xref: /freebsd/sys/kern/uipc_usrreq.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2008 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	SEQPACKET, RDM
54  *	rethink name space problems
55  *	need a proper out-of-band
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #include "opt_ddb.h"
62 #include "opt_mac.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/jail.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/mbuf.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/namei.h>
78 #include <sys/proc.h>
79 #include <sys/protosw.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #ifdef DDB
95 #include <ddb/ddb.h>
96 #endif
97 
98 #include <security/mac/mac_framework.h>
99 
100 #include <vm/uma.h>
101 
102 static uma_zone_t	unp_zone;
103 static unp_gen_t	unp_gencnt;
104 static u_int		unp_count;	/* Count of local sockets. */
105 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
106 static int		unp_rights;	/* File descriptors in flight. */
107 static struct unp_head	unp_shead;	/* List of local stream sockets. */
108 static struct unp_head	unp_dhead;	/* List of local datagram sockets. */
109 
110 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
111 
112 /*
113  * Garbage collection of cyclic file descriptor/socket references occurs
114  * asynchronously in a taskqueue context in order to avoid recursion and
115  * reentrance in the UNIX domain socket, file descriptor, and socket layer
116  * code.  See unp_gc() for a full description.
117  */
118 static struct task	unp_gc_task;
119 
120 /*
121  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
122  * stream sockets, although the total for sender and receiver is actually
123  * only PIPSIZ.
124  *
125  * Datagram sockets really use the sendspace as the maximum datagram size,
126  * and don't really want to reserve the sendspace.  Their recvspace should be
127  * large enough for at least one max-size datagram plus address.
128  */
129 #ifndef PIPSIZ
130 #define	PIPSIZ	8192
131 #endif
132 static u_long	unpst_sendspace = PIPSIZ;
133 static u_long	unpst_recvspace = PIPSIZ;
134 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
135 static u_long	unpdg_recvspace = 4*1024;
136 
137 SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
138 SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
139 SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
140 
141 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
142 	   &unpst_sendspace, 0, "Default stream send space.");
143 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
144 	   &unpst_recvspace, 0, "Default stream receive space.");
145 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
146 	   &unpdg_sendspace, 0, "Default datagram send space.");
147 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
148 	   &unpdg_recvspace, 0, "Default datagram receive space.");
149 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
150     "File descriptors in flight.");
151 
152 /*-
153  * Locking and synchronization:
154  *
155  * The global UNIX domain socket rwlock (unp_global_rwlock) protects all
156  * global variables, including the linked lists tracking the set of allocated
157  * UNIX domain sockets.  The global rwlock also serves to prevent deadlock
158  * when more than one PCB lock is acquired at a time (i.e., during
159  * connect()).  Finally, the global rwlock protects uncounted references from
160  * vnodes to sockets bound to those vnodes: to safely dereference the
161  * v_socket pointer, the global rwlock must be held while a full reference is
162  * acquired.
163  *
164  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
165  * allocated in pru_attach() and freed in pru_detach().  The validity of that
166  * pointer is an invariant, so no lock is required to dereference the so_pcb
167  * pointer if a valid socket reference is held by the caller.  In practice,
168  * this is always true during operations performed on a socket.  Each unpcb
169  * has a back-pointer to its socket, unp_socket, which will be stable under
170  * the same circumstances.
171  *
172  * This pointer may only be safely dereferenced as long as a valid reference
173  * to the unpcb is held.  Typically, this reference will be from the socket,
174  * or from another unpcb when the referring unpcb's lock is held (in order
175  * that the reference not be invalidated during use).  For example, to follow
176  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
177  * as unp_socket remains valid as long as the reference to unp_conn is valid.
178  *
179  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
180  * atomic reads without the lock may be performed "lockless", but more
181  * complex reads and read-modify-writes require the mutex to be held.  No
182  * lock order is defined between unpcb locks -- multiple unpcb locks may be
183  * acquired at the same time only when holding the global UNIX domain socket
184  * rwlock exclusively, which prevents deadlocks.
185  *
186  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
187  * protocols, bind() is a non-atomic operation, and connect() requires
188  * potential sleeping in the protocol, due to potentially waiting on local or
189  * distributed file systems.  We try to separate "lookup" operations, which
190  * may sleep, and the IPC operations themselves, which typically can occur
191  * with relative atomicity as locks can be held over the entire operation.
192  *
193  * Another tricky issue is simultaneous multi-threaded or multi-process
194  * access to a single UNIX domain socket.  These are handled by the flags
195  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
196  * binding, both of which involve dropping UNIX domain socket locks in order
197  * to perform namei() and other file system operations.
198  */
199 static struct rwlock	unp_global_rwlock;
200 
201 #define	UNP_GLOBAL_LOCK_INIT()		rw_init(&unp_global_rwlock,	\
202 					    "unp_global_rwlock")
203 
204 #define	UNP_GLOBAL_LOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
205 					    RA_LOCKED)
206 #define	UNP_GLOBAL_UNLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
207 					    RA_UNLOCKED)
208 
209 #define	UNP_GLOBAL_WLOCK()		rw_wlock(&unp_global_rwlock)
210 #define	UNP_GLOBAL_WUNLOCK()		rw_wunlock(&unp_global_rwlock)
211 #define	UNP_GLOBAL_WLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
212 					    RA_WLOCKED)
213 #define	UNP_GLOBAL_WOWNED()		rw_wowned(&unp_global_rwlock)
214 
215 #define	UNP_GLOBAL_RLOCK()		rw_rlock(&unp_global_rwlock)
216 #define	UNP_GLOBAL_RUNLOCK()		rw_runlock(&unp_global_rwlock)
217 #define	UNP_GLOBAL_RLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
218 					    RA_RLOCKED)
219 
220 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
221 					    "unp_mtx", "unp_mtx",	\
222 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
223 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
224 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
225 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
226 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
227 
228 static int	uipc_connect2(struct socket *, struct socket *);
229 static int	uipc_ctloutput(struct socket *, struct sockopt *);
230 static int	unp_connect(struct socket *, struct sockaddr *,
231 		    struct thread *);
232 static int	unp_connect2(struct socket *so, struct socket *so2, int);
233 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
234 static void	unp_dispose(struct mbuf *);
235 static void	unp_shutdown(struct unpcb *);
236 static void	unp_drop(struct unpcb *, int);
237 static void	unp_gc(__unused void *, int);
238 static void	unp_scan(struct mbuf *, void (*)(struct file *));
239 static void	unp_discard(struct file *);
240 static void	unp_freerights(struct file **, int);
241 static void	unp_init(void);
242 static int	unp_internalize(struct mbuf **, struct thread *);
243 static void	unp_internalize_fp(struct file *);
244 static int	unp_externalize(struct mbuf *, struct mbuf **);
245 static void	unp_externalize_fp(struct file *);
246 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
247 
248 /*
249  * Definitions of protocols supported in the LOCAL domain.
250  */
251 static struct domain localdomain;
252 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
253 static struct protosw localsw[] = {
254 {
255 	.pr_type =		SOCK_STREAM,
256 	.pr_domain =		&localdomain,
257 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
258 	.pr_ctloutput =		&uipc_ctloutput,
259 	.pr_usrreqs =		&uipc_usrreqs_stream
260 },
261 {
262 	.pr_type =		SOCK_DGRAM,
263 	.pr_domain =		&localdomain,
264 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
265 	.pr_usrreqs =		&uipc_usrreqs_dgram
266 },
267 };
268 
269 static struct domain localdomain = {
270 	.dom_family =		AF_LOCAL,
271 	.dom_name =		"local",
272 	.dom_init =		unp_init,
273 	.dom_externalize =	unp_externalize,
274 	.dom_dispose =		unp_dispose,
275 	.dom_protosw =		localsw,
276 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
277 };
278 DOMAIN_SET(local);
279 
280 static void
281 uipc_abort(struct socket *so)
282 {
283 	struct unpcb *unp, *unp2;
284 
285 	unp = sotounpcb(so);
286 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
287 
288 	UNP_GLOBAL_WLOCK();
289 	UNP_PCB_LOCK(unp);
290 	unp2 = unp->unp_conn;
291 	if (unp2 != NULL) {
292 		UNP_PCB_LOCK(unp2);
293 		unp_drop(unp2, ECONNABORTED);
294 		UNP_PCB_UNLOCK(unp2);
295 	}
296 	UNP_PCB_UNLOCK(unp);
297 	UNP_GLOBAL_WUNLOCK();
298 }
299 
300 static int
301 uipc_accept(struct socket *so, struct sockaddr **nam)
302 {
303 	struct unpcb *unp, *unp2;
304 	const struct sockaddr *sa;
305 
306 	/*
307 	 * Pass back name of connected socket, if it was bound and we are
308 	 * still connected (our peer may have closed already!).
309 	 */
310 	unp = sotounpcb(so);
311 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
312 
313 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
314 	UNP_GLOBAL_RLOCK();
315 	unp2 = unp->unp_conn;
316 	if (unp2 != NULL && unp2->unp_addr != NULL) {
317 		UNP_PCB_LOCK(unp2);
318 		sa = (struct sockaddr *) unp2->unp_addr;
319 		bcopy(sa, *nam, sa->sa_len);
320 		UNP_PCB_UNLOCK(unp2);
321 	} else {
322 		sa = &sun_noname;
323 		bcopy(sa, *nam, sa->sa_len);
324 	}
325 	UNP_GLOBAL_RUNLOCK();
326 	return (0);
327 }
328 
329 static int
330 uipc_attach(struct socket *so, int proto, struct thread *td)
331 {
332 	u_long sendspace, recvspace;
333 	struct unpcb *unp;
334 	int error, locked;
335 
336 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
337 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
338 		switch (so->so_type) {
339 		case SOCK_STREAM:
340 			sendspace = unpst_sendspace;
341 			recvspace = unpst_recvspace;
342 			break;
343 
344 		case SOCK_DGRAM:
345 			sendspace = unpdg_sendspace;
346 			recvspace = unpdg_recvspace;
347 			break;
348 
349 		default:
350 			panic("uipc_attach");
351 		}
352 		error = soreserve(so, sendspace, recvspace);
353 		if (error)
354 			return (error);
355 	}
356 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
357 	if (unp == NULL)
358 		return (ENOBUFS);
359 	LIST_INIT(&unp->unp_refs);
360 	UNP_PCB_LOCK_INIT(unp);
361 	unp->unp_socket = so;
362 	so->so_pcb = unp;
363 	unp->unp_refcount = 1;
364 
365 	/*
366 	 * uipc_attach() may be called indirectly from within the UNIX domain
367 	 * socket code via sonewconn() in unp_connect().  Since rwlocks can
368 	 * not be recursed, we do the closest thing.
369 	 */
370 	locked = 0;
371 	if (!UNP_GLOBAL_WOWNED()) {
372 		UNP_GLOBAL_WLOCK();
373 		locked = 1;
374 	}
375 	unp->unp_gencnt = ++unp_gencnt;
376 	unp_count++;
377 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead : &unp_shead,
378 	    unp, unp_link);
379 	if (locked)
380 		UNP_GLOBAL_WUNLOCK();
381 
382 	return (0);
383 }
384 
385 static int
386 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
387 {
388 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
389 	struct vattr vattr;
390 	int error, namelen, vfslocked;
391 	struct nameidata nd;
392 	struct unpcb *unp;
393 	struct vnode *vp;
394 	struct mount *mp;
395 	char *buf;
396 
397 	unp = sotounpcb(so);
398 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
399 
400 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
401 	if (namelen <= 0)
402 		return (EINVAL);
403 
404 	/*
405 	 * We don't allow simultaneous bind() calls on a single UNIX domain
406 	 * socket, so flag in-progress operations, and return an error if an
407 	 * operation is already in progress.
408 	 *
409 	 * Historically, we have not allowed a socket to be rebound, so this
410 	 * also returns an error.  Not allowing re-binding simplifies the
411 	 * implementation and avoids a great many possible failure modes.
412 	 */
413 	UNP_PCB_LOCK(unp);
414 	if (unp->unp_vnode != NULL) {
415 		UNP_PCB_UNLOCK(unp);
416 		return (EINVAL);
417 	}
418 	if (unp->unp_flags & UNP_BINDING) {
419 		UNP_PCB_UNLOCK(unp);
420 		return (EALREADY);
421 	}
422 	unp->unp_flags |= UNP_BINDING;
423 	UNP_PCB_UNLOCK(unp);
424 
425 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
426 	bcopy(soun->sun_path, buf, namelen);
427 	buf[namelen] = 0;
428 
429 restart:
430 	vfslocked = 0;
431 	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
432 	    UIO_SYSSPACE, buf, td);
433 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
434 	error = namei(&nd);
435 	if (error)
436 		goto error;
437 	vp = nd.ni_vp;
438 	vfslocked = NDHASGIANT(&nd);
439 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
440 		NDFREE(&nd, NDF_ONLY_PNBUF);
441 		if (nd.ni_dvp == vp)
442 			vrele(nd.ni_dvp);
443 		else
444 			vput(nd.ni_dvp);
445 		if (vp != NULL) {
446 			vrele(vp);
447 			error = EADDRINUSE;
448 			goto error;
449 		}
450 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
451 		if (error)
452 			goto error;
453 		VFS_UNLOCK_GIANT(vfslocked);
454 		goto restart;
455 	}
456 	VATTR_NULL(&vattr);
457 	vattr.va_type = VSOCK;
458 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
459 #ifdef MAC
460 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
461 	    &vattr);
462 #endif
463 	if (error == 0) {
464 		VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE);
465 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
466 	}
467 	NDFREE(&nd, NDF_ONLY_PNBUF);
468 	vput(nd.ni_dvp);
469 	if (error) {
470 		vn_finished_write(mp);
471 		goto error;
472 	}
473 	vp = nd.ni_vp;
474 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
475 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
476 
477 	UNP_GLOBAL_WLOCK();
478 	UNP_PCB_LOCK(unp);
479 	vp->v_socket = unp->unp_socket;
480 	unp->unp_vnode = vp;
481 	unp->unp_addr = soun;
482 	unp->unp_flags &= ~UNP_BINDING;
483 	UNP_PCB_UNLOCK(unp);
484 	UNP_GLOBAL_WUNLOCK();
485 	VOP_UNLOCK(vp, 0);
486 	vn_finished_write(mp);
487 	VFS_UNLOCK_GIANT(vfslocked);
488 	free(buf, M_TEMP);
489 	return (0);
490 
491 error:
492 	VFS_UNLOCK_GIANT(vfslocked);
493 	UNP_PCB_LOCK(unp);
494 	unp->unp_flags &= ~UNP_BINDING;
495 	UNP_PCB_UNLOCK(unp);
496 	free(buf, M_TEMP);
497 	return (error);
498 }
499 
500 static int
501 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
502 {
503 	int error;
504 
505 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
506 	UNP_GLOBAL_WLOCK();
507 	error = unp_connect(so, nam, td);
508 	UNP_GLOBAL_WUNLOCK();
509 	return (error);
510 }
511 
512 static void
513 uipc_close(struct socket *so)
514 {
515 	struct unpcb *unp, *unp2;
516 
517 	unp = sotounpcb(so);
518 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
519 
520 	UNP_GLOBAL_WLOCK();
521 	UNP_PCB_LOCK(unp);
522 	unp2 = unp->unp_conn;
523 	if (unp2 != NULL) {
524 		UNP_PCB_LOCK(unp2);
525 		unp_disconnect(unp, unp2);
526 		UNP_PCB_UNLOCK(unp2);
527 	}
528 	UNP_PCB_UNLOCK(unp);
529 	UNP_GLOBAL_WUNLOCK();
530 }
531 
532 static int
533 uipc_connect2(struct socket *so1, struct socket *so2)
534 {
535 	struct unpcb *unp, *unp2;
536 	int error;
537 
538 	UNP_GLOBAL_WLOCK();
539 	unp = so1->so_pcb;
540 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
541 	UNP_PCB_LOCK(unp);
542 	unp2 = so2->so_pcb;
543 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
544 	UNP_PCB_LOCK(unp2);
545 	error = unp_connect2(so1, so2, PRU_CONNECT2);
546 	UNP_PCB_UNLOCK(unp2);
547 	UNP_PCB_UNLOCK(unp);
548 	UNP_GLOBAL_WUNLOCK();
549 	return (error);
550 }
551 
552 static void
553 uipc_detach(struct socket *so)
554 {
555 	struct unpcb *unp, *unp2;
556 	struct sockaddr_un *saved_unp_addr;
557 	struct vnode *vp;
558 	int freeunp, local_unp_rights;
559 
560 	unp = sotounpcb(so);
561 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
562 
563 	UNP_GLOBAL_WLOCK();
564 	UNP_PCB_LOCK(unp);
565 
566 	LIST_REMOVE(unp, unp_link);
567 	unp->unp_gencnt = ++unp_gencnt;
568 	--unp_count;
569 
570 	/*
571 	 * XXXRW: Should assert vp->v_socket == so.
572 	 */
573 	if ((vp = unp->unp_vnode) != NULL) {
574 		unp->unp_vnode->v_socket = NULL;
575 		unp->unp_vnode = NULL;
576 	}
577 	unp2 = unp->unp_conn;
578 	if (unp2 != NULL) {
579 		UNP_PCB_LOCK(unp2);
580 		unp_disconnect(unp, unp2);
581 		UNP_PCB_UNLOCK(unp2);
582 	}
583 
584 	/*
585 	 * We hold the global lock exclusively, so it's OK to acquire
586 	 * multiple pcb locks at a time.
587 	 */
588 	while (!LIST_EMPTY(&unp->unp_refs)) {
589 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
590 
591 		UNP_PCB_LOCK(ref);
592 		unp_drop(ref, ECONNRESET);
593 		UNP_PCB_UNLOCK(ref);
594 	}
595 	local_unp_rights = unp_rights;
596 	UNP_GLOBAL_WUNLOCK();
597 	unp->unp_socket->so_pcb = NULL;
598 	saved_unp_addr = unp->unp_addr;
599 	unp->unp_addr = NULL;
600 	unp->unp_refcount--;
601 	freeunp = (unp->unp_refcount == 0);
602 	if (saved_unp_addr != NULL)
603 		free(saved_unp_addr, M_SONAME);
604 	if (freeunp) {
605 		UNP_PCB_LOCK_DESTROY(unp);
606 		uma_zfree(unp_zone, unp);
607 	} else
608 		UNP_PCB_UNLOCK(unp);
609 	if (vp) {
610 		int vfslocked;
611 
612 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
613 		vrele(vp);
614 		VFS_UNLOCK_GIANT(vfslocked);
615 	}
616 	if (local_unp_rights)
617 		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
618 }
619 
620 static int
621 uipc_disconnect(struct socket *so)
622 {
623 	struct unpcb *unp, *unp2;
624 
625 	unp = sotounpcb(so);
626 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
627 
628 	UNP_GLOBAL_WLOCK();
629 	UNP_PCB_LOCK(unp);
630 	unp2 = unp->unp_conn;
631 	if (unp2 != NULL) {
632 		UNP_PCB_LOCK(unp2);
633 		unp_disconnect(unp, unp2);
634 		UNP_PCB_UNLOCK(unp2);
635 	}
636 	UNP_PCB_UNLOCK(unp);
637 	UNP_GLOBAL_WUNLOCK();
638 	return (0);
639 }
640 
641 static int
642 uipc_listen(struct socket *so, int backlog, struct thread *td)
643 {
644 	struct unpcb *unp;
645 	int error;
646 
647 	unp = sotounpcb(so);
648 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
649 
650 	UNP_PCB_LOCK(unp);
651 	if (unp->unp_vnode == NULL) {
652 		UNP_PCB_UNLOCK(unp);
653 		return (EINVAL);
654 	}
655 
656 	SOCK_LOCK(so);
657 	error = solisten_proto_check(so);
658 	if (error == 0) {
659 		cru2x(td->td_ucred, &unp->unp_peercred);
660 		unp->unp_flags |= UNP_HAVEPCCACHED;
661 		solisten_proto(so, backlog);
662 	}
663 	SOCK_UNLOCK(so);
664 	UNP_PCB_UNLOCK(unp);
665 	return (error);
666 }
667 
668 static int
669 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
670 {
671 	struct unpcb *unp, *unp2;
672 	const struct sockaddr *sa;
673 
674 	unp = sotounpcb(so);
675 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
676 
677 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
678 	UNP_PCB_LOCK(unp);
679 	/*
680 	 * XXX: It seems that this test always fails even when connection is
681 	 * established.  So, this else clause is added as workaround to
682 	 * return PF_LOCAL sockaddr.
683 	 */
684 	unp2 = unp->unp_conn;
685 	if (unp2 != NULL) {
686 		UNP_PCB_LOCK(unp2);
687 		if (unp2->unp_addr != NULL)
688 			sa = (struct sockaddr *) unp->unp_conn->unp_addr;
689 		else
690 			sa = &sun_noname;
691 		bcopy(sa, *nam, sa->sa_len);
692 		UNP_PCB_UNLOCK(unp2);
693 	} else {
694 		sa = &sun_noname;
695 		bcopy(sa, *nam, sa->sa_len);
696 	}
697 	UNP_PCB_UNLOCK(unp);
698 	return (0);
699 }
700 
701 static int
702 uipc_rcvd(struct socket *so, int flags)
703 {
704 	struct unpcb *unp, *unp2;
705 	struct socket *so2;
706 	u_int mbcnt, sbcc;
707 	u_long newhiwat;
708 
709 	unp = sotounpcb(so);
710 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
711 
712 	if (so->so_type == SOCK_DGRAM)
713 		panic("uipc_rcvd DGRAM?");
714 
715 	if (so->so_type != SOCK_STREAM)
716 		panic("uipc_rcvd unknown socktype");
717 
718 	/*
719 	 * Adjust backpressure on sender and wakeup any waiting to write.
720 	 *
721 	 * The unp lock is acquired to maintain the validity of the unp_conn
722 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
723 	 * static as long as we don't permit unp2 to disconnect from unp,
724 	 * which is prevented by the lock on unp.  We cache values from
725 	 * so_rcv to avoid holding the so_rcv lock over the entire
726 	 * transaction on the remote so_snd.
727 	 */
728 	SOCKBUF_LOCK(&so->so_rcv);
729 	mbcnt = so->so_rcv.sb_mbcnt;
730 	sbcc = so->so_rcv.sb_cc;
731 	SOCKBUF_UNLOCK(&so->so_rcv);
732 	UNP_PCB_LOCK(unp);
733 	unp2 = unp->unp_conn;
734 	if (unp2 == NULL) {
735 		UNP_PCB_UNLOCK(unp);
736 		return (0);
737 	}
738 	so2 = unp2->unp_socket;
739 	SOCKBUF_LOCK(&so2->so_snd);
740 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
741 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
742 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
743 	    newhiwat, RLIM_INFINITY);
744 	sowwakeup_locked(so2);
745 	unp->unp_mbcnt = mbcnt;
746 	unp->unp_cc = sbcc;
747 	UNP_PCB_UNLOCK(unp);
748 	return (0);
749 }
750 
751 static int
752 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
753     struct mbuf *control, struct thread *td)
754 {
755 	struct unpcb *unp, *unp2;
756 	struct socket *so2;
757 	u_int mbcnt_delta, sbcc;
758 	u_long newhiwat;
759 	int error = 0;
760 
761 	unp = sotounpcb(so);
762 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
763 
764 	if (flags & PRUS_OOB) {
765 		error = EOPNOTSUPP;
766 		goto release;
767 	}
768 	if (control != NULL && (error = unp_internalize(&control, td)))
769 		goto release;
770 	if ((nam != NULL) || (flags & PRUS_EOF))
771 		UNP_GLOBAL_WLOCK();
772 	else
773 		UNP_GLOBAL_RLOCK();
774 	switch (so->so_type) {
775 	case SOCK_DGRAM:
776 	{
777 		const struct sockaddr *from;
778 
779 		unp2 = unp->unp_conn;
780 		if (nam != NULL) {
781 			UNP_GLOBAL_WLOCK_ASSERT();
782 			if (unp2 != NULL) {
783 				error = EISCONN;
784 				break;
785 			}
786 			error = unp_connect(so, nam, td);
787 			if (error)
788 				break;
789 			unp2 = unp->unp_conn;
790 		}
791 
792 		/*
793 		 * Because connect() and send() are non-atomic in a sendto()
794 		 * with a target address, it's possible that the socket will
795 		 * have disconnected before the send() can run.  In that case
796 		 * return the slightly counter-intuitive but otherwise
797 		 * correct error that the socket is not connected.
798 		 */
799 		if (unp2 == NULL) {
800 			error = ENOTCONN;
801 			break;
802 		}
803 		/* Lockless read. */
804 		if (unp2->unp_flags & UNP_WANTCRED)
805 			control = unp_addsockcred(td, control);
806 		UNP_PCB_LOCK(unp);
807 		if (unp->unp_addr != NULL)
808 			from = (struct sockaddr *)unp->unp_addr;
809 		else
810 			from = &sun_noname;
811 		so2 = unp2->unp_socket;
812 		SOCKBUF_LOCK(&so2->so_rcv);
813 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
814 			sorwakeup_locked(so2);
815 			m = NULL;
816 			control = NULL;
817 		} else {
818 			SOCKBUF_UNLOCK(&so2->so_rcv);
819 			error = ENOBUFS;
820 		}
821 		if (nam != NULL) {
822 			UNP_GLOBAL_WLOCK_ASSERT();
823 			UNP_PCB_LOCK(unp2);
824 			unp_disconnect(unp, unp2);
825 			UNP_PCB_UNLOCK(unp2);
826 		}
827 		UNP_PCB_UNLOCK(unp);
828 		break;
829 	}
830 
831 	case SOCK_STREAM:
832 		if ((so->so_state & SS_ISCONNECTED) == 0) {
833 			if (nam != NULL) {
834 				UNP_GLOBAL_WLOCK_ASSERT();
835 				error = unp_connect(so, nam, td);
836 				if (error)
837 					break;	/* XXX */
838 			} else {
839 				error = ENOTCONN;
840 				break;
841 			}
842 		}
843 
844 		/* Lockless read. */
845 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
846 			error = EPIPE;
847 			break;
848 		}
849 
850 		/*
851 		 * Because connect() and send() are non-atomic in a sendto()
852 		 * with a target address, it's possible that the socket will
853 		 * have disconnected before the send() can run.  In that case
854 		 * return the slightly counter-intuitive but otherwise
855 		 * correct error that the socket is not connected.
856 		 *
857 		 * Locking here must be done carefully: the global lock
858 		 * prevents interconnections between unpcbs from changing, so
859 		 * we can traverse from unp to unp2 without acquiring unp's
860 		 * lock.  Socket buffer locks follow unpcb locks, so we can
861 		 * acquire both remote and lock socket buffer locks.
862 		 */
863 		unp2 = unp->unp_conn;
864 		if (unp2 == NULL) {
865 			error = ENOTCONN;
866 			break;
867 		}
868 		so2 = unp2->unp_socket;
869 		UNP_PCB_LOCK(unp2);
870 		SOCKBUF_LOCK(&so2->so_rcv);
871 		if (unp2->unp_flags & UNP_WANTCRED) {
872 			/*
873 			 * Credentials are passed only once on SOCK_STREAM.
874 			 */
875 			unp2->unp_flags &= ~UNP_WANTCRED;
876 			control = unp_addsockcred(td, control);
877 		}
878 		/*
879 		 * Send to paired receive port, and then reduce send buffer
880 		 * hiwater marks to maintain backpressure.  Wake up readers.
881 		 */
882 		if (control != NULL) {
883 			if (sbappendcontrol_locked(&so2->so_rcv, m, control))
884 				control = NULL;
885 		} else
886 			sbappend_locked(&so2->so_rcv, m);
887 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
888 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
889 		sbcc = so2->so_rcv.sb_cc;
890 		sorwakeup_locked(so2);
891 
892 		SOCKBUF_LOCK(&so->so_snd);
893 		newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
894 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
895 		    newhiwat, RLIM_INFINITY);
896 		so->so_snd.sb_mbmax -= mbcnt_delta;
897 		SOCKBUF_UNLOCK(&so->so_snd);
898 		unp2->unp_cc = sbcc;
899 		UNP_PCB_UNLOCK(unp2);
900 		m = NULL;
901 		break;
902 
903 	default:
904 		panic("uipc_send unknown socktype");
905 	}
906 
907 	/*
908 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
909 	 */
910 	if (flags & PRUS_EOF) {
911 		UNP_PCB_LOCK(unp);
912 		socantsendmore(so);
913 		unp_shutdown(unp);
914 		UNP_PCB_UNLOCK(unp);
915 	}
916 
917 	if ((nam != NULL) || (flags & PRUS_EOF))
918 		UNP_GLOBAL_WUNLOCK();
919 	else
920 		UNP_GLOBAL_RUNLOCK();
921 
922 	if (control != NULL && error != 0)
923 		unp_dispose(control);
924 
925 release:
926 	if (control != NULL)
927 		m_freem(control);
928 	if (m != NULL)
929 		m_freem(m);
930 	return (error);
931 }
932 
933 static int
934 uipc_sense(struct socket *so, struct stat *sb)
935 {
936 	struct unpcb *unp, *unp2;
937 	struct socket *so2;
938 
939 	unp = sotounpcb(so);
940 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
941 
942 	sb->st_blksize = so->so_snd.sb_hiwat;
943 	UNP_GLOBAL_RLOCK();
944 	UNP_PCB_LOCK(unp);
945 	unp2 = unp->unp_conn;
946 	if (so->so_type == SOCK_STREAM && unp2 != NULL) {
947 		so2 = unp2->unp_socket;
948 		sb->st_blksize += so2->so_rcv.sb_cc;
949 	}
950 	sb->st_dev = NODEV;
951 	if (unp->unp_ino == 0)
952 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
953 	sb->st_ino = unp->unp_ino;
954 	UNP_PCB_UNLOCK(unp);
955 	UNP_GLOBAL_RUNLOCK();
956 	return (0);
957 }
958 
959 static int
960 uipc_shutdown(struct socket *so)
961 {
962 	struct unpcb *unp;
963 
964 	unp = sotounpcb(so);
965 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
966 
967 	UNP_GLOBAL_WLOCK();
968 	UNP_PCB_LOCK(unp);
969 	socantsendmore(so);
970 	unp_shutdown(unp);
971 	UNP_PCB_UNLOCK(unp);
972 	UNP_GLOBAL_WUNLOCK();
973 	return (0);
974 }
975 
976 static int
977 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
978 {
979 	struct unpcb *unp;
980 	const struct sockaddr *sa;
981 
982 	unp = sotounpcb(so);
983 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
984 
985 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
986 	UNP_PCB_LOCK(unp);
987 	if (unp->unp_addr != NULL)
988 		sa = (struct sockaddr *) unp->unp_addr;
989 	else
990 		sa = &sun_noname;
991 	bcopy(sa, *nam, sa->sa_len);
992 	UNP_PCB_UNLOCK(unp);
993 	return (0);
994 }
995 
996 static struct pr_usrreqs uipc_usrreqs_dgram = {
997 	.pru_abort = 		uipc_abort,
998 	.pru_accept =		uipc_accept,
999 	.pru_attach =		uipc_attach,
1000 	.pru_bind =		uipc_bind,
1001 	.pru_connect =		uipc_connect,
1002 	.pru_connect2 =		uipc_connect2,
1003 	.pru_detach =		uipc_detach,
1004 	.pru_disconnect =	uipc_disconnect,
1005 	.pru_listen =		uipc_listen,
1006 	.pru_peeraddr =		uipc_peeraddr,
1007 	.pru_rcvd =		uipc_rcvd,
1008 	.pru_send =		uipc_send,
1009 	.pru_sense =		uipc_sense,
1010 	.pru_shutdown =		uipc_shutdown,
1011 	.pru_sockaddr =		uipc_sockaddr,
1012 	.pru_soreceive =	soreceive_dgram,
1013 	.pru_close =		uipc_close,
1014 };
1015 
1016 static struct pr_usrreqs uipc_usrreqs_stream = {
1017 	.pru_abort = 		uipc_abort,
1018 	.pru_accept =		uipc_accept,
1019 	.pru_attach =		uipc_attach,
1020 	.pru_bind =		uipc_bind,
1021 	.pru_connect =		uipc_connect,
1022 	.pru_connect2 =		uipc_connect2,
1023 	.pru_detach =		uipc_detach,
1024 	.pru_disconnect =	uipc_disconnect,
1025 	.pru_listen =		uipc_listen,
1026 	.pru_peeraddr =		uipc_peeraddr,
1027 	.pru_rcvd =		uipc_rcvd,
1028 	.pru_send =		uipc_send,
1029 	.pru_sense =		uipc_sense,
1030 	.pru_shutdown =		uipc_shutdown,
1031 	.pru_sockaddr =		uipc_sockaddr,
1032 	.pru_soreceive =	soreceive_generic,
1033 	.pru_close =		uipc_close,
1034 };
1035 
1036 static int
1037 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1038 {
1039 	struct unpcb *unp;
1040 	struct xucred xu;
1041 	int error, optval;
1042 
1043 	if (sopt->sopt_level != 0)
1044 		return (EINVAL);
1045 
1046 	unp = sotounpcb(so);
1047 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1048 	error = 0;
1049 	switch (sopt->sopt_dir) {
1050 	case SOPT_GET:
1051 		switch (sopt->sopt_name) {
1052 		case LOCAL_PEERCRED:
1053 			UNP_PCB_LOCK(unp);
1054 			if (unp->unp_flags & UNP_HAVEPC)
1055 				xu = unp->unp_peercred;
1056 			else {
1057 				if (so->so_type == SOCK_STREAM)
1058 					error = ENOTCONN;
1059 				else
1060 					error = EINVAL;
1061 			}
1062 			UNP_PCB_UNLOCK(unp);
1063 			if (error == 0)
1064 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1065 			break;
1066 
1067 		case LOCAL_CREDS:
1068 			/* Unlocked read. */
1069 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1070 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1071 			break;
1072 
1073 		case LOCAL_CONNWAIT:
1074 			/* Unlocked read. */
1075 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1076 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1077 			break;
1078 
1079 		default:
1080 			error = EOPNOTSUPP;
1081 			break;
1082 		}
1083 		break;
1084 
1085 	case SOPT_SET:
1086 		switch (sopt->sopt_name) {
1087 		case LOCAL_CREDS:
1088 		case LOCAL_CONNWAIT:
1089 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1090 					    sizeof(optval));
1091 			if (error)
1092 				break;
1093 
1094 #define	OPTSET(bit) do {						\
1095 	UNP_PCB_LOCK(unp);						\
1096 	if (optval)							\
1097 		unp->unp_flags |= bit;					\
1098 	else								\
1099 		unp->unp_flags &= ~bit;					\
1100 	UNP_PCB_UNLOCK(unp);						\
1101 } while (0)
1102 
1103 			switch (sopt->sopt_name) {
1104 			case LOCAL_CREDS:
1105 				OPTSET(UNP_WANTCRED);
1106 				break;
1107 
1108 			case LOCAL_CONNWAIT:
1109 				OPTSET(UNP_CONNWAIT);
1110 				break;
1111 
1112 			default:
1113 				break;
1114 			}
1115 			break;
1116 #undef	OPTSET
1117 		default:
1118 			error = ENOPROTOOPT;
1119 			break;
1120 		}
1121 		break;
1122 
1123 	default:
1124 		error = EOPNOTSUPP;
1125 		break;
1126 	}
1127 	return (error);
1128 }
1129 
1130 static int
1131 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1132 {
1133 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1134 	struct vnode *vp;
1135 	struct socket *so2, *so3;
1136 	struct unpcb *unp, *unp2, *unp3;
1137 	int error, len, vfslocked;
1138 	struct nameidata nd;
1139 	char buf[SOCK_MAXADDRLEN];
1140 	struct sockaddr *sa;
1141 
1142 	UNP_GLOBAL_WLOCK_ASSERT();
1143 
1144 	unp = sotounpcb(so);
1145 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1146 
1147 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1148 	if (len <= 0)
1149 		return (EINVAL);
1150 	bcopy(soun->sun_path, buf, len);
1151 	buf[len] = 0;
1152 
1153 	UNP_PCB_LOCK(unp);
1154 	if (unp->unp_flags & UNP_CONNECTING) {
1155 		UNP_PCB_UNLOCK(unp);
1156 		return (EALREADY);
1157 	}
1158 	UNP_GLOBAL_WUNLOCK();
1159 	unp->unp_flags |= UNP_CONNECTING;
1160 	UNP_PCB_UNLOCK(unp);
1161 
1162 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1163 	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf,
1164 	    td);
1165 	error = namei(&nd);
1166 	if (error)
1167 		vp = NULL;
1168 	else
1169 		vp = nd.ni_vp;
1170 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1171 	vfslocked = NDHASGIANT(&nd);
1172 	NDFREE(&nd, NDF_ONLY_PNBUF);
1173 	if (error)
1174 		goto bad;
1175 
1176 	if (vp->v_type != VSOCK) {
1177 		error = ENOTSOCK;
1178 		goto bad;
1179 	}
1180 #ifdef MAC
1181 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1182 	if (error)
1183 		goto bad;
1184 #endif
1185 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1186 	if (error)
1187 		goto bad;
1188 	VFS_UNLOCK_GIANT(vfslocked);
1189 
1190 	unp = sotounpcb(so);
1191 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1192 
1193 	/*
1194 	 * Lock global lock for two reasons: make sure v_socket is stable,
1195 	 * and to protect simultaneous locking of multiple pcbs.
1196 	 */
1197 	UNP_GLOBAL_WLOCK();
1198 	so2 = vp->v_socket;
1199 	if (so2 == NULL) {
1200 		error = ECONNREFUSED;
1201 		goto bad2;
1202 	}
1203 	if (so->so_type != so2->so_type) {
1204 		error = EPROTOTYPE;
1205 		goto bad2;
1206 	}
1207 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1208 		if (so2->so_options & SO_ACCEPTCONN) {
1209 			/*
1210 			 * We can't drop the global lock here or 'so2' may
1211 			 * become invalid.  As a result, we need to handle
1212 			 * possibly lock recursion in uipc_attach.
1213 			 */
1214 			so3 = sonewconn(so2, 0);
1215 		} else
1216 			so3 = NULL;
1217 		if (so3 == NULL) {
1218 			error = ECONNREFUSED;
1219 			goto bad2;
1220 		}
1221 		unp = sotounpcb(so);
1222 		unp2 = sotounpcb(so2);
1223 		unp3 = sotounpcb(so3);
1224 		UNP_PCB_LOCK(unp);
1225 		UNP_PCB_LOCK(unp2);
1226 		UNP_PCB_LOCK(unp3);
1227 		if (unp2->unp_addr != NULL) {
1228 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1229 			unp3->unp_addr = (struct sockaddr_un *) sa;
1230 			sa = NULL;
1231 		}
1232 
1233 		/*
1234 		 * The connecter's (client's) credentials are copied from its
1235 		 * process structure at the time of connect() (which is now).
1236 		 */
1237 		cru2x(td->td_ucred, &unp3->unp_peercred);
1238 		unp3->unp_flags |= UNP_HAVEPC;
1239 
1240 		/*
1241 		 * The receiver's (server's) credentials are copied from the
1242 		 * unp_peercred member of socket on which the former called
1243 		 * listen(); uipc_listen() cached that process's credentials
1244 		 * at that time so we can use them now.
1245 		 */
1246 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1247 		    ("unp_connect: listener without cached peercred"));
1248 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1249 		    sizeof(unp->unp_peercred));
1250 		unp->unp_flags |= UNP_HAVEPC;
1251 		if (unp2->unp_flags & UNP_WANTCRED)
1252 			unp3->unp_flags |= UNP_WANTCRED;
1253 		UNP_PCB_UNLOCK(unp3);
1254 		UNP_PCB_UNLOCK(unp2);
1255 		UNP_PCB_UNLOCK(unp);
1256 #ifdef MAC
1257 		SOCK_LOCK(so);
1258 		mac_socketpeer_set_from_socket(so, so3);
1259 		mac_socketpeer_set_from_socket(so3, so);
1260 		SOCK_UNLOCK(so);
1261 #endif
1262 
1263 		so2 = so3;
1264 	}
1265 	unp = sotounpcb(so);
1266 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1267 	unp2 = sotounpcb(so2);
1268 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1269 	UNP_PCB_LOCK(unp);
1270 	UNP_PCB_LOCK(unp2);
1271 	error = unp_connect2(so, so2, PRU_CONNECT);
1272 	UNP_PCB_UNLOCK(unp2);
1273 	UNP_PCB_UNLOCK(unp);
1274 bad2:
1275 	UNP_GLOBAL_WUNLOCK();
1276 	if (vfslocked)
1277 		/*
1278 		 * Giant has been previously acquired. This means filesystem
1279 		 * isn't MPSAFE.  Do it once again.
1280 		 */
1281 		mtx_lock(&Giant);
1282 bad:
1283 	if (vp != NULL)
1284 		vput(vp);
1285 	VFS_UNLOCK_GIANT(vfslocked);
1286 	free(sa, M_SONAME);
1287 	UNP_GLOBAL_WLOCK();
1288 	UNP_PCB_LOCK(unp);
1289 	unp->unp_flags &= ~UNP_CONNECTING;
1290 	UNP_PCB_UNLOCK(unp);
1291 	return (error);
1292 }
1293 
1294 static int
1295 unp_connect2(struct socket *so, struct socket *so2, int req)
1296 {
1297 	struct unpcb *unp;
1298 	struct unpcb *unp2;
1299 
1300 	unp = sotounpcb(so);
1301 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1302 	unp2 = sotounpcb(so2);
1303 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1304 
1305 	UNP_GLOBAL_WLOCK_ASSERT();
1306 	UNP_PCB_LOCK_ASSERT(unp);
1307 	UNP_PCB_LOCK_ASSERT(unp2);
1308 
1309 	if (so2->so_type != so->so_type)
1310 		return (EPROTOTYPE);
1311 	unp->unp_conn = unp2;
1312 
1313 	switch (so->so_type) {
1314 	case SOCK_DGRAM:
1315 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1316 		soisconnected(so);
1317 		break;
1318 
1319 	case SOCK_STREAM:
1320 		unp2->unp_conn = unp;
1321 		if (req == PRU_CONNECT &&
1322 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1323 			soisconnecting(so);
1324 		else
1325 			soisconnected(so);
1326 		soisconnected(so2);
1327 		break;
1328 
1329 	default:
1330 		panic("unp_connect2");
1331 	}
1332 	return (0);
1333 }
1334 
1335 static void
1336 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1337 {
1338 	struct socket *so;
1339 
1340 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1341 
1342 	UNP_GLOBAL_WLOCK_ASSERT();
1343 	UNP_PCB_LOCK_ASSERT(unp);
1344 	UNP_PCB_LOCK_ASSERT(unp2);
1345 
1346 	unp->unp_conn = NULL;
1347 	switch (unp->unp_socket->so_type) {
1348 	case SOCK_DGRAM:
1349 		LIST_REMOVE(unp, unp_reflink);
1350 		so = unp->unp_socket;
1351 		SOCK_LOCK(so);
1352 		so->so_state &= ~SS_ISCONNECTED;
1353 		SOCK_UNLOCK(so);
1354 		break;
1355 
1356 	case SOCK_STREAM:
1357 		soisdisconnected(unp->unp_socket);
1358 		unp2->unp_conn = NULL;
1359 		soisdisconnected(unp2->unp_socket);
1360 		break;
1361 	}
1362 }
1363 
1364 /*
1365  * unp_pcblist() walks the global list of struct unpcb's to generate a
1366  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1367  * sequentially, validating the generation number on each to see if it has
1368  * been detached.  All of this is necessary because copyout() may sleep on
1369  * disk I/O.
1370  */
1371 static int
1372 unp_pcblist(SYSCTL_HANDLER_ARGS)
1373 {
1374 	int error, i, n;
1375 	int freeunp;
1376 	struct unpcb *unp, **unp_list;
1377 	unp_gen_t gencnt;
1378 	struct xunpgen *xug;
1379 	struct unp_head *head;
1380 	struct xunpcb *xu;
1381 
1382 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1383 
1384 	/*
1385 	 * The process of preparing the PCB list is too time-consuming and
1386 	 * resource-intensive to repeat twice on every request.
1387 	 */
1388 	if (req->oldptr == NULL) {
1389 		n = unp_count;
1390 		req->oldidx = 2 * (sizeof *xug)
1391 			+ (n + n/8) * sizeof(struct xunpcb);
1392 		return (0);
1393 	}
1394 
1395 	if (req->newptr != NULL)
1396 		return (EPERM);
1397 
1398 	/*
1399 	 * OK, now we're committed to doing something.
1400 	 */
1401 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1402 	UNP_GLOBAL_RLOCK();
1403 	gencnt = unp_gencnt;
1404 	n = unp_count;
1405 	UNP_GLOBAL_RUNLOCK();
1406 
1407 	xug->xug_len = sizeof *xug;
1408 	xug->xug_count = n;
1409 	xug->xug_gen = gencnt;
1410 	xug->xug_sogen = so_gencnt;
1411 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1412 	if (error) {
1413 		free(xug, M_TEMP);
1414 		return (error);
1415 	}
1416 
1417 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1418 
1419 	UNP_GLOBAL_RLOCK();
1420 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1421 	     unp = LIST_NEXT(unp, unp_link)) {
1422 		UNP_PCB_LOCK(unp);
1423 		if (unp->unp_gencnt <= gencnt) {
1424 			if (cr_cansee(req->td->td_ucred,
1425 			    unp->unp_socket->so_cred)) {
1426 				UNP_PCB_UNLOCK(unp);
1427 				continue;
1428 			}
1429 			unp_list[i++] = unp;
1430 			unp->unp_refcount++;
1431 		}
1432 		UNP_PCB_UNLOCK(unp);
1433 	}
1434 	UNP_GLOBAL_RUNLOCK();
1435 	n = i;			/* In case we lost some during malloc. */
1436 
1437 	error = 0;
1438 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1439 	for (i = 0; i < n; i++) {
1440 		unp = unp_list[i];
1441 		UNP_PCB_LOCK(unp);
1442 		unp->unp_refcount--;
1443 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1444 			xu->xu_len = sizeof *xu;
1445 			xu->xu_unpp = unp;
1446 			/*
1447 			 * XXX - need more locking here to protect against
1448 			 * connect/disconnect races for SMP.
1449 			 */
1450 			if (unp->unp_addr != NULL)
1451 				bcopy(unp->unp_addr, &xu->xu_addr,
1452 				      unp->unp_addr->sun_len);
1453 			if (unp->unp_conn != NULL &&
1454 			    unp->unp_conn->unp_addr != NULL)
1455 				bcopy(unp->unp_conn->unp_addr,
1456 				      &xu->xu_caddr,
1457 				      unp->unp_conn->unp_addr->sun_len);
1458 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1459 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1460 			UNP_PCB_UNLOCK(unp);
1461 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1462 		} else {
1463 			freeunp = (unp->unp_refcount == 0);
1464 			UNP_PCB_UNLOCK(unp);
1465 			if (freeunp) {
1466 				UNP_PCB_LOCK_DESTROY(unp);
1467 				uma_zfree(unp_zone, unp);
1468 			}
1469 		}
1470 	}
1471 	free(xu, M_TEMP);
1472 	if (!error) {
1473 		/*
1474 		 * Give the user an updated idea of our state.  If the
1475 		 * generation differs from what we told her before, she knows
1476 		 * that something happened while we were processing this
1477 		 * request, and it might be necessary to retry.
1478 		 */
1479 		xug->xug_gen = unp_gencnt;
1480 		xug->xug_sogen = so_gencnt;
1481 		xug->xug_count = unp_count;
1482 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1483 	}
1484 	free(unp_list, M_TEMP);
1485 	free(xug, M_TEMP);
1486 	return (error);
1487 }
1488 
1489 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1490 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1491 	    "List of active local datagram sockets");
1492 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1493 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1494 	    "List of active local stream sockets");
1495 
1496 static void
1497 unp_shutdown(struct unpcb *unp)
1498 {
1499 	struct unpcb *unp2;
1500 	struct socket *so;
1501 
1502 	UNP_GLOBAL_WLOCK_ASSERT();
1503 	UNP_PCB_LOCK_ASSERT(unp);
1504 
1505 	unp2 = unp->unp_conn;
1506 	if (unp->unp_socket->so_type == SOCK_STREAM && unp2 != NULL) {
1507 		so = unp2->unp_socket;
1508 		if (so != NULL)
1509 			socantrcvmore(so);
1510 	}
1511 }
1512 
1513 static void
1514 unp_drop(struct unpcb *unp, int errno)
1515 {
1516 	struct socket *so = unp->unp_socket;
1517 	struct unpcb *unp2;
1518 
1519 	UNP_GLOBAL_WLOCK_ASSERT();
1520 	UNP_PCB_LOCK_ASSERT(unp);
1521 
1522 	so->so_error = errno;
1523 	unp2 = unp->unp_conn;
1524 	if (unp2 == NULL)
1525 		return;
1526 	UNP_PCB_LOCK(unp2);
1527 	unp_disconnect(unp, unp2);
1528 	UNP_PCB_UNLOCK(unp2);
1529 }
1530 
1531 static void
1532 unp_freerights(struct file **rp, int fdcount)
1533 {
1534 	int i;
1535 	struct file *fp;
1536 
1537 	for (i = 0; i < fdcount; i++) {
1538 		fp = *rp;
1539 		*rp++ = NULL;
1540 		unp_discard(fp);
1541 	}
1542 }
1543 
1544 static int
1545 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1546 {
1547 	struct thread *td = curthread;		/* XXX */
1548 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1549 	int i;
1550 	int *fdp;
1551 	struct file **rp;
1552 	struct file *fp;
1553 	void *data;
1554 	socklen_t clen = control->m_len, datalen;
1555 	int error, newfds;
1556 	int f;
1557 	u_int newlen;
1558 
1559 	UNP_GLOBAL_UNLOCK_ASSERT();
1560 
1561 	error = 0;
1562 	if (controlp != NULL) /* controlp == NULL => free control messages */
1563 		*controlp = NULL;
1564 	while (cm != NULL) {
1565 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1566 			error = EINVAL;
1567 			break;
1568 		}
1569 		data = CMSG_DATA(cm);
1570 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1571 		if (cm->cmsg_level == SOL_SOCKET
1572 		    && cm->cmsg_type == SCM_RIGHTS) {
1573 			newfds = datalen / sizeof(struct file *);
1574 			rp = data;
1575 
1576 			/* If we're not outputting the descriptors free them. */
1577 			if (error || controlp == NULL) {
1578 				unp_freerights(rp, newfds);
1579 				goto next;
1580 			}
1581 			FILEDESC_XLOCK(td->td_proc->p_fd);
1582 			/* if the new FD's will not fit free them.  */
1583 			if (!fdavail(td, newfds)) {
1584 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1585 				error = EMSGSIZE;
1586 				unp_freerights(rp, newfds);
1587 				goto next;
1588 			}
1589 
1590 			/*
1591 			 * Now change each pointer to an fd in the global
1592 			 * table to an integer that is the index to the local
1593 			 * fd table entry that we set up to point to the
1594 			 * global one we are transferring.
1595 			 */
1596 			newlen = newfds * sizeof(int);
1597 			*controlp = sbcreatecontrol(NULL, newlen,
1598 			    SCM_RIGHTS, SOL_SOCKET);
1599 			if (*controlp == NULL) {
1600 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1601 				error = E2BIG;
1602 				unp_freerights(rp, newfds);
1603 				goto next;
1604 			}
1605 
1606 			fdp = (int *)
1607 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1608 			for (i = 0; i < newfds; i++) {
1609 				if (fdalloc(td, 0, &f))
1610 					panic("unp_externalize fdalloc failed");
1611 				fp = *rp++;
1612 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1613 				unp_externalize_fp(fp);
1614 				*fdp++ = f;
1615 			}
1616 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1617 		} else {
1618 			/* We can just copy anything else across. */
1619 			if (error || controlp == NULL)
1620 				goto next;
1621 			*controlp = sbcreatecontrol(NULL, datalen,
1622 			    cm->cmsg_type, cm->cmsg_level);
1623 			if (*controlp == NULL) {
1624 				error = ENOBUFS;
1625 				goto next;
1626 			}
1627 			bcopy(data,
1628 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1629 			    datalen);
1630 		}
1631 		controlp = &(*controlp)->m_next;
1632 
1633 next:
1634 		if (CMSG_SPACE(datalen) < clen) {
1635 			clen -= CMSG_SPACE(datalen);
1636 			cm = (struct cmsghdr *)
1637 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1638 		} else {
1639 			clen = 0;
1640 			cm = NULL;
1641 		}
1642 	}
1643 
1644 	m_freem(control);
1645 	return (error);
1646 }
1647 
1648 static void
1649 unp_zone_change(void *tag)
1650 {
1651 
1652 	uma_zone_set_max(unp_zone, maxsockets);
1653 }
1654 
1655 static void
1656 unp_init(void)
1657 {
1658 
1659 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1660 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1661 	if (unp_zone == NULL)
1662 		panic("unp_init");
1663 	uma_zone_set_max(unp_zone, maxsockets);
1664 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1665 	    NULL, EVENTHANDLER_PRI_ANY);
1666 	LIST_INIT(&unp_dhead);
1667 	LIST_INIT(&unp_shead);
1668 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1669 	UNP_GLOBAL_LOCK_INIT();
1670 }
1671 
1672 static int
1673 unp_internalize(struct mbuf **controlp, struct thread *td)
1674 {
1675 	struct mbuf *control = *controlp;
1676 	struct proc *p = td->td_proc;
1677 	struct filedesc *fdescp = p->p_fd;
1678 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1679 	struct cmsgcred *cmcred;
1680 	struct file **rp;
1681 	struct file *fp;
1682 	struct timeval *tv;
1683 	int i, fd, *fdp;
1684 	void *data;
1685 	socklen_t clen = control->m_len, datalen;
1686 	int error, oldfds;
1687 	u_int newlen;
1688 
1689 	UNP_GLOBAL_UNLOCK_ASSERT();
1690 
1691 	error = 0;
1692 	*controlp = NULL;
1693 	while (cm != NULL) {
1694 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1695 		    || cm->cmsg_len > clen) {
1696 			error = EINVAL;
1697 			goto out;
1698 		}
1699 		data = CMSG_DATA(cm);
1700 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1701 
1702 		switch (cm->cmsg_type) {
1703 		/*
1704 		 * Fill in credential information.
1705 		 */
1706 		case SCM_CREDS:
1707 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1708 			    SCM_CREDS, SOL_SOCKET);
1709 			if (*controlp == NULL) {
1710 				error = ENOBUFS;
1711 				goto out;
1712 			}
1713 			cmcred = (struct cmsgcred *)
1714 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1715 			cmcred->cmcred_pid = p->p_pid;
1716 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1717 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1718 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1719 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1720 			    CMGROUP_MAX);
1721 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1722 				cmcred->cmcred_groups[i] =
1723 				    td->td_ucred->cr_groups[i];
1724 			break;
1725 
1726 		case SCM_RIGHTS:
1727 			oldfds = datalen / sizeof (int);
1728 			/*
1729 			 * Check that all the FDs passed in refer to legal
1730 			 * files.  If not, reject the entire operation.
1731 			 */
1732 			fdp = data;
1733 			FILEDESC_SLOCK(fdescp);
1734 			for (i = 0; i < oldfds; i++) {
1735 				fd = *fdp++;
1736 				if ((unsigned)fd >= fdescp->fd_nfiles ||
1737 				    fdescp->fd_ofiles[fd] == NULL) {
1738 					FILEDESC_SUNLOCK(fdescp);
1739 					error = EBADF;
1740 					goto out;
1741 				}
1742 				fp = fdescp->fd_ofiles[fd];
1743 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1744 					FILEDESC_SUNLOCK(fdescp);
1745 					error = EOPNOTSUPP;
1746 					goto out;
1747 				}
1748 
1749 			}
1750 
1751 			/*
1752 			 * Now replace the integer FDs with pointers to the
1753 			 * associated global file table entry..
1754 			 */
1755 			newlen = oldfds * sizeof(struct file *);
1756 			*controlp = sbcreatecontrol(NULL, newlen,
1757 			    SCM_RIGHTS, SOL_SOCKET);
1758 			if (*controlp == NULL) {
1759 				FILEDESC_SUNLOCK(fdescp);
1760 				error = E2BIG;
1761 				goto out;
1762 			}
1763 			fdp = data;
1764 			rp = (struct file **)
1765 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1766 			for (i = 0; i < oldfds; i++) {
1767 				fp = fdescp->fd_ofiles[*fdp++];
1768 				*rp++ = fp;
1769 				unp_internalize_fp(fp);
1770 			}
1771 			FILEDESC_SUNLOCK(fdescp);
1772 			break;
1773 
1774 		case SCM_TIMESTAMP:
1775 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1776 			    SCM_TIMESTAMP, SOL_SOCKET);
1777 			if (*controlp == NULL) {
1778 				error = ENOBUFS;
1779 				goto out;
1780 			}
1781 			tv = (struct timeval *)
1782 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1783 			microtime(tv);
1784 			break;
1785 
1786 		default:
1787 			error = EINVAL;
1788 			goto out;
1789 		}
1790 
1791 		controlp = &(*controlp)->m_next;
1792 		if (CMSG_SPACE(datalen) < clen) {
1793 			clen -= CMSG_SPACE(datalen);
1794 			cm = (struct cmsghdr *)
1795 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1796 		} else {
1797 			clen = 0;
1798 			cm = NULL;
1799 		}
1800 	}
1801 
1802 out:
1803 	m_freem(control);
1804 	return (error);
1805 }
1806 
1807 static struct mbuf *
1808 unp_addsockcred(struct thread *td, struct mbuf *control)
1809 {
1810 	struct mbuf *m, *n, *n_prev;
1811 	struct sockcred *sc;
1812 	const struct cmsghdr *cm;
1813 	int ngroups;
1814 	int i;
1815 
1816 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1817 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1818 	if (m == NULL)
1819 		return (control);
1820 
1821 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1822 	sc->sc_uid = td->td_ucred->cr_ruid;
1823 	sc->sc_euid = td->td_ucred->cr_uid;
1824 	sc->sc_gid = td->td_ucred->cr_rgid;
1825 	sc->sc_egid = td->td_ucred->cr_gid;
1826 	sc->sc_ngroups = ngroups;
1827 	for (i = 0; i < sc->sc_ngroups; i++)
1828 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1829 
1830 	/*
1831 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1832 	 * created SCM_CREDS control message (struct sockcred) has another
1833 	 * format.
1834 	 */
1835 	if (control != NULL)
1836 		for (n = control, n_prev = NULL; n != NULL;) {
1837 			cm = mtod(n, struct cmsghdr *);
1838     			if (cm->cmsg_level == SOL_SOCKET &&
1839 			    cm->cmsg_type == SCM_CREDS) {
1840     				if (n_prev == NULL)
1841 					control = n->m_next;
1842 				else
1843 					n_prev->m_next = n->m_next;
1844 				n = m_free(n);
1845 			} else {
1846 				n_prev = n;
1847 				n = n->m_next;
1848 			}
1849 		}
1850 
1851 	/* Prepend it to the head. */
1852 	m->m_next = control;
1853 	return (m);
1854 }
1855 
1856 static struct unpcb *
1857 fptounp(struct file *fp)
1858 {
1859 	struct socket *so;
1860 
1861 	if (fp->f_type != DTYPE_SOCKET)
1862 		return (NULL);
1863 	if ((so = fp->f_data) == NULL)
1864 		return (NULL);
1865 	if (so->so_proto->pr_domain != &localdomain)
1866 		return (NULL);
1867 	return sotounpcb(so);
1868 }
1869 
1870 static void
1871 unp_discard(struct file *fp)
1872 {
1873 
1874 	unp_externalize_fp(fp);
1875 	(void) closef(fp, (struct thread *)NULL);
1876 }
1877 
1878 static void
1879 unp_internalize_fp(struct file *fp)
1880 {
1881 	struct unpcb *unp;
1882 
1883 	UNP_GLOBAL_WLOCK();
1884 	if ((unp = fptounp(fp)) != NULL) {
1885 		unp->unp_file = fp;
1886 		unp->unp_msgcount++;
1887 	}
1888 	fhold(fp);
1889 	unp_rights++;
1890 	UNP_GLOBAL_WUNLOCK();
1891 }
1892 
1893 static void
1894 unp_externalize_fp(struct file *fp)
1895 {
1896 	struct unpcb *unp;
1897 
1898 	UNP_GLOBAL_WLOCK();
1899 	if ((unp = fptounp(fp)) != NULL)
1900 		unp->unp_msgcount--;
1901 	unp_rights--;
1902 	UNP_GLOBAL_WUNLOCK();
1903 }
1904 
1905 /*
1906  * unp_defer indicates whether additional work has been defered for a future
1907  * pass through unp_gc().  It is thread local and does not require explicit
1908  * synchronization.
1909  */
1910 static int	unp_marked;
1911 static int	unp_unreachable;
1912 
1913 static void
1914 unp_accessable(struct file *fp)
1915 {
1916 	struct unpcb *unp;
1917 
1918 	if ((unp = fptounp(fp)) == NULL)
1919 		return;
1920 	if (unp->unp_gcflag & UNPGC_REF)
1921 		return;
1922 	unp->unp_gcflag &= ~UNPGC_DEAD;
1923 	unp->unp_gcflag |= UNPGC_REF;
1924 	unp_marked++;
1925 }
1926 
1927 static void
1928 unp_gc_process(struct unpcb *unp)
1929 {
1930 	struct socket *soa;
1931 	struct socket *so;
1932 	struct file *fp;
1933 
1934 	/* Already processed. */
1935 	if (unp->unp_gcflag & UNPGC_SCANNED)
1936 		return;
1937 	fp = unp->unp_file;
1938 
1939 	/*
1940 	 * Check for a socket potentially in a cycle.  It must be in a
1941 	 * queue as indicated by msgcount, and this must equal the file
1942 	 * reference count.  Note that when msgcount is 0 the file is NULL.
1943 	 */
1944 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
1945 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
1946 		unp->unp_gcflag |= UNPGC_DEAD;
1947 		unp_unreachable++;
1948 		return;
1949 	}
1950 
1951 	/*
1952 	 * Mark all sockets we reference with RIGHTS.
1953 	 */
1954 	so = unp->unp_socket;
1955 	SOCKBUF_LOCK(&so->so_rcv);
1956 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
1957 	SOCKBUF_UNLOCK(&so->so_rcv);
1958 
1959 	/*
1960 	 * Mark all sockets in our accept queue.
1961 	 */
1962 	ACCEPT_LOCK();
1963 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
1964 		SOCKBUF_LOCK(&soa->so_rcv);
1965 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
1966 		SOCKBUF_UNLOCK(&soa->so_rcv);
1967 	}
1968 	ACCEPT_UNLOCK();
1969 	unp->unp_gcflag |= UNPGC_SCANNED;
1970 }
1971 
1972 static int unp_recycled;
1973 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
1974     "Number of unreachable sockets claimed by the garbage collector.");
1975 
1976 static int unp_taskcount;
1977 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
1978     "Number of times the garbage collector has run.");
1979 
1980 static void
1981 unp_gc(__unused void *arg, int pending)
1982 {
1983 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, NULL };
1984 	struct unp_head **head;
1985 	struct file **unref;
1986 	struct unpcb *unp;
1987 	int i;
1988 
1989 	unp_taskcount++;
1990 	UNP_GLOBAL_RLOCK();
1991 	/*
1992 	 * First clear all gc flags from previous runs.
1993 	 */
1994 	for (head = heads; *head != NULL; head++)
1995 		LIST_FOREACH(unp, *head, unp_link)
1996 			unp->unp_gcflag = 0;
1997 
1998 	/*
1999 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2000 	 * is reachable all of the sockets it references are reachable.
2001 	 * Stop the scan once we do a complete loop without discovering
2002 	 * a new reachable socket.
2003 	 */
2004 	do {
2005 		unp_unreachable = 0;
2006 		unp_marked = 0;
2007 		for (head = heads; *head != NULL; head++)
2008 			LIST_FOREACH(unp, *head, unp_link)
2009 				unp_gc_process(unp);
2010 	} while (unp_marked);
2011 	UNP_GLOBAL_RUNLOCK();
2012 	if (unp_unreachable == 0)
2013 		return;
2014 
2015 	/*
2016 	 * Allocate space for a local list of dead unpcbs.
2017 	 */
2018 	unref = malloc(unp_unreachable * sizeof(struct file *),
2019 	    M_TEMP, M_WAITOK);
2020 
2021 	/*
2022 	 * Iterate looking for sockets which have been specifically marked
2023 	 * as as unreachable and store them locally.
2024 	 */
2025 	UNP_GLOBAL_RLOCK();
2026 	for (i = 0, head = heads; *head != NULL; head++)
2027 		LIST_FOREACH(unp, *head, unp_link)
2028 			if (unp->unp_gcflag & UNPGC_DEAD) {
2029 				unref[i++] = unp->unp_file;
2030 				fhold(unp->unp_file);
2031 				KASSERT(unp->unp_file != NULL,
2032 				    ("unp_gc: Invalid unpcb."));
2033 				KASSERT(i <= unp_unreachable,
2034 				    ("unp_gc: incorrect unreachable count."));
2035 			}
2036 	UNP_GLOBAL_RUNLOCK();
2037 
2038 	/*
2039 	 * Now flush all sockets, free'ing rights.  This will free the
2040 	 * struct files associated with these sockets but leave each socket
2041 	 * with one remaining ref.
2042 	 */
2043 	for (i = 0; i < unp_unreachable; i++)
2044 		sorflush(unref[i]->f_data);
2045 
2046 	/*
2047 	 * And finally release the sockets so they can be reclaimed.
2048 	 */
2049 	for (i = 0; i < unp_unreachable; i++)
2050 		fdrop(unref[i], NULL);
2051 	unp_recycled += unp_unreachable;
2052 	free(unref, M_TEMP);
2053 }
2054 
2055 static void
2056 unp_dispose(struct mbuf *m)
2057 {
2058 
2059 	if (m)
2060 		unp_scan(m, unp_discard);
2061 }
2062 
2063 static void
2064 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2065 {
2066 	struct mbuf *m;
2067 	struct file **rp;
2068 	struct cmsghdr *cm;
2069 	void *data;
2070 	int i;
2071 	socklen_t clen, datalen;
2072 	int qfds;
2073 
2074 	while (m0 != NULL) {
2075 		for (m = m0; m; m = m->m_next) {
2076 			if (m->m_type != MT_CONTROL)
2077 				continue;
2078 
2079 			cm = mtod(m, struct cmsghdr *);
2080 			clen = m->m_len;
2081 
2082 			while (cm != NULL) {
2083 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2084 					break;
2085 
2086 				data = CMSG_DATA(cm);
2087 				datalen = (caddr_t)cm + cm->cmsg_len
2088 				    - (caddr_t)data;
2089 
2090 				if (cm->cmsg_level == SOL_SOCKET &&
2091 				    cm->cmsg_type == SCM_RIGHTS) {
2092 					qfds = datalen / sizeof (struct file *);
2093 					rp = data;
2094 					for (i = 0; i < qfds; i++)
2095 						(*op)(*rp++);
2096 				}
2097 
2098 				if (CMSG_SPACE(datalen) < clen) {
2099 					clen -= CMSG_SPACE(datalen);
2100 					cm = (struct cmsghdr *)
2101 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2102 				} else {
2103 					clen = 0;
2104 					cm = NULL;
2105 				}
2106 			}
2107 		}
2108 		m0 = m0->m_act;
2109 	}
2110 }
2111 
2112 #ifdef DDB
2113 static void
2114 db_print_indent(int indent)
2115 {
2116 	int i;
2117 
2118 	for (i = 0; i < indent; i++)
2119 		db_printf(" ");
2120 }
2121 
2122 static void
2123 db_print_unpflags(int unp_flags)
2124 {
2125 	int comma;
2126 
2127 	comma = 0;
2128 	if (unp_flags & UNP_HAVEPC) {
2129 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2130 		comma = 1;
2131 	}
2132 	if (unp_flags & UNP_HAVEPCCACHED) {
2133 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2134 		comma = 1;
2135 	}
2136 	if (unp_flags & UNP_WANTCRED) {
2137 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2138 		comma = 1;
2139 	}
2140 	if (unp_flags & UNP_CONNWAIT) {
2141 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2142 		comma = 1;
2143 	}
2144 	if (unp_flags & UNP_CONNECTING) {
2145 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2146 		comma = 1;
2147 	}
2148 	if (unp_flags & UNP_BINDING) {
2149 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2150 		comma = 1;
2151 	}
2152 }
2153 
2154 static void
2155 db_print_xucred(int indent, struct xucred *xu)
2156 {
2157 	int comma, i;
2158 
2159 	db_print_indent(indent);
2160 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2161 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2162 	db_print_indent(indent);
2163 	db_printf("cr_groups: ");
2164 	comma = 0;
2165 	for (i = 0; i < xu->cr_ngroups; i++) {
2166 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2167 		comma = 1;
2168 	}
2169 	db_printf("\n");
2170 }
2171 
2172 static void
2173 db_print_unprefs(int indent, struct unp_head *uh)
2174 {
2175 	struct unpcb *unp;
2176 	int counter;
2177 
2178 	counter = 0;
2179 	LIST_FOREACH(unp, uh, unp_reflink) {
2180 		if (counter % 4 == 0)
2181 			db_print_indent(indent);
2182 		db_printf("%p  ", unp);
2183 		if (counter % 4 == 3)
2184 			db_printf("\n");
2185 		counter++;
2186 	}
2187 	if (counter != 0 && counter % 4 != 0)
2188 		db_printf("\n");
2189 }
2190 
2191 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2192 {
2193 	struct unpcb *unp;
2194 
2195         if (!have_addr) {
2196                 db_printf("usage: show unpcb <addr>\n");
2197                 return;
2198         }
2199         unp = (struct unpcb *)addr;
2200 
2201 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2202 	    unp->unp_vnode);
2203 
2204 	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2205 	    unp->unp_conn);
2206 
2207 	db_printf("unp_refs:\n");
2208 	db_print_unprefs(2, &unp->unp_refs);
2209 
2210 	/* XXXRW: Would be nice to print the full address, if any. */
2211 	db_printf("unp_addr: %p\n", unp->unp_addr);
2212 
2213 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2214 	    unp->unp_cc, unp->unp_mbcnt,
2215 	    (unsigned long long)unp->unp_gencnt);
2216 
2217 	db_printf("unp_flags: %x (", unp->unp_flags);
2218 	db_print_unpflags(unp->unp_flags);
2219 	db_printf(")\n");
2220 
2221 	db_printf("unp_peercred:\n");
2222 	db_print_xucred(2, &unp->unp_peercred);
2223 
2224 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2225 }
2226 #endif
2227