xref: /freebsd/sys/kern/uipc_usrreq.c (revision a98ff317388a00b992f1bf8404dee596f9383f5e)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	distinguish datagram size limits from flow control limits in SEQPACKET
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/capability.h>
66 #include <sys/domain.h>
67 #include <sys/fcntl.h>
68 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
69 #include <sys/eventhandler.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/mbuf.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/namei.h>
78 #include <sys/proc.h>
79 #include <sys/protosw.h>
80 #include <sys/queue.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/signalvar.h>
86 #include <sys/stat.h>
87 #include <sys/sx.h>
88 #include <sys/sysctl.h>
89 #include <sys/systm.h>
90 #include <sys/taskqueue.h>
91 #include <sys/un.h>
92 #include <sys/unpcb.h>
93 #include <sys/vnode.h>
94 
95 #include <net/vnet.h>
96 
97 #ifdef DDB
98 #include <ddb/ddb.h>
99 #endif
100 
101 #include <security/mac/mac_framework.h>
102 
103 #include <vm/uma.h>
104 
105 MALLOC_DECLARE(M_FILECAPS);
106 
107 /*
108  * Locking key:
109  * (l)	Locked using list lock
110  * (g)	Locked using linkage lock
111  */
112 
113 static uma_zone_t	unp_zone;
114 static unp_gen_t	unp_gencnt;	/* (l) */
115 static u_int		unp_count;	/* (l) Count of local sockets. */
116 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
117 static int		unp_rights;	/* (g) File descriptors in flight. */
118 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
119 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
120 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
121 
122 struct unp_defer {
123 	SLIST_ENTRY(unp_defer) ud_link;
124 	struct file *ud_fp;
125 };
126 static SLIST_HEAD(, unp_defer) unp_defers;
127 static int unp_defers_count;
128 
129 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
130 
131 /*
132  * Garbage collection of cyclic file descriptor/socket references occurs
133  * asynchronously in a taskqueue context in order to avoid recursion and
134  * reentrance in the UNIX domain socket, file descriptor, and socket layer
135  * code.  See unp_gc() for a full description.
136  */
137 static struct timeout_task unp_gc_task;
138 
139 /*
140  * The close of unix domain sockets attached as SCM_RIGHTS is
141  * postponed to the taskqueue, to avoid arbitrary recursion depth.
142  * The attached sockets might have another sockets attached.
143  */
144 static struct task	unp_defer_task;
145 
146 /*
147  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
148  * stream sockets, although the total for sender and receiver is actually
149  * only PIPSIZ.
150  *
151  * Datagram sockets really use the sendspace as the maximum datagram size,
152  * and don't really want to reserve the sendspace.  Their recvspace should be
153  * large enough for at least one max-size datagram plus address.
154  */
155 #ifndef PIPSIZ
156 #define	PIPSIZ	8192
157 #endif
158 static u_long	unpst_sendspace = PIPSIZ;
159 static u_long	unpst_recvspace = PIPSIZ;
160 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
161 static u_long	unpdg_recvspace = 4*1024;
162 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
163 static u_long	unpsp_recvspace = PIPSIZ;
164 
165 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
167     "SOCK_STREAM");
168 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
169 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
170     "SOCK_SEQPACKET");
171 
172 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
173 	   &unpst_sendspace, 0, "Default stream send space.");
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
175 	   &unpst_recvspace, 0, "Default stream receive space.");
176 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
177 	   &unpdg_sendspace, 0, "Default datagram send space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpdg_recvspace, 0, "Default datagram receive space.");
180 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
181 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
184 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
185     "File descriptors in flight.");
186 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
187     &unp_defers_count, 0,
188     "File descriptors deferred to taskqueue for close.");
189 
190 /*
191  * Locking and synchronization:
192  *
193  * Three types of locks exit in the local domain socket implementation: a
194  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
195  * global locks, the list lock protects the socket count, global generation
196  * number, and stream/datagram global lists.  The linkage lock protects the
197  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
198  * held exclusively over the acquisition of multiple unpcb locks to prevent
199  * deadlock.
200  *
201  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
202  * allocated in pru_attach() and freed in pru_detach().  The validity of that
203  * pointer is an invariant, so no lock is required to dereference the so_pcb
204  * pointer if a valid socket reference is held by the caller.  In practice,
205  * this is always true during operations performed on a socket.  Each unpcb
206  * has a back-pointer to its socket, unp_socket, which will be stable under
207  * the same circumstances.
208  *
209  * This pointer may only be safely dereferenced as long as a valid reference
210  * to the unpcb is held.  Typically, this reference will be from the socket,
211  * or from another unpcb when the referring unpcb's lock is held (in order
212  * that the reference not be invalidated during use).  For example, to follow
213  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
214  * as unp_socket remains valid as long as the reference to unp_conn is valid.
215  *
216  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
217  * atomic reads without the lock may be performed "lockless", but more
218  * complex reads and read-modify-writes require the mutex to be held.  No
219  * lock order is defined between unpcb locks -- multiple unpcb locks may be
220  * acquired at the same time only when holding the linkage rwlock
221  * exclusively, which prevents deadlocks.
222  *
223  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
224  * protocols, bind() is a non-atomic operation, and connect() requires
225  * potential sleeping in the protocol, due to potentially waiting on local or
226  * distributed file systems.  We try to separate "lookup" operations, which
227  * may sleep, and the IPC operations themselves, which typically can occur
228  * with relative atomicity as locks can be held over the entire operation.
229  *
230  * Another tricky issue is simultaneous multi-threaded or multi-process
231  * access to a single UNIX domain socket.  These are handled by the flags
232  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
233  * binding, both of which involve dropping UNIX domain socket locks in order
234  * to perform namei() and other file system operations.
235  */
236 static struct rwlock	unp_link_rwlock;
237 static struct mtx	unp_list_lock;
238 static struct mtx	unp_defers_lock;
239 
240 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
241 					    "unp_link_rwlock")
242 
243 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
244 					    RA_LOCKED)
245 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
246 					    RA_UNLOCKED)
247 
248 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
249 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
250 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
251 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
252 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
253 					    RA_WLOCKED)
254 
255 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
256 					    "unp_list_lock", NULL, MTX_DEF)
257 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
258 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
259 
260 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
261 					    "unp_defer", NULL, MTX_DEF)
262 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
263 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
264 
265 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
266 					    "unp_mtx", "unp_mtx",	\
267 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
268 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
269 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
270 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
271 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
272 
273 static int	uipc_connect2(struct socket *, struct socket *);
274 static int	uipc_ctloutput(struct socket *, struct sockopt *);
275 static int	unp_connect(struct socket *, struct sockaddr *,
276 		    struct thread *);
277 static int	unp_connectat(int, struct socket *, struct sockaddr *,
278 		    struct thread *);
279 static int	unp_connect2(struct socket *so, struct socket *so2, int);
280 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
281 static void	unp_dispose(struct mbuf *);
282 static void	unp_shutdown(struct unpcb *);
283 static void	unp_drop(struct unpcb *, int);
284 static void	unp_gc(__unused void *, int);
285 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
286 static void	unp_discard(struct file *);
287 static void	unp_freerights(struct filedescent **, int);
288 static void	unp_init(void);
289 static int	unp_internalize(struct mbuf **, struct thread *);
290 static void	unp_internalize_fp(struct file *);
291 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
292 static int	unp_externalize_fp(struct file *);
293 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
294 static void	unp_process_defers(void * __unused, int);
295 
296 /*
297  * Definitions of protocols supported in the LOCAL domain.
298  */
299 static struct domain localdomain;
300 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
301 static struct pr_usrreqs uipc_usrreqs_seqpacket;
302 static struct protosw localsw[] = {
303 {
304 	.pr_type =		SOCK_STREAM,
305 	.pr_domain =		&localdomain,
306 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
307 	.pr_ctloutput =		&uipc_ctloutput,
308 	.pr_usrreqs =		&uipc_usrreqs_stream
309 },
310 {
311 	.pr_type =		SOCK_DGRAM,
312 	.pr_domain =		&localdomain,
313 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
314 	.pr_ctloutput =		&uipc_ctloutput,
315 	.pr_usrreqs =		&uipc_usrreqs_dgram
316 },
317 {
318 	.pr_type =		SOCK_SEQPACKET,
319 	.pr_domain =		&localdomain,
320 
321 	/*
322 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
323 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
324 	 * that supports both atomic record writes and control data.
325 	 */
326 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
327 				    PR_RIGHTS,
328 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
329 },
330 };
331 
332 static struct domain localdomain = {
333 	.dom_family =		AF_LOCAL,
334 	.dom_name =		"local",
335 	.dom_init =		unp_init,
336 	.dom_externalize =	unp_externalize,
337 	.dom_dispose =		unp_dispose,
338 	.dom_protosw =		localsw,
339 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
340 };
341 DOMAIN_SET(local);
342 
343 static void
344 uipc_abort(struct socket *so)
345 {
346 	struct unpcb *unp, *unp2;
347 
348 	unp = sotounpcb(so);
349 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
350 
351 	UNP_LINK_WLOCK();
352 	UNP_PCB_LOCK(unp);
353 	unp2 = unp->unp_conn;
354 	if (unp2 != NULL) {
355 		UNP_PCB_LOCK(unp2);
356 		unp_drop(unp2, ECONNABORTED);
357 		UNP_PCB_UNLOCK(unp2);
358 	}
359 	UNP_PCB_UNLOCK(unp);
360 	UNP_LINK_WUNLOCK();
361 }
362 
363 static int
364 uipc_accept(struct socket *so, struct sockaddr **nam)
365 {
366 	struct unpcb *unp, *unp2;
367 	const struct sockaddr *sa;
368 
369 	/*
370 	 * Pass back name of connected socket, if it was bound and we are
371 	 * still connected (our peer may have closed already!).
372 	 */
373 	unp = sotounpcb(so);
374 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
375 
376 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
377 	UNP_LINK_RLOCK();
378 	unp2 = unp->unp_conn;
379 	if (unp2 != NULL && unp2->unp_addr != NULL) {
380 		UNP_PCB_LOCK(unp2);
381 		sa = (struct sockaddr *) unp2->unp_addr;
382 		bcopy(sa, *nam, sa->sa_len);
383 		UNP_PCB_UNLOCK(unp2);
384 	} else {
385 		sa = &sun_noname;
386 		bcopy(sa, *nam, sa->sa_len);
387 	}
388 	UNP_LINK_RUNLOCK();
389 	return (0);
390 }
391 
392 static int
393 uipc_attach(struct socket *so, int proto, struct thread *td)
394 {
395 	u_long sendspace, recvspace;
396 	struct unpcb *unp;
397 	int error;
398 
399 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
400 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
401 		switch (so->so_type) {
402 		case SOCK_STREAM:
403 			sendspace = unpst_sendspace;
404 			recvspace = unpst_recvspace;
405 			break;
406 
407 		case SOCK_DGRAM:
408 			sendspace = unpdg_sendspace;
409 			recvspace = unpdg_recvspace;
410 			break;
411 
412 		case SOCK_SEQPACKET:
413 			sendspace = unpsp_sendspace;
414 			recvspace = unpsp_recvspace;
415 			break;
416 
417 		default:
418 			panic("uipc_attach");
419 		}
420 		error = soreserve(so, sendspace, recvspace);
421 		if (error)
422 			return (error);
423 	}
424 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
425 	if (unp == NULL)
426 		return (ENOBUFS);
427 	LIST_INIT(&unp->unp_refs);
428 	UNP_PCB_LOCK_INIT(unp);
429 	unp->unp_socket = so;
430 	so->so_pcb = unp;
431 	unp->unp_refcount = 1;
432 
433 	UNP_LIST_LOCK();
434 	unp->unp_gencnt = ++unp_gencnt;
435 	unp_count++;
436 	switch (so->so_type) {
437 	case SOCK_STREAM:
438 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
439 		break;
440 
441 	case SOCK_DGRAM:
442 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
443 		break;
444 
445 	case SOCK_SEQPACKET:
446 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
447 		break;
448 
449 	default:
450 		panic("uipc_attach");
451 	}
452 	UNP_LIST_UNLOCK();
453 
454 	return (0);
455 }
456 
457 static int
458 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
459 {
460 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
461 	struct vattr vattr;
462 	int error, namelen;
463 	struct nameidata nd;
464 	struct unpcb *unp;
465 	struct vnode *vp;
466 	struct mount *mp;
467 	char *buf;
468 
469 	unp = sotounpcb(so);
470 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
471 
472 	if (soun->sun_len > sizeof(struct sockaddr_un))
473 		return (EINVAL);
474 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
475 	if (namelen <= 0)
476 		return (EINVAL);
477 
478 	/*
479 	 * We don't allow simultaneous bind() calls on a single UNIX domain
480 	 * socket, so flag in-progress operations, and return an error if an
481 	 * operation is already in progress.
482 	 *
483 	 * Historically, we have not allowed a socket to be rebound, so this
484 	 * also returns an error.  Not allowing re-binding simplifies the
485 	 * implementation and avoids a great many possible failure modes.
486 	 */
487 	UNP_PCB_LOCK(unp);
488 	if (unp->unp_vnode != NULL) {
489 		UNP_PCB_UNLOCK(unp);
490 		return (EINVAL);
491 	}
492 	if (unp->unp_flags & UNP_BINDING) {
493 		UNP_PCB_UNLOCK(unp);
494 		return (EALREADY);
495 	}
496 	unp->unp_flags |= UNP_BINDING;
497 	UNP_PCB_UNLOCK(unp);
498 
499 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
500 	bcopy(soun->sun_path, buf, namelen);
501 	buf[namelen] = 0;
502 
503 restart:
504 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
505 	    UIO_SYSSPACE, buf, fd, CAP_BINDAT, td);
506 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
507 	error = namei(&nd);
508 	if (error)
509 		goto error;
510 	vp = nd.ni_vp;
511 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
512 		NDFREE(&nd, NDF_ONLY_PNBUF);
513 		if (nd.ni_dvp == vp)
514 			vrele(nd.ni_dvp);
515 		else
516 			vput(nd.ni_dvp);
517 		if (vp != NULL) {
518 			vrele(vp);
519 			error = EADDRINUSE;
520 			goto error;
521 		}
522 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
523 		if (error)
524 			goto error;
525 		goto restart;
526 	}
527 	VATTR_NULL(&vattr);
528 	vattr.va_type = VSOCK;
529 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
530 #ifdef MAC
531 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
532 	    &vattr);
533 #endif
534 	if (error == 0)
535 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
536 	NDFREE(&nd, NDF_ONLY_PNBUF);
537 	vput(nd.ni_dvp);
538 	if (error) {
539 		vn_finished_write(mp);
540 		goto error;
541 	}
542 	vp = nd.ni_vp;
543 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
544 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
545 
546 	UNP_LINK_WLOCK();
547 	UNP_PCB_LOCK(unp);
548 	VOP_UNP_BIND(vp, unp->unp_socket);
549 	unp->unp_vnode = vp;
550 	unp->unp_addr = soun;
551 	unp->unp_flags &= ~UNP_BINDING;
552 	UNP_PCB_UNLOCK(unp);
553 	UNP_LINK_WUNLOCK();
554 	VOP_UNLOCK(vp, 0);
555 	vn_finished_write(mp);
556 	free(buf, M_TEMP);
557 	return (0);
558 
559 error:
560 	UNP_PCB_LOCK(unp);
561 	unp->unp_flags &= ~UNP_BINDING;
562 	UNP_PCB_UNLOCK(unp);
563 	free(buf, M_TEMP);
564 	return (error);
565 }
566 
567 static int
568 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
569 {
570 
571 	return (uipc_bindat(AT_FDCWD, so, nam, td));
572 }
573 
574 static int
575 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
576 {
577 	int error;
578 
579 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
580 	UNP_LINK_WLOCK();
581 	error = unp_connect(so, nam, td);
582 	UNP_LINK_WUNLOCK();
583 	return (error);
584 }
585 
586 static int
587 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
588     struct thread *td)
589 {
590 	int error;
591 
592 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
593 	UNP_LINK_WLOCK();
594 	error = unp_connectat(fd, so, nam, td);
595 	UNP_LINK_WUNLOCK();
596 	return (error);
597 }
598 
599 static void
600 uipc_close(struct socket *so)
601 {
602 	struct unpcb *unp, *unp2;
603 
604 	unp = sotounpcb(so);
605 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
606 
607 	UNP_LINK_WLOCK();
608 	UNP_PCB_LOCK(unp);
609 	unp2 = unp->unp_conn;
610 	if (unp2 != NULL) {
611 		UNP_PCB_LOCK(unp2);
612 		unp_disconnect(unp, unp2);
613 		UNP_PCB_UNLOCK(unp2);
614 	}
615 	UNP_PCB_UNLOCK(unp);
616 	UNP_LINK_WUNLOCK();
617 }
618 
619 static int
620 uipc_connect2(struct socket *so1, struct socket *so2)
621 {
622 	struct unpcb *unp, *unp2;
623 	int error;
624 
625 	UNP_LINK_WLOCK();
626 	unp = so1->so_pcb;
627 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
628 	UNP_PCB_LOCK(unp);
629 	unp2 = so2->so_pcb;
630 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
631 	UNP_PCB_LOCK(unp2);
632 	error = unp_connect2(so1, so2, PRU_CONNECT2);
633 	UNP_PCB_UNLOCK(unp2);
634 	UNP_PCB_UNLOCK(unp);
635 	UNP_LINK_WUNLOCK();
636 	return (error);
637 }
638 
639 static void
640 uipc_detach(struct socket *so)
641 {
642 	struct unpcb *unp, *unp2;
643 	struct sockaddr_un *saved_unp_addr;
644 	struct vnode *vp;
645 	int freeunp, local_unp_rights;
646 
647 	unp = sotounpcb(so);
648 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
649 
650 	UNP_LINK_WLOCK();
651 	UNP_LIST_LOCK();
652 	UNP_PCB_LOCK(unp);
653 	LIST_REMOVE(unp, unp_link);
654 	unp->unp_gencnt = ++unp_gencnt;
655 	--unp_count;
656 	UNP_LIST_UNLOCK();
657 
658 	/*
659 	 * XXXRW: Should assert vp->v_socket == so.
660 	 */
661 	if ((vp = unp->unp_vnode) != NULL) {
662 		VOP_UNP_DETACH(vp);
663 		unp->unp_vnode = NULL;
664 	}
665 	unp2 = unp->unp_conn;
666 	if (unp2 != NULL) {
667 		UNP_PCB_LOCK(unp2);
668 		unp_disconnect(unp, unp2);
669 		UNP_PCB_UNLOCK(unp2);
670 	}
671 
672 	/*
673 	 * We hold the linkage lock exclusively, so it's OK to acquire
674 	 * multiple pcb locks at a time.
675 	 */
676 	while (!LIST_EMPTY(&unp->unp_refs)) {
677 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
678 
679 		UNP_PCB_LOCK(ref);
680 		unp_drop(ref, ECONNRESET);
681 		UNP_PCB_UNLOCK(ref);
682 	}
683 	local_unp_rights = unp_rights;
684 	UNP_LINK_WUNLOCK();
685 	unp->unp_socket->so_pcb = NULL;
686 	saved_unp_addr = unp->unp_addr;
687 	unp->unp_addr = NULL;
688 	unp->unp_refcount--;
689 	freeunp = (unp->unp_refcount == 0);
690 	if (saved_unp_addr != NULL)
691 		free(saved_unp_addr, M_SONAME);
692 	if (freeunp) {
693 		UNP_PCB_LOCK_DESTROY(unp);
694 		uma_zfree(unp_zone, unp);
695 	} else
696 		UNP_PCB_UNLOCK(unp);
697 	if (vp)
698 		vrele(vp);
699 	if (local_unp_rights)
700 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
701 }
702 
703 static int
704 uipc_disconnect(struct socket *so)
705 {
706 	struct unpcb *unp, *unp2;
707 
708 	unp = sotounpcb(so);
709 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
710 
711 	UNP_LINK_WLOCK();
712 	UNP_PCB_LOCK(unp);
713 	unp2 = unp->unp_conn;
714 	if (unp2 != NULL) {
715 		UNP_PCB_LOCK(unp2);
716 		unp_disconnect(unp, unp2);
717 		UNP_PCB_UNLOCK(unp2);
718 	}
719 	UNP_PCB_UNLOCK(unp);
720 	UNP_LINK_WUNLOCK();
721 	return (0);
722 }
723 
724 static int
725 uipc_listen(struct socket *so, int backlog, struct thread *td)
726 {
727 	struct unpcb *unp;
728 	int error;
729 
730 	unp = sotounpcb(so);
731 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
732 
733 	UNP_PCB_LOCK(unp);
734 	if (unp->unp_vnode == NULL) {
735 		UNP_PCB_UNLOCK(unp);
736 		return (EINVAL);
737 	}
738 
739 	SOCK_LOCK(so);
740 	error = solisten_proto_check(so);
741 	if (error == 0) {
742 		cru2x(td->td_ucred, &unp->unp_peercred);
743 		unp->unp_flags |= UNP_HAVEPCCACHED;
744 		solisten_proto(so, backlog);
745 	}
746 	SOCK_UNLOCK(so);
747 	UNP_PCB_UNLOCK(unp);
748 	return (error);
749 }
750 
751 static int
752 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
753 {
754 	struct unpcb *unp, *unp2;
755 	const struct sockaddr *sa;
756 
757 	unp = sotounpcb(so);
758 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
759 
760 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
761 	UNP_LINK_RLOCK();
762 	/*
763 	 * XXX: It seems that this test always fails even when connection is
764 	 * established.  So, this else clause is added as workaround to
765 	 * return PF_LOCAL sockaddr.
766 	 */
767 	unp2 = unp->unp_conn;
768 	if (unp2 != NULL) {
769 		UNP_PCB_LOCK(unp2);
770 		if (unp2->unp_addr != NULL)
771 			sa = (struct sockaddr *) unp2->unp_addr;
772 		else
773 			sa = &sun_noname;
774 		bcopy(sa, *nam, sa->sa_len);
775 		UNP_PCB_UNLOCK(unp2);
776 	} else {
777 		sa = &sun_noname;
778 		bcopy(sa, *nam, sa->sa_len);
779 	}
780 	UNP_LINK_RUNLOCK();
781 	return (0);
782 }
783 
784 static int
785 uipc_rcvd(struct socket *so, int flags)
786 {
787 	struct unpcb *unp, *unp2;
788 	struct socket *so2;
789 	u_int mbcnt, sbcc;
790 	u_long newhiwat;
791 
792 	unp = sotounpcb(so);
793 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
794 
795 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
796 		panic("uipc_rcvd socktype %d", so->so_type);
797 
798 	/*
799 	 * Adjust backpressure on sender and wakeup any waiting to write.
800 	 *
801 	 * The unp lock is acquired to maintain the validity of the unp_conn
802 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
803 	 * static as long as we don't permit unp2 to disconnect from unp,
804 	 * which is prevented by the lock on unp.  We cache values from
805 	 * so_rcv to avoid holding the so_rcv lock over the entire
806 	 * transaction on the remote so_snd.
807 	 */
808 	SOCKBUF_LOCK(&so->so_rcv);
809 	mbcnt = so->so_rcv.sb_mbcnt;
810 	sbcc = so->so_rcv.sb_cc;
811 	SOCKBUF_UNLOCK(&so->so_rcv);
812 	UNP_PCB_LOCK(unp);
813 	unp2 = unp->unp_conn;
814 	if (unp2 == NULL) {
815 		UNP_PCB_UNLOCK(unp);
816 		return (0);
817 	}
818 	so2 = unp2->unp_socket;
819 	SOCKBUF_LOCK(&so2->so_snd);
820 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
821 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
822 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
823 	    newhiwat, RLIM_INFINITY);
824 	sowwakeup_locked(so2);
825 	unp->unp_mbcnt = mbcnt;
826 	unp->unp_cc = sbcc;
827 	UNP_PCB_UNLOCK(unp);
828 	return (0);
829 }
830 
831 static int
832 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
833     struct mbuf *control, struct thread *td)
834 {
835 	struct unpcb *unp, *unp2;
836 	struct socket *so2;
837 	u_int mbcnt_delta, sbcc;
838 	u_int newhiwat;
839 	int error = 0;
840 
841 	unp = sotounpcb(so);
842 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
843 
844 	if (flags & PRUS_OOB) {
845 		error = EOPNOTSUPP;
846 		goto release;
847 	}
848 	if (control != NULL && (error = unp_internalize(&control, td)))
849 		goto release;
850 	if ((nam != NULL) || (flags & PRUS_EOF))
851 		UNP_LINK_WLOCK();
852 	else
853 		UNP_LINK_RLOCK();
854 	switch (so->so_type) {
855 	case SOCK_DGRAM:
856 	{
857 		const struct sockaddr *from;
858 
859 		unp2 = unp->unp_conn;
860 		if (nam != NULL) {
861 			UNP_LINK_WLOCK_ASSERT();
862 			if (unp2 != NULL) {
863 				error = EISCONN;
864 				break;
865 			}
866 			error = unp_connect(so, nam, td);
867 			if (error)
868 				break;
869 			unp2 = unp->unp_conn;
870 		}
871 
872 		/*
873 		 * Because connect() and send() are non-atomic in a sendto()
874 		 * with a target address, it's possible that the socket will
875 		 * have disconnected before the send() can run.  In that case
876 		 * return the slightly counter-intuitive but otherwise
877 		 * correct error that the socket is not connected.
878 		 */
879 		if (unp2 == NULL) {
880 			error = ENOTCONN;
881 			break;
882 		}
883 		/* Lockless read. */
884 		if (unp2->unp_flags & UNP_WANTCRED)
885 			control = unp_addsockcred(td, control);
886 		UNP_PCB_LOCK(unp);
887 		if (unp->unp_addr != NULL)
888 			from = (struct sockaddr *)unp->unp_addr;
889 		else
890 			from = &sun_noname;
891 		so2 = unp2->unp_socket;
892 		SOCKBUF_LOCK(&so2->so_rcv);
893 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
894 			sorwakeup_locked(so2);
895 			m = NULL;
896 			control = NULL;
897 		} else {
898 			SOCKBUF_UNLOCK(&so2->so_rcv);
899 			error = ENOBUFS;
900 		}
901 		if (nam != NULL) {
902 			UNP_LINK_WLOCK_ASSERT();
903 			UNP_PCB_LOCK(unp2);
904 			unp_disconnect(unp, unp2);
905 			UNP_PCB_UNLOCK(unp2);
906 		}
907 		UNP_PCB_UNLOCK(unp);
908 		break;
909 	}
910 
911 	case SOCK_SEQPACKET:
912 	case SOCK_STREAM:
913 		if ((so->so_state & SS_ISCONNECTED) == 0) {
914 			if (nam != NULL) {
915 				UNP_LINK_WLOCK_ASSERT();
916 				error = unp_connect(so, nam, td);
917 				if (error)
918 					break;	/* XXX */
919 			} else {
920 				error = ENOTCONN;
921 				break;
922 			}
923 		}
924 
925 		/* Lockless read. */
926 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
927 			error = EPIPE;
928 			break;
929 		}
930 
931 		/*
932 		 * Because connect() and send() are non-atomic in a sendto()
933 		 * with a target address, it's possible that the socket will
934 		 * have disconnected before the send() can run.  In that case
935 		 * return the slightly counter-intuitive but otherwise
936 		 * correct error that the socket is not connected.
937 		 *
938 		 * Locking here must be done carefully: the linkage lock
939 		 * prevents interconnections between unpcbs from changing, so
940 		 * we can traverse from unp to unp2 without acquiring unp's
941 		 * lock.  Socket buffer locks follow unpcb locks, so we can
942 		 * acquire both remote and lock socket buffer locks.
943 		 */
944 		unp2 = unp->unp_conn;
945 		if (unp2 == NULL) {
946 			error = ENOTCONN;
947 			break;
948 		}
949 		so2 = unp2->unp_socket;
950 		UNP_PCB_LOCK(unp2);
951 		SOCKBUF_LOCK(&so2->so_rcv);
952 		if (unp2->unp_flags & UNP_WANTCRED) {
953 			/*
954 			 * Credentials are passed only once on SOCK_STREAM
955 			 * and SOCK_SEQPACKET.
956 			 */
957 			unp2->unp_flags &= ~UNP_WANTCRED;
958 			control = unp_addsockcred(td, control);
959 		}
960 		/*
961 		 * Send to paired receive port, and then reduce send buffer
962 		 * hiwater marks to maintain backpressure.  Wake up readers.
963 		 */
964 		switch (so->so_type) {
965 		case SOCK_STREAM:
966 			if (control != NULL) {
967 				if (sbappendcontrol_locked(&so2->so_rcv, m,
968 				    control))
969 					control = NULL;
970 			} else
971 				sbappend_locked(&so2->so_rcv, m);
972 			break;
973 
974 		case SOCK_SEQPACKET: {
975 			const struct sockaddr *from;
976 
977 			from = &sun_noname;
978 			if (sbappendaddr_locked(&so2->so_rcv, from, m,
979 			    control))
980 				control = NULL;
981 			break;
982 			}
983 		}
984 
985 		/*
986 		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
987 		 * datagram size and back-pressure for SOCK_SEQPACKET, which
988 		 * can lead to undesired return of EMSGSIZE on send instead
989 		 * of more desirable blocking.
990 		 */
991 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
992 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
993 		sbcc = so2->so_rcv.sb_cc;
994 		sorwakeup_locked(so2);
995 
996 		SOCKBUF_LOCK(&so->so_snd);
997 		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
998 			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
999 		else
1000 			newhiwat = 0;
1001 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
1002 		    newhiwat, RLIM_INFINITY);
1003 		so->so_snd.sb_mbmax -= mbcnt_delta;
1004 		SOCKBUF_UNLOCK(&so->so_snd);
1005 		unp2->unp_cc = sbcc;
1006 		UNP_PCB_UNLOCK(unp2);
1007 		m = NULL;
1008 		break;
1009 
1010 	default:
1011 		panic("uipc_send unknown socktype");
1012 	}
1013 
1014 	/*
1015 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1016 	 */
1017 	if (flags & PRUS_EOF) {
1018 		UNP_PCB_LOCK(unp);
1019 		socantsendmore(so);
1020 		unp_shutdown(unp);
1021 		UNP_PCB_UNLOCK(unp);
1022 	}
1023 
1024 	if ((nam != NULL) || (flags & PRUS_EOF))
1025 		UNP_LINK_WUNLOCK();
1026 	else
1027 		UNP_LINK_RUNLOCK();
1028 
1029 	if (control != NULL && error != 0)
1030 		unp_dispose(control);
1031 
1032 release:
1033 	if (control != NULL)
1034 		m_freem(control);
1035 	if (m != NULL)
1036 		m_freem(m);
1037 	return (error);
1038 }
1039 
1040 static int
1041 uipc_sense(struct socket *so, struct stat *sb)
1042 {
1043 	struct unpcb *unp, *unp2;
1044 	struct socket *so2;
1045 
1046 	unp = sotounpcb(so);
1047 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1048 
1049 	sb->st_blksize = so->so_snd.sb_hiwat;
1050 	UNP_LINK_RLOCK();
1051 	UNP_PCB_LOCK(unp);
1052 	unp2 = unp->unp_conn;
1053 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1054 	    unp2 != NULL) {
1055 		so2 = unp2->unp_socket;
1056 		sb->st_blksize += so2->so_rcv.sb_cc;
1057 	}
1058 	sb->st_dev = NODEV;
1059 	if (unp->unp_ino == 0)
1060 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1061 	sb->st_ino = unp->unp_ino;
1062 	UNP_PCB_UNLOCK(unp);
1063 	UNP_LINK_RUNLOCK();
1064 	return (0);
1065 }
1066 
1067 static int
1068 uipc_shutdown(struct socket *so)
1069 {
1070 	struct unpcb *unp;
1071 
1072 	unp = sotounpcb(so);
1073 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1074 
1075 	UNP_LINK_WLOCK();
1076 	UNP_PCB_LOCK(unp);
1077 	socantsendmore(so);
1078 	unp_shutdown(unp);
1079 	UNP_PCB_UNLOCK(unp);
1080 	UNP_LINK_WUNLOCK();
1081 	return (0);
1082 }
1083 
1084 static int
1085 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1086 {
1087 	struct unpcb *unp;
1088 	const struct sockaddr *sa;
1089 
1090 	unp = sotounpcb(so);
1091 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1092 
1093 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1094 	UNP_PCB_LOCK(unp);
1095 	if (unp->unp_addr != NULL)
1096 		sa = (struct sockaddr *) unp->unp_addr;
1097 	else
1098 		sa = &sun_noname;
1099 	bcopy(sa, *nam, sa->sa_len);
1100 	UNP_PCB_UNLOCK(unp);
1101 	return (0);
1102 }
1103 
1104 static struct pr_usrreqs uipc_usrreqs_dgram = {
1105 	.pru_abort = 		uipc_abort,
1106 	.pru_accept =		uipc_accept,
1107 	.pru_attach =		uipc_attach,
1108 	.pru_bind =		uipc_bind,
1109 	.pru_bindat =		uipc_bindat,
1110 	.pru_connect =		uipc_connect,
1111 	.pru_connectat =	uipc_connectat,
1112 	.pru_connect2 =		uipc_connect2,
1113 	.pru_detach =		uipc_detach,
1114 	.pru_disconnect =	uipc_disconnect,
1115 	.pru_listen =		uipc_listen,
1116 	.pru_peeraddr =		uipc_peeraddr,
1117 	.pru_rcvd =		uipc_rcvd,
1118 	.pru_send =		uipc_send,
1119 	.pru_sense =		uipc_sense,
1120 	.pru_shutdown =		uipc_shutdown,
1121 	.pru_sockaddr =		uipc_sockaddr,
1122 	.pru_soreceive =	soreceive_dgram,
1123 	.pru_close =		uipc_close,
1124 };
1125 
1126 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1127 	.pru_abort =		uipc_abort,
1128 	.pru_accept =		uipc_accept,
1129 	.pru_attach =		uipc_attach,
1130 	.pru_bind =		uipc_bind,
1131 	.pru_bindat =		uipc_bindat,
1132 	.pru_connect =		uipc_connect,
1133 	.pru_connectat =	uipc_connectat,
1134 	.pru_connect2 =		uipc_connect2,
1135 	.pru_detach =		uipc_detach,
1136 	.pru_disconnect =	uipc_disconnect,
1137 	.pru_listen =		uipc_listen,
1138 	.pru_peeraddr =		uipc_peeraddr,
1139 	.pru_rcvd =		uipc_rcvd,
1140 	.pru_send =		uipc_send,
1141 	.pru_sense =		uipc_sense,
1142 	.pru_shutdown =		uipc_shutdown,
1143 	.pru_sockaddr =		uipc_sockaddr,
1144 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1145 	.pru_close =		uipc_close,
1146 };
1147 
1148 static struct pr_usrreqs uipc_usrreqs_stream = {
1149 	.pru_abort = 		uipc_abort,
1150 	.pru_accept =		uipc_accept,
1151 	.pru_attach =		uipc_attach,
1152 	.pru_bind =		uipc_bind,
1153 	.pru_bindat =		uipc_bindat,
1154 	.pru_connect =		uipc_connect,
1155 	.pru_connectat =	uipc_connectat,
1156 	.pru_connect2 =		uipc_connect2,
1157 	.pru_detach =		uipc_detach,
1158 	.pru_disconnect =	uipc_disconnect,
1159 	.pru_listen =		uipc_listen,
1160 	.pru_peeraddr =		uipc_peeraddr,
1161 	.pru_rcvd =		uipc_rcvd,
1162 	.pru_send =		uipc_send,
1163 	.pru_sense =		uipc_sense,
1164 	.pru_shutdown =		uipc_shutdown,
1165 	.pru_sockaddr =		uipc_sockaddr,
1166 	.pru_soreceive =	soreceive_generic,
1167 	.pru_close =		uipc_close,
1168 };
1169 
1170 static int
1171 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1172 {
1173 	struct unpcb *unp;
1174 	struct xucred xu;
1175 	int error, optval;
1176 
1177 	if (sopt->sopt_level != 0)
1178 		return (EINVAL);
1179 
1180 	unp = sotounpcb(so);
1181 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1182 	error = 0;
1183 	switch (sopt->sopt_dir) {
1184 	case SOPT_GET:
1185 		switch (sopt->sopt_name) {
1186 		case LOCAL_PEERCRED:
1187 			UNP_PCB_LOCK(unp);
1188 			if (unp->unp_flags & UNP_HAVEPC)
1189 				xu = unp->unp_peercred;
1190 			else {
1191 				if (so->so_type == SOCK_STREAM)
1192 					error = ENOTCONN;
1193 				else
1194 					error = EINVAL;
1195 			}
1196 			UNP_PCB_UNLOCK(unp);
1197 			if (error == 0)
1198 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1199 			break;
1200 
1201 		case LOCAL_CREDS:
1202 			/* Unlocked read. */
1203 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1204 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1205 			break;
1206 
1207 		case LOCAL_CONNWAIT:
1208 			/* Unlocked read. */
1209 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1210 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1211 			break;
1212 
1213 		default:
1214 			error = EOPNOTSUPP;
1215 			break;
1216 		}
1217 		break;
1218 
1219 	case SOPT_SET:
1220 		switch (sopt->sopt_name) {
1221 		case LOCAL_CREDS:
1222 		case LOCAL_CONNWAIT:
1223 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1224 					    sizeof(optval));
1225 			if (error)
1226 				break;
1227 
1228 #define	OPTSET(bit) do {						\
1229 	UNP_PCB_LOCK(unp);						\
1230 	if (optval)							\
1231 		unp->unp_flags |= bit;					\
1232 	else								\
1233 		unp->unp_flags &= ~bit;					\
1234 	UNP_PCB_UNLOCK(unp);						\
1235 } while (0)
1236 
1237 			switch (sopt->sopt_name) {
1238 			case LOCAL_CREDS:
1239 				OPTSET(UNP_WANTCRED);
1240 				break;
1241 
1242 			case LOCAL_CONNWAIT:
1243 				OPTSET(UNP_CONNWAIT);
1244 				break;
1245 
1246 			default:
1247 				break;
1248 			}
1249 			break;
1250 #undef	OPTSET
1251 		default:
1252 			error = ENOPROTOOPT;
1253 			break;
1254 		}
1255 		break;
1256 
1257 	default:
1258 		error = EOPNOTSUPP;
1259 		break;
1260 	}
1261 	return (error);
1262 }
1263 
1264 static int
1265 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1266 {
1267 
1268 	return (unp_connectat(AT_FDCWD, so, nam, td));
1269 }
1270 
1271 static int
1272 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1273     struct thread *td)
1274 {
1275 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1276 	struct vnode *vp;
1277 	struct socket *so2, *so3;
1278 	struct unpcb *unp, *unp2, *unp3;
1279 	int error, len;
1280 	struct nameidata nd;
1281 	char buf[SOCK_MAXADDRLEN];
1282 	struct sockaddr *sa;
1283 
1284 	UNP_LINK_WLOCK_ASSERT();
1285 
1286 	unp = sotounpcb(so);
1287 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1288 
1289 	if (nam->sa_len > sizeof(struct sockaddr_un))
1290 		return (EINVAL);
1291 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1292 	if (len <= 0)
1293 		return (EINVAL);
1294 	bcopy(soun->sun_path, buf, len);
1295 	buf[len] = 0;
1296 
1297 	UNP_PCB_LOCK(unp);
1298 	if (unp->unp_flags & UNP_CONNECTING) {
1299 		UNP_PCB_UNLOCK(unp);
1300 		return (EALREADY);
1301 	}
1302 	UNP_LINK_WUNLOCK();
1303 	unp->unp_flags |= UNP_CONNECTING;
1304 	UNP_PCB_UNLOCK(unp);
1305 
1306 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1307 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1308 	    UIO_SYSSPACE, buf, fd, CAP_CONNECTAT, td);
1309 	error = namei(&nd);
1310 	if (error)
1311 		vp = NULL;
1312 	else
1313 		vp = nd.ni_vp;
1314 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1315 	NDFREE(&nd, NDF_ONLY_PNBUF);
1316 	if (error)
1317 		goto bad;
1318 
1319 	if (vp->v_type != VSOCK) {
1320 		error = ENOTSOCK;
1321 		goto bad;
1322 	}
1323 #ifdef MAC
1324 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1325 	if (error)
1326 		goto bad;
1327 #endif
1328 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1329 	if (error)
1330 		goto bad;
1331 
1332 	unp = sotounpcb(so);
1333 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1334 
1335 	/*
1336 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1337 	 * and to protect simultaneous locking of multiple pcbs.
1338 	 */
1339 	UNP_LINK_WLOCK();
1340 	VOP_UNP_CONNECT(vp, &so2);
1341 	if (so2 == NULL) {
1342 		error = ECONNREFUSED;
1343 		goto bad2;
1344 	}
1345 	if (so->so_type != so2->so_type) {
1346 		error = EPROTOTYPE;
1347 		goto bad2;
1348 	}
1349 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1350 		if (so2->so_options & SO_ACCEPTCONN) {
1351 			CURVNET_SET(so2->so_vnet);
1352 			so3 = sonewconn(so2, 0);
1353 			CURVNET_RESTORE();
1354 		} else
1355 			so3 = NULL;
1356 		if (so3 == NULL) {
1357 			error = ECONNREFUSED;
1358 			goto bad2;
1359 		}
1360 		unp = sotounpcb(so);
1361 		unp2 = sotounpcb(so2);
1362 		unp3 = sotounpcb(so3);
1363 		UNP_PCB_LOCK(unp);
1364 		UNP_PCB_LOCK(unp2);
1365 		UNP_PCB_LOCK(unp3);
1366 		if (unp2->unp_addr != NULL) {
1367 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1368 			unp3->unp_addr = (struct sockaddr_un *) sa;
1369 			sa = NULL;
1370 		}
1371 
1372 		/*
1373 		 * The connector's (client's) credentials are copied from its
1374 		 * process structure at the time of connect() (which is now).
1375 		 */
1376 		cru2x(td->td_ucred, &unp3->unp_peercred);
1377 		unp3->unp_flags |= UNP_HAVEPC;
1378 
1379 		/*
1380 		 * The receiver's (server's) credentials are copied from the
1381 		 * unp_peercred member of socket on which the former called
1382 		 * listen(); uipc_listen() cached that process's credentials
1383 		 * at that time so we can use them now.
1384 		 */
1385 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1386 		    ("unp_connect: listener without cached peercred"));
1387 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1388 		    sizeof(unp->unp_peercred));
1389 		unp->unp_flags |= UNP_HAVEPC;
1390 		if (unp2->unp_flags & UNP_WANTCRED)
1391 			unp3->unp_flags |= UNP_WANTCRED;
1392 		UNP_PCB_UNLOCK(unp3);
1393 		UNP_PCB_UNLOCK(unp2);
1394 		UNP_PCB_UNLOCK(unp);
1395 #ifdef MAC
1396 		mac_socketpeer_set_from_socket(so, so3);
1397 		mac_socketpeer_set_from_socket(so3, so);
1398 #endif
1399 
1400 		so2 = so3;
1401 	}
1402 	unp = sotounpcb(so);
1403 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1404 	unp2 = sotounpcb(so2);
1405 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1406 	UNP_PCB_LOCK(unp);
1407 	UNP_PCB_LOCK(unp2);
1408 	error = unp_connect2(so, so2, PRU_CONNECT);
1409 	UNP_PCB_UNLOCK(unp2);
1410 	UNP_PCB_UNLOCK(unp);
1411 bad2:
1412 	UNP_LINK_WUNLOCK();
1413 bad:
1414 	if (vp != NULL)
1415 		vput(vp);
1416 	free(sa, M_SONAME);
1417 	UNP_LINK_WLOCK();
1418 	UNP_PCB_LOCK(unp);
1419 	unp->unp_flags &= ~UNP_CONNECTING;
1420 	UNP_PCB_UNLOCK(unp);
1421 	return (error);
1422 }
1423 
1424 static int
1425 unp_connect2(struct socket *so, struct socket *so2, int req)
1426 {
1427 	struct unpcb *unp;
1428 	struct unpcb *unp2;
1429 
1430 	unp = sotounpcb(so);
1431 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1432 	unp2 = sotounpcb(so2);
1433 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1434 
1435 	UNP_LINK_WLOCK_ASSERT();
1436 	UNP_PCB_LOCK_ASSERT(unp);
1437 	UNP_PCB_LOCK_ASSERT(unp2);
1438 
1439 	if (so2->so_type != so->so_type)
1440 		return (EPROTOTYPE);
1441 	unp->unp_conn = unp2;
1442 
1443 	switch (so->so_type) {
1444 	case SOCK_DGRAM:
1445 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1446 		soisconnected(so);
1447 		break;
1448 
1449 	case SOCK_STREAM:
1450 	case SOCK_SEQPACKET:
1451 		unp2->unp_conn = unp;
1452 		if (req == PRU_CONNECT &&
1453 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1454 			soisconnecting(so);
1455 		else
1456 			soisconnected(so);
1457 		soisconnected(so2);
1458 		break;
1459 
1460 	default:
1461 		panic("unp_connect2");
1462 	}
1463 	return (0);
1464 }
1465 
1466 static void
1467 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1468 {
1469 	struct socket *so;
1470 
1471 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1472 
1473 	UNP_LINK_WLOCK_ASSERT();
1474 	UNP_PCB_LOCK_ASSERT(unp);
1475 	UNP_PCB_LOCK_ASSERT(unp2);
1476 
1477 	unp->unp_conn = NULL;
1478 	switch (unp->unp_socket->so_type) {
1479 	case SOCK_DGRAM:
1480 		LIST_REMOVE(unp, unp_reflink);
1481 		so = unp->unp_socket;
1482 		SOCK_LOCK(so);
1483 		so->so_state &= ~SS_ISCONNECTED;
1484 		SOCK_UNLOCK(so);
1485 		break;
1486 
1487 	case SOCK_STREAM:
1488 	case SOCK_SEQPACKET:
1489 		soisdisconnected(unp->unp_socket);
1490 		unp2->unp_conn = NULL;
1491 		soisdisconnected(unp2->unp_socket);
1492 		break;
1493 	}
1494 }
1495 
1496 /*
1497  * unp_pcblist() walks the global list of struct unpcb's to generate a
1498  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1499  * sequentially, validating the generation number on each to see if it has
1500  * been detached.  All of this is necessary because copyout() may sleep on
1501  * disk I/O.
1502  */
1503 static int
1504 unp_pcblist(SYSCTL_HANDLER_ARGS)
1505 {
1506 	int error, i, n;
1507 	int freeunp;
1508 	struct unpcb *unp, **unp_list;
1509 	unp_gen_t gencnt;
1510 	struct xunpgen *xug;
1511 	struct unp_head *head;
1512 	struct xunpcb *xu;
1513 
1514 	switch ((intptr_t)arg1) {
1515 	case SOCK_STREAM:
1516 		head = &unp_shead;
1517 		break;
1518 
1519 	case SOCK_DGRAM:
1520 		head = &unp_dhead;
1521 		break;
1522 
1523 	case SOCK_SEQPACKET:
1524 		head = &unp_sphead;
1525 		break;
1526 
1527 	default:
1528 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1529 	}
1530 
1531 	/*
1532 	 * The process of preparing the PCB list is too time-consuming and
1533 	 * resource-intensive to repeat twice on every request.
1534 	 */
1535 	if (req->oldptr == NULL) {
1536 		n = unp_count;
1537 		req->oldidx = 2 * (sizeof *xug)
1538 			+ (n + n/8) * sizeof(struct xunpcb);
1539 		return (0);
1540 	}
1541 
1542 	if (req->newptr != NULL)
1543 		return (EPERM);
1544 
1545 	/*
1546 	 * OK, now we're committed to doing something.
1547 	 */
1548 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1549 	UNP_LIST_LOCK();
1550 	gencnt = unp_gencnt;
1551 	n = unp_count;
1552 	UNP_LIST_UNLOCK();
1553 
1554 	xug->xug_len = sizeof *xug;
1555 	xug->xug_count = n;
1556 	xug->xug_gen = gencnt;
1557 	xug->xug_sogen = so_gencnt;
1558 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1559 	if (error) {
1560 		free(xug, M_TEMP);
1561 		return (error);
1562 	}
1563 
1564 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1565 
1566 	UNP_LIST_LOCK();
1567 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1568 	     unp = LIST_NEXT(unp, unp_link)) {
1569 		UNP_PCB_LOCK(unp);
1570 		if (unp->unp_gencnt <= gencnt) {
1571 			if (cr_cansee(req->td->td_ucred,
1572 			    unp->unp_socket->so_cred)) {
1573 				UNP_PCB_UNLOCK(unp);
1574 				continue;
1575 			}
1576 			unp_list[i++] = unp;
1577 			unp->unp_refcount++;
1578 		}
1579 		UNP_PCB_UNLOCK(unp);
1580 	}
1581 	UNP_LIST_UNLOCK();
1582 	n = i;			/* In case we lost some during malloc. */
1583 
1584 	error = 0;
1585 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1586 	for (i = 0; i < n; i++) {
1587 		unp = unp_list[i];
1588 		UNP_PCB_LOCK(unp);
1589 		unp->unp_refcount--;
1590 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1591 			xu->xu_len = sizeof *xu;
1592 			xu->xu_unpp = unp;
1593 			/*
1594 			 * XXX - need more locking here to protect against
1595 			 * connect/disconnect races for SMP.
1596 			 */
1597 			if (unp->unp_addr != NULL)
1598 				bcopy(unp->unp_addr, &xu->xu_addr,
1599 				      unp->unp_addr->sun_len);
1600 			if (unp->unp_conn != NULL &&
1601 			    unp->unp_conn->unp_addr != NULL)
1602 				bcopy(unp->unp_conn->unp_addr,
1603 				      &xu->xu_caddr,
1604 				      unp->unp_conn->unp_addr->sun_len);
1605 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1606 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1607 			UNP_PCB_UNLOCK(unp);
1608 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1609 		} else {
1610 			freeunp = (unp->unp_refcount == 0);
1611 			UNP_PCB_UNLOCK(unp);
1612 			if (freeunp) {
1613 				UNP_PCB_LOCK_DESTROY(unp);
1614 				uma_zfree(unp_zone, unp);
1615 			}
1616 		}
1617 	}
1618 	free(xu, M_TEMP);
1619 	if (!error) {
1620 		/*
1621 		 * Give the user an updated idea of our state.  If the
1622 		 * generation differs from what we told her before, she knows
1623 		 * that something happened while we were processing this
1624 		 * request, and it might be necessary to retry.
1625 		 */
1626 		xug->xug_gen = unp_gencnt;
1627 		xug->xug_sogen = so_gencnt;
1628 		xug->xug_count = unp_count;
1629 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1630 	}
1631 	free(unp_list, M_TEMP);
1632 	free(xug, M_TEMP);
1633 	return (error);
1634 }
1635 
1636 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1637     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1638     "List of active local datagram sockets");
1639 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1640     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1641     "List of active local stream sockets");
1642 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1643     CTLTYPE_OPAQUE | CTLFLAG_RD,
1644     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1645     "List of active local seqpacket sockets");
1646 
1647 static void
1648 unp_shutdown(struct unpcb *unp)
1649 {
1650 	struct unpcb *unp2;
1651 	struct socket *so;
1652 
1653 	UNP_LINK_WLOCK_ASSERT();
1654 	UNP_PCB_LOCK_ASSERT(unp);
1655 
1656 	unp2 = unp->unp_conn;
1657 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1658 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1659 		so = unp2->unp_socket;
1660 		if (so != NULL)
1661 			socantrcvmore(so);
1662 	}
1663 }
1664 
1665 static void
1666 unp_drop(struct unpcb *unp, int errno)
1667 {
1668 	struct socket *so = unp->unp_socket;
1669 	struct unpcb *unp2;
1670 
1671 	UNP_LINK_WLOCK_ASSERT();
1672 	UNP_PCB_LOCK_ASSERT(unp);
1673 
1674 	so->so_error = errno;
1675 	unp2 = unp->unp_conn;
1676 	if (unp2 == NULL)
1677 		return;
1678 	UNP_PCB_LOCK(unp2);
1679 	unp_disconnect(unp, unp2);
1680 	UNP_PCB_UNLOCK(unp2);
1681 }
1682 
1683 static void
1684 unp_freerights(struct filedescent **fdep, int fdcount)
1685 {
1686 	struct file *fp;
1687 	int i;
1688 
1689 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1690 
1691 	for (i = 0; i < fdcount; i++) {
1692 		fp = fdep[i]->fde_file;
1693 		filecaps_free(&fdep[i]->fde_caps);
1694 		unp_discard(fp);
1695 	}
1696 	free(fdep[0], M_FILECAPS);
1697 }
1698 
1699 static int
1700 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1701 {
1702 	struct thread *td = curthread;		/* XXX */
1703 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1704 	int i;
1705 	int *fdp;
1706 	struct filedesc *fdesc = td->td_proc->p_fd;
1707 	struct filedescent *fde, **fdep;
1708 	void *data;
1709 	socklen_t clen = control->m_len, datalen;
1710 	int error, newfds;
1711 	u_int newlen;
1712 
1713 	UNP_LINK_UNLOCK_ASSERT();
1714 
1715 	error = 0;
1716 	if (controlp != NULL) /* controlp == NULL => free control messages */
1717 		*controlp = NULL;
1718 	while (cm != NULL) {
1719 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1720 			error = EINVAL;
1721 			break;
1722 		}
1723 		data = CMSG_DATA(cm);
1724 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1725 		if (cm->cmsg_level == SOL_SOCKET
1726 		    && cm->cmsg_type == SCM_RIGHTS) {
1727 			newfds = datalen / sizeof(*fdep);
1728 			if (newfds == 0)
1729 				goto next;
1730 			fdep = data;
1731 
1732 			/* If we're not outputting the descriptors free them. */
1733 			if (error || controlp == NULL) {
1734 				unp_freerights(fdep, newfds);
1735 				goto next;
1736 			}
1737 			FILEDESC_XLOCK(fdesc);
1738 
1739 			/*
1740 			 * Now change each pointer to an fd in the global
1741 			 * table to an integer that is the index to the local
1742 			 * fd table entry that we set up to point to the
1743 			 * global one we are transferring.
1744 			 */
1745 			newlen = newfds * sizeof(int);
1746 			*controlp = sbcreatecontrol(NULL, newlen,
1747 			    SCM_RIGHTS, SOL_SOCKET);
1748 			if (*controlp == NULL) {
1749 				FILEDESC_XUNLOCK(fdesc);
1750 				error = E2BIG;
1751 				unp_freerights(fdep, newfds);
1752 				goto next;
1753 			}
1754 
1755 			fdp = (int *)
1756 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1757 			if (fdallocn(td, 0, fdp, newfds) != 0) {
1758 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1759 				error = EMSGSIZE;
1760 				unp_freerights(fdep, newfds);
1761 				m_freem(*controlp);
1762 				*controlp = NULL;
1763 				goto next;
1764 			}
1765 			for (i = 0; i < newfds; i++, fdp++) {
1766 				fde = &fdesc->fd_ofiles[*fdp];
1767 				fde->fde_file = fdep[i]->fde_file;
1768 				filecaps_move(&fdep[i]->fde_caps,
1769 				    &fde->fde_caps);
1770 				if ((flags & MSG_CMSG_CLOEXEC) != 0)
1771 					fde->fde_flags |= UF_EXCLOSE;
1772 				unp_externalize_fp(fde->fde_file);
1773 			}
1774 			FILEDESC_XUNLOCK(fdesc);
1775 			free(fdep[0], M_FILECAPS);
1776 		} else {
1777 			/* We can just copy anything else across. */
1778 			if (error || controlp == NULL)
1779 				goto next;
1780 			*controlp = sbcreatecontrol(NULL, datalen,
1781 			    cm->cmsg_type, cm->cmsg_level);
1782 			if (*controlp == NULL) {
1783 				error = ENOBUFS;
1784 				goto next;
1785 			}
1786 			bcopy(data,
1787 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1788 			    datalen);
1789 		}
1790 		controlp = &(*controlp)->m_next;
1791 
1792 next:
1793 		if (CMSG_SPACE(datalen) < clen) {
1794 			clen -= CMSG_SPACE(datalen);
1795 			cm = (struct cmsghdr *)
1796 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1797 		} else {
1798 			clen = 0;
1799 			cm = NULL;
1800 		}
1801 	}
1802 
1803 	m_freem(control);
1804 	return (error);
1805 }
1806 
1807 static void
1808 unp_zone_change(void *tag)
1809 {
1810 
1811 	uma_zone_set_max(unp_zone, maxsockets);
1812 }
1813 
1814 static void
1815 unp_init(void)
1816 {
1817 
1818 #ifdef VIMAGE
1819 	if (!IS_DEFAULT_VNET(curvnet))
1820 		return;
1821 #endif
1822 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1823 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1824 	if (unp_zone == NULL)
1825 		panic("unp_init");
1826 	uma_zone_set_max(unp_zone, maxsockets);
1827 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1828 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1829 	    NULL, EVENTHANDLER_PRI_ANY);
1830 	LIST_INIT(&unp_dhead);
1831 	LIST_INIT(&unp_shead);
1832 	LIST_INIT(&unp_sphead);
1833 	SLIST_INIT(&unp_defers);
1834 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1835 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1836 	UNP_LINK_LOCK_INIT();
1837 	UNP_LIST_LOCK_INIT();
1838 	UNP_DEFERRED_LOCK_INIT();
1839 }
1840 
1841 static int
1842 unp_internalize(struct mbuf **controlp, struct thread *td)
1843 {
1844 	struct mbuf *control = *controlp;
1845 	struct proc *p = td->td_proc;
1846 	struct filedesc *fdesc = p->p_fd;
1847 	struct bintime *bt;
1848 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1849 	struct cmsgcred *cmcred;
1850 	struct filedescent *fde, **fdep, *fdev;
1851 	struct file *fp;
1852 	struct timeval *tv;
1853 	int i, fd, *fdp;
1854 	void *data;
1855 	socklen_t clen = control->m_len, datalen;
1856 	int error, oldfds;
1857 	u_int newlen;
1858 
1859 	UNP_LINK_UNLOCK_ASSERT();
1860 
1861 	error = 0;
1862 	*controlp = NULL;
1863 	while (cm != NULL) {
1864 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1865 		    || cm->cmsg_len > clen) {
1866 			error = EINVAL;
1867 			goto out;
1868 		}
1869 		data = CMSG_DATA(cm);
1870 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1871 
1872 		switch (cm->cmsg_type) {
1873 		/*
1874 		 * Fill in credential information.
1875 		 */
1876 		case SCM_CREDS:
1877 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1878 			    SCM_CREDS, SOL_SOCKET);
1879 			if (*controlp == NULL) {
1880 				error = ENOBUFS;
1881 				goto out;
1882 			}
1883 			cmcred = (struct cmsgcred *)
1884 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1885 			cmcred->cmcred_pid = p->p_pid;
1886 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1887 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1888 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1889 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1890 			    CMGROUP_MAX);
1891 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1892 				cmcred->cmcred_groups[i] =
1893 				    td->td_ucred->cr_groups[i];
1894 			break;
1895 
1896 		case SCM_RIGHTS:
1897 			oldfds = datalen / sizeof (int);
1898 			if (oldfds == 0)
1899 				break;
1900 			/*
1901 			 * Check that all the FDs passed in refer to legal
1902 			 * files.  If not, reject the entire operation.
1903 			 */
1904 			fdp = data;
1905 			FILEDESC_SLOCK(fdesc);
1906 			for (i = 0; i < oldfds; i++) {
1907 				fd = *fdp++;
1908 				if (fget_locked(fdesc, fd) == NULL) {
1909 					FILEDESC_SUNLOCK(fdesc);
1910 					error = EBADF;
1911 					goto out;
1912 				}
1913 				fp = fdesc->fd_ofiles[fd].fde_file;
1914 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1915 					FILEDESC_SUNLOCK(fdesc);
1916 					error = EOPNOTSUPP;
1917 					goto out;
1918 				}
1919 
1920 			}
1921 
1922 			/*
1923 			 * Now replace the integer FDs with pointers to the
1924 			 * file structure and capability rights.
1925 			 */
1926 			newlen = oldfds * sizeof(fdep[0]);
1927 			*controlp = sbcreatecontrol(NULL, newlen,
1928 			    SCM_RIGHTS, SOL_SOCKET);
1929 			if (*controlp == NULL) {
1930 				FILEDESC_SUNLOCK(fdesc);
1931 				error = E2BIG;
1932 				goto out;
1933 			}
1934 			fdp = data;
1935 			fdep = (struct filedescent **)
1936 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1937 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1938 			    M_WAITOK);
1939 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1940 				fde = &fdesc->fd_ofiles[*fdp];
1941 				fdep[i] = fdev;
1942 				fdep[i]->fde_file = fde->fde_file;
1943 				filecaps_copy(&fde->fde_caps,
1944 				    &fdep[i]->fde_caps);
1945 				unp_internalize_fp(fdep[i]->fde_file);
1946 			}
1947 			FILEDESC_SUNLOCK(fdesc);
1948 			break;
1949 
1950 		case SCM_TIMESTAMP:
1951 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1952 			    SCM_TIMESTAMP, SOL_SOCKET);
1953 			if (*controlp == NULL) {
1954 				error = ENOBUFS;
1955 				goto out;
1956 			}
1957 			tv = (struct timeval *)
1958 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1959 			microtime(tv);
1960 			break;
1961 
1962 		case SCM_BINTIME:
1963 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1964 			    SCM_BINTIME, SOL_SOCKET);
1965 			if (*controlp == NULL) {
1966 				error = ENOBUFS;
1967 				goto out;
1968 			}
1969 			bt = (struct bintime *)
1970 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1971 			bintime(bt);
1972 			break;
1973 
1974 		default:
1975 			error = EINVAL;
1976 			goto out;
1977 		}
1978 
1979 		controlp = &(*controlp)->m_next;
1980 		if (CMSG_SPACE(datalen) < clen) {
1981 			clen -= CMSG_SPACE(datalen);
1982 			cm = (struct cmsghdr *)
1983 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1984 		} else {
1985 			clen = 0;
1986 			cm = NULL;
1987 		}
1988 	}
1989 
1990 out:
1991 	m_freem(control);
1992 	return (error);
1993 }
1994 
1995 static struct mbuf *
1996 unp_addsockcred(struct thread *td, struct mbuf *control)
1997 {
1998 	struct mbuf *m, *n, *n_prev;
1999 	struct sockcred *sc;
2000 	const struct cmsghdr *cm;
2001 	int ngroups;
2002 	int i;
2003 
2004 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2005 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2006 	if (m == NULL)
2007 		return (control);
2008 
2009 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2010 	sc->sc_uid = td->td_ucred->cr_ruid;
2011 	sc->sc_euid = td->td_ucred->cr_uid;
2012 	sc->sc_gid = td->td_ucred->cr_rgid;
2013 	sc->sc_egid = td->td_ucred->cr_gid;
2014 	sc->sc_ngroups = ngroups;
2015 	for (i = 0; i < sc->sc_ngroups; i++)
2016 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2017 
2018 	/*
2019 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2020 	 * created SCM_CREDS control message (struct sockcred) has another
2021 	 * format.
2022 	 */
2023 	if (control != NULL)
2024 		for (n = control, n_prev = NULL; n != NULL;) {
2025 			cm = mtod(n, struct cmsghdr *);
2026     			if (cm->cmsg_level == SOL_SOCKET &&
2027 			    cm->cmsg_type == SCM_CREDS) {
2028     				if (n_prev == NULL)
2029 					control = n->m_next;
2030 				else
2031 					n_prev->m_next = n->m_next;
2032 				n = m_free(n);
2033 			} else {
2034 				n_prev = n;
2035 				n = n->m_next;
2036 			}
2037 		}
2038 
2039 	/* Prepend it to the head. */
2040 	m->m_next = control;
2041 	return (m);
2042 }
2043 
2044 static struct unpcb *
2045 fptounp(struct file *fp)
2046 {
2047 	struct socket *so;
2048 
2049 	if (fp->f_type != DTYPE_SOCKET)
2050 		return (NULL);
2051 	if ((so = fp->f_data) == NULL)
2052 		return (NULL);
2053 	if (so->so_proto->pr_domain != &localdomain)
2054 		return (NULL);
2055 	return sotounpcb(so);
2056 }
2057 
2058 static void
2059 unp_discard(struct file *fp)
2060 {
2061 	struct unp_defer *dr;
2062 
2063 	if (unp_externalize_fp(fp)) {
2064 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2065 		dr->ud_fp = fp;
2066 		UNP_DEFERRED_LOCK();
2067 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2068 		UNP_DEFERRED_UNLOCK();
2069 		atomic_add_int(&unp_defers_count, 1);
2070 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2071 	} else
2072 		(void) closef(fp, (struct thread *)NULL);
2073 }
2074 
2075 static void
2076 unp_process_defers(void *arg __unused, int pending)
2077 {
2078 	struct unp_defer *dr;
2079 	SLIST_HEAD(, unp_defer) drl;
2080 	int count;
2081 
2082 	SLIST_INIT(&drl);
2083 	for (;;) {
2084 		UNP_DEFERRED_LOCK();
2085 		if (SLIST_FIRST(&unp_defers) == NULL) {
2086 			UNP_DEFERRED_UNLOCK();
2087 			break;
2088 		}
2089 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2090 		UNP_DEFERRED_UNLOCK();
2091 		count = 0;
2092 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2093 			SLIST_REMOVE_HEAD(&drl, ud_link);
2094 			closef(dr->ud_fp, NULL);
2095 			free(dr, M_TEMP);
2096 			count++;
2097 		}
2098 		atomic_add_int(&unp_defers_count, -count);
2099 	}
2100 }
2101 
2102 static void
2103 unp_internalize_fp(struct file *fp)
2104 {
2105 	struct unpcb *unp;
2106 
2107 	UNP_LINK_WLOCK();
2108 	if ((unp = fptounp(fp)) != NULL) {
2109 		unp->unp_file = fp;
2110 		unp->unp_msgcount++;
2111 	}
2112 	fhold(fp);
2113 	unp_rights++;
2114 	UNP_LINK_WUNLOCK();
2115 }
2116 
2117 static int
2118 unp_externalize_fp(struct file *fp)
2119 {
2120 	struct unpcb *unp;
2121 	int ret;
2122 
2123 	UNP_LINK_WLOCK();
2124 	if ((unp = fptounp(fp)) != NULL) {
2125 		unp->unp_msgcount--;
2126 		ret = 1;
2127 	} else
2128 		ret = 0;
2129 	unp_rights--;
2130 	UNP_LINK_WUNLOCK();
2131 	return (ret);
2132 }
2133 
2134 /*
2135  * unp_defer indicates whether additional work has been defered for a future
2136  * pass through unp_gc().  It is thread local and does not require explicit
2137  * synchronization.
2138  */
2139 static int	unp_marked;
2140 static int	unp_unreachable;
2141 
2142 static void
2143 unp_accessable(struct filedescent **fdep, int fdcount)
2144 {
2145 	struct unpcb *unp;
2146 	struct file *fp;
2147 	int i;
2148 
2149 	for (i = 0; i < fdcount; i++) {
2150 		fp = fdep[i]->fde_file;
2151 		if ((unp = fptounp(fp)) == NULL)
2152 			continue;
2153 		if (unp->unp_gcflag & UNPGC_REF)
2154 			continue;
2155 		unp->unp_gcflag &= ~UNPGC_DEAD;
2156 		unp->unp_gcflag |= UNPGC_REF;
2157 		unp_marked++;
2158 	}
2159 }
2160 
2161 static void
2162 unp_gc_process(struct unpcb *unp)
2163 {
2164 	struct socket *soa;
2165 	struct socket *so;
2166 	struct file *fp;
2167 
2168 	/* Already processed. */
2169 	if (unp->unp_gcflag & UNPGC_SCANNED)
2170 		return;
2171 	fp = unp->unp_file;
2172 
2173 	/*
2174 	 * Check for a socket potentially in a cycle.  It must be in a
2175 	 * queue as indicated by msgcount, and this must equal the file
2176 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2177 	 */
2178 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2179 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2180 		unp->unp_gcflag |= UNPGC_DEAD;
2181 		unp_unreachable++;
2182 		return;
2183 	}
2184 
2185 	/*
2186 	 * Mark all sockets we reference with RIGHTS.
2187 	 */
2188 	so = unp->unp_socket;
2189 	SOCKBUF_LOCK(&so->so_rcv);
2190 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2191 	SOCKBUF_UNLOCK(&so->so_rcv);
2192 
2193 	/*
2194 	 * Mark all sockets in our accept queue.
2195 	 */
2196 	ACCEPT_LOCK();
2197 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2198 		SOCKBUF_LOCK(&soa->so_rcv);
2199 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2200 		SOCKBUF_UNLOCK(&soa->so_rcv);
2201 	}
2202 	ACCEPT_UNLOCK();
2203 	unp->unp_gcflag |= UNPGC_SCANNED;
2204 }
2205 
2206 static int unp_recycled;
2207 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2208     "Number of unreachable sockets claimed by the garbage collector.");
2209 
2210 static int unp_taskcount;
2211 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2212     "Number of times the garbage collector has run.");
2213 
2214 static void
2215 unp_gc(__unused void *arg, int pending)
2216 {
2217 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2218 				    NULL };
2219 	struct unp_head **head;
2220 	struct file *f, **unref;
2221 	struct unpcb *unp;
2222 	int i, total;
2223 
2224 	unp_taskcount++;
2225 	UNP_LIST_LOCK();
2226 	/*
2227 	 * First clear all gc flags from previous runs.
2228 	 */
2229 	for (head = heads; *head != NULL; head++)
2230 		LIST_FOREACH(unp, *head, unp_link)
2231 			unp->unp_gcflag = 0;
2232 
2233 	/*
2234 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2235 	 * is reachable all of the sockets it references are reachable.
2236 	 * Stop the scan once we do a complete loop without discovering
2237 	 * a new reachable socket.
2238 	 */
2239 	do {
2240 		unp_unreachable = 0;
2241 		unp_marked = 0;
2242 		for (head = heads; *head != NULL; head++)
2243 			LIST_FOREACH(unp, *head, unp_link)
2244 				unp_gc_process(unp);
2245 	} while (unp_marked);
2246 	UNP_LIST_UNLOCK();
2247 	if (unp_unreachable == 0)
2248 		return;
2249 
2250 	/*
2251 	 * Allocate space for a local list of dead unpcbs.
2252 	 */
2253 	unref = malloc(unp_unreachable * sizeof(struct file *),
2254 	    M_TEMP, M_WAITOK);
2255 
2256 	/*
2257 	 * Iterate looking for sockets which have been specifically marked
2258 	 * as as unreachable and store them locally.
2259 	 */
2260 	UNP_LINK_RLOCK();
2261 	UNP_LIST_LOCK();
2262 	for (total = 0, head = heads; *head != NULL; head++)
2263 		LIST_FOREACH(unp, *head, unp_link)
2264 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2265 				f = unp->unp_file;
2266 				if (unp->unp_msgcount == 0 || f == NULL ||
2267 				    f->f_count != unp->unp_msgcount)
2268 					continue;
2269 				unref[total++] = f;
2270 				fhold(f);
2271 				KASSERT(total <= unp_unreachable,
2272 				    ("unp_gc: incorrect unreachable count."));
2273 			}
2274 	UNP_LIST_UNLOCK();
2275 	UNP_LINK_RUNLOCK();
2276 
2277 	/*
2278 	 * Now flush all sockets, free'ing rights.  This will free the
2279 	 * struct files associated with these sockets but leave each socket
2280 	 * with one remaining ref.
2281 	 */
2282 	for (i = 0; i < total; i++) {
2283 		struct socket *so;
2284 
2285 		so = unref[i]->f_data;
2286 		CURVNET_SET(so->so_vnet);
2287 		sorflush(so);
2288 		CURVNET_RESTORE();
2289 	}
2290 
2291 	/*
2292 	 * And finally release the sockets so they can be reclaimed.
2293 	 */
2294 	for (i = 0; i < total; i++)
2295 		fdrop(unref[i], NULL);
2296 	unp_recycled += total;
2297 	free(unref, M_TEMP);
2298 }
2299 
2300 static void
2301 unp_dispose(struct mbuf *m)
2302 {
2303 
2304 	if (m)
2305 		unp_scan(m, unp_freerights);
2306 }
2307 
2308 static void
2309 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2310 {
2311 	struct mbuf *m;
2312 	struct cmsghdr *cm;
2313 	void *data;
2314 	socklen_t clen, datalen;
2315 
2316 	while (m0 != NULL) {
2317 		for (m = m0; m; m = m->m_next) {
2318 			if (m->m_type != MT_CONTROL)
2319 				continue;
2320 
2321 			cm = mtod(m, struct cmsghdr *);
2322 			clen = m->m_len;
2323 
2324 			while (cm != NULL) {
2325 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2326 					break;
2327 
2328 				data = CMSG_DATA(cm);
2329 				datalen = (caddr_t)cm + cm->cmsg_len
2330 				    - (caddr_t)data;
2331 
2332 				if (cm->cmsg_level == SOL_SOCKET &&
2333 				    cm->cmsg_type == SCM_RIGHTS) {
2334 					(*op)(data, datalen /
2335 					    sizeof(struct filedescent *));
2336 				}
2337 
2338 				if (CMSG_SPACE(datalen) < clen) {
2339 					clen -= CMSG_SPACE(datalen);
2340 					cm = (struct cmsghdr *)
2341 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2342 				} else {
2343 					clen = 0;
2344 					cm = NULL;
2345 				}
2346 			}
2347 		}
2348 		m0 = m0->m_act;
2349 	}
2350 }
2351 
2352 /*
2353  * A helper function called by VFS before socket-type vnode reclamation.
2354  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2355  * use count.
2356  */
2357 void
2358 vfs_unp_reclaim(struct vnode *vp)
2359 {
2360 	struct socket *so;
2361 	struct unpcb *unp;
2362 	int active;
2363 
2364 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2365 	KASSERT(vp->v_type == VSOCK,
2366 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2367 
2368 	active = 0;
2369 	UNP_LINK_WLOCK();
2370 	VOP_UNP_CONNECT(vp, &so);
2371 	if (so == NULL)
2372 		goto done;
2373 	unp = sotounpcb(so);
2374 	if (unp == NULL)
2375 		goto done;
2376 	UNP_PCB_LOCK(unp);
2377 	if (unp->unp_vnode == vp) {
2378 		VOP_UNP_DETACH(vp);
2379 		unp->unp_vnode = NULL;
2380 		active = 1;
2381 	}
2382 	UNP_PCB_UNLOCK(unp);
2383 done:
2384 	UNP_LINK_WUNLOCK();
2385 	if (active)
2386 		vunref(vp);
2387 }
2388 
2389 #ifdef DDB
2390 static void
2391 db_print_indent(int indent)
2392 {
2393 	int i;
2394 
2395 	for (i = 0; i < indent; i++)
2396 		db_printf(" ");
2397 }
2398 
2399 static void
2400 db_print_unpflags(int unp_flags)
2401 {
2402 	int comma;
2403 
2404 	comma = 0;
2405 	if (unp_flags & UNP_HAVEPC) {
2406 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2407 		comma = 1;
2408 	}
2409 	if (unp_flags & UNP_HAVEPCCACHED) {
2410 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2411 		comma = 1;
2412 	}
2413 	if (unp_flags & UNP_WANTCRED) {
2414 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2415 		comma = 1;
2416 	}
2417 	if (unp_flags & UNP_CONNWAIT) {
2418 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2419 		comma = 1;
2420 	}
2421 	if (unp_flags & UNP_CONNECTING) {
2422 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2423 		comma = 1;
2424 	}
2425 	if (unp_flags & UNP_BINDING) {
2426 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2427 		comma = 1;
2428 	}
2429 }
2430 
2431 static void
2432 db_print_xucred(int indent, struct xucred *xu)
2433 {
2434 	int comma, i;
2435 
2436 	db_print_indent(indent);
2437 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2438 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2439 	db_print_indent(indent);
2440 	db_printf("cr_groups: ");
2441 	comma = 0;
2442 	for (i = 0; i < xu->cr_ngroups; i++) {
2443 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2444 		comma = 1;
2445 	}
2446 	db_printf("\n");
2447 }
2448 
2449 static void
2450 db_print_unprefs(int indent, struct unp_head *uh)
2451 {
2452 	struct unpcb *unp;
2453 	int counter;
2454 
2455 	counter = 0;
2456 	LIST_FOREACH(unp, uh, unp_reflink) {
2457 		if (counter % 4 == 0)
2458 			db_print_indent(indent);
2459 		db_printf("%p  ", unp);
2460 		if (counter % 4 == 3)
2461 			db_printf("\n");
2462 		counter++;
2463 	}
2464 	if (counter != 0 && counter % 4 != 0)
2465 		db_printf("\n");
2466 }
2467 
2468 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2469 {
2470 	struct unpcb *unp;
2471 
2472         if (!have_addr) {
2473                 db_printf("usage: show unpcb <addr>\n");
2474                 return;
2475         }
2476         unp = (struct unpcb *)addr;
2477 
2478 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2479 	    unp->unp_vnode);
2480 
2481 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2482 	    unp->unp_conn);
2483 
2484 	db_printf("unp_refs:\n");
2485 	db_print_unprefs(2, &unp->unp_refs);
2486 
2487 	/* XXXRW: Would be nice to print the full address, if any. */
2488 	db_printf("unp_addr: %p\n", unp->unp_addr);
2489 
2490 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2491 	    unp->unp_cc, unp->unp_mbcnt,
2492 	    (unsigned long long)unp->unp_gencnt);
2493 
2494 	db_printf("unp_flags: %x (", unp->unp_flags);
2495 	db_print_unpflags(unp->unp_flags);
2496 	db_printf(")\n");
2497 
2498 	db_printf("unp_peercred:\n");
2499 	db_print_xucred(2, &unp->unp_peercred);
2500 
2501 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2502 }
2503 #endif
2504