xref: /freebsd/sys/kern/uipc_usrreq.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * Locking key:
110  * (l)	Locked using list lock
111  * (g)	Locked using linkage lock
112  */
113 
114 static uma_zone_t	unp_zone;
115 static unp_gen_t	unp_gencnt;	/* (l) */
116 static u_int		unp_count;	/* (l) Count of local sockets. */
117 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
118 static int		unp_rights;	/* (g) File descriptors in flight. */
119 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
120 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
121 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
122 
123 struct unp_defer {
124 	SLIST_ENTRY(unp_defer) ud_link;
125 	struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129 
130 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
131 
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139 
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task	unp_defer_task;
146 
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define	PIPSIZ	8192
158 #endif
159 static u_long	unpst_sendspace = PIPSIZ;
160 static u_long	unpst_recvspace = PIPSIZ;
161 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
162 static u_long	unpdg_recvspace = 4*1024;
163 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
164 static u_long	unpsp_recvspace = PIPSIZ;
165 
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
171     "SOCK_SEQPACKET");
172 
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
174 	   &unpst_sendspace, 0, "Default stream send space.");
175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
176 	   &unpst_recvspace, 0, "Default stream receive space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
178 	   &unpdg_sendspace, 0, "Default datagram send space.");
179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
180 	   &unpdg_recvspace, 0, "Default datagram receive space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
182 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
184 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
186     "File descriptors in flight.");
187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
188     &unp_defers_count, 0,
189     "File descriptors deferred to taskqueue for close.");
190 
191 /*
192  * Locking and synchronization:
193  *
194  * Three types of locks exist in the local domain socket implementation: a
195  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
196  * The linkage lock protects the socket count, global generation number,
197  * and stream/datagram global lists.
198  *
199  * The mtxpool lock protects the vnode from being modified while referenced.
200  * Lock ordering requires that it be acquired before any unpcb locks.
201  *
202  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
203  * note is that this includes the unp_conn field. So long as the unpcb lock
204  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
205  * require that the unpcb pointed to by unp_conn remain live in cases where
206  * we need to drop the unp_mtx as when we need to acquire the lock for a
207  * second unpcb the caller must first acquire an additional reference on the
208  * second unpcb and then revalidate any state (typically check that unp_conn
209  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
210  * between unpcbs is the conventional ascending address order. Two helper
211  * routines exist for this:
212  *
213  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
214  *     safe ordering.
215  *
216  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
217  *     when called. If unp is unlocked and unp2 is subsequently freed
218  *     freed will be set to 1.
219  *
220  * The helper routines for references are:
221  *
222  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
223  *     reference to unp.
224  *
225  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
226  *      releasing the last reference, detach must have been called thus
227  *      unp->unp_socket be NULL.
228  *
229  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
230  * allocated in pru_attach() and freed in pru_detach().  The validity of that
231  * pointer is an invariant, so no lock is required to dereference the so_pcb
232  * pointer if a valid socket reference is held by the caller.  In practice,
233  * this is always true during operations performed on a socket.  Each unpcb
234  * has a back-pointer to its socket, unp_socket, which will be stable under
235  * the same circumstances.
236  *
237  * This pointer may only be safely dereferenced as long as a valid reference
238  * to the unpcb is held.  Typically, this reference will be from the socket,
239  * or from another unpcb when the referring unpcb's lock is held (in order
240  * that the reference not be invalidated during use).  For example, to follow
241  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
242  * that detach is not run clearing unp_socket.
243  *
244  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
245  * protocols, bind() is a non-atomic operation, and connect() requires
246  * potential sleeping in the protocol, due to potentially waiting on local or
247  * distributed file systems.  We try to separate "lookup" operations, which
248  * may sleep, and the IPC operations themselves, which typically can occur
249  * with relative atomicity as locks can be held over the entire operation.
250  *
251  * Another tricky issue is simultaneous multi-threaded or multi-process
252  * access to a single UNIX domain socket.  These are handled by the flags
253  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
254  * binding, both of which involve dropping UNIX domain socket locks in order
255  * to perform namei() and other file system operations.
256  */
257 static struct rwlock	unp_link_rwlock;
258 static struct mtx	unp_defers_lock;
259 
260 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
261 					    "unp_link_rwlock")
262 
263 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
264 					    RA_LOCKED)
265 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
266 					    RA_UNLOCKED)
267 
268 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
269 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
270 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
271 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
272 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
273 					    RA_WLOCKED)
274 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
275 
276 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
277 					    "unp_defer", NULL, MTX_DEF)
278 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
279 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
280 
281 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
282 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
283 
284 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
285 					    "unp", "unp",	\
286 					    MTX_DUPOK|MTX_DEF)
287 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
288 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
289 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
290 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
291 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
292 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
293 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
294 
295 static int	uipc_connect2(struct socket *, struct socket *);
296 static int	uipc_ctloutput(struct socket *, struct sockopt *);
297 static int	unp_connect(struct socket *, struct sockaddr *,
298 		    struct thread *);
299 static int	unp_connectat(int, struct socket *, struct sockaddr *,
300 		    struct thread *);
301 static int	unp_connect2(struct socket *so, struct socket *so2, int);
302 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
303 static void	unp_dispose(struct socket *so);
304 static void	unp_dispose_mbuf(struct mbuf *);
305 static void	unp_shutdown(struct unpcb *);
306 static void	unp_drop(struct unpcb *);
307 static void	unp_gc(__unused void *, int);
308 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
309 static void	unp_discard(struct file *);
310 static void	unp_freerights(struct filedescent **, int);
311 static void	unp_init(void);
312 static int	unp_internalize(struct mbuf **, struct thread *);
313 static void	unp_internalize_fp(struct file *);
314 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
315 static int	unp_externalize_fp(struct file *);
316 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
317 static void	unp_process_defers(void * __unused, int);
318 
319 
320 static void
321 unp_pcb_hold(struct unpcb *unp)
322 {
323 	MPASS(unp->unp_refcount);
324 	refcount_acquire(&unp->unp_refcount);
325 }
326 
327 static int
328 unp_pcb_rele(struct unpcb *unp)
329 {
330 	int freed;
331 
332 	UNP_PCB_LOCK_ASSERT(unp);
333 	MPASS(unp->unp_refcount);
334 	if ((freed = refcount_release(&unp->unp_refcount))) {
335 		/* we got here with having detached? */
336 		MPASS(unp->unp_socket == NULL);
337 		UNP_PCB_UNLOCK(unp);
338 		UNP_PCB_LOCK_DESTROY(unp);
339 		uma_zfree(unp_zone, unp);
340 	}
341 	return (freed);
342 }
343 
344 static void
345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
346 {
347 	MPASS(unp != unp2);
348 	UNP_PCB_UNLOCK_ASSERT(unp);
349 	UNP_PCB_UNLOCK_ASSERT(unp2);
350 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
351 		UNP_PCB_LOCK(unp);
352 		UNP_PCB_LOCK(unp2);
353 	} else {
354 		UNP_PCB_LOCK(unp2);
355 		UNP_PCB_LOCK(unp);
356 	}
357 }
358 
359 static __noinline void
360 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p,
361     int *freed)
362 {
363 	struct unpcb *unp2;
364 
365 	unp2 = *unp2p;
366 	unp_pcb_hold(unp2);
367 	UNP_PCB_UNLOCK(unp);
368 	UNP_PCB_LOCK(unp2);
369 	UNP_PCB_LOCK(unp);
370 	*freed = unp_pcb_rele(unp2);
371 	if (*freed)
372 		*unp2p = NULL;
373 }
374 
375 #define unp_pcb_owned_lock2(unp, unp2, freed) do {			\
376 	freed = 0;							\
377 	UNP_PCB_LOCK_ASSERT(unp);					\
378 	UNP_PCB_UNLOCK_ASSERT(unp2);					\
379 	MPASS((unp) != (unp2));						\
380 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))			\
381 		break;							\
382 	else if ((uintptr_t)(unp2) > (uintptr_t)(unp))			\
383 		UNP_PCB_LOCK(unp2);					\
384 	else								\
385 		unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);	\
386 } while (0)
387 
388 
389 /*
390  * Definitions of protocols supported in the LOCAL domain.
391  */
392 static struct domain localdomain;
393 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
394 static struct pr_usrreqs uipc_usrreqs_seqpacket;
395 static struct protosw localsw[] = {
396 {
397 	.pr_type =		SOCK_STREAM,
398 	.pr_domain =		&localdomain,
399 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
400 	.pr_ctloutput =		&uipc_ctloutput,
401 	.pr_usrreqs =		&uipc_usrreqs_stream
402 },
403 {
404 	.pr_type =		SOCK_DGRAM,
405 	.pr_domain =		&localdomain,
406 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
407 	.pr_ctloutput =		&uipc_ctloutput,
408 	.pr_usrreqs =		&uipc_usrreqs_dgram
409 },
410 {
411 	.pr_type =		SOCK_SEQPACKET,
412 	.pr_domain =		&localdomain,
413 
414 	/*
415 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
416 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
417 	 * that supports both atomic record writes and control data.
418 	 */
419 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
420 				    PR_RIGHTS,
421 	.pr_ctloutput =		&uipc_ctloutput,
422 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
423 },
424 };
425 
426 static struct domain localdomain = {
427 	.dom_family =		AF_LOCAL,
428 	.dom_name =		"local",
429 	.dom_init =		unp_init,
430 	.dom_externalize =	unp_externalize,
431 	.dom_dispose =		unp_dispose,
432 	.dom_protosw =		localsw,
433 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
434 };
435 DOMAIN_SET(local);
436 
437 static void
438 uipc_abort(struct socket *so)
439 {
440 	struct unpcb *unp, *unp2;
441 
442 	unp = sotounpcb(so);
443 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
444 	UNP_PCB_UNLOCK_ASSERT(unp);
445 
446 	UNP_PCB_LOCK(unp);
447 	unp2 = unp->unp_conn;
448 	if (unp2 != NULL) {
449 		unp_pcb_hold(unp2);
450 		UNP_PCB_UNLOCK(unp);
451 		unp_drop(unp2);
452 	} else
453 		UNP_PCB_UNLOCK(unp);
454 }
455 
456 static int
457 uipc_accept(struct socket *so, struct sockaddr **nam)
458 {
459 	struct unpcb *unp, *unp2;
460 	const struct sockaddr *sa;
461 
462 	/*
463 	 * Pass back name of connected socket, if it was bound and we are
464 	 * still connected (our peer may have closed already!).
465 	 */
466 	unp = sotounpcb(so);
467 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
468 
469 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
470 	UNP_LINK_RLOCK();
471 	unp2 = unp->unp_conn;
472 	if (unp2 != NULL && unp2->unp_addr != NULL) {
473 		UNP_PCB_LOCK(unp2);
474 		sa = (struct sockaddr *) unp2->unp_addr;
475 		bcopy(sa, *nam, sa->sa_len);
476 		UNP_PCB_UNLOCK(unp2);
477 	} else {
478 		sa = &sun_noname;
479 		bcopy(sa, *nam, sa->sa_len);
480 	}
481 	UNP_LINK_RUNLOCK();
482 	return (0);
483 }
484 
485 static int
486 uipc_attach(struct socket *so, int proto, struct thread *td)
487 {
488 	u_long sendspace, recvspace;
489 	struct unpcb *unp;
490 	int error;
491 	bool locked;
492 
493 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
494 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
495 		switch (so->so_type) {
496 		case SOCK_STREAM:
497 			sendspace = unpst_sendspace;
498 			recvspace = unpst_recvspace;
499 			break;
500 
501 		case SOCK_DGRAM:
502 			sendspace = unpdg_sendspace;
503 			recvspace = unpdg_recvspace;
504 			break;
505 
506 		case SOCK_SEQPACKET:
507 			sendspace = unpsp_sendspace;
508 			recvspace = unpsp_recvspace;
509 			break;
510 
511 		default:
512 			panic("uipc_attach");
513 		}
514 		error = soreserve(so, sendspace, recvspace);
515 		if (error)
516 			return (error);
517 	}
518 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
519 	if (unp == NULL)
520 		return (ENOBUFS);
521 	LIST_INIT(&unp->unp_refs);
522 	UNP_PCB_LOCK_INIT(unp);
523 	unp->unp_socket = so;
524 	so->so_pcb = unp;
525 	unp->unp_refcount = 1;
526 	if (so->so_listen != NULL)
527 		unp->unp_flags |= UNP_NASCENT;
528 
529 	if ((locked = UNP_LINK_WOWNED()) == false)
530 		UNP_LINK_WLOCK();
531 
532 	unp->unp_gencnt = ++unp_gencnt;
533 	unp_count++;
534 	switch (so->so_type) {
535 	case SOCK_STREAM:
536 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
537 		break;
538 
539 	case SOCK_DGRAM:
540 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
541 		break;
542 
543 	case SOCK_SEQPACKET:
544 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
545 		break;
546 
547 	default:
548 		panic("uipc_attach");
549 	}
550 
551 	if (locked == false)
552 		UNP_LINK_WUNLOCK();
553 
554 	return (0);
555 }
556 
557 static int
558 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
559 {
560 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
561 	struct vattr vattr;
562 	int error, namelen;
563 	struct nameidata nd;
564 	struct unpcb *unp;
565 	struct vnode *vp;
566 	struct mount *mp;
567 	cap_rights_t rights;
568 	char *buf;
569 
570 	if (nam->sa_family != AF_UNIX)
571 		return (EAFNOSUPPORT);
572 
573 	unp = sotounpcb(so);
574 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
575 
576 	if (soun->sun_len > sizeof(struct sockaddr_un))
577 		return (EINVAL);
578 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
579 	if (namelen <= 0)
580 		return (EINVAL);
581 
582 	/*
583 	 * We don't allow simultaneous bind() calls on a single UNIX domain
584 	 * socket, so flag in-progress operations, and return an error if an
585 	 * operation is already in progress.
586 	 *
587 	 * Historically, we have not allowed a socket to be rebound, so this
588 	 * also returns an error.  Not allowing re-binding simplifies the
589 	 * implementation and avoids a great many possible failure modes.
590 	 */
591 	UNP_PCB_LOCK(unp);
592 	if (unp->unp_vnode != NULL) {
593 		UNP_PCB_UNLOCK(unp);
594 		return (EINVAL);
595 	}
596 	if (unp->unp_flags & UNP_BINDING) {
597 		UNP_PCB_UNLOCK(unp);
598 		return (EALREADY);
599 	}
600 	unp->unp_flags |= UNP_BINDING;
601 	UNP_PCB_UNLOCK(unp);
602 
603 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
604 	bcopy(soun->sun_path, buf, namelen);
605 	buf[namelen] = 0;
606 
607 restart:
608 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
609 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
610 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
611 	error = namei(&nd);
612 	if (error)
613 		goto error;
614 	vp = nd.ni_vp;
615 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
616 		NDFREE(&nd, NDF_ONLY_PNBUF);
617 		if (nd.ni_dvp == vp)
618 			vrele(nd.ni_dvp);
619 		else
620 			vput(nd.ni_dvp);
621 		if (vp != NULL) {
622 			vrele(vp);
623 			error = EADDRINUSE;
624 			goto error;
625 		}
626 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
627 		if (error)
628 			goto error;
629 		goto restart;
630 	}
631 	VATTR_NULL(&vattr);
632 	vattr.va_type = VSOCK;
633 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
634 #ifdef MAC
635 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
636 	    &vattr);
637 #endif
638 	if (error == 0)
639 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
640 	NDFREE(&nd, NDF_ONLY_PNBUF);
641 	vput(nd.ni_dvp);
642 	if (error) {
643 		vn_finished_write(mp);
644 		goto error;
645 	}
646 	vp = nd.ni_vp;
647 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
648 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
649 
650 	UNP_PCB_LOCK(unp);
651 	VOP_UNP_BIND(vp, unp);
652 	unp->unp_vnode = vp;
653 	unp->unp_addr = soun;
654 	unp->unp_flags &= ~UNP_BINDING;
655 	UNP_PCB_UNLOCK(unp);
656 	VOP_UNLOCK(vp, 0);
657 	vn_finished_write(mp);
658 	free(buf, M_TEMP);
659 	return (0);
660 
661 error:
662 	UNP_PCB_LOCK(unp);
663 	unp->unp_flags &= ~UNP_BINDING;
664 	UNP_PCB_UNLOCK(unp);
665 	free(buf, M_TEMP);
666 	return (error);
667 }
668 
669 static int
670 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
671 {
672 
673 	return (uipc_bindat(AT_FDCWD, so, nam, td));
674 }
675 
676 static int
677 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
678 {
679 	int error;
680 
681 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
682 	error = unp_connect(so, nam, td);
683 	return (error);
684 }
685 
686 static int
687 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
688     struct thread *td)
689 {
690 	int error;
691 
692 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
693 	error = unp_connectat(fd, so, nam, td);
694 	return (error);
695 }
696 
697 static void
698 uipc_close(struct socket *so)
699 {
700 	struct unpcb *unp, *unp2;
701 	struct vnode *vp = NULL;
702 	struct mtx *vplock;
703 	int freed;
704 	unp = sotounpcb(so);
705 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
706 
707 
708 	vplock = NULL;
709 	if ((vp = unp->unp_vnode) != NULL) {
710 		vplock = mtx_pool_find(mtxpool_sleep, vp);
711 		mtx_lock(vplock);
712 	}
713 	UNP_PCB_LOCK(unp);
714 	if (vp && unp->unp_vnode == NULL) {
715 		mtx_unlock(vplock);
716 		vp = NULL;
717 	}
718 	if (vp != NULL) {
719 		VOP_UNP_DETACH(vp);
720 		unp->unp_vnode = NULL;
721 	}
722 	unp2 = unp->unp_conn;
723 	unp_pcb_hold(unp);
724 	if (__predict_false(unp == unp2)) {
725 		unp_disconnect(unp, unp2);
726 	} else if (unp2 != NULL) {
727 		unp_pcb_hold(unp2);
728 		unp_pcb_owned_lock2(unp, unp2, freed);
729 		unp_disconnect(unp, unp2);
730 		if (unp_pcb_rele(unp2) == 0)
731 			UNP_PCB_UNLOCK(unp2);
732 	}
733 	if (unp_pcb_rele(unp) == 0)
734 		UNP_PCB_UNLOCK(unp);
735 	if (vp) {
736 		mtx_unlock(vplock);
737 		vrele(vp);
738 	}
739 }
740 
741 static int
742 uipc_connect2(struct socket *so1, struct socket *so2)
743 {
744 	struct unpcb *unp, *unp2;
745 	int error;
746 
747 	unp = so1->so_pcb;
748 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
749 	unp2 = so2->so_pcb;
750 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
751 	if (unp != unp2)
752 		unp_pcb_lock2(unp, unp2);
753 	else
754 		UNP_PCB_LOCK(unp);
755 	error = unp_connect2(so1, so2, PRU_CONNECT2);
756 	if (unp != unp2)
757 		UNP_PCB_UNLOCK(unp2);
758 	UNP_PCB_UNLOCK(unp);
759 	return (error);
760 }
761 
762 static void
763 uipc_detach(struct socket *so)
764 {
765 	struct unpcb *unp, *unp2;
766 	struct mtx *vplock;
767 	struct sockaddr_un *saved_unp_addr;
768 	struct vnode *vp;
769 	int freeunp, local_unp_rights;
770 
771 	unp = sotounpcb(so);
772 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
773 
774 	vp = NULL;
775 	vplock = NULL;
776 	local_unp_rights = 0;
777 
778 	UNP_LINK_WLOCK();
779 	LIST_REMOVE(unp, unp_link);
780 	unp->unp_gencnt = ++unp_gencnt;
781 	--unp_count;
782 	UNP_LINK_WUNLOCK();
783 
784 	UNP_PCB_UNLOCK_ASSERT(unp);
785  restart:
786 	if ((vp = unp->unp_vnode) != NULL) {
787 		vplock = mtx_pool_find(mtxpool_sleep, vp);
788 		mtx_lock(vplock);
789 	}
790 	UNP_PCB_LOCK(unp);
791 	if (unp->unp_vnode != vp &&
792 		unp->unp_vnode != NULL) {
793 		if (vplock)
794 			mtx_unlock(vplock);
795 		UNP_PCB_UNLOCK(unp);
796 		goto restart;
797 	}
798 	if ((unp->unp_flags & UNP_NASCENT) != 0) {
799 		goto teardown;
800 	}
801 	if ((vp = unp->unp_vnode) != NULL) {
802 		VOP_UNP_DETACH(vp);
803 		unp->unp_vnode = NULL;
804 	}
805 	if (__predict_false(unp == unp->unp_conn)) {
806 		unp_disconnect(unp, unp);
807 		unp2 = NULL;
808 		goto connect_self;
809 	}
810 	if ((unp2 = unp->unp_conn) != NULL) {
811 		unp_pcb_owned_lock2(unp, unp2, freeunp);
812 		if (freeunp)
813 			unp2 = NULL;
814 	}
815 	unp_pcb_hold(unp);
816 	if (unp2 != NULL) {
817 		unp_pcb_hold(unp2);
818 		unp_disconnect(unp, unp2);
819 		if (unp_pcb_rele(unp2) == 0)
820 			UNP_PCB_UNLOCK(unp2);
821 	}
822  connect_self:
823 	UNP_PCB_UNLOCK(unp);
824 	UNP_REF_LIST_LOCK();
825 	while (!LIST_EMPTY(&unp->unp_refs)) {
826 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
827 
828 		unp_pcb_hold(ref);
829 		UNP_REF_LIST_UNLOCK();
830 
831 		MPASS(ref != unp);
832 		UNP_PCB_UNLOCK_ASSERT(ref);
833 		unp_drop(ref);
834 		UNP_REF_LIST_LOCK();
835 	}
836 
837 	UNP_REF_LIST_UNLOCK();
838 	UNP_PCB_LOCK(unp);
839 	freeunp = unp_pcb_rele(unp);
840 	MPASS(freeunp == 0);
841 	local_unp_rights = unp_rights;
842 teardown:
843 	unp->unp_socket->so_pcb = NULL;
844 	saved_unp_addr = unp->unp_addr;
845 	unp->unp_addr = NULL;
846 	unp->unp_socket = NULL;
847 	freeunp = unp_pcb_rele(unp);
848 	if (saved_unp_addr != NULL)
849 		free(saved_unp_addr, M_SONAME);
850 	if (!freeunp)
851 		UNP_PCB_UNLOCK(unp);
852 	if (vp) {
853 		mtx_unlock(vplock);
854 		vrele(vp);
855 	}
856 	if (local_unp_rights)
857 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
858 }
859 
860 static int
861 uipc_disconnect(struct socket *so)
862 {
863 	struct unpcb *unp, *unp2;
864 	int freed;
865 
866 	unp = sotounpcb(so);
867 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
868 
869 	UNP_PCB_LOCK(unp);
870 	if ((unp2 = unp->unp_conn) == NULL) {
871 		UNP_PCB_UNLOCK(unp);
872 		return (0);
873 	}
874 	if (__predict_true(unp != unp2)) {
875 		unp_pcb_owned_lock2(unp, unp2, freed);
876 		if (__predict_false(freed)) {
877 			UNP_PCB_UNLOCK(unp);
878 			return (0);
879 		}
880 		unp_pcb_hold(unp2);
881 	}
882 	unp_pcb_hold(unp);
883 	unp_disconnect(unp, unp2);
884 	if (unp_pcb_rele(unp) == 0)
885 		UNP_PCB_UNLOCK(unp);
886 	if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
887 		UNP_PCB_UNLOCK(unp2);
888 	return (0);
889 }
890 
891 static int
892 uipc_listen(struct socket *so, int backlog, struct thread *td)
893 {
894 	struct unpcb *unp;
895 	int error;
896 
897 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
898 		return (EOPNOTSUPP);
899 
900 	unp = sotounpcb(so);
901 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
902 
903 	UNP_PCB_LOCK(unp);
904 	if (unp->unp_vnode == NULL) {
905 		/* Already connected or not bound to an address. */
906 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
907 		UNP_PCB_UNLOCK(unp);
908 		return (error);
909 	}
910 
911 	SOCK_LOCK(so);
912 	error = solisten_proto_check(so);
913 	if (error == 0) {
914 		cru2x(td->td_ucred, &unp->unp_peercred);
915 		solisten_proto(so, backlog);
916 	}
917 	SOCK_UNLOCK(so);
918 	UNP_PCB_UNLOCK(unp);
919 	return (error);
920 }
921 
922 static int
923 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
924 {
925 	struct unpcb *unp, *unp2;
926 	const struct sockaddr *sa;
927 
928 	unp = sotounpcb(so);
929 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
930 
931 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
932 	UNP_LINK_RLOCK();
933 	/*
934 	 * XXX: It seems that this test always fails even when connection is
935 	 * established.  So, this else clause is added as workaround to
936 	 * return PF_LOCAL sockaddr.
937 	 */
938 	unp2 = unp->unp_conn;
939 	if (unp2 != NULL) {
940 		UNP_PCB_LOCK(unp2);
941 		if (unp2->unp_addr != NULL)
942 			sa = (struct sockaddr *) unp2->unp_addr;
943 		else
944 			sa = &sun_noname;
945 		bcopy(sa, *nam, sa->sa_len);
946 		UNP_PCB_UNLOCK(unp2);
947 	} else {
948 		sa = &sun_noname;
949 		bcopy(sa, *nam, sa->sa_len);
950 	}
951 	UNP_LINK_RUNLOCK();
952 	return (0);
953 }
954 
955 static int
956 uipc_rcvd(struct socket *so, int flags)
957 {
958 	struct unpcb *unp, *unp2;
959 	struct socket *so2;
960 	u_int mbcnt, sbcc;
961 
962 	unp = sotounpcb(so);
963 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
964 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
965 	    ("%s: socktype %d", __func__, so->so_type));
966 
967 	/*
968 	 * Adjust backpressure on sender and wakeup any waiting to write.
969 	 *
970 	 * The unp lock is acquired to maintain the validity of the unp_conn
971 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
972 	 * static as long as we don't permit unp2 to disconnect from unp,
973 	 * which is prevented by the lock on unp.  We cache values from
974 	 * so_rcv to avoid holding the so_rcv lock over the entire
975 	 * transaction on the remote so_snd.
976 	 */
977 	SOCKBUF_LOCK(&so->so_rcv);
978 	mbcnt = so->so_rcv.sb_mbcnt;
979 	sbcc = sbavail(&so->so_rcv);
980 	SOCKBUF_UNLOCK(&so->so_rcv);
981 	/*
982 	 * There is a benign race condition at this point.  If we're planning to
983 	 * clear SB_STOP, but uipc_send is called on the connected socket at
984 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
985 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
986 	 * full.  The race is benign because the only ill effect is to allow the
987 	 * sockbuf to exceed its size limit, and the size limits are not
988 	 * strictly guaranteed anyway.
989 	 */
990 	UNP_PCB_LOCK(unp);
991 	unp2 = unp->unp_conn;
992 	if (unp2 == NULL) {
993 		UNP_PCB_UNLOCK(unp);
994 		return (0);
995 	}
996 	so2 = unp2->unp_socket;
997 	SOCKBUF_LOCK(&so2->so_snd);
998 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
999 		so2->so_snd.sb_flags &= ~SB_STOP;
1000 	sowwakeup_locked(so2);
1001 	UNP_PCB_UNLOCK(unp);
1002 	return (0);
1003 }
1004 
1005 static int
1006 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
1007 {
1008 	int error;
1009 	struct unpcb *unp;
1010 
1011 	unp = so->so_pcb;
1012 	if (unp->unp_conn != NULL)
1013 		return (EISCONN);
1014 	error = unp_connect(so, nam, td);
1015 	if (error)
1016 		return (error);
1017 	UNP_PCB_LOCK(unp);
1018 	if (unp->unp_conn == NULL) {
1019 		UNP_PCB_UNLOCK(unp);
1020 		if (error == 0)
1021 			error = ENOTCONN;
1022 	}
1023 	return (error);
1024 }
1025 
1026 
1027 static int
1028 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1029     struct mbuf *control, struct thread *td)
1030 {
1031 	struct unpcb *unp, *unp2;
1032 	struct socket *so2;
1033 	u_int mbcnt, sbcc;
1034 	int freed, error;
1035 
1036 	unp = sotounpcb(so);
1037 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1038 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1039 	    so->so_type == SOCK_SEQPACKET,
1040 	    ("%s: socktype %d", __func__, so->so_type));
1041 
1042 	freed = error = 0;
1043 	if (flags & PRUS_OOB) {
1044 		error = EOPNOTSUPP;
1045 		goto release;
1046 	}
1047 	if (control != NULL && (error = unp_internalize(&control, td)))
1048 		goto release;
1049 
1050 	unp2 = NULL;
1051 	switch (so->so_type) {
1052 	case SOCK_DGRAM:
1053 	{
1054 		const struct sockaddr *from;
1055 
1056 		if (nam != NULL) {
1057 			/*
1058 			 * We return with UNP_PCB_LOCK_HELD so we know that
1059 			 * the reference is live if the pointer is valid.
1060 			 */
1061 			if ((error = connect_internal(so, nam, td)))
1062 				break;
1063 			MPASS(unp->unp_conn != NULL);
1064 			unp2 = unp->unp_conn;
1065 		} else  {
1066 			UNP_PCB_LOCK(unp);
1067 
1068 			/*
1069 			 * Because connect() and send() are non-atomic in a sendto()
1070 			 * with a target address, it's possible that the socket will
1071 			 * have disconnected before the send() can run.  In that case
1072 			 * return the slightly counter-intuitive but otherwise
1073 			 * correct error that the socket is not connected.
1074 			 */
1075 			if ((unp2 = unp->unp_conn)  == NULL) {
1076 				UNP_PCB_UNLOCK(unp);
1077 				error = ENOTCONN;
1078 				break;
1079 			}
1080 		}
1081 		if (__predict_false(unp == unp2)) {
1082 			if (unp->unp_socket == NULL) {
1083 				error = ENOTCONN;
1084 				break;
1085 			}
1086 			goto connect_self;
1087 		}
1088 		unp_pcb_owned_lock2(unp, unp2, freed);
1089 		if (__predict_false(freed)) {
1090 			UNP_PCB_UNLOCK(unp);
1091 			error = ENOTCONN;
1092 			break;
1093 		}
1094 		/*
1095 		 * The socket referencing unp2 may have been closed
1096 		 * or unp may have been disconnected if the unp lock
1097 		 * was dropped to acquire unp2.
1098 		 */
1099 		if (__predict_false(unp->unp_conn == NULL) ||
1100 			unp2->unp_socket == NULL) {
1101 			UNP_PCB_UNLOCK(unp);
1102 			if (unp_pcb_rele(unp2) == 0)
1103 				UNP_PCB_UNLOCK(unp2);
1104 			error = ENOTCONN;
1105 			break;
1106 		}
1107 	connect_self:
1108 		if (unp2->unp_flags & UNP_WANTCRED)
1109 			control = unp_addsockcred(td, control);
1110 		if (unp->unp_addr != NULL)
1111 			from = (struct sockaddr *)unp->unp_addr;
1112 		else
1113 			from = &sun_noname;
1114 		so2 = unp2->unp_socket;
1115 		SOCKBUF_LOCK(&so2->so_rcv);
1116 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1117 		    control)) {
1118 			sorwakeup_locked(so2);
1119 			m = NULL;
1120 			control = NULL;
1121 		} else {
1122 			SOCKBUF_UNLOCK(&so2->so_rcv);
1123 			error = ENOBUFS;
1124 		}
1125 		if (nam != NULL)
1126 			unp_disconnect(unp, unp2);
1127 		if (__predict_true(unp != unp2))
1128 			UNP_PCB_UNLOCK(unp2);
1129 		UNP_PCB_UNLOCK(unp);
1130 		break;
1131 	}
1132 
1133 	case SOCK_SEQPACKET:
1134 	case SOCK_STREAM:
1135 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1136 			if (nam != NULL) {
1137 				if ((error = connect_internal(so, nam, td)))
1138 					break;
1139 			} else  {
1140 				error = ENOTCONN;
1141 				break;
1142 			}
1143 		} else if ((unp2 = unp->unp_conn) == NULL) {
1144 			error = ENOTCONN;
1145 			break;
1146 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1147 			error = EPIPE;
1148 			break;
1149 		} else {
1150 			UNP_PCB_LOCK(unp);
1151 			if ((unp2 = unp->unp_conn) == NULL) {
1152 				UNP_PCB_UNLOCK(unp);
1153 				error = ENOTCONN;
1154 				break;
1155 			}
1156 		}
1157 		unp_pcb_owned_lock2(unp, unp2, freed);
1158 		UNP_PCB_UNLOCK(unp);
1159 		if (__predict_false(freed)) {
1160 			error = ENOTCONN;
1161 			break;
1162 		}
1163 		if ((so2 = unp2->unp_socket) == NULL) {
1164 			UNP_PCB_UNLOCK(unp2);
1165 			error = ENOTCONN;
1166 			break;
1167 		}
1168 		SOCKBUF_LOCK(&so2->so_rcv);
1169 		if (unp2->unp_flags & UNP_WANTCRED) {
1170 			/*
1171 			 * Credentials are passed only once on SOCK_STREAM
1172 			 * and SOCK_SEQPACKET.
1173 			 */
1174 			unp2->unp_flags &= ~UNP_WANTCRED;
1175 			control = unp_addsockcred(td, control);
1176 		}
1177 
1178 		/*
1179 		 * Send to paired receive port and wake up readers.  Don't
1180 		 * check for space available in the receive buffer if we're
1181 		 * attaching ancillary data; Unix domain sockets only check
1182 		 * for space in the sending sockbuf, and that check is
1183 		 * performed one level up the stack.  At that level we cannot
1184 		 * precisely account for the amount of buffer space used
1185 		 * (e.g., because control messages are not yet internalized).
1186 		 */
1187 		switch (so->so_type) {
1188 		case SOCK_STREAM:
1189 			if (control != NULL) {
1190 				sbappendcontrol_locked(&so2->so_rcv, m,
1191 				    control);
1192 				control = NULL;
1193 			} else
1194 				sbappend_locked(&so2->so_rcv, m, flags);
1195 			break;
1196 
1197 		case SOCK_SEQPACKET: {
1198 			const struct sockaddr *from;
1199 
1200 			from = &sun_noname;
1201 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1202 			    from, m, control))
1203 				control = NULL;
1204 			break;
1205 			}
1206 		}
1207 
1208 		mbcnt = so2->so_rcv.sb_mbcnt;
1209 		sbcc = sbavail(&so2->so_rcv);
1210 		if (sbcc)
1211 			sorwakeup_locked(so2);
1212 		else
1213 			SOCKBUF_UNLOCK(&so2->so_rcv);
1214 
1215 		/*
1216 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1217 		 * it would be possible for uipc_rcvd to be called at this
1218 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1219 		 * we would set SB_STOP below.  That could lead to an empty
1220 		 * sockbuf having SB_STOP set
1221 		 */
1222 		SOCKBUF_LOCK(&so->so_snd);
1223 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1224 			so->so_snd.sb_flags |= SB_STOP;
1225 		SOCKBUF_UNLOCK(&so->so_snd);
1226 		UNP_PCB_UNLOCK(unp2);
1227 		m = NULL;
1228 		break;
1229 	}
1230 
1231 	/*
1232 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1233 	 */
1234 	if (flags & PRUS_EOF) {
1235 		UNP_PCB_LOCK(unp);
1236 		socantsendmore(so);
1237 		unp_shutdown(unp);
1238 		UNP_PCB_UNLOCK(unp);
1239 	}
1240 	if (control != NULL && error != 0)
1241 		unp_dispose_mbuf(control);
1242 
1243 release:
1244 	if (control != NULL)
1245 		m_freem(control);
1246 	/*
1247 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1248 	 * for freeing memory.
1249 	 */
1250 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1251 		m_freem(m);
1252 	return (error);
1253 }
1254 
1255 static int
1256 uipc_ready(struct socket *so, struct mbuf *m, int count)
1257 {
1258 	struct unpcb *unp, *unp2;
1259 	struct socket *so2;
1260 	int error;
1261 
1262 	unp = sotounpcb(so);
1263 
1264 	UNP_PCB_LOCK(unp);
1265 	if ((unp2 = unp->unp_conn) == NULL) {
1266 		UNP_PCB_UNLOCK(unp);
1267 		goto error;
1268 	}
1269 	if (unp != unp2) {
1270 		if (UNP_PCB_TRYLOCK(unp2) == 0) {
1271 			unp_pcb_hold(unp2);
1272 			UNP_PCB_UNLOCK(unp);
1273 			UNP_PCB_LOCK(unp2);
1274 			if (unp_pcb_rele(unp2))
1275 				goto error;
1276 		} else
1277 			UNP_PCB_UNLOCK(unp);
1278 	}
1279 	so2 = unp2->unp_socket;
1280 
1281 	SOCKBUF_LOCK(&so2->so_rcv);
1282 	if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1283 		sorwakeup_locked(so2);
1284 	else
1285 		SOCKBUF_UNLOCK(&so2->so_rcv);
1286 
1287 	UNP_PCB_UNLOCK(unp2);
1288 
1289 	return (error);
1290  error:
1291 	for (int i = 0; i < count; i++)
1292 		m = m_free(m);
1293 	return (ECONNRESET);
1294 }
1295 
1296 static int
1297 uipc_sense(struct socket *so, struct stat *sb)
1298 {
1299 	struct unpcb *unp;
1300 
1301 	unp = sotounpcb(so);
1302 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1303 
1304 	sb->st_blksize = so->so_snd.sb_hiwat;
1305 	UNP_PCB_LOCK(unp);
1306 	sb->st_dev = NODEV;
1307 	if (unp->unp_ino == 0)
1308 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1309 	sb->st_ino = unp->unp_ino;
1310 	UNP_PCB_UNLOCK(unp);
1311 	return (0);
1312 }
1313 
1314 static int
1315 uipc_shutdown(struct socket *so)
1316 {
1317 	struct unpcb *unp;
1318 
1319 	unp = sotounpcb(so);
1320 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1321 
1322 	UNP_PCB_LOCK(unp);
1323 	socantsendmore(so);
1324 	unp_shutdown(unp);
1325 	UNP_PCB_UNLOCK(unp);
1326 	return (0);
1327 }
1328 
1329 static int
1330 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1331 {
1332 	struct unpcb *unp;
1333 	const struct sockaddr *sa;
1334 
1335 	unp = sotounpcb(so);
1336 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1337 
1338 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1339 	UNP_PCB_LOCK(unp);
1340 	if (unp->unp_addr != NULL)
1341 		sa = (struct sockaddr *) unp->unp_addr;
1342 	else
1343 		sa = &sun_noname;
1344 	bcopy(sa, *nam, sa->sa_len);
1345 	UNP_PCB_UNLOCK(unp);
1346 	return (0);
1347 }
1348 
1349 static struct pr_usrreqs uipc_usrreqs_dgram = {
1350 	.pru_abort = 		uipc_abort,
1351 	.pru_accept =		uipc_accept,
1352 	.pru_attach =		uipc_attach,
1353 	.pru_bind =		uipc_bind,
1354 	.pru_bindat =		uipc_bindat,
1355 	.pru_connect =		uipc_connect,
1356 	.pru_connectat =	uipc_connectat,
1357 	.pru_connect2 =		uipc_connect2,
1358 	.pru_detach =		uipc_detach,
1359 	.pru_disconnect =	uipc_disconnect,
1360 	.pru_listen =		uipc_listen,
1361 	.pru_peeraddr =		uipc_peeraddr,
1362 	.pru_rcvd =		uipc_rcvd,
1363 	.pru_send =		uipc_send,
1364 	.pru_sense =		uipc_sense,
1365 	.pru_shutdown =		uipc_shutdown,
1366 	.pru_sockaddr =		uipc_sockaddr,
1367 	.pru_soreceive =	soreceive_dgram,
1368 	.pru_close =		uipc_close,
1369 };
1370 
1371 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1372 	.pru_abort =		uipc_abort,
1373 	.pru_accept =		uipc_accept,
1374 	.pru_attach =		uipc_attach,
1375 	.pru_bind =		uipc_bind,
1376 	.pru_bindat =		uipc_bindat,
1377 	.pru_connect =		uipc_connect,
1378 	.pru_connectat =	uipc_connectat,
1379 	.pru_connect2 =		uipc_connect2,
1380 	.pru_detach =		uipc_detach,
1381 	.pru_disconnect =	uipc_disconnect,
1382 	.pru_listen =		uipc_listen,
1383 	.pru_peeraddr =		uipc_peeraddr,
1384 	.pru_rcvd =		uipc_rcvd,
1385 	.pru_send =		uipc_send,
1386 	.pru_sense =		uipc_sense,
1387 	.pru_shutdown =		uipc_shutdown,
1388 	.pru_sockaddr =		uipc_sockaddr,
1389 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1390 	.pru_close =		uipc_close,
1391 };
1392 
1393 static struct pr_usrreqs uipc_usrreqs_stream = {
1394 	.pru_abort = 		uipc_abort,
1395 	.pru_accept =		uipc_accept,
1396 	.pru_attach =		uipc_attach,
1397 	.pru_bind =		uipc_bind,
1398 	.pru_bindat =		uipc_bindat,
1399 	.pru_connect =		uipc_connect,
1400 	.pru_connectat =	uipc_connectat,
1401 	.pru_connect2 =		uipc_connect2,
1402 	.pru_detach =		uipc_detach,
1403 	.pru_disconnect =	uipc_disconnect,
1404 	.pru_listen =		uipc_listen,
1405 	.pru_peeraddr =		uipc_peeraddr,
1406 	.pru_rcvd =		uipc_rcvd,
1407 	.pru_send =		uipc_send,
1408 	.pru_ready =		uipc_ready,
1409 	.pru_sense =		uipc_sense,
1410 	.pru_shutdown =		uipc_shutdown,
1411 	.pru_sockaddr =		uipc_sockaddr,
1412 	.pru_soreceive =	soreceive_generic,
1413 	.pru_close =		uipc_close,
1414 };
1415 
1416 static int
1417 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1418 {
1419 	struct unpcb *unp;
1420 	struct xucred xu;
1421 	int error, optval;
1422 
1423 	if (sopt->sopt_level != 0)
1424 		return (EINVAL);
1425 
1426 	unp = sotounpcb(so);
1427 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1428 	error = 0;
1429 	switch (sopt->sopt_dir) {
1430 	case SOPT_GET:
1431 		switch (sopt->sopt_name) {
1432 		case LOCAL_PEERCRED:
1433 			UNP_PCB_LOCK(unp);
1434 			if (unp->unp_flags & UNP_HAVEPC)
1435 				xu = unp->unp_peercred;
1436 			else {
1437 				if (so->so_type == SOCK_STREAM)
1438 					error = ENOTCONN;
1439 				else
1440 					error = EINVAL;
1441 			}
1442 			UNP_PCB_UNLOCK(unp);
1443 			if (error == 0)
1444 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1445 			break;
1446 
1447 		case LOCAL_CREDS:
1448 			/* Unlocked read. */
1449 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1450 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1451 			break;
1452 
1453 		case LOCAL_CONNWAIT:
1454 			/* Unlocked read. */
1455 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1456 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1457 			break;
1458 
1459 		default:
1460 			error = EOPNOTSUPP;
1461 			break;
1462 		}
1463 		break;
1464 
1465 	case SOPT_SET:
1466 		switch (sopt->sopt_name) {
1467 		case LOCAL_CREDS:
1468 		case LOCAL_CONNWAIT:
1469 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1470 					    sizeof(optval));
1471 			if (error)
1472 				break;
1473 
1474 #define	OPTSET(bit) do {						\
1475 	UNP_PCB_LOCK(unp);						\
1476 	if (optval)							\
1477 		unp->unp_flags |= bit;					\
1478 	else								\
1479 		unp->unp_flags &= ~bit;					\
1480 	UNP_PCB_UNLOCK(unp);						\
1481 } while (0)
1482 
1483 			switch (sopt->sopt_name) {
1484 			case LOCAL_CREDS:
1485 				OPTSET(UNP_WANTCRED);
1486 				break;
1487 
1488 			case LOCAL_CONNWAIT:
1489 				OPTSET(UNP_CONNWAIT);
1490 				break;
1491 
1492 			default:
1493 				break;
1494 			}
1495 			break;
1496 #undef	OPTSET
1497 		default:
1498 			error = ENOPROTOOPT;
1499 			break;
1500 		}
1501 		break;
1502 
1503 	default:
1504 		error = EOPNOTSUPP;
1505 		break;
1506 	}
1507 	return (error);
1508 }
1509 
1510 static int
1511 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1512 {
1513 
1514 	return (unp_connectat(AT_FDCWD, so, nam, td));
1515 }
1516 
1517 static int
1518 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1519     struct thread *td)
1520 {
1521 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1522 	struct vnode *vp;
1523 	struct socket *so2;
1524 	struct unpcb *unp, *unp2, *unp3;
1525 	struct nameidata nd;
1526 	char buf[SOCK_MAXADDRLEN];
1527 	struct sockaddr *sa;
1528 	cap_rights_t rights;
1529 	int error, len, freed;
1530 	struct mtx *vplock;
1531 
1532 	if (nam->sa_family != AF_UNIX)
1533 		return (EAFNOSUPPORT);
1534 	if (nam->sa_len > sizeof(struct sockaddr_un))
1535 		return (EINVAL);
1536 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1537 	if (len <= 0)
1538 		return (EINVAL);
1539 	bcopy(soun->sun_path, buf, len);
1540 	buf[len] = 0;
1541 
1542 	unp = sotounpcb(so);
1543 	UNP_PCB_LOCK(unp);
1544 	if (unp->unp_flags & UNP_CONNECTING) {
1545 		UNP_PCB_UNLOCK(unp);
1546 		return (EALREADY);
1547 	}
1548 	unp->unp_flags |= UNP_CONNECTING;
1549 	UNP_PCB_UNLOCK(unp);
1550 
1551 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1552 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1553 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1554 	error = namei(&nd);
1555 	if (error)
1556 		vp = NULL;
1557 	else
1558 		vp = nd.ni_vp;
1559 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1560 	NDFREE(&nd, NDF_ONLY_PNBUF);
1561 	if (error)
1562 		goto bad;
1563 
1564 	if (vp->v_type != VSOCK) {
1565 		error = ENOTSOCK;
1566 		goto bad;
1567 	}
1568 #ifdef MAC
1569 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1570 	if (error)
1571 		goto bad;
1572 #endif
1573 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1574 	if (error)
1575 		goto bad;
1576 
1577 	unp = sotounpcb(so);
1578 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1579 
1580 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1581 	mtx_lock(vplock);
1582 	VOP_UNP_CONNECT(vp, &unp2);
1583 	if (unp2 == NULL) {
1584 		error = ECONNREFUSED;
1585 		goto bad2;
1586 	}
1587 	so2 = unp2->unp_socket;
1588 	if (so->so_type != so2->so_type) {
1589 		error = EPROTOTYPE;
1590 		goto bad2;
1591 	}
1592 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1593 		if (so2->so_options & SO_ACCEPTCONN) {
1594 			CURVNET_SET(so2->so_vnet);
1595 			so2 = sonewconn(so2, 0);
1596 			CURVNET_RESTORE();
1597 		} else
1598 			so2 = NULL;
1599 		if (so2 == NULL) {
1600 			error = ECONNREFUSED;
1601 			goto bad2;
1602 		}
1603 		unp3 = sotounpcb(so2);
1604 		unp_pcb_lock2(unp2, unp3);
1605 		if (unp2->unp_addr != NULL) {
1606 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1607 			unp3->unp_addr = (struct sockaddr_un *) sa;
1608 			sa = NULL;
1609 		}
1610 
1611 		unp_copy_peercred(td, unp3, unp, unp2);
1612 
1613 		UNP_PCB_UNLOCK(unp2);
1614 		unp2 = unp3;
1615 		unp_pcb_owned_lock2(unp2, unp, freed);
1616 		if (__predict_false(freed)) {
1617 			UNP_PCB_UNLOCK(unp2);
1618 			error = ECONNREFUSED;
1619 			goto bad2;
1620 		}
1621 #ifdef MAC
1622 		mac_socketpeer_set_from_socket(so, so2);
1623 		mac_socketpeer_set_from_socket(so2, so);
1624 #endif
1625 	} else {
1626 		if (unp == unp2)
1627 			UNP_PCB_LOCK(unp);
1628 		else
1629 			unp_pcb_lock2(unp, unp2);
1630 	}
1631 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1632 	    sotounpcb(so2) == unp2,
1633 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1634 	error = unp_connect2(so, so2, PRU_CONNECT);
1635 	if (unp != unp2)
1636 		UNP_PCB_UNLOCK(unp2);
1637 	UNP_PCB_UNLOCK(unp);
1638 bad2:
1639 	mtx_unlock(vplock);
1640 bad:
1641 	if (vp != NULL) {
1642 		vput(vp);
1643 	}
1644 	free(sa, M_SONAME);
1645 	UNP_PCB_LOCK(unp);
1646 	unp->unp_flags &= ~UNP_CONNECTING;
1647 	UNP_PCB_UNLOCK(unp);
1648 	return (error);
1649 }
1650 
1651 /*
1652  * Set socket peer credentials at connection time.
1653  *
1654  * The client's PCB credentials are copied from its process structure.  The
1655  * server's PCB credentials are copied from the socket on which it called
1656  * listen(2).  uipc_listen cached that process's credentials at the time.
1657  */
1658 void
1659 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1660     struct unpcb *server_unp, struct unpcb *listen_unp)
1661 {
1662 	cru2x(td->td_ucred, &client_unp->unp_peercred);
1663 	client_unp->unp_flags |= UNP_HAVEPC;
1664 
1665 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1666 	    sizeof(server_unp->unp_peercred));
1667 	server_unp->unp_flags |= UNP_HAVEPC;
1668 	if (listen_unp->unp_flags & UNP_WANTCRED)
1669 		client_unp->unp_flags |= UNP_WANTCRED;
1670 }
1671 
1672 static int
1673 unp_connect2(struct socket *so, struct socket *so2, int req)
1674 {
1675 	struct unpcb *unp;
1676 	struct unpcb *unp2;
1677 
1678 	unp = sotounpcb(so);
1679 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1680 	unp2 = sotounpcb(so2);
1681 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1682 
1683 	UNP_PCB_LOCK_ASSERT(unp);
1684 	UNP_PCB_LOCK_ASSERT(unp2);
1685 
1686 	if (so2->so_type != so->so_type)
1687 		return (EPROTOTYPE);
1688 	unp2->unp_flags &= ~UNP_NASCENT;
1689 	unp->unp_conn = unp2;
1690 	unp_pcb_hold(unp2);
1691 	unp_pcb_hold(unp);
1692 	switch (so->so_type) {
1693 	case SOCK_DGRAM:
1694 		UNP_REF_LIST_LOCK();
1695 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1696 		UNP_REF_LIST_UNLOCK();
1697 		soisconnected(so);
1698 		break;
1699 
1700 	case SOCK_STREAM:
1701 	case SOCK_SEQPACKET:
1702 		unp2->unp_conn = unp;
1703 		if (req == PRU_CONNECT &&
1704 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1705 			soisconnecting(so);
1706 		else
1707 			soisconnected(so);
1708 		soisconnected(so2);
1709 		break;
1710 
1711 	default:
1712 		panic("unp_connect2");
1713 	}
1714 	return (0);
1715 }
1716 
1717 static void
1718 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1719 {
1720 	struct socket *so, *so2;
1721 	int freed __unused;
1722 
1723 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1724 
1725 	UNP_PCB_LOCK_ASSERT(unp);
1726 	UNP_PCB_LOCK_ASSERT(unp2);
1727 
1728 	if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1729 		return;
1730 
1731 	MPASS(unp->unp_conn == unp2);
1732 	unp->unp_conn = NULL;
1733 	so = unp->unp_socket;
1734 	so2 = unp2->unp_socket;
1735 	switch (unp->unp_socket->so_type) {
1736 	case SOCK_DGRAM:
1737 		UNP_REF_LIST_LOCK();
1738 		LIST_REMOVE(unp, unp_reflink);
1739 		UNP_REF_LIST_UNLOCK();
1740 		if (so) {
1741 			SOCK_LOCK(so);
1742 			so->so_state &= ~SS_ISCONNECTED;
1743 			SOCK_UNLOCK(so);
1744 		}
1745 		break;
1746 
1747 	case SOCK_STREAM:
1748 	case SOCK_SEQPACKET:
1749 		if (so)
1750 			soisdisconnected(so);
1751 		MPASS(unp2->unp_conn == unp);
1752 		unp2->unp_conn = NULL;
1753 		if (so2)
1754 			soisdisconnected(so2);
1755 		break;
1756 	}
1757 	freed = unp_pcb_rele(unp);
1758 	MPASS(freed == 0);
1759 	freed = unp_pcb_rele(unp2);
1760 	MPASS(freed == 0);
1761 }
1762 
1763 /*
1764  * unp_pcblist() walks the global list of struct unpcb's to generate a
1765  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1766  * sequentially, validating the generation number on each to see if it has
1767  * been detached.  All of this is necessary because copyout() may sleep on
1768  * disk I/O.
1769  */
1770 static int
1771 unp_pcblist(SYSCTL_HANDLER_ARGS)
1772 {
1773 	struct unpcb *unp, **unp_list;
1774 	unp_gen_t gencnt;
1775 	struct xunpgen *xug;
1776 	struct unp_head *head;
1777 	struct xunpcb *xu;
1778 	u_int i;
1779 	int error, freeunp, n;
1780 
1781 	switch ((intptr_t)arg1) {
1782 	case SOCK_STREAM:
1783 		head = &unp_shead;
1784 		break;
1785 
1786 	case SOCK_DGRAM:
1787 		head = &unp_dhead;
1788 		break;
1789 
1790 	case SOCK_SEQPACKET:
1791 		head = &unp_sphead;
1792 		break;
1793 
1794 	default:
1795 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1796 	}
1797 
1798 	/*
1799 	 * The process of preparing the PCB list is too time-consuming and
1800 	 * resource-intensive to repeat twice on every request.
1801 	 */
1802 	if (req->oldptr == NULL) {
1803 		n = unp_count;
1804 		req->oldidx = 2 * (sizeof *xug)
1805 			+ (n + n/8) * sizeof(struct xunpcb);
1806 		return (0);
1807 	}
1808 
1809 	if (req->newptr != NULL)
1810 		return (EPERM);
1811 
1812 	/*
1813 	 * OK, now we're committed to doing something.
1814 	 */
1815 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1816 	UNP_LINK_RLOCK();
1817 	gencnt = unp_gencnt;
1818 	n = unp_count;
1819 	UNP_LINK_RUNLOCK();
1820 
1821 	xug->xug_len = sizeof *xug;
1822 	xug->xug_count = n;
1823 	xug->xug_gen = gencnt;
1824 	xug->xug_sogen = so_gencnt;
1825 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1826 	if (error) {
1827 		free(xug, M_TEMP);
1828 		return (error);
1829 	}
1830 
1831 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1832 
1833 	UNP_LINK_RLOCK();
1834 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1835 	     unp = LIST_NEXT(unp, unp_link)) {
1836 		UNP_PCB_LOCK(unp);
1837 		if (unp->unp_gencnt <= gencnt) {
1838 			if (cr_cansee(req->td->td_ucred,
1839 			    unp->unp_socket->so_cred)) {
1840 				UNP_PCB_UNLOCK(unp);
1841 				continue;
1842 			}
1843 			unp_list[i++] = unp;
1844 			unp_pcb_hold(unp);
1845 		}
1846 		UNP_PCB_UNLOCK(unp);
1847 	}
1848 	UNP_LINK_RUNLOCK();
1849 	n = i;			/* In case we lost some during malloc. */
1850 
1851 	error = 0;
1852 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1853 	for (i = 0; i < n; i++) {
1854 		unp = unp_list[i];
1855 		UNP_PCB_LOCK(unp);
1856 		freeunp = unp_pcb_rele(unp);
1857 
1858 		if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1859 			xu->xu_len = sizeof *xu;
1860 			xu->xu_unpp = (uintptr_t)unp;
1861 			/*
1862 			 * XXX - need more locking here to protect against
1863 			 * connect/disconnect races for SMP.
1864 			 */
1865 			if (unp->unp_addr != NULL)
1866 				bcopy(unp->unp_addr, &xu->xu_addr,
1867 				      unp->unp_addr->sun_len);
1868 			else
1869 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1870 			if (unp->unp_conn != NULL &&
1871 			    unp->unp_conn->unp_addr != NULL)
1872 				bcopy(unp->unp_conn->unp_addr,
1873 				      &xu->xu_caddr,
1874 				      unp->unp_conn->unp_addr->sun_len);
1875 			else
1876 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1877 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1878 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1879 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1880 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1881 			xu->unp_gencnt = unp->unp_gencnt;
1882 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1883 			UNP_PCB_UNLOCK(unp);
1884 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1885 		} else  if (freeunp == 0)
1886 			UNP_PCB_UNLOCK(unp);
1887 	}
1888 	free(xu, M_TEMP);
1889 	if (!error) {
1890 		/*
1891 		 * Give the user an updated idea of our state.  If the
1892 		 * generation differs from what we told her before, she knows
1893 		 * that something happened while we were processing this
1894 		 * request, and it might be necessary to retry.
1895 		 */
1896 		xug->xug_gen = unp_gencnt;
1897 		xug->xug_sogen = so_gencnt;
1898 		xug->xug_count = unp_count;
1899 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1900 	}
1901 	free(unp_list, M_TEMP);
1902 	free(xug, M_TEMP);
1903 	return (error);
1904 }
1905 
1906 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1907     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1908     "List of active local datagram sockets");
1909 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1910     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1911     "List of active local stream sockets");
1912 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1913     CTLTYPE_OPAQUE | CTLFLAG_RD,
1914     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1915     "List of active local seqpacket sockets");
1916 
1917 static void
1918 unp_shutdown(struct unpcb *unp)
1919 {
1920 	struct unpcb *unp2;
1921 	struct socket *so;
1922 
1923 	UNP_PCB_LOCK_ASSERT(unp);
1924 
1925 	unp2 = unp->unp_conn;
1926 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1927 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1928 		so = unp2->unp_socket;
1929 		if (so != NULL)
1930 			socantrcvmore(so);
1931 	}
1932 }
1933 
1934 static void
1935 unp_drop(struct unpcb *unp)
1936 {
1937 	struct socket *so = unp->unp_socket;
1938 	struct unpcb *unp2;
1939 	int freed;
1940 
1941 	/*
1942 	 * Regardless of whether the socket's peer dropped the connection
1943 	 * with this socket by aborting or disconnecting, POSIX requires
1944 	 * that ECONNRESET is returned.
1945 	 */
1946 	/* acquire a reference so that unp isn't freed from underneath us */
1947 
1948 	UNP_PCB_LOCK(unp);
1949 	if (so)
1950 		so->so_error = ECONNRESET;
1951 	unp2 = unp->unp_conn;
1952 	if (unp2 == unp) {
1953 		unp_disconnect(unp, unp2);
1954 	} else if (unp2 != NULL) {
1955 		unp_pcb_hold(unp2);
1956 		unp_pcb_owned_lock2(unp, unp2, freed);
1957 		unp_disconnect(unp, unp2);
1958 		if (unp_pcb_rele(unp2) == 0)
1959 			UNP_PCB_UNLOCK(unp2);
1960 	}
1961 	if (unp_pcb_rele(unp) == 0)
1962 		UNP_PCB_UNLOCK(unp);
1963 }
1964 
1965 static void
1966 unp_freerights(struct filedescent **fdep, int fdcount)
1967 {
1968 	struct file *fp;
1969 	int i;
1970 
1971 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1972 
1973 	for (i = 0; i < fdcount; i++) {
1974 		fp = fdep[i]->fde_file;
1975 		filecaps_free(&fdep[i]->fde_caps);
1976 		unp_discard(fp);
1977 	}
1978 	free(fdep[0], M_FILECAPS);
1979 }
1980 
1981 static int
1982 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1983 {
1984 	struct thread *td = curthread;		/* XXX */
1985 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1986 	int i;
1987 	int *fdp;
1988 	struct filedesc *fdesc = td->td_proc->p_fd;
1989 	struct filedescent **fdep;
1990 	void *data;
1991 	socklen_t clen = control->m_len, datalen;
1992 	int error, newfds;
1993 	u_int newlen;
1994 
1995 	UNP_LINK_UNLOCK_ASSERT();
1996 
1997 	error = 0;
1998 	if (controlp != NULL) /* controlp == NULL => free control messages */
1999 		*controlp = NULL;
2000 	while (cm != NULL) {
2001 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2002 			error = EINVAL;
2003 			break;
2004 		}
2005 		data = CMSG_DATA(cm);
2006 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2007 		if (cm->cmsg_level == SOL_SOCKET
2008 		    && cm->cmsg_type == SCM_RIGHTS) {
2009 			newfds = datalen / sizeof(*fdep);
2010 			if (newfds == 0)
2011 				goto next;
2012 			fdep = data;
2013 
2014 			/* If we're not outputting the descriptors free them. */
2015 			if (error || controlp == NULL) {
2016 				unp_freerights(fdep, newfds);
2017 				goto next;
2018 			}
2019 			FILEDESC_XLOCK(fdesc);
2020 
2021 			/*
2022 			 * Now change each pointer to an fd in the global
2023 			 * table to an integer that is the index to the local
2024 			 * fd table entry that we set up to point to the
2025 			 * global one we are transferring.
2026 			 */
2027 			newlen = newfds * sizeof(int);
2028 			*controlp = sbcreatecontrol(NULL, newlen,
2029 			    SCM_RIGHTS, SOL_SOCKET);
2030 			if (*controlp == NULL) {
2031 				FILEDESC_XUNLOCK(fdesc);
2032 				error = E2BIG;
2033 				unp_freerights(fdep, newfds);
2034 				goto next;
2035 			}
2036 
2037 			fdp = (int *)
2038 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2039 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2040 				FILEDESC_XUNLOCK(fdesc);
2041 				error = EMSGSIZE;
2042 				unp_freerights(fdep, newfds);
2043 				m_freem(*controlp);
2044 				*controlp = NULL;
2045 				goto next;
2046 			}
2047 			for (i = 0; i < newfds; i++, fdp++) {
2048 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2049 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2050 				    &fdep[i]->fde_caps);
2051 				unp_externalize_fp(fdep[i]->fde_file);
2052 			}
2053 
2054 			/*
2055 			 * The new type indicates that the mbuf data refers to
2056 			 * kernel resources that may need to be released before
2057 			 * the mbuf is freed.
2058 			 */
2059 			m_chtype(*controlp, MT_EXTCONTROL);
2060 			FILEDESC_XUNLOCK(fdesc);
2061 			free(fdep[0], M_FILECAPS);
2062 		} else {
2063 			/* We can just copy anything else across. */
2064 			if (error || controlp == NULL)
2065 				goto next;
2066 			*controlp = sbcreatecontrol(NULL, datalen,
2067 			    cm->cmsg_type, cm->cmsg_level);
2068 			if (*controlp == NULL) {
2069 				error = ENOBUFS;
2070 				goto next;
2071 			}
2072 			bcopy(data,
2073 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2074 			    datalen);
2075 		}
2076 		controlp = &(*controlp)->m_next;
2077 
2078 next:
2079 		if (CMSG_SPACE(datalen) < clen) {
2080 			clen -= CMSG_SPACE(datalen);
2081 			cm = (struct cmsghdr *)
2082 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2083 		} else {
2084 			clen = 0;
2085 			cm = NULL;
2086 		}
2087 	}
2088 
2089 	m_freem(control);
2090 	return (error);
2091 }
2092 
2093 static void
2094 unp_zone_change(void *tag)
2095 {
2096 
2097 	uma_zone_set_max(unp_zone, maxsockets);
2098 }
2099 
2100 static void
2101 unp_init(void)
2102 {
2103 
2104 #ifdef VIMAGE
2105 	if (!IS_DEFAULT_VNET(curvnet))
2106 		return;
2107 #endif
2108 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2109 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2110 	if (unp_zone == NULL)
2111 		panic("unp_init");
2112 	uma_zone_set_max(unp_zone, maxsockets);
2113 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2114 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2115 	    NULL, EVENTHANDLER_PRI_ANY);
2116 	LIST_INIT(&unp_dhead);
2117 	LIST_INIT(&unp_shead);
2118 	LIST_INIT(&unp_sphead);
2119 	SLIST_INIT(&unp_defers);
2120 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2121 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2122 	UNP_LINK_LOCK_INIT();
2123 	UNP_DEFERRED_LOCK_INIT();
2124 }
2125 
2126 static int
2127 unp_internalize(struct mbuf **controlp, struct thread *td)
2128 {
2129 	struct mbuf *control = *controlp;
2130 	struct proc *p = td->td_proc;
2131 	struct filedesc *fdesc = p->p_fd;
2132 	struct bintime *bt;
2133 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2134 	struct cmsgcred *cmcred;
2135 	struct filedescent *fde, **fdep, *fdev;
2136 	struct file *fp;
2137 	struct timeval *tv;
2138 	struct timespec *ts;
2139 	int i, *fdp;
2140 	void *data;
2141 	socklen_t clen = control->m_len, datalen;
2142 	int error, oldfds;
2143 	u_int newlen;
2144 
2145 	UNP_LINK_UNLOCK_ASSERT();
2146 
2147 	error = 0;
2148 	*controlp = NULL;
2149 	while (cm != NULL) {
2150 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2151 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2152 			error = EINVAL;
2153 			goto out;
2154 		}
2155 		data = CMSG_DATA(cm);
2156 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2157 
2158 		switch (cm->cmsg_type) {
2159 		/*
2160 		 * Fill in credential information.
2161 		 */
2162 		case SCM_CREDS:
2163 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2164 			    SCM_CREDS, SOL_SOCKET);
2165 			if (*controlp == NULL) {
2166 				error = ENOBUFS;
2167 				goto out;
2168 			}
2169 			cmcred = (struct cmsgcred *)
2170 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2171 			cmcred->cmcred_pid = p->p_pid;
2172 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2173 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2174 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2175 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2176 			    CMGROUP_MAX);
2177 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2178 				cmcred->cmcred_groups[i] =
2179 				    td->td_ucred->cr_groups[i];
2180 			break;
2181 
2182 		case SCM_RIGHTS:
2183 			oldfds = datalen / sizeof (int);
2184 			if (oldfds == 0)
2185 				break;
2186 			/*
2187 			 * Check that all the FDs passed in refer to legal
2188 			 * files.  If not, reject the entire operation.
2189 			 */
2190 			fdp = data;
2191 			FILEDESC_SLOCK(fdesc);
2192 			for (i = 0; i < oldfds; i++, fdp++) {
2193 				fp = fget_locked(fdesc, *fdp);
2194 				if (fp == NULL) {
2195 					FILEDESC_SUNLOCK(fdesc);
2196 					error = EBADF;
2197 					goto out;
2198 				}
2199 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2200 					FILEDESC_SUNLOCK(fdesc);
2201 					error = EOPNOTSUPP;
2202 					goto out;
2203 				}
2204 
2205 			}
2206 
2207 			/*
2208 			 * Now replace the integer FDs with pointers to the
2209 			 * file structure and capability rights.
2210 			 */
2211 			newlen = oldfds * sizeof(fdep[0]);
2212 			*controlp = sbcreatecontrol(NULL, newlen,
2213 			    SCM_RIGHTS, SOL_SOCKET);
2214 			if (*controlp == NULL) {
2215 				FILEDESC_SUNLOCK(fdesc);
2216 				error = E2BIG;
2217 				goto out;
2218 			}
2219 			fdp = data;
2220 			fdep = (struct filedescent **)
2221 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2222 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2223 			    M_WAITOK);
2224 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2225 				fde = &fdesc->fd_ofiles[*fdp];
2226 				fdep[i] = fdev;
2227 				fdep[i]->fde_file = fde->fde_file;
2228 				filecaps_copy(&fde->fde_caps,
2229 				    &fdep[i]->fde_caps, true);
2230 				unp_internalize_fp(fdep[i]->fde_file);
2231 			}
2232 			FILEDESC_SUNLOCK(fdesc);
2233 			break;
2234 
2235 		case SCM_TIMESTAMP:
2236 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2237 			    SCM_TIMESTAMP, SOL_SOCKET);
2238 			if (*controlp == NULL) {
2239 				error = ENOBUFS;
2240 				goto out;
2241 			}
2242 			tv = (struct timeval *)
2243 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2244 			microtime(tv);
2245 			break;
2246 
2247 		case SCM_BINTIME:
2248 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2249 			    SCM_BINTIME, SOL_SOCKET);
2250 			if (*controlp == NULL) {
2251 				error = ENOBUFS;
2252 				goto out;
2253 			}
2254 			bt = (struct bintime *)
2255 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2256 			bintime(bt);
2257 			break;
2258 
2259 		case SCM_REALTIME:
2260 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2261 			    SCM_REALTIME, SOL_SOCKET);
2262 			if (*controlp == NULL) {
2263 				error = ENOBUFS;
2264 				goto out;
2265 			}
2266 			ts = (struct timespec *)
2267 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2268 			nanotime(ts);
2269 			break;
2270 
2271 		case SCM_MONOTONIC:
2272 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2273 			    SCM_MONOTONIC, SOL_SOCKET);
2274 			if (*controlp == NULL) {
2275 				error = ENOBUFS;
2276 				goto out;
2277 			}
2278 			ts = (struct timespec *)
2279 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2280 			nanouptime(ts);
2281 			break;
2282 
2283 		default:
2284 			error = EINVAL;
2285 			goto out;
2286 		}
2287 
2288 		controlp = &(*controlp)->m_next;
2289 		if (CMSG_SPACE(datalen) < clen) {
2290 			clen -= CMSG_SPACE(datalen);
2291 			cm = (struct cmsghdr *)
2292 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2293 		} else {
2294 			clen = 0;
2295 			cm = NULL;
2296 		}
2297 	}
2298 
2299 out:
2300 	m_freem(control);
2301 	return (error);
2302 }
2303 
2304 static struct mbuf *
2305 unp_addsockcred(struct thread *td, struct mbuf *control)
2306 {
2307 	struct mbuf *m, *n, *n_prev;
2308 	struct sockcred *sc;
2309 	const struct cmsghdr *cm;
2310 	int ngroups;
2311 	int i;
2312 
2313 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2314 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2315 	if (m == NULL)
2316 		return (control);
2317 
2318 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2319 	sc->sc_uid = td->td_ucred->cr_ruid;
2320 	sc->sc_euid = td->td_ucred->cr_uid;
2321 	sc->sc_gid = td->td_ucred->cr_rgid;
2322 	sc->sc_egid = td->td_ucred->cr_gid;
2323 	sc->sc_ngroups = ngroups;
2324 	for (i = 0; i < sc->sc_ngroups; i++)
2325 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2326 
2327 	/*
2328 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2329 	 * created SCM_CREDS control message (struct sockcred) has another
2330 	 * format.
2331 	 */
2332 	if (control != NULL)
2333 		for (n = control, n_prev = NULL; n != NULL;) {
2334 			cm = mtod(n, struct cmsghdr *);
2335     			if (cm->cmsg_level == SOL_SOCKET &&
2336 			    cm->cmsg_type == SCM_CREDS) {
2337     				if (n_prev == NULL)
2338 					control = n->m_next;
2339 				else
2340 					n_prev->m_next = n->m_next;
2341 				n = m_free(n);
2342 			} else {
2343 				n_prev = n;
2344 				n = n->m_next;
2345 			}
2346 		}
2347 
2348 	/* Prepend it to the head. */
2349 	m->m_next = control;
2350 	return (m);
2351 }
2352 
2353 static struct unpcb *
2354 fptounp(struct file *fp)
2355 {
2356 	struct socket *so;
2357 
2358 	if (fp->f_type != DTYPE_SOCKET)
2359 		return (NULL);
2360 	if ((so = fp->f_data) == NULL)
2361 		return (NULL);
2362 	if (so->so_proto->pr_domain != &localdomain)
2363 		return (NULL);
2364 	return sotounpcb(so);
2365 }
2366 
2367 static void
2368 unp_discard(struct file *fp)
2369 {
2370 	struct unp_defer *dr;
2371 
2372 	if (unp_externalize_fp(fp)) {
2373 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2374 		dr->ud_fp = fp;
2375 		UNP_DEFERRED_LOCK();
2376 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2377 		UNP_DEFERRED_UNLOCK();
2378 		atomic_add_int(&unp_defers_count, 1);
2379 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2380 	} else
2381 		(void) closef(fp, (struct thread *)NULL);
2382 }
2383 
2384 static void
2385 unp_process_defers(void *arg __unused, int pending)
2386 {
2387 	struct unp_defer *dr;
2388 	SLIST_HEAD(, unp_defer) drl;
2389 	int count;
2390 
2391 	SLIST_INIT(&drl);
2392 	for (;;) {
2393 		UNP_DEFERRED_LOCK();
2394 		if (SLIST_FIRST(&unp_defers) == NULL) {
2395 			UNP_DEFERRED_UNLOCK();
2396 			break;
2397 		}
2398 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2399 		UNP_DEFERRED_UNLOCK();
2400 		count = 0;
2401 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2402 			SLIST_REMOVE_HEAD(&drl, ud_link);
2403 			closef(dr->ud_fp, NULL);
2404 			free(dr, M_TEMP);
2405 			count++;
2406 		}
2407 		atomic_add_int(&unp_defers_count, -count);
2408 	}
2409 }
2410 
2411 static void
2412 unp_internalize_fp(struct file *fp)
2413 {
2414 	struct unpcb *unp;
2415 
2416 	UNP_LINK_WLOCK();
2417 	if ((unp = fptounp(fp)) != NULL) {
2418 		unp->unp_file = fp;
2419 		unp->unp_msgcount++;
2420 	}
2421 	fhold(fp);
2422 	unp_rights++;
2423 	UNP_LINK_WUNLOCK();
2424 }
2425 
2426 static int
2427 unp_externalize_fp(struct file *fp)
2428 {
2429 	struct unpcb *unp;
2430 	int ret;
2431 
2432 	UNP_LINK_WLOCK();
2433 	if ((unp = fptounp(fp)) != NULL) {
2434 		unp->unp_msgcount--;
2435 		ret = 1;
2436 	} else
2437 		ret = 0;
2438 	unp_rights--;
2439 	UNP_LINK_WUNLOCK();
2440 	return (ret);
2441 }
2442 
2443 /*
2444  * unp_defer indicates whether additional work has been defered for a future
2445  * pass through unp_gc().  It is thread local and does not require explicit
2446  * synchronization.
2447  */
2448 static int	unp_marked;
2449 static int	unp_unreachable;
2450 
2451 static void
2452 unp_accessable(struct filedescent **fdep, int fdcount)
2453 {
2454 	struct unpcb *unp;
2455 	struct file *fp;
2456 	int i;
2457 
2458 	for (i = 0; i < fdcount; i++) {
2459 		fp = fdep[i]->fde_file;
2460 		if ((unp = fptounp(fp)) == NULL)
2461 			continue;
2462 		if (unp->unp_gcflag & UNPGC_REF)
2463 			continue;
2464 		unp->unp_gcflag &= ~UNPGC_DEAD;
2465 		unp->unp_gcflag |= UNPGC_REF;
2466 		unp_marked++;
2467 	}
2468 }
2469 
2470 static void
2471 unp_gc_process(struct unpcb *unp)
2472 {
2473 	struct socket *so, *soa;
2474 	struct file *fp;
2475 
2476 	/* Already processed. */
2477 	if (unp->unp_gcflag & UNPGC_SCANNED)
2478 		return;
2479 	fp = unp->unp_file;
2480 
2481 	/*
2482 	 * Check for a socket potentially in a cycle.  It must be in a
2483 	 * queue as indicated by msgcount, and this must equal the file
2484 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2485 	 */
2486 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2487 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2488 		unp->unp_gcflag |= UNPGC_DEAD;
2489 		unp_unreachable++;
2490 		return;
2491 	}
2492 
2493 	so = unp->unp_socket;
2494 	SOCK_LOCK(so);
2495 	if (SOLISTENING(so)) {
2496 		/*
2497 		 * Mark all sockets in our accept queue.
2498 		 */
2499 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2500 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2501 				continue;
2502 			SOCKBUF_LOCK(&soa->so_rcv);
2503 			unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2504 			SOCKBUF_UNLOCK(&soa->so_rcv);
2505 		}
2506 	} else {
2507 		/*
2508 		 * Mark all sockets we reference with RIGHTS.
2509 		 */
2510 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2511 			SOCKBUF_LOCK(&so->so_rcv);
2512 			unp_scan(so->so_rcv.sb_mb, unp_accessable);
2513 			SOCKBUF_UNLOCK(&so->so_rcv);
2514 		}
2515 	}
2516 	SOCK_UNLOCK(so);
2517 	unp->unp_gcflag |= UNPGC_SCANNED;
2518 }
2519 
2520 static int unp_recycled;
2521 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2522     "Number of unreachable sockets claimed by the garbage collector.");
2523 
2524 static int unp_taskcount;
2525 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2526     "Number of times the garbage collector has run.");
2527 
2528 static void
2529 unp_gc(__unused void *arg, int pending)
2530 {
2531 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2532 				    NULL };
2533 	struct unp_head **head;
2534 	struct file *f, **unref;
2535 	struct unpcb *unp;
2536 	int i, total;
2537 
2538 	unp_taskcount++;
2539 	UNP_LINK_RLOCK();
2540 	/*
2541 	 * First clear all gc flags from previous runs, apart from
2542 	 * UNPGC_IGNORE_RIGHTS.
2543 	 */
2544 	for (head = heads; *head != NULL; head++)
2545 		LIST_FOREACH(unp, *head, unp_link)
2546 			unp->unp_gcflag =
2547 			    (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2548 
2549 	/*
2550 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2551 	 * is reachable all of the sockets it references are reachable.
2552 	 * Stop the scan once we do a complete loop without discovering
2553 	 * a new reachable socket.
2554 	 */
2555 	do {
2556 		unp_unreachable = 0;
2557 		unp_marked = 0;
2558 		for (head = heads; *head != NULL; head++)
2559 			LIST_FOREACH(unp, *head, unp_link)
2560 				unp_gc_process(unp);
2561 	} while (unp_marked);
2562 	UNP_LINK_RUNLOCK();
2563 	if (unp_unreachable == 0)
2564 		return;
2565 
2566 	/*
2567 	 * Allocate space for a local list of dead unpcbs.
2568 	 */
2569 	unref = malloc(unp_unreachable * sizeof(struct file *),
2570 	    M_TEMP, M_WAITOK);
2571 
2572 	/*
2573 	 * Iterate looking for sockets which have been specifically marked
2574 	 * as as unreachable and store them locally.
2575 	 */
2576 	UNP_LINK_RLOCK();
2577 	for (total = 0, head = heads; *head != NULL; head++)
2578 		LIST_FOREACH(unp, *head, unp_link)
2579 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2580 				f = unp->unp_file;
2581 				if (unp->unp_msgcount == 0 || f == NULL ||
2582 				    f->f_count != unp->unp_msgcount)
2583 					continue;
2584 				unref[total++] = f;
2585 				fhold(f);
2586 				KASSERT(total <= unp_unreachable,
2587 				    ("unp_gc: incorrect unreachable count."));
2588 			}
2589 	UNP_LINK_RUNLOCK();
2590 
2591 	/*
2592 	 * Now flush all sockets, free'ing rights.  This will free the
2593 	 * struct files associated with these sockets but leave each socket
2594 	 * with one remaining ref.
2595 	 */
2596 	for (i = 0; i < total; i++) {
2597 		struct socket *so;
2598 
2599 		so = unref[i]->f_data;
2600 		CURVNET_SET(so->so_vnet);
2601 		sorflush(so);
2602 		CURVNET_RESTORE();
2603 	}
2604 
2605 	/*
2606 	 * And finally release the sockets so they can be reclaimed.
2607 	 */
2608 	for (i = 0; i < total; i++)
2609 		fdrop(unref[i], NULL);
2610 	unp_recycled += total;
2611 	free(unref, M_TEMP);
2612 }
2613 
2614 static void
2615 unp_dispose_mbuf(struct mbuf *m)
2616 {
2617 
2618 	if (m)
2619 		unp_scan(m, unp_freerights);
2620 }
2621 
2622 /*
2623  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2624  */
2625 static void
2626 unp_dispose(struct socket *so)
2627 {
2628 	struct unpcb *unp;
2629 
2630 	unp = sotounpcb(so);
2631 	UNP_LINK_WLOCK();
2632 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2633 	UNP_LINK_WUNLOCK();
2634 	if (!SOLISTENING(so))
2635 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2636 }
2637 
2638 static void
2639 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2640 {
2641 	struct mbuf *m;
2642 	struct cmsghdr *cm;
2643 	void *data;
2644 	socklen_t clen, datalen;
2645 
2646 	while (m0 != NULL) {
2647 		for (m = m0; m; m = m->m_next) {
2648 			if (m->m_type != MT_CONTROL)
2649 				continue;
2650 
2651 			cm = mtod(m, struct cmsghdr *);
2652 			clen = m->m_len;
2653 
2654 			while (cm != NULL) {
2655 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2656 					break;
2657 
2658 				data = CMSG_DATA(cm);
2659 				datalen = (caddr_t)cm + cm->cmsg_len
2660 				    - (caddr_t)data;
2661 
2662 				if (cm->cmsg_level == SOL_SOCKET &&
2663 				    cm->cmsg_type == SCM_RIGHTS) {
2664 					(*op)(data, datalen /
2665 					    sizeof(struct filedescent *));
2666 				}
2667 
2668 				if (CMSG_SPACE(datalen) < clen) {
2669 					clen -= CMSG_SPACE(datalen);
2670 					cm = (struct cmsghdr *)
2671 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2672 				} else {
2673 					clen = 0;
2674 					cm = NULL;
2675 				}
2676 			}
2677 		}
2678 		m0 = m0->m_nextpkt;
2679 	}
2680 }
2681 
2682 /*
2683  * A helper function called by VFS before socket-type vnode reclamation.
2684  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2685  * use count.
2686  */
2687 void
2688 vfs_unp_reclaim(struct vnode *vp)
2689 {
2690 	struct unpcb *unp;
2691 	int active;
2692 	struct mtx *vplock;
2693 
2694 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2695 	KASSERT(vp->v_type == VSOCK,
2696 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2697 
2698 	active = 0;
2699 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2700 	mtx_lock(vplock);
2701 	VOP_UNP_CONNECT(vp, &unp);
2702 	if (unp == NULL)
2703 		goto done;
2704 	UNP_PCB_LOCK(unp);
2705 	if (unp->unp_vnode == vp) {
2706 		VOP_UNP_DETACH(vp);
2707 		unp->unp_vnode = NULL;
2708 		active = 1;
2709 	}
2710 	UNP_PCB_UNLOCK(unp);
2711  done:
2712 	mtx_unlock(vplock);
2713 	if (active)
2714 		vunref(vp);
2715 }
2716 
2717 #ifdef DDB
2718 static void
2719 db_print_indent(int indent)
2720 {
2721 	int i;
2722 
2723 	for (i = 0; i < indent; i++)
2724 		db_printf(" ");
2725 }
2726 
2727 static void
2728 db_print_unpflags(int unp_flags)
2729 {
2730 	int comma;
2731 
2732 	comma = 0;
2733 	if (unp_flags & UNP_HAVEPC) {
2734 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2735 		comma = 1;
2736 	}
2737 	if (unp_flags & UNP_WANTCRED) {
2738 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2739 		comma = 1;
2740 	}
2741 	if (unp_flags & UNP_CONNWAIT) {
2742 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2743 		comma = 1;
2744 	}
2745 	if (unp_flags & UNP_CONNECTING) {
2746 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2747 		comma = 1;
2748 	}
2749 	if (unp_flags & UNP_BINDING) {
2750 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2751 		comma = 1;
2752 	}
2753 }
2754 
2755 static void
2756 db_print_xucred(int indent, struct xucred *xu)
2757 {
2758 	int comma, i;
2759 
2760 	db_print_indent(indent);
2761 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2762 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2763 	db_print_indent(indent);
2764 	db_printf("cr_groups: ");
2765 	comma = 0;
2766 	for (i = 0; i < xu->cr_ngroups; i++) {
2767 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2768 		comma = 1;
2769 	}
2770 	db_printf("\n");
2771 }
2772 
2773 static void
2774 db_print_unprefs(int indent, struct unp_head *uh)
2775 {
2776 	struct unpcb *unp;
2777 	int counter;
2778 
2779 	counter = 0;
2780 	LIST_FOREACH(unp, uh, unp_reflink) {
2781 		if (counter % 4 == 0)
2782 			db_print_indent(indent);
2783 		db_printf("%p  ", unp);
2784 		if (counter % 4 == 3)
2785 			db_printf("\n");
2786 		counter++;
2787 	}
2788 	if (counter != 0 && counter % 4 != 0)
2789 		db_printf("\n");
2790 }
2791 
2792 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2793 {
2794 	struct unpcb *unp;
2795 
2796         if (!have_addr) {
2797                 db_printf("usage: show unpcb <addr>\n");
2798                 return;
2799         }
2800         unp = (struct unpcb *)addr;
2801 
2802 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2803 	    unp->unp_vnode);
2804 
2805 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2806 	    unp->unp_conn);
2807 
2808 	db_printf("unp_refs:\n");
2809 	db_print_unprefs(2, &unp->unp_refs);
2810 
2811 	/* XXXRW: Would be nice to print the full address, if any. */
2812 	db_printf("unp_addr: %p\n", unp->unp_addr);
2813 
2814 	db_printf("unp_gencnt: %llu\n",
2815 	    (unsigned long long)unp->unp_gencnt);
2816 
2817 	db_printf("unp_flags: %x (", unp->unp_flags);
2818 	db_print_unpflags(unp->unp_flags);
2819 	db_printf(")\n");
2820 
2821 	db_printf("unp_peercred:\n");
2822 	db_print_xucred(2, &unp->unp_peercred);
2823 
2824 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2825 }
2826 #endif
2827