xref: /freebsd/sys/kern/uipc_usrreq.c (revision 8f861da99cb9865b2f1ef6098ad074150f368c23)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	distinguish datagram size limits from flow control limits in SEQPACKET
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 /*
105  * Locking key:
106  * (l)	Locked using list lock
107  * (g)	Locked using linkage lock
108  */
109 
110 static uma_zone_t	unp_zone;
111 static unp_gen_t	unp_gencnt;	/* (l) */
112 static u_int		unp_count;	/* (l) Count of local sockets. */
113 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114 static int		unp_rights;	/* (g) File descriptors in flight. */
115 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118 
119 struct unp_defer {
120 	SLIST_ENTRY(unp_defer) ud_link;
121 	struct file *ud_fp;
122 };
123 static SLIST_HEAD(, unp_defer) unp_defers;
124 static int unp_defers_count;
125 
126 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct task	unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158 static u_long	unpdg_recvspace = 4*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163 SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
164 SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
165 SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
166     "SOCK_SEQPACKET");
167 
168 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
169 	   &unpst_sendspace, 0, "Default stream send space.");
170 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
171 	   &unpst_recvspace, 0, "Default stream receive space.");
172 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
173 	   &unpdg_sendspace, 0, "Default datagram send space.");
174 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
175 	   &unpdg_recvspace, 0, "Default datagram receive space.");
176 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
177 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
178 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
180 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
181     "File descriptors in flight.");
182 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
183     &unp_defers_count, 0,
184     "File descriptors deferred to taskqueue for close.");
185 
186 /*
187  * Locking and synchronization:
188  *
189  * Three types of locks exit in the local domain socket implementation: a
190  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
191  * global locks, the list lock protects the socket count, global generation
192  * number, and stream/datagram global lists.  The linkage lock protects the
193  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
194  * held exclusively over the acquisition of multiple unpcb locks to prevent
195  * deadlock.
196  *
197  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
198  * allocated in pru_attach() and freed in pru_detach().  The validity of that
199  * pointer is an invariant, so no lock is required to dereference the so_pcb
200  * pointer if a valid socket reference is held by the caller.  In practice,
201  * this is always true during operations performed on a socket.  Each unpcb
202  * has a back-pointer to its socket, unp_socket, which will be stable under
203  * the same circumstances.
204  *
205  * This pointer may only be safely dereferenced as long as a valid reference
206  * to the unpcb is held.  Typically, this reference will be from the socket,
207  * or from another unpcb when the referring unpcb's lock is held (in order
208  * that the reference not be invalidated during use).  For example, to follow
209  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
210  * as unp_socket remains valid as long as the reference to unp_conn is valid.
211  *
212  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
213  * atomic reads without the lock may be performed "lockless", but more
214  * complex reads and read-modify-writes require the mutex to be held.  No
215  * lock order is defined between unpcb locks -- multiple unpcb locks may be
216  * acquired at the same time only when holding the linkage rwlock
217  * exclusively, which prevents deadlocks.
218  *
219  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
220  * protocols, bind() is a non-atomic operation, and connect() requires
221  * potential sleeping in the protocol, due to potentially waiting on local or
222  * distributed file systems.  We try to separate "lookup" operations, which
223  * may sleep, and the IPC operations themselves, which typically can occur
224  * with relative atomicity as locks can be held over the entire operation.
225  *
226  * Another tricky issue is simultaneous multi-threaded or multi-process
227  * access to a single UNIX domain socket.  These are handled by the flags
228  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
229  * binding, both of which involve dropping UNIX domain socket locks in order
230  * to perform namei() and other file system operations.
231  */
232 static struct rwlock	unp_link_rwlock;
233 static struct mtx	unp_list_lock;
234 static struct mtx	unp_defers_lock;
235 
236 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
237 					    "unp_link_rwlock")
238 
239 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
240 					    RA_LOCKED)
241 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
242 					    RA_UNLOCKED)
243 
244 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
245 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
246 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
247 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
248 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
249 					    RA_WLOCKED)
250 
251 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
252 					    "unp_list_lock", NULL, MTX_DEF)
253 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
254 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
255 
256 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
257 					    "unp_defer", NULL, MTX_DEF)
258 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
259 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
260 
261 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
262 					    "unp_mtx", "unp_mtx",	\
263 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
264 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
265 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
266 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
267 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
268 
269 static int	uipc_connect2(struct socket *, struct socket *);
270 static int	uipc_ctloutput(struct socket *, struct sockopt *);
271 static int	unp_connect(struct socket *, struct sockaddr *,
272 		    struct thread *);
273 static int	unp_connect2(struct socket *so, struct socket *so2, int);
274 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
275 static void	unp_dispose(struct mbuf *);
276 static void	unp_shutdown(struct unpcb *);
277 static void	unp_drop(struct unpcb *, int);
278 static void	unp_gc(__unused void *, int);
279 static void	unp_scan(struct mbuf *, void (*)(struct file *));
280 static void	unp_discard(struct file *);
281 static void	unp_freerights(struct file **, int);
282 static void	unp_init(void);
283 static int	unp_internalize(struct mbuf **, struct thread *);
284 static void	unp_internalize_fp(struct file *);
285 static int	unp_externalize(struct mbuf *, struct mbuf **);
286 static int	unp_externalize_fp(struct file *);
287 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
288 static void	unp_process_defers(void * __unused, int);
289 
290 /*
291  * Definitions of protocols supported in the LOCAL domain.
292  */
293 static struct domain localdomain;
294 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
295 static struct pr_usrreqs uipc_usrreqs_seqpacket;
296 static struct protosw localsw[] = {
297 {
298 	.pr_type =		SOCK_STREAM,
299 	.pr_domain =		&localdomain,
300 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
301 	.pr_ctloutput =		&uipc_ctloutput,
302 	.pr_usrreqs =		&uipc_usrreqs_stream
303 },
304 {
305 	.pr_type =		SOCK_DGRAM,
306 	.pr_domain =		&localdomain,
307 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
308 	.pr_usrreqs =		&uipc_usrreqs_dgram
309 },
310 {
311 	.pr_type =		SOCK_SEQPACKET,
312 	.pr_domain =		&localdomain,
313 
314 	/*
315 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
316 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
317 	 * that supports both atomic record writes and control data.
318 	 */
319 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
320 				    PR_RIGHTS,
321 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
322 },
323 };
324 
325 static struct domain localdomain = {
326 	.dom_family =		AF_LOCAL,
327 	.dom_name =		"local",
328 	.dom_init =		unp_init,
329 	.dom_externalize =	unp_externalize,
330 	.dom_dispose =		unp_dispose,
331 	.dom_protosw =		localsw,
332 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
333 };
334 DOMAIN_SET(local);
335 
336 static void
337 uipc_abort(struct socket *so)
338 {
339 	struct unpcb *unp, *unp2;
340 
341 	unp = sotounpcb(so);
342 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
343 
344 	UNP_LINK_WLOCK();
345 	UNP_PCB_LOCK(unp);
346 	unp2 = unp->unp_conn;
347 	if (unp2 != NULL) {
348 		UNP_PCB_LOCK(unp2);
349 		unp_drop(unp2, ECONNABORTED);
350 		UNP_PCB_UNLOCK(unp2);
351 	}
352 	UNP_PCB_UNLOCK(unp);
353 	UNP_LINK_WUNLOCK();
354 }
355 
356 static int
357 uipc_accept(struct socket *so, struct sockaddr **nam)
358 {
359 	struct unpcb *unp, *unp2;
360 	const struct sockaddr *sa;
361 
362 	/*
363 	 * Pass back name of connected socket, if it was bound and we are
364 	 * still connected (our peer may have closed already!).
365 	 */
366 	unp = sotounpcb(so);
367 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
368 
369 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
370 	UNP_LINK_RLOCK();
371 	unp2 = unp->unp_conn;
372 	if (unp2 != NULL && unp2->unp_addr != NULL) {
373 		UNP_PCB_LOCK(unp2);
374 		sa = (struct sockaddr *) unp2->unp_addr;
375 		bcopy(sa, *nam, sa->sa_len);
376 		UNP_PCB_UNLOCK(unp2);
377 	} else {
378 		sa = &sun_noname;
379 		bcopy(sa, *nam, sa->sa_len);
380 	}
381 	UNP_LINK_RUNLOCK();
382 	return (0);
383 }
384 
385 static int
386 uipc_attach(struct socket *so, int proto, struct thread *td)
387 {
388 	u_long sendspace, recvspace;
389 	struct unpcb *unp;
390 	int error;
391 
392 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
393 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
394 		switch (so->so_type) {
395 		case SOCK_STREAM:
396 			sendspace = unpst_sendspace;
397 			recvspace = unpst_recvspace;
398 			break;
399 
400 		case SOCK_DGRAM:
401 			sendspace = unpdg_sendspace;
402 			recvspace = unpdg_recvspace;
403 			break;
404 
405 		case SOCK_SEQPACKET:
406 			sendspace = unpsp_sendspace;
407 			recvspace = unpsp_recvspace;
408 			break;
409 
410 		default:
411 			panic("uipc_attach");
412 		}
413 		error = soreserve(so, sendspace, recvspace);
414 		if (error)
415 			return (error);
416 	}
417 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
418 	if (unp == NULL)
419 		return (ENOBUFS);
420 	LIST_INIT(&unp->unp_refs);
421 	UNP_PCB_LOCK_INIT(unp);
422 	unp->unp_socket = so;
423 	so->so_pcb = unp;
424 	unp->unp_refcount = 1;
425 
426 	UNP_LIST_LOCK();
427 	unp->unp_gencnt = ++unp_gencnt;
428 	unp_count++;
429 	switch (so->so_type) {
430 	case SOCK_STREAM:
431 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
432 		break;
433 
434 	case SOCK_DGRAM:
435 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
436 		break;
437 
438 	case SOCK_SEQPACKET:
439 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
440 		break;
441 
442 	default:
443 		panic("uipc_attach");
444 	}
445 	UNP_LIST_UNLOCK();
446 
447 	return (0);
448 }
449 
450 static int
451 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
452 {
453 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
454 	struct vattr vattr;
455 	int error, namelen, vfslocked;
456 	struct nameidata nd;
457 	struct unpcb *unp;
458 	struct vnode *vp;
459 	struct mount *mp;
460 	char *buf;
461 
462 	unp = sotounpcb(so);
463 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
464 
465 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
466 	if (namelen <= 0)
467 		return (EINVAL);
468 
469 	/*
470 	 * We don't allow simultaneous bind() calls on a single UNIX domain
471 	 * socket, so flag in-progress operations, and return an error if an
472 	 * operation is already in progress.
473 	 *
474 	 * Historically, we have not allowed a socket to be rebound, so this
475 	 * also returns an error.  Not allowing re-binding simplifies the
476 	 * implementation and avoids a great many possible failure modes.
477 	 */
478 	UNP_PCB_LOCK(unp);
479 	if (unp->unp_vnode != NULL) {
480 		UNP_PCB_UNLOCK(unp);
481 		return (EINVAL);
482 	}
483 	if (unp->unp_flags & UNP_BINDING) {
484 		UNP_PCB_UNLOCK(unp);
485 		return (EALREADY);
486 	}
487 	unp->unp_flags |= UNP_BINDING;
488 	UNP_PCB_UNLOCK(unp);
489 
490 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
491 	bcopy(soun->sun_path, buf, namelen);
492 	buf[namelen] = 0;
493 
494 restart:
495 	vfslocked = 0;
496 	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
497 	    UIO_SYSSPACE, buf, td);
498 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
499 	error = namei(&nd);
500 	if (error)
501 		goto error;
502 	vp = nd.ni_vp;
503 	vfslocked = NDHASGIANT(&nd);
504 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
505 		NDFREE(&nd, NDF_ONLY_PNBUF);
506 		if (nd.ni_dvp == vp)
507 			vrele(nd.ni_dvp);
508 		else
509 			vput(nd.ni_dvp);
510 		if (vp != NULL) {
511 			vrele(vp);
512 			error = EADDRINUSE;
513 			goto error;
514 		}
515 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
516 		if (error)
517 			goto error;
518 		VFS_UNLOCK_GIANT(vfslocked);
519 		goto restart;
520 	}
521 	VATTR_NULL(&vattr);
522 	vattr.va_type = VSOCK;
523 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
524 #ifdef MAC
525 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
526 	    &vattr);
527 #endif
528 	if (error == 0)
529 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
530 	NDFREE(&nd, NDF_ONLY_PNBUF);
531 	vput(nd.ni_dvp);
532 	if (error) {
533 		vn_finished_write(mp);
534 		goto error;
535 	}
536 	vp = nd.ni_vp;
537 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
538 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
539 
540 	UNP_LINK_WLOCK();
541 	UNP_PCB_LOCK(unp);
542 	vp->v_socket = unp->unp_socket;
543 	unp->unp_vnode = vp;
544 	unp->unp_addr = soun;
545 	unp->unp_flags &= ~UNP_BINDING;
546 	UNP_PCB_UNLOCK(unp);
547 	UNP_LINK_WUNLOCK();
548 	VOP_UNLOCK(vp, 0);
549 	vn_finished_write(mp);
550 	VFS_UNLOCK_GIANT(vfslocked);
551 	free(buf, M_TEMP);
552 	return (0);
553 
554 error:
555 	VFS_UNLOCK_GIANT(vfslocked);
556 	UNP_PCB_LOCK(unp);
557 	unp->unp_flags &= ~UNP_BINDING;
558 	UNP_PCB_UNLOCK(unp);
559 	free(buf, M_TEMP);
560 	return (error);
561 }
562 
563 static int
564 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
565 {
566 	int error;
567 
568 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
569 	UNP_LINK_WLOCK();
570 	error = unp_connect(so, nam, td);
571 	UNP_LINK_WUNLOCK();
572 	return (error);
573 }
574 
575 static void
576 uipc_close(struct socket *so)
577 {
578 	struct unpcb *unp, *unp2;
579 
580 	unp = sotounpcb(so);
581 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
582 
583 	UNP_LINK_WLOCK();
584 	UNP_PCB_LOCK(unp);
585 	unp2 = unp->unp_conn;
586 	if (unp2 != NULL) {
587 		UNP_PCB_LOCK(unp2);
588 		unp_disconnect(unp, unp2);
589 		UNP_PCB_UNLOCK(unp2);
590 	}
591 	UNP_PCB_UNLOCK(unp);
592 	UNP_LINK_WUNLOCK();
593 }
594 
595 static int
596 uipc_connect2(struct socket *so1, struct socket *so2)
597 {
598 	struct unpcb *unp, *unp2;
599 	int error;
600 
601 	UNP_LINK_WLOCK();
602 	unp = so1->so_pcb;
603 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
604 	UNP_PCB_LOCK(unp);
605 	unp2 = so2->so_pcb;
606 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
607 	UNP_PCB_LOCK(unp2);
608 	error = unp_connect2(so1, so2, PRU_CONNECT2);
609 	UNP_PCB_UNLOCK(unp2);
610 	UNP_PCB_UNLOCK(unp);
611 	UNP_LINK_WUNLOCK();
612 	return (error);
613 }
614 
615 static void
616 uipc_detach(struct socket *so)
617 {
618 	struct unpcb *unp, *unp2;
619 	struct sockaddr_un *saved_unp_addr;
620 	struct vnode *vp;
621 	int freeunp, local_unp_rights;
622 
623 	unp = sotounpcb(so);
624 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
625 
626 	UNP_LINK_WLOCK();
627 	UNP_LIST_LOCK();
628 	UNP_PCB_LOCK(unp);
629 	LIST_REMOVE(unp, unp_link);
630 	unp->unp_gencnt = ++unp_gencnt;
631 	--unp_count;
632 	UNP_LIST_UNLOCK();
633 
634 	/*
635 	 * XXXRW: Should assert vp->v_socket == so.
636 	 */
637 	if ((vp = unp->unp_vnode) != NULL) {
638 		unp->unp_vnode->v_socket = NULL;
639 		unp->unp_vnode = NULL;
640 	}
641 	unp2 = unp->unp_conn;
642 	if (unp2 != NULL) {
643 		UNP_PCB_LOCK(unp2);
644 		unp_disconnect(unp, unp2);
645 		UNP_PCB_UNLOCK(unp2);
646 	}
647 
648 	/*
649 	 * We hold the linkage lock exclusively, so it's OK to acquire
650 	 * multiple pcb locks at a time.
651 	 */
652 	while (!LIST_EMPTY(&unp->unp_refs)) {
653 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
654 
655 		UNP_PCB_LOCK(ref);
656 		unp_drop(ref, ECONNRESET);
657 		UNP_PCB_UNLOCK(ref);
658 	}
659 	local_unp_rights = unp_rights;
660 	UNP_LINK_WUNLOCK();
661 	unp->unp_socket->so_pcb = NULL;
662 	saved_unp_addr = unp->unp_addr;
663 	unp->unp_addr = NULL;
664 	unp->unp_refcount--;
665 	freeunp = (unp->unp_refcount == 0);
666 	if (saved_unp_addr != NULL)
667 		free(saved_unp_addr, M_SONAME);
668 	if (freeunp) {
669 		UNP_PCB_LOCK_DESTROY(unp);
670 		uma_zfree(unp_zone, unp);
671 	} else
672 		UNP_PCB_UNLOCK(unp);
673 	if (vp) {
674 		int vfslocked;
675 
676 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
677 		vrele(vp);
678 		VFS_UNLOCK_GIANT(vfslocked);
679 	}
680 	if (local_unp_rights)
681 		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
682 }
683 
684 static int
685 uipc_disconnect(struct socket *so)
686 {
687 	struct unpcb *unp, *unp2;
688 
689 	unp = sotounpcb(so);
690 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
691 
692 	UNP_LINK_WLOCK();
693 	UNP_PCB_LOCK(unp);
694 	unp2 = unp->unp_conn;
695 	if (unp2 != NULL) {
696 		UNP_PCB_LOCK(unp2);
697 		unp_disconnect(unp, unp2);
698 		UNP_PCB_UNLOCK(unp2);
699 	}
700 	UNP_PCB_UNLOCK(unp);
701 	UNP_LINK_WUNLOCK();
702 	return (0);
703 }
704 
705 static int
706 uipc_listen(struct socket *so, int backlog, struct thread *td)
707 {
708 	struct unpcb *unp;
709 	int error;
710 
711 	unp = sotounpcb(so);
712 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
713 
714 	UNP_PCB_LOCK(unp);
715 	if (unp->unp_vnode == NULL) {
716 		UNP_PCB_UNLOCK(unp);
717 		return (EINVAL);
718 	}
719 
720 	SOCK_LOCK(so);
721 	error = solisten_proto_check(so);
722 	if (error == 0) {
723 		cru2x(td->td_ucred, &unp->unp_peercred);
724 		unp->unp_flags |= UNP_HAVEPCCACHED;
725 		solisten_proto(so, backlog);
726 	}
727 	SOCK_UNLOCK(so);
728 	UNP_PCB_UNLOCK(unp);
729 	return (error);
730 }
731 
732 static int
733 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
734 {
735 	struct unpcb *unp, *unp2;
736 	const struct sockaddr *sa;
737 
738 	unp = sotounpcb(so);
739 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
740 
741 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
742 	UNP_LINK_RLOCK();
743 	/*
744 	 * XXX: It seems that this test always fails even when connection is
745 	 * established.  So, this else clause is added as workaround to
746 	 * return PF_LOCAL sockaddr.
747 	 */
748 	unp2 = unp->unp_conn;
749 	if (unp2 != NULL) {
750 		UNP_PCB_LOCK(unp2);
751 		if (unp2->unp_addr != NULL)
752 			sa = (struct sockaddr *) unp2->unp_addr;
753 		else
754 			sa = &sun_noname;
755 		bcopy(sa, *nam, sa->sa_len);
756 		UNP_PCB_UNLOCK(unp2);
757 	} else {
758 		sa = &sun_noname;
759 		bcopy(sa, *nam, sa->sa_len);
760 	}
761 	UNP_LINK_RUNLOCK();
762 	return (0);
763 }
764 
765 static int
766 uipc_rcvd(struct socket *so, int flags)
767 {
768 	struct unpcb *unp, *unp2;
769 	struct socket *so2;
770 	u_int mbcnt, sbcc;
771 	u_long newhiwat;
772 
773 	unp = sotounpcb(so);
774 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
775 
776 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
777 		panic("uipc_rcvd socktype %d", so->so_type);
778 
779 	/*
780 	 * Adjust backpressure on sender and wakeup any waiting to write.
781 	 *
782 	 * The unp lock is acquired to maintain the validity of the unp_conn
783 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
784 	 * static as long as we don't permit unp2 to disconnect from unp,
785 	 * which is prevented by the lock on unp.  We cache values from
786 	 * so_rcv to avoid holding the so_rcv lock over the entire
787 	 * transaction on the remote so_snd.
788 	 */
789 	SOCKBUF_LOCK(&so->so_rcv);
790 	mbcnt = so->so_rcv.sb_mbcnt;
791 	sbcc = so->so_rcv.sb_cc;
792 	SOCKBUF_UNLOCK(&so->so_rcv);
793 	UNP_PCB_LOCK(unp);
794 	unp2 = unp->unp_conn;
795 	if (unp2 == NULL) {
796 		UNP_PCB_UNLOCK(unp);
797 		return (0);
798 	}
799 	so2 = unp2->unp_socket;
800 	SOCKBUF_LOCK(&so2->so_snd);
801 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
802 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
803 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
804 	    newhiwat, RLIM_INFINITY);
805 	sowwakeup_locked(so2);
806 	unp->unp_mbcnt = mbcnt;
807 	unp->unp_cc = sbcc;
808 	UNP_PCB_UNLOCK(unp);
809 	return (0);
810 }
811 
812 static int
813 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
814     struct mbuf *control, struct thread *td)
815 {
816 	struct unpcb *unp, *unp2;
817 	struct socket *so2;
818 	u_int mbcnt_delta, sbcc;
819 	u_long newhiwat;
820 	int error = 0;
821 
822 	unp = sotounpcb(so);
823 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
824 
825 	if (flags & PRUS_OOB) {
826 		error = EOPNOTSUPP;
827 		goto release;
828 	}
829 	if (control != NULL && (error = unp_internalize(&control, td)))
830 		goto release;
831 	if ((nam != NULL) || (flags & PRUS_EOF))
832 		UNP_LINK_WLOCK();
833 	else
834 		UNP_LINK_RLOCK();
835 	switch (so->so_type) {
836 	case SOCK_DGRAM:
837 	{
838 		const struct sockaddr *from;
839 
840 		unp2 = unp->unp_conn;
841 		if (nam != NULL) {
842 			UNP_LINK_WLOCK_ASSERT();
843 			if (unp2 != NULL) {
844 				error = EISCONN;
845 				break;
846 			}
847 			error = unp_connect(so, nam, td);
848 			if (error)
849 				break;
850 			unp2 = unp->unp_conn;
851 		}
852 
853 		/*
854 		 * Because connect() and send() are non-atomic in a sendto()
855 		 * with a target address, it's possible that the socket will
856 		 * have disconnected before the send() can run.  In that case
857 		 * return the slightly counter-intuitive but otherwise
858 		 * correct error that the socket is not connected.
859 		 */
860 		if (unp2 == NULL) {
861 			error = ENOTCONN;
862 			break;
863 		}
864 		/* Lockless read. */
865 		if (unp2->unp_flags & UNP_WANTCRED)
866 			control = unp_addsockcred(td, control);
867 		UNP_PCB_LOCK(unp);
868 		if (unp->unp_addr != NULL)
869 			from = (struct sockaddr *)unp->unp_addr;
870 		else
871 			from = &sun_noname;
872 		so2 = unp2->unp_socket;
873 		SOCKBUF_LOCK(&so2->so_rcv);
874 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
875 			sorwakeup_locked(so2);
876 			m = NULL;
877 			control = NULL;
878 		} else {
879 			SOCKBUF_UNLOCK(&so2->so_rcv);
880 			error = ENOBUFS;
881 		}
882 		if (nam != NULL) {
883 			UNP_LINK_WLOCK_ASSERT();
884 			UNP_PCB_LOCK(unp2);
885 			unp_disconnect(unp, unp2);
886 			UNP_PCB_UNLOCK(unp2);
887 		}
888 		UNP_PCB_UNLOCK(unp);
889 		break;
890 	}
891 
892 	case SOCK_SEQPACKET:
893 	case SOCK_STREAM:
894 		if ((so->so_state & SS_ISCONNECTED) == 0) {
895 			if (nam != NULL) {
896 				UNP_LINK_WLOCK_ASSERT();
897 				error = unp_connect(so, nam, td);
898 				if (error)
899 					break;	/* XXX */
900 			} else {
901 				error = ENOTCONN;
902 				break;
903 			}
904 		}
905 
906 		/* Lockless read. */
907 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
908 			error = EPIPE;
909 			break;
910 		}
911 
912 		/*
913 		 * Because connect() and send() are non-atomic in a sendto()
914 		 * with a target address, it's possible that the socket will
915 		 * have disconnected before the send() can run.  In that case
916 		 * return the slightly counter-intuitive but otherwise
917 		 * correct error that the socket is not connected.
918 		 *
919 		 * Locking here must be done carefully: the linkage lock
920 		 * prevents interconnections between unpcbs from changing, so
921 		 * we can traverse from unp to unp2 without acquiring unp's
922 		 * lock.  Socket buffer locks follow unpcb locks, so we can
923 		 * acquire both remote and lock socket buffer locks.
924 		 */
925 		unp2 = unp->unp_conn;
926 		if (unp2 == NULL) {
927 			error = ENOTCONN;
928 			break;
929 		}
930 		so2 = unp2->unp_socket;
931 		UNP_PCB_LOCK(unp2);
932 		SOCKBUF_LOCK(&so2->so_rcv);
933 		if (unp2->unp_flags & UNP_WANTCRED) {
934 			/*
935 			 * Credentials are passed only once on SOCK_STREAM.
936 			 */
937 			unp2->unp_flags &= ~UNP_WANTCRED;
938 			control = unp_addsockcred(td, control);
939 		}
940 		/*
941 		 * Send to paired receive port, and then reduce send buffer
942 		 * hiwater marks to maintain backpressure.  Wake up readers.
943 		 */
944 		switch (so->so_type) {
945 		case SOCK_STREAM:
946 			if (control != NULL) {
947 				if (sbappendcontrol_locked(&so2->so_rcv, m,
948 				    control))
949 					control = NULL;
950 			} else
951 				sbappend_locked(&so2->so_rcv, m);
952 			break;
953 
954 		case SOCK_SEQPACKET: {
955 			const struct sockaddr *from;
956 
957 			from = &sun_noname;
958 			if (sbappendaddr_locked(&so2->so_rcv, from, m,
959 			    control))
960 				control = NULL;
961 			break;
962 			}
963 		}
964 
965 		/*
966 		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
967 		 * datagram size and back-pressure for SOCK_SEQPACKET, which
968 		 * can lead to undesired return of EMSGSIZE on send instead
969 		 * of more desirable blocking.
970 		 */
971 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
972 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
973 		sbcc = so2->so_rcv.sb_cc;
974 		sorwakeup_locked(so2);
975 
976 		SOCKBUF_LOCK(&so->so_snd);
977 		newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
978 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
979 		    newhiwat, RLIM_INFINITY);
980 		so->so_snd.sb_mbmax -= mbcnt_delta;
981 		SOCKBUF_UNLOCK(&so->so_snd);
982 		unp2->unp_cc = sbcc;
983 		UNP_PCB_UNLOCK(unp2);
984 		m = NULL;
985 		break;
986 
987 	default:
988 		panic("uipc_send unknown socktype");
989 	}
990 
991 	/*
992 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
993 	 */
994 	if (flags & PRUS_EOF) {
995 		UNP_PCB_LOCK(unp);
996 		socantsendmore(so);
997 		unp_shutdown(unp);
998 		UNP_PCB_UNLOCK(unp);
999 	}
1000 
1001 	if ((nam != NULL) || (flags & PRUS_EOF))
1002 		UNP_LINK_WUNLOCK();
1003 	else
1004 		UNP_LINK_RUNLOCK();
1005 
1006 	if (control != NULL && error != 0)
1007 		unp_dispose(control);
1008 
1009 release:
1010 	if (control != NULL)
1011 		m_freem(control);
1012 	if (m != NULL)
1013 		m_freem(m);
1014 	return (error);
1015 }
1016 
1017 static int
1018 uipc_sense(struct socket *so, struct stat *sb)
1019 {
1020 	struct unpcb *unp, *unp2;
1021 	struct socket *so2;
1022 
1023 	unp = sotounpcb(so);
1024 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1025 
1026 	sb->st_blksize = so->so_snd.sb_hiwat;
1027 	UNP_LINK_RLOCK();
1028 	UNP_PCB_LOCK(unp);
1029 	unp2 = unp->unp_conn;
1030 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1031 	    unp2 != NULL) {
1032 		so2 = unp2->unp_socket;
1033 		sb->st_blksize += so2->so_rcv.sb_cc;
1034 	}
1035 	sb->st_dev = NODEV;
1036 	if (unp->unp_ino == 0)
1037 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1038 	sb->st_ino = unp->unp_ino;
1039 	UNP_PCB_UNLOCK(unp);
1040 	UNP_LINK_RUNLOCK();
1041 	return (0);
1042 }
1043 
1044 static int
1045 uipc_shutdown(struct socket *so)
1046 {
1047 	struct unpcb *unp;
1048 
1049 	unp = sotounpcb(so);
1050 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1051 
1052 	UNP_LINK_WLOCK();
1053 	UNP_PCB_LOCK(unp);
1054 	socantsendmore(so);
1055 	unp_shutdown(unp);
1056 	UNP_PCB_UNLOCK(unp);
1057 	UNP_LINK_WUNLOCK();
1058 	return (0);
1059 }
1060 
1061 static int
1062 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1063 {
1064 	struct unpcb *unp;
1065 	const struct sockaddr *sa;
1066 
1067 	unp = sotounpcb(so);
1068 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1069 
1070 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1071 	UNP_PCB_LOCK(unp);
1072 	if (unp->unp_addr != NULL)
1073 		sa = (struct sockaddr *) unp->unp_addr;
1074 	else
1075 		sa = &sun_noname;
1076 	bcopy(sa, *nam, sa->sa_len);
1077 	UNP_PCB_UNLOCK(unp);
1078 	return (0);
1079 }
1080 
1081 static struct pr_usrreqs uipc_usrreqs_dgram = {
1082 	.pru_abort = 		uipc_abort,
1083 	.pru_accept =		uipc_accept,
1084 	.pru_attach =		uipc_attach,
1085 	.pru_bind =		uipc_bind,
1086 	.pru_connect =		uipc_connect,
1087 	.pru_connect2 =		uipc_connect2,
1088 	.pru_detach =		uipc_detach,
1089 	.pru_disconnect =	uipc_disconnect,
1090 	.pru_listen =		uipc_listen,
1091 	.pru_peeraddr =		uipc_peeraddr,
1092 	.pru_rcvd =		uipc_rcvd,
1093 	.pru_send =		uipc_send,
1094 	.pru_sense =		uipc_sense,
1095 	.pru_shutdown =		uipc_shutdown,
1096 	.pru_sockaddr =		uipc_sockaddr,
1097 	.pru_soreceive =	soreceive_dgram,
1098 	.pru_close =		uipc_close,
1099 };
1100 
1101 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1102 	.pru_abort =		uipc_abort,
1103 	.pru_accept =		uipc_accept,
1104 	.pru_attach =		uipc_attach,
1105 	.pru_bind =		uipc_bind,
1106 	.pru_connect =		uipc_connect,
1107 	.pru_connect2 =		uipc_connect2,
1108 	.pru_detach =		uipc_detach,
1109 	.pru_disconnect =	uipc_disconnect,
1110 	.pru_listen =		uipc_listen,
1111 	.pru_peeraddr =		uipc_peeraddr,
1112 	.pru_rcvd =		uipc_rcvd,
1113 	.pru_send =		uipc_send,
1114 	.pru_sense =		uipc_sense,
1115 	.pru_shutdown =		uipc_shutdown,
1116 	.pru_sockaddr =		uipc_sockaddr,
1117 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1118 	.pru_close =		uipc_close,
1119 };
1120 
1121 static struct pr_usrreqs uipc_usrreqs_stream = {
1122 	.pru_abort = 		uipc_abort,
1123 	.pru_accept =		uipc_accept,
1124 	.pru_attach =		uipc_attach,
1125 	.pru_bind =		uipc_bind,
1126 	.pru_connect =		uipc_connect,
1127 	.pru_connect2 =		uipc_connect2,
1128 	.pru_detach =		uipc_detach,
1129 	.pru_disconnect =	uipc_disconnect,
1130 	.pru_listen =		uipc_listen,
1131 	.pru_peeraddr =		uipc_peeraddr,
1132 	.pru_rcvd =		uipc_rcvd,
1133 	.pru_send =		uipc_send,
1134 	.pru_sense =		uipc_sense,
1135 	.pru_shutdown =		uipc_shutdown,
1136 	.pru_sockaddr =		uipc_sockaddr,
1137 	.pru_soreceive =	soreceive_generic,
1138 	.pru_close =		uipc_close,
1139 };
1140 
1141 static int
1142 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1143 {
1144 	struct unpcb *unp;
1145 	struct xucred xu;
1146 	int error, optval;
1147 
1148 	if (sopt->sopt_level != 0)
1149 		return (EINVAL);
1150 
1151 	unp = sotounpcb(so);
1152 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1153 	error = 0;
1154 	switch (sopt->sopt_dir) {
1155 	case SOPT_GET:
1156 		switch (sopt->sopt_name) {
1157 		case LOCAL_PEERCRED:
1158 			UNP_PCB_LOCK(unp);
1159 			if (unp->unp_flags & UNP_HAVEPC)
1160 				xu = unp->unp_peercred;
1161 			else {
1162 				if (so->so_type == SOCK_STREAM)
1163 					error = ENOTCONN;
1164 				else
1165 					error = EINVAL;
1166 			}
1167 			UNP_PCB_UNLOCK(unp);
1168 			if (error == 0)
1169 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1170 			break;
1171 
1172 		case LOCAL_CREDS:
1173 			/* Unlocked read. */
1174 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1175 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1176 			break;
1177 
1178 		case LOCAL_CONNWAIT:
1179 			/* Unlocked read. */
1180 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1181 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1182 			break;
1183 
1184 		default:
1185 			error = EOPNOTSUPP;
1186 			break;
1187 		}
1188 		break;
1189 
1190 	case SOPT_SET:
1191 		switch (sopt->sopt_name) {
1192 		case LOCAL_CREDS:
1193 		case LOCAL_CONNWAIT:
1194 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1195 					    sizeof(optval));
1196 			if (error)
1197 				break;
1198 
1199 #define	OPTSET(bit) do {						\
1200 	UNP_PCB_LOCK(unp);						\
1201 	if (optval)							\
1202 		unp->unp_flags |= bit;					\
1203 	else								\
1204 		unp->unp_flags &= ~bit;					\
1205 	UNP_PCB_UNLOCK(unp);						\
1206 } while (0)
1207 
1208 			switch (sopt->sopt_name) {
1209 			case LOCAL_CREDS:
1210 				OPTSET(UNP_WANTCRED);
1211 				break;
1212 
1213 			case LOCAL_CONNWAIT:
1214 				OPTSET(UNP_CONNWAIT);
1215 				break;
1216 
1217 			default:
1218 				break;
1219 			}
1220 			break;
1221 #undef	OPTSET
1222 		default:
1223 			error = ENOPROTOOPT;
1224 			break;
1225 		}
1226 		break;
1227 
1228 	default:
1229 		error = EOPNOTSUPP;
1230 		break;
1231 	}
1232 	return (error);
1233 }
1234 
1235 static int
1236 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1237 {
1238 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1239 	struct vnode *vp;
1240 	struct socket *so2, *so3;
1241 	struct unpcb *unp, *unp2, *unp3;
1242 	int error, len, vfslocked;
1243 	struct nameidata nd;
1244 	char buf[SOCK_MAXADDRLEN];
1245 	struct sockaddr *sa;
1246 
1247 	UNP_LINK_WLOCK_ASSERT();
1248 
1249 	unp = sotounpcb(so);
1250 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1251 
1252 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1253 	if (len <= 0)
1254 		return (EINVAL);
1255 	bcopy(soun->sun_path, buf, len);
1256 	buf[len] = 0;
1257 
1258 	UNP_PCB_LOCK(unp);
1259 	if (unp->unp_flags & UNP_CONNECTING) {
1260 		UNP_PCB_UNLOCK(unp);
1261 		return (EALREADY);
1262 	}
1263 	UNP_LINK_WUNLOCK();
1264 	unp->unp_flags |= UNP_CONNECTING;
1265 	UNP_PCB_UNLOCK(unp);
1266 
1267 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1268 	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf,
1269 	    td);
1270 	error = namei(&nd);
1271 	if (error)
1272 		vp = NULL;
1273 	else
1274 		vp = nd.ni_vp;
1275 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1276 	vfslocked = NDHASGIANT(&nd);
1277 	NDFREE(&nd, NDF_ONLY_PNBUF);
1278 	if (error)
1279 		goto bad;
1280 
1281 	if (vp->v_type != VSOCK) {
1282 		error = ENOTSOCK;
1283 		goto bad;
1284 	}
1285 #ifdef MAC
1286 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1287 	if (error)
1288 		goto bad;
1289 #endif
1290 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1291 	if (error)
1292 		goto bad;
1293 	VFS_UNLOCK_GIANT(vfslocked);
1294 
1295 	unp = sotounpcb(so);
1296 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1297 
1298 	/*
1299 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1300 	 * and to protect simultaneous locking of multiple pcbs.
1301 	 */
1302 	UNP_LINK_WLOCK();
1303 	so2 = vp->v_socket;
1304 	if (so2 == NULL) {
1305 		error = ECONNREFUSED;
1306 		goto bad2;
1307 	}
1308 	if (so->so_type != so2->so_type) {
1309 		error = EPROTOTYPE;
1310 		goto bad2;
1311 	}
1312 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1313 		if (so2->so_options & SO_ACCEPTCONN) {
1314 			so3 = sonewconn(so2, 0);
1315 		} else
1316 			so3 = NULL;
1317 		if (so3 == NULL) {
1318 			error = ECONNREFUSED;
1319 			goto bad2;
1320 		}
1321 		unp = sotounpcb(so);
1322 		unp2 = sotounpcb(so2);
1323 		unp3 = sotounpcb(so3);
1324 		UNP_PCB_LOCK(unp);
1325 		UNP_PCB_LOCK(unp2);
1326 		UNP_PCB_LOCK(unp3);
1327 		if (unp2->unp_addr != NULL) {
1328 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1329 			unp3->unp_addr = (struct sockaddr_un *) sa;
1330 			sa = NULL;
1331 		}
1332 
1333 		/*
1334 		 * The connecter's (client's) credentials are copied from its
1335 		 * process structure at the time of connect() (which is now).
1336 		 */
1337 		cru2x(td->td_ucred, &unp3->unp_peercred);
1338 		unp3->unp_flags |= UNP_HAVEPC;
1339 
1340 		/*
1341 		 * The receiver's (server's) credentials are copied from the
1342 		 * unp_peercred member of socket on which the former called
1343 		 * listen(); uipc_listen() cached that process's credentials
1344 		 * at that time so we can use them now.
1345 		 */
1346 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1347 		    ("unp_connect: listener without cached peercred"));
1348 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1349 		    sizeof(unp->unp_peercred));
1350 		unp->unp_flags |= UNP_HAVEPC;
1351 		if (unp2->unp_flags & UNP_WANTCRED)
1352 			unp3->unp_flags |= UNP_WANTCRED;
1353 		UNP_PCB_UNLOCK(unp3);
1354 		UNP_PCB_UNLOCK(unp2);
1355 		UNP_PCB_UNLOCK(unp);
1356 #ifdef MAC
1357 		mac_socketpeer_set_from_socket(so, so3);
1358 		mac_socketpeer_set_from_socket(so3, so);
1359 #endif
1360 
1361 		so2 = so3;
1362 	}
1363 	unp = sotounpcb(so);
1364 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1365 	unp2 = sotounpcb(so2);
1366 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1367 	UNP_PCB_LOCK(unp);
1368 	UNP_PCB_LOCK(unp2);
1369 	error = unp_connect2(so, so2, PRU_CONNECT);
1370 	UNP_PCB_UNLOCK(unp2);
1371 	UNP_PCB_UNLOCK(unp);
1372 bad2:
1373 	UNP_LINK_WUNLOCK();
1374 	if (vfslocked)
1375 		/*
1376 		 * Giant has been previously acquired. This means filesystem
1377 		 * isn't MPSAFE.  Do it once again.
1378 		 */
1379 		mtx_lock(&Giant);
1380 bad:
1381 	if (vp != NULL)
1382 		vput(vp);
1383 	VFS_UNLOCK_GIANT(vfslocked);
1384 	free(sa, M_SONAME);
1385 	UNP_LINK_WLOCK();
1386 	UNP_PCB_LOCK(unp);
1387 	unp->unp_flags &= ~UNP_CONNECTING;
1388 	UNP_PCB_UNLOCK(unp);
1389 	return (error);
1390 }
1391 
1392 static int
1393 unp_connect2(struct socket *so, struct socket *so2, int req)
1394 {
1395 	struct unpcb *unp;
1396 	struct unpcb *unp2;
1397 
1398 	unp = sotounpcb(so);
1399 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1400 	unp2 = sotounpcb(so2);
1401 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1402 
1403 	UNP_LINK_WLOCK_ASSERT();
1404 	UNP_PCB_LOCK_ASSERT(unp);
1405 	UNP_PCB_LOCK_ASSERT(unp2);
1406 
1407 	if (so2->so_type != so->so_type)
1408 		return (EPROTOTYPE);
1409 	unp->unp_conn = unp2;
1410 
1411 	switch (so->so_type) {
1412 	case SOCK_DGRAM:
1413 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1414 		soisconnected(so);
1415 		break;
1416 
1417 	case SOCK_STREAM:
1418 	case SOCK_SEQPACKET:
1419 		unp2->unp_conn = unp;
1420 		if (req == PRU_CONNECT &&
1421 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1422 			soisconnecting(so);
1423 		else
1424 			soisconnected(so);
1425 		soisconnected(so2);
1426 		break;
1427 
1428 	default:
1429 		panic("unp_connect2");
1430 	}
1431 	return (0);
1432 }
1433 
1434 static void
1435 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1436 {
1437 	struct socket *so;
1438 
1439 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1440 
1441 	UNP_LINK_WLOCK_ASSERT();
1442 	UNP_PCB_LOCK_ASSERT(unp);
1443 	UNP_PCB_LOCK_ASSERT(unp2);
1444 
1445 	unp->unp_conn = NULL;
1446 	switch (unp->unp_socket->so_type) {
1447 	case SOCK_DGRAM:
1448 		LIST_REMOVE(unp, unp_reflink);
1449 		so = unp->unp_socket;
1450 		SOCK_LOCK(so);
1451 		so->so_state &= ~SS_ISCONNECTED;
1452 		SOCK_UNLOCK(so);
1453 		break;
1454 
1455 	case SOCK_STREAM:
1456 	case SOCK_SEQPACKET:
1457 		soisdisconnected(unp->unp_socket);
1458 		unp2->unp_conn = NULL;
1459 		soisdisconnected(unp2->unp_socket);
1460 		break;
1461 	}
1462 }
1463 
1464 /*
1465  * unp_pcblist() walks the global list of struct unpcb's to generate a
1466  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1467  * sequentially, validating the generation number on each to see if it has
1468  * been detached.  All of this is necessary because copyout() may sleep on
1469  * disk I/O.
1470  */
1471 static int
1472 unp_pcblist(SYSCTL_HANDLER_ARGS)
1473 {
1474 	int error, i, n;
1475 	int freeunp;
1476 	struct unpcb *unp, **unp_list;
1477 	unp_gen_t gencnt;
1478 	struct xunpgen *xug;
1479 	struct unp_head *head;
1480 	struct xunpcb *xu;
1481 
1482 	switch ((intptr_t)arg1) {
1483 	case SOCK_STREAM:
1484 		head = &unp_shead;
1485 		break;
1486 
1487 	case SOCK_DGRAM:
1488 		head = &unp_dhead;
1489 		break;
1490 
1491 	case SOCK_SEQPACKET:
1492 		head = &unp_sphead;
1493 		break;
1494 
1495 	default:
1496 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1497 	}
1498 
1499 	/*
1500 	 * The process of preparing the PCB list is too time-consuming and
1501 	 * resource-intensive to repeat twice on every request.
1502 	 */
1503 	if (req->oldptr == NULL) {
1504 		n = unp_count;
1505 		req->oldidx = 2 * (sizeof *xug)
1506 			+ (n + n/8) * sizeof(struct xunpcb);
1507 		return (0);
1508 	}
1509 
1510 	if (req->newptr != NULL)
1511 		return (EPERM);
1512 
1513 	/*
1514 	 * OK, now we're committed to doing something.
1515 	 */
1516 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1517 	UNP_LIST_LOCK();
1518 	gencnt = unp_gencnt;
1519 	n = unp_count;
1520 	UNP_LIST_UNLOCK();
1521 
1522 	xug->xug_len = sizeof *xug;
1523 	xug->xug_count = n;
1524 	xug->xug_gen = gencnt;
1525 	xug->xug_sogen = so_gencnt;
1526 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1527 	if (error) {
1528 		free(xug, M_TEMP);
1529 		return (error);
1530 	}
1531 
1532 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1533 
1534 	UNP_LIST_LOCK();
1535 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1536 	     unp = LIST_NEXT(unp, unp_link)) {
1537 		UNP_PCB_LOCK(unp);
1538 		if (unp->unp_gencnt <= gencnt) {
1539 			if (cr_cansee(req->td->td_ucred,
1540 			    unp->unp_socket->so_cred)) {
1541 				UNP_PCB_UNLOCK(unp);
1542 				continue;
1543 			}
1544 			unp_list[i++] = unp;
1545 			unp->unp_refcount++;
1546 		}
1547 		UNP_PCB_UNLOCK(unp);
1548 	}
1549 	UNP_LIST_UNLOCK();
1550 	n = i;			/* In case we lost some during malloc. */
1551 
1552 	error = 0;
1553 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1554 	for (i = 0; i < n; i++) {
1555 		unp = unp_list[i];
1556 		UNP_PCB_LOCK(unp);
1557 		unp->unp_refcount--;
1558 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1559 			xu->xu_len = sizeof *xu;
1560 			xu->xu_unpp = unp;
1561 			/*
1562 			 * XXX - need more locking here to protect against
1563 			 * connect/disconnect races for SMP.
1564 			 */
1565 			if (unp->unp_addr != NULL)
1566 				bcopy(unp->unp_addr, &xu->xu_addr,
1567 				      unp->unp_addr->sun_len);
1568 			if (unp->unp_conn != NULL &&
1569 			    unp->unp_conn->unp_addr != NULL)
1570 				bcopy(unp->unp_conn->unp_addr,
1571 				      &xu->xu_caddr,
1572 				      unp->unp_conn->unp_addr->sun_len);
1573 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1574 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1575 			UNP_PCB_UNLOCK(unp);
1576 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1577 		} else {
1578 			freeunp = (unp->unp_refcount == 0);
1579 			UNP_PCB_UNLOCK(unp);
1580 			if (freeunp) {
1581 				UNP_PCB_LOCK_DESTROY(unp);
1582 				uma_zfree(unp_zone, unp);
1583 			}
1584 		}
1585 	}
1586 	free(xu, M_TEMP);
1587 	if (!error) {
1588 		/*
1589 		 * Give the user an updated idea of our state.  If the
1590 		 * generation differs from what we told her before, she knows
1591 		 * that something happened while we were processing this
1592 		 * request, and it might be necessary to retry.
1593 		 */
1594 		xug->xug_gen = unp_gencnt;
1595 		xug->xug_sogen = so_gencnt;
1596 		xug->xug_count = unp_count;
1597 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1598 	}
1599 	free(unp_list, M_TEMP);
1600 	free(xug, M_TEMP);
1601 	return (error);
1602 }
1603 
1604 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1605 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1606 	    "List of active local datagram sockets");
1607 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1608 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1609 	    "List of active local stream sockets");
1610 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1611 	    (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1612 	    "List of active local seqpacket sockets");
1613 
1614 static void
1615 unp_shutdown(struct unpcb *unp)
1616 {
1617 	struct unpcb *unp2;
1618 	struct socket *so;
1619 
1620 	UNP_LINK_WLOCK_ASSERT();
1621 	UNP_PCB_LOCK_ASSERT(unp);
1622 
1623 	unp2 = unp->unp_conn;
1624 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1625 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1626 		so = unp2->unp_socket;
1627 		if (so != NULL)
1628 			socantrcvmore(so);
1629 	}
1630 }
1631 
1632 static void
1633 unp_drop(struct unpcb *unp, int errno)
1634 {
1635 	struct socket *so = unp->unp_socket;
1636 	struct unpcb *unp2;
1637 
1638 	UNP_LINK_WLOCK_ASSERT();
1639 	UNP_PCB_LOCK_ASSERT(unp);
1640 
1641 	so->so_error = errno;
1642 	unp2 = unp->unp_conn;
1643 	if (unp2 == NULL)
1644 		return;
1645 	UNP_PCB_LOCK(unp2);
1646 	unp_disconnect(unp, unp2);
1647 	UNP_PCB_UNLOCK(unp2);
1648 }
1649 
1650 static void
1651 unp_freerights(struct file **rp, int fdcount)
1652 {
1653 	int i;
1654 	struct file *fp;
1655 
1656 	for (i = 0; i < fdcount; i++) {
1657 		fp = *rp;
1658 		*rp++ = NULL;
1659 		unp_discard(fp);
1660 	}
1661 }
1662 
1663 static int
1664 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1665 {
1666 	struct thread *td = curthread;		/* XXX */
1667 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1668 	int i;
1669 	int *fdp;
1670 	struct file **rp;
1671 	struct file *fp;
1672 	void *data;
1673 	socklen_t clen = control->m_len, datalen;
1674 	int error, newfds;
1675 	int f;
1676 	u_int newlen;
1677 
1678 	UNP_LINK_UNLOCK_ASSERT();
1679 
1680 	error = 0;
1681 	if (controlp != NULL) /* controlp == NULL => free control messages */
1682 		*controlp = NULL;
1683 	while (cm != NULL) {
1684 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1685 			error = EINVAL;
1686 			break;
1687 		}
1688 		data = CMSG_DATA(cm);
1689 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1690 		if (cm->cmsg_level == SOL_SOCKET
1691 		    && cm->cmsg_type == SCM_RIGHTS) {
1692 			newfds = datalen / sizeof(struct file *);
1693 			rp = data;
1694 
1695 			/* If we're not outputting the descriptors free them. */
1696 			if (error || controlp == NULL) {
1697 				unp_freerights(rp, newfds);
1698 				goto next;
1699 			}
1700 			FILEDESC_XLOCK(td->td_proc->p_fd);
1701 			/* if the new FD's will not fit free them.  */
1702 			if (!fdavail(td, newfds)) {
1703 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1704 				error = EMSGSIZE;
1705 				unp_freerights(rp, newfds);
1706 				goto next;
1707 			}
1708 
1709 			/*
1710 			 * Now change each pointer to an fd in the global
1711 			 * table to an integer that is the index to the local
1712 			 * fd table entry that we set up to point to the
1713 			 * global one we are transferring.
1714 			 */
1715 			newlen = newfds * sizeof(int);
1716 			*controlp = sbcreatecontrol(NULL, newlen,
1717 			    SCM_RIGHTS, SOL_SOCKET);
1718 			if (*controlp == NULL) {
1719 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1720 				error = E2BIG;
1721 				unp_freerights(rp, newfds);
1722 				goto next;
1723 			}
1724 
1725 			fdp = (int *)
1726 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1727 			for (i = 0; i < newfds; i++) {
1728 				if (fdalloc(td, 0, &f))
1729 					panic("unp_externalize fdalloc failed");
1730 				fp = *rp++;
1731 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1732 				unp_externalize_fp(fp);
1733 				*fdp++ = f;
1734 			}
1735 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1736 		} else {
1737 			/* We can just copy anything else across. */
1738 			if (error || controlp == NULL)
1739 				goto next;
1740 			*controlp = sbcreatecontrol(NULL, datalen,
1741 			    cm->cmsg_type, cm->cmsg_level);
1742 			if (*controlp == NULL) {
1743 				error = ENOBUFS;
1744 				goto next;
1745 			}
1746 			bcopy(data,
1747 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1748 			    datalen);
1749 		}
1750 		controlp = &(*controlp)->m_next;
1751 
1752 next:
1753 		if (CMSG_SPACE(datalen) < clen) {
1754 			clen -= CMSG_SPACE(datalen);
1755 			cm = (struct cmsghdr *)
1756 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1757 		} else {
1758 			clen = 0;
1759 			cm = NULL;
1760 		}
1761 	}
1762 
1763 	m_freem(control);
1764 	return (error);
1765 }
1766 
1767 static void
1768 unp_zone_change(void *tag)
1769 {
1770 
1771 	uma_zone_set_max(unp_zone, maxsockets);
1772 }
1773 
1774 static void
1775 unp_init(void)
1776 {
1777 
1778 #ifdef VIMAGE
1779 	if (!IS_DEFAULT_VNET(curvnet))
1780 		return;
1781 #endif
1782 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1783 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1784 	if (unp_zone == NULL)
1785 		panic("unp_init");
1786 	uma_zone_set_max(unp_zone, maxsockets);
1787 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1788 	    NULL, EVENTHANDLER_PRI_ANY);
1789 	LIST_INIT(&unp_dhead);
1790 	LIST_INIT(&unp_shead);
1791 	LIST_INIT(&unp_sphead);
1792 	SLIST_INIT(&unp_defers);
1793 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1794 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1795 	UNP_LINK_LOCK_INIT();
1796 	UNP_LIST_LOCK_INIT();
1797 	UNP_DEFERRED_LOCK_INIT();
1798 }
1799 
1800 static int
1801 unp_internalize(struct mbuf **controlp, struct thread *td)
1802 {
1803 	struct mbuf *control = *controlp;
1804 	struct proc *p = td->td_proc;
1805 	struct filedesc *fdescp = p->p_fd;
1806 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1807 	struct cmsgcred *cmcred;
1808 	struct file **rp;
1809 	struct file *fp;
1810 	struct timeval *tv;
1811 	int i, fd, *fdp;
1812 	void *data;
1813 	socklen_t clen = control->m_len, datalen;
1814 	int error, oldfds;
1815 	u_int newlen;
1816 
1817 	UNP_LINK_UNLOCK_ASSERT();
1818 
1819 	error = 0;
1820 	*controlp = NULL;
1821 	while (cm != NULL) {
1822 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1823 		    || cm->cmsg_len > clen) {
1824 			error = EINVAL;
1825 			goto out;
1826 		}
1827 		data = CMSG_DATA(cm);
1828 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1829 
1830 		switch (cm->cmsg_type) {
1831 		/*
1832 		 * Fill in credential information.
1833 		 */
1834 		case SCM_CREDS:
1835 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1836 			    SCM_CREDS, SOL_SOCKET);
1837 			if (*controlp == NULL) {
1838 				error = ENOBUFS;
1839 				goto out;
1840 			}
1841 			cmcred = (struct cmsgcred *)
1842 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1843 			cmcred->cmcred_pid = p->p_pid;
1844 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1845 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1846 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1847 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1848 			    CMGROUP_MAX);
1849 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1850 				cmcred->cmcred_groups[i] =
1851 				    td->td_ucred->cr_groups[i];
1852 			break;
1853 
1854 		case SCM_RIGHTS:
1855 			oldfds = datalen / sizeof (int);
1856 			/*
1857 			 * Check that all the FDs passed in refer to legal
1858 			 * files.  If not, reject the entire operation.
1859 			 */
1860 			fdp = data;
1861 			FILEDESC_SLOCK(fdescp);
1862 			for (i = 0; i < oldfds; i++) {
1863 				fd = *fdp++;
1864 				if ((unsigned)fd >= fdescp->fd_nfiles ||
1865 				    fdescp->fd_ofiles[fd] == NULL) {
1866 					FILEDESC_SUNLOCK(fdescp);
1867 					error = EBADF;
1868 					goto out;
1869 				}
1870 				fp = fdescp->fd_ofiles[fd];
1871 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1872 					FILEDESC_SUNLOCK(fdescp);
1873 					error = EOPNOTSUPP;
1874 					goto out;
1875 				}
1876 
1877 			}
1878 
1879 			/*
1880 			 * Now replace the integer FDs with pointers to the
1881 			 * associated global file table entry..
1882 			 */
1883 			newlen = oldfds * sizeof(struct file *);
1884 			*controlp = sbcreatecontrol(NULL, newlen,
1885 			    SCM_RIGHTS, SOL_SOCKET);
1886 			if (*controlp == NULL) {
1887 				FILEDESC_SUNLOCK(fdescp);
1888 				error = E2BIG;
1889 				goto out;
1890 			}
1891 			fdp = data;
1892 			rp = (struct file **)
1893 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1894 			for (i = 0; i < oldfds; i++) {
1895 				fp = fdescp->fd_ofiles[*fdp++];
1896 				*rp++ = fp;
1897 				unp_internalize_fp(fp);
1898 			}
1899 			FILEDESC_SUNLOCK(fdescp);
1900 			break;
1901 
1902 		case SCM_TIMESTAMP:
1903 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1904 			    SCM_TIMESTAMP, SOL_SOCKET);
1905 			if (*controlp == NULL) {
1906 				error = ENOBUFS;
1907 				goto out;
1908 			}
1909 			tv = (struct timeval *)
1910 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1911 			microtime(tv);
1912 			break;
1913 
1914 		default:
1915 			error = EINVAL;
1916 			goto out;
1917 		}
1918 
1919 		controlp = &(*controlp)->m_next;
1920 		if (CMSG_SPACE(datalen) < clen) {
1921 			clen -= CMSG_SPACE(datalen);
1922 			cm = (struct cmsghdr *)
1923 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1924 		} else {
1925 			clen = 0;
1926 			cm = NULL;
1927 		}
1928 	}
1929 
1930 out:
1931 	m_freem(control);
1932 	return (error);
1933 }
1934 
1935 static struct mbuf *
1936 unp_addsockcred(struct thread *td, struct mbuf *control)
1937 {
1938 	struct mbuf *m, *n, *n_prev;
1939 	struct sockcred *sc;
1940 	const struct cmsghdr *cm;
1941 	int ngroups;
1942 	int i;
1943 
1944 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1945 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1946 	if (m == NULL)
1947 		return (control);
1948 
1949 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1950 	sc->sc_uid = td->td_ucred->cr_ruid;
1951 	sc->sc_euid = td->td_ucred->cr_uid;
1952 	sc->sc_gid = td->td_ucred->cr_rgid;
1953 	sc->sc_egid = td->td_ucred->cr_gid;
1954 	sc->sc_ngroups = ngroups;
1955 	for (i = 0; i < sc->sc_ngroups; i++)
1956 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1957 
1958 	/*
1959 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1960 	 * created SCM_CREDS control message (struct sockcred) has another
1961 	 * format.
1962 	 */
1963 	if (control != NULL)
1964 		for (n = control, n_prev = NULL; n != NULL;) {
1965 			cm = mtod(n, struct cmsghdr *);
1966     			if (cm->cmsg_level == SOL_SOCKET &&
1967 			    cm->cmsg_type == SCM_CREDS) {
1968     				if (n_prev == NULL)
1969 					control = n->m_next;
1970 				else
1971 					n_prev->m_next = n->m_next;
1972 				n = m_free(n);
1973 			} else {
1974 				n_prev = n;
1975 				n = n->m_next;
1976 			}
1977 		}
1978 
1979 	/* Prepend it to the head. */
1980 	m->m_next = control;
1981 	return (m);
1982 }
1983 
1984 static struct unpcb *
1985 fptounp(struct file *fp)
1986 {
1987 	struct socket *so;
1988 
1989 	if (fp->f_type != DTYPE_SOCKET)
1990 		return (NULL);
1991 	if ((so = fp->f_data) == NULL)
1992 		return (NULL);
1993 	if (so->so_proto->pr_domain != &localdomain)
1994 		return (NULL);
1995 	return sotounpcb(so);
1996 }
1997 
1998 static void
1999 unp_discard(struct file *fp)
2000 {
2001 	struct unp_defer *dr;
2002 
2003 	if (unp_externalize_fp(fp)) {
2004 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2005 		dr->ud_fp = fp;
2006 		UNP_DEFERRED_LOCK();
2007 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2008 		UNP_DEFERRED_UNLOCK();
2009 		atomic_add_int(&unp_defers_count, 1);
2010 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2011 	} else
2012 		(void) closef(fp, (struct thread *)NULL);
2013 }
2014 
2015 static void
2016 unp_process_defers(void *arg __unused, int pending)
2017 {
2018 	struct unp_defer *dr;
2019 	SLIST_HEAD(, unp_defer) drl;
2020 	int count;
2021 
2022 	SLIST_INIT(&drl);
2023 	for (;;) {
2024 		UNP_DEFERRED_LOCK();
2025 		if (SLIST_FIRST(&unp_defers) == NULL) {
2026 			UNP_DEFERRED_UNLOCK();
2027 			break;
2028 		}
2029 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2030 		UNP_DEFERRED_UNLOCK();
2031 		count = 0;
2032 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2033 			SLIST_REMOVE_HEAD(&drl, ud_link);
2034 			closef(dr->ud_fp, NULL);
2035 			free(dr, M_TEMP);
2036 			count++;
2037 		}
2038 		atomic_add_int(&unp_defers_count, -count);
2039 	}
2040 }
2041 
2042 static void
2043 unp_internalize_fp(struct file *fp)
2044 {
2045 	struct unpcb *unp;
2046 
2047 	UNP_LINK_WLOCK();
2048 	if ((unp = fptounp(fp)) != NULL) {
2049 		unp->unp_file = fp;
2050 		unp->unp_msgcount++;
2051 	}
2052 	fhold(fp);
2053 	unp_rights++;
2054 	UNP_LINK_WUNLOCK();
2055 }
2056 
2057 static int
2058 unp_externalize_fp(struct file *fp)
2059 {
2060 	struct unpcb *unp;
2061 	int ret;
2062 
2063 	UNP_LINK_WLOCK();
2064 	if ((unp = fptounp(fp)) != NULL) {
2065 		unp->unp_msgcount--;
2066 		ret = 1;
2067 	} else
2068 		ret = 0;
2069 	unp_rights--;
2070 	UNP_LINK_WUNLOCK();
2071 	return (ret);
2072 }
2073 
2074 /*
2075  * unp_defer indicates whether additional work has been defered for a future
2076  * pass through unp_gc().  It is thread local and does not require explicit
2077  * synchronization.
2078  */
2079 static int	unp_marked;
2080 static int	unp_unreachable;
2081 
2082 static void
2083 unp_accessable(struct file *fp)
2084 {
2085 	struct unpcb *unp;
2086 
2087 	if ((unp = fptounp(fp)) == NULL)
2088 		return;
2089 	if (unp->unp_gcflag & UNPGC_REF)
2090 		return;
2091 	unp->unp_gcflag &= ~UNPGC_DEAD;
2092 	unp->unp_gcflag |= UNPGC_REF;
2093 	unp_marked++;
2094 }
2095 
2096 static void
2097 unp_gc_process(struct unpcb *unp)
2098 {
2099 	struct socket *soa;
2100 	struct socket *so;
2101 	struct file *fp;
2102 
2103 	/* Already processed. */
2104 	if (unp->unp_gcflag & UNPGC_SCANNED)
2105 		return;
2106 	fp = unp->unp_file;
2107 
2108 	/*
2109 	 * Check for a socket potentially in a cycle.  It must be in a
2110 	 * queue as indicated by msgcount, and this must equal the file
2111 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2112 	 */
2113 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2114 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2115 		unp->unp_gcflag |= UNPGC_DEAD;
2116 		unp_unreachable++;
2117 		return;
2118 	}
2119 
2120 	/*
2121 	 * Mark all sockets we reference with RIGHTS.
2122 	 */
2123 	so = unp->unp_socket;
2124 	SOCKBUF_LOCK(&so->so_rcv);
2125 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2126 	SOCKBUF_UNLOCK(&so->so_rcv);
2127 
2128 	/*
2129 	 * Mark all sockets in our accept queue.
2130 	 */
2131 	ACCEPT_LOCK();
2132 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2133 		SOCKBUF_LOCK(&soa->so_rcv);
2134 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2135 		SOCKBUF_UNLOCK(&soa->so_rcv);
2136 	}
2137 	ACCEPT_UNLOCK();
2138 	unp->unp_gcflag |= UNPGC_SCANNED;
2139 }
2140 
2141 static int unp_recycled;
2142 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2143     "Number of unreachable sockets claimed by the garbage collector.");
2144 
2145 static int unp_taskcount;
2146 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2147     "Number of times the garbage collector has run.");
2148 
2149 static void
2150 unp_gc(__unused void *arg, int pending)
2151 {
2152 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2153 				    NULL };
2154 	struct unp_head **head;
2155 	struct file **unref;
2156 	struct unpcb *unp;
2157 	int i;
2158 
2159 	unp_taskcount++;
2160 	UNP_LIST_LOCK();
2161 	/*
2162 	 * First clear all gc flags from previous runs.
2163 	 */
2164 	for (head = heads; *head != NULL; head++)
2165 		LIST_FOREACH(unp, *head, unp_link)
2166 			unp->unp_gcflag = 0;
2167 
2168 	/*
2169 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2170 	 * is reachable all of the sockets it references are reachable.
2171 	 * Stop the scan once we do a complete loop without discovering
2172 	 * a new reachable socket.
2173 	 */
2174 	do {
2175 		unp_unreachable = 0;
2176 		unp_marked = 0;
2177 		for (head = heads; *head != NULL; head++)
2178 			LIST_FOREACH(unp, *head, unp_link)
2179 				unp_gc_process(unp);
2180 	} while (unp_marked);
2181 	UNP_LIST_UNLOCK();
2182 	if (unp_unreachable == 0)
2183 		return;
2184 
2185 	/*
2186 	 * Allocate space for a local list of dead unpcbs.
2187 	 */
2188 	unref = malloc(unp_unreachable * sizeof(struct file *),
2189 	    M_TEMP, M_WAITOK);
2190 
2191 	/*
2192 	 * Iterate looking for sockets which have been specifically marked
2193 	 * as as unreachable and store them locally.
2194 	 */
2195 	UNP_LIST_LOCK();
2196 	for (i = 0, head = heads; *head != NULL; head++)
2197 		LIST_FOREACH(unp, *head, unp_link)
2198 			if (unp->unp_gcflag & UNPGC_DEAD) {
2199 				unref[i++] = unp->unp_file;
2200 				fhold(unp->unp_file);
2201 				KASSERT(unp->unp_file != NULL,
2202 				    ("unp_gc: Invalid unpcb."));
2203 				KASSERT(i <= unp_unreachable,
2204 				    ("unp_gc: incorrect unreachable count."));
2205 			}
2206 	UNP_LIST_UNLOCK();
2207 
2208 	/*
2209 	 * Now flush all sockets, free'ing rights.  This will free the
2210 	 * struct files associated with these sockets but leave each socket
2211 	 * with one remaining ref.
2212 	 */
2213 	for (i = 0; i < unp_unreachable; i++)
2214 		sorflush(unref[i]->f_data);
2215 
2216 	/*
2217 	 * And finally release the sockets so they can be reclaimed.
2218 	 */
2219 	for (i = 0; i < unp_unreachable; i++)
2220 		fdrop(unref[i], NULL);
2221 	unp_recycled += unp_unreachable;
2222 	free(unref, M_TEMP);
2223 }
2224 
2225 static void
2226 unp_dispose(struct mbuf *m)
2227 {
2228 
2229 	if (m)
2230 		unp_scan(m, unp_discard);
2231 }
2232 
2233 static void
2234 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2235 {
2236 	struct mbuf *m;
2237 	struct file **rp;
2238 	struct cmsghdr *cm;
2239 	void *data;
2240 	int i;
2241 	socklen_t clen, datalen;
2242 	int qfds;
2243 
2244 	while (m0 != NULL) {
2245 		for (m = m0; m; m = m->m_next) {
2246 			if (m->m_type != MT_CONTROL)
2247 				continue;
2248 
2249 			cm = mtod(m, struct cmsghdr *);
2250 			clen = m->m_len;
2251 
2252 			while (cm != NULL) {
2253 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2254 					break;
2255 
2256 				data = CMSG_DATA(cm);
2257 				datalen = (caddr_t)cm + cm->cmsg_len
2258 				    - (caddr_t)data;
2259 
2260 				if (cm->cmsg_level == SOL_SOCKET &&
2261 				    cm->cmsg_type == SCM_RIGHTS) {
2262 					qfds = datalen / sizeof (struct file *);
2263 					rp = data;
2264 					for (i = 0; i < qfds; i++)
2265 						(*op)(*rp++);
2266 				}
2267 
2268 				if (CMSG_SPACE(datalen) < clen) {
2269 					clen -= CMSG_SPACE(datalen);
2270 					cm = (struct cmsghdr *)
2271 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2272 				} else {
2273 					clen = 0;
2274 					cm = NULL;
2275 				}
2276 			}
2277 		}
2278 		m0 = m0->m_act;
2279 	}
2280 }
2281 
2282 #ifdef DDB
2283 static void
2284 db_print_indent(int indent)
2285 {
2286 	int i;
2287 
2288 	for (i = 0; i < indent; i++)
2289 		db_printf(" ");
2290 }
2291 
2292 static void
2293 db_print_unpflags(int unp_flags)
2294 {
2295 	int comma;
2296 
2297 	comma = 0;
2298 	if (unp_flags & UNP_HAVEPC) {
2299 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2300 		comma = 1;
2301 	}
2302 	if (unp_flags & UNP_HAVEPCCACHED) {
2303 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2304 		comma = 1;
2305 	}
2306 	if (unp_flags & UNP_WANTCRED) {
2307 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2308 		comma = 1;
2309 	}
2310 	if (unp_flags & UNP_CONNWAIT) {
2311 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2312 		comma = 1;
2313 	}
2314 	if (unp_flags & UNP_CONNECTING) {
2315 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2316 		comma = 1;
2317 	}
2318 	if (unp_flags & UNP_BINDING) {
2319 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2320 		comma = 1;
2321 	}
2322 }
2323 
2324 static void
2325 db_print_xucred(int indent, struct xucred *xu)
2326 {
2327 	int comma, i;
2328 
2329 	db_print_indent(indent);
2330 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2331 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2332 	db_print_indent(indent);
2333 	db_printf("cr_groups: ");
2334 	comma = 0;
2335 	for (i = 0; i < xu->cr_ngroups; i++) {
2336 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2337 		comma = 1;
2338 	}
2339 	db_printf("\n");
2340 }
2341 
2342 static void
2343 db_print_unprefs(int indent, struct unp_head *uh)
2344 {
2345 	struct unpcb *unp;
2346 	int counter;
2347 
2348 	counter = 0;
2349 	LIST_FOREACH(unp, uh, unp_reflink) {
2350 		if (counter % 4 == 0)
2351 			db_print_indent(indent);
2352 		db_printf("%p  ", unp);
2353 		if (counter % 4 == 3)
2354 			db_printf("\n");
2355 		counter++;
2356 	}
2357 	if (counter != 0 && counter % 4 != 0)
2358 		db_printf("\n");
2359 }
2360 
2361 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2362 {
2363 	struct unpcb *unp;
2364 
2365         if (!have_addr) {
2366                 db_printf("usage: show unpcb <addr>\n");
2367                 return;
2368         }
2369         unp = (struct unpcb *)addr;
2370 
2371 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2372 	    unp->unp_vnode);
2373 
2374 	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2375 	    unp->unp_conn);
2376 
2377 	db_printf("unp_refs:\n");
2378 	db_print_unprefs(2, &unp->unp_refs);
2379 
2380 	/* XXXRW: Would be nice to print the full address, if any. */
2381 	db_printf("unp_addr: %p\n", unp->unp_addr);
2382 
2383 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2384 	    unp->unp_cc, unp->unp_mbcnt,
2385 	    (unsigned long long)unp->unp_gencnt);
2386 
2387 	db_printf("unp_flags: %x (", unp->unp_flags);
2388 	db_print_unpflags(unp->unp_flags);
2389 	db_printf(")\n");
2390 
2391 	db_printf("unp_peercred:\n");
2392 	db_print_xucred(2, &unp->unp_peercred);
2393 
2394 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2395 }
2396 #endif
2397