 	error = 0;
1743 	switch (sopt->sopt_dir) {
1744 	case SOPT_GET:
1745 		switch (sopt->sopt_name) {
1746 		case LOCAL_PEERCRED:
1747 			UNP_PCB_LOCK(unp);
1748 			if (unp->unp_flags & UNP_HAVEPC)
1749 				xu = unp->unp_peercred;
1750 			else {
1751 				if (so->so_type == SOCK_STREAM)
1752 					error = ENOTCONN;
1753 				else
1754 					error = EINVAL;
1755 			}
1756 			UNP_PCB_UNLOCK(unp);
1757 			if (error == 0)
1758 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1759 			break;
1760 
1761 		case LOCAL_CREDS:
1762 			/* Unlocked read. */
1763 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1764 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1765 			break;
1766 
1767 		case LOCAL_CREDS_PERSISTENT:
1768 			/* Unlocked read. */
1769 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1770 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1771 			break;
1772 
1773 		case LOCAL_CONNWAIT:
1774 			/* Unlocked read. */
1775 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1776 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1777 			break;
1778 
1779 		default:
1780 			error = EOPNOTSUPP;
1781 			break;
1782 		}
1783 		break;
1784 
1785 	case SOPT_SET:
1786 		switch (sopt->sopt_name) {
1787 		case LOCAL_CREDS:
1788 		case LOCAL_CREDS_PERSISTENT:
1789 		case LOCAL_CONNWAIT:
1790 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1791 					    sizeof(optval));
1792 			if (error)
1793 				break;
1794 
1795 #define	OPTSET(bit, exclusive) do {					\
1796 	UNP_PCB_LOCK(unp);						\
1797 	if (optval) {							\
1798 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1799 			UNP_PCB_UNLOCK(unp);				\
1800 			error = EINVAL;					\
1801 			break;						\
1802 		}							\
1803 		unp->unp_flags |= (bit);				\
1804 	} else								\
1805 		unp->unp_flags &= ~(bit);				\
1806 	UNP_PCB_UNLOCK(unp);						\
1807 } while (0)
1808 
1809 			switch (sopt->sopt_name) {
1810 			case LOCAL_CREDS:
1811 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1812 				break;
1813 
1814 			case LOCAL_CREDS_PERSISTENT:
1815 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1816 				break;
1817 
1818 			case LOCAL_CONNWAIT:
1819 				OPTSET(UNP_CONNWAIT, 0);
1820 				break;
1821 
1822 			default:
1823 				break;
1824 			}
1825 			break;
1826 #undef	OPTSET
1827 		default:
1828 			error = ENOPROTOOPT;
1829 			break;
1830 		}
1831 		break;
1832 
1833 	default:
1834 		error = EOPNOTSUPP;
1835 		break;
1836 	}
1837 	return (error);
1838 }
1839 
1840 static int
1841 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1842 {
1843 
1844 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
1845 }
1846 
1847 static int
1848 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1849     struct thread *td, bool return_locked)
1850 {
1851 	struct mtx *vplock;
1852 	struct sockaddr_un *soun;
1853 	struct vnode *vp;
1854 	struct socket *so2;
1855 	struct unpcb *unp, *unp2, *unp3;
1856 	struct nameidata nd;
1857 	char buf[SOCK_MAXADDRLEN];
1858 	struct sockaddr *sa;
1859 	cap_rights_t rights;
1860 	int error, len;
1861 	bool connreq;
1862 
1863 	if (nam->sa_family != AF_UNIX)
1864 		return (EAFNOSUPPORT);
1865 	if (nam->sa_len > sizeof(struct sockaddr_un))
1866 		return (EINVAL);
1867 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1868 	if (len <= 0)
1869 		return (EINVAL);
1870 	soun = (struct sockaddr_un *)nam;
1871 	bcopy(soun->sun_path, buf, len);
1872 	buf[len] = 0;
1873 
1874 	error = 0;
1875 	unp = sotounpcb(so);
1876 	UNP_PCB_LOCK(unp);
1877 	for (;;) {
1878 		/*
1879 		 * Wait for connection state to stabilize.  If a connection
1880 		 * already exists, give up.  For datagram sockets, which permit
1881 		 * multiple consecutive connect(2) calls, upper layers are
1882 		 * responsible for disconnecting in advance of a subsequent
1883 		 * connect(2), but this is not synchronized with PCB connection
1884 		 * state.
1885 		 *
1886 		 * Also make sure that no threads are currently attempting to
1887 		 * lock the peer socket, to ensure that unp_conn cannot
1888 		 * transition between two valid sockets while locks are dropped.
1889 		 */
1890 		if (SOLISTENING(so))
1891 			error = EOPNOTSUPP;
1892 		else if (unp->unp_conn != NULL)
1893 			error = EISCONN;
1894 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1895 			error = EALREADY;
1896 		}
1897 		if (error != 0) {
1898 			UNP_PCB_UNLOCK(unp);
1899 			return (error);
1900 		}
1901 		if (unp->unp_pairbusy > 0) {
1902 			unp->unp_flags |= UNP_WAITING;
1903 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1904 			continue;
1905 		}
1906 		break;
1907 	}
1908 	unp->unp_flags |= UNP_CONNECTING;
1909 	UNP_PCB_UNLOCK(unp);
1910 
1911 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1912 	if (connreq)
1913 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1914 	else
1915 		sa = NULL;
1916 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1917 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1918 	error = namei(&nd);
1919 	if (error)
1920 		vp = NULL;
1921 	else
1922 		vp = nd.ni_vp;
1923 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1924 	if (error)
1925 		goto bad;
1926 	NDFREE_PNBUF(&nd);
1927 
1928 	if (vp->v_type != VSOCK) {
1929 		error = ENOTSOCK;
1930 		goto bad;
1931 	}
1932 #ifdef MAC
1933 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1934 	if (error)
1935 		goto bad;
1936 #endif
1937 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1938 	if (error)
1939 		goto bad;
1940 
1941 	unp = sotounpcb(so);
1942 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1943 
1944 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1945 	mtx_lock(vplock);
1946 	VOP_UNP_CONNECT(vp, &unp2);
1947 	if (unp2 == NULL) {
1948 		error = ECONNREFUSED;
1949 		goto bad2;
1950 	}
1951 	so2 = unp2->unp_socket;
1952 	if (so->so_type != so2->so_type) {
1953 		error = EPROTOTYPE;
1954 		goto bad2;
1955 	}
1956 	if (connreq) {
1957 		if (SOLISTENING(so2)) {
1958 			CURVNET_SET(so2->so_vnet);
1959 			so2 = sonewconn(so2, 0);
1960 			CURVNET_RESTORE();
1961 		} else
1962 			so2 = NULL;
1963 		if (so2 == NULL) {
1964 			error = ECONNREFUSED;
1965 			goto bad2;
1966 		}
1967 		unp3 = sotounpcb(so2);
1968 		unp_pcb_lock_pair(unp2, unp3);
1969 		if (unp2->unp_addr != NULL) {
1970 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1971 			unp3->unp_addr = (struct sockaddr_un *) sa;
1972 			sa = NULL;
1973 		}
1974 
1975 		unp_copy_peercred(td, unp3, unp, unp2);
1976 
1977 		UNP_PCB_UNLOCK(unp2);
1978 		unp2 = unp3;
1979 
1980 		/*
1981 		 * It is safe to block on the PCB lock here since unp2 is
1982 		 * nascent and cannot be connected to any other sockets.
1983 		 */
1984 		UNP_PCB_LOCK(unp);
1985 #ifdef MAC
1986 		mac_socketpeer_set_from_socket(so, so2);
1987 		mac_socketpeer_set_from_socket(so2, so);
1988 #endif
1989 	} else {
1990 		unp_pcb_lock_pair(unp, unp2);
1991 	}
1992 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1993 	    sotounpcb(so2) == unp2,
1994 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1995 	unp_connect2(so, so2, PRU_CONNECT);
1996 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1997 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1998 	unp->unp_flags &= ~UNP_CONNECTING;
1999 	if (!return_locked)
2000 		unp_pcb_unlock_pair(unp, unp2);
2001 bad2:
2002 	mtx_unlock(vplock);
2003 bad:
2004 	if (vp != NULL) {
2005 		/*
2006 		 * If we are returning locked (called via uipc_sosend_dgram()),
2007 		 * we need to be sure that vput() won't sleep.  This is
2008 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2009 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2010 		 */
2011 		MPASS(!(return_locked && connreq));
2012 		vput(vp);
2013 	}
2014 	free(sa, M_SONAME);
2015 	if (__predict_false(error)) {
2016 		UNP_PCB_LOCK(unp);
2017 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2018 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2019 		unp->unp_flags &= ~UNP_CONNECTING;
2020 		UNP_PCB_UNLOCK(unp);
2021 	}
2022 	return (error);
2023 }
2024 
2025 /*
2026  * Set socket peer credentials at connection time.
2027  *
2028  * The client's PCB credentials are copied from its process structure.  The
2029  * server's PCB credentials are copied from the socket on which it called
2030  * listen(2).  uipc_listen cached that process's credentials at the time.
2031  */
2032 void
2033 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2034     struct unpcb *server_unp, struct unpcb *listen_unp)
2035 {
2036 	cru2xt(td, &client_unp->unp_peercred);
2037 	client_unp->unp_flags |= UNP_HAVEPC;
2038 
2039 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
2040 	    sizeof(server_unp->unp_peercred));
2041 	server_unp->unp_flags |= UNP_HAVEPC;
2042 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
2043 }
2044 
2045 static void
2046 unp_connect2(struct socket *so, struct socket *so2, conn2_how req)
2047 {
2048 	struct unpcb *unp;
2049 	struct unpcb *unp2;
2050 
2051 	MPASS(so2->so_type == so->so_type);
2052 	unp = sotounpcb(so);
2053 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
2054 	unp2 = sotounpcb(so2);
2055 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
2056 
2057 	UNP_PCB_LOCK_ASSERT(unp);
2058 	UNP_PCB_LOCK_ASSERT(unp2);
2059 	KASSERT(unp->unp_conn == NULL,
2060 	    ("%s: socket %p is already connected", __func__, unp));
2061 
2062 	unp->unp_conn = unp2;
2063 	unp_pcb_hold(unp2);
2064 	unp_pcb_hold(unp);
2065 	switch (so->so_type) {
2066 	case SOCK_DGRAM:
2067 		UNP_REF_LIST_LOCK();
2068 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2069 		UNP_REF_LIST_UNLOCK();
2070 		soisconnected(so);
2071 		break;
2072 
2073 	case SOCK_STREAM:
2074 	case SOCK_SEQPACKET:
2075 		KASSERT(unp2->unp_conn == NULL,
2076 		    ("%s: socket %p is already connected", __func__, unp2));
2077 		unp2->unp_conn = unp;
2078 		if (req == PRU_CONNECT &&
2079 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
2080 			soisconnecting(so);
2081 		else
2082 			soisconnected(so);
2083 		soisconnected(so2);
2084 		break;
2085 
2086 	default:
2087 		panic("unp_connect2");
2088 	}
2089 }
2090 
2091 static void
2092 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
2093 {
2094 	struct socket *so, *so2;
2095 	struct mbuf *m = NULL;
2096 #ifdef INVARIANTS
2097 	struct unpcb *unptmp;
2098 #endif
2099 
2100 	UNP_PCB_LOCK_ASSERT(unp);
2101 	UNP_PCB_LOCK_ASSERT(unp2);
2102 	KASSERT(unp->unp_conn == unp2,
2103 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
2104 
2105 	unp->unp_conn = NULL;
2106 	so = unp->unp_socket;
2107 	so2 = unp2->unp_socket;
2108 	switch (unp->unp_socket->so_type) {
2109 	case SOCK_DGRAM:
2110 		/*
2111 		 * Remove our send socket buffer from the peer's receive buffer.
2112 		 * Move the data to the receive buffer only if it is empty.
2113 		 * This is a protection against a scenario where a peer
2114 		 * connects, floods and disconnects, effectively blocking
2115 		 * sendto() from unconnected sockets.
2116 		 */
2117 		SOCK_RECVBUF_LOCK(so2);
2118 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
2119 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
2120 			    uxdg_clist);
2121 			if (__predict_true((so2->so_rcv.sb_state &
2122 			    SBS_CANTRCVMORE) == 0) &&
2123 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
2124 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
2125 				    &so->so_snd.uxdg_mb);
2126 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
2127 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
2128 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
2129 			} else {
2130 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
2131 				STAILQ_INIT(&so->so_snd.uxdg_mb);
2132 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
2133 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
2134 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
2135 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
2136 			}
2137 			/* Note: so may reconnect. */
2138 			so->so_snd.uxdg_cc = 0;
2139 			so->so_snd.uxdg_ctl = 0;
2140 			so->so_snd.uxdg_mbcnt = 0;
2141 		}
2142 		SOCK_RECVBUF_UNLOCK(so2);
2143 		UNP_REF_LIST_LOCK();
2144 #ifdef INVARIANTS
2145 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
2146 			if (unptmp == unp)
2147 				break;
2148 		}
2149 		KASSERT(unptmp != NULL,
2150 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
2151 #endif
2152 		LIST_REMOVE(unp, unp_reflink);
2153 		UNP_REF_LIST_UNLOCK();
2154 		if (so) {
2155 			SOCK_LOCK(so);
2156 			so->so_state &= ~SS_ISCONNECTED;
2157 			SOCK_UNLOCK(so);
2158 		}
2159 		break;
2160 
2161 	case SOCK_STREAM:
2162 	case SOCK_SEQPACKET:
2163 		if (so)
2164 			soisdisconnected(so);
2165 		MPASS(unp2->unp_conn == unp);
2166 		unp2->unp_conn = NULL;
2167 		if (so2)
2168 			soisdisconnected(so2);
2169 		break;
2170 	}
2171 
2172 	if (unp == unp2) {
2173 		unp_pcb_rele_notlast(unp);
2174 		if (!unp_pcb_rele(unp))
2175 			UNP_PCB_UNLOCK(unp);
2176 	} else {
2177 		if (!unp_pcb_rele(unp))
2178 			UNP_PCB_UNLOCK(unp);
2179 		if (!unp_pcb_rele(unp2))
2180 			UNP_PCB_UNLOCK(unp2);
2181 	}
2182 
2183 	if (m != NULL) {
2184 		unp_scan(m, unp_freerights);
2185 		m_freem(m);
2186 	}
2187 }
2188 
2189 /*
2190  * unp_pcblist() walks the global list of struct unpcb's to generate a
2191  * pointer list, bumping the refcount on each unpcb.  It then copies them out
2192  * sequentially, validating the generation number on each to see if it has
2193  * been detached.  All of this is necessary because copyout() may sleep on
2194  * disk I/O.
2195  */
2196 static int
2197 unp_pcblist(SYSCTL_HANDLER_ARGS)
2198 {
2199 	struct unpcb *unp, **unp_list;
2200 	unp_gen_t gencnt;
2201 	struct xunpgen *xug;
2202 	struct unp_head *head;
2203 	struct xunpcb *xu;
2204 	u_int i;
2205 	int error, n;
2206 
2207 	switch ((intptr_t)arg1) {
2208 	case SOCK_STREAM:
2209 		head = &unp_shead;
2210 		break;
2211 
2212 	case SOCK_DGRAM:
2213 		head = &unp_dhead;
2214 		break;
2215 
2216 	case SOCK_SEQPACKET:
2217 		head = &unp_sphead;
2218 		break;
2219 
2220 	default:
2221 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
2222 	}
2223 
2224 	/*
2225 	 * The process of preparing the PCB list is too time-consuming and
2226 	 * resource-intensive to repeat twice on every request.
2227 	 */
2228 	if (req->oldptr == NULL) {
2229 		n = unp_count;
2230 		req->oldidx = 2 * (sizeof *xug)
2231 			+ (n + n/8) * sizeof(struct xunpcb);
2232 		return (0);
2233 	}
2234 
2235 	if (req->newptr != NULL)
2236 		return (EPERM);
2237 
2238 	/*
2239 	 * OK, now we're committed to doing something.
2240 	 */
2241 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
2242 	UNP_LINK_RLOCK();
2243 	gencnt = unp_gencnt;
2244 	n = unp_count;
2245 	UNP_LINK_RUNLOCK();
2246 
2247 	xug->xug_len = sizeof *xug;
2248 	xug->xug_count = n;
2249 	xug->xug_gen = gencnt;
2250 	xug->xug_sogen = so_gencnt;
2251 	error = SYSCTL_OUT(req, xug, sizeof *xug);
2252 	if (error) {
2253 		free(xug, M_TEMP);
2254 		return (error);
2255 	}
2256 
2257 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
2258 
2259 	UNP_LINK_RLOCK();
2260 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
2261 	     unp = LIST_NEXT(unp, unp_link)) {
2262 		UNP_PCB_LOCK(unp);
2263 		if (unp->unp_gencnt <= gencnt) {
2264 			if (cr_cansee(req->td->td_ucred,
2265 			    unp->unp_socket->so_cred)) {
2266 				UNP_PCB_UNLOCK(unp);
2267 				continue;
2268 			}
2269 			unp_list[i++] = unp;
2270 			unp_pcb_hold(unp);
2271 		}
2272 		UNP_PCB_UNLOCK(unp);
2273 	}
2274 	UNP_LINK_RUNLOCK();
2275 	n = i;			/* In case we lost some during malloc. */
2276 
2277 	error = 0;
2278 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
2279 	for (i = 0; i < n; i++) {
2280 		unp = unp_list[i];
2281 		UNP_PCB_LOCK(unp);
2282 		if (unp_pcb_rele(unp))
2283 			continue;
2284 
2285 		if (unp->unp_gencnt <= gencnt) {
2286 			xu->xu_len = sizeof *xu;
2287 			xu->xu_unpp = (uintptr_t)unp;
2288 			/*
2289 			 * XXX - need more locking here to protect against
2290 			 * connect/disconnect races for SMP.
2291 			 */
2292 			if (unp->unp_addr != NULL)
2293 				bcopy(unp->unp_addr, &xu->xu_addr,
2294 				      unp->unp_addr->sun_len);
2295 			else
2296 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
2297 			if (unp->unp_conn != NULL &&
2298 			    unp->unp_conn->unp_addr != NULL)
2299 				bcopy(unp->unp_conn->unp_addr,
2300 				      &xu->xu_caddr,
2301 				      unp->unp_conn->unp_addr->sun_len);
2302 			else
2303 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
2304 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
2305 			xu->unp_conn = (uintptr_t)unp->unp_conn;
2306 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
2307 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
2308 			xu->unp_gencnt = unp->unp_gencnt;
2309 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
2310 			UNP_PCB_UNLOCK(unp);
2311 			error = SYSCTL_OUT(req, xu, sizeof *xu);
2312 		} else {
2313 			UNP_PCB_UNLOCK(unp);
2314 		}
2315 	}
2316 	free(xu, M_TEMP);
2317 	if (!error) {
2318 		/*
2319 		 * Give the user an updated idea of our state.  If the
2320 		 * generation differs from what we told her before, she knows
2321 		 * that something happened while we were processing this
2322 		 * request, and it might be necessary to retry.
2323 		 */
2324 		xug->xug_gen = unp_gencnt;
2325 		xug->xug_sogen = so_gencnt;
2326 		xug->xug_count = unp_count;
2327 		error = SYSCTL_OUT(req, xug, sizeof *xug);
2328 	}
2329 	free(unp_list, M_TEMP);
2330 	free(xug, M_TEMP);
2331 	return (error);
2332 }
2333 
2334 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
2335     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2336     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
2337     "List of active local datagram sockets");
2338 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
2339     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2340     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
2341     "List of active local stream sockets");
2342 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
2343     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2344     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
2345     "List of active local seqpacket sockets");
2346 
2347 static void
2348 unp_shutdown(struct unpcb *unp)
2349 {
2350 	struct unpcb *unp2;
2351 	struct socket *so;
2352 
2353 	UNP_PCB_LOCK_ASSERT(unp);
2354 
2355 	unp2 = unp->unp_conn;
2356 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
2357 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
2358 		so = unp2->unp_socket;
2359 		if (so != NULL)
2360 			socantrcvmore(so);
2361 	}
2362 }
2363 
2364 static void
2365 unp_drop(struct unpcb *unp)
2366 {
2367 	struct socket *so;
2368 	struct unpcb *unp2;
2369 
2370 	/*
2371 	 * Regardless of whether the socket's peer dropped the connection
2372 	 * with this socket by aborting or disconnecting, POSIX requires
2373 	 * that ECONNRESET is returned.
2374 	 */
2375 
2376 	UNP_PCB_LOCK(unp);
2377 	so = unp->unp_socket;
2378 	if (so)
2379 		so->so_error = ECONNRESET;
2380 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
2381 		/* Last reference dropped in unp_disconnect(). */
2382 		unp_pcb_rele_notlast(unp);
2383 		unp_disconnect(unp, unp2);
2384 	} else if (!unp_pcb_rele(unp)) {
2385 		UNP_PCB_UNLOCK(unp);
2386 	}
2387 }
2388 
2389 static void
2390 unp_freerights(struct filedescent **fdep, int fdcount)
2391 {
2392 	struct file *fp;
2393 	int i;
2394 
2395 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2396 
2397 	for (i = 0; i < fdcount; i++) {
2398 		fp = fdep[i]->fde_file;
2399 		filecaps_free(&fdep[i]->fde_caps);
2400 		unp_discard(fp);
2401 	}
2402 	free(fdep[0], M_FILECAPS);
2403 }
2404 
2405 static int
2406 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2407 {
2408 	struct thread *td = curthread;		/* XXX */
2409 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2410 	int i;
2411 	int *fdp;
2412 	struct filedesc *fdesc = td->td_proc->p_fd;
2413 	struct filedescent **fdep;
2414 	void *data;
2415 	socklen_t clen = control->m_len, datalen;
2416 	int error, newfds;
2417 	u_int newlen;
2418 
2419 	UNP_LINK_UNLOCK_ASSERT();
2420 
2421 	error = 0;
2422 	if (controlp != NULL) /* controlp == NULL => free control messages */
2423 		*controlp = NULL;
2424 	while (cm != NULL) {
2425 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
2426 
2427 		data = CMSG_DATA(cm);
2428 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2429 		if (cm->cmsg_level == SOL_SOCKET
2430 		    && cm->cmsg_type == SCM_RIGHTS) {
2431 			newfds = datalen / sizeof(*fdep);
2432 			if (newfds == 0)
2433 				goto next;
2434 			fdep = data;
2435 
2436 			/* If we're not outputting the descriptors free them. */
2437 			if (error || controlp == NULL) {
2438 				unp_freerights(fdep, newfds);
2439 				goto next;
2440 			}
2441 			FILEDESC_XLOCK(fdesc);
2442 
2443 			/*
2444 			 * Now change each pointer to an fd in the global
2445 			 * table to an integer that is the index to the local
2446 			 * fd table entry that we set up to point to the
2447 			 * global one we are transferring.
2448 			 */
2449 			newlen = newfds * sizeof(int);
2450 			*controlp = sbcreatecontrol(NULL, newlen,
2451 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2452 
2453 			fdp = (int *)
2454 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2455 			if ((error = fdallocn(td, 0, fdp, newfds))) {
2456 				FILEDESC_XUNLOCK(fdesc);
2457 				unp_freerights(fdep, newfds);
2458 				m_freem(*controlp);
2459 				*controlp = NULL;
2460 				goto next;
2461 			}
2462 			for (i = 0; i < newfds; i++, fdp++) {
2463 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2464 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2465 				    &fdep[i]->fde_caps);
2466 				unp_externalize_fp(fdep[i]->fde_file);
2467 			}
2468 
2469 			/*
2470 			 * The new type indicates that the mbuf data refers to
2471 			 * kernel resources that may need to be released before
2472 			 * the mbuf is freed.
2473 			 */
2474 			m_chtype(*controlp, MT_EXTCONTROL);
2475 			FILEDESC_XUNLOCK(fdesc);
2476 			free(fdep[0], M_FILECAPS);
2477 		} else {
2478 			/* We can just copy anything else across. */
2479 			if (error || controlp == NULL)
2480 				goto next;
2481 			*controlp = sbcreatecontrol(NULL, datalen,
2482 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
2483 			bcopy(data,
2484 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2485 			    datalen);
2486 		}
2487 		controlp = &(*controlp)->m_next;
2488 
2489 next:
2490 		if (CMSG_SPACE(datalen) < clen) {
2491 			clen -= CMSG_SPACE(datalen);
2492 			cm = (struct cmsghdr *)
2493 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2494 		} else {
2495 			clen = 0;
2496 			cm = NULL;
2497 		}
2498 	}
2499 
2500 	m_freem(control);
2501 	return (error);
2502 }
2503 
2504 static void
2505 unp_zone_change(void *tag)
2506 {
2507 
2508 	uma_zone_set_max(unp_zone, maxsockets);
2509 }
2510 
2511 #ifdef INVARIANTS
2512 static void
2513 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2514 {
2515 	struct unpcb *unp;
2516 
2517 	unp = mem;
2518 
2519 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2520 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2521 	KASSERT(unp->unp_socket == NULL,
2522 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2523 	KASSERT(unp->unp_vnode == NULL,
2524 	    ("%s: unpcb %p has vnode references", __func__, unp));
2525 	KASSERT(unp->unp_conn == NULL,
2526 	    ("%s: unpcb %p is still connected", __func__, unp));
2527 	KASSERT(unp->unp_addr == NULL,
2528 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2529 }
2530 #endif
2531 
2532 static void
2533 unp_init(void *arg __unused)
2534 {
2535 	uma_dtor dtor;
2536 
2537 #ifdef INVARIANTS
2538 	dtor = unp_zdtor;
2539 #else
2540 	dtor = NULL;
2541 #endif
2542 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2543 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2544 	uma_zone_set_max(unp_zone, maxsockets);
2545 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2546 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2547 	    NULL, EVENTHANDLER_PRI_ANY);
2548 	LIST_INIT(&unp_dhead);
2549 	LIST_INIT(&unp_shead);
2550 	LIST_INIT(&unp_sphead);
2551 	SLIST_INIT(&unp_defers);
2552 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2553 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2554 	UNP_LINK_LOCK_INIT();
2555 	UNP_DEFERRED_LOCK_INIT();
2556 }
2557 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2558 
2559 static void
2560 unp_internalize_cleanup_rights(struct mbuf *control)
2561 {
2562 	struct cmsghdr *cp;
2563 	struct mbuf *m;
2564 	void *data;
2565 	socklen_t datalen;
2566 
2567 	for (m = control; m != NULL; m = m->m_next) {
2568 		cp = mtod(m, struct cmsghdr *);
2569 		if (cp->cmsg_level != SOL_SOCKET ||
2570 		    cp->cmsg_type != SCM_RIGHTS)
2571 			continue;
2572 		data = CMSG_DATA(cp);
2573 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2574 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2575 	}
2576 }
2577 
2578 static int
2579 unp_internalize(struct mbuf **controlp, struct thread *td,
2580     struct mbuf **clast, u_int *space, u_int *mbcnt)
2581 {
2582 	struct mbuf *control, **initial_controlp;
2583 	struct proc *p;
2584 	struct filedesc *fdesc;
2585 	struct bintime *bt;
2586 	struct cmsghdr *cm;
2587 	struct cmsgcred *cmcred;
2588 	struct filedescent *fde, **fdep, *fdev;
2589 	struct file *fp;
2590 	struct timeval *tv;
2591 	struct timespec *ts;
2592 	void *data;
2593 	socklen_t clen, datalen;
2594 	int i, j, error, *fdp, oldfds;
2595 	u_int newlen;
2596 
2597 	MPASS((*controlp)->m_next == NULL); /* COMPAT_OLDSOCK may violate */
2598 	UNP_LINK_UNLOCK_ASSERT();
2599 
2600 	p = td->td_proc;
2601 	fdesc = p->p_fd;
2602 	error = 0;
2603 	control = *controlp;
2604 	*controlp = NULL;
2605 	initial_controlp = controlp;
2606 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
2607 	    data = CMSG_DATA(cm);
2608 
2609 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
2610 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
2611 	    (char *)cm + cm->cmsg_len >= (char *)data;
2612 
2613 	    clen -= min(CMSG_SPACE(datalen), clen),
2614 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
2615 	    data = CMSG_DATA(cm)) {
2616 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
2617 		switch (cm->cmsg_type) {
2618 		case SCM_CREDS:
2619 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2620 			    SCM_CREDS, SOL_SOCKET, M_WAITOK);
2621 			cmcred = (struct cmsgcred *)
2622 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2623 			cmcred->cmcred_pid = p->p_pid;
2624 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2625 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2626 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2627 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2628 			    CMGROUP_MAX);
2629 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2630 				cmcred->cmcred_groups[i] =
2631 				    td->td_ucred->cr_groups[i];
2632 			break;
2633 
2634 		case SCM_RIGHTS:
2635 			oldfds = datalen / sizeof (int);
2636 			if (oldfds == 0)
2637 				continue;
2638 			/* On some machines sizeof pointer is bigger than
2639 			 * sizeof int, so we need to check if data fits into
2640 			 * single mbuf.  We could allocate several mbufs, and
2641 			 * unp_externalize() should even properly handle that.
2642 			 * But it is not worth to complicate the code for an
2643 			 * insane scenario of passing over 200 file descriptors
2644 			 * at once.
2645 			 */
2646 			newlen = oldfds * sizeof(fdep[0]);
2647 			if (CMSG_SPACE(newlen) > MCLBYTES) {
2648 				error = EMSGSIZE;
2649 				goto out;
2650 			}
2651 			/*
2652 			 * Check that all the FDs passed in refer to legal
2653 			 * files.  If not, reject the entire operation.
2654 			 */
2655 			fdp = data;
2656 			FILEDESC_SLOCK(fdesc);
2657 			for (i = 0; i < oldfds; i++, fdp++) {
2658 				fp = fget_noref(fdesc, *fdp);
2659 				if (fp == NULL) {
2660 					FILEDESC_SUNLOCK(fdesc);
2661 					error = EBADF;
2662 					goto out;
2663 				}
2664 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2665 					FILEDESC_SUNLOCK(fdesc);
2666 					error = EOPNOTSUPP;
2667 					goto out;
2668 				}
2669 			}
2670 
2671 			/*
2672 			 * Now replace the integer FDs with pointers to the
2673 			 * file structure and capability rights.
2674 			 */
2675 			*controlp = sbcreatecontrol(NULL, newlen,
2676 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2677 			fdp = data;
2678 			for (i = 0; i < oldfds; i++, fdp++) {
2679 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2680 					fdp = data;
2681 					for (j = 0; j < i; j++, fdp++) {
2682 						fdrop(fdesc->fd_ofiles[*fdp].
2683 						    fde_file, td);
2684 					}
2685 					FILEDESC_SUNLOCK(fdesc);
2686 					error = EBADF;
2687 					goto out;
2688 				}
2689 			}
2690 			fdp = data;
2691 			fdep = (struct filedescent **)
2692 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2693 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2694 			    M_WAITOK);
2695 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2696 				fde = &fdesc->fd_ofiles[*fdp];
2697 				fdep[i] = fdev;
2698 				fdep[i]->fde_file = fde->fde_file;
2699 				filecaps_copy(&fde->fde_caps,
2700 				    &fdep[i]->fde_caps, true);
2701 				unp_internalize_fp(fdep[i]->fde_file);
2702 			}
2703 			FILEDESC_SUNLOCK(fdesc);
2704 			break;
2705 
2706 		case SCM_TIMESTAMP:
2707 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2708 			    SCM_TIMESTAMP, SOL_SOCKET, M_WAITOK);
2709 			tv = (struct timeval *)
2710 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2711 			microtime(tv);
2712 			break;
2713 
2714 		case SCM_BINTIME:
2715 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2716 			    SCM_BINTIME, SOL_SOCKET, M_WAITOK);
2717 			bt = (struct bintime *)
2718 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2719 			bintime(bt);
2720 			break;
2721 
2722 		case SCM_REALTIME:
2723 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2724 			    SCM_REALTIME, SOL_SOCKET, M_WAITOK);
2725 			ts = (struct timespec *)
2726 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2727 			nanotime(ts);
2728 			break;
2729 
2730 		case SCM_MONOTONIC:
2731 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2732 			    SCM_MONOTONIC, SOL_SOCKET, M_WAITOK);
2733 			ts = (struct timespec *)
2734 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2735 			nanouptime(ts);
2736 			break;
2737 
2738 		default:
2739 			error = EINVAL;
2740 			goto out;
2741 		}
2742 
2743 		if (space != NULL) {
2744 			*space += (*controlp)->m_len;
2745 			*mbcnt += MSIZE;
2746 			if ((*controlp)->m_flags & M_EXT)
2747 				*mbcnt += (*controlp)->m_ext.ext_size;
2748 			*clast = *controlp;
2749 		}
2750 		controlp = &(*controlp)->m_next;
2751 	}
2752 	if (clen > 0)
2753 		error = EINVAL;
2754 
2755 out:
2756 	if (error != 0 && initial_controlp != NULL)
2757 		unp_internalize_cleanup_rights(*initial_controlp);
2758 	m_freem(control);
2759 	return (error);
2760 }
2761 
2762 static struct mbuf *
2763 unp_addsockcred(struct thread *td, struct mbuf *control, int mode,
2764     struct mbuf **clast, u_int *space, u_int *mbcnt)
2765 {
2766 	struct mbuf *m, *n, *n_prev;
2767 	const struct cmsghdr *cm;
2768 	int ngroups, i, cmsgtype;
2769 	size_t ctrlsz;
2770 
2771 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2772 	if (mode & UNP_WANTCRED_ALWAYS) {
2773 		ctrlsz = SOCKCRED2SIZE(ngroups);
2774 		cmsgtype = SCM_CREDS2;
2775 	} else {
2776 		ctrlsz = SOCKCREDSIZE(ngroups);
2777 		cmsgtype = SCM_CREDS;
2778 	}
2779 
2780 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
2781 	if (m == NULL)
2782 		return (control);
2783 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
2784 
2785 	if (mode & UNP_WANTCRED_ALWAYS) {
2786 		struct sockcred2 *sc;
2787 
2788 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2789 		sc->sc_version = 0;
2790 		sc->sc_pid = td->td_proc->p_pid;
2791 		sc->sc_uid = td->td_ucred->cr_ruid;
2792 		sc->sc_euid = td->td_ucred->cr_uid;
2793 		sc->sc_gid = td->td_ucred->cr_rgid;
2794 		sc->sc_egid = td->td_ucred->cr_gid;
2795 		sc->sc_ngroups = ngroups;
2796 		for (i = 0; i < sc->sc_ngroups; i++)
2797 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2798 	} else {
2799 		struct sockcred *sc;
2800 
2801 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2802 		sc->sc_uid = td->td_ucred->cr_ruid;
2803 		sc->sc_euid = td->td_ucred->cr_uid;
2804 		sc->sc_gid = td->td_ucred->cr_rgid;
2805 		sc->sc_egid = td->td_ucred->cr_gid;
2806 		sc->sc_ngroups = ngroups;
2807 		for (i = 0; i < sc->sc_ngroups; i++)
2808 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2809 	}
2810 
2811 	/*
2812 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2813 	 * created SCM_CREDS control message (struct sockcred) has another
2814 	 * format.
2815 	 */
2816 	if (control != NULL && cmsgtype == SCM_CREDS)
2817 		for (n = control, n_prev = NULL; n != NULL;) {
2818 			cm = mtod(n, struct cmsghdr *);
2819     			if (cm->cmsg_level == SOL_SOCKET &&
2820 			    cm->cmsg_type == SCM_CREDS) {
2821     				if (n_prev == NULL)
2822 					control = n->m_next;
2823 				else
2824 					n_prev->m_next = n->m_next;
2825 				if (space != NULL) {
2826 					MPASS(*space >= n->m_len);
2827 					*space -= n->m_len;
2828 					MPASS(*mbcnt >= MSIZE);
2829 					*mbcnt -= MSIZE;
2830 					if (n->m_flags & M_EXT) {
2831 						MPASS(*mbcnt >=
2832 						    n->m_ext.ext_size);
2833 						*mbcnt -= n->m_ext.ext_size;
2834 					}
2835 					MPASS(clast);
2836 					if (*clast == n) {
2837 						MPASS(n->m_next == NULL);
2838 						if (n_prev == NULL)
2839 							*clast = m;
2840 						else
2841 							*clast = n_prev;
2842 					}
2843 				}
2844 				n = m_free(n);
2845 			} else {
2846 				n_prev = n;
2847 				n = n->m_next;
2848 			}
2849 		}
2850 
2851 	/* Prepend it to the head. */
2852 	m->m_next = control;
2853 	if (space != NULL) {
2854 		*space += m->m_len;
2855 		*mbcnt += MSIZE;
2856 		if (control == NULL)
2857 			*clast = m;
2858 	}
2859 	return (m);
2860 }
2861 
2862 static struct unpcb *
2863 fptounp(struct file *fp)
2864 {
2865 	struct socket *so;
2866 
2867 	if (fp->f_type != DTYPE_SOCKET)
2868 		return (NULL);
2869 	if ((so = fp->f_data) == NULL)
2870 		return (NULL);
2871 	if (so->so_proto->pr_domain != &localdomain)
2872 		return (NULL);
2873 	return sotounpcb(so);
2874 }
2875 
2876 static void
2877 unp_discard(struct file *fp)
2878 {
2879 	struct unp_defer *dr;
2880 
2881 	if (unp_externalize_fp(fp)) {
2882 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2883 		dr->ud_fp = fp;
2884 		UNP_DEFERRED_LOCK();
2885 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2886 		UNP_DEFERRED_UNLOCK();
2887 		atomic_add_int(&unp_defers_count, 1);
2888 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2889 	} else
2890 		closef_nothread(fp);
2891 }
2892 
2893 static void
2894 unp_process_defers(void *arg __unused, int pending)
2895 {
2896 	struct unp_defer *dr;
2897 	SLIST_HEAD(, unp_defer) drl;
2898 	int count;
2899 
2900 	SLIST_INIT(&drl);
2901 	for (;;) {
2902 		UNP_DEFERRED_LOCK();
2903 		if (SLIST_FIRST(&unp_defers) == NULL) {
2904 			UNP_DEFERRED_UNLOCK();
2905 			break;
2906 		}
2907 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2908 		UNP_DEFERRED_UNLOCK();
2909 		count = 0;
2910 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2911 			SLIST_REMOVE_HEAD(&drl, ud_link);
2912 			closef_nothread(dr->ud_fp);
2913 			free(dr, M_TEMP);
2914 			count++;
2915 		}
2916 		atomic_add_int(&unp_defers_count, -count);
2917 	}
2918 }
2919 
2920 static void
2921 unp_internalize_fp(struct file *fp)
2922 {
2923 	struct unpcb *unp;
2924 
2925 	UNP_LINK_WLOCK();
2926 	if ((unp = fptounp(fp)) != NULL) {
2927 		unp->unp_file = fp;
2928 		unp->unp_msgcount++;
2929 	}
2930 	unp_rights++;
2931 	UNP_LINK_WUNLOCK();
2932 }
2933 
2934 static int
2935 unp_externalize_fp(struct file *fp)
2936 {
2937 	struct unpcb *unp;
2938 	int ret;
2939 
2940 	UNP_LINK_WLOCK();
2941 	if ((unp = fptounp(fp)) != NULL) {
2942 		unp->unp_msgcount--;
2943 		ret = 1;
2944 	} else
2945 		ret = 0;
2946 	unp_rights--;
2947 	UNP_LINK_WUNLOCK();
2948 	return (ret);
2949 }
2950 
2951 /*
2952  * unp_defer indicates whether additional work has been defered for a future
2953  * pass through unp_gc().  It is thread local and does not require explicit
2954  * synchronization.
2955  */
2956 static int	unp_marked;
2957 
2958 static void
2959 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2960 {
2961 	struct unpcb *unp;
2962 	struct file *fp;
2963 	int i;
2964 
2965 	/*
2966 	 * This function can only be called from the gc task.
2967 	 */
2968 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2969 	    ("%s: not on gc callout", __func__));
2970 	UNP_LINK_LOCK_ASSERT();
2971 
2972 	for (i = 0; i < fdcount; i++) {
2973 		fp = fdep[i]->fde_file;
2974 		if ((unp = fptounp(fp)) == NULL)
2975 			continue;
2976 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2977 			continue;
2978 		unp->unp_gcrefs--;
2979 	}
2980 }
2981 
2982 static void
2983 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2984 {
2985 	struct unpcb *unp;
2986 	struct file *fp;
2987 	int i;
2988 
2989 	/*
2990 	 * This function can only be called from the gc task.
2991 	 */
2992 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2993 	    ("%s: not on gc callout", __func__));
2994 	UNP_LINK_LOCK_ASSERT();
2995 
2996 	for (i = 0; i < fdcount; i++) {
2997 		fp = fdep[i]->fde_file;
2998 		if ((unp = fptounp(fp)) == NULL)
2999 			continue;
3000 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
3001 			continue;
3002 		unp->unp_gcrefs++;
3003 		unp_marked++;
3004 	}
3005 }
3006 
3007 static void
3008 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
3009 {
3010 	struct sockbuf *sb;
3011 
3012 	SOCK_LOCK_ASSERT(so);
3013 
3014 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
3015 		return;
3016 
3017 	SOCK_RECVBUF_LOCK(so);
3018 	switch (so->so_type) {
3019 	case SOCK_DGRAM:
3020 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
3021 		unp_scan(so->so_rcv.uxdg_peeked, op);
3022 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
3023 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
3024 		break;
3025 	case SOCK_STREAM:
3026 	case SOCK_SEQPACKET:
3027 		unp_scan(so->so_rcv.sb_mb, op);
3028 		break;
3029 	}
3030 	SOCK_RECVBUF_UNLOCK(so);
3031 }
3032 
3033 static void
3034 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
3035 {
3036 	struct socket *so, *soa;
3037 
3038 	so = unp->unp_socket;
3039 	SOCK_LOCK(so);
3040 	if (SOLISTENING(so)) {
3041 		/*
3042 		 * Mark all sockets in our accept queue.
3043 		 */
3044 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
3045 			unp_scan_socket(soa, op);
3046 	} else {
3047 		/*
3048 		 * Mark all sockets we reference with RIGHTS.
3049 		 */
3050 		unp_scan_socket(so, op);
3051 	}
3052 	SOCK_UNLOCK(so);
3053 }
3054 
3055 static int unp_recycled;
3056 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
3057     "Number of unreachable sockets claimed by the garbage collector.");
3058 
3059 static int unp_taskcount;
3060 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
3061     "Number of times the garbage collector has run.");
3062 
3063 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
3064     "Number of active local sockets.");
3065 
3066 static void
3067 unp_gc(__unused void *arg, int pending)
3068 {
3069 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
3070 				    NULL };
3071 	struct unp_head **head;
3072 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
3073 	struct file *f, **unref;
3074 	struct unpcb *unp, *unptmp;
3075 	int i, total, unp_unreachable;
3076 
3077 	LIST_INIT(&unp_deadhead);
3078 	unp_taskcount++;
3079 	UNP_LINK_RLOCK();
3080 	/*
3081 	 * First determine which sockets may be in cycles.
3082 	 */
3083 	unp_unreachable = 0;
3084 
3085 	for (head = heads; *head != NULL; head++)
3086 		LIST_FOREACH(unp, *head, unp_link) {
3087 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
3088 			    ("%s: unp %p has unexpected gc flags 0x%x",
3089 			    __func__, unp, (unsigned int)unp->unp_gcflag));
3090 
3091 			f = unp->unp_file;
3092 
3093 			/*
3094 			 * Check for an unreachable socket potentially in a
3095 			 * cycle.  It must be in a queue as indicated by
3096 			 * msgcount, and this must equal the file reference
3097 			 * count.  Note that when msgcount is 0 the file is
3098 			 * NULL.
3099 			 */
3100 			if (f != NULL && unp->unp_msgcount != 0 &&
3101 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
3102 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
3103 				unp->unp_gcflag |= UNPGC_DEAD;
3104 				unp->unp_gcrefs = unp->unp_msgcount;
3105 				unp_unreachable++;
3106 			}
3107 		}
3108 
3109 	/*
3110 	 * Scan all sockets previously marked as potentially being in a cycle
3111 	 * and remove the references each socket holds on any UNPGC_DEAD
3112 	 * sockets in its queue.  After this step, all remaining references on
3113 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
3114 	 */
3115 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
3116 		unp_gc_scan(unp, unp_remove_dead_ref);
3117 
3118 	/*
3119 	 * If a socket still has a non-negative refcount, it cannot be in a
3120 	 * cycle.  In this case increment refcount of all children iteratively.
3121 	 * Stop the scan once we do a complete loop without discovering
3122 	 * a new reachable socket.
3123 	 */
3124 	do {
3125 		unp_marked = 0;
3126 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
3127 			if (unp->unp_gcrefs > 0) {
3128 				unp->unp_gcflag &= ~UNPGC_DEAD;
3129 				LIST_REMOVE(unp, unp_dead);
3130 				KASSERT(unp_unreachable > 0,
3131 				    ("%s: unp_unreachable underflow.",
3132 				    __func__));
3133 				unp_unreachable--;
3134 				unp_gc_scan(unp, unp_restore_undead_ref);
3135 			}
3136 	} while (unp_marked);
3137 
3138 	UNP_LINK_RUNLOCK();
3139 
3140 	if (unp_unreachable == 0)
3141 		return;
3142 
3143 	/*
3144 	 * Allocate space for a local array of dead unpcbs.
3145 	 * TODO: can this path be simplified by instead using the local
3146 	 * dead list at unp_deadhead, after taking out references
3147 	 * on the file object and/or unpcb and dropping the link lock?
3148 	 */
3149 	unref = malloc(unp_unreachable * sizeof(struct file *),
3150 	    M_TEMP, M_WAITOK);
3151 
3152 	/*
3153 	 * Iterate looking for sockets which have been specifically marked
3154 	 * as unreachable and store them locally.
3155 	 */
3156 	UNP_LINK_RLOCK();
3157 	total = 0;
3158 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
3159 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
3160 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
3161 		unp->unp_gcflag &= ~UNPGC_DEAD;
3162 		f = unp->unp_file;
3163 		if (unp->unp_msgcount == 0 || f == NULL ||
3164 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
3165 		    !fhold(f))
3166 			continue;
3167 		unref[total++] = f;
3168 		KASSERT(total <= unp_unreachable,
3169 		    ("%s: incorrect unreachable count.", __func__));
3170 	}
3171 	UNP_LINK_RUNLOCK();
3172 
3173 	/*
3174 	 * Now flush all sockets, free'ing rights.  This will free the
3175 	 * struct files associated with these sockets but leave each socket
3176 	 * with one remaining ref.
3177 	 */
3178 	for (i = 0; i < total; i++) {
3179 		struct socket *so;
3180 
3181 		so = unref[i]->f_data;
3182 		CURVNET_SET(so->so_vnet);
3183 		sorflush(so);
3184 		CURVNET_RESTORE();
3185 	}
3186 
3187 	/*
3188 	 * And finally release the sockets so they can be reclaimed.
3189 	 */
3190 	for (i = 0; i < total; i++)
3191 		fdrop(unref[i], NULL);
3192 	unp_recycled += total;
3193 	free(unref, M_TEMP);
3194 }
3195 
3196 /*
3197  * Synchronize against unp_gc, which can trip over data as we are freeing it.
3198  */
3199 static void
3200 unp_dispose(struct socket *so)
3201 {
3202 	struct sockbuf *sb;
3203 	struct unpcb *unp;
3204 	struct mbuf *m;
3205 
3206 	MPASS(!SOLISTENING(so));
3207 
3208 	unp = sotounpcb(so);
3209 	UNP_LINK_WLOCK();
3210 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
3211 	UNP_LINK_WUNLOCK();
3212 
3213 	/*
3214 	 * Grab our special mbufs before calling sbrelease().
3215 	 */
3216 	SOCK_RECVBUF_LOCK(so);
3217 	switch (so->so_type) {
3218 	case SOCK_DGRAM:
3219 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
3220 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
3221 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
3222 			/* Note: socket of sb may reconnect. */
3223 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
3224 		}
3225 		sb = &so->so_rcv;
3226 		if (sb->uxdg_peeked != NULL) {
3227 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
3228 			    m_stailqpkt);
3229 			sb->uxdg_peeked = NULL;
3230 		}
3231 		m = STAILQ_FIRST(&sb->uxdg_mb);
3232 		STAILQ_INIT(&sb->uxdg_mb);
3233 		/* XXX: our shortened sbrelease() */
3234 		(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
3235 		    RLIM_INFINITY);
3236 		/*
3237 		 * XXXGL Mark sb with SBS_CANTRCVMORE.  This is needed to
3238 		 * prevent uipc_sosend_dgram() or unp_disconnect() adding more
3239 		 * data to the socket.
3240 		 * We are now in dom_dispose and it could be a call from
3241 		 * soshutdown() or from the final sofree().  The sofree() case
3242 		 * is simple as it guarantees that no more sends will happen,
3243 		 * however we can race with unp_disconnect() from our peer.
3244 		 * The shutdown(2) case is more exotic.  It would call into
3245 		 * dom_dispose() only if socket is SS_ISCONNECTED.  This is
3246 		 * possible if we did connect(2) on this socket and we also
3247 		 * had it bound with bind(2) and receive connections from other
3248 		 * sockets.  Because soshutdown() violates POSIX (see comment
3249 		 * there) we will end up here shutting down our receive side.
3250 		 * Of course this will have affect not only on the peer we
3251 		 * connect(2)ed to, but also on all of the peers who had
3252 		 * connect(2)ed to us.  Their sends would end up with ENOBUFS.
3253 		 */
3254 		sb->sb_state |= SBS_CANTRCVMORE;
3255 		break;
3256 	case SOCK_STREAM:
3257 	case SOCK_SEQPACKET:
3258 		sb = &so->so_rcv;
3259 		m = sbcut_locked(sb, sb->sb_ccc);
3260 		KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
3261 		    ("%s: ccc %u mb %p mbcnt %u", __func__,
3262 		    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
3263 		sbrelease_locked(so, SO_RCV);
3264 		break;
3265 	}
3266 	SOCK_RECVBUF_UNLOCK(so);
3267 	if (SOCK_IO_RECV_OWNED(so))
3268 		SOCK_IO_RECV_UNLOCK(so);
3269 
3270 	if (m != NULL) {
3271 		unp_scan(m, unp_freerights);
3272 		m_freem(m);
3273 	}
3274 }
3275 
3276 static void
3277 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
3278 {
3279 	struct mbuf *m;
3280 	struct cmsghdr *cm;
3281 	void *data;
3282 	socklen_t clen, datalen;
3283 
3284 	while (m0 != NULL) {
3285 		for (m = m0; m; m = m->m_next) {
3286 			if (m->m_type != MT_CONTROL)
3287 				continue;
3288 
3289 			cm = mtod(m, struct cmsghdr *);
3290 			clen = m->m_len;
3291 
3292 			while (cm != NULL) {
3293 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
3294 					break;
3295 
3296 				data = CMSG_DATA(cm);
3297 				datalen = (caddr_t)cm + cm->cmsg_len
3298 				    - (caddr_t)data;
3299 
3300 				if (cm->cmsg_level == SOL_SOCKET &&
3301 				    cm->cmsg_type == SCM_RIGHTS) {
3302 					(*op)(data, datalen /
3303 					    sizeof(struct filedescent *));
3304 				}
3305 
3306 				if (CMSG_SPACE(datalen) < clen) {
3307 					clen -= CMSG_SPACE(datalen);
3308 					cm = (struct cmsghdr *)
3309 					    ((caddr_t)cm + CMSG_SPACE(datalen));
3310 				} else {
3311 					clen = 0;
3312 					cm = NULL;
3313 				}
3314 			}
3315 		}
3316 		m0 = m0->m_nextpkt;
3317 	}
3318 }
3319 
3320 /*
3321  * Definitions of protocols supported in the LOCAL domain.
3322  */
3323 static struct protosw streamproto = {
3324 	.pr_type =		SOCK_STREAM,
3325 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS|
3326 				    PR_CAPATTACH,
3327 	.pr_ctloutput =		&uipc_ctloutput,
3328 	.pr_abort = 		uipc_abort,
3329 	.pr_accept =		uipc_accept,
3330 	.pr_attach =		uipc_attach,
3331 	.pr_bind =		uipc_bind,
3332 	.pr_bindat =		uipc_bindat,
3333 	.pr_connect =		uipc_connect,
3334 	.pr_connectat =		uipc_connectat,
3335 	.pr_connect2 =		uipc_connect2,
3336 	.pr_detach =		uipc_detach,
3337 	.pr_disconnect =	uipc_disconnect,
3338 	.pr_listen =		uipc_listen,
3339 	.pr_peeraddr =		uipc_peeraddr,
3340 	.pr_rcvd =		uipc_rcvd,
3341 	.pr_send =		uipc_send,
3342 	.pr_ready =		uipc_ready,
3343 	.pr_sense =		uipc_sense,
3344 	.pr_shutdown =		uipc_shutdown,
3345 	.pr_sockaddr =		uipc_sockaddr,
3346 	.pr_soreceive =		soreceive_generic,
3347 	.pr_close =		uipc_close,
3348 };
3349 
3350 static struct protosw dgramproto = {
3351 	.pr_type =		SOCK_DGRAM,
3352 	.pr_flags =		PR_ATOMIC | PR_ADDR |PR_RIGHTS | PR_CAPATTACH |
3353 				    PR_SOCKBUF,
3354 	.pr_ctloutput =		&uipc_ctloutput,
3355 	.pr_abort = 		uipc_abort,
3356 	.pr_accept =		uipc_accept,
3357 	.pr_attach =		uipc_attach,
3358 	.pr_bind =		uipc_bind,
3359 	.pr_bindat =		uipc_bindat,
3360 	.pr_connect =		uipc_connect,
3361 	.pr_connectat =		uipc_connectat,
3362 	.pr_connect2 =		uipc_connect2,
3363 	.pr_detach =		uipc_detach,
3364 	.pr_disconnect =	uipc_disconnect,
3365 	.pr_peeraddr =		uipc_peeraddr,
3366 	.pr_sosend =		uipc_sosend_dgram,
3367 	.pr_sense =		uipc_sense,
3368 	.pr_shutdown =		uipc_shutdown,
3369 	.pr_sockaddr =		uipc_sockaddr,
3370 	.pr_soreceive =		uipc_soreceive_dgram,
3371 	.pr_close =		uipc_close,
3372 };
3373 
3374 static struct protosw seqpacketproto = {
3375 	.pr_type =		SOCK_SEQPACKET,
3376 	/*
3377 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
3378 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
3379 	 * that supports both atomic record writes and control data.
3380 	 */
3381 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|
3382 				    PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH,
3383 	.pr_ctloutput =		&uipc_ctloutput,
3384 	.pr_abort =		uipc_abort,
3385 	.pr_accept =		uipc_accept,
3386 	.pr_attach =		uipc_attach,
3387 	.pr_bind =		uipc_bind,
3388 	.pr_bindat =		uipc_bindat,
3389 	.pr_connect =		uipc_connect,
3390 	.pr_connectat =		uipc_connectat,
3391 	.pr_connect2 =		uipc_connect2,
3392 	.pr_detach =		uipc_detach,
3393 	.pr_disconnect =	uipc_disconnect,
3394 	.pr_listen =		uipc_listen,
3395 	.pr_peeraddr =		uipc_peeraddr,
3396 	.pr_rcvd =		uipc_rcvd,
3397 	.pr_send =		uipc_send,
3398 	.pr_sense =		uipc_sense,
3399 	.pr_shutdown =		uipc_shutdown,
3400 	.pr_sockaddr =		uipc_sockaddr,
3401 	.pr_soreceive =		soreceive_generic,	/* XXX: or...? */
3402 	.pr_close =		uipc_close,
3403 };
3404 
3405 static struct domain localdomain = {
3406 	.dom_family =		AF_LOCAL,
3407 	.dom_name =		"local",
3408 	.dom_externalize =	unp_externalize,
3409 	.dom_dispose =		unp_dispose,
3410 	.dom_nprotosw =		3,
3411 	.dom_protosw =		{
3412 		&streamproto,
3413 		&dgramproto,
3414 		&seqpacketproto,
3415 	}
3416 };
3417 DOMAIN_SET(local);
3418 
3419 /*
3420  * A helper function called by VFS before socket-type vnode reclamation.
3421  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
3422  * use count.
3423  */
3424 void
3425 vfs_unp_reclaim(struct vnode *vp)
3426 {
3427 	struct unpcb *unp;
3428 	int active;
3429 	struct mtx *vplock;
3430 
3431 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
3432 	KASSERT(vp->v_type == VSOCK,
3433 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
3434 
3435 	active = 0;
3436 	vplock = mtx_pool_find(mtxpool_sleep, vp);
3437 	mtx_lock(vplock);
3438 	VOP_UNP_CONNECT(vp, &unp);
3439 	if (unp == NULL)
3440 		goto done;
3441 	UNP_PCB_LOCK(unp);
3442 	if (unp->unp_vnode == vp) {
3443 		VOP_UNP_DETACH(vp);
3444 		unp->unp_vnode = NULL;
3445 		active = 1;
3446 	}
3447 	UNP_PCB_UNLOCK(unp);
3448  done:
3449 	mtx_unlock(vplock);
3450 	if (active)
3451 		vunref(vp);
3452 }
3453 
3454 #ifdef DDB
3455 static void
3456 db_print_indent(int indent)
3457 {
3458 	int i;
3459 
3460 	for (i = 0; i < indent; i++)
3461 		db_printf(" ");
3462 }
3463 
3464 static void
3465 db_print_unpflags(int unp_flags)
3466 {
3467 	int comma;
3468 
3469 	comma = 0;
3470 	if (unp_flags & UNP_HAVEPC) {
3471 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
3472 		comma = 1;
3473 	}
3474 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
3475 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
3476 		comma = 1;
3477 	}
3478 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
3479 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
3480 		comma = 1;
3481 	}
3482 	if (unp_flags & UNP_CONNWAIT) {
3483 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
3484 		comma = 1;
3485 	}
3486 	if (unp_flags & UNP_CONNECTING) {
3487 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
3488 		comma = 1;
3489 	}
3490 	if (unp_flags & UNP_BINDING) {
3491 		db_printf("%sUNP_BINDING", comma ? ", " : "");
3492 		comma = 1;
3493 	}
3494 }
3495 
3496 static void
3497 db_print_xucred(int indent, struct xucred *xu)
3498 {
3499 	int comma, i;
3500 
3501 	db_print_indent(indent);
3502 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
3503 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
3504 	db_print_indent(indent);
3505 	db_printf("cr_groups: ");
3506 	comma = 0;
3507 	for (i = 0; i < xu->cr_ngroups; i++) {
3508 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
3509 		comma = 1;
3510 	}
3511 	db_printf("\n");
3512 }
3513 
3514 static void
3515 db_print_unprefs(int indent, struct unp_head *uh)
3516 {
3517 	struct unpcb *unp;
3518 	int counter;
3519 
3520 	counter = 0;
3521 	LIST_FOREACH(unp, uh, unp_reflink) {
3522 		if (counter % 4 == 0)
3523 			db_print_indent(indent);
3524 		db_printf("%p  ", unp);
3525 		if (counter % 4 == 3)
3526 			db_printf("\n");
3527 		counter++;
3528 	}
3529 	if (counter != 0 && counter % 4 != 0)
3530 		db_printf("\n");
3531 }
3532 
3533 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
3534 {
3535 	struct unpcb *unp;
3536 
3537         if (!have_addr) {
3538                 db_printf("usage: show unpcb <addr>\n");
3539                 return;
3540         }
3541         unp = (struct unpcb *)addr;
3542 
3543 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
3544 	    unp->unp_vnode);
3545 
3546 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
3547 	    unp->unp_conn);
3548 
3549 	db_printf("unp_refs:\n");
3550 	db_print_unprefs(2, &unp->unp_refs);
3551 
3552 	/* XXXRW: Would be nice to print the full address, if any. */
3553 	db_printf("unp_addr: %p\n", unp->unp_addr);
3554 
3555 	db_printf("unp_gencnt: %llu\n",
3556 	    (unsigned long long)unp->unp_gencnt);
3557 
3558 	db_printf("unp_flags: %x (", unp->unp_flags);
3559 	db_print_unpflags(unp->unp_flags);
3560 	db_printf(")\n");
3561 
3562 	db_printf("unp_peercred:\n");
3563 	db_print_xucred(2, &unp->unp_peercred);
3564 
3565 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3566 }
3567 #endif
3568