xref: /freebsd/sys/kern/uipc_usrreq.c (revision ab2043b81eaba0d7d7769b4a58b2b6d17bc464a3)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	distinguish datagram size limits from flow control limits in SEQPACKET
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 /*
105  * Locking key:
106  * (l)	Locked using list lock
107  * (g)	Locked using linkage lock
108  */
109 
110 static uma_zone_t	unp_zone;
111 static unp_gen_t	unp_gencnt;	/* (l) */
112 static u_int		unp_count;	/* (l) Count of local sockets. */
113 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114 static int		unp_rights;	/* (g) File descriptors in flight. */
115 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118 
119 struct unp_defer {
120 	SLIST_ENTRY(unp_defer) ud_link;
121 	struct file *ud_fp;
122 };
123 static SLIST_HEAD(, unp_defer) unp_defers;
124 static int unp_defers_count;
125 
126 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct task	unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158 static u_long	unpdg_recvspace = 4*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
164     "SOCK_STREAM");
165 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
166 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
167     "SOCK_SEQPACKET");
168 
169 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
170 	   &unpst_sendspace, 0, "Default stream send space.");
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
172 	   &unpst_recvspace, 0, "Default stream receive space.");
173 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
174 	   &unpdg_sendspace, 0, "Default datagram send space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
176 	   &unpdg_recvspace, 0, "Default datagram receive space.");
177 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
178 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
180 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
181 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
182     "File descriptors in flight.");
183 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
184     &unp_defers_count, 0,
185     "File descriptors deferred to taskqueue for close.");
186 
187 /*
188  * Locking and synchronization:
189  *
190  * Three types of locks exit in the local domain socket implementation: a
191  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
192  * global locks, the list lock protects the socket count, global generation
193  * number, and stream/datagram global lists.  The linkage lock protects the
194  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
195  * held exclusively over the acquisition of multiple unpcb locks to prevent
196  * deadlock.
197  *
198  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
199  * allocated in pru_attach() and freed in pru_detach().  The validity of that
200  * pointer is an invariant, so no lock is required to dereference the so_pcb
201  * pointer if a valid socket reference is held by the caller.  In practice,
202  * this is always true during operations performed on a socket.  Each unpcb
203  * has a back-pointer to its socket, unp_socket, which will be stable under
204  * the same circumstances.
205  *
206  * This pointer may only be safely dereferenced as long as a valid reference
207  * to the unpcb is held.  Typically, this reference will be from the socket,
208  * or from another unpcb when the referring unpcb's lock is held (in order
209  * that the reference not be invalidated during use).  For example, to follow
210  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
211  * as unp_socket remains valid as long as the reference to unp_conn is valid.
212  *
213  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
214  * atomic reads without the lock may be performed "lockless", but more
215  * complex reads and read-modify-writes require the mutex to be held.  No
216  * lock order is defined between unpcb locks -- multiple unpcb locks may be
217  * acquired at the same time only when holding the linkage rwlock
218  * exclusively, which prevents deadlocks.
219  *
220  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
221  * protocols, bind() is a non-atomic operation, and connect() requires
222  * potential sleeping in the protocol, due to potentially waiting on local or
223  * distributed file systems.  We try to separate "lookup" operations, which
224  * may sleep, and the IPC operations themselves, which typically can occur
225  * with relative atomicity as locks can be held over the entire operation.
226  *
227  * Another tricky issue is simultaneous multi-threaded or multi-process
228  * access to a single UNIX domain socket.  These are handled by the flags
229  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
230  * binding, both of which involve dropping UNIX domain socket locks in order
231  * to perform namei() and other file system operations.
232  */
233 static struct rwlock	unp_link_rwlock;
234 static struct mtx	unp_list_lock;
235 static struct mtx	unp_defers_lock;
236 
237 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
238 					    "unp_link_rwlock")
239 
240 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
241 					    RA_LOCKED)
242 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243 					    RA_UNLOCKED)
244 
245 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
246 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
247 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
248 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
249 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
250 					    RA_WLOCKED)
251 
252 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
253 					    "unp_list_lock", NULL, MTX_DEF)
254 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
255 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
256 
257 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
258 					    "unp_defer", NULL, MTX_DEF)
259 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
260 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
261 
262 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
263 					    "unp_mtx", "unp_mtx",	\
264 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
265 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
266 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
267 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
268 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
269 
270 static int	uipc_connect2(struct socket *, struct socket *);
271 static int	uipc_ctloutput(struct socket *, struct sockopt *);
272 static int	unp_connect(struct socket *, struct sockaddr *,
273 		    struct thread *);
274 static int	unp_connect2(struct socket *so, struct socket *so2, int);
275 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
276 static void	unp_dispose(struct mbuf *);
277 static void	unp_shutdown(struct unpcb *);
278 static void	unp_drop(struct unpcb *, int);
279 static void	unp_gc(__unused void *, int);
280 static void	unp_scan(struct mbuf *, void (*)(struct file *));
281 static void	unp_discard(struct file *);
282 static void	unp_freerights(struct file **, int);
283 static void	unp_init(void);
284 static int	unp_internalize(struct mbuf **, struct thread *);
285 static void	unp_internalize_fp(struct file *);
286 static int	unp_externalize(struct mbuf *, struct mbuf **);
287 static int	unp_externalize_fp(struct file *);
288 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
289 static void	unp_process_defers(void * __unused, int);
290 
291 /*
292  * Definitions of protocols supported in the LOCAL domain.
293  */
294 static struct domain localdomain;
295 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
296 static struct pr_usrreqs uipc_usrreqs_seqpacket;
297 static struct protosw localsw[] = {
298 {
299 	.pr_type =		SOCK_STREAM,
300 	.pr_domain =		&localdomain,
301 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
302 	.pr_ctloutput =		&uipc_ctloutput,
303 	.pr_usrreqs =		&uipc_usrreqs_stream
304 },
305 {
306 	.pr_type =		SOCK_DGRAM,
307 	.pr_domain =		&localdomain,
308 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
309 	.pr_ctloutput =		&uipc_ctloutput,
310 	.pr_usrreqs =		&uipc_usrreqs_dgram
311 },
312 {
313 	.pr_type =		SOCK_SEQPACKET,
314 	.pr_domain =		&localdomain,
315 
316 	/*
317 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
318 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
319 	 * that supports both atomic record writes and control data.
320 	 */
321 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
322 				    PR_RIGHTS,
323 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
324 },
325 };
326 
327 static struct domain localdomain = {
328 	.dom_family =		AF_LOCAL,
329 	.dom_name =		"local",
330 	.dom_init =		unp_init,
331 	.dom_externalize =	unp_externalize,
332 	.dom_dispose =		unp_dispose,
333 	.dom_protosw =		localsw,
334 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
335 };
336 DOMAIN_SET(local);
337 
338 static void
339 uipc_abort(struct socket *so)
340 {
341 	struct unpcb *unp, *unp2;
342 
343 	unp = sotounpcb(so);
344 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
345 
346 	UNP_LINK_WLOCK();
347 	UNP_PCB_LOCK(unp);
348 	unp2 = unp->unp_conn;
349 	if (unp2 != NULL) {
350 		UNP_PCB_LOCK(unp2);
351 		unp_drop(unp2, ECONNABORTED);
352 		UNP_PCB_UNLOCK(unp2);
353 	}
354 	UNP_PCB_UNLOCK(unp);
355 	UNP_LINK_WUNLOCK();
356 }
357 
358 static int
359 uipc_accept(struct socket *so, struct sockaddr **nam)
360 {
361 	struct unpcb *unp, *unp2;
362 	const struct sockaddr *sa;
363 
364 	/*
365 	 * Pass back name of connected socket, if it was bound and we are
366 	 * still connected (our peer may have closed already!).
367 	 */
368 	unp = sotounpcb(so);
369 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
370 
371 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
372 	UNP_LINK_RLOCK();
373 	unp2 = unp->unp_conn;
374 	if (unp2 != NULL && unp2->unp_addr != NULL) {
375 		UNP_PCB_LOCK(unp2);
376 		sa = (struct sockaddr *) unp2->unp_addr;
377 		bcopy(sa, *nam, sa->sa_len);
378 		UNP_PCB_UNLOCK(unp2);
379 	} else {
380 		sa = &sun_noname;
381 		bcopy(sa, *nam, sa->sa_len);
382 	}
383 	UNP_LINK_RUNLOCK();
384 	return (0);
385 }
386 
387 static int
388 uipc_attach(struct socket *so, int proto, struct thread *td)
389 {
390 	u_long sendspace, recvspace;
391 	struct unpcb *unp;
392 	int error;
393 
394 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
395 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
396 		switch (so->so_type) {
397 		case SOCK_STREAM:
398 			sendspace = unpst_sendspace;
399 			recvspace = unpst_recvspace;
400 			break;
401 
402 		case SOCK_DGRAM:
403 			sendspace = unpdg_sendspace;
404 			recvspace = unpdg_recvspace;
405 			break;
406 
407 		case SOCK_SEQPACKET:
408 			sendspace = unpsp_sendspace;
409 			recvspace = unpsp_recvspace;
410 			break;
411 
412 		default:
413 			panic("uipc_attach");
414 		}
415 		error = soreserve(so, sendspace, recvspace);
416 		if (error)
417 			return (error);
418 	}
419 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
420 	if (unp == NULL)
421 		return (ENOBUFS);
422 	LIST_INIT(&unp->unp_refs);
423 	UNP_PCB_LOCK_INIT(unp);
424 	unp->unp_socket = so;
425 	so->so_pcb = unp;
426 	unp->unp_refcount = 1;
427 
428 	UNP_LIST_LOCK();
429 	unp->unp_gencnt = ++unp_gencnt;
430 	unp_count++;
431 	switch (so->so_type) {
432 	case SOCK_STREAM:
433 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
434 		break;
435 
436 	case SOCK_DGRAM:
437 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
438 		break;
439 
440 	case SOCK_SEQPACKET:
441 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
442 		break;
443 
444 	default:
445 		panic("uipc_attach");
446 	}
447 	UNP_LIST_UNLOCK();
448 
449 	return (0);
450 }
451 
452 static int
453 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
454 {
455 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
456 	struct vattr vattr;
457 	int error, namelen, vfslocked;
458 	struct nameidata nd;
459 	struct unpcb *unp;
460 	struct vnode *vp;
461 	struct mount *mp;
462 	char *buf;
463 
464 	unp = sotounpcb(so);
465 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
466 
467 	if (soun->sun_len > sizeof(struct sockaddr_un))
468 		return (EINVAL);
469 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
470 	if (namelen <= 0)
471 		return (EINVAL);
472 
473 	/*
474 	 * We don't allow simultaneous bind() calls on a single UNIX domain
475 	 * socket, so flag in-progress operations, and return an error if an
476 	 * operation is already in progress.
477 	 *
478 	 * Historically, we have not allowed a socket to be rebound, so this
479 	 * also returns an error.  Not allowing re-binding simplifies the
480 	 * implementation and avoids a great many possible failure modes.
481 	 */
482 	UNP_PCB_LOCK(unp);
483 	if (unp->unp_vnode != NULL) {
484 		UNP_PCB_UNLOCK(unp);
485 		return (EINVAL);
486 	}
487 	if (unp->unp_flags & UNP_BINDING) {
488 		UNP_PCB_UNLOCK(unp);
489 		return (EALREADY);
490 	}
491 	unp->unp_flags |= UNP_BINDING;
492 	UNP_PCB_UNLOCK(unp);
493 
494 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
495 	bcopy(soun->sun_path, buf, namelen);
496 	buf[namelen] = 0;
497 
498 restart:
499 	vfslocked = 0;
500 	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
501 	    UIO_SYSSPACE, buf, td);
502 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
503 	error = namei(&nd);
504 	if (error)
505 		goto error;
506 	vp = nd.ni_vp;
507 	vfslocked = NDHASGIANT(&nd);
508 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
509 		NDFREE(&nd, NDF_ONLY_PNBUF);
510 		if (nd.ni_dvp == vp)
511 			vrele(nd.ni_dvp);
512 		else
513 			vput(nd.ni_dvp);
514 		if (vp != NULL) {
515 			vrele(vp);
516 			error = EADDRINUSE;
517 			goto error;
518 		}
519 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
520 		if (error)
521 			goto error;
522 		VFS_UNLOCK_GIANT(vfslocked);
523 		goto restart;
524 	}
525 	VATTR_NULL(&vattr);
526 	vattr.va_type = VSOCK;
527 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
528 #ifdef MAC
529 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
530 	    &vattr);
531 #endif
532 	if (error == 0)
533 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
534 	NDFREE(&nd, NDF_ONLY_PNBUF);
535 	vput(nd.ni_dvp);
536 	if (error) {
537 		vn_finished_write(mp);
538 		goto error;
539 	}
540 	vp = nd.ni_vp;
541 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
542 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
543 
544 	UNP_LINK_WLOCK();
545 	UNP_PCB_LOCK(unp);
546 	VOP_UNP_BIND(vp, unp->unp_socket);
547 	unp->unp_vnode = vp;
548 	unp->unp_addr = soun;
549 	unp->unp_flags &= ~UNP_BINDING;
550 	UNP_PCB_UNLOCK(unp);
551 	UNP_LINK_WUNLOCK();
552 	VOP_UNLOCK(vp, 0);
553 	vn_finished_write(mp);
554 	VFS_UNLOCK_GIANT(vfslocked);
555 	free(buf, M_TEMP);
556 	return (0);
557 
558 error:
559 	VFS_UNLOCK_GIANT(vfslocked);
560 	UNP_PCB_LOCK(unp);
561 	unp->unp_flags &= ~UNP_BINDING;
562 	UNP_PCB_UNLOCK(unp);
563 	free(buf, M_TEMP);
564 	return (error);
565 }
566 
567 static int
568 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
569 {
570 	int error;
571 
572 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
573 	UNP_LINK_WLOCK();
574 	error = unp_connect(so, nam, td);
575 	UNP_LINK_WUNLOCK();
576 	return (error);
577 }
578 
579 static void
580 uipc_close(struct socket *so)
581 {
582 	struct unpcb *unp, *unp2;
583 
584 	unp = sotounpcb(so);
585 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
586 
587 	UNP_LINK_WLOCK();
588 	UNP_PCB_LOCK(unp);
589 	unp2 = unp->unp_conn;
590 	if (unp2 != NULL) {
591 		UNP_PCB_LOCK(unp2);
592 		unp_disconnect(unp, unp2);
593 		UNP_PCB_UNLOCK(unp2);
594 	}
595 	UNP_PCB_UNLOCK(unp);
596 	UNP_LINK_WUNLOCK();
597 }
598 
599 static int
600 uipc_connect2(struct socket *so1, struct socket *so2)
601 {
602 	struct unpcb *unp, *unp2;
603 	int error;
604 
605 	UNP_LINK_WLOCK();
606 	unp = so1->so_pcb;
607 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
608 	UNP_PCB_LOCK(unp);
609 	unp2 = so2->so_pcb;
610 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
611 	UNP_PCB_LOCK(unp2);
612 	error = unp_connect2(so1, so2, PRU_CONNECT2);
613 	UNP_PCB_UNLOCK(unp2);
614 	UNP_PCB_UNLOCK(unp);
615 	UNP_LINK_WUNLOCK();
616 	return (error);
617 }
618 
619 static void
620 uipc_detach(struct socket *so)
621 {
622 	struct unpcb *unp, *unp2;
623 	struct sockaddr_un *saved_unp_addr;
624 	struct vnode *vp;
625 	int freeunp, local_unp_rights;
626 
627 	unp = sotounpcb(so);
628 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
629 
630 	UNP_LINK_WLOCK();
631 	UNP_LIST_LOCK();
632 	UNP_PCB_LOCK(unp);
633 	LIST_REMOVE(unp, unp_link);
634 	unp->unp_gencnt = ++unp_gencnt;
635 	--unp_count;
636 	UNP_LIST_UNLOCK();
637 
638 	/*
639 	 * XXXRW: Should assert vp->v_socket == so.
640 	 */
641 	if ((vp = unp->unp_vnode) != NULL) {
642 		VOP_UNP_DETACH(vp);
643 		unp->unp_vnode = NULL;
644 	}
645 	unp2 = unp->unp_conn;
646 	if (unp2 != NULL) {
647 		UNP_PCB_LOCK(unp2);
648 		unp_disconnect(unp, unp2);
649 		UNP_PCB_UNLOCK(unp2);
650 	}
651 
652 	/*
653 	 * We hold the linkage lock exclusively, so it's OK to acquire
654 	 * multiple pcb locks at a time.
655 	 */
656 	while (!LIST_EMPTY(&unp->unp_refs)) {
657 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
658 
659 		UNP_PCB_LOCK(ref);
660 		unp_drop(ref, ECONNRESET);
661 		UNP_PCB_UNLOCK(ref);
662 	}
663 	local_unp_rights = unp_rights;
664 	UNP_LINK_WUNLOCK();
665 	unp->unp_socket->so_pcb = NULL;
666 	saved_unp_addr = unp->unp_addr;
667 	unp->unp_addr = NULL;
668 	unp->unp_refcount--;
669 	freeunp = (unp->unp_refcount == 0);
670 	if (saved_unp_addr != NULL)
671 		free(saved_unp_addr, M_SONAME);
672 	if (freeunp) {
673 		UNP_PCB_LOCK_DESTROY(unp);
674 		uma_zfree(unp_zone, unp);
675 	} else
676 		UNP_PCB_UNLOCK(unp);
677 	if (vp) {
678 		int vfslocked;
679 
680 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
681 		vrele(vp);
682 		VFS_UNLOCK_GIANT(vfslocked);
683 	}
684 	if (local_unp_rights)
685 		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
686 }
687 
688 static int
689 uipc_disconnect(struct socket *so)
690 {
691 	struct unpcb *unp, *unp2;
692 
693 	unp = sotounpcb(so);
694 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
695 
696 	UNP_LINK_WLOCK();
697 	UNP_PCB_LOCK(unp);
698 	unp2 = unp->unp_conn;
699 	if (unp2 != NULL) {
700 		UNP_PCB_LOCK(unp2);
701 		unp_disconnect(unp, unp2);
702 		UNP_PCB_UNLOCK(unp2);
703 	}
704 	UNP_PCB_UNLOCK(unp);
705 	UNP_LINK_WUNLOCK();
706 	return (0);
707 }
708 
709 static int
710 uipc_listen(struct socket *so, int backlog, struct thread *td)
711 {
712 	struct unpcb *unp;
713 	int error;
714 
715 	unp = sotounpcb(so);
716 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
717 
718 	UNP_PCB_LOCK(unp);
719 	if (unp->unp_vnode == NULL) {
720 		UNP_PCB_UNLOCK(unp);
721 		return (EINVAL);
722 	}
723 
724 	SOCK_LOCK(so);
725 	error = solisten_proto_check(so);
726 	if (error == 0) {
727 		cru2x(td->td_ucred, &unp->unp_peercred);
728 		unp->unp_flags |= UNP_HAVEPCCACHED;
729 		solisten_proto(so, backlog);
730 	}
731 	SOCK_UNLOCK(so);
732 	UNP_PCB_UNLOCK(unp);
733 	return (error);
734 }
735 
736 static int
737 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
738 {
739 	struct unpcb *unp, *unp2;
740 	const struct sockaddr *sa;
741 
742 	unp = sotounpcb(so);
743 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
744 
745 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
746 	UNP_LINK_RLOCK();
747 	/*
748 	 * XXX: It seems that this test always fails even when connection is
749 	 * established.  So, this else clause is added as workaround to
750 	 * return PF_LOCAL sockaddr.
751 	 */
752 	unp2 = unp->unp_conn;
753 	if (unp2 != NULL) {
754 		UNP_PCB_LOCK(unp2);
755 		if (unp2->unp_addr != NULL)
756 			sa = (struct sockaddr *) unp2->unp_addr;
757 		else
758 			sa = &sun_noname;
759 		bcopy(sa, *nam, sa->sa_len);
760 		UNP_PCB_UNLOCK(unp2);
761 	} else {
762 		sa = &sun_noname;
763 		bcopy(sa, *nam, sa->sa_len);
764 	}
765 	UNP_LINK_RUNLOCK();
766 	return (0);
767 }
768 
769 static int
770 uipc_rcvd(struct socket *so, int flags)
771 {
772 	struct unpcb *unp, *unp2;
773 	struct socket *so2;
774 	u_int mbcnt, sbcc;
775 	u_long newhiwat;
776 
777 	unp = sotounpcb(so);
778 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
779 
780 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
781 		panic("uipc_rcvd socktype %d", so->so_type);
782 
783 	/*
784 	 * Adjust backpressure on sender and wakeup any waiting to write.
785 	 *
786 	 * The unp lock is acquired to maintain the validity of the unp_conn
787 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
788 	 * static as long as we don't permit unp2 to disconnect from unp,
789 	 * which is prevented by the lock on unp.  We cache values from
790 	 * so_rcv to avoid holding the so_rcv lock over the entire
791 	 * transaction on the remote so_snd.
792 	 */
793 	SOCKBUF_LOCK(&so->so_rcv);
794 	mbcnt = so->so_rcv.sb_mbcnt;
795 	sbcc = so->so_rcv.sb_cc;
796 	SOCKBUF_UNLOCK(&so->so_rcv);
797 	UNP_PCB_LOCK(unp);
798 	unp2 = unp->unp_conn;
799 	if (unp2 == NULL) {
800 		UNP_PCB_UNLOCK(unp);
801 		return (0);
802 	}
803 	so2 = unp2->unp_socket;
804 	SOCKBUF_LOCK(&so2->so_snd);
805 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
806 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
807 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
808 	    newhiwat, RLIM_INFINITY);
809 	sowwakeup_locked(so2);
810 	unp->unp_mbcnt = mbcnt;
811 	unp->unp_cc = sbcc;
812 	UNP_PCB_UNLOCK(unp);
813 	return (0);
814 }
815 
816 static int
817 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
818     struct mbuf *control, struct thread *td)
819 {
820 	struct unpcb *unp, *unp2;
821 	struct socket *so2;
822 	u_int mbcnt_delta, sbcc;
823 	u_int newhiwat;
824 	int error = 0;
825 
826 	unp = sotounpcb(so);
827 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
828 
829 	if (flags & PRUS_OOB) {
830 		error = EOPNOTSUPP;
831 		goto release;
832 	}
833 	if (control != NULL && (error = unp_internalize(&control, td)))
834 		goto release;
835 	if ((nam != NULL) || (flags & PRUS_EOF))
836 		UNP_LINK_WLOCK();
837 	else
838 		UNP_LINK_RLOCK();
839 	switch (so->so_type) {
840 	case SOCK_DGRAM:
841 	{
842 		const struct sockaddr *from;
843 
844 		unp2 = unp->unp_conn;
845 		if (nam != NULL) {
846 			UNP_LINK_WLOCK_ASSERT();
847 			if (unp2 != NULL) {
848 				error = EISCONN;
849 				break;
850 			}
851 			error = unp_connect(so, nam, td);
852 			if (error)
853 				break;
854 			unp2 = unp->unp_conn;
855 		}
856 
857 		/*
858 		 * Because connect() and send() are non-atomic in a sendto()
859 		 * with a target address, it's possible that the socket will
860 		 * have disconnected before the send() can run.  In that case
861 		 * return the slightly counter-intuitive but otherwise
862 		 * correct error that the socket is not connected.
863 		 */
864 		if (unp2 == NULL) {
865 			error = ENOTCONN;
866 			break;
867 		}
868 		/* Lockless read. */
869 		if (unp2->unp_flags & UNP_WANTCRED)
870 			control = unp_addsockcred(td, control);
871 		UNP_PCB_LOCK(unp);
872 		if (unp->unp_addr != NULL)
873 			from = (struct sockaddr *)unp->unp_addr;
874 		else
875 			from = &sun_noname;
876 		so2 = unp2->unp_socket;
877 		SOCKBUF_LOCK(&so2->so_rcv);
878 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
879 			sorwakeup_locked(so2);
880 			m = NULL;
881 			control = NULL;
882 		} else {
883 			SOCKBUF_UNLOCK(&so2->so_rcv);
884 			error = ENOBUFS;
885 		}
886 		if (nam != NULL) {
887 			UNP_LINK_WLOCK_ASSERT();
888 			UNP_PCB_LOCK(unp2);
889 			unp_disconnect(unp, unp2);
890 			UNP_PCB_UNLOCK(unp2);
891 		}
892 		UNP_PCB_UNLOCK(unp);
893 		break;
894 	}
895 
896 	case SOCK_SEQPACKET:
897 	case SOCK_STREAM:
898 		if ((so->so_state & SS_ISCONNECTED) == 0) {
899 			if (nam != NULL) {
900 				UNP_LINK_WLOCK_ASSERT();
901 				error = unp_connect(so, nam, td);
902 				if (error)
903 					break;	/* XXX */
904 			} else {
905 				error = ENOTCONN;
906 				break;
907 			}
908 		}
909 
910 		/* Lockless read. */
911 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
912 			error = EPIPE;
913 			break;
914 		}
915 
916 		/*
917 		 * Because connect() and send() are non-atomic in a sendto()
918 		 * with a target address, it's possible that the socket will
919 		 * have disconnected before the send() can run.  In that case
920 		 * return the slightly counter-intuitive but otherwise
921 		 * correct error that the socket is not connected.
922 		 *
923 		 * Locking here must be done carefully: the linkage lock
924 		 * prevents interconnections between unpcbs from changing, so
925 		 * we can traverse from unp to unp2 without acquiring unp's
926 		 * lock.  Socket buffer locks follow unpcb locks, so we can
927 		 * acquire both remote and lock socket buffer locks.
928 		 */
929 		unp2 = unp->unp_conn;
930 		if (unp2 == NULL) {
931 			error = ENOTCONN;
932 			break;
933 		}
934 		so2 = unp2->unp_socket;
935 		UNP_PCB_LOCK(unp2);
936 		SOCKBUF_LOCK(&so2->so_rcv);
937 		if (unp2->unp_flags & UNP_WANTCRED) {
938 			/*
939 			 * Credentials are passed only once on SOCK_STREAM.
940 			 */
941 			unp2->unp_flags &= ~UNP_WANTCRED;
942 			control = unp_addsockcred(td, control);
943 		}
944 		/*
945 		 * Send to paired receive port, and then reduce send buffer
946 		 * hiwater marks to maintain backpressure.  Wake up readers.
947 		 */
948 		switch (so->so_type) {
949 		case SOCK_STREAM:
950 			if (control != NULL) {
951 				if (sbappendcontrol_locked(&so2->so_rcv, m,
952 				    control))
953 					control = NULL;
954 			} else
955 				sbappend_locked(&so2->so_rcv, m);
956 			break;
957 
958 		case SOCK_SEQPACKET: {
959 			const struct sockaddr *from;
960 
961 			from = &sun_noname;
962 			if (sbappendaddr_locked(&so2->so_rcv, from, m,
963 			    control))
964 				control = NULL;
965 			break;
966 			}
967 		}
968 
969 		/*
970 		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
971 		 * datagram size and back-pressure for SOCK_SEQPACKET, which
972 		 * can lead to undesired return of EMSGSIZE on send instead
973 		 * of more desirable blocking.
974 		 */
975 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
976 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
977 		sbcc = so2->so_rcv.sb_cc;
978 		sorwakeup_locked(so2);
979 
980 		SOCKBUF_LOCK(&so->so_snd);
981 		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
982 			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
983 		else
984 			newhiwat = 0;
985 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
986 		    newhiwat, RLIM_INFINITY);
987 		so->so_snd.sb_mbmax -= mbcnt_delta;
988 		SOCKBUF_UNLOCK(&so->so_snd);
989 		unp2->unp_cc = sbcc;
990 		UNP_PCB_UNLOCK(unp2);
991 		m = NULL;
992 		break;
993 
994 	default:
995 		panic("uipc_send unknown socktype");
996 	}
997 
998 	/*
999 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1000 	 */
1001 	if (flags & PRUS_EOF) {
1002 		UNP_PCB_LOCK(unp);
1003 		socantsendmore(so);
1004 		unp_shutdown(unp);
1005 		UNP_PCB_UNLOCK(unp);
1006 	}
1007 
1008 	if ((nam != NULL) || (flags & PRUS_EOF))
1009 		UNP_LINK_WUNLOCK();
1010 	else
1011 		UNP_LINK_RUNLOCK();
1012 
1013 	if (control != NULL && error != 0)
1014 		unp_dispose(control);
1015 
1016 release:
1017 	if (control != NULL)
1018 		m_freem(control);
1019 	if (m != NULL)
1020 		m_freem(m);
1021 	return (error);
1022 }
1023 
1024 static int
1025 uipc_sense(struct socket *so, struct stat *sb)
1026 {
1027 	struct unpcb *unp, *unp2;
1028 	struct socket *so2;
1029 
1030 	unp = sotounpcb(so);
1031 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1032 
1033 	sb->st_blksize = so->so_snd.sb_hiwat;
1034 	UNP_LINK_RLOCK();
1035 	UNP_PCB_LOCK(unp);
1036 	unp2 = unp->unp_conn;
1037 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1038 	    unp2 != NULL) {
1039 		so2 = unp2->unp_socket;
1040 		sb->st_blksize += so2->so_rcv.sb_cc;
1041 	}
1042 	sb->st_dev = NODEV;
1043 	if (unp->unp_ino == 0)
1044 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1045 	sb->st_ino = unp->unp_ino;
1046 	UNP_PCB_UNLOCK(unp);
1047 	UNP_LINK_RUNLOCK();
1048 	return (0);
1049 }
1050 
1051 static int
1052 uipc_shutdown(struct socket *so)
1053 {
1054 	struct unpcb *unp;
1055 
1056 	unp = sotounpcb(so);
1057 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1058 
1059 	UNP_LINK_WLOCK();
1060 	UNP_PCB_LOCK(unp);
1061 	socantsendmore(so);
1062 	unp_shutdown(unp);
1063 	UNP_PCB_UNLOCK(unp);
1064 	UNP_LINK_WUNLOCK();
1065 	return (0);
1066 }
1067 
1068 static int
1069 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1070 {
1071 	struct unpcb *unp;
1072 	const struct sockaddr *sa;
1073 
1074 	unp = sotounpcb(so);
1075 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1076 
1077 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1078 	UNP_PCB_LOCK(unp);
1079 	if (unp->unp_addr != NULL)
1080 		sa = (struct sockaddr *) unp->unp_addr;
1081 	else
1082 		sa = &sun_noname;
1083 	bcopy(sa, *nam, sa->sa_len);
1084 	UNP_PCB_UNLOCK(unp);
1085 	return (0);
1086 }
1087 
1088 static struct pr_usrreqs uipc_usrreqs_dgram = {
1089 	.pru_abort = 		uipc_abort,
1090 	.pru_accept =		uipc_accept,
1091 	.pru_attach =		uipc_attach,
1092 	.pru_bind =		uipc_bind,
1093 	.pru_connect =		uipc_connect,
1094 	.pru_connect2 =		uipc_connect2,
1095 	.pru_detach =		uipc_detach,
1096 	.pru_disconnect =	uipc_disconnect,
1097 	.pru_listen =		uipc_listen,
1098 	.pru_peeraddr =		uipc_peeraddr,
1099 	.pru_rcvd =		uipc_rcvd,
1100 	.pru_send =		uipc_send,
1101 	.pru_sense =		uipc_sense,
1102 	.pru_shutdown =		uipc_shutdown,
1103 	.pru_sockaddr =		uipc_sockaddr,
1104 	.pru_soreceive =	soreceive_dgram,
1105 	.pru_close =		uipc_close,
1106 };
1107 
1108 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1109 	.pru_abort =		uipc_abort,
1110 	.pru_accept =		uipc_accept,
1111 	.pru_attach =		uipc_attach,
1112 	.pru_bind =		uipc_bind,
1113 	.pru_connect =		uipc_connect,
1114 	.pru_connect2 =		uipc_connect2,
1115 	.pru_detach =		uipc_detach,
1116 	.pru_disconnect =	uipc_disconnect,
1117 	.pru_listen =		uipc_listen,
1118 	.pru_peeraddr =		uipc_peeraddr,
1119 	.pru_rcvd =		uipc_rcvd,
1120 	.pru_send =		uipc_send,
1121 	.pru_sense =		uipc_sense,
1122 	.pru_shutdown =		uipc_shutdown,
1123 	.pru_sockaddr =		uipc_sockaddr,
1124 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1125 	.pru_close =		uipc_close,
1126 };
1127 
1128 static struct pr_usrreqs uipc_usrreqs_stream = {
1129 	.pru_abort = 		uipc_abort,
1130 	.pru_accept =		uipc_accept,
1131 	.pru_attach =		uipc_attach,
1132 	.pru_bind =		uipc_bind,
1133 	.pru_connect =		uipc_connect,
1134 	.pru_connect2 =		uipc_connect2,
1135 	.pru_detach =		uipc_detach,
1136 	.pru_disconnect =	uipc_disconnect,
1137 	.pru_listen =		uipc_listen,
1138 	.pru_peeraddr =		uipc_peeraddr,
1139 	.pru_rcvd =		uipc_rcvd,
1140 	.pru_send =		uipc_send,
1141 	.pru_sense =		uipc_sense,
1142 	.pru_shutdown =		uipc_shutdown,
1143 	.pru_sockaddr =		uipc_sockaddr,
1144 	.pru_soreceive =	soreceive_generic,
1145 	.pru_close =		uipc_close,
1146 };
1147 
1148 static int
1149 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1150 {
1151 	struct unpcb *unp;
1152 	struct xucred xu;
1153 	int error, optval;
1154 
1155 	if (sopt->sopt_level != 0)
1156 		return (EINVAL);
1157 
1158 	unp = sotounpcb(so);
1159 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1160 	error = 0;
1161 	switch (sopt->sopt_dir) {
1162 	case SOPT_GET:
1163 		switch (sopt->sopt_name) {
1164 		case LOCAL_PEERCRED:
1165 			UNP_PCB_LOCK(unp);
1166 			if (unp->unp_flags & UNP_HAVEPC)
1167 				xu = unp->unp_peercred;
1168 			else {
1169 				if (so->so_type == SOCK_STREAM)
1170 					error = ENOTCONN;
1171 				else
1172 					error = EINVAL;
1173 			}
1174 			UNP_PCB_UNLOCK(unp);
1175 			if (error == 0)
1176 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1177 			break;
1178 
1179 		case LOCAL_CREDS:
1180 			/* Unlocked read. */
1181 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1182 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1183 			break;
1184 
1185 		case LOCAL_CONNWAIT:
1186 			/* Unlocked read. */
1187 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1188 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1189 			break;
1190 
1191 		default:
1192 			error = EOPNOTSUPP;
1193 			break;
1194 		}
1195 		break;
1196 
1197 	case SOPT_SET:
1198 		switch (sopt->sopt_name) {
1199 		case LOCAL_CREDS:
1200 		case LOCAL_CONNWAIT:
1201 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1202 					    sizeof(optval));
1203 			if (error)
1204 				break;
1205 
1206 #define	OPTSET(bit) do {						\
1207 	UNP_PCB_LOCK(unp);						\
1208 	if (optval)							\
1209 		unp->unp_flags |= bit;					\
1210 	else								\
1211 		unp->unp_flags &= ~bit;					\
1212 	UNP_PCB_UNLOCK(unp);						\
1213 } while (0)
1214 
1215 			switch (sopt->sopt_name) {
1216 			case LOCAL_CREDS:
1217 				OPTSET(UNP_WANTCRED);
1218 				break;
1219 
1220 			case LOCAL_CONNWAIT:
1221 				OPTSET(UNP_CONNWAIT);
1222 				break;
1223 
1224 			default:
1225 				break;
1226 			}
1227 			break;
1228 #undef	OPTSET
1229 		default:
1230 			error = ENOPROTOOPT;
1231 			break;
1232 		}
1233 		break;
1234 
1235 	default:
1236 		error = EOPNOTSUPP;
1237 		break;
1238 	}
1239 	return (error);
1240 }
1241 
1242 static int
1243 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1244 {
1245 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1246 	struct vnode *vp;
1247 	struct socket *so2, *so3;
1248 	struct unpcb *unp, *unp2, *unp3;
1249 	int error, len, vfslocked;
1250 	struct nameidata nd;
1251 	char buf[SOCK_MAXADDRLEN];
1252 	struct sockaddr *sa;
1253 
1254 	UNP_LINK_WLOCK_ASSERT();
1255 
1256 	unp = sotounpcb(so);
1257 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1258 
1259 	if (nam->sa_len > sizeof(struct sockaddr_un))
1260 		return (EINVAL);
1261 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1262 	if (len <= 0)
1263 		return (EINVAL);
1264 	bcopy(soun->sun_path, buf, len);
1265 	buf[len] = 0;
1266 
1267 	UNP_PCB_LOCK(unp);
1268 	if (unp->unp_flags & UNP_CONNECTING) {
1269 		UNP_PCB_UNLOCK(unp);
1270 		return (EALREADY);
1271 	}
1272 	UNP_LINK_WUNLOCK();
1273 	unp->unp_flags |= UNP_CONNECTING;
1274 	UNP_PCB_UNLOCK(unp);
1275 
1276 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1277 	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKSHARED | LOCKLEAF,
1278 	    UIO_SYSSPACE, buf, td);
1279 	error = namei(&nd);
1280 	if (error)
1281 		vp = NULL;
1282 	else
1283 		vp = nd.ni_vp;
1284 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1285 	vfslocked = NDHASGIANT(&nd);
1286 	NDFREE(&nd, NDF_ONLY_PNBUF);
1287 	if (error)
1288 		goto bad;
1289 
1290 	if (vp->v_type != VSOCK) {
1291 		error = ENOTSOCK;
1292 		goto bad;
1293 	}
1294 #ifdef MAC
1295 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1296 	if (error)
1297 		goto bad;
1298 #endif
1299 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1300 	if (error)
1301 		goto bad;
1302 	VFS_UNLOCK_GIANT(vfslocked);
1303 
1304 	unp = sotounpcb(so);
1305 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1306 
1307 	/*
1308 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1309 	 * and to protect simultaneous locking of multiple pcbs.
1310 	 */
1311 	UNP_LINK_WLOCK();
1312 	VOP_UNP_CONNECT(vp, &so2);
1313 	if (so2 == NULL) {
1314 		error = ECONNREFUSED;
1315 		goto bad2;
1316 	}
1317 	if (so->so_type != so2->so_type) {
1318 		error = EPROTOTYPE;
1319 		goto bad2;
1320 	}
1321 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1322 		if (so2->so_options & SO_ACCEPTCONN) {
1323 			CURVNET_SET(so2->so_vnet);
1324 			so3 = sonewconn(so2, 0);
1325 			CURVNET_RESTORE();
1326 		} else
1327 			so3 = NULL;
1328 		if (so3 == NULL) {
1329 			error = ECONNREFUSED;
1330 			goto bad2;
1331 		}
1332 		unp = sotounpcb(so);
1333 		unp2 = sotounpcb(so2);
1334 		unp3 = sotounpcb(so3);
1335 		UNP_PCB_LOCK(unp);
1336 		UNP_PCB_LOCK(unp2);
1337 		UNP_PCB_LOCK(unp3);
1338 		if (unp2->unp_addr != NULL) {
1339 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1340 			unp3->unp_addr = (struct sockaddr_un *) sa;
1341 			sa = NULL;
1342 		}
1343 
1344 		/*
1345 		 * The connecter's (client's) credentials are copied from its
1346 		 * process structure at the time of connect() (which is now).
1347 		 */
1348 		cru2x(td->td_ucred, &unp3->unp_peercred);
1349 		unp3->unp_flags |= UNP_HAVEPC;
1350 
1351 		/*
1352 		 * The receiver's (server's) credentials are copied from the
1353 		 * unp_peercred member of socket on which the former called
1354 		 * listen(); uipc_listen() cached that process's credentials
1355 		 * at that time so we can use them now.
1356 		 */
1357 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1358 		    ("unp_connect: listener without cached peercred"));
1359 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1360 		    sizeof(unp->unp_peercred));
1361 		unp->unp_flags |= UNP_HAVEPC;
1362 		if (unp2->unp_flags & UNP_WANTCRED)
1363 			unp3->unp_flags |= UNP_WANTCRED;
1364 		UNP_PCB_UNLOCK(unp3);
1365 		UNP_PCB_UNLOCK(unp2);
1366 		UNP_PCB_UNLOCK(unp);
1367 #ifdef MAC
1368 		mac_socketpeer_set_from_socket(so, so3);
1369 		mac_socketpeer_set_from_socket(so3, so);
1370 #endif
1371 
1372 		so2 = so3;
1373 	}
1374 	unp = sotounpcb(so);
1375 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1376 	unp2 = sotounpcb(so2);
1377 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1378 	UNP_PCB_LOCK(unp);
1379 	UNP_PCB_LOCK(unp2);
1380 	error = unp_connect2(so, so2, PRU_CONNECT);
1381 	UNP_PCB_UNLOCK(unp2);
1382 	UNP_PCB_UNLOCK(unp);
1383 bad2:
1384 	UNP_LINK_WUNLOCK();
1385 	if (vfslocked)
1386 		/*
1387 		 * Giant has been previously acquired. This means filesystem
1388 		 * isn't MPSAFE.  Do it once again.
1389 		 */
1390 		mtx_lock(&Giant);
1391 bad:
1392 	if (vp != NULL)
1393 		vput(vp);
1394 	VFS_UNLOCK_GIANT(vfslocked);
1395 	free(sa, M_SONAME);
1396 	UNP_LINK_WLOCK();
1397 	UNP_PCB_LOCK(unp);
1398 	unp->unp_flags &= ~UNP_CONNECTING;
1399 	UNP_PCB_UNLOCK(unp);
1400 	return (error);
1401 }
1402 
1403 static int
1404 unp_connect2(struct socket *so, struct socket *so2, int req)
1405 {
1406 	struct unpcb *unp;
1407 	struct unpcb *unp2;
1408 
1409 	unp = sotounpcb(so);
1410 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1411 	unp2 = sotounpcb(so2);
1412 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1413 
1414 	UNP_LINK_WLOCK_ASSERT();
1415 	UNP_PCB_LOCK_ASSERT(unp);
1416 	UNP_PCB_LOCK_ASSERT(unp2);
1417 
1418 	if (so2->so_type != so->so_type)
1419 		return (EPROTOTYPE);
1420 	unp->unp_conn = unp2;
1421 
1422 	switch (so->so_type) {
1423 	case SOCK_DGRAM:
1424 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1425 		soisconnected(so);
1426 		break;
1427 
1428 	case SOCK_STREAM:
1429 	case SOCK_SEQPACKET:
1430 		unp2->unp_conn = unp;
1431 		if (req == PRU_CONNECT &&
1432 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1433 			soisconnecting(so);
1434 		else
1435 			soisconnected(so);
1436 		soisconnected(so2);
1437 		break;
1438 
1439 	default:
1440 		panic("unp_connect2");
1441 	}
1442 	return (0);
1443 }
1444 
1445 static void
1446 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1447 {
1448 	struct socket *so;
1449 
1450 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1451 
1452 	UNP_LINK_WLOCK_ASSERT();
1453 	UNP_PCB_LOCK_ASSERT(unp);
1454 	UNP_PCB_LOCK_ASSERT(unp2);
1455 
1456 	unp->unp_conn = NULL;
1457 	switch (unp->unp_socket->so_type) {
1458 	case SOCK_DGRAM:
1459 		LIST_REMOVE(unp, unp_reflink);
1460 		so = unp->unp_socket;
1461 		SOCK_LOCK(so);
1462 		so->so_state &= ~SS_ISCONNECTED;
1463 		SOCK_UNLOCK(so);
1464 		break;
1465 
1466 	case SOCK_STREAM:
1467 	case SOCK_SEQPACKET:
1468 		soisdisconnected(unp->unp_socket);
1469 		unp2->unp_conn = NULL;
1470 		soisdisconnected(unp2->unp_socket);
1471 		break;
1472 	}
1473 }
1474 
1475 /*
1476  * unp_pcblist() walks the global list of struct unpcb's to generate a
1477  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1478  * sequentially, validating the generation number on each to see if it has
1479  * been detached.  All of this is necessary because copyout() may sleep on
1480  * disk I/O.
1481  */
1482 static int
1483 unp_pcblist(SYSCTL_HANDLER_ARGS)
1484 {
1485 	int error, i, n;
1486 	int freeunp;
1487 	struct unpcb *unp, **unp_list;
1488 	unp_gen_t gencnt;
1489 	struct xunpgen *xug;
1490 	struct unp_head *head;
1491 	struct xunpcb *xu;
1492 
1493 	switch ((intptr_t)arg1) {
1494 	case SOCK_STREAM:
1495 		head = &unp_shead;
1496 		break;
1497 
1498 	case SOCK_DGRAM:
1499 		head = &unp_dhead;
1500 		break;
1501 
1502 	case SOCK_SEQPACKET:
1503 		head = &unp_sphead;
1504 		break;
1505 
1506 	default:
1507 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1508 	}
1509 
1510 	/*
1511 	 * The process of preparing the PCB list is too time-consuming and
1512 	 * resource-intensive to repeat twice on every request.
1513 	 */
1514 	if (req->oldptr == NULL) {
1515 		n = unp_count;
1516 		req->oldidx = 2 * (sizeof *xug)
1517 			+ (n + n/8) * sizeof(struct xunpcb);
1518 		return (0);
1519 	}
1520 
1521 	if (req->newptr != NULL)
1522 		return (EPERM);
1523 
1524 	/*
1525 	 * OK, now we're committed to doing something.
1526 	 */
1527 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1528 	UNP_LIST_LOCK();
1529 	gencnt = unp_gencnt;
1530 	n = unp_count;
1531 	UNP_LIST_UNLOCK();
1532 
1533 	xug->xug_len = sizeof *xug;
1534 	xug->xug_count = n;
1535 	xug->xug_gen = gencnt;
1536 	xug->xug_sogen = so_gencnt;
1537 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1538 	if (error) {
1539 		free(xug, M_TEMP);
1540 		return (error);
1541 	}
1542 
1543 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1544 
1545 	UNP_LIST_LOCK();
1546 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1547 	     unp = LIST_NEXT(unp, unp_link)) {
1548 		UNP_PCB_LOCK(unp);
1549 		if (unp->unp_gencnt <= gencnt) {
1550 			if (cr_cansee(req->td->td_ucred,
1551 			    unp->unp_socket->so_cred)) {
1552 				UNP_PCB_UNLOCK(unp);
1553 				continue;
1554 			}
1555 			unp_list[i++] = unp;
1556 			unp->unp_refcount++;
1557 		}
1558 		UNP_PCB_UNLOCK(unp);
1559 	}
1560 	UNP_LIST_UNLOCK();
1561 	n = i;			/* In case we lost some during malloc. */
1562 
1563 	error = 0;
1564 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1565 	for (i = 0; i < n; i++) {
1566 		unp = unp_list[i];
1567 		UNP_PCB_LOCK(unp);
1568 		unp->unp_refcount--;
1569 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1570 			xu->xu_len = sizeof *xu;
1571 			xu->xu_unpp = unp;
1572 			/*
1573 			 * XXX - need more locking here to protect against
1574 			 * connect/disconnect races for SMP.
1575 			 */
1576 			if (unp->unp_addr != NULL)
1577 				bcopy(unp->unp_addr, &xu->xu_addr,
1578 				      unp->unp_addr->sun_len);
1579 			if (unp->unp_conn != NULL &&
1580 			    unp->unp_conn->unp_addr != NULL)
1581 				bcopy(unp->unp_conn->unp_addr,
1582 				      &xu->xu_caddr,
1583 				      unp->unp_conn->unp_addr->sun_len);
1584 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1585 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1586 			UNP_PCB_UNLOCK(unp);
1587 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1588 		} else {
1589 			freeunp = (unp->unp_refcount == 0);
1590 			UNP_PCB_UNLOCK(unp);
1591 			if (freeunp) {
1592 				UNP_PCB_LOCK_DESTROY(unp);
1593 				uma_zfree(unp_zone, unp);
1594 			}
1595 		}
1596 	}
1597 	free(xu, M_TEMP);
1598 	if (!error) {
1599 		/*
1600 		 * Give the user an updated idea of our state.  If the
1601 		 * generation differs from what we told her before, she knows
1602 		 * that something happened while we were processing this
1603 		 * request, and it might be necessary to retry.
1604 		 */
1605 		xug->xug_gen = unp_gencnt;
1606 		xug->xug_sogen = so_gencnt;
1607 		xug->xug_count = unp_count;
1608 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1609 	}
1610 	free(unp_list, M_TEMP);
1611 	free(xug, M_TEMP);
1612 	return (error);
1613 }
1614 
1615 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1616     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1617     "List of active local datagram sockets");
1618 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1619     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1620     "List of active local stream sockets");
1621 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1622     CTLTYPE_OPAQUE | CTLFLAG_RD,
1623     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1624     "List of active local seqpacket sockets");
1625 
1626 static void
1627 unp_shutdown(struct unpcb *unp)
1628 {
1629 	struct unpcb *unp2;
1630 	struct socket *so;
1631 
1632 	UNP_LINK_WLOCK_ASSERT();
1633 	UNP_PCB_LOCK_ASSERT(unp);
1634 
1635 	unp2 = unp->unp_conn;
1636 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1637 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1638 		so = unp2->unp_socket;
1639 		if (so != NULL)
1640 			socantrcvmore(so);
1641 	}
1642 }
1643 
1644 static void
1645 unp_drop(struct unpcb *unp, int errno)
1646 {
1647 	struct socket *so = unp->unp_socket;
1648 	struct unpcb *unp2;
1649 
1650 	UNP_LINK_WLOCK_ASSERT();
1651 	UNP_PCB_LOCK_ASSERT(unp);
1652 
1653 	so->so_error = errno;
1654 	unp2 = unp->unp_conn;
1655 	if (unp2 == NULL)
1656 		return;
1657 	UNP_PCB_LOCK(unp2);
1658 	unp_disconnect(unp, unp2);
1659 	UNP_PCB_UNLOCK(unp2);
1660 }
1661 
1662 static void
1663 unp_freerights(struct file **rp, int fdcount)
1664 {
1665 	int i;
1666 	struct file *fp;
1667 
1668 	for (i = 0; i < fdcount; i++) {
1669 		fp = *rp;
1670 		*rp++ = NULL;
1671 		unp_discard(fp);
1672 	}
1673 }
1674 
1675 static int
1676 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1677 {
1678 	struct thread *td = curthread;		/* XXX */
1679 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1680 	int i;
1681 	int *fdp;
1682 	struct file **rp;
1683 	struct file *fp;
1684 	void *data;
1685 	socklen_t clen = control->m_len, datalen;
1686 	int error, newfds;
1687 	int f;
1688 	u_int newlen;
1689 
1690 	UNP_LINK_UNLOCK_ASSERT();
1691 
1692 	error = 0;
1693 	if (controlp != NULL) /* controlp == NULL => free control messages */
1694 		*controlp = NULL;
1695 	while (cm != NULL) {
1696 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1697 			error = EINVAL;
1698 			break;
1699 		}
1700 		data = CMSG_DATA(cm);
1701 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1702 		if (cm->cmsg_level == SOL_SOCKET
1703 		    && cm->cmsg_type == SCM_RIGHTS) {
1704 			newfds = datalen / sizeof(struct file *);
1705 			rp = data;
1706 
1707 			/* If we're not outputting the descriptors free them. */
1708 			if (error || controlp == NULL) {
1709 				unp_freerights(rp, newfds);
1710 				goto next;
1711 			}
1712 			FILEDESC_XLOCK(td->td_proc->p_fd);
1713 			/* if the new FD's will not fit free them.  */
1714 			if (!fdavail(td, newfds)) {
1715 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1716 				error = EMSGSIZE;
1717 				unp_freerights(rp, newfds);
1718 				goto next;
1719 			}
1720 
1721 			/*
1722 			 * Now change each pointer to an fd in the global
1723 			 * table to an integer that is the index to the local
1724 			 * fd table entry that we set up to point to the
1725 			 * global one we are transferring.
1726 			 */
1727 			newlen = newfds * sizeof(int);
1728 			*controlp = sbcreatecontrol(NULL, newlen,
1729 			    SCM_RIGHTS, SOL_SOCKET);
1730 			if (*controlp == NULL) {
1731 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1732 				error = E2BIG;
1733 				unp_freerights(rp, newfds);
1734 				goto next;
1735 			}
1736 
1737 			fdp = (int *)
1738 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1739 			for (i = 0; i < newfds; i++) {
1740 				if (fdalloc(td, 0, &f))
1741 					panic("unp_externalize fdalloc failed");
1742 				fp = *rp++;
1743 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1744 				unp_externalize_fp(fp);
1745 				*fdp++ = f;
1746 			}
1747 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1748 		} else {
1749 			/* We can just copy anything else across. */
1750 			if (error || controlp == NULL)
1751 				goto next;
1752 			*controlp = sbcreatecontrol(NULL, datalen,
1753 			    cm->cmsg_type, cm->cmsg_level);
1754 			if (*controlp == NULL) {
1755 				error = ENOBUFS;
1756 				goto next;
1757 			}
1758 			bcopy(data,
1759 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1760 			    datalen);
1761 		}
1762 		controlp = &(*controlp)->m_next;
1763 
1764 next:
1765 		if (CMSG_SPACE(datalen) < clen) {
1766 			clen -= CMSG_SPACE(datalen);
1767 			cm = (struct cmsghdr *)
1768 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1769 		} else {
1770 			clen = 0;
1771 			cm = NULL;
1772 		}
1773 	}
1774 
1775 	m_freem(control);
1776 	return (error);
1777 }
1778 
1779 static void
1780 unp_zone_change(void *tag)
1781 {
1782 
1783 	uma_zone_set_max(unp_zone, maxsockets);
1784 }
1785 
1786 static void
1787 unp_init(void)
1788 {
1789 
1790 #ifdef VIMAGE
1791 	if (!IS_DEFAULT_VNET(curvnet))
1792 		return;
1793 #endif
1794 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1795 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1796 	if (unp_zone == NULL)
1797 		panic("unp_init");
1798 	uma_zone_set_max(unp_zone, maxsockets);
1799 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1800 	    NULL, EVENTHANDLER_PRI_ANY);
1801 	LIST_INIT(&unp_dhead);
1802 	LIST_INIT(&unp_shead);
1803 	LIST_INIT(&unp_sphead);
1804 	SLIST_INIT(&unp_defers);
1805 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1806 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1807 	UNP_LINK_LOCK_INIT();
1808 	UNP_LIST_LOCK_INIT();
1809 	UNP_DEFERRED_LOCK_INIT();
1810 }
1811 
1812 static int
1813 unp_internalize(struct mbuf **controlp, struct thread *td)
1814 {
1815 	struct mbuf *control = *controlp;
1816 	struct proc *p = td->td_proc;
1817 	struct filedesc *fdescp = p->p_fd;
1818 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1819 	struct cmsgcred *cmcred;
1820 	struct file **rp;
1821 	struct file *fp;
1822 	struct timeval *tv;
1823 	int i, fd, *fdp;
1824 	void *data;
1825 	socklen_t clen = control->m_len, datalen;
1826 	int error, oldfds;
1827 	u_int newlen;
1828 
1829 	UNP_LINK_UNLOCK_ASSERT();
1830 
1831 	error = 0;
1832 	*controlp = NULL;
1833 	while (cm != NULL) {
1834 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1835 		    || cm->cmsg_len > clen) {
1836 			error = EINVAL;
1837 			goto out;
1838 		}
1839 		data = CMSG_DATA(cm);
1840 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1841 
1842 		switch (cm->cmsg_type) {
1843 		/*
1844 		 * Fill in credential information.
1845 		 */
1846 		case SCM_CREDS:
1847 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1848 			    SCM_CREDS, SOL_SOCKET);
1849 			if (*controlp == NULL) {
1850 				error = ENOBUFS;
1851 				goto out;
1852 			}
1853 			cmcred = (struct cmsgcred *)
1854 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1855 			cmcred->cmcred_pid = p->p_pid;
1856 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1857 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1858 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1859 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1860 			    CMGROUP_MAX);
1861 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1862 				cmcred->cmcred_groups[i] =
1863 				    td->td_ucred->cr_groups[i];
1864 			break;
1865 
1866 		case SCM_RIGHTS:
1867 			oldfds = datalen / sizeof (int);
1868 			/*
1869 			 * Check that all the FDs passed in refer to legal
1870 			 * files.  If not, reject the entire operation.
1871 			 */
1872 			fdp = data;
1873 			FILEDESC_SLOCK(fdescp);
1874 			for (i = 0; i < oldfds; i++) {
1875 				fd = *fdp++;
1876 				if (fd < 0 || fd >= fdescp->fd_nfiles ||
1877 				    fdescp->fd_ofiles[fd] == NULL) {
1878 					FILEDESC_SUNLOCK(fdescp);
1879 					error = EBADF;
1880 					goto out;
1881 				}
1882 				fp = fdescp->fd_ofiles[fd];
1883 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1884 					FILEDESC_SUNLOCK(fdescp);
1885 					error = EOPNOTSUPP;
1886 					goto out;
1887 				}
1888 
1889 			}
1890 
1891 			/*
1892 			 * Now replace the integer FDs with pointers to the
1893 			 * associated global file table entry..
1894 			 */
1895 			newlen = oldfds * sizeof(struct file *);
1896 			*controlp = sbcreatecontrol(NULL, newlen,
1897 			    SCM_RIGHTS, SOL_SOCKET);
1898 			if (*controlp == NULL) {
1899 				FILEDESC_SUNLOCK(fdescp);
1900 				error = E2BIG;
1901 				goto out;
1902 			}
1903 			fdp = data;
1904 			rp = (struct file **)
1905 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1906 			for (i = 0; i < oldfds; i++) {
1907 				fp = fdescp->fd_ofiles[*fdp++];
1908 				*rp++ = fp;
1909 				unp_internalize_fp(fp);
1910 			}
1911 			FILEDESC_SUNLOCK(fdescp);
1912 			break;
1913 
1914 		case SCM_TIMESTAMP:
1915 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1916 			    SCM_TIMESTAMP, SOL_SOCKET);
1917 			if (*controlp == NULL) {
1918 				error = ENOBUFS;
1919 				goto out;
1920 			}
1921 			tv = (struct timeval *)
1922 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1923 			microtime(tv);
1924 			break;
1925 
1926 		default:
1927 			error = EINVAL;
1928 			goto out;
1929 		}
1930 
1931 		controlp = &(*controlp)->m_next;
1932 		if (CMSG_SPACE(datalen) < clen) {
1933 			clen -= CMSG_SPACE(datalen);
1934 			cm = (struct cmsghdr *)
1935 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1936 		} else {
1937 			clen = 0;
1938 			cm = NULL;
1939 		}
1940 	}
1941 
1942 out:
1943 	m_freem(control);
1944 	return (error);
1945 }
1946 
1947 static struct mbuf *
1948 unp_addsockcred(struct thread *td, struct mbuf *control)
1949 {
1950 	struct mbuf *m, *n, *n_prev;
1951 	struct sockcred *sc;
1952 	const struct cmsghdr *cm;
1953 	int ngroups;
1954 	int i;
1955 
1956 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1957 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1958 	if (m == NULL)
1959 		return (control);
1960 
1961 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1962 	sc->sc_uid = td->td_ucred->cr_ruid;
1963 	sc->sc_euid = td->td_ucred->cr_uid;
1964 	sc->sc_gid = td->td_ucred->cr_rgid;
1965 	sc->sc_egid = td->td_ucred->cr_gid;
1966 	sc->sc_ngroups = ngroups;
1967 	for (i = 0; i < sc->sc_ngroups; i++)
1968 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1969 
1970 	/*
1971 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1972 	 * created SCM_CREDS control message (struct sockcred) has another
1973 	 * format.
1974 	 */
1975 	if (control != NULL)
1976 		for (n = control, n_prev = NULL; n != NULL;) {
1977 			cm = mtod(n, struct cmsghdr *);
1978     			if (cm->cmsg_level == SOL_SOCKET &&
1979 			    cm->cmsg_type == SCM_CREDS) {
1980     				if (n_prev == NULL)
1981 					control = n->m_next;
1982 				else
1983 					n_prev->m_next = n->m_next;
1984 				n = m_free(n);
1985 			} else {
1986 				n_prev = n;
1987 				n = n->m_next;
1988 			}
1989 		}
1990 
1991 	/* Prepend it to the head. */
1992 	m->m_next = control;
1993 	return (m);
1994 }
1995 
1996 static struct unpcb *
1997 fptounp(struct file *fp)
1998 {
1999 	struct socket *so;
2000 
2001 	if (fp->f_type != DTYPE_SOCKET)
2002 		return (NULL);
2003 	if ((so = fp->f_data) == NULL)
2004 		return (NULL);
2005 	if (so->so_proto->pr_domain != &localdomain)
2006 		return (NULL);
2007 	return sotounpcb(so);
2008 }
2009 
2010 static void
2011 unp_discard(struct file *fp)
2012 {
2013 	struct unp_defer *dr;
2014 
2015 	if (unp_externalize_fp(fp)) {
2016 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2017 		dr->ud_fp = fp;
2018 		UNP_DEFERRED_LOCK();
2019 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2020 		UNP_DEFERRED_UNLOCK();
2021 		atomic_add_int(&unp_defers_count, 1);
2022 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2023 	} else
2024 		(void) closef(fp, (struct thread *)NULL);
2025 }
2026 
2027 static void
2028 unp_process_defers(void *arg __unused, int pending)
2029 {
2030 	struct unp_defer *dr;
2031 	SLIST_HEAD(, unp_defer) drl;
2032 	int count;
2033 
2034 	SLIST_INIT(&drl);
2035 	for (;;) {
2036 		UNP_DEFERRED_LOCK();
2037 		if (SLIST_FIRST(&unp_defers) == NULL) {
2038 			UNP_DEFERRED_UNLOCK();
2039 			break;
2040 		}
2041 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2042 		UNP_DEFERRED_UNLOCK();
2043 		count = 0;
2044 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2045 			SLIST_REMOVE_HEAD(&drl, ud_link);
2046 			closef(dr->ud_fp, NULL);
2047 			free(dr, M_TEMP);
2048 			count++;
2049 		}
2050 		atomic_add_int(&unp_defers_count, -count);
2051 	}
2052 }
2053 
2054 static void
2055 unp_internalize_fp(struct file *fp)
2056 {
2057 	struct unpcb *unp;
2058 
2059 	UNP_LINK_WLOCK();
2060 	if ((unp = fptounp(fp)) != NULL) {
2061 		unp->unp_file = fp;
2062 		unp->unp_msgcount++;
2063 	}
2064 	fhold(fp);
2065 	unp_rights++;
2066 	UNP_LINK_WUNLOCK();
2067 }
2068 
2069 static int
2070 unp_externalize_fp(struct file *fp)
2071 {
2072 	struct unpcb *unp;
2073 	int ret;
2074 
2075 	UNP_LINK_WLOCK();
2076 	if ((unp = fptounp(fp)) != NULL) {
2077 		unp->unp_msgcount--;
2078 		ret = 1;
2079 	} else
2080 		ret = 0;
2081 	unp_rights--;
2082 	UNP_LINK_WUNLOCK();
2083 	return (ret);
2084 }
2085 
2086 /*
2087  * unp_defer indicates whether additional work has been defered for a future
2088  * pass through unp_gc().  It is thread local and does not require explicit
2089  * synchronization.
2090  */
2091 static int	unp_marked;
2092 static int	unp_unreachable;
2093 
2094 static void
2095 unp_accessable(struct file *fp)
2096 {
2097 	struct unpcb *unp;
2098 
2099 	if ((unp = fptounp(fp)) == NULL)
2100 		return;
2101 	if (unp->unp_gcflag & UNPGC_REF)
2102 		return;
2103 	unp->unp_gcflag &= ~UNPGC_DEAD;
2104 	unp->unp_gcflag |= UNPGC_REF;
2105 	unp_marked++;
2106 }
2107 
2108 static void
2109 unp_gc_process(struct unpcb *unp)
2110 {
2111 	struct socket *soa;
2112 	struct socket *so;
2113 	struct file *fp;
2114 
2115 	/* Already processed. */
2116 	if (unp->unp_gcflag & UNPGC_SCANNED)
2117 		return;
2118 	fp = unp->unp_file;
2119 
2120 	/*
2121 	 * Check for a socket potentially in a cycle.  It must be in a
2122 	 * queue as indicated by msgcount, and this must equal the file
2123 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2124 	 */
2125 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2126 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2127 		unp->unp_gcflag |= UNPGC_DEAD;
2128 		unp_unreachable++;
2129 		return;
2130 	}
2131 
2132 	/*
2133 	 * Mark all sockets we reference with RIGHTS.
2134 	 */
2135 	so = unp->unp_socket;
2136 	SOCKBUF_LOCK(&so->so_rcv);
2137 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2138 	SOCKBUF_UNLOCK(&so->so_rcv);
2139 
2140 	/*
2141 	 * Mark all sockets in our accept queue.
2142 	 */
2143 	ACCEPT_LOCK();
2144 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2145 		SOCKBUF_LOCK(&soa->so_rcv);
2146 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2147 		SOCKBUF_UNLOCK(&soa->so_rcv);
2148 	}
2149 	ACCEPT_UNLOCK();
2150 	unp->unp_gcflag |= UNPGC_SCANNED;
2151 }
2152 
2153 static int unp_recycled;
2154 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2155     "Number of unreachable sockets claimed by the garbage collector.");
2156 
2157 static int unp_taskcount;
2158 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2159     "Number of times the garbage collector has run.");
2160 
2161 static void
2162 unp_gc(__unused void *arg, int pending)
2163 {
2164 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2165 				    NULL };
2166 	struct unp_head **head;
2167 	struct file *f, **unref;
2168 	struct unpcb *unp;
2169 	int i, total;
2170 
2171 	unp_taskcount++;
2172 	UNP_LIST_LOCK();
2173 	/*
2174 	 * First clear all gc flags from previous runs.
2175 	 */
2176 	for (head = heads; *head != NULL; head++)
2177 		LIST_FOREACH(unp, *head, unp_link)
2178 			unp->unp_gcflag = 0;
2179 
2180 	/*
2181 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2182 	 * is reachable all of the sockets it references are reachable.
2183 	 * Stop the scan once we do a complete loop without discovering
2184 	 * a new reachable socket.
2185 	 */
2186 	do {
2187 		unp_unreachable = 0;
2188 		unp_marked = 0;
2189 		for (head = heads; *head != NULL; head++)
2190 			LIST_FOREACH(unp, *head, unp_link)
2191 				unp_gc_process(unp);
2192 	} while (unp_marked);
2193 	UNP_LIST_UNLOCK();
2194 	if (unp_unreachable == 0)
2195 		return;
2196 
2197 	/*
2198 	 * Allocate space for a local list of dead unpcbs.
2199 	 */
2200 	unref = malloc(unp_unreachable * sizeof(struct file *),
2201 	    M_TEMP, M_WAITOK);
2202 
2203 	/*
2204 	 * Iterate looking for sockets which have been specifically marked
2205 	 * as as unreachable and store them locally.
2206 	 */
2207 	UNP_LINK_RLOCK();
2208 	UNP_LIST_LOCK();
2209 	for (total = 0, head = heads; *head != NULL; head++)
2210 		LIST_FOREACH(unp, *head, unp_link)
2211 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2212 				f = unp->unp_file;
2213 				if (unp->unp_msgcount == 0 || f == NULL ||
2214 				    f->f_count != unp->unp_msgcount)
2215 					continue;
2216 				unref[total++] = f;
2217 				fhold(f);
2218 				KASSERT(total <= unp_unreachable,
2219 				    ("unp_gc: incorrect unreachable count."));
2220 			}
2221 	UNP_LIST_UNLOCK();
2222 	UNP_LINK_RUNLOCK();
2223 
2224 	/*
2225 	 * Now flush all sockets, free'ing rights.  This will free the
2226 	 * struct files associated with these sockets but leave each socket
2227 	 * with one remaining ref.
2228 	 */
2229 	for (i = 0; i < total; i++) {
2230 		struct socket *so;
2231 
2232 		so = unref[i]->f_data;
2233 		CURVNET_SET(so->so_vnet);
2234 		sorflush(so);
2235 		CURVNET_RESTORE();
2236 	}
2237 
2238 	/*
2239 	 * And finally release the sockets so they can be reclaimed.
2240 	 */
2241 	for (i = 0; i < total; i++)
2242 		fdrop(unref[i], NULL);
2243 	unp_recycled += total;
2244 	free(unref, M_TEMP);
2245 }
2246 
2247 static void
2248 unp_dispose(struct mbuf *m)
2249 {
2250 
2251 	if (m)
2252 		unp_scan(m, unp_discard);
2253 }
2254 
2255 static void
2256 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2257 {
2258 	struct mbuf *m;
2259 	struct file **rp;
2260 	struct cmsghdr *cm;
2261 	void *data;
2262 	int i;
2263 	socklen_t clen, datalen;
2264 	int qfds;
2265 
2266 	while (m0 != NULL) {
2267 		for (m = m0; m; m = m->m_next) {
2268 			if (m->m_type != MT_CONTROL)
2269 				continue;
2270 
2271 			cm = mtod(m, struct cmsghdr *);
2272 			clen = m->m_len;
2273 
2274 			while (cm != NULL) {
2275 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2276 					break;
2277 
2278 				data = CMSG_DATA(cm);
2279 				datalen = (caddr_t)cm + cm->cmsg_len
2280 				    - (caddr_t)data;
2281 
2282 				if (cm->cmsg_level == SOL_SOCKET &&
2283 				    cm->cmsg_type == SCM_RIGHTS) {
2284 					qfds = datalen / sizeof (struct file *);
2285 					rp = data;
2286 					for (i = 0; i < qfds; i++)
2287 						(*op)(*rp++);
2288 				}
2289 
2290 				if (CMSG_SPACE(datalen) < clen) {
2291 					clen -= CMSG_SPACE(datalen);
2292 					cm = (struct cmsghdr *)
2293 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2294 				} else {
2295 					clen = 0;
2296 					cm = NULL;
2297 				}
2298 			}
2299 		}
2300 		m0 = m0->m_act;
2301 	}
2302 }
2303 
2304 /*
2305  * A helper function called by VFS before socket-type vnode reclamation.
2306  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2307  * use count.
2308  */
2309 void
2310 vfs_unp_reclaim(struct vnode *vp)
2311 {
2312 	struct socket *so;
2313 	struct unpcb *unp;
2314 	int active;
2315 
2316 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2317 	KASSERT(vp->v_type == VSOCK,
2318 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2319 
2320 	active = 0;
2321 	UNP_LINK_WLOCK();
2322 	VOP_UNP_CONNECT(vp, &so);
2323 	if (so == NULL)
2324 		goto done;
2325 	unp = sotounpcb(so);
2326 	if (unp == NULL)
2327 		goto done;
2328 	UNP_PCB_LOCK(unp);
2329 	if (unp->unp_vnode == vp) {
2330 		VOP_UNP_DETACH(vp);
2331 		unp->unp_vnode = NULL;
2332 		active = 1;
2333 	}
2334 	UNP_PCB_UNLOCK(unp);
2335 done:
2336 	UNP_LINK_WUNLOCK();
2337 	if (active)
2338 		vunref(vp);
2339 }
2340 
2341 #ifdef DDB
2342 static void
2343 db_print_indent(int indent)
2344 {
2345 	int i;
2346 
2347 	for (i = 0; i < indent; i++)
2348 		db_printf(" ");
2349 }
2350 
2351 static void
2352 db_print_unpflags(int unp_flags)
2353 {
2354 	int comma;
2355 
2356 	comma = 0;
2357 	if (unp_flags & UNP_HAVEPC) {
2358 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2359 		comma = 1;
2360 	}
2361 	if (unp_flags & UNP_HAVEPCCACHED) {
2362 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2363 		comma = 1;
2364 	}
2365 	if (unp_flags & UNP_WANTCRED) {
2366 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2367 		comma = 1;
2368 	}
2369 	if (unp_flags & UNP_CONNWAIT) {
2370 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2371 		comma = 1;
2372 	}
2373 	if (unp_flags & UNP_CONNECTING) {
2374 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2375 		comma = 1;
2376 	}
2377 	if (unp_flags & UNP_BINDING) {
2378 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2379 		comma = 1;
2380 	}
2381 }
2382 
2383 static void
2384 db_print_xucred(int indent, struct xucred *xu)
2385 {
2386 	int comma, i;
2387 
2388 	db_print_indent(indent);
2389 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2390 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2391 	db_print_indent(indent);
2392 	db_printf("cr_groups: ");
2393 	comma = 0;
2394 	for (i = 0; i < xu->cr_ngroups; i++) {
2395 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2396 		comma = 1;
2397 	}
2398 	db_printf("\n");
2399 }
2400 
2401 static void
2402 db_print_unprefs(int indent, struct unp_head *uh)
2403 {
2404 	struct unpcb *unp;
2405 	int counter;
2406 
2407 	counter = 0;
2408 	LIST_FOREACH(unp, uh, unp_reflink) {
2409 		if (counter % 4 == 0)
2410 			db_print_indent(indent);
2411 		db_printf("%p  ", unp);
2412 		if (counter % 4 == 3)
2413 			db_printf("\n");
2414 		counter++;
2415 	}
2416 	if (counter != 0 && counter % 4 != 0)
2417 		db_printf("\n");
2418 }
2419 
2420 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2421 {
2422 	struct unpcb *unp;
2423 
2424         if (!have_addr) {
2425                 db_printf("usage: show unpcb <addr>\n");
2426                 return;
2427         }
2428         unp = (struct unpcb *)addr;
2429 
2430 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2431 	    unp->unp_vnode);
2432 
2433 	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2434 	    unp->unp_conn);
2435 
2436 	db_printf("unp_refs:\n");
2437 	db_print_unprefs(2, &unp->unp_refs);
2438 
2439 	/* XXXRW: Would be nice to print the full address, if any. */
2440 	db_printf("unp_addr: %p\n", unp->unp_addr);
2441 
2442 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2443 	    unp->unp_cc, unp->unp_mbcnt,
2444 	    (unsigned long long)unp->unp_gencnt);
2445 
2446 	db_printf("unp_flags: %x (", unp->unp_flags);
2447 	db_print_unpflags(unp->unp_flags);
2448 	db_printf(")\n");
2449 
2450 	db_printf("unp_peercred:\n");
2451 	db_print_xucred(2, &unp->unp_peercred);
2452 
2453 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2454 }
2455 #endif
2456