1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/fcntl.h> 69 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 70 #include <sys/eventhandler.h> 71 #include <sys/file.h> 72 #include <sys/filedesc.h> 73 #include <sys/kernel.h> 74 #include <sys/lock.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * Locking key: 110 * (l) Locked using list lock 111 * (g) Locked using linkage lock 112 */ 113 114 static uma_zone_t unp_zone; 115 static unp_gen_t unp_gencnt; /* (l) */ 116 static u_int unp_count; /* (l) Count of local sockets. */ 117 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 118 static int unp_rights; /* (g) File descriptors in flight. */ 119 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 120 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 121 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 122 123 struct unp_defer { 124 SLIST_ENTRY(unp_defer) ud_link; 125 struct file *ud_fp; 126 }; 127 static SLIST_HEAD(, unp_defer) unp_defers; 128 static int unp_defers_count; 129 130 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 131 132 /* 133 * Garbage collection of cyclic file descriptor/socket references occurs 134 * asynchronously in a taskqueue context in order to avoid recursion and 135 * reentrance in the UNIX domain socket, file descriptor, and socket layer 136 * code. See unp_gc() for a full description. 137 */ 138 static struct timeout_task unp_gc_task; 139 140 /* 141 * The close of unix domain sockets attached as SCM_RIGHTS is 142 * postponed to the taskqueue, to avoid arbitrary recursion depth. 143 * The attached sockets might have another sockets attached. 144 */ 145 static struct task unp_defer_task; 146 147 /* 148 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 149 * stream sockets, although the total for sender and receiver is actually 150 * only PIPSIZ. 151 * 152 * Datagram sockets really use the sendspace as the maximum datagram size, 153 * and don't really want to reserve the sendspace. Their recvspace should be 154 * large enough for at least one max-size datagram plus address. 155 */ 156 #ifndef PIPSIZ 157 #define PIPSIZ 8192 158 #endif 159 static u_long unpst_sendspace = PIPSIZ; 160 static u_long unpst_recvspace = PIPSIZ; 161 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 162 static u_long unpdg_recvspace = 4*1024; 163 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 164 static u_long unpsp_recvspace = PIPSIZ; 165 166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); 167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); 170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0, 171 "SOCK_SEQPACKET"); 172 173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 174 &unpst_sendspace, 0, "Default stream send space."); 175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 176 &unpst_recvspace, 0, "Default stream receive space."); 177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 178 &unpdg_sendspace, 0, "Default datagram send space."); 179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 180 &unpdg_recvspace, 0, "Default datagram receive space."); 181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 182 &unpsp_sendspace, 0, "Default seqpacket send space."); 183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 184 &unpsp_recvspace, 0, "Default seqpacket receive space."); 185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 186 "File descriptors in flight."); 187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 188 &unp_defers_count, 0, 189 "File descriptors deferred to taskqueue for close."); 190 191 /* 192 * Locking and synchronization: 193 * 194 * Three types of locks exist in the local domain socket implementation: a 195 * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes. 196 * The linkage lock protects the socket count, global generation number, 197 * and stream/datagram global lists. 198 * 199 * The mtxpool lock protects the vnode from being modified while referenced. 200 * Lock ordering requires that it be acquired before any unpcb locks. 201 * 202 * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular 203 * note is that this includes the unp_conn field. So long as the unpcb lock 204 * is held the reference to the unpcb pointed to by unp_conn is valid. If we 205 * require that the unpcb pointed to by unp_conn remain live in cases where 206 * we need to drop the unp_mtx as when we need to acquire the lock for a 207 * second unpcb the caller must first acquire an additional reference on the 208 * second unpcb and then revalidate any state (typically check that unp_conn 209 * is non-NULL) upon requiring the initial unpcb lock. The lock ordering 210 * between unpcbs is the conventional ascending address order. Two helper 211 * routines exist for this: 212 * 213 * - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the 214 * safe ordering. 215 * 216 * - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held 217 * when called. If unp is unlocked and unp2 is subsequently freed 218 * freed will be set to 1. 219 * 220 * The helper routines for references are: 221 * 222 * - unp_pcb_hold(unp): Can be called any time we currently hold a valid 223 * reference to unp. 224 * 225 * - unp_pcb_rele(unp): The caller must hold the unp lock. If we are 226 * releasing the last reference, detach must have been called thus 227 * unp->unp_socket be NULL. 228 * 229 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 230 * allocated in pru_attach() and freed in pru_detach(). The validity of that 231 * pointer is an invariant, so no lock is required to dereference the so_pcb 232 * pointer if a valid socket reference is held by the caller. In practice, 233 * this is always true during operations performed on a socket. Each unpcb 234 * has a back-pointer to its socket, unp_socket, which will be stable under 235 * the same circumstances. 236 * 237 * This pointer may only be safely dereferenced as long as a valid reference 238 * to the unpcb is held. Typically, this reference will be from the socket, 239 * or from another unpcb when the referring unpcb's lock is held (in order 240 * that the reference not be invalidated during use). For example, to follow 241 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 242 * that detach is not run clearing unp_socket. 243 * 244 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 245 * protocols, bind() is a non-atomic operation, and connect() requires 246 * potential sleeping in the protocol, due to potentially waiting on local or 247 * distributed file systems. We try to separate "lookup" operations, which 248 * may sleep, and the IPC operations themselves, which typically can occur 249 * with relative atomicity as locks can be held over the entire operation. 250 * 251 * Another tricky issue is simultaneous multi-threaded or multi-process 252 * access to a single UNIX domain socket. These are handled by the flags 253 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 254 * binding, both of which involve dropping UNIX domain socket locks in order 255 * to perform namei() and other file system operations. 256 */ 257 static struct rwlock unp_link_rwlock; 258 static struct mtx unp_defers_lock; 259 260 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 261 "unp_link_rwlock") 262 263 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 264 RA_LOCKED) 265 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 266 RA_UNLOCKED) 267 268 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 269 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 270 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 271 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 272 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 273 RA_WLOCKED) 274 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 275 276 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 277 "unp_defer", NULL, MTX_DEF) 278 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 279 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 280 281 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 282 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 283 284 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 285 "unp", "unp", \ 286 MTX_DUPOK|MTX_DEF) 287 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 288 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 289 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 290 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 291 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 292 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 293 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 294 295 static int uipc_connect2(struct socket *, struct socket *); 296 static int uipc_ctloutput(struct socket *, struct sockopt *); 297 static int unp_connect(struct socket *, struct sockaddr *, 298 struct thread *); 299 static int unp_connectat(int, struct socket *, struct sockaddr *, 300 struct thread *); 301 static int unp_connect2(struct socket *so, struct socket *so2, int); 302 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 303 static void unp_dispose(struct socket *so); 304 static void unp_dispose_mbuf(struct mbuf *); 305 static void unp_shutdown(struct unpcb *); 306 static void unp_drop(struct unpcb *); 307 static void unp_gc(__unused void *, int); 308 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 309 static void unp_discard(struct file *); 310 static void unp_freerights(struct filedescent **, int); 311 static void unp_init(void); 312 static int unp_internalize(struct mbuf **, struct thread *); 313 static void unp_internalize_fp(struct file *); 314 static int unp_externalize(struct mbuf *, struct mbuf **, int); 315 static int unp_externalize_fp(struct file *); 316 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 317 static void unp_process_defers(void * __unused, int); 318 319 320 static void 321 unp_pcb_hold(struct unpcb *unp) 322 { 323 MPASS(unp->unp_refcount); 324 refcount_acquire(&unp->unp_refcount); 325 } 326 327 static int 328 unp_pcb_rele(struct unpcb *unp) 329 { 330 int freed; 331 332 UNP_PCB_LOCK_ASSERT(unp); 333 MPASS(unp->unp_refcount); 334 if ((freed = refcount_release(&unp->unp_refcount))) { 335 /* we got here with having detached? */ 336 MPASS(unp->unp_socket == NULL); 337 UNP_PCB_UNLOCK(unp); 338 UNP_PCB_LOCK_DESTROY(unp); 339 uma_zfree(unp_zone, unp); 340 } 341 return (freed); 342 } 343 344 static void 345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2) 346 { 347 UNP_PCB_UNLOCK_ASSERT(unp); 348 UNP_PCB_UNLOCK_ASSERT(unp2); 349 if ((uintptr_t)unp2 > (uintptr_t)unp) { 350 UNP_PCB_LOCK(unp); 351 UNP_PCB_LOCK(unp2); 352 } else { 353 UNP_PCB_LOCK(unp2); 354 UNP_PCB_LOCK(unp); 355 } 356 } 357 358 static __noinline void 359 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, int *freed) 360 361 { 362 struct unpcb *unp2; 363 364 unp2 = *unp2p; 365 unp_pcb_hold((unp2)); 366 UNP_PCB_UNLOCK((unp)); 367 UNP_PCB_LOCK((unp2)); 368 UNP_PCB_LOCK((unp)); 369 *freed = unp_pcb_rele((unp2)); 370 if (*freed) 371 *unp2p = NULL; 372 } 373 374 #define unp_pcb_owned_lock2(unp, unp2, freed) do { \ 375 freed = 0; \ 376 UNP_PCB_LOCK_ASSERT((unp)); \ 377 UNP_PCB_UNLOCK_ASSERT((unp2)); \ 378 if (__predict_true(UNP_PCB_TRYLOCK((unp2)))) \ 379 break; \ 380 else if ((uintptr_t)(unp2) > (uintptr_t)(unp)) \ 381 UNP_PCB_LOCK((unp2)); \ 382 else { \ 383 unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed); \ 384 } \ 385 } while (0) 386 387 388 /* 389 * Definitions of protocols supported in the LOCAL domain. 390 */ 391 static struct domain localdomain; 392 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 393 static struct pr_usrreqs uipc_usrreqs_seqpacket; 394 static struct protosw localsw[] = { 395 { 396 .pr_type = SOCK_STREAM, 397 .pr_domain = &localdomain, 398 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 399 .pr_ctloutput = &uipc_ctloutput, 400 .pr_usrreqs = &uipc_usrreqs_stream 401 }, 402 { 403 .pr_type = SOCK_DGRAM, 404 .pr_domain = &localdomain, 405 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 406 .pr_ctloutput = &uipc_ctloutput, 407 .pr_usrreqs = &uipc_usrreqs_dgram 408 }, 409 { 410 .pr_type = SOCK_SEQPACKET, 411 .pr_domain = &localdomain, 412 413 /* 414 * XXXRW: For now, PR_ADDR because soreceive will bump into them 415 * due to our use of sbappendaddr. A new sbappend variants is needed 416 * that supports both atomic record writes and control data. 417 */ 418 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 419 PR_RIGHTS, 420 .pr_ctloutput = &uipc_ctloutput, 421 .pr_usrreqs = &uipc_usrreqs_seqpacket, 422 }, 423 }; 424 425 static struct domain localdomain = { 426 .dom_family = AF_LOCAL, 427 .dom_name = "local", 428 .dom_init = unp_init, 429 .dom_externalize = unp_externalize, 430 .dom_dispose = unp_dispose, 431 .dom_protosw = localsw, 432 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 433 }; 434 DOMAIN_SET(local); 435 436 static void 437 uipc_abort(struct socket *so) 438 { 439 struct unpcb *unp, *unp2; 440 441 unp = sotounpcb(so); 442 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 443 UNP_PCB_UNLOCK_ASSERT(unp); 444 445 UNP_PCB_LOCK(unp); 446 unp2 = unp->unp_conn; 447 if (unp2 != NULL) { 448 unp_pcb_hold(unp2); 449 UNP_PCB_UNLOCK(unp); 450 unp_drop(unp2); 451 } else 452 UNP_PCB_UNLOCK(unp); 453 } 454 455 static int 456 uipc_accept(struct socket *so, struct sockaddr **nam) 457 { 458 struct unpcb *unp, *unp2; 459 const struct sockaddr *sa; 460 461 /* 462 * Pass back name of connected socket, if it was bound and we are 463 * still connected (our peer may have closed already!). 464 */ 465 unp = sotounpcb(so); 466 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 467 468 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 469 UNP_LINK_RLOCK(); 470 unp2 = unp->unp_conn; 471 if (unp2 != NULL && unp2->unp_addr != NULL) { 472 UNP_PCB_LOCK(unp2); 473 sa = (struct sockaddr *) unp2->unp_addr; 474 bcopy(sa, *nam, sa->sa_len); 475 UNP_PCB_UNLOCK(unp2); 476 } else { 477 sa = &sun_noname; 478 bcopy(sa, *nam, sa->sa_len); 479 } 480 UNP_LINK_RUNLOCK(); 481 return (0); 482 } 483 484 static int 485 uipc_attach(struct socket *so, int proto, struct thread *td) 486 { 487 u_long sendspace, recvspace; 488 struct unpcb *unp; 489 int error; 490 bool locked; 491 492 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 493 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 494 switch (so->so_type) { 495 case SOCK_STREAM: 496 sendspace = unpst_sendspace; 497 recvspace = unpst_recvspace; 498 break; 499 500 case SOCK_DGRAM: 501 sendspace = unpdg_sendspace; 502 recvspace = unpdg_recvspace; 503 break; 504 505 case SOCK_SEQPACKET: 506 sendspace = unpsp_sendspace; 507 recvspace = unpsp_recvspace; 508 break; 509 510 default: 511 panic("uipc_attach"); 512 } 513 error = soreserve(so, sendspace, recvspace); 514 if (error) 515 return (error); 516 } 517 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 518 if (unp == NULL) 519 return (ENOBUFS); 520 LIST_INIT(&unp->unp_refs); 521 UNP_PCB_LOCK_INIT(unp); 522 unp->unp_socket = so; 523 so->so_pcb = unp; 524 unp->unp_refcount = 1; 525 if (so->so_listen != NULL) 526 unp->unp_flags |= UNP_NASCENT; 527 528 if ((locked = UNP_LINK_WOWNED()) == false) 529 UNP_LINK_WLOCK(); 530 531 unp->unp_gencnt = ++unp_gencnt; 532 unp_count++; 533 switch (so->so_type) { 534 case SOCK_STREAM: 535 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 536 break; 537 538 case SOCK_DGRAM: 539 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 540 break; 541 542 case SOCK_SEQPACKET: 543 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 544 break; 545 546 default: 547 panic("uipc_attach"); 548 } 549 550 if (locked == false) 551 UNP_LINK_WUNLOCK(); 552 553 return (0); 554 } 555 556 static int 557 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 558 { 559 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 560 struct vattr vattr; 561 int error, namelen; 562 struct nameidata nd; 563 struct unpcb *unp; 564 struct vnode *vp; 565 struct mount *mp; 566 cap_rights_t rights; 567 char *buf; 568 569 if (nam->sa_family != AF_UNIX) 570 return (EAFNOSUPPORT); 571 572 unp = sotounpcb(so); 573 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 574 575 if (soun->sun_len > sizeof(struct sockaddr_un)) 576 return (EINVAL); 577 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 578 if (namelen <= 0) 579 return (EINVAL); 580 581 /* 582 * We don't allow simultaneous bind() calls on a single UNIX domain 583 * socket, so flag in-progress operations, and return an error if an 584 * operation is already in progress. 585 * 586 * Historically, we have not allowed a socket to be rebound, so this 587 * also returns an error. Not allowing re-binding simplifies the 588 * implementation and avoids a great many possible failure modes. 589 */ 590 UNP_PCB_LOCK(unp); 591 if (unp->unp_vnode != NULL) { 592 UNP_PCB_UNLOCK(unp); 593 return (EINVAL); 594 } 595 if (unp->unp_flags & UNP_BINDING) { 596 UNP_PCB_UNLOCK(unp); 597 return (EALREADY); 598 } 599 unp->unp_flags |= UNP_BINDING; 600 UNP_PCB_UNLOCK(unp); 601 602 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 603 bcopy(soun->sun_path, buf, namelen); 604 buf[namelen] = 0; 605 606 restart: 607 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 608 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 609 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 610 error = namei(&nd); 611 if (error) 612 goto error; 613 vp = nd.ni_vp; 614 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 615 NDFREE(&nd, NDF_ONLY_PNBUF); 616 if (nd.ni_dvp == vp) 617 vrele(nd.ni_dvp); 618 else 619 vput(nd.ni_dvp); 620 if (vp != NULL) { 621 vrele(vp); 622 error = EADDRINUSE; 623 goto error; 624 } 625 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 626 if (error) 627 goto error; 628 goto restart; 629 } 630 VATTR_NULL(&vattr); 631 vattr.va_type = VSOCK; 632 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 633 #ifdef MAC 634 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 635 &vattr); 636 #endif 637 if (error == 0) 638 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 639 NDFREE(&nd, NDF_ONLY_PNBUF); 640 vput(nd.ni_dvp); 641 if (error) { 642 vn_finished_write(mp); 643 goto error; 644 } 645 vp = nd.ni_vp; 646 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 647 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 648 649 UNP_PCB_LOCK(unp); 650 VOP_UNP_BIND(vp, unp); 651 unp->unp_vnode = vp; 652 unp->unp_addr = soun; 653 unp->unp_flags &= ~UNP_BINDING; 654 UNP_PCB_UNLOCK(unp); 655 VOP_UNLOCK(vp, 0); 656 vn_finished_write(mp); 657 free(buf, M_TEMP); 658 return (0); 659 660 error: 661 UNP_PCB_LOCK(unp); 662 unp->unp_flags &= ~UNP_BINDING; 663 UNP_PCB_UNLOCK(unp); 664 free(buf, M_TEMP); 665 return (error); 666 } 667 668 static int 669 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 670 { 671 672 return (uipc_bindat(AT_FDCWD, so, nam, td)); 673 } 674 675 static int 676 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 677 { 678 int error; 679 680 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 681 error = unp_connect(so, nam, td); 682 return (error); 683 } 684 685 static int 686 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 687 struct thread *td) 688 { 689 int error; 690 691 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 692 error = unp_connectat(fd, so, nam, td); 693 return (error); 694 } 695 696 static void 697 uipc_close(struct socket *so) 698 { 699 struct unpcb *unp, *unp2; 700 struct vnode *vp = NULL; 701 struct mtx *vplock; 702 int freed; 703 unp = sotounpcb(so); 704 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 705 706 707 vplock = NULL; 708 if ((vp = unp->unp_vnode) != NULL) { 709 vplock = mtx_pool_find(mtxpool_sleep, vp); 710 mtx_lock(vplock); 711 } 712 UNP_PCB_LOCK(unp); 713 if (vp && unp->unp_vnode == NULL) { 714 mtx_unlock(vplock); 715 vp = NULL; 716 } 717 if (vp != NULL) { 718 VOP_UNP_DETACH(vp); 719 unp->unp_vnode = NULL; 720 } 721 unp2 = unp->unp_conn; 722 unp_pcb_hold(unp); 723 if (unp2 != NULL) { 724 unp_pcb_hold(unp2); 725 unp_pcb_owned_lock2(unp, unp2, freed); 726 unp_disconnect(unp, unp2); 727 if (unp_pcb_rele(unp2) == 0) 728 UNP_PCB_UNLOCK(unp2); 729 } 730 if (unp_pcb_rele(unp) == 0) 731 UNP_PCB_UNLOCK(unp); 732 if (vp) { 733 mtx_unlock(vplock); 734 vrele(vp); 735 } 736 } 737 738 static int 739 uipc_connect2(struct socket *so1, struct socket *so2) 740 { 741 struct unpcb *unp, *unp2; 742 int error; 743 744 unp = so1->so_pcb; 745 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 746 unp2 = so2->so_pcb; 747 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 748 unp_pcb_lock2(unp, unp2); 749 error = unp_connect2(so1, so2, PRU_CONNECT2); 750 UNP_PCB_UNLOCK(unp2); 751 UNP_PCB_UNLOCK(unp); 752 return (error); 753 } 754 755 static void 756 uipc_detach(struct socket *so) 757 { 758 struct unpcb *unp, *unp2; 759 struct mtx *vplock; 760 struct sockaddr_un *saved_unp_addr; 761 struct vnode *vp; 762 int freeunp, local_unp_rights; 763 764 unp = sotounpcb(so); 765 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 766 767 vp = NULL; 768 vplock = NULL; 769 local_unp_rights = 0; 770 771 UNP_LINK_WLOCK(); 772 LIST_REMOVE(unp, unp_link); 773 unp->unp_gencnt = ++unp_gencnt; 774 --unp_count; 775 UNP_LINK_WUNLOCK(); 776 777 UNP_PCB_UNLOCK_ASSERT(unp); 778 restart: 779 if ((vp = unp->unp_vnode) != NULL) { 780 vplock = mtx_pool_find(mtxpool_sleep, vp); 781 mtx_lock(vplock); 782 } 783 UNP_PCB_LOCK(unp); 784 if ((unp2 = unp->unp_conn) != NULL) { 785 unp_pcb_owned_lock2(unp, unp2, freeunp); 786 if (freeunp) 787 unp2 = NULL; 788 } 789 if (unp->unp_vnode != vp && 790 unp->unp_vnode != NULL) { 791 if (vplock) 792 mtx_unlock(vplock); 793 UNP_PCB_UNLOCK(unp); 794 if (unp2) 795 UNP_PCB_UNLOCK(unp2); 796 goto restart; 797 } 798 if ((unp->unp_flags & UNP_NASCENT) != 0) { 799 if (unp2) 800 UNP_PCB_UNLOCK(unp2); 801 goto teardown; 802 } 803 if ((vp = unp->unp_vnode) != NULL) { 804 VOP_UNP_DETACH(vp); 805 unp->unp_vnode = NULL; 806 } 807 unp_pcb_hold(unp); 808 if (unp2 != NULL) { 809 unp_pcb_hold(unp2); 810 unp_disconnect(unp, unp2); 811 if (unp_pcb_rele(unp2) == 0) 812 UNP_PCB_UNLOCK(unp2); 813 } 814 UNP_PCB_UNLOCK(unp); 815 UNP_REF_LIST_LOCK(); 816 while (!LIST_EMPTY(&unp->unp_refs)) { 817 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 818 819 unp_pcb_hold(ref); 820 UNP_REF_LIST_UNLOCK(); 821 822 MPASS(ref != unp); 823 UNP_PCB_UNLOCK_ASSERT(ref); 824 unp_drop(ref); 825 UNP_REF_LIST_LOCK(); 826 } 827 828 UNP_REF_LIST_UNLOCK(); 829 UNP_PCB_LOCK(unp); 830 freeunp = unp_pcb_rele(unp); 831 MPASS(freeunp == 0); 832 local_unp_rights = unp_rights; 833 teardown: 834 unp->unp_socket->so_pcb = NULL; 835 saved_unp_addr = unp->unp_addr; 836 unp->unp_addr = NULL; 837 unp->unp_socket = NULL; 838 freeunp = unp_pcb_rele(unp); 839 if (saved_unp_addr != NULL) 840 free(saved_unp_addr, M_SONAME); 841 if (!freeunp) 842 UNP_PCB_UNLOCK(unp); 843 if (vp) { 844 mtx_unlock(vplock); 845 vrele(vp); 846 } 847 if (local_unp_rights) 848 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 849 } 850 851 static int 852 uipc_disconnect(struct socket *so) 853 { 854 struct unpcb *unp, *unp2; 855 int freed; 856 857 unp = sotounpcb(so); 858 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 859 860 UNP_PCB_LOCK(unp); 861 if ((unp2 = unp->unp_conn) == NULL) { 862 UNP_PCB_UNLOCK(unp); 863 return (0); 864 } 865 unp_pcb_owned_lock2(unp, unp2, freed); 866 if (__predict_false(freed)) { 867 UNP_PCB_UNLOCK(unp); 868 return (0); 869 } 870 unp_pcb_hold(unp2); 871 unp_pcb_hold(unp); 872 unp_disconnect(unp, unp2); 873 if (unp_pcb_rele(unp) == 0) 874 UNP_PCB_UNLOCK(unp); 875 if (unp_pcb_rele(unp2) == 0) 876 UNP_PCB_UNLOCK(unp2); 877 return (0); 878 } 879 880 static int 881 uipc_listen(struct socket *so, int backlog, struct thread *td) 882 { 883 struct unpcb *unp; 884 int error; 885 886 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 887 return (EOPNOTSUPP); 888 889 unp = sotounpcb(so); 890 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 891 892 UNP_PCB_LOCK(unp); 893 if (unp->unp_vnode == NULL) { 894 /* Already connected or not bound to an address. */ 895 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 896 UNP_PCB_UNLOCK(unp); 897 return (error); 898 } 899 900 SOCK_LOCK(so); 901 error = solisten_proto_check(so); 902 if (error == 0) { 903 cru2x(td->td_ucred, &unp->unp_peercred); 904 solisten_proto(so, backlog); 905 } 906 SOCK_UNLOCK(so); 907 UNP_PCB_UNLOCK(unp); 908 return (error); 909 } 910 911 static int 912 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 913 { 914 struct unpcb *unp, *unp2; 915 const struct sockaddr *sa; 916 917 unp = sotounpcb(so); 918 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 919 920 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 921 UNP_LINK_RLOCK(); 922 /* 923 * XXX: It seems that this test always fails even when connection is 924 * established. So, this else clause is added as workaround to 925 * return PF_LOCAL sockaddr. 926 */ 927 unp2 = unp->unp_conn; 928 if (unp2 != NULL) { 929 UNP_PCB_LOCK(unp2); 930 if (unp2->unp_addr != NULL) 931 sa = (struct sockaddr *) unp2->unp_addr; 932 else 933 sa = &sun_noname; 934 bcopy(sa, *nam, sa->sa_len); 935 UNP_PCB_UNLOCK(unp2); 936 } else { 937 sa = &sun_noname; 938 bcopy(sa, *nam, sa->sa_len); 939 } 940 UNP_LINK_RUNLOCK(); 941 return (0); 942 } 943 944 static int 945 uipc_rcvd(struct socket *so, int flags) 946 { 947 struct unpcb *unp, *unp2; 948 struct socket *so2; 949 u_int mbcnt, sbcc; 950 951 unp = sotounpcb(so); 952 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 953 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 954 ("%s: socktype %d", __func__, so->so_type)); 955 956 /* 957 * Adjust backpressure on sender and wakeup any waiting to write. 958 * 959 * The unp lock is acquired to maintain the validity of the unp_conn 960 * pointer; no lock on unp2 is required as unp2->unp_socket will be 961 * static as long as we don't permit unp2 to disconnect from unp, 962 * which is prevented by the lock on unp. We cache values from 963 * so_rcv to avoid holding the so_rcv lock over the entire 964 * transaction on the remote so_snd. 965 */ 966 SOCKBUF_LOCK(&so->so_rcv); 967 mbcnt = so->so_rcv.sb_mbcnt; 968 sbcc = sbavail(&so->so_rcv); 969 SOCKBUF_UNLOCK(&so->so_rcv); 970 /* 971 * There is a benign race condition at this point. If we're planning to 972 * clear SB_STOP, but uipc_send is called on the connected socket at 973 * this instant, it might add data to the sockbuf and set SB_STOP. Then 974 * we would erroneously clear SB_STOP below, even though the sockbuf is 975 * full. The race is benign because the only ill effect is to allow the 976 * sockbuf to exceed its size limit, and the size limits are not 977 * strictly guaranteed anyway. 978 */ 979 UNP_PCB_LOCK(unp); 980 unp2 = unp->unp_conn; 981 if (unp2 == NULL) { 982 UNP_PCB_UNLOCK(unp); 983 return (0); 984 } 985 so2 = unp2->unp_socket; 986 SOCKBUF_LOCK(&so2->so_snd); 987 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 988 so2->so_snd.sb_flags &= ~SB_STOP; 989 sowwakeup_locked(so2); 990 UNP_PCB_UNLOCK(unp); 991 return (0); 992 } 993 994 static int 995 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td) 996 { 997 int error; 998 struct unpcb *unp; 999 1000 unp = so->so_pcb; 1001 if (unp->unp_conn != NULL) 1002 return (EISCONN); 1003 error = unp_connect(so, nam, td); 1004 if (error) 1005 return (error); 1006 UNP_PCB_LOCK(unp); 1007 if (unp->unp_conn == NULL) { 1008 UNP_PCB_UNLOCK(unp); 1009 if (error == 0) 1010 error = ENOTCONN; 1011 } 1012 return (error); 1013 } 1014 1015 1016 static int 1017 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 1018 struct mbuf *control, struct thread *td) 1019 { 1020 struct unpcb *unp, *unp2; 1021 struct socket *so2; 1022 u_int mbcnt, sbcc; 1023 int freed, error; 1024 1025 unp = sotounpcb(so); 1026 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1027 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1028 so->so_type == SOCK_SEQPACKET, 1029 ("%s: socktype %d", __func__, so->so_type)); 1030 1031 freed = error = 0; 1032 if (flags & PRUS_OOB) { 1033 error = EOPNOTSUPP; 1034 goto release; 1035 } 1036 if (control != NULL && (error = unp_internalize(&control, td))) 1037 goto release; 1038 1039 unp2 = NULL; 1040 switch (so->so_type) { 1041 case SOCK_DGRAM: 1042 { 1043 const struct sockaddr *from; 1044 1045 if (nam != NULL) { 1046 /* 1047 * We return with UNP_PCB_LOCK_HELD so we know that 1048 * the reference is live if the pointer is valid. 1049 */ 1050 if ((error = connect_internal(so, nam, td))) 1051 break; 1052 MPASS(unp->unp_conn != NULL); 1053 unp2 = unp->unp_conn; 1054 } else { 1055 UNP_PCB_LOCK(unp); 1056 1057 /* 1058 * Because connect() and send() are non-atomic in a sendto() 1059 * with a target address, it's possible that the socket will 1060 * have disconnected before the send() can run. In that case 1061 * return the slightly counter-intuitive but otherwise 1062 * correct error that the socket is not connected. 1063 */ 1064 if ((unp2 = unp->unp_conn) == NULL) { 1065 UNP_PCB_UNLOCK(unp); 1066 error = ENOTCONN; 1067 break; 1068 } 1069 } 1070 unp_pcb_owned_lock2(unp, unp2, freed); 1071 if (__predict_false(freed)) { 1072 UNP_PCB_UNLOCK(unp); 1073 error = ENOTCONN; 1074 break; 1075 } 1076 /* 1077 * The socket referencing unp2 may have been closed 1078 * or unp may have been disconnected if the unp lock 1079 * was dropped to acquire unp2. 1080 */ 1081 if (__predict_false(unp->unp_conn == NULL) || 1082 unp2->unp_socket == NULL) { 1083 UNP_PCB_UNLOCK(unp); 1084 if (unp_pcb_rele(unp2) == 0) 1085 UNP_PCB_UNLOCK(unp2); 1086 error = ENOTCONN; 1087 break; 1088 } 1089 if (unp2->unp_flags & UNP_WANTCRED) 1090 control = unp_addsockcred(td, control); 1091 if (unp->unp_addr != NULL) 1092 from = (struct sockaddr *)unp->unp_addr; 1093 else 1094 from = &sun_noname; 1095 so2 = unp2->unp_socket; 1096 SOCKBUF_LOCK(&so2->so_rcv); 1097 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1098 control)) { 1099 sorwakeup_locked(so2); 1100 m = NULL; 1101 control = NULL; 1102 } else { 1103 SOCKBUF_UNLOCK(&so2->so_rcv); 1104 error = ENOBUFS; 1105 } 1106 if (nam != NULL) 1107 unp_disconnect(unp, unp2); 1108 UNP_PCB_UNLOCK(unp2); 1109 UNP_PCB_UNLOCK(unp); 1110 break; 1111 } 1112 1113 case SOCK_SEQPACKET: 1114 case SOCK_STREAM: 1115 if ((so->so_state & SS_ISCONNECTED) == 0) { 1116 if (nam != NULL) { 1117 if ((error = connect_internal(so, nam, td))) 1118 break; 1119 } else { 1120 error = ENOTCONN; 1121 break; 1122 } 1123 } else if ((unp2 = unp->unp_conn) == NULL) { 1124 error = ENOTCONN; 1125 break; 1126 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1127 error = EPIPE; 1128 break; 1129 } else { 1130 UNP_PCB_LOCK(unp); 1131 if ((unp2 = unp->unp_conn) == NULL) { 1132 UNP_PCB_UNLOCK(unp); 1133 error = ENOTCONN; 1134 break; 1135 } 1136 } 1137 unp_pcb_owned_lock2(unp, unp2, freed); 1138 UNP_PCB_UNLOCK(unp); 1139 if (__predict_false(freed)) { 1140 error = ENOTCONN; 1141 break; 1142 } 1143 if ((so2 = unp2->unp_socket) == NULL) { 1144 UNP_PCB_UNLOCK(unp2); 1145 error = ENOTCONN; 1146 break; 1147 } 1148 SOCKBUF_LOCK(&so2->so_rcv); 1149 if (unp2->unp_flags & UNP_WANTCRED) { 1150 /* 1151 * Credentials are passed only once on SOCK_STREAM 1152 * and SOCK_SEQPACKET. 1153 */ 1154 unp2->unp_flags &= ~UNP_WANTCRED; 1155 control = unp_addsockcred(td, control); 1156 } 1157 /* 1158 * Send to paired receive port, and then reduce send buffer 1159 * hiwater marks to maintain backpressure. Wake up readers. 1160 */ 1161 switch (so->so_type) { 1162 case SOCK_STREAM: 1163 if (control != NULL) { 1164 if (sbappendcontrol_locked(&so2->so_rcv, m, 1165 control)) 1166 control = NULL; 1167 } else 1168 sbappend_locked(&so2->so_rcv, m, flags); 1169 break; 1170 1171 case SOCK_SEQPACKET: { 1172 const struct sockaddr *from; 1173 1174 from = &sun_noname; 1175 /* 1176 * Don't check for space available in so2->so_rcv. 1177 * Unix domain sockets only check for space in the 1178 * sending sockbuf, and that check is performed one 1179 * level up the stack. 1180 */ 1181 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1182 from, m, control)) 1183 control = NULL; 1184 break; 1185 } 1186 } 1187 1188 mbcnt = so2->so_rcv.sb_mbcnt; 1189 sbcc = sbavail(&so2->so_rcv); 1190 if (sbcc) 1191 sorwakeup_locked(so2); 1192 else 1193 SOCKBUF_UNLOCK(&so2->so_rcv); 1194 1195 /* 1196 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1197 * it would be possible for uipc_rcvd to be called at this 1198 * point, drain the receiving sockbuf, clear SB_STOP, and then 1199 * we would set SB_STOP below. That could lead to an empty 1200 * sockbuf having SB_STOP set 1201 */ 1202 SOCKBUF_LOCK(&so->so_snd); 1203 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1204 so->so_snd.sb_flags |= SB_STOP; 1205 SOCKBUF_UNLOCK(&so->so_snd); 1206 UNP_PCB_UNLOCK(unp2); 1207 m = NULL; 1208 break; 1209 } 1210 1211 /* 1212 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1213 */ 1214 if (flags & PRUS_EOF) { 1215 UNP_PCB_LOCK(unp); 1216 socantsendmore(so); 1217 unp_shutdown(unp); 1218 UNP_PCB_UNLOCK(unp); 1219 } 1220 if (control != NULL && error != 0) 1221 unp_dispose_mbuf(control); 1222 1223 release: 1224 if (control != NULL) 1225 m_freem(control); 1226 /* 1227 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1228 * for freeing memory. 1229 */ 1230 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1231 m_freem(m); 1232 return (error); 1233 } 1234 1235 static int 1236 uipc_ready(struct socket *so, struct mbuf *m, int count) 1237 { 1238 struct unpcb *unp, *unp2; 1239 struct socket *so2; 1240 int error; 1241 1242 unp = sotounpcb(so); 1243 1244 UNP_LINK_RLOCK(); 1245 if ((unp2 = unp->unp_conn) == NULL) { 1246 UNP_LINK_RUNLOCK(); 1247 for (int i = 0; i < count; i++) 1248 m = m_free(m); 1249 return (ECONNRESET); 1250 } 1251 UNP_PCB_LOCK(unp2); 1252 so2 = unp2->unp_socket; 1253 1254 SOCKBUF_LOCK(&so2->so_rcv); 1255 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1256 sorwakeup_locked(so2); 1257 else 1258 SOCKBUF_UNLOCK(&so2->so_rcv); 1259 1260 UNP_PCB_UNLOCK(unp2); 1261 UNP_LINK_RUNLOCK(); 1262 1263 return (error); 1264 } 1265 1266 static int 1267 uipc_sense(struct socket *so, struct stat *sb) 1268 { 1269 struct unpcb *unp; 1270 1271 unp = sotounpcb(so); 1272 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1273 1274 sb->st_blksize = so->so_snd.sb_hiwat; 1275 UNP_PCB_LOCK(unp); 1276 sb->st_dev = NODEV; 1277 if (unp->unp_ino == 0) 1278 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 1279 sb->st_ino = unp->unp_ino; 1280 UNP_PCB_UNLOCK(unp); 1281 return (0); 1282 } 1283 1284 static int 1285 uipc_shutdown(struct socket *so) 1286 { 1287 struct unpcb *unp; 1288 1289 unp = sotounpcb(so); 1290 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1291 1292 UNP_PCB_LOCK(unp); 1293 socantsendmore(so); 1294 unp_shutdown(unp); 1295 UNP_PCB_UNLOCK(unp); 1296 return (0); 1297 } 1298 1299 static int 1300 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1301 { 1302 struct unpcb *unp; 1303 const struct sockaddr *sa; 1304 1305 unp = sotounpcb(so); 1306 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1307 1308 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1309 UNP_PCB_LOCK(unp); 1310 if (unp->unp_addr != NULL) 1311 sa = (struct sockaddr *) unp->unp_addr; 1312 else 1313 sa = &sun_noname; 1314 bcopy(sa, *nam, sa->sa_len); 1315 UNP_PCB_UNLOCK(unp); 1316 return (0); 1317 } 1318 1319 static struct pr_usrreqs uipc_usrreqs_dgram = { 1320 .pru_abort = uipc_abort, 1321 .pru_accept = uipc_accept, 1322 .pru_attach = uipc_attach, 1323 .pru_bind = uipc_bind, 1324 .pru_bindat = uipc_bindat, 1325 .pru_connect = uipc_connect, 1326 .pru_connectat = uipc_connectat, 1327 .pru_connect2 = uipc_connect2, 1328 .pru_detach = uipc_detach, 1329 .pru_disconnect = uipc_disconnect, 1330 .pru_listen = uipc_listen, 1331 .pru_peeraddr = uipc_peeraddr, 1332 .pru_rcvd = uipc_rcvd, 1333 .pru_send = uipc_send, 1334 .pru_sense = uipc_sense, 1335 .pru_shutdown = uipc_shutdown, 1336 .pru_sockaddr = uipc_sockaddr, 1337 .pru_soreceive = soreceive_dgram, 1338 .pru_close = uipc_close, 1339 }; 1340 1341 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1342 .pru_abort = uipc_abort, 1343 .pru_accept = uipc_accept, 1344 .pru_attach = uipc_attach, 1345 .pru_bind = uipc_bind, 1346 .pru_bindat = uipc_bindat, 1347 .pru_connect = uipc_connect, 1348 .pru_connectat = uipc_connectat, 1349 .pru_connect2 = uipc_connect2, 1350 .pru_detach = uipc_detach, 1351 .pru_disconnect = uipc_disconnect, 1352 .pru_listen = uipc_listen, 1353 .pru_peeraddr = uipc_peeraddr, 1354 .pru_rcvd = uipc_rcvd, 1355 .pru_send = uipc_send, 1356 .pru_sense = uipc_sense, 1357 .pru_shutdown = uipc_shutdown, 1358 .pru_sockaddr = uipc_sockaddr, 1359 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1360 .pru_close = uipc_close, 1361 }; 1362 1363 static struct pr_usrreqs uipc_usrreqs_stream = { 1364 .pru_abort = uipc_abort, 1365 .pru_accept = uipc_accept, 1366 .pru_attach = uipc_attach, 1367 .pru_bind = uipc_bind, 1368 .pru_bindat = uipc_bindat, 1369 .pru_connect = uipc_connect, 1370 .pru_connectat = uipc_connectat, 1371 .pru_connect2 = uipc_connect2, 1372 .pru_detach = uipc_detach, 1373 .pru_disconnect = uipc_disconnect, 1374 .pru_listen = uipc_listen, 1375 .pru_peeraddr = uipc_peeraddr, 1376 .pru_rcvd = uipc_rcvd, 1377 .pru_send = uipc_send, 1378 .pru_ready = uipc_ready, 1379 .pru_sense = uipc_sense, 1380 .pru_shutdown = uipc_shutdown, 1381 .pru_sockaddr = uipc_sockaddr, 1382 .pru_soreceive = soreceive_generic, 1383 .pru_close = uipc_close, 1384 }; 1385 1386 static int 1387 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1388 { 1389 struct unpcb *unp; 1390 struct xucred xu; 1391 int error, optval; 1392 1393 if (sopt->sopt_level != 0) 1394 return (EINVAL); 1395 1396 unp = sotounpcb(so); 1397 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1398 error = 0; 1399 switch (sopt->sopt_dir) { 1400 case SOPT_GET: 1401 switch (sopt->sopt_name) { 1402 case LOCAL_PEERCRED: 1403 UNP_PCB_LOCK(unp); 1404 if (unp->unp_flags & UNP_HAVEPC) 1405 xu = unp->unp_peercred; 1406 else { 1407 if (so->so_type == SOCK_STREAM) 1408 error = ENOTCONN; 1409 else 1410 error = EINVAL; 1411 } 1412 UNP_PCB_UNLOCK(unp); 1413 if (error == 0) 1414 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1415 break; 1416 1417 case LOCAL_CREDS: 1418 /* Unlocked read. */ 1419 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1420 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1421 break; 1422 1423 case LOCAL_CONNWAIT: 1424 /* Unlocked read. */ 1425 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1426 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1427 break; 1428 1429 default: 1430 error = EOPNOTSUPP; 1431 break; 1432 } 1433 break; 1434 1435 case SOPT_SET: 1436 switch (sopt->sopt_name) { 1437 case LOCAL_CREDS: 1438 case LOCAL_CONNWAIT: 1439 error = sooptcopyin(sopt, &optval, sizeof(optval), 1440 sizeof(optval)); 1441 if (error) 1442 break; 1443 1444 #define OPTSET(bit) do { \ 1445 UNP_PCB_LOCK(unp); \ 1446 if (optval) \ 1447 unp->unp_flags |= bit; \ 1448 else \ 1449 unp->unp_flags &= ~bit; \ 1450 UNP_PCB_UNLOCK(unp); \ 1451 } while (0) 1452 1453 switch (sopt->sopt_name) { 1454 case LOCAL_CREDS: 1455 OPTSET(UNP_WANTCRED); 1456 break; 1457 1458 case LOCAL_CONNWAIT: 1459 OPTSET(UNP_CONNWAIT); 1460 break; 1461 1462 default: 1463 break; 1464 } 1465 break; 1466 #undef OPTSET 1467 default: 1468 error = ENOPROTOOPT; 1469 break; 1470 } 1471 break; 1472 1473 default: 1474 error = EOPNOTSUPP; 1475 break; 1476 } 1477 return (error); 1478 } 1479 1480 static int 1481 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1482 { 1483 1484 return (unp_connectat(AT_FDCWD, so, nam, td)); 1485 } 1486 1487 static int 1488 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1489 struct thread *td) 1490 { 1491 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1492 struct vnode *vp; 1493 struct socket *so2; 1494 struct unpcb *unp, *unp2, *unp3; 1495 struct nameidata nd; 1496 char buf[SOCK_MAXADDRLEN]; 1497 struct sockaddr *sa; 1498 cap_rights_t rights; 1499 int error, len, freed; 1500 struct mtx *vplock; 1501 1502 if (nam->sa_family != AF_UNIX) 1503 return (EAFNOSUPPORT); 1504 if (nam->sa_len > sizeof(struct sockaddr_un)) 1505 return (EINVAL); 1506 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1507 if (len <= 0) 1508 return (EINVAL); 1509 bcopy(soun->sun_path, buf, len); 1510 buf[len] = 0; 1511 1512 unp = sotounpcb(so); 1513 UNP_PCB_LOCK(unp); 1514 if (unp->unp_flags & UNP_CONNECTING) { 1515 UNP_PCB_UNLOCK(unp); 1516 return (EALREADY); 1517 } 1518 unp->unp_flags |= UNP_CONNECTING; 1519 UNP_PCB_UNLOCK(unp); 1520 1521 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1522 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1523 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1524 error = namei(&nd); 1525 if (error) 1526 vp = NULL; 1527 else 1528 vp = nd.ni_vp; 1529 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1530 NDFREE(&nd, NDF_ONLY_PNBUF); 1531 if (error) 1532 goto bad; 1533 1534 if (vp->v_type != VSOCK) { 1535 error = ENOTSOCK; 1536 goto bad; 1537 } 1538 #ifdef MAC 1539 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1540 if (error) 1541 goto bad; 1542 #endif 1543 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1544 if (error) 1545 goto bad; 1546 1547 unp = sotounpcb(so); 1548 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1549 1550 vplock = mtx_pool_find(mtxpool_sleep, vp); 1551 mtx_lock(vplock); 1552 VOP_UNP_CONNECT(vp, &unp2); 1553 if (unp2 == NULL) { 1554 error = ECONNREFUSED; 1555 goto bad2; 1556 } 1557 so2 = unp2->unp_socket; 1558 if (so->so_type != so2->so_type) { 1559 error = EPROTOTYPE; 1560 goto bad2; 1561 } 1562 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1563 if (so2->so_options & SO_ACCEPTCONN) { 1564 CURVNET_SET(so2->so_vnet); 1565 so2 = sonewconn(so2, 0); 1566 CURVNET_RESTORE(); 1567 } else 1568 so2 = NULL; 1569 if (so2 == NULL) { 1570 error = ECONNREFUSED; 1571 goto bad2; 1572 } 1573 unp3 = sotounpcb(so2); 1574 unp_pcb_lock2(unp2, unp3); 1575 if (unp2->unp_addr != NULL) { 1576 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1577 unp3->unp_addr = (struct sockaddr_un *) sa; 1578 sa = NULL; 1579 } 1580 1581 /* 1582 * The connector's (client's) credentials are copied from its 1583 * process structure at the time of connect() (which is now). 1584 */ 1585 cru2x(td->td_ucred, &unp3->unp_peercred); 1586 unp3->unp_flags |= UNP_HAVEPC; 1587 1588 /* 1589 * The receiver's (server's) credentials are copied from the 1590 * unp_peercred member of socket on which the former called 1591 * listen(); uipc_listen() cached that process's credentials 1592 * at that time so we can use them now. 1593 */ 1594 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 1595 sizeof(unp->unp_peercred)); 1596 unp->unp_flags |= UNP_HAVEPC; 1597 if (unp2->unp_flags & UNP_WANTCRED) 1598 unp3->unp_flags |= UNP_WANTCRED; 1599 UNP_PCB_UNLOCK(unp2); 1600 unp2 = unp3; 1601 unp_pcb_owned_lock2(unp2, unp, freed); 1602 if (__predict_false(freed)) { 1603 UNP_PCB_UNLOCK(unp2); 1604 error = ECONNREFUSED; 1605 goto bad2; 1606 } 1607 #ifdef MAC 1608 mac_socketpeer_set_from_socket(so, so2); 1609 mac_socketpeer_set_from_socket(so2, so); 1610 #endif 1611 } else 1612 unp_pcb_lock2(unp, unp2); 1613 1614 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1615 sotounpcb(so2) == unp2, 1616 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1617 error = unp_connect2(so, so2, PRU_CONNECT); 1618 UNP_PCB_UNLOCK(unp2); 1619 UNP_PCB_UNLOCK(unp); 1620 bad2: 1621 mtx_unlock(vplock); 1622 bad: 1623 if (vp != NULL) { 1624 vput(vp); 1625 } 1626 free(sa, M_SONAME); 1627 UNP_PCB_LOCK(unp); 1628 unp->unp_flags &= ~UNP_CONNECTING; 1629 UNP_PCB_UNLOCK(unp); 1630 return (error); 1631 } 1632 1633 static int 1634 unp_connect2(struct socket *so, struct socket *so2, int req) 1635 { 1636 struct unpcb *unp; 1637 struct unpcb *unp2; 1638 1639 unp = sotounpcb(so); 1640 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1641 unp2 = sotounpcb(so2); 1642 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1643 1644 UNP_PCB_LOCK_ASSERT(unp); 1645 UNP_PCB_LOCK_ASSERT(unp2); 1646 1647 if (so2->so_type != so->so_type) 1648 return (EPROTOTYPE); 1649 unp2->unp_flags &= ~UNP_NASCENT; 1650 unp->unp_conn = unp2; 1651 unp_pcb_hold(unp2); 1652 unp_pcb_hold(unp); 1653 switch (so->so_type) { 1654 case SOCK_DGRAM: 1655 UNP_REF_LIST_LOCK(); 1656 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1657 UNP_REF_LIST_UNLOCK(); 1658 soisconnected(so); 1659 break; 1660 1661 case SOCK_STREAM: 1662 case SOCK_SEQPACKET: 1663 unp2->unp_conn = unp; 1664 if (req == PRU_CONNECT && 1665 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1666 soisconnecting(so); 1667 else 1668 soisconnected(so); 1669 soisconnected(so2); 1670 break; 1671 1672 default: 1673 panic("unp_connect2"); 1674 } 1675 return (0); 1676 } 1677 1678 static void 1679 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1680 { 1681 struct socket *so, *so2; 1682 int freed __unused; 1683 1684 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1685 1686 UNP_PCB_LOCK_ASSERT(unp); 1687 UNP_PCB_LOCK_ASSERT(unp2); 1688 1689 if (unp->unp_conn == NULL && unp2->unp_conn == NULL) 1690 return; 1691 1692 MPASS(unp->unp_conn == unp2); 1693 unp->unp_conn = NULL; 1694 so = unp->unp_socket; 1695 so2 = unp2->unp_socket; 1696 switch (unp->unp_socket->so_type) { 1697 case SOCK_DGRAM: 1698 UNP_REF_LIST_LOCK(); 1699 LIST_REMOVE(unp, unp_reflink); 1700 UNP_REF_LIST_UNLOCK(); 1701 if (so) { 1702 SOCK_LOCK(so); 1703 so->so_state &= ~SS_ISCONNECTED; 1704 SOCK_UNLOCK(so); 1705 } 1706 break; 1707 1708 case SOCK_STREAM: 1709 case SOCK_SEQPACKET: 1710 if (so) 1711 soisdisconnected(so); 1712 MPASS(unp2->unp_conn == unp); 1713 unp2->unp_conn = NULL; 1714 if (so2) 1715 soisdisconnected(so2); 1716 break; 1717 } 1718 freed = unp_pcb_rele(unp); 1719 MPASS(freed == 0); 1720 freed = unp_pcb_rele(unp2); 1721 MPASS(freed == 0); 1722 } 1723 1724 /* 1725 * unp_pcblist() walks the global list of struct unpcb's to generate a 1726 * pointer list, bumping the refcount on each unpcb. It then copies them out 1727 * sequentially, validating the generation number on each to see if it has 1728 * been detached. All of this is necessary because copyout() may sleep on 1729 * disk I/O. 1730 */ 1731 static int 1732 unp_pcblist(SYSCTL_HANDLER_ARGS) 1733 { 1734 struct unpcb *unp, **unp_list; 1735 unp_gen_t gencnt; 1736 struct xunpgen *xug; 1737 struct unp_head *head; 1738 struct xunpcb *xu; 1739 u_int i; 1740 int error, freeunp, n; 1741 1742 switch ((intptr_t)arg1) { 1743 case SOCK_STREAM: 1744 head = &unp_shead; 1745 break; 1746 1747 case SOCK_DGRAM: 1748 head = &unp_dhead; 1749 break; 1750 1751 case SOCK_SEQPACKET: 1752 head = &unp_sphead; 1753 break; 1754 1755 default: 1756 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1757 } 1758 1759 /* 1760 * The process of preparing the PCB list is too time-consuming and 1761 * resource-intensive to repeat twice on every request. 1762 */ 1763 if (req->oldptr == NULL) { 1764 n = unp_count; 1765 req->oldidx = 2 * (sizeof *xug) 1766 + (n + n/8) * sizeof(struct xunpcb); 1767 return (0); 1768 } 1769 1770 if (req->newptr != NULL) 1771 return (EPERM); 1772 1773 /* 1774 * OK, now we're committed to doing something. 1775 */ 1776 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); 1777 UNP_LINK_RLOCK(); 1778 gencnt = unp_gencnt; 1779 n = unp_count; 1780 UNP_LINK_RUNLOCK(); 1781 1782 xug->xug_len = sizeof *xug; 1783 xug->xug_count = n; 1784 xug->xug_gen = gencnt; 1785 xug->xug_sogen = so_gencnt; 1786 error = SYSCTL_OUT(req, xug, sizeof *xug); 1787 if (error) { 1788 free(xug, M_TEMP); 1789 return (error); 1790 } 1791 1792 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1793 1794 UNP_LINK_RLOCK(); 1795 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1796 unp = LIST_NEXT(unp, unp_link)) { 1797 UNP_PCB_LOCK(unp); 1798 if (unp->unp_gencnt <= gencnt) { 1799 if (cr_cansee(req->td->td_ucred, 1800 unp->unp_socket->so_cred)) { 1801 UNP_PCB_UNLOCK(unp); 1802 continue; 1803 } 1804 unp_list[i++] = unp; 1805 unp_pcb_hold(unp); 1806 } 1807 UNP_PCB_UNLOCK(unp); 1808 } 1809 UNP_LINK_RUNLOCK(); 1810 n = i; /* In case we lost some during malloc. */ 1811 1812 error = 0; 1813 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1814 for (i = 0; i < n; i++) { 1815 unp = unp_list[i]; 1816 UNP_PCB_LOCK(unp); 1817 freeunp = unp_pcb_rele(unp); 1818 1819 if (freeunp == 0 && unp->unp_gencnt <= gencnt) { 1820 xu->xu_len = sizeof *xu; 1821 xu->xu_unpp = unp; 1822 /* 1823 * XXX - need more locking here to protect against 1824 * connect/disconnect races for SMP. 1825 */ 1826 if (unp->unp_addr != NULL) 1827 bcopy(unp->unp_addr, &xu->xu_addr, 1828 unp->unp_addr->sun_len); 1829 else 1830 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1831 if (unp->unp_conn != NULL && 1832 unp->unp_conn->unp_addr != NULL) 1833 bcopy(unp->unp_conn->unp_addr, 1834 &xu->xu_caddr, 1835 unp->unp_conn->unp_addr->sun_len); 1836 else 1837 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1838 xu->unp_vnode = unp->unp_vnode; 1839 xu->unp_conn = unp->unp_conn; 1840 xu->xu_firstref = LIST_FIRST(&unp->unp_refs); 1841 xu->xu_nextref = LIST_NEXT(unp, unp_reflink); 1842 xu->unp_gencnt = unp->unp_gencnt; 1843 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1844 UNP_PCB_UNLOCK(unp); 1845 error = SYSCTL_OUT(req, xu, sizeof *xu); 1846 } else if (freeunp == 0) 1847 UNP_PCB_UNLOCK(unp); 1848 } 1849 free(xu, M_TEMP); 1850 if (!error) { 1851 /* 1852 * Give the user an updated idea of our state. If the 1853 * generation differs from what we told her before, she knows 1854 * that something happened while we were processing this 1855 * request, and it might be necessary to retry. 1856 */ 1857 xug->xug_gen = unp_gencnt; 1858 xug->xug_sogen = so_gencnt; 1859 xug->xug_count = unp_count; 1860 error = SYSCTL_OUT(req, xug, sizeof *xug); 1861 } 1862 free(unp_list, M_TEMP); 1863 free(xug, M_TEMP); 1864 return (error); 1865 } 1866 1867 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1868 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1869 "List of active local datagram sockets"); 1870 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1871 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1872 "List of active local stream sockets"); 1873 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1874 CTLTYPE_OPAQUE | CTLFLAG_RD, 1875 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1876 "List of active local seqpacket sockets"); 1877 1878 static void 1879 unp_shutdown(struct unpcb *unp) 1880 { 1881 struct unpcb *unp2; 1882 struct socket *so; 1883 1884 UNP_PCB_LOCK_ASSERT(unp); 1885 1886 unp2 = unp->unp_conn; 1887 if ((unp->unp_socket->so_type == SOCK_STREAM || 1888 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1889 so = unp2->unp_socket; 1890 if (so != NULL) 1891 socantrcvmore(so); 1892 } 1893 } 1894 1895 static void 1896 unp_drop(struct unpcb *unp) 1897 { 1898 struct socket *so = unp->unp_socket; 1899 struct unpcb *unp2; 1900 int freed; 1901 1902 /* 1903 * Regardless of whether the socket's peer dropped the connection 1904 * with this socket by aborting or disconnecting, POSIX requires 1905 * that ECONNRESET is returned. 1906 */ 1907 /* acquire a reference so that unp isn't freed from underneath us */ 1908 1909 UNP_PCB_LOCK(unp); 1910 if (so) 1911 so->so_error = ECONNRESET; 1912 unp2 = unp->unp_conn; 1913 if (unp2 != NULL) { 1914 unp_pcb_hold(unp2); 1915 unp_pcb_owned_lock2(unp, unp2, freed); 1916 unp_disconnect(unp, unp2); 1917 if (unp_pcb_rele(unp2) == 0) 1918 UNP_PCB_UNLOCK(unp2); 1919 } 1920 if (unp_pcb_rele(unp) == 0) 1921 UNP_PCB_UNLOCK(unp); 1922 } 1923 1924 static void 1925 unp_freerights(struct filedescent **fdep, int fdcount) 1926 { 1927 struct file *fp; 1928 int i; 1929 1930 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1931 1932 for (i = 0; i < fdcount; i++) { 1933 fp = fdep[i]->fde_file; 1934 filecaps_free(&fdep[i]->fde_caps); 1935 unp_discard(fp); 1936 } 1937 free(fdep[0], M_FILECAPS); 1938 } 1939 1940 static int 1941 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1942 { 1943 struct thread *td = curthread; /* XXX */ 1944 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1945 int i; 1946 int *fdp; 1947 struct filedesc *fdesc = td->td_proc->p_fd; 1948 struct filedescent **fdep; 1949 void *data; 1950 socklen_t clen = control->m_len, datalen; 1951 int error, newfds; 1952 u_int newlen; 1953 1954 UNP_LINK_UNLOCK_ASSERT(); 1955 1956 error = 0; 1957 if (controlp != NULL) /* controlp == NULL => free control messages */ 1958 *controlp = NULL; 1959 while (cm != NULL) { 1960 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 1961 error = EINVAL; 1962 break; 1963 } 1964 data = CMSG_DATA(cm); 1965 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1966 if (cm->cmsg_level == SOL_SOCKET 1967 && cm->cmsg_type == SCM_RIGHTS) { 1968 newfds = datalen / sizeof(*fdep); 1969 if (newfds == 0) 1970 goto next; 1971 fdep = data; 1972 1973 /* If we're not outputting the descriptors free them. */ 1974 if (error || controlp == NULL) { 1975 unp_freerights(fdep, newfds); 1976 goto next; 1977 } 1978 FILEDESC_XLOCK(fdesc); 1979 1980 /* 1981 * Now change each pointer to an fd in the global 1982 * table to an integer that is the index to the local 1983 * fd table entry that we set up to point to the 1984 * global one we are transferring. 1985 */ 1986 newlen = newfds * sizeof(int); 1987 *controlp = sbcreatecontrol(NULL, newlen, 1988 SCM_RIGHTS, SOL_SOCKET); 1989 if (*controlp == NULL) { 1990 FILEDESC_XUNLOCK(fdesc); 1991 error = E2BIG; 1992 unp_freerights(fdep, newfds); 1993 goto next; 1994 } 1995 1996 fdp = (int *) 1997 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1998 if (fdallocn(td, 0, fdp, newfds) != 0) { 1999 FILEDESC_XUNLOCK(fdesc); 2000 error = EMSGSIZE; 2001 unp_freerights(fdep, newfds); 2002 m_freem(*controlp); 2003 *controlp = NULL; 2004 goto next; 2005 } 2006 for (i = 0; i < newfds; i++, fdp++) { 2007 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2008 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 2009 &fdep[i]->fde_caps); 2010 unp_externalize_fp(fdep[i]->fde_file); 2011 } 2012 FILEDESC_XUNLOCK(fdesc); 2013 free(fdep[0], M_FILECAPS); 2014 } else { 2015 /* We can just copy anything else across. */ 2016 if (error || controlp == NULL) 2017 goto next; 2018 *controlp = sbcreatecontrol(NULL, datalen, 2019 cm->cmsg_type, cm->cmsg_level); 2020 if (*controlp == NULL) { 2021 error = ENOBUFS; 2022 goto next; 2023 } 2024 bcopy(data, 2025 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2026 datalen); 2027 } 2028 controlp = &(*controlp)->m_next; 2029 2030 next: 2031 if (CMSG_SPACE(datalen) < clen) { 2032 clen -= CMSG_SPACE(datalen); 2033 cm = (struct cmsghdr *) 2034 ((caddr_t)cm + CMSG_SPACE(datalen)); 2035 } else { 2036 clen = 0; 2037 cm = NULL; 2038 } 2039 } 2040 2041 m_freem(control); 2042 return (error); 2043 } 2044 2045 static void 2046 unp_zone_change(void *tag) 2047 { 2048 2049 uma_zone_set_max(unp_zone, maxsockets); 2050 } 2051 2052 static void 2053 unp_init(void) 2054 { 2055 2056 #ifdef VIMAGE 2057 if (!IS_DEFAULT_VNET(curvnet)) 2058 return; 2059 #endif 2060 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 2061 NULL, NULL, UMA_ALIGN_CACHE, 0); 2062 if (unp_zone == NULL) 2063 panic("unp_init"); 2064 uma_zone_set_max(unp_zone, maxsockets); 2065 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2066 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2067 NULL, EVENTHANDLER_PRI_ANY); 2068 LIST_INIT(&unp_dhead); 2069 LIST_INIT(&unp_shead); 2070 LIST_INIT(&unp_sphead); 2071 SLIST_INIT(&unp_defers); 2072 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2073 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2074 UNP_LINK_LOCK_INIT(); 2075 UNP_DEFERRED_LOCK_INIT(); 2076 } 2077 2078 static int 2079 unp_internalize(struct mbuf **controlp, struct thread *td) 2080 { 2081 struct mbuf *control = *controlp; 2082 struct proc *p = td->td_proc; 2083 struct filedesc *fdesc = p->p_fd; 2084 struct bintime *bt; 2085 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2086 struct cmsgcred *cmcred; 2087 struct filedescent *fde, **fdep, *fdev; 2088 struct file *fp; 2089 struct timeval *tv; 2090 struct timespec *ts; 2091 int i, *fdp; 2092 void *data; 2093 socklen_t clen = control->m_len, datalen; 2094 int error, oldfds; 2095 u_int newlen; 2096 2097 UNP_LINK_UNLOCK_ASSERT(); 2098 2099 error = 0; 2100 *controlp = NULL; 2101 while (cm != NULL) { 2102 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2103 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2104 error = EINVAL; 2105 goto out; 2106 } 2107 data = CMSG_DATA(cm); 2108 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2109 2110 switch (cm->cmsg_type) { 2111 /* 2112 * Fill in credential information. 2113 */ 2114 case SCM_CREDS: 2115 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2116 SCM_CREDS, SOL_SOCKET); 2117 if (*controlp == NULL) { 2118 error = ENOBUFS; 2119 goto out; 2120 } 2121 cmcred = (struct cmsgcred *) 2122 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2123 cmcred->cmcred_pid = p->p_pid; 2124 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2125 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2126 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2127 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2128 CMGROUP_MAX); 2129 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2130 cmcred->cmcred_groups[i] = 2131 td->td_ucred->cr_groups[i]; 2132 break; 2133 2134 case SCM_RIGHTS: 2135 oldfds = datalen / sizeof (int); 2136 if (oldfds == 0) 2137 break; 2138 /* 2139 * Check that all the FDs passed in refer to legal 2140 * files. If not, reject the entire operation. 2141 */ 2142 fdp = data; 2143 FILEDESC_SLOCK(fdesc); 2144 for (i = 0; i < oldfds; i++, fdp++) { 2145 fp = fget_locked(fdesc, *fdp); 2146 if (fp == NULL) { 2147 FILEDESC_SUNLOCK(fdesc); 2148 error = EBADF; 2149 goto out; 2150 } 2151 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2152 FILEDESC_SUNLOCK(fdesc); 2153 error = EOPNOTSUPP; 2154 goto out; 2155 } 2156 2157 } 2158 2159 /* 2160 * Now replace the integer FDs with pointers to the 2161 * file structure and capability rights. 2162 */ 2163 newlen = oldfds * sizeof(fdep[0]); 2164 *controlp = sbcreatecontrol(NULL, newlen, 2165 SCM_RIGHTS, SOL_SOCKET); 2166 if (*controlp == NULL) { 2167 FILEDESC_SUNLOCK(fdesc); 2168 error = E2BIG; 2169 goto out; 2170 } 2171 fdp = data; 2172 fdep = (struct filedescent **) 2173 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2174 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2175 M_WAITOK); 2176 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2177 fde = &fdesc->fd_ofiles[*fdp]; 2178 fdep[i] = fdev; 2179 fdep[i]->fde_file = fde->fde_file; 2180 filecaps_copy(&fde->fde_caps, 2181 &fdep[i]->fde_caps, true); 2182 unp_internalize_fp(fdep[i]->fde_file); 2183 } 2184 FILEDESC_SUNLOCK(fdesc); 2185 break; 2186 2187 case SCM_TIMESTAMP: 2188 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2189 SCM_TIMESTAMP, SOL_SOCKET); 2190 if (*controlp == NULL) { 2191 error = ENOBUFS; 2192 goto out; 2193 } 2194 tv = (struct timeval *) 2195 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2196 microtime(tv); 2197 break; 2198 2199 case SCM_BINTIME: 2200 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2201 SCM_BINTIME, SOL_SOCKET); 2202 if (*controlp == NULL) { 2203 error = ENOBUFS; 2204 goto out; 2205 } 2206 bt = (struct bintime *) 2207 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2208 bintime(bt); 2209 break; 2210 2211 case SCM_REALTIME: 2212 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2213 SCM_REALTIME, SOL_SOCKET); 2214 if (*controlp == NULL) { 2215 error = ENOBUFS; 2216 goto out; 2217 } 2218 ts = (struct timespec *) 2219 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2220 nanotime(ts); 2221 break; 2222 2223 case SCM_MONOTONIC: 2224 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2225 SCM_MONOTONIC, SOL_SOCKET); 2226 if (*controlp == NULL) { 2227 error = ENOBUFS; 2228 goto out; 2229 } 2230 ts = (struct timespec *) 2231 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2232 nanouptime(ts); 2233 break; 2234 2235 default: 2236 error = EINVAL; 2237 goto out; 2238 } 2239 2240 controlp = &(*controlp)->m_next; 2241 if (CMSG_SPACE(datalen) < clen) { 2242 clen -= CMSG_SPACE(datalen); 2243 cm = (struct cmsghdr *) 2244 ((caddr_t)cm + CMSG_SPACE(datalen)); 2245 } else { 2246 clen = 0; 2247 cm = NULL; 2248 } 2249 } 2250 2251 out: 2252 m_freem(control); 2253 return (error); 2254 } 2255 2256 static struct mbuf * 2257 unp_addsockcred(struct thread *td, struct mbuf *control) 2258 { 2259 struct mbuf *m, *n, *n_prev; 2260 struct sockcred *sc; 2261 const struct cmsghdr *cm; 2262 int ngroups; 2263 int i; 2264 2265 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2266 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2267 if (m == NULL) 2268 return (control); 2269 2270 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2271 sc->sc_uid = td->td_ucred->cr_ruid; 2272 sc->sc_euid = td->td_ucred->cr_uid; 2273 sc->sc_gid = td->td_ucred->cr_rgid; 2274 sc->sc_egid = td->td_ucred->cr_gid; 2275 sc->sc_ngroups = ngroups; 2276 for (i = 0; i < sc->sc_ngroups; i++) 2277 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2278 2279 /* 2280 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2281 * created SCM_CREDS control message (struct sockcred) has another 2282 * format. 2283 */ 2284 if (control != NULL) 2285 for (n = control, n_prev = NULL; n != NULL;) { 2286 cm = mtod(n, struct cmsghdr *); 2287 if (cm->cmsg_level == SOL_SOCKET && 2288 cm->cmsg_type == SCM_CREDS) { 2289 if (n_prev == NULL) 2290 control = n->m_next; 2291 else 2292 n_prev->m_next = n->m_next; 2293 n = m_free(n); 2294 } else { 2295 n_prev = n; 2296 n = n->m_next; 2297 } 2298 } 2299 2300 /* Prepend it to the head. */ 2301 m->m_next = control; 2302 return (m); 2303 } 2304 2305 static struct unpcb * 2306 fptounp(struct file *fp) 2307 { 2308 struct socket *so; 2309 2310 if (fp->f_type != DTYPE_SOCKET) 2311 return (NULL); 2312 if ((so = fp->f_data) == NULL) 2313 return (NULL); 2314 if (so->so_proto->pr_domain != &localdomain) 2315 return (NULL); 2316 return sotounpcb(so); 2317 } 2318 2319 static void 2320 unp_discard(struct file *fp) 2321 { 2322 struct unp_defer *dr; 2323 2324 if (unp_externalize_fp(fp)) { 2325 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2326 dr->ud_fp = fp; 2327 UNP_DEFERRED_LOCK(); 2328 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2329 UNP_DEFERRED_UNLOCK(); 2330 atomic_add_int(&unp_defers_count, 1); 2331 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2332 } else 2333 (void) closef(fp, (struct thread *)NULL); 2334 } 2335 2336 static void 2337 unp_process_defers(void *arg __unused, int pending) 2338 { 2339 struct unp_defer *dr; 2340 SLIST_HEAD(, unp_defer) drl; 2341 int count; 2342 2343 SLIST_INIT(&drl); 2344 for (;;) { 2345 UNP_DEFERRED_LOCK(); 2346 if (SLIST_FIRST(&unp_defers) == NULL) { 2347 UNP_DEFERRED_UNLOCK(); 2348 break; 2349 } 2350 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2351 UNP_DEFERRED_UNLOCK(); 2352 count = 0; 2353 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2354 SLIST_REMOVE_HEAD(&drl, ud_link); 2355 closef(dr->ud_fp, NULL); 2356 free(dr, M_TEMP); 2357 count++; 2358 } 2359 atomic_add_int(&unp_defers_count, -count); 2360 } 2361 } 2362 2363 static void 2364 unp_internalize_fp(struct file *fp) 2365 { 2366 struct unpcb *unp; 2367 2368 UNP_LINK_WLOCK(); 2369 if ((unp = fptounp(fp)) != NULL) { 2370 unp->unp_file = fp; 2371 unp->unp_msgcount++; 2372 } 2373 fhold(fp); 2374 unp_rights++; 2375 UNP_LINK_WUNLOCK(); 2376 } 2377 2378 static int 2379 unp_externalize_fp(struct file *fp) 2380 { 2381 struct unpcb *unp; 2382 int ret; 2383 2384 UNP_LINK_WLOCK(); 2385 if ((unp = fptounp(fp)) != NULL) { 2386 unp->unp_msgcount--; 2387 ret = 1; 2388 } else 2389 ret = 0; 2390 unp_rights--; 2391 UNP_LINK_WUNLOCK(); 2392 return (ret); 2393 } 2394 2395 /* 2396 * unp_defer indicates whether additional work has been defered for a future 2397 * pass through unp_gc(). It is thread local and does not require explicit 2398 * synchronization. 2399 */ 2400 static int unp_marked; 2401 static int unp_unreachable; 2402 2403 static void 2404 unp_accessable(struct filedescent **fdep, int fdcount) 2405 { 2406 struct unpcb *unp; 2407 struct file *fp; 2408 int i; 2409 2410 for (i = 0; i < fdcount; i++) { 2411 fp = fdep[i]->fde_file; 2412 if ((unp = fptounp(fp)) == NULL) 2413 continue; 2414 if (unp->unp_gcflag & UNPGC_REF) 2415 continue; 2416 unp->unp_gcflag &= ~UNPGC_DEAD; 2417 unp->unp_gcflag |= UNPGC_REF; 2418 unp_marked++; 2419 } 2420 } 2421 2422 static void 2423 unp_gc_process(struct unpcb *unp) 2424 { 2425 struct socket *so, *soa; 2426 struct file *fp; 2427 2428 /* Already processed. */ 2429 if (unp->unp_gcflag & UNPGC_SCANNED) 2430 return; 2431 fp = unp->unp_file; 2432 2433 /* 2434 * Check for a socket potentially in a cycle. It must be in a 2435 * queue as indicated by msgcount, and this must equal the file 2436 * reference count. Note that when msgcount is 0 the file is NULL. 2437 */ 2438 if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp && 2439 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) { 2440 unp->unp_gcflag |= UNPGC_DEAD; 2441 unp_unreachable++; 2442 return; 2443 } 2444 2445 so = unp->unp_socket; 2446 SOCK_LOCK(so); 2447 if (SOLISTENING(so)) { 2448 /* 2449 * Mark all sockets in our accept queue. 2450 */ 2451 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2452 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2453 continue; 2454 SOCKBUF_LOCK(&soa->so_rcv); 2455 unp_scan(soa->so_rcv.sb_mb, unp_accessable); 2456 SOCKBUF_UNLOCK(&soa->so_rcv); 2457 } 2458 } else { 2459 /* 2460 * Mark all sockets we reference with RIGHTS. 2461 */ 2462 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2463 SOCKBUF_LOCK(&so->so_rcv); 2464 unp_scan(so->so_rcv.sb_mb, unp_accessable); 2465 SOCKBUF_UNLOCK(&so->so_rcv); 2466 } 2467 } 2468 SOCK_UNLOCK(so); 2469 unp->unp_gcflag |= UNPGC_SCANNED; 2470 } 2471 2472 static int unp_recycled; 2473 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2474 "Number of unreachable sockets claimed by the garbage collector."); 2475 2476 static int unp_taskcount; 2477 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2478 "Number of times the garbage collector has run."); 2479 2480 static void 2481 unp_gc(__unused void *arg, int pending) 2482 { 2483 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2484 NULL }; 2485 struct unp_head **head; 2486 struct file *f, **unref; 2487 struct unpcb *unp; 2488 int i, total; 2489 2490 unp_taskcount++; 2491 UNP_LINK_RLOCK(); 2492 /* 2493 * First clear all gc flags from previous runs, apart from 2494 * UNPGC_IGNORE_RIGHTS. 2495 */ 2496 for (head = heads; *head != NULL; head++) 2497 LIST_FOREACH(unp, *head, unp_link) 2498 unp->unp_gcflag = 2499 (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS); 2500 2501 /* 2502 * Scan marking all reachable sockets with UNPGC_REF. Once a socket 2503 * is reachable all of the sockets it references are reachable. 2504 * Stop the scan once we do a complete loop without discovering 2505 * a new reachable socket. 2506 */ 2507 do { 2508 unp_unreachable = 0; 2509 unp_marked = 0; 2510 for (head = heads; *head != NULL; head++) 2511 LIST_FOREACH(unp, *head, unp_link) 2512 unp_gc_process(unp); 2513 } while (unp_marked); 2514 UNP_LINK_RUNLOCK(); 2515 if (unp_unreachable == 0) 2516 return; 2517 2518 /* 2519 * Allocate space for a local list of dead unpcbs. 2520 */ 2521 unref = malloc(unp_unreachable * sizeof(struct file *), 2522 M_TEMP, M_WAITOK); 2523 2524 /* 2525 * Iterate looking for sockets which have been specifically marked 2526 * as as unreachable and store them locally. 2527 */ 2528 UNP_LINK_RLOCK(); 2529 for (total = 0, head = heads; *head != NULL; head++) 2530 LIST_FOREACH(unp, *head, unp_link) 2531 if ((unp->unp_gcflag & UNPGC_DEAD) != 0) { 2532 f = unp->unp_file; 2533 if (unp->unp_msgcount == 0 || f == NULL || 2534 f->f_count != unp->unp_msgcount) 2535 continue; 2536 unref[total++] = f; 2537 fhold(f); 2538 KASSERT(total <= unp_unreachable, 2539 ("unp_gc: incorrect unreachable count.")); 2540 } 2541 UNP_LINK_RUNLOCK(); 2542 2543 /* 2544 * Now flush all sockets, free'ing rights. This will free the 2545 * struct files associated with these sockets but leave each socket 2546 * with one remaining ref. 2547 */ 2548 for (i = 0; i < total; i++) { 2549 struct socket *so; 2550 2551 so = unref[i]->f_data; 2552 CURVNET_SET(so->so_vnet); 2553 sorflush(so); 2554 CURVNET_RESTORE(); 2555 } 2556 2557 /* 2558 * And finally release the sockets so they can be reclaimed. 2559 */ 2560 for (i = 0; i < total; i++) 2561 fdrop(unref[i], NULL); 2562 unp_recycled += total; 2563 free(unref, M_TEMP); 2564 } 2565 2566 static void 2567 unp_dispose_mbuf(struct mbuf *m) 2568 { 2569 2570 if (m) 2571 unp_scan(m, unp_freerights); 2572 } 2573 2574 /* 2575 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2576 */ 2577 static void 2578 unp_dispose(struct socket *so) 2579 { 2580 struct unpcb *unp; 2581 2582 unp = sotounpcb(so); 2583 UNP_LINK_WLOCK(); 2584 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2585 UNP_LINK_WUNLOCK(); 2586 if (!SOLISTENING(so)) 2587 unp_dispose_mbuf(so->so_rcv.sb_mb); 2588 } 2589 2590 static void 2591 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2592 { 2593 struct mbuf *m; 2594 struct cmsghdr *cm; 2595 void *data; 2596 socklen_t clen, datalen; 2597 2598 while (m0 != NULL) { 2599 for (m = m0; m; m = m->m_next) { 2600 if (m->m_type != MT_CONTROL) 2601 continue; 2602 2603 cm = mtod(m, struct cmsghdr *); 2604 clen = m->m_len; 2605 2606 while (cm != NULL) { 2607 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2608 break; 2609 2610 data = CMSG_DATA(cm); 2611 datalen = (caddr_t)cm + cm->cmsg_len 2612 - (caddr_t)data; 2613 2614 if (cm->cmsg_level == SOL_SOCKET && 2615 cm->cmsg_type == SCM_RIGHTS) { 2616 (*op)(data, datalen / 2617 sizeof(struct filedescent *)); 2618 } 2619 2620 if (CMSG_SPACE(datalen) < clen) { 2621 clen -= CMSG_SPACE(datalen); 2622 cm = (struct cmsghdr *) 2623 ((caddr_t)cm + CMSG_SPACE(datalen)); 2624 } else { 2625 clen = 0; 2626 cm = NULL; 2627 } 2628 } 2629 } 2630 m0 = m0->m_nextpkt; 2631 } 2632 } 2633 2634 /* 2635 * A helper function called by VFS before socket-type vnode reclamation. 2636 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2637 * use count. 2638 */ 2639 void 2640 vfs_unp_reclaim(struct vnode *vp) 2641 { 2642 struct unpcb *unp; 2643 int active; 2644 struct mtx *vplock; 2645 2646 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2647 KASSERT(vp->v_type == VSOCK, 2648 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2649 2650 active = 0; 2651 vplock = mtx_pool_find(mtxpool_sleep, vp); 2652 mtx_lock(vplock); 2653 VOP_UNP_CONNECT(vp, &unp); 2654 if (unp == NULL) 2655 goto done; 2656 UNP_PCB_LOCK(unp); 2657 if (unp->unp_vnode == vp) { 2658 VOP_UNP_DETACH(vp); 2659 unp->unp_vnode = NULL; 2660 active = 1; 2661 } 2662 UNP_PCB_UNLOCK(unp); 2663 done: 2664 mtx_unlock(vplock); 2665 if (active) 2666 vunref(vp); 2667 } 2668 2669 #ifdef DDB 2670 static void 2671 db_print_indent(int indent) 2672 { 2673 int i; 2674 2675 for (i = 0; i < indent; i++) 2676 db_printf(" "); 2677 } 2678 2679 static void 2680 db_print_unpflags(int unp_flags) 2681 { 2682 int comma; 2683 2684 comma = 0; 2685 if (unp_flags & UNP_HAVEPC) { 2686 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2687 comma = 1; 2688 } 2689 if (unp_flags & UNP_WANTCRED) { 2690 db_printf("%sUNP_WANTCRED", comma ? ", " : ""); 2691 comma = 1; 2692 } 2693 if (unp_flags & UNP_CONNWAIT) { 2694 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2695 comma = 1; 2696 } 2697 if (unp_flags & UNP_CONNECTING) { 2698 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2699 comma = 1; 2700 } 2701 if (unp_flags & UNP_BINDING) { 2702 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2703 comma = 1; 2704 } 2705 } 2706 2707 static void 2708 db_print_xucred(int indent, struct xucred *xu) 2709 { 2710 int comma, i; 2711 2712 db_print_indent(indent); 2713 db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n", 2714 xu->cr_version, xu->cr_uid, xu->cr_ngroups); 2715 db_print_indent(indent); 2716 db_printf("cr_groups: "); 2717 comma = 0; 2718 for (i = 0; i < xu->cr_ngroups; i++) { 2719 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2720 comma = 1; 2721 } 2722 db_printf("\n"); 2723 } 2724 2725 static void 2726 db_print_unprefs(int indent, struct unp_head *uh) 2727 { 2728 struct unpcb *unp; 2729 int counter; 2730 2731 counter = 0; 2732 LIST_FOREACH(unp, uh, unp_reflink) { 2733 if (counter % 4 == 0) 2734 db_print_indent(indent); 2735 db_printf("%p ", unp); 2736 if (counter % 4 == 3) 2737 db_printf("\n"); 2738 counter++; 2739 } 2740 if (counter != 0 && counter % 4 != 0) 2741 db_printf("\n"); 2742 } 2743 2744 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2745 { 2746 struct unpcb *unp; 2747 2748 if (!have_addr) { 2749 db_printf("usage: show unpcb <addr>\n"); 2750 return; 2751 } 2752 unp = (struct unpcb *)addr; 2753 2754 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2755 unp->unp_vnode); 2756 2757 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2758 unp->unp_conn); 2759 2760 db_printf("unp_refs:\n"); 2761 db_print_unprefs(2, &unp->unp_refs); 2762 2763 /* XXXRW: Would be nice to print the full address, if any. */ 2764 db_printf("unp_addr: %p\n", unp->unp_addr); 2765 2766 db_printf("unp_gencnt: %llu\n", 2767 (unsigned long long)unp->unp_gencnt); 2768 2769 db_printf("unp_flags: %x (", unp->unp_flags); 2770 db_print_unpflags(unp->unp_flags); 2771 db_printf(")\n"); 2772 2773 db_printf("unp_peercred:\n"); 2774 db_print_xucred(2, &unp->unp_peercred); 2775 2776 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2777 } 2778 #endif 2779