xref: /freebsd/sys/kern/uipc_usrreq.c (revision a665699823a2099a451e1c9c1505ef1cbf29c914)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * Locking key:
110  * (l)	Locked using list lock
111  * (g)	Locked using linkage lock
112  */
113 
114 static uma_zone_t	unp_zone;
115 static unp_gen_t	unp_gencnt;	/* (l) */
116 static u_int		unp_count;	/* (l) Count of local sockets. */
117 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
118 static int		unp_rights;	/* (g) File descriptors in flight. */
119 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
120 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
121 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
122 
123 struct unp_defer {
124 	SLIST_ENTRY(unp_defer) ud_link;
125 	struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129 
130 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
131 
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139 
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task	unp_defer_task;
146 
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define	PIPSIZ	8192
158 #endif
159 static u_long	unpst_sendspace = PIPSIZ;
160 static u_long	unpst_recvspace = PIPSIZ;
161 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
162 static u_long	unpdg_recvspace = 4*1024;
163 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
164 static u_long	unpsp_recvspace = PIPSIZ;
165 
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
171     "SOCK_SEQPACKET");
172 
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
174 	   &unpst_sendspace, 0, "Default stream send space.");
175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
176 	   &unpst_recvspace, 0, "Default stream receive space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
178 	   &unpdg_sendspace, 0, "Default datagram send space.");
179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
180 	   &unpdg_recvspace, 0, "Default datagram receive space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
182 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
184 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
186     "File descriptors in flight.");
187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
188     &unp_defers_count, 0,
189     "File descriptors deferred to taskqueue for close.");
190 
191 /*
192  * Locking and synchronization:
193  *
194  * Three types of locks exist in the local domain socket implementation: a
195  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
196  * The linkage lock protects the socket count, global generation number,
197  * and stream/datagram global lists.
198  *
199  * The mtxpool lock protects the vnode from being modified while referenced.
200  * Lock ordering requires that it be acquired before any unpcb locks.
201  *
202  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
203  * note is that this includes the unp_conn field. So long as the unpcb lock
204  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
205  * require that the unpcb pointed to by unp_conn remain live in cases where
206  * we need to drop the unp_mtx as when we need to acquire the lock for a
207  * second unpcb the caller must first acquire an additional reference on the
208  * second unpcb and then revalidate any state (typically check that unp_conn
209  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
210  * between unpcbs is the conventional ascending address order. Two helper
211  * routines exist for this:
212  *
213  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
214  *     safe ordering.
215  *
216  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
217  *     when called. If unp is unlocked and unp2 is subsequently freed
218  *     freed will be set to 1.
219  *
220  * The helper routines for references are:
221  *
222  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
223  *     reference to unp.
224  *
225  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
226  *      releasing the last reference, detach must have been called thus
227  *      unp->unp_socket be NULL.
228  *
229  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
230  * allocated in pru_attach() and freed in pru_detach().  The validity of that
231  * pointer is an invariant, so no lock is required to dereference the so_pcb
232  * pointer if a valid socket reference is held by the caller.  In practice,
233  * this is always true during operations performed on a socket.  Each unpcb
234  * has a back-pointer to its socket, unp_socket, which will be stable under
235  * the same circumstances.
236  *
237  * This pointer may only be safely dereferenced as long as a valid reference
238  * to the unpcb is held.  Typically, this reference will be from the socket,
239  * or from another unpcb when the referring unpcb's lock is held (in order
240  * that the reference not be invalidated during use).  For example, to follow
241  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
242  * that detach is not run clearing unp_socket.
243  *
244  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
245  * protocols, bind() is a non-atomic operation, and connect() requires
246  * potential sleeping in the protocol, due to potentially waiting on local or
247  * distributed file systems.  We try to separate "lookup" operations, which
248  * may sleep, and the IPC operations themselves, which typically can occur
249  * with relative atomicity as locks can be held over the entire operation.
250  *
251  * Another tricky issue is simultaneous multi-threaded or multi-process
252  * access to a single UNIX domain socket.  These are handled by the flags
253  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
254  * binding, both of which involve dropping UNIX domain socket locks in order
255  * to perform namei() and other file system operations.
256  */
257 static struct rwlock	unp_link_rwlock;
258 static struct mtx	unp_defers_lock;
259 
260 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
261 					    "unp_link_rwlock")
262 
263 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
264 					    RA_LOCKED)
265 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
266 					    RA_UNLOCKED)
267 
268 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
269 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
270 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
271 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
272 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
273 					    RA_WLOCKED)
274 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
275 
276 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
277 					    "unp_defer", NULL, MTX_DEF)
278 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
279 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
280 
281 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
282 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
283 
284 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
285 					    "unp", "unp",	\
286 					    MTX_DUPOK|MTX_DEF)
287 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
288 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
289 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
290 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
291 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
292 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
293 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
294 
295 static int	uipc_connect2(struct socket *, struct socket *);
296 static int	uipc_ctloutput(struct socket *, struct sockopt *);
297 static int	unp_connect(struct socket *, struct sockaddr *,
298 		    struct thread *);
299 static int	unp_connectat(int, struct socket *, struct sockaddr *,
300 		    struct thread *);
301 static int	unp_connect2(struct socket *so, struct socket *so2, int);
302 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
303 static void	unp_dispose(struct socket *so);
304 static void	unp_dispose_mbuf(struct mbuf *);
305 static void	unp_shutdown(struct unpcb *);
306 static void	unp_drop(struct unpcb *);
307 static void	unp_gc(__unused void *, int);
308 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
309 static void	unp_discard(struct file *);
310 static void	unp_freerights(struct filedescent **, int);
311 static void	unp_init(void);
312 static int	unp_internalize(struct mbuf **, struct thread *);
313 static void	unp_internalize_fp(struct file *);
314 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
315 static int	unp_externalize_fp(struct file *);
316 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
317 static void	unp_process_defers(void * __unused, int);
318 
319 
320 static void
321 unp_pcb_hold(struct unpcb *unp)
322 {
323 	MPASS(unp->unp_refcount);
324 	refcount_acquire(&unp->unp_refcount);
325 }
326 
327 static int
328 unp_pcb_rele(struct unpcb *unp)
329 {
330 	int freed;
331 
332 	UNP_PCB_LOCK_ASSERT(unp);
333 	MPASS(unp->unp_refcount);
334 	if ((freed = refcount_release(&unp->unp_refcount))) {
335 		/* we got here with having detached? */
336 		MPASS(unp->unp_socket == NULL);
337 		UNP_PCB_UNLOCK(unp);
338 		UNP_PCB_LOCK_DESTROY(unp);
339 		uma_zfree(unp_zone, unp);
340 	}
341 	return (freed);
342 }
343 
344 static void
345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
346 {
347 	UNP_PCB_UNLOCK_ASSERT(unp);
348 	UNP_PCB_UNLOCK_ASSERT(unp2);
349 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
350 		UNP_PCB_LOCK(unp);
351 		UNP_PCB_LOCK(unp2);
352 	} else {
353 		UNP_PCB_LOCK(unp2);
354 		UNP_PCB_LOCK(unp);
355 	}
356 }
357 
358 static __noinline void
359 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, int *freed)
360 
361 {
362 	struct unpcb *unp2;
363 
364 	unp2 = *unp2p;
365 	unp_pcb_hold((unp2));
366 	UNP_PCB_UNLOCK((unp));
367 	UNP_PCB_LOCK((unp2));
368 	UNP_PCB_LOCK((unp));
369 	*freed = unp_pcb_rele((unp2));
370 	if (*freed)
371 		*unp2p = NULL;
372 }
373 
374 #define unp_pcb_owned_lock2(unp, unp2, freed) do {					\
375 		freed = 0;													\
376 		UNP_PCB_LOCK_ASSERT((unp));									\
377 		UNP_PCB_UNLOCK_ASSERT((unp2));								\
378 		if (__predict_true(UNP_PCB_TRYLOCK((unp2))))				\
379 			break;													\
380 		else if ((uintptr_t)(unp2) > (uintptr_t)(unp))				\
381 			UNP_PCB_LOCK((unp2));									\
382 		else {														\
383 			unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);	\
384 		}															\
385 } while (0)
386 
387 
388 /*
389  * Definitions of protocols supported in the LOCAL domain.
390  */
391 static struct domain localdomain;
392 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
393 static struct pr_usrreqs uipc_usrreqs_seqpacket;
394 static struct protosw localsw[] = {
395 {
396 	.pr_type =		SOCK_STREAM,
397 	.pr_domain =		&localdomain,
398 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
399 	.pr_ctloutput =		&uipc_ctloutput,
400 	.pr_usrreqs =		&uipc_usrreqs_stream
401 },
402 {
403 	.pr_type =		SOCK_DGRAM,
404 	.pr_domain =		&localdomain,
405 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
406 	.pr_ctloutput =		&uipc_ctloutput,
407 	.pr_usrreqs =		&uipc_usrreqs_dgram
408 },
409 {
410 	.pr_type =		SOCK_SEQPACKET,
411 	.pr_domain =		&localdomain,
412 
413 	/*
414 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
415 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
416 	 * that supports both atomic record writes and control data.
417 	 */
418 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
419 				    PR_RIGHTS,
420 	.pr_ctloutput =		&uipc_ctloutput,
421 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
422 },
423 };
424 
425 static struct domain localdomain = {
426 	.dom_family =		AF_LOCAL,
427 	.dom_name =		"local",
428 	.dom_init =		unp_init,
429 	.dom_externalize =	unp_externalize,
430 	.dom_dispose =		unp_dispose,
431 	.dom_protosw =		localsw,
432 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
433 };
434 DOMAIN_SET(local);
435 
436 static void
437 uipc_abort(struct socket *so)
438 {
439 	struct unpcb *unp, *unp2;
440 
441 	unp = sotounpcb(so);
442 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
443 	UNP_PCB_UNLOCK_ASSERT(unp);
444 
445 	UNP_PCB_LOCK(unp);
446 	unp2 = unp->unp_conn;
447 	if (unp2 != NULL) {
448 		unp_pcb_hold(unp2);
449 		UNP_PCB_UNLOCK(unp);
450 		unp_drop(unp2);
451 	} else
452 		UNP_PCB_UNLOCK(unp);
453 }
454 
455 static int
456 uipc_accept(struct socket *so, struct sockaddr **nam)
457 {
458 	struct unpcb *unp, *unp2;
459 	const struct sockaddr *sa;
460 
461 	/*
462 	 * Pass back name of connected socket, if it was bound and we are
463 	 * still connected (our peer may have closed already!).
464 	 */
465 	unp = sotounpcb(so);
466 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
467 
468 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
469 	UNP_LINK_RLOCK();
470 	unp2 = unp->unp_conn;
471 	if (unp2 != NULL && unp2->unp_addr != NULL) {
472 		UNP_PCB_LOCK(unp2);
473 		sa = (struct sockaddr *) unp2->unp_addr;
474 		bcopy(sa, *nam, sa->sa_len);
475 		UNP_PCB_UNLOCK(unp2);
476 	} else {
477 		sa = &sun_noname;
478 		bcopy(sa, *nam, sa->sa_len);
479 	}
480 	UNP_LINK_RUNLOCK();
481 	return (0);
482 }
483 
484 static int
485 uipc_attach(struct socket *so, int proto, struct thread *td)
486 {
487 	u_long sendspace, recvspace;
488 	struct unpcb *unp;
489 	int error;
490 	bool locked;
491 
492 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
493 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
494 		switch (so->so_type) {
495 		case SOCK_STREAM:
496 			sendspace = unpst_sendspace;
497 			recvspace = unpst_recvspace;
498 			break;
499 
500 		case SOCK_DGRAM:
501 			sendspace = unpdg_sendspace;
502 			recvspace = unpdg_recvspace;
503 			break;
504 
505 		case SOCK_SEQPACKET:
506 			sendspace = unpsp_sendspace;
507 			recvspace = unpsp_recvspace;
508 			break;
509 
510 		default:
511 			panic("uipc_attach");
512 		}
513 		error = soreserve(so, sendspace, recvspace);
514 		if (error)
515 			return (error);
516 	}
517 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
518 	if (unp == NULL)
519 		return (ENOBUFS);
520 	LIST_INIT(&unp->unp_refs);
521 	UNP_PCB_LOCK_INIT(unp);
522 	unp->unp_socket = so;
523 	so->so_pcb = unp;
524 	unp->unp_refcount = 1;
525 	if (so->so_listen != NULL)
526 		unp->unp_flags |= UNP_NASCENT;
527 
528 	if ((locked = UNP_LINK_WOWNED()) == false)
529 		UNP_LINK_WLOCK();
530 
531 	unp->unp_gencnt = ++unp_gencnt;
532 	unp_count++;
533 	switch (so->so_type) {
534 	case SOCK_STREAM:
535 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
536 		break;
537 
538 	case SOCK_DGRAM:
539 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
540 		break;
541 
542 	case SOCK_SEQPACKET:
543 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
544 		break;
545 
546 	default:
547 		panic("uipc_attach");
548 	}
549 
550 	if (locked == false)
551 		UNP_LINK_WUNLOCK();
552 
553 	return (0);
554 }
555 
556 static int
557 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
558 {
559 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
560 	struct vattr vattr;
561 	int error, namelen;
562 	struct nameidata nd;
563 	struct unpcb *unp;
564 	struct vnode *vp;
565 	struct mount *mp;
566 	cap_rights_t rights;
567 	char *buf;
568 
569 	if (nam->sa_family != AF_UNIX)
570 		return (EAFNOSUPPORT);
571 
572 	unp = sotounpcb(so);
573 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
574 
575 	if (soun->sun_len > sizeof(struct sockaddr_un))
576 		return (EINVAL);
577 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
578 	if (namelen <= 0)
579 		return (EINVAL);
580 
581 	/*
582 	 * We don't allow simultaneous bind() calls on a single UNIX domain
583 	 * socket, so flag in-progress operations, and return an error if an
584 	 * operation is already in progress.
585 	 *
586 	 * Historically, we have not allowed a socket to be rebound, so this
587 	 * also returns an error.  Not allowing re-binding simplifies the
588 	 * implementation and avoids a great many possible failure modes.
589 	 */
590 	UNP_PCB_LOCK(unp);
591 	if (unp->unp_vnode != NULL) {
592 		UNP_PCB_UNLOCK(unp);
593 		return (EINVAL);
594 	}
595 	if (unp->unp_flags & UNP_BINDING) {
596 		UNP_PCB_UNLOCK(unp);
597 		return (EALREADY);
598 	}
599 	unp->unp_flags |= UNP_BINDING;
600 	UNP_PCB_UNLOCK(unp);
601 
602 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
603 	bcopy(soun->sun_path, buf, namelen);
604 	buf[namelen] = 0;
605 
606 restart:
607 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
608 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
609 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
610 	error = namei(&nd);
611 	if (error)
612 		goto error;
613 	vp = nd.ni_vp;
614 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
615 		NDFREE(&nd, NDF_ONLY_PNBUF);
616 		if (nd.ni_dvp == vp)
617 			vrele(nd.ni_dvp);
618 		else
619 			vput(nd.ni_dvp);
620 		if (vp != NULL) {
621 			vrele(vp);
622 			error = EADDRINUSE;
623 			goto error;
624 		}
625 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
626 		if (error)
627 			goto error;
628 		goto restart;
629 	}
630 	VATTR_NULL(&vattr);
631 	vattr.va_type = VSOCK;
632 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
633 #ifdef MAC
634 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
635 	    &vattr);
636 #endif
637 	if (error == 0)
638 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
639 	NDFREE(&nd, NDF_ONLY_PNBUF);
640 	vput(nd.ni_dvp);
641 	if (error) {
642 		vn_finished_write(mp);
643 		goto error;
644 	}
645 	vp = nd.ni_vp;
646 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
647 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
648 
649 	UNP_PCB_LOCK(unp);
650 	VOP_UNP_BIND(vp, unp);
651 	unp->unp_vnode = vp;
652 	unp->unp_addr = soun;
653 	unp->unp_flags &= ~UNP_BINDING;
654 	UNP_PCB_UNLOCK(unp);
655 	VOP_UNLOCK(vp, 0);
656 	vn_finished_write(mp);
657 	free(buf, M_TEMP);
658 	return (0);
659 
660 error:
661 	UNP_PCB_LOCK(unp);
662 	unp->unp_flags &= ~UNP_BINDING;
663 	UNP_PCB_UNLOCK(unp);
664 	free(buf, M_TEMP);
665 	return (error);
666 }
667 
668 static int
669 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
670 {
671 
672 	return (uipc_bindat(AT_FDCWD, so, nam, td));
673 }
674 
675 static int
676 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
677 {
678 	int error;
679 
680 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
681 	error = unp_connect(so, nam, td);
682 	return (error);
683 }
684 
685 static int
686 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
687     struct thread *td)
688 {
689 	int error;
690 
691 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
692 	error = unp_connectat(fd, so, nam, td);
693 	return (error);
694 }
695 
696 static void
697 uipc_close(struct socket *so)
698 {
699 	struct unpcb *unp, *unp2;
700 	struct vnode *vp = NULL;
701 	struct mtx *vplock;
702 	int freed;
703 	unp = sotounpcb(so);
704 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
705 
706 
707 	vplock = NULL;
708 	if ((vp = unp->unp_vnode) != NULL) {
709 		vplock = mtx_pool_find(mtxpool_sleep, vp);
710 		mtx_lock(vplock);
711 	}
712 	UNP_PCB_LOCK(unp);
713 	if (vp && unp->unp_vnode == NULL) {
714 		mtx_unlock(vplock);
715 		vp = NULL;
716 	}
717 	if (vp != NULL) {
718 		VOP_UNP_DETACH(vp);
719 		unp->unp_vnode = NULL;
720 	}
721 	unp2 = unp->unp_conn;
722 	unp_pcb_hold(unp);
723 	if (unp2 != NULL) {
724 		unp_pcb_hold(unp2);
725 		unp_pcb_owned_lock2(unp, unp2, freed);
726 		unp_disconnect(unp, unp2);
727 		if (unp_pcb_rele(unp2) == 0)
728 			UNP_PCB_UNLOCK(unp2);
729 	}
730 	if (unp_pcb_rele(unp) == 0)
731 		UNP_PCB_UNLOCK(unp);
732 	if (vp) {
733 		mtx_unlock(vplock);
734 		vrele(vp);
735 	}
736 }
737 
738 static int
739 uipc_connect2(struct socket *so1, struct socket *so2)
740 {
741 	struct unpcb *unp, *unp2;
742 	int error;
743 
744 	unp = so1->so_pcb;
745 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
746 	unp2 = so2->so_pcb;
747 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
748 	unp_pcb_lock2(unp, unp2);
749 	error = unp_connect2(so1, so2, PRU_CONNECT2);
750 	UNP_PCB_UNLOCK(unp2);
751 	UNP_PCB_UNLOCK(unp);
752 	return (error);
753 }
754 
755 static void
756 uipc_detach(struct socket *so)
757 {
758 	struct unpcb *unp, *unp2;
759 	struct mtx *vplock;
760 	struct sockaddr_un *saved_unp_addr;
761 	struct vnode *vp;
762 	int freeunp, local_unp_rights;
763 
764 	unp = sotounpcb(so);
765 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
766 
767 	vp = NULL;
768 	vplock = NULL;
769 	local_unp_rights = 0;
770 
771 	UNP_LINK_WLOCK();
772 	LIST_REMOVE(unp, unp_link);
773 	unp->unp_gencnt = ++unp_gencnt;
774 	--unp_count;
775 	UNP_LINK_WUNLOCK();
776 
777 	UNP_PCB_UNLOCK_ASSERT(unp);
778  restart:
779 	if ((vp = unp->unp_vnode) != NULL) {
780 		vplock = mtx_pool_find(mtxpool_sleep, vp);
781 		mtx_lock(vplock);
782 	}
783 	UNP_PCB_LOCK(unp);
784 	if ((unp2 = unp->unp_conn) != NULL) {
785 		unp_pcb_owned_lock2(unp, unp2, freeunp);
786 		if (freeunp)
787 			unp2 = NULL;
788 	}
789 	if (unp->unp_vnode != vp &&
790 		unp->unp_vnode != NULL) {
791 		if (vplock)
792 			mtx_unlock(vplock);
793 		UNP_PCB_UNLOCK(unp);
794 		if (unp2)
795 			UNP_PCB_UNLOCK(unp2);
796 		goto restart;
797 	}
798 	if ((unp->unp_flags & UNP_NASCENT) != 0) {
799 		if (unp2)
800 			UNP_PCB_UNLOCK(unp2);
801 		goto teardown;
802 	}
803 	if ((vp = unp->unp_vnode) != NULL) {
804 		VOP_UNP_DETACH(vp);
805 		unp->unp_vnode = NULL;
806 	}
807 	unp_pcb_hold(unp);
808 	if (unp2 != NULL) {
809 		unp_pcb_hold(unp2);
810 		unp_disconnect(unp, unp2);
811 		if (unp_pcb_rele(unp2) == 0)
812 			UNP_PCB_UNLOCK(unp2);
813 	}
814 	UNP_PCB_UNLOCK(unp);
815 	UNP_REF_LIST_LOCK();
816 	while (!LIST_EMPTY(&unp->unp_refs)) {
817 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
818 
819 		unp_pcb_hold(ref);
820 		UNP_REF_LIST_UNLOCK();
821 
822 		MPASS(ref != unp);
823 		UNP_PCB_UNLOCK_ASSERT(ref);
824 		unp_drop(ref);
825 		UNP_REF_LIST_LOCK();
826 	}
827 
828 	UNP_REF_LIST_UNLOCK();
829 	UNP_PCB_LOCK(unp);
830 	freeunp = unp_pcb_rele(unp);
831 	MPASS(freeunp == 0);
832 	local_unp_rights = unp_rights;
833 teardown:
834 	unp->unp_socket->so_pcb = NULL;
835 	saved_unp_addr = unp->unp_addr;
836 	unp->unp_addr = NULL;
837 	unp->unp_socket = NULL;
838 	freeunp = unp_pcb_rele(unp);
839 	if (saved_unp_addr != NULL)
840 		free(saved_unp_addr, M_SONAME);
841 	if (!freeunp)
842 		UNP_PCB_UNLOCK(unp);
843 	if (vp) {
844 		mtx_unlock(vplock);
845 		vrele(vp);
846 	}
847 	if (local_unp_rights)
848 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
849 }
850 
851 static int
852 uipc_disconnect(struct socket *so)
853 {
854 	struct unpcb *unp, *unp2;
855 	int freed;
856 
857 	unp = sotounpcb(so);
858 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
859 
860 	UNP_PCB_LOCK(unp);
861 	if ((unp2 = unp->unp_conn) == NULL) {
862 		UNP_PCB_UNLOCK(unp);
863 		return (0);
864 	}
865 	unp_pcb_owned_lock2(unp, unp2, freed);
866 	if (__predict_false(freed)) {
867 		UNP_PCB_UNLOCK(unp);
868 		return (0);
869 	}
870 	unp_pcb_hold(unp2);
871 	unp_pcb_hold(unp);
872 	unp_disconnect(unp, unp2);
873 	if (unp_pcb_rele(unp) == 0)
874 		UNP_PCB_UNLOCK(unp);
875 	if (unp_pcb_rele(unp2) == 0)
876 		UNP_PCB_UNLOCK(unp2);
877 	return (0);
878 }
879 
880 static int
881 uipc_listen(struct socket *so, int backlog, struct thread *td)
882 {
883 	struct unpcb *unp;
884 	int error;
885 
886 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
887 		return (EOPNOTSUPP);
888 
889 	unp = sotounpcb(so);
890 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
891 
892 	UNP_PCB_LOCK(unp);
893 	if (unp->unp_vnode == NULL) {
894 		/* Already connected or not bound to an address. */
895 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
896 		UNP_PCB_UNLOCK(unp);
897 		return (error);
898 	}
899 
900 	SOCK_LOCK(so);
901 	error = solisten_proto_check(so);
902 	if (error == 0) {
903 		cru2x(td->td_ucred, &unp->unp_peercred);
904 		solisten_proto(so, backlog);
905 	}
906 	SOCK_UNLOCK(so);
907 	UNP_PCB_UNLOCK(unp);
908 	return (error);
909 }
910 
911 static int
912 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
913 {
914 	struct unpcb *unp, *unp2;
915 	const struct sockaddr *sa;
916 
917 	unp = sotounpcb(so);
918 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
919 
920 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
921 	UNP_LINK_RLOCK();
922 	/*
923 	 * XXX: It seems that this test always fails even when connection is
924 	 * established.  So, this else clause is added as workaround to
925 	 * return PF_LOCAL sockaddr.
926 	 */
927 	unp2 = unp->unp_conn;
928 	if (unp2 != NULL) {
929 		UNP_PCB_LOCK(unp2);
930 		if (unp2->unp_addr != NULL)
931 			sa = (struct sockaddr *) unp2->unp_addr;
932 		else
933 			sa = &sun_noname;
934 		bcopy(sa, *nam, sa->sa_len);
935 		UNP_PCB_UNLOCK(unp2);
936 	} else {
937 		sa = &sun_noname;
938 		bcopy(sa, *nam, sa->sa_len);
939 	}
940 	UNP_LINK_RUNLOCK();
941 	return (0);
942 }
943 
944 static int
945 uipc_rcvd(struct socket *so, int flags)
946 {
947 	struct unpcb *unp, *unp2;
948 	struct socket *so2;
949 	u_int mbcnt, sbcc;
950 
951 	unp = sotounpcb(so);
952 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
953 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
954 	    ("%s: socktype %d", __func__, so->so_type));
955 
956 	/*
957 	 * Adjust backpressure on sender and wakeup any waiting to write.
958 	 *
959 	 * The unp lock is acquired to maintain the validity of the unp_conn
960 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
961 	 * static as long as we don't permit unp2 to disconnect from unp,
962 	 * which is prevented by the lock on unp.  We cache values from
963 	 * so_rcv to avoid holding the so_rcv lock over the entire
964 	 * transaction on the remote so_snd.
965 	 */
966 	SOCKBUF_LOCK(&so->so_rcv);
967 	mbcnt = so->so_rcv.sb_mbcnt;
968 	sbcc = sbavail(&so->so_rcv);
969 	SOCKBUF_UNLOCK(&so->so_rcv);
970 	/*
971 	 * There is a benign race condition at this point.  If we're planning to
972 	 * clear SB_STOP, but uipc_send is called on the connected socket at
973 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
974 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
975 	 * full.  The race is benign because the only ill effect is to allow the
976 	 * sockbuf to exceed its size limit, and the size limits are not
977 	 * strictly guaranteed anyway.
978 	 */
979 	UNP_PCB_LOCK(unp);
980 	unp2 = unp->unp_conn;
981 	if (unp2 == NULL) {
982 		UNP_PCB_UNLOCK(unp);
983 		return (0);
984 	}
985 	so2 = unp2->unp_socket;
986 	SOCKBUF_LOCK(&so2->so_snd);
987 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
988 		so2->so_snd.sb_flags &= ~SB_STOP;
989 	sowwakeup_locked(so2);
990 	UNP_PCB_UNLOCK(unp);
991 	return (0);
992 }
993 
994 static int
995 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
996 {
997 	int error;
998 	struct unpcb *unp;
999 
1000 	unp = so->so_pcb;
1001 	if (unp->unp_conn != NULL)
1002 		return (EISCONN);
1003 	error = unp_connect(so, nam, td);
1004 	if (error)
1005 		return (error);
1006 	UNP_PCB_LOCK(unp);
1007 	if (unp->unp_conn == NULL) {
1008 		UNP_PCB_UNLOCK(unp);
1009 		if (error == 0)
1010 			error = ENOTCONN;
1011 	}
1012 	return (error);
1013 }
1014 
1015 
1016 static int
1017 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1018     struct mbuf *control, struct thread *td)
1019 {
1020 	struct unpcb *unp, *unp2;
1021 	struct socket *so2;
1022 	u_int mbcnt, sbcc;
1023 	int freed, error;
1024 
1025 	unp = sotounpcb(so);
1026 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1027 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1028 	    so->so_type == SOCK_SEQPACKET,
1029 	    ("%s: socktype %d", __func__, so->so_type));
1030 
1031 	freed = error = 0;
1032 	if (flags & PRUS_OOB) {
1033 		error = EOPNOTSUPP;
1034 		goto release;
1035 	}
1036 	if (control != NULL && (error = unp_internalize(&control, td)))
1037 		goto release;
1038 
1039 	unp2 = NULL;
1040 	switch (so->so_type) {
1041 	case SOCK_DGRAM:
1042 	{
1043 		const struct sockaddr *from;
1044 
1045 		if (nam != NULL) {
1046 			/*
1047 			 * We return with UNP_PCB_LOCK_HELD so we know that
1048 			 * the reference is live if the pointer is valid.
1049 			 */
1050 			if ((error = connect_internal(so, nam, td)))
1051 				break;
1052 			MPASS(unp->unp_conn != NULL);
1053 			unp2 = unp->unp_conn;
1054 		} else  {
1055 			UNP_PCB_LOCK(unp);
1056 
1057 			/*
1058 			 * Because connect() and send() are non-atomic in a sendto()
1059 			 * with a target address, it's possible that the socket will
1060 			 * have disconnected before the send() can run.  In that case
1061 			 * return the slightly counter-intuitive but otherwise
1062 			 * correct error that the socket is not connected.
1063 			 */
1064 			if ((unp2 = unp->unp_conn)  == NULL) {
1065 				UNP_PCB_UNLOCK(unp);
1066 				error = ENOTCONN;
1067 				break;
1068 			}
1069 		}
1070 		unp_pcb_owned_lock2(unp, unp2, freed);
1071 		if (__predict_false(freed)) {
1072 			UNP_PCB_UNLOCK(unp);
1073 			error = ENOTCONN;
1074 			break;
1075 		}
1076 		/*
1077 		 * The socket referencing unp2 may have been closed
1078 		 * or unp may have been disconnected if the unp lock
1079 		 * was dropped to acquire unp2.
1080 		 */
1081 		if (__predict_false(unp->unp_conn == NULL) ||
1082 			unp2->unp_socket == NULL) {
1083 			UNP_PCB_UNLOCK(unp);
1084 			if (unp_pcb_rele(unp2) == 0)
1085 				UNP_PCB_UNLOCK(unp2);
1086 			error = ENOTCONN;
1087 			break;
1088 		}
1089 		if (unp2->unp_flags & UNP_WANTCRED)
1090 			control = unp_addsockcred(td, control);
1091 		if (unp->unp_addr != NULL)
1092 			from = (struct sockaddr *)unp->unp_addr;
1093 		else
1094 			from = &sun_noname;
1095 		so2 = unp2->unp_socket;
1096 		SOCKBUF_LOCK(&so2->so_rcv);
1097 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1098 		    control)) {
1099 			sorwakeup_locked(so2);
1100 			m = NULL;
1101 			control = NULL;
1102 		} else {
1103 			SOCKBUF_UNLOCK(&so2->so_rcv);
1104 			error = ENOBUFS;
1105 		}
1106 		if (nam != NULL)
1107 			unp_disconnect(unp, unp2);
1108 		UNP_PCB_UNLOCK(unp2);
1109 		UNP_PCB_UNLOCK(unp);
1110 		break;
1111 	}
1112 
1113 	case SOCK_SEQPACKET:
1114 	case SOCK_STREAM:
1115 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1116 			if (nam != NULL) {
1117 				if ((error = connect_internal(so, nam, td)))
1118 					break;
1119 			} else  {
1120 				error = ENOTCONN;
1121 				break;
1122 			}
1123 		} else if ((unp2 = unp->unp_conn) == NULL) {
1124 			error = ENOTCONN;
1125 			break;
1126 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1127 			error = EPIPE;
1128 			break;
1129 		} else {
1130 			UNP_PCB_LOCK(unp);
1131 			if ((unp2 = unp->unp_conn) == NULL) {
1132 				UNP_PCB_UNLOCK(unp);
1133 				error = ENOTCONN;
1134 				break;
1135 			}
1136 		}
1137 		unp_pcb_owned_lock2(unp, unp2, freed);
1138 		UNP_PCB_UNLOCK(unp);
1139 		if (__predict_false(freed)) {
1140 			error = ENOTCONN;
1141 			break;
1142 		}
1143 		if ((so2 = unp2->unp_socket) == NULL) {
1144 			UNP_PCB_UNLOCK(unp2);
1145 			error = ENOTCONN;
1146 			break;
1147 		}
1148 		SOCKBUF_LOCK(&so2->so_rcv);
1149 		if (unp2->unp_flags & UNP_WANTCRED) {
1150 			/*
1151 			 * Credentials are passed only once on SOCK_STREAM
1152 			 * and SOCK_SEQPACKET.
1153 			 */
1154 			unp2->unp_flags &= ~UNP_WANTCRED;
1155 			control = unp_addsockcred(td, control);
1156 		}
1157 		/*
1158 		 * Send to paired receive port, and then reduce send buffer
1159 		 * hiwater marks to maintain backpressure.  Wake up readers.
1160 		 */
1161 		switch (so->so_type) {
1162 		case SOCK_STREAM:
1163 			if (control != NULL) {
1164 				if (sbappendcontrol_locked(&so2->so_rcv, m,
1165 				    control))
1166 					control = NULL;
1167 			} else
1168 				sbappend_locked(&so2->so_rcv, m, flags);
1169 			break;
1170 
1171 		case SOCK_SEQPACKET: {
1172 			const struct sockaddr *from;
1173 
1174 			from = &sun_noname;
1175 			/*
1176 			 * Don't check for space available in so2->so_rcv.
1177 			 * Unix domain sockets only check for space in the
1178 			 * sending sockbuf, and that check is performed one
1179 			 * level up the stack.
1180 			 */
1181 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1182 				from, m, control))
1183 				control = NULL;
1184 			break;
1185 			}
1186 		}
1187 
1188 		mbcnt = so2->so_rcv.sb_mbcnt;
1189 		sbcc = sbavail(&so2->so_rcv);
1190 		if (sbcc)
1191 			sorwakeup_locked(so2);
1192 		else
1193 			SOCKBUF_UNLOCK(&so2->so_rcv);
1194 
1195 		/*
1196 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1197 		 * it would be possible for uipc_rcvd to be called at this
1198 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1199 		 * we would set SB_STOP below.  That could lead to an empty
1200 		 * sockbuf having SB_STOP set
1201 		 */
1202 		SOCKBUF_LOCK(&so->so_snd);
1203 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1204 			so->so_snd.sb_flags |= SB_STOP;
1205 		SOCKBUF_UNLOCK(&so->so_snd);
1206 		UNP_PCB_UNLOCK(unp2);
1207 		m = NULL;
1208 		break;
1209 	}
1210 
1211 	/*
1212 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1213 	 */
1214 	if (flags & PRUS_EOF) {
1215 		UNP_PCB_LOCK(unp);
1216 		socantsendmore(so);
1217 		unp_shutdown(unp);
1218 		UNP_PCB_UNLOCK(unp);
1219 	}
1220 	if (control != NULL && error != 0)
1221 		unp_dispose_mbuf(control);
1222 
1223 release:
1224 	if (control != NULL)
1225 		m_freem(control);
1226 	/*
1227 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1228 	 * for freeing memory.
1229 	 */
1230 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1231 		m_freem(m);
1232 	return (error);
1233 }
1234 
1235 static int
1236 uipc_ready(struct socket *so, struct mbuf *m, int count)
1237 {
1238 	struct unpcb *unp, *unp2;
1239 	struct socket *so2;
1240 	int error;
1241 
1242 	unp = sotounpcb(so);
1243 
1244 	UNP_LINK_RLOCK();
1245 	if ((unp2 = unp->unp_conn) == NULL) {
1246 		UNP_LINK_RUNLOCK();
1247 		for (int i = 0; i < count; i++)
1248 			m = m_free(m);
1249 		return (ECONNRESET);
1250 	}
1251 	UNP_PCB_LOCK(unp2);
1252 	so2 = unp2->unp_socket;
1253 
1254 	SOCKBUF_LOCK(&so2->so_rcv);
1255 	if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1256 		sorwakeup_locked(so2);
1257 	else
1258 		SOCKBUF_UNLOCK(&so2->so_rcv);
1259 
1260 	UNP_PCB_UNLOCK(unp2);
1261 	UNP_LINK_RUNLOCK();
1262 
1263 	return (error);
1264 }
1265 
1266 static int
1267 uipc_sense(struct socket *so, struct stat *sb)
1268 {
1269 	struct unpcb *unp;
1270 
1271 	unp = sotounpcb(so);
1272 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1273 
1274 	sb->st_blksize = so->so_snd.sb_hiwat;
1275 	UNP_PCB_LOCK(unp);
1276 	sb->st_dev = NODEV;
1277 	if (unp->unp_ino == 0)
1278 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1279 	sb->st_ino = unp->unp_ino;
1280 	UNP_PCB_UNLOCK(unp);
1281 	return (0);
1282 }
1283 
1284 static int
1285 uipc_shutdown(struct socket *so)
1286 {
1287 	struct unpcb *unp;
1288 
1289 	unp = sotounpcb(so);
1290 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1291 
1292 	UNP_PCB_LOCK(unp);
1293 	socantsendmore(so);
1294 	unp_shutdown(unp);
1295 	UNP_PCB_UNLOCK(unp);
1296 	return (0);
1297 }
1298 
1299 static int
1300 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1301 {
1302 	struct unpcb *unp;
1303 	const struct sockaddr *sa;
1304 
1305 	unp = sotounpcb(so);
1306 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1307 
1308 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1309 	UNP_PCB_LOCK(unp);
1310 	if (unp->unp_addr != NULL)
1311 		sa = (struct sockaddr *) unp->unp_addr;
1312 	else
1313 		sa = &sun_noname;
1314 	bcopy(sa, *nam, sa->sa_len);
1315 	UNP_PCB_UNLOCK(unp);
1316 	return (0);
1317 }
1318 
1319 static struct pr_usrreqs uipc_usrreqs_dgram = {
1320 	.pru_abort = 		uipc_abort,
1321 	.pru_accept =		uipc_accept,
1322 	.pru_attach =		uipc_attach,
1323 	.pru_bind =		uipc_bind,
1324 	.pru_bindat =		uipc_bindat,
1325 	.pru_connect =		uipc_connect,
1326 	.pru_connectat =	uipc_connectat,
1327 	.pru_connect2 =		uipc_connect2,
1328 	.pru_detach =		uipc_detach,
1329 	.pru_disconnect =	uipc_disconnect,
1330 	.pru_listen =		uipc_listen,
1331 	.pru_peeraddr =		uipc_peeraddr,
1332 	.pru_rcvd =		uipc_rcvd,
1333 	.pru_send =		uipc_send,
1334 	.pru_sense =		uipc_sense,
1335 	.pru_shutdown =		uipc_shutdown,
1336 	.pru_sockaddr =		uipc_sockaddr,
1337 	.pru_soreceive =	soreceive_dgram,
1338 	.pru_close =		uipc_close,
1339 };
1340 
1341 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1342 	.pru_abort =		uipc_abort,
1343 	.pru_accept =		uipc_accept,
1344 	.pru_attach =		uipc_attach,
1345 	.pru_bind =		uipc_bind,
1346 	.pru_bindat =		uipc_bindat,
1347 	.pru_connect =		uipc_connect,
1348 	.pru_connectat =	uipc_connectat,
1349 	.pru_connect2 =		uipc_connect2,
1350 	.pru_detach =		uipc_detach,
1351 	.pru_disconnect =	uipc_disconnect,
1352 	.pru_listen =		uipc_listen,
1353 	.pru_peeraddr =		uipc_peeraddr,
1354 	.pru_rcvd =		uipc_rcvd,
1355 	.pru_send =		uipc_send,
1356 	.pru_sense =		uipc_sense,
1357 	.pru_shutdown =		uipc_shutdown,
1358 	.pru_sockaddr =		uipc_sockaddr,
1359 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1360 	.pru_close =		uipc_close,
1361 };
1362 
1363 static struct pr_usrreqs uipc_usrreqs_stream = {
1364 	.pru_abort = 		uipc_abort,
1365 	.pru_accept =		uipc_accept,
1366 	.pru_attach =		uipc_attach,
1367 	.pru_bind =		uipc_bind,
1368 	.pru_bindat =		uipc_bindat,
1369 	.pru_connect =		uipc_connect,
1370 	.pru_connectat =	uipc_connectat,
1371 	.pru_connect2 =		uipc_connect2,
1372 	.pru_detach =		uipc_detach,
1373 	.pru_disconnect =	uipc_disconnect,
1374 	.pru_listen =		uipc_listen,
1375 	.pru_peeraddr =		uipc_peeraddr,
1376 	.pru_rcvd =		uipc_rcvd,
1377 	.pru_send =		uipc_send,
1378 	.pru_ready =		uipc_ready,
1379 	.pru_sense =		uipc_sense,
1380 	.pru_shutdown =		uipc_shutdown,
1381 	.pru_sockaddr =		uipc_sockaddr,
1382 	.pru_soreceive =	soreceive_generic,
1383 	.pru_close =		uipc_close,
1384 };
1385 
1386 static int
1387 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1388 {
1389 	struct unpcb *unp;
1390 	struct xucred xu;
1391 	int error, optval;
1392 
1393 	if (sopt->sopt_level != 0)
1394 		return (EINVAL);
1395 
1396 	unp = sotounpcb(so);
1397 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1398 	error = 0;
1399 	switch (sopt->sopt_dir) {
1400 	case SOPT_GET:
1401 		switch (sopt->sopt_name) {
1402 		case LOCAL_PEERCRED:
1403 			UNP_PCB_LOCK(unp);
1404 			if (unp->unp_flags & UNP_HAVEPC)
1405 				xu = unp->unp_peercred;
1406 			else {
1407 				if (so->so_type == SOCK_STREAM)
1408 					error = ENOTCONN;
1409 				else
1410 					error = EINVAL;
1411 			}
1412 			UNP_PCB_UNLOCK(unp);
1413 			if (error == 0)
1414 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1415 			break;
1416 
1417 		case LOCAL_CREDS:
1418 			/* Unlocked read. */
1419 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1420 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1421 			break;
1422 
1423 		case LOCAL_CONNWAIT:
1424 			/* Unlocked read. */
1425 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1426 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1427 			break;
1428 
1429 		default:
1430 			error = EOPNOTSUPP;
1431 			break;
1432 		}
1433 		break;
1434 
1435 	case SOPT_SET:
1436 		switch (sopt->sopt_name) {
1437 		case LOCAL_CREDS:
1438 		case LOCAL_CONNWAIT:
1439 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1440 					    sizeof(optval));
1441 			if (error)
1442 				break;
1443 
1444 #define	OPTSET(bit) do {						\
1445 	UNP_PCB_LOCK(unp);						\
1446 	if (optval)							\
1447 		unp->unp_flags |= bit;					\
1448 	else								\
1449 		unp->unp_flags &= ~bit;					\
1450 	UNP_PCB_UNLOCK(unp);						\
1451 } while (0)
1452 
1453 			switch (sopt->sopt_name) {
1454 			case LOCAL_CREDS:
1455 				OPTSET(UNP_WANTCRED);
1456 				break;
1457 
1458 			case LOCAL_CONNWAIT:
1459 				OPTSET(UNP_CONNWAIT);
1460 				break;
1461 
1462 			default:
1463 				break;
1464 			}
1465 			break;
1466 #undef	OPTSET
1467 		default:
1468 			error = ENOPROTOOPT;
1469 			break;
1470 		}
1471 		break;
1472 
1473 	default:
1474 		error = EOPNOTSUPP;
1475 		break;
1476 	}
1477 	return (error);
1478 }
1479 
1480 static int
1481 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1482 {
1483 
1484 	return (unp_connectat(AT_FDCWD, so, nam, td));
1485 }
1486 
1487 static int
1488 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1489     struct thread *td)
1490 {
1491 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1492 	struct vnode *vp;
1493 	struct socket *so2;
1494 	struct unpcb *unp, *unp2, *unp3;
1495 	struct nameidata nd;
1496 	char buf[SOCK_MAXADDRLEN];
1497 	struct sockaddr *sa;
1498 	cap_rights_t rights;
1499 	int error, len, freed;
1500 	struct mtx *vplock;
1501 
1502 	if (nam->sa_family != AF_UNIX)
1503 		return (EAFNOSUPPORT);
1504 	if (nam->sa_len > sizeof(struct sockaddr_un))
1505 		return (EINVAL);
1506 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1507 	if (len <= 0)
1508 		return (EINVAL);
1509 	bcopy(soun->sun_path, buf, len);
1510 	buf[len] = 0;
1511 
1512 	unp = sotounpcb(so);
1513 	UNP_PCB_LOCK(unp);
1514 	if (unp->unp_flags & UNP_CONNECTING) {
1515 		UNP_PCB_UNLOCK(unp);
1516 		return (EALREADY);
1517 	}
1518 	unp->unp_flags |= UNP_CONNECTING;
1519 	UNP_PCB_UNLOCK(unp);
1520 
1521 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1522 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1523 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1524 	error = namei(&nd);
1525 	if (error)
1526 		vp = NULL;
1527 	else
1528 		vp = nd.ni_vp;
1529 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1530 	NDFREE(&nd, NDF_ONLY_PNBUF);
1531 	if (error)
1532 		goto bad;
1533 
1534 	if (vp->v_type != VSOCK) {
1535 		error = ENOTSOCK;
1536 		goto bad;
1537 	}
1538 #ifdef MAC
1539 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1540 	if (error)
1541 		goto bad;
1542 #endif
1543 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1544 	if (error)
1545 		goto bad;
1546 
1547 	unp = sotounpcb(so);
1548 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1549 
1550 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1551 	mtx_lock(vplock);
1552 	VOP_UNP_CONNECT(vp, &unp2);
1553 	if (unp2 == NULL) {
1554 		error = ECONNREFUSED;
1555 		goto bad2;
1556 	}
1557 	so2 = unp2->unp_socket;
1558 	if (so->so_type != so2->so_type) {
1559 		error = EPROTOTYPE;
1560 		goto bad2;
1561 	}
1562 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1563 		if (so2->so_options & SO_ACCEPTCONN) {
1564 			CURVNET_SET(so2->so_vnet);
1565 			so2 = sonewconn(so2, 0);
1566 			CURVNET_RESTORE();
1567 		} else
1568 			so2 = NULL;
1569 		if (so2 == NULL) {
1570 			error = ECONNREFUSED;
1571 			goto bad2;
1572 		}
1573 		unp3 = sotounpcb(so2);
1574 		unp_pcb_lock2(unp2, unp3);
1575 		if (unp2->unp_addr != NULL) {
1576 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1577 			unp3->unp_addr = (struct sockaddr_un *) sa;
1578 			sa = NULL;
1579 		}
1580 
1581 		/*
1582 		 * The connector's (client's) credentials are copied from its
1583 		 * process structure at the time of connect() (which is now).
1584 		 */
1585 		cru2x(td->td_ucred, &unp3->unp_peercred);
1586 		unp3->unp_flags |= UNP_HAVEPC;
1587 
1588 		/*
1589 		 * The receiver's (server's) credentials are copied from the
1590 		 * unp_peercred member of socket on which the former called
1591 		 * listen(); uipc_listen() cached that process's credentials
1592 		 * at that time so we can use them now.
1593 		 */
1594 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1595 		    sizeof(unp->unp_peercred));
1596 		unp->unp_flags |= UNP_HAVEPC;
1597 		if (unp2->unp_flags & UNP_WANTCRED)
1598 			unp3->unp_flags |= UNP_WANTCRED;
1599 		UNP_PCB_UNLOCK(unp2);
1600 		unp2 = unp3;
1601 		unp_pcb_owned_lock2(unp2, unp, freed);
1602 		if (__predict_false(freed)) {
1603 			UNP_PCB_UNLOCK(unp2);
1604 			error = ECONNREFUSED;
1605 			goto bad2;
1606 		}
1607 #ifdef MAC
1608 		mac_socketpeer_set_from_socket(so, so2);
1609 		mac_socketpeer_set_from_socket(so2, so);
1610 #endif
1611 	} else
1612 		unp_pcb_lock2(unp, unp2);
1613 
1614 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1615 	    sotounpcb(so2) == unp2,
1616 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1617 	error = unp_connect2(so, so2, PRU_CONNECT);
1618 	UNP_PCB_UNLOCK(unp2);
1619 	UNP_PCB_UNLOCK(unp);
1620 bad2:
1621 	mtx_unlock(vplock);
1622 bad:
1623 	if (vp != NULL) {
1624 		vput(vp);
1625 	}
1626 	free(sa, M_SONAME);
1627 	UNP_PCB_LOCK(unp);
1628 	unp->unp_flags &= ~UNP_CONNECTING;
1629 	UNP_PCB_UNLOCK(unp);
1630 	return (error);
1631 }
1632 
1633 static int
1634 unp_connect2(struct socket *so, struct socket *so2, int req)
1635 {
1636 	struct unpcb *unp;
1637 	struct unpcb *unp2;
1638 
1639 	unp = sotounpcb(so);
1640 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1641 	unp2 = sotounpcb(so2);
1642 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1643 
1644 	UNP_PCB_LOCK_ASSERT(unp);
1645 	UNP_PCB_LOCK_ASSERT(unp2);
1646 
1647 	if (so2->so_type != so->so_type)
1648 		return (EPROTOTYPE);
1649 	unp2->unp_flags &= ~UNP_NASCENT;
1650 	unp->unp_conn = unp2;
1651 	unp_pcb_hold(unp2);
1652 	unp_pcb_hold(unp);
1653 	switch (so->so_type) {
1654 	case SOCK_DGRAM:
1655 		UNP_REF_LIST_LOCK();
1656 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1657 		UNP_REF_LIST_UNLOCK();
1658 		soisconnected(so);
1659 		break;
1660 
1661 	case SOCK_STREAM:
1662 	case SOCK_SEQPACKET:
1663 		unp2->unp_conn = unp;
1664 		if (req == PRU_CONNECT &&
1665 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1666 			soisconnecting(so);
1667 		else
1668 			soisconnected(so);
1669 		soisconnected(so2);
1670 		break;
1671 
1672 	default:
1673 		panic("unp_connect2");
1674 	}
1675 	return (0);
1676 }
1677 
1678 static void
1679 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1680 {
1681 	struct socket *so, *so2;
1682 	int freed __unused;
1683 
1684 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1685 
1686 	UNP_PCB_LOCK_ASSERT(unp);
1687 	UNP_PCB_LOCK_ASSERT(unp2);
1688 
1689 	if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1690 		return;
1691 
1692 	MPASS(unp->unp_conn == unp2);
1693 	unp->unp_conn = NULL;
1694 	so = unp->unp_socket;
1695 	so2 = unp2->unp_socket;
1696 	switch (unp->unp_socket->so_type) {
1697 	case SOCK_DGRAM:
1698 		UNP_REF_LIST_LOCK();
1699 		LIST_REMOVE(unp, unp_reflink);
1700 		UNP_REF_LIST_UNLOCK();
1701 		if (so) {
1702 			SOCK_LOCK(so);
1703 			so->so_state &= ~SS_ISCONNECTED;
1704 			SOCK_UNLOCK(so);
1705 		}
1706 		break;
1707 
1708 	case SOCK_STREAM:
1709 	case SOCK_SEQPACKET:
1710 		if (so)
1711 			soisdisconnected(so);
1712 		MPASS(unp2->unp_conn == unp);
1713 		unp2->unp_conn = NULL;
1714 		if (so2)
1715 			soisdisconnected(so2);
1716 		break;
1717 	}
1718 	freed = unp_pcb_rele(unp);
1719 	MPASS(freed == 0);
1720 	freed = unp_pcb_rele(unp2);
1721 	MPASS(freed == 0);
1722 }
1723 
1724 /*
1725  * unp_pcblist() walks the global list of struct unpcb's to generate a
1726  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1727  * sequentially, validating the generation number on each to see if it has
1728  * been detached.  All of this is necessary because copyout() may sleep on
1729  * disk I/O.
1730  */
1731 static int
1732 unp_pcblist(SYSCTL_HANDLER_ARGS)
1733 {
1734 	struct unpcb *unp, **unp_list;
1735 	unp_gen_t gencnt;
1736 	struct xunpgen *xug;
1737 	struct unp_head *head;
1738 	struct xunpcb *xu;
1739 	u_int i;
1740 	int error, freeunp, n;
1741 
1742 	switch ((intptr_t)arg1) {
1743 	case SOCK_STREAM:
1744 		head = &unp_shead;
1745 		break;
1746 
1747 	case SOCK_DGRAM:
1748 		head = &unp_dhead;
1749 		break;
1750 
1751 	case SOCK_SEQPACKET:
1752 		head = &unp_sphead;
1753 		break;
1754 
1755 	default:
1756 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1757 	}
1758 
1759 	/*
1760 	 * The process of preparing the PCB list is too time-consuming and
1761 	 * resource-intensive to repeat twice on every request.
1762 	 */
1763 	if (req->oldptr == NULL) {
1764 		n = unp_count;
1765 		req->oldidx = 2 * (sizeof *xug)
1766 			+ (n + n/8) * sizeof(struct xunpcb);
1767 		return (0);
1768 	}
1769 
1770 	if (req->newptr != NULL)
1771 		return (EPERM);
1772 
1773 	/*
1774 	 * OK, now we're committed to doing something.
1775 	 */
1776 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1777 	UNP_LINK_RLOCK();
1778 	gencnt = unp_gencnt;
1779 	n = unp_count;
1780 	UNP_LINK_RUNLOCK();
1781 
1782 	xug->xug_len = sizeof *xug;
1783 	xug->xug_count = n;
1784 	xug->xug_gen = gencnt;
1785 	xug->xug_sogen = so_gencnt;
1786 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1787 	if (error) {
1788 		free(xug, M_TEMP);
1789 		return (error);
1790 	}
1791 
1792 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1793 
1794 	UNP_LINK_RLOCK();
1795 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1796 	     unp = LIST_NEXT(unp, unp_link)) {
1797 		UNP_PCB_LOCK(unp);
1798 		if (unp->unp_gencnt <= gencnt) {
1799 			if (cr_cansee(req->td->td_ucred,
1800 			    unp->unp_socket->so_cred)) {
1801 				UNP_PCB_UNLOCK(unp);
1802 				continue;
1803 			}
1804 			unp_list[i++] = unp;
1805 			unp_pcb_hold(unp);
1806 		}
1807 		UNP_PCB_UNLOCK(unp);
1808 	}
1809 	UNP_LINK_RUNLOCK();
1810 	n = i;			/* In case we lost some during malloc. */
1811 
1812 	error = 0;
1813 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1814 	for (i = 0; i < n; i++) {
1815 		unp = unp_list[i];
1816 		UNP_PCB_LOCK(unp);
1817 		freeunp = unp_pcb_rele(unp);
1818 
1819 		if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1820 			xu->xu_len = sizeof *xu;
1821 			xu->xu_unpp = unp;
1822 			/*
1823 			 * XXX - need more locking here to protect against
1824 			 * connect/disconnect races for SMP.
1825 			 */
1826 			if (unp->unp_addr != NULL)
1827 				bcopy(unp->unp_addr, &xu->xu_addr,
1828 				      unp->unp_addr->sun_len);
1829 			else
1830 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1831 			if (unp->unp_conn != NULL &&
1832 			    unp->unp_conn->unp_addr != NULL)
1833 				bcopy(unp->unp_conn->unp_addr,
1834 				      &xu->xu_caddr,
1835 				      unp->unp_conn->unp_addr->sun_len);
1836 			else
1837 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1838 			xu->unp_vnode = unp->unp_vnode;
1839 			xu->unp_conn = unp->unp_conn;
1840 			xu->xu_firstref = LIST_FIRST(&unp->unp_refs);
1841 			xu->xu_nextref = LIST_NEXT(unp, unp_reflink);
1842 			xu->unp_gencnt = unp->unp_gencnt;
1843 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1844 			UNP_PCB_UNLOCK(unp);
1845 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1846 		} else  if (freeunp == 0)
1847 			UNP_PCB_UNLOCK(unp);
1848 	}
1849 	free(xu, M_TEMP);
1850 	if (!error) {
1851 		/*
1852 		 * Give the user an updated idea of our state.  If the
1853 		 * generation differs from what we told her before, she knows
1854 		 * that something happened while we were processing this
1855 		 * request, and it might be necessary to retry.
1856 		 */
1857 		xug->xug_gen = unp_gencnt;
1858 		xug->xug_sogen = so_gencnt;
1859 		xug->xug_count = unp_count;
1860 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1861 	}
1862 	free(unp_list, M_TEMP);
1863 	free(xug, M_TEMP);
1864 	return (error);
1865 }
1866 
1867 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1868     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1869     "List of active local datagram sockets");
1870 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1871     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1872     "List of active local stream sockets");
1873 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1874     CTLTYPE_OPAQUE | CTLFLAG_RD,
1875     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1876     "List of active local seqpacket sockets");
1877 
1878 static void
1879 unp_shutdown(struct unpcb *unp)
1880 {
1881 	struct unpcb *unp2;
1882 	struct socket *so;
1883 
1884 	UNP_PCB_LOCK_ASSERT(unp);
1885 
1886 	unp2 = unp->unp_conn;
1887 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1888 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1889 		so = unp2->unp_socket;
1890 		if (so != NULL)
1891 			socantrcvmore(so);
1892 	}
1893 }
1894 
1895 static void
1896 unp_drop(struct unpcb *unp)
1897 {
1898 	struct socket *so = unp->unp_socket;
1899 	struct unpcb *unp2;
1900 	int freed;
1901 
1902 	/*
1903 	 * Regardless of whether the socket's peer dropped the connection
1904 	 * with this socket by aborting or disconnecting, POSIX requires
1905 	 * that ECONNRESET is returned.
1906 	 */
1907 	/* acquire a reference so that unp isn't freed from underneath us */
1908 
1909 	UNP_PCB_LOCK(unp);
1910 	if (so)
1911 		so->so_error = ECONNRESET;
1912 	unp2 = unp->unp_conn;
1913 	if (unp2 != NULL) {
1914 		unp_pcb_hold(unp2);
1915 		unp_pcb_owned_lock2(unp, unp2, freed);
1916 		unp_disconnect(unp, unp2);
1917 		if (unp_pcb_rele(unp2) == 0)
1918 			UNP_PCB_UNLOCK(unp2);
1919 	}
1920 	if (unp_pcb_rele(unp) == 0)
1921 		UNP_PCB_UNLOCK(unp);
1922 }
1923 
1924 static void
1925 unp_freerights(struct filedescent **fdep, int fdcount)
1926 {
1927 	struct file *fp;
1928 	int i;
1929 
1930 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1931 
1932 	for (i = 0; i < fdcount; i++) {
1933 		fp = fdep[i]->fde_file;
1934 		filecaps_free(&fdep[i]->fde_caps);
1935 		unp_discard(fp);
1936 	}
1937 	free(fdep[0], M_FILECAPS);
1938 }
1939 
1940 static int
1941 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1942 {
1943 	struct thread *td = curthread;		/* XXX */
1944 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1945 	int i;
1946 	int *fdp;
1947 	struct filedesc *fdesc = td->td_proc->p_fd;
1948 	struct filedescent **fdep;
1949 	void *data;
1950 	socklen_t clen = control->m_len, datalen;
1951 	int error, newfds;
1952 	u_int newlen;
1953 
1954 	UNP_LINK_UNLOCK_ASSERT();
1955 
1956 	error = 0;
1957 	if (controlp != NULL) /* controlp == NULL => free control messages */
1958 		*controlp = NULL;
1959 	while (cm != NULL) {
1960 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1961 			error = EINVAL;
1962 			break;
1963 		}
1964 		data = CMSG_DATA(cm);
1965 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1966 		if (cm->cmsg_level == SOL_SOCKET
1967 		    && cm->cmsg_type == SCM_RIGHTS) {
1968 			newfds = datalen / sizeof(*fdep);
1969 			if (newfds == 0)
1970 				goto next;
1971 			fdep = data;
1972 
1973 			/* If we're not outputting the descriptors free them. */
1974 			if (error || controlp == NULL) {
1975 				unp_freerights(fdep, newfds);
1976 				goto next;
1977 			}
1978 			FILEDESC_XLOCK(fdesc);
1979 
1980 			/*
1981 			 * Now change each pointer to an fd in the global
1982 			 * table to an integer that is the index to the local
1983 			 * fd table entry that we set up to point to the
1984 			 * global one we are transferring.
1985 			 */
1986 			newlen = newfds * sizeof(int);
1987 			*controlp = sbcreatecontrol(NULL, newlen,
1988 			    SCM_RIGHTS, SOL_SOCKET);
1989 			if (*controlp == NULL) {
1990 				FILEDESC_XUNLOCK(fdesc);
1991 				error = E2BIG;
1992 				unp_freerights(fdep, newfds);
1993 				goto next;
1994 			}
1995 
1996 			fdp = (int *)
1997 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1998 			if (fdallocn(td, 0, fdp, newfds) != 0) {
1999 				FILEDESC_XUNLOCK(fdesc);
2000 				error = EMSGSIZE;
2001 				unp_freerights(fdep, newfds);
2002 				m_freem(*controlp);
2003 				*controlp = NULL;
2004 				goto next;
2005 			}
2006 			for (i = 0; i < newfds; i++, fdp++) {
2007 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2008 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2009 				    &fdep[i]->fde_caps);
2010 				unp_externalize_fp(fdep[i]->fde_file);
2011 			}
2012 			FILEDESC_XUNLOCK(fdesc);
2013 			free(fdep[0], M_FILECAPS);
2014 		} else {
2015 			/* We can just copy anything else across. */
2016 			if (error || controlp == NULL)
2017 				goto next;
2018 			*controlp = sbcreatecontrol(NULL, datalen,
2019 			    cm->cmsg_type, cm->cmsg_level);
2020 			if (*controlp == NULL) {
2021 				error = ENOBUFS;
2022 				goto next;
2023 			}
2024 			bcopy(data,
2025 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2026 			    datalen);
2027 		}
2028 		controlp = &(*controlp)->m_next;
2029 
2030 next:
2031 		if (CMSG_SPACE(datalen) < clen) {
2032 			clen -= CMSG_SPACE(datalen);
2033 			cm = (struct cmsghdr *)
2034 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2035 		} else {
2036 			clen = 0;
2037 			cm = NULL;
2038 		}
2039 	}
2040 
2041 	m_freem(control);
2042 	return (error);
2043 }
2044 
2045 static void
2046 unp_zone_change(void *tag)
2047 {
2048 
2049 	uma_zone_set_max(unp_zone, maxsockets);
2050 }
2051 
2052 static void
2053 unp_init(void)
2054 {
2055 
2056 #ifdef VIMAGE
2057 	if (!IS_DEFAULT_VNET(curvnet))
2058 		return;
2059 #endif
2060 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2061 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2062 	if (unp_zone == NULL)
2063 		panic("unp_init");
2064 	uma_zone_set_max(unp_zone, maxsockets);
2065 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2066 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2067 	    NULL, EVENTHANDLER_PRI_ANY);
2068 	LIST_INIT(&unp_dhead);
2069 	LIST_INIT(&unp_shead);
2070 	LIST_INIT(&unp_sphead);
2071 	SLIST_INIT(&unp_defers);
2072 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2073 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2074 	UNP_LINK_LOCK_INIT();
2075 	UNP_DEFERRED_LOCK_INIT();
2076 }
2077 
2078 static int
2079 unp_internalize(struct mbuf **controlp, struct thread *td)
2080 {
2081 	struct mbuf *control = *controlp;
2082 	struct proc *p = td->td_proc;
2083 	struct filedesc *fdesc = p->p_fd;
2084 	struct bintime *bt;
2085 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2086 	struct cmsgcred *cmcred;
2087 	struct filedescent *fde, **fdep, *fdev;
2088 	struct file *fp;
2089 	struct timeval *tv;
2090 	struct timespec *ts;
2091 	int i, *fdp;
2092 	void *data;
2093 	socklen_t clen = control->m_len, datalen;
2094 	int error, oldfds;
2095 	u_int newlen;
2096 
2097 	UNP_LINK_UNLOCK_ASSERT();
2098 
2099 	error = 0;
2100 	*controlp = NULL;
2101 	while (cm != NULL) {
2102 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2103 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2104 			error = EINVAL;
2105 			goto out;
2106 		}
2107 		data = CMSG_DATA(cm);
2108 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2109 
2110 		switch (cm->cmsg_type) {
2111 		/*
2112 		 * Fill in credential information.
2113 		 */
2114 		case SCM_CREDS:
2115 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2116 			    SCM_CREDS, SOL_SOCKET);
2117 			if (*controlp == NULL) {
2118 				error = ENOBUFS;
2119 				goto out;
2120 			}
2121 			cmcred = (struct cmsgcred *)
2122 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2123 			cmcred->cmcred_pid = p->p_pid;
2124 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2125 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2126 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2127 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2128 			    CMGROUP_MAX);
2129 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2130 				cmcred->cmcred_groups[i] =
2131 				    td->td_ucred->cr_groups[i];
2132 			break;
2133 
2134 		case SCM_RIGHTS:
2135 			oldfds = datalen / sizeof (int);
2136 			if (oldfds == 0)
2137 				break;
2138 			/*
2139 			 * Check that all the FDs passed in refer to legal
2140 			 * files.  If not, reject the entire operation.
2141 			 */
2142 			fdp = data;
2143 			FILEDESC_SLOCK(fdesc);
2144 			for (i = 0; i < oldfds; i++, fdp++) {
2145 				fp = fget_locked(fdesc, *fdp);
2146 				if (fp == NULL) {
2147 					FILEDESC_SUNLOCK(fdesc);
2148 					error = EBADF;
2149 					goto out;
2150 				}
2151 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2152 					FILEDESC_SUNLOCK(fdesc);
2153 					error = EOPNOTSUPP;
2154 					goto out;
2155 				}
2156 
2157 			}
2158 
2159 			/*
2160 			 * Now replace the integer FDs with pointers to the
2161 			 * file structure and capability rights.
2162 			 */
2163 			newlen = oldfds * sizeof(fdep[0]);
2164 			*controlp = sbcreatecontrol(NULL, newlen,
2165 			    SCM_RIGHTS, SOL_SOCKET);
2166 			if (*controlp == NULL) {
2167 				FILEDESC_SUNLOCK(fdesc);
2168 				error = E2BIG;
2169 				goto out;
2170 			}
2171 			fdp = data;
2172 			fdep = (struct filedescent **)
2173 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2174 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2175 			    M_WAITOK);
2176 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2177 				fde = &fdesc->fd_ofiles[*fdp];
2178 				fdep[i] = fdev;
2179 				fdep[i]->fde_file = fde->fde_file;
2180 				filecaps_copy(&fde->fde_caps,
2181 				    &fdep[i]->fde_caps, true);
2182 				unp_internalize_fp(fdep[i]->fde_file);
2183 			}
2184 			FILEDESC_SUNLOCK(fdesc);
2185 			break;
2186 
2187 		case SCM_TIMESTAMP:
2188 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2189 			    SCM_TIMESTAMP, SOL_SOCKET);
2190 			if (*controlp == NULL) {
2191 				error = ENOBUFS;
2192 				goto out;
2193 			}
2194 			tv = (struct timeval *)
2195 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2196 			microtime(tv);
2197 			break;
2198 
2199 		case SCM_BINTIME:
2200 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2201 			    SCM_BINTIME, SOL_SOCKET);
2202 			if (*controlp == NULL) {
2203 				error = ENOBUFS;
2204 				goto out;
2205 			}
2206 			bt = (struct bintime *)
2207 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2208 			bintime(bt);
2209 			break;
2210 
2211 		case SCM_REALTIME:
2212 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2213 			    SCM_REALTIME, SOL_SOCKET);
2214 			if (*controlp == NULL) {
2215 				error = ENOBUFS;
2216 				goto out;
2217 			}
2218 			ts = (struct timespec *)
2219 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2220 			nanotime(ts);
2221 			break;
2222 
2223 		case SCM_MONOTONIC:
2224 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2225 			    SCM_MONOTONIC, SOL_SOCKET);
2226 			if (*controlp == NULL) {
2227 				error = ENOBUFS;
2228 				goto out;
2229 			}
2230 			ts = (struct timespec *)
2231 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2232 			nanouptime(ts);
2233 			break;
2234 
2235 		default:
2236 			error = EINVAL;
2237 			goto out;
2238 		}
2239 
2240 		controlp = &(*controlp)->m_next;
2241 		if (CMSG_SPACE(datalen) < clen) {
2242 			clen -= CMSG_SPACE(datalen);
2243 			cm = (struct cmsghdr *)
2244 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2245 		} else {
2246 			clen = 0;
2247 			cm = NULL;
2248 		}
2249 	}
2250 
2251 out:
2252 	m_freem(control);
2253 	return (error);
2254 }
2255 
2256 static struct mbuf *
2257 unp_addsockcred(struct thread *td, struct mbuf *control)
2258 {
2259 	struct mbuf *m, *n, *n_prev;
2260 	struct sockcred *sc;
2261 	const struct cmsghdr *cm;
2262 	int ngroups;
2263 	int i;
2264 
2265 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2266 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2267 	if (m == NULL)
2268 		return (control);
2269 
2270 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2271 	sc->sc_uid = td->td_ucred->cr_ruid;
2272 	sc->sc_euid = td->td_ucred->cr_uid;
2273 	sc->sc_gid = td->td_ucred->cr_rgid;
2274 	sc->sc_egid = td->td_ucred->cr_gid;
2275 	sc->sc_ngroups = ngroups;
2276 	for (i = 0; i < sc->sc_ngroups; i++)
2277 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2278 
2279 	/*
2280 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2281 	 * created SCM_CREDS control message (struct sockcred) has another
2282 	 * format.
2283 	 */
2284 	if (control != NULL)
2285 		for (n = control, n_prev = NULL; n != NULL;) {
2286 			cm = mtod(n, struct cmsghdr *);
2287     			if (cm->cmsg_level == SOL_SOCKET &&
2288 			    cm->cmsg_type == SCM_CREDS) {
2289     				if (n_prev == NULL)
2290 					control = n->m_next;
2291 				else
2292 					n_prev->m_next = n->m_next;
2293 				n = m_free(n);
2294 			} else {
2295 				n_prev = n;
2296 				n = n->m_next;
2297 			}
2298 		}
2299 
2300 	/* Prepend it to the head. */
2301 	m->m_next = control;
2302 	return (m);
2303 }
2304 
2305 static struct unpcb *
2306 fptounp(struct file *fp)
2307 {
2308 	struct socket *so;
2309 
2310 	if (fp->f_type != DTYPE_SOCKET)
2311 		return (NULL);
2312 	if ((so = fp->f_data) == NULL)
2313 		return (NULL);
2314 	if (so->so_proto->pr_domain != &localdomain)
2315 		return (NULL);
2316 	return sotounpcb(so);
2317 }
2318 
2319 static void
2320 unp_discard(struct file *fp)
2321 {
2322 	struct unp_defer *dr;
2323 
2324 	if (unp_externalize_fp(fp)) {
2325 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2326 		dr->ud_fp = fp;
2327 		UNP_DEFERRED_LOCK();
2328 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2329 		UNP_DEFERRED_UNLOCK();
2330 		atomic_add_int(&unp_defers_count, 1);
2331 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2332 	} else
2333 		(void) closef(fp, (struct thread *)NULL);
2334 }
2335 
2336 static void
2337 unp_process_defers(void *arg __unused, int pending)
2338 {
2339 	struct unp_defer *dr;
2340 	SLIST_HEAD(, unp_defer) drl;
2341 	int count;
2342 
2343 	SLIST_INIT(&drl);
2344 	for (;;) {
2345 		UNP_DEFERRED_LOCK();
2346 		if (SLIST_FIRST(&unp_defers) == NULL) {
2347 			UNP_DEFERRED_UNLOCK();
2348 			break;
2349 		}
2350 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2351 		UNP_DEFERRED_UNLOCK();
2352 		count = 0;
2353 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2354 			SLIST_REMOVE_HEAD(&drl, ud_link);
2355 			closef(dr->ud_fp, NULL);
2356 			free(dr, M_TEMP);
2357 			count++;
2358 		}
2359 		atomic_add_int(&unp_defers_count, -count);
2360 	}
2361 }
2362 
2363 static void
2364 unp_internalize_fp(struct file *fp)
2365 {
2366 	struct unpcb *unp;
2367 
2368 	UNP_LINK_WLOCK();
2369 	if ((unp = fptounp(fp)) != NULL) {
2370 		unp->unp_file = fp;
2371 		unp->unp_msgcount++;
2372 	}
2373 	fhold(fp);
2374 	unp_rights++;
2375 	UNP_LINK_WUNLOCK();
2376 }
2377 
2378 static int
2379 unp_externalize_fp(struct file *fp)
2380 {
2381 	struct unpcb *unp;
2382 	int ret;
2383 
2384 	UNP_LINK_WLOCK();
2385 	if ((unp = fptounp(fp)) != NULL) {
2386 		unp->unp_msgcount--;
2387 		ret = 1;
2388 	} else
2389 		ret = 0;
2390 	unp_rights--;
2391 	UNP_LINK_WUNLOCK();
2392 	return (ret);
2393 }
2394 
2395 /*
2396  * unp_defer indicates whether additional work has been defered for a future
2397  * pass through unp_gc().  It is thread local and does not require explicit
2398  * synchronization.
2399  */
2400 static int	unp_marked;
2401 static int	unp_unreachable;
2402 
2403 static void
2404 unp_accessable(struct filedescent **fdep, int fdcount)
2405 {
2406 	struct unpcb *unp;
2407 	struct file *fp;
2408 	int i;
2409 
2410 	for (i = 0; i < fdcount; i++) {
2411 		fp = fdep[i]->fde_file;
2412 		if ((unp = fptounp(fp)) == NULL)
2413 			continue;
2414 		if (unp->unp_gcflag & UNPGC_REF)
2415 			continue;
2416 		unp->unp_gcflag &= ~UNPGC_DEAD;
2417 		unp->unp_gcflag |= UNPGC_REF;
2418 		unp_marked++;
2419 	}
2420 }
2421 
2422 static void
2423 unp_gc_process(struct unpcb *unp)
2424 {
2425 	struct socket *so, *soa;
2426 	struct file *fp;
2427 
2428 	/* Already processed. */
2429 	if (unp->unp_gcflag & UNPGC_SCANNED)
2430 		return;
2431 	fp = unp->unp_file;
2432 
2433 	/*
2434 	 * Check for a socket potentially in a cycle.  It must be in a
2435 	 * queue as indicated by msgcount, and this must equal the file
2436 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2437 	 */
2438 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2439 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2440 		unp->unp_gcflag |= UNPGC_DEAD;
2441 		unp_unreachable++;
2442 		return;
2443 	}
2444 
2445 	so = unp->unp_socket;
2446 	SOCK_LOCK(so);
2447 	if (SOLISTENING(so)) {
2448 		/*
2449 		 * Mark all sockets in our accept queue.
2450 		 */
2451 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2452 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2453 				continue;
2454 			SOCKBUF_LOCK(&soa->so_rcv);
2455 			unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2456 			SOCKBUF_UNLOCK(&soa->so_rcv);
2457 		}
2458 	} else {
2459 		/*
2460 		 * Mark all sockets we reference with RIGHTS.
2461 		 */
2462 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2463 			SOCKBUF_LOCK(&so->so_rcv);
2464 			unp_scan(so->so_rcv.sb_mb, unp_accessable);
2465 			SOCKBUF_UNLOCK(&so->so_rcv);
2466 		}
2467 	}
2468 	SOCK_UNLOCK(so);
2469 	unp->unp_gcflag |= UNPGC_SCANNED;
2470 }
2471 
2472 static int unp_recycled;
2473 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2474     "Number of unreachable sockets claimed by the garbage collector.");
2475 
2476 static int unp_taskcount;
2477 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2478     "Number of times the garbage collector has run.");
2479 
2480 static void
2481 unp_gc(__unused void *arg, int pending)
2482 {
2483 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2484 				    NULL };
2485 	struct unp_head **head;
2486 	struct file *f, **unref;
2487 	struct unpcb *unp;
2488 	int i, total;
2489 
2490 	unp_taskcount++;
2491 	UNP_LINK_RLOCK();
2492 	/*
2493 	 * First clear all gc flags from previous runs, apart from
2494 	 * UNPGC_IGNORE_RIGHTS.
2495 	 */
2496 	for (head = heads; *head != NULL; head++)
2497 		LIST_FOREACH(unp, *head, unp_link)
2498 			unp->unp_gcflag =
2499 			    (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2500 
2501 	/*
2502 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2503 	 * is reachable all of the sockets it references are reachable.
2504 	 * Stop the scan once we do a complete loop without discovering
2505 	 * a new reachable socket.
2506 	 */
2507 	do {
2508 		unp_unreachable = 0;
2509 		unp_marked = 0;
2510 		for (head = heads; *head != NULL; head++)
2511 			LIST_FOREACH(unp, *head, unp_link)
2512 				unp_gc_process(unp);
2513 	} while (unp_marked);
2514 	UNP_LINK_RUNLOCK();
2515 	if (unp_unreachable == 0)
2516 		return;
2517 
2518 	/*
2519 	 * Allocate space for a local list of dead unpcbs.
2520 	 */
2521 	unref = malloc(unp_unreachable * sizeof(struct file *),
2522 	    M_TEMP, M_WAITOK);
2523 
2524 	/*
2525 	 * Iterate looking for sockets which have been specifically marked
2526 	 * as as unreachable and store them locally.
2527 	 */
2528 	UNP_LINK_RLOCK();
2529 	for (total = 0, head = heads; *head != NULL; head++)
2530 		LIST_FOREACH(unp, *head, unp_link)
2531 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2532 				f = unp->unp_file;
2533 				if (unp->unp_msgcount == 0 || f == NULL ||
2534 				    f->f_count != unp->unp_msgcount)
2535 					continue;
2536 				unref[total++] = f;
2537 				fhold(f);
2538 				KASSERT(total <= unp_unreachable,
2539 				    ("unp_gc: incorrect unreachable count."));
2540 			}
2541 	UNP_LINK_RUNLOCK();
2542 
2543 	/*
2544 	 * Now flush all sockets, free'ing rights.  This will free the
2545 	 * struct files associated with these sockets but leave each socket
2546 	 * with one remaining ref.
2547 	 */
2548 	for (i = 0; i < total; i++) {
2549 		struct socket *so;
2550 
2551 		so = unref[i]->f_data;
2552 		CURVNET_SET(so->so_vnet);
2553 		sorflush(so);
2554 		CURVNET_RESTORE();
2555 	}
2556 
2557 	/*
2558 	 * And finally release the sockets so they can be reclaimed.
2559 	 */
2560 	for (i = 0; i < total; i++)
2561 		fdrop(unref[i], NULL);
2562 	unp_recycled += total;
2563 	free(unref, M_TEMP);
2564 }
2565 
2566 static void
2567 unp_dispose_mbuf(struct mbuf *m)
2568 {
2569 
2570 	if (m)
2571 		unp_scan(m, unp_freerights);
2572 }
2573 
2574 /*
2575  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2576  */
2577 static void
2578 unp_dispose(struct socket *so)
2579 {
2580 	struct unpcb *unp;
2581 
2582 	unp = sotounpcb(so);
2583 	UNP_LINK_WLOCK();
2584 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2585 	UNP_LINK_WUNLOCK();
2586 	if (!SOLISTENING(so))
2587 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2588 }
2589 
2590 static void
2591 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2592 {
2593 	struct mbuf *m;
2594 	struct cmsghdr *cm;
2595 	void *data;
2596 	socklen_t clen, datalen;
2597 
2598 	while (m0 != NULL) {
2599 		for (m = m0; m; m = m->m_next) {
2600 			if (m->m_type != MT_CONTROL)
2601 				continue;
2602 
2603 			cm = mtod(m, struct cmsghdr *);
2604 			clen = m->m_len;
2605 
2606 			while (cm != NULL) {
2607 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2608 					break;
2609 
2610 				data = CMSG_DATA(cm);
2611 				datalen = (caddr_t)cm + cm->cmsg_len
2612 				    - (caddr_t)data;
2613 
2614 				if (cm->cmsg_level == SOL_SOCKET &&
2615 				    cm->cmsg_type == SCM_RIGHTS) {
2616 					(*op)(data, datalen /
2617 					    sizeof(struct filedescent *));
2618 				}
2619 
2620 				if (CMSG_SPACE(datalen) < clen) {
2621 					clen -= CMSG_SPACE(datalen);
2622 					cm = (struct cmsghdr *)
2623 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2624 				} else {
2625 					clen = 0;
2626 					cm = NULL;
2627 				}
2628 			}
2629 		}
2630 		m0 = m0->m_nextpkt;
2631 	}
2632 }
2633 
2634 /*
2635  * A helper function called by VFS before socket-type vnode reclamation.
2636  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2637  * use count.
2638  */
2639 void
2640 vfs_unp_reclaim(struct vnode *vp)
2641 {
2642 	struct unpcb *unp;
2643 	int active;
2644 	struct mtx *vplock;
2645 
2646 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2647 	KASSERT(vp->v_type == VSOCK,
2648 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2649 
2650 	active = 0;
2651 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2652 	mtx_lock(vplock);
2653 	VOP_UNP_CONNECT(vp, &unp);
2654 	if (unp == NULL)
2655 		goto done;
2656 	UNP_PCB_LOCK(unp);
2657 	if (unp->unp_vnode == vp) {
2658 		VOP_UNP_DETACH(vp);
2659 		unp->unp_vnode = NULL;
2660 		active = 1;
2661 	}
2662 	UNP_PCB_UNLOCK(unp);
2663  done:
2664 	mtx_unlock(vplock);
2665 	if (active)
2666 		vunref(vp);
2667 }
2668 
2669 #ifdef DDB
2670 static void
2671 db_print_indent(int indent)
2672 {
2673 	int i;
2674 
2675 	for (i = 0; i < indent; i++)
2676 		db_printf(" ");
2677 }
2678 
2679 static void
2680 db_print_unpflags(int unp_flags)
2681 {
2682 	int comma;
2683 
2684 	comma = 0;
2685 	if (unp_flags & UNP_HAVEPC) {
2686 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2687 		comma = 1;
2688 	}
2689 	if (unp_flags & UNP_WANTCRED) {
2690 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2691 		comma = 1;
2692 	}
2693 	if (unp_flags & UNP_CONNWAIT) {
2694 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2695 		comma = 1;
2696 	}
2697 	if (unp_flags & UNP_CONNECTING) {
2698 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2699 		comma = 1;
2700 	}
2701 	if (unp_flags & UNP_BINDING) {
2702 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2703 		comma = 1;
2704 	}
2705 }
2706 
2707 static void
2708 db_print_xucred(int indent, struct xucred *xu)
2709 {
2710 	int comma, i;
2711 
2712 	db_print_indent(indent);
2713 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2714 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2715 	db_print_indent(indent);
2716 	db_printf("cr_groups: ");
2717 	comma = 0;
2718 	for (i = 0; i < xu->cr_ngroups; i++) {
2719 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2720 		comma = 1;
2721 	}
2722 	db_printf("\n");
2723 }
2724 
2725 static void
2726 db_print_unprefs(int indent, struct unp_head *uh)
2727 {
2728 	struct unpcb *unp;
2729 	int counter;
2730 
2731 	counter = 0;
2732 	LIST_FOREACH(unp, uh, unp_reflink) {
2733 		if (counter % 4 == 0)
2734 			db_print_indent(indent);
2735 		db_printf("%p  ", unp);
2736 		if (counter % 4 == 3)
2737 			db_printf("\n");
2738 		counter++;
2739 	}
2740 	if (counter != 0 && counter % 4 != 0)
2741 		db_printf("\n");
2742 }
2743 
2744 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2745 {
2746 	struct unpcb *unp;
2747 
2748         if (!have_addr) {
2749                 db_printf("usage: show unpcb <addr>\n");
2750                 return;
2751         }
2752         unp = (struct unpcb *)addr;
2753 
2754 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2755 	    unp->unp_vnode);
2756 
2757 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2758 	    unp->unp_conn);
2759 
2760 	db_printf("unp_refs:\n");
2761 	db_print_unprefs(2, &unp->unp_refs);
2762 
2763 	/* XXXRW: Would be nice to print the full address, if any. */
2764 	db_printf("unp_addr: %p\n", unp->unp_addr);
2765 
2766 	db_printf("unp_gencnt: %llu\n",
2767 	    (unsigned long long)unp->unp_gencnt);
2768 
2769 	db_printf("unp_flags: %x (", unp->unp_flags);
2770 	db_print_unpflags(unp->unp_flags);
2771 	db_printf(")\n");
2772 
2773 	db_printf("unp_peercred:\n");
2774 	db_print_xucred(2, &unp->unp_peercred);
2775 
2776 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2777 }
2778 #endif
2779