xref: /freebsd/sys/kern/uipc_usrreq.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	rethink name space problems
55  *	need a proper out-of-band
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #include "opt_ddb.h"
62 
63 #include <sys/param.h>
64 #include <sys/capsicum.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 MALLOC_DECLARE(M_FILECAPS);
105 
106 /*
107  * Locking key:
108  * (l)	Locked using list lock
109  * (g)	Locked using linkage lock
110  */
111 
112 static uma_zone_t	unp_zone;
113 static unp_gen_t	unp_gencnt;	/* (l) */
114 static u_int		unp_count;	/* (l) Count of local sockets. */
115 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116 static int		unp_rights;	/* (g) File descriptors in flight. */
117 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120 
121 struct unp_defer {
122 	SLIST_ENTRY(unp_defer) ud_link;
123 	struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127 
128 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define	PIPSIZ	8192
156 #endif
157 static u_long	unpst_sendspace = PIPSIZ;
158 static u_long	unpst_recvspace = PIPSIZ;
159 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160 static u_long	unpdg_recvspace = 4*1024;
161 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162 static u_long	unpsp_recvspace = PIPSIZ;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
169     "SOCK_SEQPACKET");
170 
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
172 	   &unpst_sendspace, 0, "Default stream send space.");
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
174 	   &unpst_recvspace, 0, "Default stream receive space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
176 	   &unpdg_sendspace, 0, "Default datagram send space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
178 	   &unpdg_recvspace, 0, "Default datagram receive space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
180 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
182 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184     "File descriptors in flight.");
185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
186     &unp_defers_count, 0,
187     "File descriptors deferred to taskqueue for close.");
188 
189 /*
190  * Locking and synchronization:
191  *
192  * Three types of locks exit in the local domain socket implementation: a
193  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
194  * global locks, the list lock protects the socket count, global generation
195  * number, and stream/datagram global lists.  The linkage lock protects the
196  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
197  * held exclusively over the acquisition of multiple unpcb locks to prevent
198  * deadlock.
199  *
200  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
201  * allocated in pru_attach() and freed in pru_detach().  The validity of that
202  * pointer is an invariant, so no lock is required to dereference the so_pcb
203  * pointer if a valid socket reference is held by the caller.  In practice,
204  * this is always true during operations performed on a socket.  Each unpcb
205  * has a back-pointer to its socket, unp_socket, which will be stable under
206  * the same circumstances.
207  *
208  * This pointer may only be safely dereferenced as long as a valid reference
209  * to the unpcb is held.  Typically, this reference will be from the socket,
210  * or from another unpcb when the referring unpcb's lock is held (in order
211  * that the reference not be invalidated during use).  For example, to follow
212  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
213  * as unp_socket remains valid as long as the reference to unp_conn is valid.
214  *
215  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
216  * atomic reads without the lock may be performed "lockless", but more
217  * complex reads and read-modify-writes require the mutex to be held.  No
218  * lock order is defined between unpcb locks -- multiple unpcb locks may be
219  * acquired at the same time only when holding the linkage rwlock
220  * exclusively, which prevents deadlocks.
221  *
222  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
223  * protocols, bind() is a non-atomic operation, and connect() requires
224  * potential sleeping in the protocol, due to potentially waiting on local or
225  * distributed file systems.  We try to separate "lookup" operations, which
226  * may sleep, and the IPC operations themselves, which typically can occur
227  * with relative atomicity as locks can be held over the entire operation.
228  *
229  * Another tricky issue is simultaneous multi-threaded or multi-process
230  * access to a single UNIX domain socket.  These are handled by the flags
231  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
232  * binding, both of which involve dropping UNIX domain socket locks in order
233  * to perform namei() and other file system operations.
234  */
235 static struct rwlock	unp_link_rwlock;
236 static struct mtx	unp_list_lock;
237 static struct mtx	unp_defers_lock;
238 
239 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
240 					    "unp_link_rwlock")
241 
242 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243 					    RA_LOCKED)
244 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
245 					    RA_UNLOCKED)
246 
247 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
248 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
249 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
250 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
251 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
252 					    RA_WLOCKED)
253 
254 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
255 					    "unp_list_lock", NULL, MTX_DEF)
256 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
257 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
258 
259 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
260 					    "unp_defer", NULL, MTX_DEF)
261 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
262 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
263 
264 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
265 					    "unp_mtx", "unp_mtx",	\
266 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
267 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
268 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
269 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
270 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
271 
272 static int	uipc_connect2(struct socket *, struct socket *);
273 static int	uipc_ctloutput(struct socket *, struct sockopt *);
274 static int	unp_connect(struct socket *, struct sockaddr *,
275 		    struct thread *);
276 static int	unp_connectat(int, struct socket *, struct sockaddr *,
277 		    struct thread *);
278 static int	unp_connect2(struct socket *so, struct socket *so2, int);
279 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
280 static void	unp_dispose(struct socket *so);
281 static void	unp_dispose_mbuf(struct mbuf *);
282 static void	unp_shutdown(struct unpcb *);
283 static void	unp_drop(struct unpcb *);
284 static void	unp_gc(__unused void *, int);
285 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
286 static void	unp_discard(struct file *);
287 static void	unp_freerights(struct filedescent **, int);
288 static void	unp_init(void);
289 static int	unp_internalize(struct mbuf **, struct thread *);
290 static void	unp_internalize_fp(struct file *);
291 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
292 static int	unp_externalize_fp(struct file *);
293 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
294 static void	unp_process_defers(void * __unused, int);
295 
296 /*
297  * Definitions of protocols supported in the LOCAL domain.
298  */
299 static struct domain localdomain;
300 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
301 static struct pr_usrreqs uipc_usrreqs_seqpacket;
302 static struct protosw localsw[] = {
303 {
304 	.pr_type =		SOCK_STREAM,
305 	.pr_domain =		&localdomain,
306 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
307 	.pr_ctloutput =		&uipc_ctloutput,
308 	.pr_usrreqs =		&uipc_usrreqs_stream
309 },
310 {
311 	.pr_type =		SOCK_DGRAM,
312 	.pr_domain =		&localdomain,
313 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
314 	.pr_ctloutput =		&uipc_ctloutput,
315 	.pr_usrreqs =		&uipc_usrreqs_dgram
316 },
317 {
318 	.pr_type =		SOCK_SEQPACKET,
319 	.pr_domain =		&localdomain,
320 
321 	/*
322 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
323 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
324 	 * that supports both atomic record writes and control data.
325 	 */
326 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
327 				    PR_RIGHTS,
328 	.pr_ctloutput =		&uipc_ctloutput,
329 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
330 },
331 };
332 
333 static struct domain localdomain = {
334 	.dom_family =		AF_LOCAL,
335 	.dom_name =		"local",
336 	.dom_init =		unp_init,
337 	.dom_externalize =	unp_externalize,
338 	.dom_dispose =		unp_dispose,
339 	.dom_protosw =		localsw,
340 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
341 };
342 DOMAIN_SET(local);
343 
344 static void
345 uipc_abort(struct socket *so)
346 {
347 	struct unpcb *unp, *unp2;
348 
349 	unp = sotounpcb(so);
350 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
351 
352 	UNP_LINK_WLOCK();
353 	UNP_PCB_LOCK(unp);
354 	unp2 = unp->unp_conn;
355 	if (unp2 != NULL) {
356 		UNP_PCB_LOCK(unp2);
357 		unp_drop(unp2);
358 		UNP_PCB_UNLOCK(unp2);
359 	}
360 	UNP_PCB_UNLOCK(unp);
361 	UNP_LINK_WUNLOCK();
362 }
363 
364 static int
365 uipc_accept(struct socket *so, struct sockaddr **nam)
366 {
367 	struct unpcb *unp, *unp2;
368 	const struct sockaddr *sa;
369 
370 	/*
371 	 * Pass back name of connected socket, if it was bound and we are
372 	 * still connected (our peer may have closed already!).
373 	 */
374 	unp = sotounpcb(so);
375 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
376 
377 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
378 	UNP_LINK_RLOCK();
379 	unp2 = unp->unp_conn;
380 	if (unp2 != NULL && unp2->unp_addr != NULL) {
381 		UNP_PCB_LOCK(unp2);
382 		sa = (struct sockaddr *) unp2->unp_addr;
383 		bcopy(sa, *nam, sa->sa_len);
384 		UNP_PCB_UNLOCK(unp2);
385 	} else {
386 		sa = &sun_noname;
387 		bcopy(sa, *nam, sa->sa_len);
388 	}
389 	UNP_LINK_RUNLOCK();
390 	return (0);
391 }
392 
393 static int
394 uipc_attach(struct socket *so, int proto, struct thread *td)
395 {
396 	u_long sendspace, recvspace;
397 	struct unpcb *unp;
398 	int error;
399 
400 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
401 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
402 		switch (so->so_type) {
403 		case SOCK_STREAM:
404 			sendspace = unpst_sendspace;
405 			recvspace = unpst_recvspace;
406 			break;
407 
408 		case SOCK_DGRAM:
409 			sendspace = unpdg_sendspace;
410 			recvspace = unpdg_recvspace;
411 			break;
412 
413 		case SOCK_SEQPACKET:
414 			sendspace = unpsp_sendspace;
415 			recvspace = unpsp_recvspace;
416 			break;
417 
418 		default:
419 			panic("uipc_attach");
420 		}
421 		error = soreserve(so, sendspace, recvspace);
422 		if (error)
423 			return (error);
424 	}
425 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
426 	if (unp == NULL)
427 		return (ENOBUFS);
428 	LIST_INIT(&unp->unp_refs);
429 	UNP_PCB_LOCK_INIT(unp);
430 	unp->unp_socket = so;
431 	so->so_pcb = unp;
432 	unp->unp_refcount = 1;
433 	if (so->so_head != NULL)
434 		unp->unp_flags |= UNP_NASCENT;
435 
436 	UNP_LIST_LOCK();
437 	unp->unp_gencnt = ++unp_gencnt;
438 	unp_count++;
439 	switch (so->so_type) {
440 	case SOCK_STREAM:
441 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
442 		break;
443 
444 	case SOCK_DGRAM:
445 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
446 		break;
447 
448 	case SOCK_SEQPACKET:
449 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
450 		break;
451 
452 	default:
453 		panic("uipc_attach");
454 	}
455 	UNP_LIST_UNLOCK();
456 
457 	return (0);
458 }
459 
460 static int
461 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
462 {
463 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
464 	struct vattr vattr;
465 	int error, namelen;
466 	struct nameidata nd;
467 	struct unpcb *unp;
468 	struct vnode *vp;
469 	struct mount *mp;
470 	cap_rights_t rights;
471 	char *buf;
472 
473 	if (nam->sa_family != AF_UNIX)
474 		return (EAFNOSUPPORT);
475 
476 	unp = sotounpcb(so);
477 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
478 
479 	if (soun->sun_len > sizeof(struct sockaddr_un))
480 		return (EINVAL);
481 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
482 	if (namelen <= 0)
483 		return (EINVAL);
484 
485 	/*
486 	 * We don't allow simultaneous bind() calls on a single UNIX domain
487 	 * socket, so flag in-progress operations, and return an error if an
488 	 * operation is already in progress.
489 	 *
490 	 * Historically, we have not allowed a socket to be rebound, so this
491 	 * also returns an error.  Not allowing re-binding simplifies the
492 	 * implementation and avoids a great many possible failure modes.
493 	 */
494 	UNP_PCB_LOCK(unp);
495 	if (unp->unp_vnode != NULL) {
496 		UNP_PCB_UNLOCK(unp);
497 		return (EINVAL);
498 	}
499 	if (unp->unp_flags & UNP_BINDING) {
500 		UNP_PCB_UNLOCK(unp);
501 		return (EALREADY);
502 	}
503 	unp->unp_flags |= UNP_BINDING;
504 	UNP_PCB_UNLOCK(unp);
505 
506 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
507 	bcopy(soun->sun_path, buf, namelen);
508 	buf[namelen] = 0;
509 
510 restart:
511 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
512 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
513 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
514 	error = namei(&nd);
515 	if (error)
516 		goto error;
517 	vp = nd.ni_vp;
518 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
519 		NDFREE(&nd, NDF_ONLY_PNBUF);
520 		if (nd.ni_dvp == vp)
521 			vrele(nd.ni_dvp);
522 		else
523 			vput(nd.ni_dvp);
524 		if (vp != NULL) {
525 			vrele(vp);
526 			error = EADDRINUSE;
527 			goto error;
528 		}
529 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
530 		if (error)
531 			goto error;
532 		goto restart;
533 	}
534 	VATTR_NULL(&vattr);
535 	vattr.va_type = VSOCK;
536 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
537 #ifdef MAC
538 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
539 	    &vattr);
540 #endif
541 	if (error == 0)
542 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
543 	NDFREE(&nd, NDF_ONLY_PNBUF);
544 	vput(nd.ni_dvp);
545 	if (error) {
546 		vn_finished_write(mp);
547 		goto error;
548 	}
549 	vp = nd.ni_vp;
550 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
551 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
552 
553 	UNP_LINK_WLOCK();
554 	UNP_PCB_LOCK(unp);
555 	VOP_UNP_BIND(vp, unp->unp_socket);
556 	unp->unp_vnode = vp;
557 	unp->unp_addr = soun;
558 	unp->unp_flags &= ~UNP_BINDING;
559 	UNP_PCB_UNLOCK(unp);
560 	UNP_LINK_WUNLOCK();
561 	VOP_UNLOCK(vp, 0);
562 	vn_finished_write(mp);
563 	free(buf, M_TEMP);
564 	return (0);
565 
566 error:
567 	UNP_PCB_LOCK(unp);
568 	unp->unp_flags &= ~UNP_BINDING;
569 	UNP_PCB_UNLOCK(unp);
570 	free(buf, M_TEMP);
571 	return (error);
572 }
573 
574 static int
575 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
576 {
577 
578 	return (uipc_bindat(AT_FDCWD, so, nam, td));
579 }
580 
581 static int
582 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
583 {
584 	int error;
585 
586 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
587 	UNP_LINK_WLOCK();
588 	error = unp_connect(so, nam, td);
589 	UNP_LINK_WUNLOCK();
590 	return (error);
591 }
592 
593 static int
594 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
595     struct thread *td)
596 {
597 	int error;
598 
599 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
600 	UNP_LINK_WLOCK();
601 	error = unp_connectat(fd, so, nam, td);
602 	UNP_LINK_WUNLOCK();
603 	return (error);
604 }
605 
606 static void
607 uipc_close(struct socket *so)
608 {
609 	struct unpcb *unp, *unp2;
610 
611 	unp = sotounpcb(so);
612 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
613 
614 	UNP_LINK_WLOCK();
615 	UNP_PCB_LOCK(unp);
616 	unp2 = unp->unp_conn;
617 	if (unp2 != NULL) {
618 		UNP_PCB_LOCK(unp2);
619 		unp_disconnect(unp, unp2);
620 		UNP_PCB_UNLOCK(unp2);
621 	}
622 	UNP_PCB_UNLOCK(unp);
623 	UNP_LINK_WUNLOCK();
624 }
625 
626 static int
627 uipc_connect2(struct socket *so1, struct socket *so2)
628 {
629 	struct unpcb *unp, *unp2;
630 	int error;
631 
632 	UNP_LINK_WLOCK();
633 	unp = so1->so_pcb;
634 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
635 	UNP_PCB_LOCK(unp);
636 	unp2 = so2->so_pcb;
637 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
638 	UNP_PCB_LOCK(unp2);
639 	error = unp_connect2(so1, so2, PRU_CONNECT2);
640 	UNP_PCB_UNLOCK(unp2);
641 	UNP_PCB_UNLOCK(unp);
642 	UNP_LINK_WUNLOCK();
643 	return (error);
644 }
645 
646 static void
647 uipc_detach(struct socket *so)
648 {
649 	struct unpcb *unp, *unp2;
650 	struct sockaddr_un *saved_unp_addr;
651 	struct vnode *vp;
652 	int freeunp, local_unp_rights;
653 
654 	unp = sotounpcb(so);
655 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
656 
657 	vp = NULL;
658 	local_unp_rights = 0;
659 
660 	UNP_LIST_LOCK();
661 	LIST_REMOVE(unp, unp_link);
662 	unp->unp_gencnt = ++unp_gencnt;
663 	--unp_count;
664 	UNP_LIST_UNLOCK();
665 
666 	if ((unp->unp_flags & UNP_NASCENT) != 0) {
667 		UNP_PCB_LOCK(unp);
668 		goto teardown;
669 	}
670 	UNP_LINK_WLOCK();
671 	UNP_PCB_LOCK(unp);
672 
673 	/*
674 	 * XXXRW: Should assert vp->v_socket == so.
675 	 */
676 	if ((vp = unp->unp_vnode) != NULL) {
677 		VOP_UNP_DETACH(vp);
678 		unp->unp_vnode = NULL;
679 	}
680 	unp2 = unp->unp_conn;
681 	if (unp2 != NULL) {
682 		UNP_PCB_LOCK(unp2);
683 		unp_disconnect(unp, unp2);
684 		UNP_PCB_UNLOCK(unp2);
685 	}
686 
687 	/*
688 	 * We hold the linkage lock exclusively, so it's OK to acquire
689 	 * multiple pcb locks at a time.
690 	 */
691 	while (!LIST_EMPTY(&unp->unp_refs)) {
692 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
693 
694 		UNP_PCB_LOCK(ref);
695 		unp_drop(ref);
696 		UNP_PCB_UNLOCK(ref);
697 	}
698 	local_unp_rights = unp_rights;
699 	UNP_LINK_WUNLOCK();
700 teardown:
701 	unp->unp_socket->so_pcb = NULL;
702 	saved_unp_addr = unp->unp_addr;
703 	unp->unp_addr = NULL;
704 	unp->unp_refcount--;
705 	freeunp = (unp->unp_refcount == 0);
706 	if (saved_unp_addr != NULL)
707 		free(saved_unp_addr, M_SONAME);
708 	if (freeunp) {
709 		UNP_PCB_LOCK_DESTROY(unp);
710 		uma_zfree(unp_zone, unp);
711 	} else
712 		UNP_PCB_UNLOCK(unp);
713 	if (vp)
714 		vrele(vp);
715 	if (local_unp_rights)
716 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
717 }
718 
719 static int
720 uipc_disconnect(struct socket *so)
721 {
722 	struct unpcb *unp, *unp2;
723 
724 	unp = sotounpcb(so);
725 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
726 
727 	UNP_LINK_WLOCK();
728 	UNP_PCB_LOCK(unp);
729 	unp2 = unp->unp_conn;
730 	if (unp2 != NULL) {
731 		UNP_PCB_LOCK(unp2);
732 		unp_disconnect(unp, unp2);
733 		UNP_PCB_UNLOCK(unp2);
734 	}
735 	UNP_PCB_UNLOCK(unp);
736 	UNP_LINK_WUNLOCK();
737 	return (0);
738 }
739 
740 static int
741 uipc_listen(struct socket *so, int backlog, struct thread *td)
742 {
743 	struct unpcb *unp;
744 	int error;
745 
746 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
747 		return (EOPNOTSUPP);
748 
749 	unp = sotounpcb(so);
750 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
751 
752 	UNP_PCB_LOCK(unp);
753 	if (unp->unp_vnode == NULL) {
754 		/* Already connected or not bound to an address. */
755 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
756 		UNP_PCB_UNLOCK(unp);
757 		return (error);
758 	}
759 
760 	SOCK_LOCK(so);
761 	error = solisten_proto_check(so);
762 	if (error == 0) {
763 		cru2x(td->td_ucred, &unp->unp_peercred);
764 		unp->unp_flags |= UNP_HAVEPCCACHED;
765 		solisten_proto(so, backlog);
766 	}
767 	SOCK_UNLOCK(so);
768 	UNP_PCB_UNLOCK(unp);
769 	return (error);
770 }
771 
772 static int
773 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
774 {
775 	struct unpcb *unp, *unp2;
776 	const struct sockaddr *sa;
777 
778 	unp = sotounpcb(so);
779 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
780 
781 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
782 	UNP_LINK_RLOCK();
783 	/*
784 	 * XXX: It seems that this test always fails even when connection is
785 	 * established.  So, this else clause is added as workaround to
786 	 * return PF_LOCAL sockaddr.
787 	 */
788 	unp2 = unp->unp_conn;
789 	if (unp2 != NULL) {
790 		UNP_PCB_LOCK(unp2);
791 		if (unp2->unp_addr != NULL)
792 			sa = (struct sockaddr *) unp2->unp_addr;
793 		else
794 			sa = &sun_noname;
795 		bcopy(sa, *nam, sa->sa_len);
796 		UNP_PCB_UNLOCK(unp2);
797 	} else {
798 		sa = &sun_noname;
799 		bcopy(sa, *nam, sa->sa_len);
800 	}
801 	UNP_LINK_RUNLOCK();
802 	return (0);
803 }
804 
805 static int
806 uipc_rcvd(struct socket *so, int flags)
807 {
808 	struct unpcb *unp, *unp2;
809 	struct socket *so2;
810 	u_int mbcnt, sbcc;
811 
812 	unp = sotounpcb(so);
813 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
814 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
815 	    ("%s: socktype %d", __func__, so->so_type));
816 
817 	/*
818 	 * Adjust backpressure on sender and wakeup any waiting to write.
819 	 *
820 	 * The unp lock is acquired to maintain the validity of the unp_conn
821 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
822 	 * static as long as we don't permit unp2 to disconnect from unp,
823 	 * which is prevented by the lock on unp.  We cache values from
824 	 * so_rcv to avoid holding the so_rcv lock over the entire
825 	 * transaction on the remote so_snd.
826 	 */
827 	SOCKBUF_LOCK(&so->so_rcv);
828 	mbcnt = so->so_rcv.sb_mbcnt;
829 	sbcc = sbavail(&so->so_rcv);
830 	SOCKBUF_UNLOCK(&so->so_rcv);
831 	/*
832 	 * There is a benign race condition at this point.  If we're planning to
833 	 * clear SB_STOP, but uipc_send is called on the connected socket at
834 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
835 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
836 	 * full.  The race is benign because the only ill effect is to allow the
837 	 * sockbuf to exceed its size limit, and the size limits are not
838 	 * strictly guaranteed anyway.
839 	 */
840 	UNP_PCB_LOCK(unp);
841 	unp2 = unp->unp_conn;
842 	if (unp2 == NULL) {
843 		UNP_PCB_UNLOCK(unp);
844 		return (0);
845 	}
846 	so2 = unp2->unp_socket;
847 	SOCKBUF_LOCK(&so2->so_snd);
848 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
849 		so2->so_snd.sb_flags &= ~SB_STOP;
850 	sowwakeup_locked(so2);
851 	UNP_PCB_UNLOCK(unp);
852 	return (0);
853 }
854 
855 static int
856 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
857     struct mbuf *control, struct thread *td)
858 {
859 	struct unpcb *unp, *unp2;
860 	struct socket *so2;
861 	u_int mbcnt, sbcc;
862 	int error = 0;
863 
864 	unp = sotounpcb(so);
865 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
866 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
867 	    so->so_type == SOCK_SEQPACKET,
868 	    ("%s: socktype %d", __func__, so->so_type));
869 
870 	if (flags & PRUS_OOB) {
871 		error = EOPNOTSUPP;
872 		goto release;
873 	}
874 	if (control != NULL && (error = unp_internalize(&control, td)))
875 		goto release;
876 	if ((nam != NULL) || (flags & PRUS_EOF))
877 		UNP_LINK_WLOCK();
878 	else
879 		UNP_LINK_RLOCK();
880 	switch (so->so_type) {
881 	case SOCK_DGRAM:
882 	{
883 		const struct sockaddr *from;
884 
885 		unp2 = unp->unp_conn;
886 		if (nam != NULL) {
887 			UNP_LINK_WLOCK_ASSERT();
888 			if (unp2 != NULL) {
889 				error = EISCONN;
890 				break;
891 			}
892 			error = unp_connect(so, nam, td);
893 			if (error)
894 				break;
895 			unp2 = unp->unp_conn;
896 		}
897 
898 		/*
899 		 * Because connect() and send() are non-atomic in a sendto()
900 		 * with a target address, it's possible that the socket will
901 		 * have disconnected before the send() can run.  In that case
902 		 * return the slightly counter-intuitive but otherwise
903 		 * correct error that the socket is not connected.
904 		 */
905 		if (unp2 == NULL) {
906 			error = ENOTCONN;
907 			break;
908 		}
909 		/* Lockless read. */
910 		if (unp2->unp_flags & UNP_WANTCRED)
911 			control = unp_addsockcred(td, control);
912 		UNP_PCB_LOCK(unp);
913 		if (unp->unp_addr != NULL)
914 			from = (struct sockaddr *)unp->unp_addr;
915 		else
916 			from = &sun_noname;
917 		so2 = unp2->unp_socket;
918 		SOCKBUF_LOCK(&so2->so_rcv);
919 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
920 		    control)) {
921 			sorwakeup_locked(so2);
922 			m = NULL;
923 			control = NULL;
924 		} else {
925 			SOCKBUF_UNLOCK(&so2->so_rcv);
926 			error = ENOBUFS;
927 		}
928 		if (nam != NULL) {
929 			UNP_LINK_WLOCK_ASSERT();
930 			UNP_PCB_LOCK(unp2);
931 			unp_disconnect(unp, unp2);
932 			UNP_PCB_UNLOCK(unp2);
933 		}
934 		UNP_PCB_UNLOCK(unp);
935 		break;
936 	}
937 
938 	case SOCK_SEQPACKET:
939 	case SOCK_STREAM:
940 		if ((so->so_state & SS_ISCONNECTED) == 0) {
941 			if (nam != NULL) {
942 				UNP_LINK_WLOCK_ASSERT();
943 				error = unp_connect(so, nam, td);
944 				if (error)
945 					break;	/* XXX */
946 			} else {
947 				error = ENOTCONN;
948 				break;
949 			}
950 		}
951 
952 		/* Lockless read. */
953 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
954 			error = EPIPE;
955 			break;
956 		}
957 
958 		/*
959 		 * Because connect() and send() are non-atomic in a sendto()
960 		 * with a target address, it's possible that the socket will
961 		 * have disconnected before the send() can run.  In that case
962 		 * return the slightly counter-intuitive but otherwise
963 		 * correct error that the socket is not connected.
964 		 *
965 		 * Locking here must be done carefully: the linkage lock
966 		 * prevents interconnections between unpcbs from changing, so
967 		 * we can traverse from unp to unp2 without acquiring unp's
968 		 * lock.  Socket buffer locks follow unpcb locks, so we can
969 		 * acquire both remote and lock socket buffer locks.
970 		 */
971 		unp2 = unp->unp_conn;
972 		if (unp2 == NULL) {
973 			error = ENOTCONN;
974 			break;
975 		}
976 		so2 = unp2->unp_socket;
977 		UNP_PCB_LOCK(unp2);
978 		SOCKBUF_LOCK(&so2->so_rcv);
979 		if (unp2->unp_flags & UNP_WANTCRED) {
980 			/*
981 			 * Credentials are passed only once on SOCK_STREAM
982 			 * and SOCK_SEQPACKET.
983 			 */
984 			unp2->unp_flags &= ~UNP_WANTCRED;
985 			control = unp_addsockcred(td, control);
986 		}
987 		/*
988 		 * Send to paired receive port, and then reduce send buffer
989 		 * hiwater marks to maintain backpressure.  Wake up readers.
990 		 */
991 		switch (so->so_type) {
992 		case SOCK_STREAM:
993 			if (control != NULL) {
994 				if (sbappendcontrol_locked(&so2->so_rcv, m,
995 				    control))
996 					control = NULL;
997 			} else
998 				sbappend_locked(&so2->so_rcv, m, flags);
999 			break;
1000 
1001 		case SOCK_SEQPACKET: {
1002 			const struct sockaddr *from;
1003 
1004 			from = &sun_noname;
1005 			/*
1006 			 * Don't check for space available in so2->so_rcv.
1007 			 * Unix domain sockets only check for space in the
1008 			 * sending sockbuf, and that check is performed one
1009 			 * level up the stack.
1010 			 */
1011 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1012 				from, m, control))
1013 				control = NULL;
1014 			break;
1015 			}
1016 		}
1017 
1018 		mbcnt = so2->so_rcv.sb_mbcnt;
1019 		sbcc = sbavail(&so2->so_rcv);
1020 		if (sbcc)
1021 			sorwakeup_locked(so2);
1022 		else
1023 			SOCKBUF_UNLOCK(&so2->so_rcv);
1024 
1025 		/*
1026 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1027 		 * it would be possible for uipc_rcvd to be called at this
1028 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1029 		 * we would set SB_STOP below.  That could lead to an empty
1030 		 * sockbuf having SB_STOP set
1031 		 */
1032 		SOCKBUF_LOCK(&so->so_snd);
1033 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1034 			so->so_snd.sb_flags |= SB_STOP;
1035 		SOCKBUF_UNLOCK(&so->so_snd);
1036 		UNP_PCB_UNLOCK(unp2);
1037 		m = NULL;
1038 		break;
1039 	}
1040 
1041 	/*
1042 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1043 	 */
1044 	if (flags & PRUS_EOF) {
1045 		UNP_PCB_LOCK(unp);
1046 		socantsendmore(so);
1047 		unp_shutdown(unp);
1048 		UNP_PCB_UNLOCK(unp);
1049 	}
1050 
1051 	if ((nam != NULL) || (flags & PRUS_EOF))
1052 		UNP_LINK_WUNLOCK();
1053 	else
1054 		UNP_LINK_RUNLOCK();
1055 
1056 	if (control != NULL && error != 0)
1057 		unp_dispose_mbuf(control);
1058 
1059 release:
1060 	if (control != NULL)
1061 		m_freem(control);
1062 	if (m != NULL)
1063 		m_freem(m);
1064 	return (error);
1065 }
1066 
1067 static int
1068 uipc_ready(struct socket *so, struct mbuf *m, int count)
1069 {
1070 	struct unpcb *unp, *unp2;
1071 	struct socket *so2;
1072 	int error;
1073 
1074 	unp = sotounpcb(so);
1075 
1076 	UNP_LINK_RLOCK();
1077 	unp2 = unp->unp_conn;
1078 	UNP_PCB_LOCK(unp2);
1079 	so2 = unp2->unp_socket;
1080 
1081 	SOCKBUF_LOCK(&so2->so_rcv);
1082 	if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1083 		sorwakeup_locked(so2);
1084 	else
1085 		SOCKBUF_UNLOCK(&so2->so_rcv);
1086 
1087 	UNP_PCB_UNLOCK(unp2);
1088 	UNP_LINK_RUNLOCK();
1089 
1090 	return (error);
1091 }
1092 
1093 static int
1094 uipc_sense(struct socket *so, struct stat *sb)
1095 {
1096 	struct unpcb *unp;
1097 
1098 	unp = sotounpcb(so);
1099 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1100 
1101 	sb->st_blksize = so->so_snd.sb_hiwat;
1102 	UNP_PCB_LOCK(unp);
1103 	sb->st_dev = NODEV;
1104 	if (unp->unp_ino == 0)
1105 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1106 	sb->st_ino = unp->unp_ino;
1107 	UNP_PCB_UNLOCK(unp);
1108 	return (0);
1109 }
1110 
1111 static int
1112 uipc_shutdown(struct socket *so)
1113 {
1114 	struct unpcb *unp;
1115 
1116 	unp = sotounpcb(so);
1117 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1118 
1119 	UNP_LINK_WLOCK();
1120 	UNP_PCB_LOCK(unp);
1121 	socantsendmore(so);
1122 	unp_shutdown(unp);
1123 	UNP_PCB_UNLOCK(unp);
1124 	UNP_LINK_WUNLOCK();
1125 	return (0);
1126 }
1127 
1128 static int
1129 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1130 {
1131 	struct unpcb *unp;
1132 	const struct sockaddr *sa;
1133 
1134 	unp = sotounpcb(so);
1135 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1136 
1137 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1138 	UNP_PCB_LOCK(unp);
1139 	if (unp->unp_addr != NULL)
1140 		sa = (struct sockaddr *) unp->unp_addr;
1141 	else
1142 		sa = &sun_noname;
1143 	bcopy(sa, *nam, sa->sa_len);
1144 	UNP_PCB_UNLOCK(unp);
1145 	return (0);
1146 }
1147 
1148 static struct pr_usrreqs uipc_usrreqs_dgram = {
1149 	.pru_abort = 		uipc_abort,
1150 	.pru_accept =		uipc_accept,
1151 	.pru_attach =		uipc_attach,
1152 	.pru_bind =		uipc_bind,
1153 	.pru_bindat =		uipc_bindat,
1154 	.pru_connect =		uipc_connect,
1155 	.pru_connectat =	uipc_connectat,
1156 	.pru_connect2 =		uipc_connect2,
1157 	.pru_detach =		uipc_detach,
1158 	.pru_disconnect =	uipc_disconnect,
1159 	.pru_listen =		uipc_listen,
1160 	.pru_peeraddr =		uipc_peeraddr,
1161 	.pru_rcvd =		uipc_rcvd,
1162 	.pru_send =		uipc_send,
1163 	.pru_sense =		uipc_sense,
1164 	.pru_shutdown =		uipc_shutdown,
1165 	.pru_sockaddr =		uipc_sockaddr,
1166 	.pru_soreceive =	soreceive_dgram,
1167 	.pru_close =		uipc_close,
1168 };
1169 
1170 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1171 	.pru_abort =		uipc_abort,
1172 	.pru_accept =		uipc_accept,
1173 	.pru_attach =		uipc_attach,
1174 	.pru_bind =		uipc_bind,
1175 	.pru_bindat =		uipc_bindat,
1176 	.pru_connect =		uipc_connect,
1177 	.pru_connectat =	uipc_connectat,
1178 	.pru_connect2 =		uipc_connect2,
1179 	.pru_detach =		uipc_detach,
1180 	.pru_disconnect =	uipc_disconnect,
1181 	.pru_listen =		uipc_listen,
1182 	.pru_peeraddr =		uipc_peeraddr,
1183 	.pru_rcvd =		uipc_rcvd,
1184 	.pru_send =		uipc_send,
1185 	.pru_sense =		uipc_sense,
1186 	.pru_shutdown =		uipc_shutdown,
1187 	.pru_sockaddr =		uipc_sockaddr,
1188 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1189 	.pru_close =		uipc_close,
1190 };
1191 
1192 static struct pr_usrreqs uipc_usrreqs_stream = {
1193 	.pru_abort = 		uipc_abort,
1194 	.pru_accept =		uipc_accept,
1195 	.pru_attach =		uipc_attach,
1196 	.pru_bind =		uipc_bind,
1197 	.pru_bindat =		uipc_bindat,
1198 	.pru_connect =		uipc_connect,
1199 	.pru_connectat =	uipc_connectat,
1200 	.pru_connect2 =		uipc_connect2,
1201 	.pru_detach =		uipc_detach,
1202 	.pru_disconnect =	uipc_disconnect,
1203 	.pru_listen =		uipc_listen,
1204 	.pru_peeraddr =		uipc_peeraddr,
1205 	.pru_rcvd =		uipc_rcvd,
1206 	.pru_send =		uipc_send,
1207 	.pru_ready =		uipc_ready,
1208 	.pru_sense =		uipc_sense,
1209 	.pru_shutdown =		uipc_shutdown,
1210 	.pru_sockaddr =		uipc_sockaddr,
1211 	.pru_soreceive =	soreceive_generic,
1212 	.pru_close =		uipc_close,
1213 };
1214 
1215 static int
1216 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1217 {
1218 	struct unpcb *unp;
1219 	struct xucred xu;
1220 	int error, optval;
1221 
1222 	if (sopt->sopt_level != 0)
1223 		return (EINVAL);
1224 
1225 	unp = sotounpcb(so);
1226 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1227 	error = 0;
1228 	switch (sopt->sopt_dir) {
1229 	case SOPT_GET:
1230 		switch (sopt->sopt_name) {
1231 		case LOCAL_PEERCRED:
1232 			UNP_PCB_LOCK(unp);
1233 			if (unp->unp_flags & UNP_HAVEPC)
1234 				xu = unp->unp_peercred;
1235 			else {
1236 				if (so->so_type == SOCK_STREAM)
1237 					error = ENOTCONN;
1238 				else
1239 					error = EINVAL;
1240 			}
1241 			UNP_PCB_UNLOCK(unp);
1242 			if (error == 0)
1243 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1244 			break;
1245 
1246 		case LOCAL_CREDS:
1247 			/* Unlocked read. */
1248 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1249 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1250 			break;
1251 
1252 		case LOCAL_CONNWAIT:
1253 			/* Unlocked read. */
1254 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1255 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1256 			break;
1257 
1258 		default:
1259 			error = EOPNOTSUPP;
1260 			break;
1261 		}
1262 		break;
1263 
1264 	case SOPT_SET:
1265 		switch (sopt->sopt_name) {
1266 		case LOCAL_CREDS:
1267 		case LOCAL_CONNWAIT:
1268 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1269 					    sizeof(optval));
1270 			if (error)
1271 				break;
1272 
1273 #define	OPTSET(bit) do {						\
1274 	UNP_PCB_LOCK(unp);						\
1275 	if (optval)							\
1276 		unp->unp_flags |= bit;					\
1277 	else								\
1278 		unp->unp_flags &= ~bit;					\
1279 	UNP_PCB_UNLOCK(unp);						\
1280 } while (0)
1281 
1282 			switch (sopt->sopt_name) {
1283 			case LOCAL_CREDS:
1284 				OPTSET(UNP_WANTCRED);
1285 				break;
1286 
1287 			case LOCAL_CONNWAIT:
1288 				OPTSET(UNP_CONNWAIT);
1289 				break;
1290 
1291 			default:
1292 				break;
1293 			}
1294 			break;
1295 #undef	OPTSET
1296 		default:
1297 			error = ENOPROTOOPT;
1298 			break;
1299 		}
1300 		break;
1301 
1302 	default:
1303 		error = EOPNOTSUPP;
1304 		break;
1305 	}
1306 	return (error);
1307 }
1308 
1309 static int
1310 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1311 {
1312 
1313 	return (unp_connectat(AT_FDCWD, so, nam, td));
1314 }
1315 
1316 static int
1317 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1318     struct thread *td)
1319 {
1320 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1321 	struct vnode *vp;
1322 	struct socket *so2, *so3;
1323 	struct unpcb *unp, *unp2, *unp3;
1324 	struct nameidata nd;
1325 	char buf[SOCK_MAXADDRLEN];
1326 	struct sockaddr *sa;
1327 	cap_rights_t rights;
1328 	int error, len;
1329 
1330 	if (nam->sa_family != AF_UNIX)
1331 		return (EAFNOSUPPORT);
1332 
1333 	UNP_LINK_WLOCK_ASSERT();
1334 
1335 	unp = sotounpcb(so);
1336 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1337 
1338 	if (nam->sa_len > sizeof(struct sockaddr_un))
1339 		return (EINVAL);
1340 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1341 	if (len <= 0)
1342 		return (EINVAL);
1343 	bcopy(soun->sun_path, buf, len);
1344 	buf[len] = 0;
1345 
1346 	UNP_PCB_LOCK(unp);
1347 	if (unp->unp_flags & UNP_CONNECTING) {
1348 		UNP_PCB_UNLOCK(unp);
1349 		return (EALREADY);
1350 	}
1351 	UNP_LINK_WUNLOCK();
1352 	unp->unp_flags |= UNP_CONNECTING;
1353 	UNP_PCB_UNLOCK(unp);
1354 
1355 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1356 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1357 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1358 	error = namei(&nd);
1359 	if (error)
1360 		vp = NULL;
1361 	else
1362 		vp = nd.ni_vp;
1363 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1364 	NDFREE(&nd, NDF_ONLY_PNBUF);
1365 	if (error)
1366 		goto bad;
1367 
1368 	if (vp->v_type != VSOCK) {
1369 		error = ENOTSOCK;
1370 		goto bad;
1371 	}
1372 #ifdef MAC
1373 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1374 	if (error)
1375 		goto bad;
1376 #endif
1377 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1378 	if (error)
1379 		goto bad;
1380 
1381 	unp = sotounpcb(so);
1382 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1383 
1384 	/*
1385 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1386 	 * and to protect simultaneous locking of multiple pcbs.
1387 	 */
1388 	UNP_LINK_WLOCK();
1389 	VOP_UNP_CONNECT(vp, &so2);
1390 	if (so2 == NULL) {
1391 		error = ECONNREFUSED;
1392 		goto bad2;
1393 	}
1394 	if (so->so_type != so2->so_type) {
1395 		error = EPROTOTYPE;
1396 		goto bad2;
1397 	}
1398 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1399 		if (so2->so_options & SO_ACCEPTCONN) {
1400 			CURVNET_SET(so2->so_vnet);
1401 			so3 = sonewconn(so2, 0);
1402 			CURVNET_RESTORE();
1403 		} else
1404 			so3 = NULL;
1405 		if (so3 == NULL) {
1406 			error = ECONNREFUSED;
1407 			goto bad2;
1408 		}
1409 		unp = sotounpcb(so);
1410 		unp2 = sotounpcb(so2);
1411 		unp3 = sotounpcb(so3);
1412 		UNP_PCB_LOCK(unp);
1413 		UNP_PCB_LOCK(unp2);
1414 		UNP_PCB_LOCK(unp3);
1415 		if (unp2->unp_addr != NULL) {
1416 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1417 			unp3->unp_addr = (struct sockaddr_un *) sa;
1418 			sa = NULL;
1419 		}
1420 
1421 		/*
1422 		 * The connector's (client's) credentials are copied from its
1423 		 * process structure at the time of connect() (which is now).
1424 		 */
1425 		cru2x(td->td_ucred, &unp3->unp_peercred);
1426 		unp3->unp_flags |= UNP_HAVEPC;
1427 
1428 		/*
1429 		 * The receiver's (server's) credentials are copied from the
1430 		 * unp_peercred member of socket on which the former called
1431 		 * listen(); uipc_listen() cached that process's credentials
1432 		 * at that time so we can use them now.
1433 		 */
1434 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1435 		    ("unp_connect: listener without cached peercred"));
1436 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1437 		    sizeof(unp->unp_peercred));
1438 		unp->unp_flags |= UNP_HAVEPC;
1439 		if (unp2->unp_flags & UNP_WANTCRED)
1440 			unp3->unp_flags |= UNP_WANTCRED;
1441 		UNP_PCB_UNLOCK(unp3);
1442 		UNP_PCB_UNLOCK(unp2);
1443 		UNP_PCB_UNLOCK(unp);
1444 #ifdef MAC
1445 		mac_socketpeer_set_from_socket(so, so3);
1446 		mac_socketpeer_set_from_socket(so3, so);
1447 #endif
1448 
1449 		so2 = so3;
1450 	}
1451 	unp = sotounpcb(so);
1452 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1453 	unp2 = sotounpcb(so2);
1454 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1455 	UNP_PCB_LOCK(unp);
1456 	UNP_PCB_LOCK(unp2);
1457 	error = unp_connect2(so, so2, PRU_CONNECT);
1458 	UNP_PCB_UNLOCK(unp2);
1459 	UNP_PCB_UNLOCK(unp);
1460 bad2:
1461 	UNP_LINK_WUNLOCK();
1462 bad:
1463 	if (vp != NULL)
1464 		vput(vp);
1465 	free(sa, M_SONAME);
1466 	UNP_LINK_WLOCK();
1467 	UNP_PCB_LOCK(unp);
1468 	unp->unp_flags &= ~UNP_CONNECTING;
1469 	UNP_PCB_UNLOCK(unp);
1470 	return (error);
1471 }
1472 
1473 static int
1474 unp_connect2(struct socket *so, struct socket *so2, int req)
1475 {
1476 	struct unpcb *unp;
1477 	struct unpcb *unp2;
1478 
1479 	unp = sotounpcb(so);
1480 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1481 	unp2 = sotounpcb(so2);
1482 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1483 
1484 	UNP_LINK_WLOCK_ASSERT();
1485 	UNP_PCB_LOCK_ASSERT(unp);
1486 	UNP_PCB_LOCK_ASSERT(unp2);
1487 
1488 	if (so2->so_type != so->so_type)
1489 		return (EPROTOTYPE);
1490 	unp2->unp_flags &= ~UNP_NASCENT;
1491 	unp->unp_conn = unp2;
1492 
1493 	switch (so->so_type) {
1494 	case SOCK_DGRAM:
1495 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1496 		soisconnected(so);
1497 		break;
1498 
1499 	case SOCK_STREAM:
1500 	case SOCK_SEQPACKET:
1501 		unp2->unp_conn = unp;
1502 		if (req == PRU_CONNECT &&
1503 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1504 			soisconnecting(so);
1505 		else
1506 			soisconnected(so);
1507 		soisconnected(so2);
1508 		break;
1509 
1510 	default:
1511 		panic("unp_connect2");
1512 	}
1513 	return (0);
1514 }
1515 
1516 static void
1517 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1518 {
1519 	struct socket *so;
1520 
1521 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1522 
1523 	UNP_LINK_WLOCK_ASSERT();
1524 	UNP_PCB_LOCK_ASSERT(unp);
1525 	UNP_PCB_LOCK_ASSERT(unp2);
1526 
1527 	unp->unp_conn = NULL;
1528 	switch (unp->unp_socket->so_type) {
1529 	case SOCK_DGRAM:
1530 		LIST_REMOVE(unp, unp_reflink);
1531 		so = unp->unp_socket;
1532 		SOCK_LOCK(so);
1533 		so->so_state &= ~SS_ISCONNECTED;
1534 		SOCK_UNLOCK(so);
1535 		break;
1536 
1537 	case SOCK_STREAM:
1538 	case SOCK_SEQPACKET:
1539 		soisdisconnected(unp->unp_socket);
1540 		unp2->unp_conn = NULL;
1541 		soisdisconnected(unp2->unp_socket);
1542 		break;
1543 	}
1544 }
1545 
1546 /*
1547  * unp_pcblist() walks the global list of struct unpcb's to generate a
1548  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1549  * sequentially, validating the generation number on each to see if it has
1550  * been detached.  All of this is necessary because copyout() may sleep on
1551  * disk I/O.
1552  */
1553 static int
1554 unp_pcblist(SYSCTL_HANDLER_ARGS)
1555 {
1556 	int error, i, n;
1557 	int freeunp;
1558 	struct unpcb *unp, **unp_list;
1559 	unp_gen_t gencnt;
1560 	struct xunpgen *xug;
1561 	struct unp_head *head;
1562 	struct xunpcb *xu;
1563 
1564 	switch ((intptr_t)arg1) {
1565 	case SOCK_STREAM:
1566 		head = &unp_shead;
1567 		break;
1568 
1569 	case SOCK_DGRAM:
1570 		head = &unp_dhead;
1571 		break;
1572 
1573 	case SOCK_SEQPACKET:
1574 		head = &unp_sphead;
1575 		break;
1576 
1577 	default:
1578 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1579 	}
1580 
1581 	/*
1582 	 * The process of preparing the PCB list is too time-consuming and
1583 	 * resource-intensive to repeat twice on every request.
1584 	 */
1585 	if (req->oldptr == NULL) {
1586 		n = unp_count;
1587 		req->oldidx = 2 * (sizeof *xug)
1588 			+ (n + n/8) * sizeof(struct xunpcb);
1589 		return (0);
1590 	}
1591 
1592 	if (req->newptr != NULL)
1593 		return (EPERM);
1594 
1595 	/*
1596 	 * OK, now we're committed to doing something.
1597 	 */
1598 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1599 	UNP_LIST_LOCK();
1600 	gencnt = unp_gencnt;
1601 	n = unp_count;
1602 	UNP_LIST_UNLOCK();
1603 
1604 	xug->xug_len = sizeof *xug;
1605 	xug->xug_count = n;
1606 	xug->xug_gen = gencnt;
1607 	xug->xug_sogen = so_gencnt;
1608 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1609 	if (error) {
1610 		free(xug, M_TEMP);
1611 		return (error);
1612 	}
1613 
1614 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1615 
1616 	UNP_LIST_LOCK();
1617 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1618 	     unp = LIST_NEXT(unp, unp_link)) {
1619 		UNP_PCB_LOCK(unp);
1620 		if (unp->unp_gencnt <= gencnt) {
1621 			if (cr_cansee(req->td->td_ucred,
1622 			    unp->unp_socket->so_cred)) {
1623 				UNP_PCB_UNLOCK(unp);
1624 				continue;
1625 			}
1626 			unp_list[i++] = unp;
1627 			unp->unp_refcount++;
1628 		}
1629 		UNP_PCB_UNLOCK(unp);
1630 	}
1631 	UNP_LIST_UNLOCK();
1632 	n = i;			/* In case we lost some during malloc. */
1633 
1634 	error = 0;
1635 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1636 	for (i = 0; i < n; i++) {
1637 		unp = unp_list[i];
1638 		UNP_PCB_LOCK(unp);
1639 		unp->unp_refcount--;
1640 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1641 			xu->xu_len = sizeof *xu;
1642 			xu->xu_unpp = unp;
1643 			/*
1644 			 * XXX - need more locking here to protect against
1645 			 * connect/disconnect races for SMP.
1646 			 */
1647 			if (unp->unp_addr != NULL)
1648 				bcopy(unp->unp_addr, &xu->xu_addr,
1649 				      unp->unp_addr->sun_len);
1650 			if (unp->unp_conn != NULL &&
1651 			    unp->unp_conn->unp_addr != NULL)
1652 				bcopy(unp->unp_conn->unp_addr,
1653 				      &xu->xu_caddr,
1654 				      unp->unp_conn->unp_addr->sun_len);
1655 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1656 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1657 			UNP_PCB_UNLOCK(unp);
1658 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1659 		} else {
1660 			freeunp = (unp->unp_refcount == 0);
1661 			UNP_PCB_UNLOCK(unp);
1662 			if (freeunp) {
1663 				UNP_PCB_LOCK_DESTROY(unp);
1664 				uma_zfree(unp_zone, unp);
1665 			}
1666 		}
1667 	}
1668 	free(xu, M_TEMP);
1669 	if (!error) {
1670 		/*
1671 		 * Give the user an updated idea of our state.  If the
1672 		 * generation differs from what we told her before, she knows
1673 		 * that something happened while we were processing this
1674 		 * request, and it might be necessary to retry.
1675 		 */
1676 		xug->xug_gen = unp_gencnt;
1677 		xug->xug_sogen = so_gencnt;
1678 		xug->xug_count = unp_count;
1679 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1680 	}
1681 	free(unp_list, M_TEMP);
1682 	free(xug, M_TEMP);
1683 	return (error);
1684 }
1685 
1686 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1687     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1688     "List of active local datagram sockets");
1689 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1690     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1691     "List of active local stream sockets");
1692 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1693     CTLTYPE_OPAQUE | CTLFLAG_RD,
1694     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1695     "List of active local seqpacket sockets");
1696 
1697 static void
1698 unp_shutdown(struct unpcb *unp)
1699 {
1700 	struct unpcb *unp2;
1701 	struct socket *so;
1702 
1703 	UNP_LINK_WLOCK_ASSERT();
1704 	UNP_PCB_LOCK_ASSERT(unp);
1705 
1706 	unp2 = unp->unp_conn;
1707 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1708 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1709 		so = unp2->unp_socket;
1710 		if (so != NULL)
1711 			socantrcvmore(so);
1712 	}
1713 }
1714 
1715 static void
1716 unp_drop(struct unpcb *unp)
1717 {
1718 	struct socket *so = unp->unp_socket;
1719 	struct unpcb *unp2;
1720 
1721 	UNP_LINK_WLOCK_ASSERT();
1722 	UNP_PCB_LOCK_ASSERT(unp);
1723 
1724 	/*
1725 	 * Regardless of whether the socket's peer dropped the connection
1726 	 * with this socket by aborting or disconnecting, POSIX requires
1727 	 * that ECONNRESET is returned.
1728 	 */
1729 	so->so_error = ECONNRESET;
1730 	unp2 = unp->unp_conn;
1731 	if (unp2 == NULL)
1732 		return;
1733 	UNP_PCB_LOCK(unp2);
1734 	unp_disconnect(unp, unp2);
1735 	UNP_PCB_UNLOCK(unp2);
1736 }
1737 
1738 static void
1739 unp_freerights(struct filedescent **fdep, int fdcount)
1740 {
1741 	struct file *fp;
1742 	int i;
1743 
1744 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1745 
1746 	for (i = 0; i < fdcount; i++) {
1747 		fp = fdep[i]->fde_file;
1748 		filecaps_free(&fdep[i]->fde_caps);
1749 		unp_discard(fp);
1750 	}
1751 	free(fdep[0], M_FILECAPS);
1752 }
1753 
1754 static int
1755 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1756 {
1757 	struct thread *td = curthread;		/* XXX */
1758 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1759 	int i;
1760 	int *fdp;
1761 	struct filedesc *fdesc = td->td_proc->p_fd;
1762 	struct filedescent **fdep;
1763 	void *data;
1764 	socklen_t clen = control->m_len, datalen;
1765 	int error, newfds;
1766 	u_int newlen;
1767 
1768 	UNP_LINK_UNLOCK_ASSERT();
1769 
1770 	error = 0;
1771 	if (controlp != NULL) /* controlp == NULL => free control messages */
1772 		*controlp = NULL;
1773 	while (cm != NULL) {
1774 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1775 			error = EINVAL;
1776 			break;
1777 		}
1778 		data = CMSG_DATA(cm);
1779 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1780 		if (cm->cmsg_level == SOL_SOCKET
1781 		    && cm->cmsg_type == SCM_RIGHTS) {
1782 			newfds = datalen / sizeof(*fdep);
1783 			if (newfds == 0)
1784 				goto next;
1785 			fdep = data;
1786 
1787 			/* If we're not outputting the descriptors free them. */
1788 			if (error || controlp == NULL) {
1789 				unp_freerights(fdep, newfds);
1790 				goto next;
1791 			}
1792 			FILEDESC_XLOCK(fdesc);
1793 
1794 			/*
1795 			 * Now change each pointer to an fd in the global
1796 			 * table to an integer that is the index to the local
1797 			 * fd table entry that we set up to point to the
1798 			 * global one we are transferring.
1799 			 */
1800 			newlen = newfds * sizeof(int);
1801 			*controlp = sbcreatecontrol(NULL, newlen,
1802 			    SCM_RIGHTS, SOL_SOCKET);
1803 			if (*controlp == NULL) {
1804 				FILEDESC_XUNLOCK(fdesc);
1805 				error = E2BIG;
1806 				unp_freerights(fdep, newfds);
1807 				goto next;
1808 			}
1809 
1810 			fdp = (int *)
1811 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1812 			if (fdallocn(td, 0, fdp, newfds) != 0) {
1813 				FILEDESC_XUNLOCK(fdesc);
1814 				error = EMSGSIZE;
1815 				unp_freerights(fdep, newfds);
1816 				m_freem(*controlp);
1817 				*controlp = NULL;
1818 				goto next;
1819 			}
1820 			for (i = 0; i < newfds; i++, fdp++) {
1821 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
1822 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
1823 				    &fdep[i]->fde_caps);
1824 				unp_externalize_fp(fdep[i]->fde_file);
1825 			}
1826 			FILEDESC_XUNLOCK(fdesc);
1827 			free(fdep[0], M_FILECAPS);
1828 		} else {
1829 			/* We can just copy anything else across. */
1830 			if (error || controlp == NULL)
1831 				goto next;
1832 			*controlp = sbcreatecontrol(NULL, datalen,
1833 			    cm->cmsg_type, cm->cmsg_level);
1834 			if (*controlp == NULL) {
1835 				error = ENOBUFS;
1836 				goto next;
1837 			}
1838 			bcopy(data,
1839 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1840 			    datalen);
1841 		}
1842 		controlp = &(*controlp)->m_next;
1843 
1844 next:
1845 		if (CMSG_SPACE(datalen) < clen) {
1846 			clen -= CMSG_SPACE(datalen);
1847 			cm = (struct cmsghdr *)
1848 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1849 		} else {
1850 			clen = 0;
1851 			cm = NULL;
1852 		}
1853 	}
1854 
1855 	m_freem(control);
1856 	return (error);
1857 }
1858 
1859 static void
1860 unp_zone_change(void *tag)
1861 {
1862 
1863 	uma_zone_set_max(unp_zone, maxsockets);
1864 }
1865 
1866 static void
1867 unp_init(void)
1868 {
1869 
1870 #ifdef VIMAGE
1871 	if (!IS_DEFAULT_VNET(curvnet))
1872 		return;
1873 #endif
1874 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1875 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1876 	if (unp_zone == NULL)
1877 		panic("unp_init");
1878 	uma_zone_set_max(unp_zone, maxsockets);
1879 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1880 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1881 	    NULL, EVENTHANDLER_PRI_ANY);
1882 	LIST_INIT(&unp_dhead);
1883 	LIST_INIT(&unp_shead);
1884 	LIST_INIT(&unp_sphead);
1885 	SLIST_INIT(&unp_defers);
1886 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1887 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1888 	UNP_LINK_LOCK_INIT();
1889 	UNP_LIST_LOCK_INIT();
1890 	UNP_DEFERRED_LOCK_INIT();
1891 }
1892 
1893 static int
1894 unp_internalize(struct mbuf **controlp, struct thread *td)
1895 {
1896 	struct mbuf *control = *controlp;
1897 	struct proc *p = td->td_proc;
1898 	struct filedesc *fdesc = p->p_fd;
1899 	struct bintime *bt;
1900 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1901 	struct cmsgcred *cmcred;
1902 	struct filedescent *fde, **fdep, *fdev;
1903 	struct file *fp;
1904 	struct timeval *tv;
1905 	struct timespec *ts;
1906 	int i, *fdp;
1907 	void *data;
1908 	socklen_t clen = control->m_len, datalen;
1909 	int error, oldfds;
1910 	u_int newlen;
1911 
1912 	UNP_LINK_UNLOCK_ASSERT();
1913 
1914 	error = 0;
1915 	*controlp = NULL;
1916 	while (cm != NULL) {
1917 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1918 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
1919 			error = EINVAL;
1920 			goto out;
1921 		}
1922 		data = CMSG_DATA(cm);
1923 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1924 
1925 		switch (cm->cmsg_type) {
1926 		/*
1927 		 * Fill in credential information.
1928 		 */
1929 		case SCM_CREDS:
1930 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1931 			    SCM_CREDS, SOL_SOCKET);
1932 			if (*controlp == NULL) {
1933 				error = ENOBUFS;
1934 				goto out;
1935 			}
1936 			cmcred = (struct cmsgcred *)
1937 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1938 			cmcred->cmcred_pid = p->p_pid;
1939 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1940 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1941 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1942 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1943 			    CMGROUP_MAX);
1944 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1945 				cmcred->cmcred_groups[i] =
1946 				    td->td_ucred->cr_groups[i];
1947 			break;
1948 
1949 		case SCM_RIGHTS:
1950 			oldfds = datalen / sizeof (int);
1951 			if (oldfds == 0)
1952 				break;
1953 			/*
1954 			 * Check that all the FDs passed in refer to legal
1955 			 * files.  If not, reject the entire operation.
1956 			 */
1957 			fdp = data;
1958 			FILEDESC_SLOCK(fdesc);
1959 			for (i = 0; i < oldfds; i++, fdp++) {
1960 				fp = fget_locked(fdesc, *fdp);
1961 				if (fp == NULL) {
1962 					FILEDESC_SUNLOCK(fdesc);
1963 					error = EBADF;
1964 					goto out;
1965 				}
1966 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1967 					FILEDESC_SUNLOCK(fdesc);
1968 					error = EOPNOTSUPP;
1969 					goto out;
1970 				}
1971 
1972 			}
1973 
1974 			/*
1975 			 * Now replace the integer FDs with pointers to the
1976 			 * file structure and capability rights.
1977 			 */
1978 			newlen = oldfds * sizeof(fdep[0]);
1979 			*controlp = sbcreatecontrol(NULL, newlen,
1980 			    SCM_RIGHTS, SOL_SOCKET);
1981 			if (*controlp == NULL) {
1982 				FILEDESC_SUNLOCK(fdesc);
1983 				error = E2BIG;
1984 				goto out;
1985 			}
1986 			fdp = data;
1987 			fdep = (struct filedescent **)
1988 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1989 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1990 			    M_WAITOK);
1991 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1992 				fde = &fdesc->fd_ofiles[*fdp];
1993 				fdep[i] = fdev;
1994 				fdep[i]->fde_file = fde->fde_file;
1995 				filecaps_copy(&fde->fde_caps,
1996 				    &fdep[i]->fde_caps, true);
1997 				unp_internalize_fp(fdep[i]->fde_file);
1998 			}
1999 			FILEDESC_SUNLOCK(fdesc);
2000 			break;
2001 
2002 		case SCM_TIMESTAMP:
2003 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2004 			    SCM_TIMESTAMP, SOL_SOCKET);
2005 			if (*controlp == NULL) {
2006 				error = ENOBUFS;
2007 				goto out;
2008 			}
2009 			tv = (struct timeval *)
2010 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2011 			microtime(tv);
2012 			break;
2013 
2014 		case SCM_BINTIME:
2015 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2016 			    SCM_BINTIME, SOL_SOCKET);
2017 			if (*controlp == NULL) {
2018 				error = ENOBUFS;
2019 				goto out;
2020 			}
2021 			bt = (struct bintime *)
2022 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2023 			bintime(bt);
2024 			break;
2025 
2026 		case SCM_REALTIME:
2027 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2028 			    SCM_REALTIME, SOL_SOCKET);
2029 			if (*controlp == NULL) {
2030 				error = ENOBUFS;
2031 				goto out;
2032 			}
2033 			ts = (struct timespec *)
2034 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2035 			nanotime(ts);
2036 			break;
2037 
2038 		case SCM_MONOTONIC:
2039 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2040 			    SCM_MONOTONIC, SOL_SOCKET);
2041 			if (*controlp == NULL) {
2042 				error = ENOBUFS;
2043 				goto out;
2044 			}
2045 			ts = (struct timespec *)
2046 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2047 			nanouptime(ts);
2048 			break;
2049 
2050 		default:
2051 			error = EINVAL;
2052 			goto out;
2053 		}
2054 
2055 		controlp = &(*controlp)->m_next;
2056 		if (CMSG_SPACE(datalen) < clen) {
2057 			clen -= CMSG_SPACE(datalen);
2058 			cm = (struct cmsghdr *)
2059 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2060 		} else {
2061 			clen = 0;
2062 			cm = NULL;
2063 		}
2064 	}
2065 
2066 out:
2067 	m_freem(control);
2068 	return (error);
2069 }
2070 
2071 static struct mbuf *
2072 unp_addsockcred(struct thread *td, struct mbuf *control)
2073 {
2074 	struct mbuf *m, *n, *n_prev;
2075 	struct sockcred *sc;
2076 	const struct cmsghdr *cm;
2077 	int ngroups;
2078 	int i;
2079 
2080 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2081 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2082 	if (m == NULL)
2083 		return (control);
2084 
2085 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2086 	sc->sc_uid = td->td_ucred->cr_ruid;
2087 	sc->sc_euid = td->td_ucred->cr_uid;
2088 	sc->sc_gid = td->td_ucred->cr_rgid;
2089 	sc->sc_egid = td->td_ucred->cr_gid;
2090 	sc->sc_ngroups = ngroups;
2091 	for (i = 0; i < sc->sc_ngroups; i++)
2092 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2093 
2094 	/*
2095 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2096 	 * created SCM_CREDS control message (struct sockcred) has another
2097 	 * format.
2098 	 */
2099 	if (control != NULL)
2100 		for (n = control, n_prev = NULL; n != NULL;) {
2101 			cm = mtod(n, struct cmsghdr *);
2102     			if (cm->cmsg_level == SOL_SOCKET &&
2103 			    cm->cmsg_type == SCM_CREDS) {
2104     				if (n_prev == NULL)
2105 					control = n->m_next;
2106 				else
2107 					n_prev->m_next = n->m_next;
2108 				n = m_free(n);
2109 			} else {
2110 				n_prev = n;
2111 				n = n->m_next;
2112 			}
2113 		}
2114 
2115 	/* Prepend it to the head. */
2116 	m->m_next = control;
2117 	return (m);
2118 }
2119 
2120 static struct unpcb *
2121 fptounp(struct file *fp)
2122 {
2123 	struct socket *so;
2124 
2125 	if (fp->f_type != DTYPE_SOCKET)
2126 		return (NULL);
2127 	if ((so = fp->f_data) == NULL)
2128 		return (NULL);
2129 	if (so->so_proto->pr_domain != &localdomain)
2130 		return (NULL);
2131 	return sotounpcb(so);
2132 }
2133 
2134 static void
2135 unp_discard(struct file *fp)
2136 {
2137 	struct unp_defer *dr;
2138 
2139 	if (unp_externalize_fp(fp)) {
2140 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2141 		dr->ud_fp = fp;
2142 		UNP_DEFERRED_LOCK();
2143 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2144 		UNP_DEFERRED_UNLOCK();
2145 		atomic_add_int(&unp_defers_count, 1);
2146 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2147 	} else
2148 		(void) closef(fp, (struct thread *)NULL);
2149 }
2150 
2151 static void
2152 unp_process_defers(void *arg __unused, int pending)
2153 {
2154 	struct unp_defer *dr;
2155 	SLIST_HEAD(, unp_defer) drl;
2156 	int count;
2157 
2158 	SLIST_INIT(&drl);
2159 	for (;;) {
2160 		UNP_DEFERRED_LOCK();
2161 		if (SLIST_FIRST(&unp_defers) == NULL) {
2162 			UNP_DEFERRED_UNLOCK();
2163 			break;
2164 		}
2165 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2166 		UNP_DEFERRED_UNLOCK();
2167 		count = 0;
2168 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2169 			SLIST_REMOVE_HEAD(&drl, ud_link);
2170 			closef(dr->ud_fp, NULL);
2171 			free(dr, M_TEMP);
2172 			count++;
2173 		}
2174 		atomic_add_int(&unp_defers_count, -count);
2175 	}
2176 }
2177 
2178 static void
2179 unp_internalize_fp(struct file *fp)
2180 {
2181 	struct unpcb *unp;
2182 
2183 	UNP_LINK_WLOCK();
2184 	if ((unp = fptounp(fp)) != NULL) {
2185 		unp->unp_file = fp;
2186 		unp->unp_msgcount++;
2187 	}
2188 	fhold(fp);
2189 	unp_rights++;
2190 	UNP_LINK_WUNLOCK();
2191 }
2192 
2193 static int
2194 unp_externalize_fp(struct file *fp)
2195 {
2196 	struct unpcb *unp;
2197 	int ret;
2198 
2199 	UNP_LINK_WLOCK();
2200 	if ((unp = fptounp(fp)) != NULL) {
2201 		unp->unp_msgcount--;
2202 		ret = 1;
2203 	} else
2204 		ret = 0;
2205 	unp_rights--;
2206 	UNP_LINK_WUNLOCK();
2207 	return (ret);
2208 }
2209 
2210 /*
2211  * unp_defer indicates whether additional work has been defered for a future
2212  * pass through unp_gc().  It is thread local and does not require explicit
2213  * synchronization.
2214  */
2215 static int	unp_marked;
2216 static int	unp_unreachable;
2217 
2218 static void
2219 unp_accessable(struct filedescent **fdep, int fdcount)
2220 {
2221 	struct unpcb *unp;
2222 	struct file *fp;
2223 	int i;
2224 
2225 	for (i = 0; i < fdcount; i++) {
2226 		fp = fdep[i]->fde_file;
2227 		if ((unp = fptounp(fp)) == NULL)
2228 			continue;
2229 		if (unp->unp_gcflag & UNPGC_REF)
2230 			continue;
2231 		unp->unp_gcflag &= ~UNPGC_DEAD;
2232 		unp->unp_gcflag |= UNPGC_REF;
2233 		unp_marked++;
2234 	}
2235 }
2236 
2237 static void
2238 unp_gc_process(struct unpcb *unp)
2239 {
2240 	struct socket *soa;
2241 	struct socket *so;
2242 	struct file *fp;
2243 
2244 	/* Already processed. */
2245 	if (unp->unp_gcflag & UNPGC_SCANNED)
2246 		return;
2247 	fp = unp->unp_file;
2248 
2249 	/*
2250 	 * Check for a socket potentially in a cycle.  It must be in a
2251 	 * queue as indicated by msgcount, and this must equal the file
2252 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2253 	 */
2254 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2255 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2256 		unp->unp_gcflag |= UNPGC_DEAD;
2257 		unp_unreachable++;
2258 		return;
2259 	}
2260 
2261 	/*
2262 	 * Mark all sockets we reference with RIGHTS.
2263 	 */
2264 	so = unp->unp_socket;
2265 	if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2266 		SOCKBUF_LOCK(&so->so_rcv);
2267 		unp_scan(so->so_rcv.sb_mb, unp_accessable);
2268 		SOCKBUF_UNLOCK(&so->so_rcv);
2269 	}
2270 
2271 	/*
2272 	 * Mark all sockets in our accept queue.
2273 	 */
2274 	ACCEPT_LOCK();
2275 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2276 		if ((sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) != 0)
2277 			continue;
2278 		SOCKBUF_LOCK(&soa->so_rcv);
2279 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2280 		SOCKBUF_UNLOCK(&soa->so_rcv);
2281 	}
2282 	ACCEPT_UNLOCK();
2283 	unp->unp_gcflag |= UNPGC_SCANNED;
2284 }
2285 
2286 static int unp_recycled;
2287 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2288     "Number of unreachable sockets claimed by the garbage collector.");
2289 
2290 static int unp_taskcount;
2291 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2292     "Number of times the garbage collector has run.");
2293 
2294 static void
2295 unp_gc(__unused void *arg, int pending)
2296 {
2297 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2298 				    NULL };
2299 	struct unp_head **head;
2300 	struct file *f, **unref;
2301 	struct unpcb *unp;
2302 	int i, total;
2303 
2304 	unp_taskcount++;
2305 	UNP_LIST_LOCK();
2306 	/*
2307 	 * First clear all gc flags from previous runs, apart from
2308 	 * UNPGC_IGNORE_RIGHTS.
2309 	 */
2310 	for (head = heads; *head != NULL; head++)
2311 		LIST_FOREACH(unp, *head, unp_link)
2312 			unp->unp_gcflag =
2313 			    (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2314 
2315 	/*
2316 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2317 	 * is reachable all of the sockets it references are reachable.
2318 	 * Stop the scan once we do a complete loop without discovering
2319 	 * a new reachable socket.
2320 	 */
2321 	do {
2322 		unp_unreachable = 0;
2323 		unp_marked = 0;
2324 		for (head = heads; *head != NULL; head++)
2325 			LIST_FOREACH(unp, *head, unp_link)
2326 				unp_gc_process(unp);
2327 	} while (unp_marked);
2328 	UNP_LIST_UNLOCK();
2329 	if (unp_unreachable == 0)
2330 		return;
2331 
2332 	/*
2333 	 * Allocate space for a local list of dead unpcbs.
2334 	 */
2335 	unref = malloc(unp_unreachable * sizeof(struct file *),
2336 	    M_TEMP, M_WAITOK);
2337 
2338 	/*
2339 	 * Iterate looking for sockets which have been specifically marked
2340 	 * as as unreachable and store them locally.
2341 	 */
2342 	UNP_LINK_RLOCK();
2343 	UNP_LIST_LOCK();
2344 	for (total = 0, head = heads; *head != NULL; head++)
2345 		LIST_FOREACH(unp, *head, unp_link)
2346 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2347 				f = unp->unp_file;
2348 				if (unp->unp_msgcount == 0 || f == NULL ||
2349 				    f->f_count != unp->unp_msgcount)
2350 					continue;
2351 				unref[total++] = f;
2352 				fhold(f);
2353 				KASSERT(total <= unp_unreachable,
2354 				    ("unp_gc: incorrect unreachable count."));
2355 			}
2356 	UNP_LIST_UNLOCK();
2357 	UNP_LINK_RUNLOCK();
2358 
2359 	/*
2360 	 * Now flush all sockets, free'ing rights.  This will free the
2361 	 * struct files associated with these sockets but leave each socket
2362 	 * with one remaining ref.
2363 	 */
2364 	for (i = 0; i < total; i++) {
2365 		struct socket *so;
2366 
2367 		so = unref[i]->f_data;
2368 		CURVNET_SET(so->so_vnet);
2369 		sorflush(so);
2370 		CURVNET_RESTORE();
2371 	}
2372 
2373 	/*
2374 	 * And finally release the sockets so they can be reclaimed.
2375 	 */
2376 	for (i = 0; i < total; i++)
2377 		fdrop(unref[i], NULL);
2378 	unp_recycled += total;
2379 	free(unref, M_TEMP);
2380 }
2381 
2382 static void
2383 unp_dispose_mbuf(struct mbuf *m)
2384 {
2385 
2386 	if (m)
2387 		unp_scan(m, unp_freerights);
2388 }
2389 
2390 /*
2391  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2392  */
2393 static void
2394 unp_dispose(struct socket *so)
2395 {
2396 	struct unpcb *unp;
2397 
2398 	unp = sotounpcb(so);
2399 	UNP_LIST_LOCK();
2400 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2401 	UNP_LIST_UNLOCK();
2402 	unp_dispose_mbuf(so->so_rcv.sb_mb);
2403 }
2404 
2405 static void
2406 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2407 {
2408 	struct mbuf *m;
2409 	struct cmsghdr *cm;
2410 	void *data;
2411 	socklen_t clen, datalen;
2412 
2413 	while (m0 != NULL) {
2414 		for (m = m0; m; m = m->m_next) {
2415 			if (m->m_type != MT_CONTROL)
2416 				continue;
2417 
2418 			cm = mtod(m, struct cmsghdr *);
2419 			clen = m->m_len;
2420 
2421 			while (cm != NULL) {
2422 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2423 					break;
2424 
2425 				data = CMSG_DATA(cm);
2426 				datalen = (caddr_t)cm + cm->cmsg_len
2427 				    - (caddr_t)data;
2428 
2429 				if (cm->cmsg_level == SOL_SOCKET &&
2430 				    cm->cmsg_type == SCM_RIGHTS) {
2431 					(*op)(data, datalen /
2432 					    sizeof(struct filedescent *));
2433 				}
2434 
2435 				if (CMSG_SPACE(datalen) < clen) {
2436 					clen -= CMSG_SPACE(datalen);
2437 					cm = (struct cmsghdr *)
2438 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2439 				} else {
2440 					clen = 0;
2441 					cm = NULL;
2442 				}
2443 			}
2444 		}
2445 		m0 = m0->m_nextpkt;
2446 	}
2447 }
2448 
2449 /*
2450  * A helper function called by VFS before socket-type vnode reclamation.
2451  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2452  * use count.
2453  */
2454 void
2455 vfs_unp_reclaim(struct vnode *vp)
2456 {
2457 	struct socket *so;
2458 	struct unpcb *unp;
2459 	int active;
2460 
2461 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2462 	KASSERT(vp->v_type == VSOCK,
2463 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2464 
2465 	active = 0;
2466 	UNP_LINK_WLOCK();
2467 	VOP_UNP_CONNECT(vp, &so);
2468 	if (so == NULL)
2469 		goto done;
2470 	unp = sotounpcb(so);
2471 	if (unp == NULL)
2472 		goto done;
2473 	UNP_PCB_LOCK(unp);
2474 	if (unp->unp_vnode == vp) {
2475 		VOP_UNP_DETACH(vp);
2476 		unp->unp_vnode = NULL;
2477 		active = 1;
2478 	}
2479 	UNP_PCB_UNLOCK(unp);
2480 done:
2481 	UNP_LINK_WUNLOCK();
2482 	if (active)
2483 		vunref(vp);
2484 }
2485 
2486 #ifdef DDB
2487 static void
2488 db_print_indent(int indent)
2489 {
2490 	int i;
2491 
2492 	for (i = 0; i < indent; i++)
2493 		db_printf(" ");
2494 }
2495 
2496 static void
2497 db_print_unpflags(int unp_flags)
2498 {
2499 	int comma;
2500 
2501 	comma = 0;
2502 	if (unp_flags & UNP_HAVEPC) {
2503 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2504 		comma = 1;
2505 	}
2506 	if (unp_flags & UNP_HAVEPCCACHED) {
2507 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2508 		comma = 1;
2509 	}
2510 	if (unp_flags & UNP_WANTCRED) {
2511 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2512 		comma = 1;
2513 	}
2514 	if (unp_flags & UNP_CONNWAIT) {
2515 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2516 		comma = 1;
2517 	}
2518 	if (unp_flags & UNP_CONNECTING) {
2519 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2520 		comma = 1;
2521 	}
2522 	if (unp_flags & UNP_BINDING) {
2523 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2524 		comma = 1;
2525 	}
2526 }
2527 
2528 static void
2529 db_print_xucred(int indent, struct xucred *xu)
2530 {
2531 	int comma, i;
2532 
2533 	db_print_indent(indent);
2534 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2535 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2536 	db_print_indent(indent);
2537 	db_printf("cr_groups: ");
2538 	comma = 0;
2539 	for (i = 0; i < xu->cr_ngroups; i++) {
2540 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2541 		comma = 1;
2542 	}
2543 	db_printf("\n");
2544 }
2545 
2546 static void
2547 db_print_unprefs(int indent, struct unp_head *uh)
2548 {
2549 	struct unpcb *unp;
2550 	int counter;
2551 
2552 	counter = 0;
2553 	LIST_FOREACH(unp, uh, unp_reflink) {
2554 		if (counter % 4 == 0)
2555 			db_print_indent(indent);
2556 		db_printf("%p  ", unp);
2557 		if (counter % 4 == 3)
2558 			db_printf("\n");
2559 		counter++;
2560 	}
2561 	if (counter != 0 && counter % 4 != 0)
2562 		db_printf("\n");
2563 }
2564 
2565 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2566 {
2567 	struct unpcb *unp;
2568 
2569         if (!have_addr) {
2570                 db_printf("usage: show unpcb <addr>\n");
2571                 return;
2572         }
2573         unp = (struct unpcb *)addr;
2574 
2575 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2576 	    unp->unp_vnode);
2577 
2578 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2579 	    unp->unp_conn);
2580 
2581 	db_printf("unp_refs:\n");
2582 	db_print_unprefs(2, &unp->unp_refs);
2583 
2584 	/* XXXRW: Would be nice to print the full address, if any. */
2585 	db_printf("unp_addr: %p\n", unp->unp_addr);
2586 
2587 	db_printf("unp_gencnt: %llu\n",
2588 	    (unsigned long long)unp->unp_gencnt);
2589 
2590 	db_printf("unp_flags: %x (", unp->unp_flags);
2591 	db_print_unpflags(unp->unp_flags);
2592 	db_printf(")\n");
2593 
2594 	db_printf("unp_peercred:\n");
2595 	db_print_xucred(2, &unp->unp_peercred);
2596 
2597 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2598 }
2599 #endif
2600