1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/eventhandler.h> 69 #include <sys/fcntl.h> 70 #include <sys/file.h> 71 #include <sys/filedesc.h> 72 #include <sys/kernel.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * See unpcb.h for the locking key. 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 165 "Local domain"); 166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "SOCK_DGRAM"); 172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 174 "SOCK_SEQPACKET"); 175 176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 177 &unpst_sendspace, 0, "Default stream send space."); 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 179 &unpst_recvspace, 0, "Default stream receive space."); 180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 181 &unpdg_sendspace, 0, "Default datagram send space."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 183 &unpdg_recvspace, 0, "Default datagram receive space."); 184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 185 &unpsp_sendspace, 0, "Default seqpacket send space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 187 &unpsp_recvspace, 0, "Default seqpacket receive space."); 188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 189 "File descriptors in flight."); 190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 191 &unp_defers_count, 0, 192 "File descriptors deferred to taskqueue for close."); 193 194 /* 195 * Locking and synchronization: 196 * 197 * Several types of locks exist in the local domain socket implementation: 198 * - a global linkage lock 199 * - a global connection list lock 200 * - the mtxpool lock 201 * - per-unpcb mutexes 202 * 203 * The linkage lock protects the global socket lists, the generation number 204 * counter and garbage collector state. 205 * 206 * The connection list lock protects the list of referring sockets in a datagram 207 * socket PCB. This lock is also overloaded to protect a global list of 208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS 209 * messages. To avoid recursion, such references are released by a dedicated 210 * thread. 211 * 212 * The mtxpool lock protects the vnode from being modified while referenced. 213 * Lock ordering rules require that it be acquired before any PCB locks. 214 * 215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the 216 * unpcb. This includes the unp_conn field, which either links two connected 217 * PCBs together (for connected socket types) or points at the destination 218 * socket (for connectionless socket types). The operations of creating or 219 * destroying a connection therefore involve locking multiple PCBs. To avoid 220 * lock order reversals, in some cases this involves dropping a PCB lock and 221 * using a reference counter to maintain liveness. 222 * 223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 224 * allocated in pru_attach() and freed in pru_detach(). The validity of that 225 * pointer is an invariant, so no lock is required to dereference the so_pcb 226 * pointer if a valid socket reference is held by the caller. In practice, 227 * this is always true during operations performed on a socket. Each unpcb 228 * has a back-pointer to its socket, unp_socket, which will be stable under 229 * the same circumstances. 230 * 231 * This pointer may only be safely dereferenced as long as a valid reference 232 * to the unpcb is held. Typically, this reference will be from the socket, 233 * or from another unpcb when the referring unpcb's lock is held (in order 234 * that the reference not be invalidated during use). For example, to follow 235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 236 * that detach is not run clearing unp_socket. 237 * 238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 239 * protocols, bind() is a non-atomic operation, and connect() requires 240 * potential sleeping in the protocol, due to potentially waiting on local or 241 * distributed file systems. We try to separate "lookup" operations, which 242 * may sleep, and the IPC operations themselves, which typically can occur 243 * with relative atomicity as locks can be held over the entire operation. 244 * 245 * Another tricky issue is simultaneous multi-threaded or multi-process 246 * access to a single UNIX domain socket. These are handled by the flags 247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 248 * binding, both of which involve dropping UNIX domain socket locks in order 249 * to perform namei() and other file system operations. 250 */ 251 static struct rwlock unp_link_rwlock; 252 static struct mtx unp_defers_lock; 253 254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 255 "unp_link_rwlock") 256 257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 258 RA_LOCKED) 259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 260 RA_UNLOCKED) 261 262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 267 RA_WLOCKED) 268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 269 270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 271 "unp_defer", NULL, MTX_DEF) 272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 274 275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 277 278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 279 "unp", "unp", \ 280 MTX_DUPOK|MTX_DEF) 281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx) 283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 289 290 static int uipc_connect2(struct socket *, struct socket *); 291 static int uipc_ctloutput(struct socket *, struct sockopt *); 292 static int unp_connect(struct socket *, struct sockaddr *, 293 struct thread *); 294 static int unp_connectat(int, struct socket *, struct sockaddr *, 295 struct thread *); 296 static int unp_connect2(struct socket *so, struct socket *so2, int); 297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 298 static void unp_dispose(struct socket *so); 299 static void unp_dispose_mbuf(struct mbuf *); 300 static void unp_shutdown(struct unpcb *); 301 static void unp_drop(struct unpcb *); 302 static void unp_gc(__unused void *, int); 303 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 304 static void unp_discard(struct file *); 305 static void unp_freerights(struct filedescent **, int); 306 static void unp_init(void); 307 static int unp_internalize(struct mbuf **, struct thread *); 308 static void unp_internalize_fp(struct file *); 309 static int unp_externalize(struct mbuf *, struct mbuf **, int); 310 static int unp_externalize_fp(struct file *); 311 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 312 static void unp_process_defers(void * __unused, int); 313 314 static void 315 unp_pcb_hold(struct unpcb *unp) 316 { 317 u_int old __unused; 318 319 old = refcount_acquire(&unp->unp_refcount); 320 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp)); 321 } 322 323 static __result_use_check bool 324 unp_pcb_rele(struct unpcb *unp) 325 { 326 bool ret; 327 328 UNP_PCB_LOCK_ASSERT(unp); 329 330 if ((ret = refcount_release(&unp->unp_refcount))) { 331 UNP_PCB_UNLOCK(unp); 332 UNP_PCB_LOCK_DESTROY(unp); 333 uma_zfree(unp_zone, unp); 334 } 335 return (ret); 336 } 337 338 static void 339 unp_pcb_rele_notlast(struct unpcb *unp) 340 { 341 bool ret __unused; 342 343 ret = refcount_release(&unp->unp_refcount); 344 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp)); 345 } 346 347 static void 348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2) 349 { 350 UNP_PCB_UNLOCK_ASSERT(unp); 351 UNP_PCB_UNLOCK_ASSERT(unp2); 352 353 if (unp == unp2) { 354 UNP_PCB_LOCK(unp); 355 } else if ((uintptr_t)unp2 > (uintptr_t)unp) { 356 UNP_PCB_LOCK(unp); 357 UNP_PCB_LOCK(unp2); 358 } else { 359 UNP_PCB_LOCK(unp2); 360 UNP_PCB_LOCK(unp); 361 } 362 } 363 364 static void 365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2) 366 { 367 UNP_PCB_UNLOCK(unp); 368 if (unp != unp2) 369 UNP_PCB_UNLOCK(unp2); 370 } 371 372 /* 373 * Try to lock the connected peer of an already locked socket. In some cases 374 * this requires that we unlock the current socket. The pairbusy counter is 375 * used to block concurrent connection attempts while the lock is dropped. The 376 * caller must be careful to revalidate PCB state. 377 */ 378 static struct unpcb * 379 unp_pcb_lock_peer(struct unpcb *unp) 380 { 381 struct unpcb *unp2; 382 383 UNP_PCB_LOCK_ASSERT(unp); 384 unp2 = unp->unp_conn; 385 if (__predict_false(unp2 == NULL)) 386 return (NULL); 387 if (__predict_false(unp == unp2)) 388 return (unp); 389 390 UNP_PCB_UNLOCK_ASSERT(unp2); 391 392 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) 393 return (unp2); 394 if ((uintptr_t)unp2 > (uintptr_t)unp) { 395 UNP_PCB_LOCK(unp2); 396 return (unp2); 397 } 398 unp->unp_pairbusy++; 399 unp_pcb_hold(unp2); 400 UNP_PCB_UNLOCK(unp); 401 402 UNP_PCB_LOCK(unp2); 403 UNP_PCB_LOCK(unp); 404 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL, 405 ("%s: socket %p was reconnected", __func__, unp)); 406 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) { 407 unp->unp_flags &= ~UNP_WAITING; 408 wakeup(unp); 409 } 410 if (unp_pcb_rele(unp2)) { 411 /* unp2 is unlocked. */ 412 return (NULL); 413 } 414 if (unp->unp_conn == NULL) { 415 UNP_PCB_UNLOCK(unp2); 416 return (NULL); 417 } 418 return (unp2); 419 } 420 421 /* 422 * Definitions of protocols supported in the LOCAL domain. 423 */ 424 static struct domain localdomain; 425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 426 static struct pr_usrreqs uipc_usrreqs_seqpacket; 427 static struct protosw localsw[] = { 428 { 429 .pr_type = SOCK_STREAM, 430 .pr_domain = &localdomain, 431 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 432 .pr_ctloutput = &uipc_ctloutput, 433 .pr_usrreqs = &uipc_usrreqs_stream 434 }, 435 { 436 .pr_type = SOCK_DGRAM, 437 .pr_domain = &localdomain, 438 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 439 .pr_ctloutput = &uipc_ctloutput, 440 .pr_usrreqs = &uipc_usrreqs_dgram 441 }, 442 { 443 .pr_type = SOCK_SEQPACKET, 444 .pr_domain = &localdomain, 445 446 /* 447 * XXXRW: For now, PR_ADDR because soreceive will bump into them 448 * due to our use of sbappendaddr. A new sbappend variants is needed 449 * that supports both atomic record writes and control data. 450 */ 451 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 452 PR_RIGHTS, 453 .pr_ctloutput = &uipc_ctloutput, 454 .pr_usrreqs = &uipc_usrreqs_seqpacket, 455 }, 456 }; 457 458 static struct domain localdomain = { 459 .dom_family = AF_LOCAL, 460 .dom_name = "local", 461 .dom_init = unp_init, 462 .dom_externalize = unp_externalize, 463 .dom_dispose = unp_dispose, 464 .dom_protosw = localsw, 465 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 466 }; 467 DOMAIN_SET(local); 468 469 static void 470 uipc_abort(struct socket *so) 471 { 472 struct unpcb *unp, *unp2; 473 474 unp = sotounpcb(so); 475 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 476 UNP_PCB_UNLOCK_ASSERT(unp); 477 478 UNP_PCB_LOCK(unp); 479 unp2 = unp->unp_conn; 480 if (unp2 != NULL) { 481 unp_pcb_hold(unp2); 482 UNP_PCB_UNLOCK(unp); 483 unp_drop(unp2); 484 } else 485 UNP_PCB_UNLOCK(unp); 486 } 487 488 static int 489 uipc_accept(struct socket *so, struct sockaddr **nam) 490 { 491 struct unpcb *unp, *unp2; 492 const struct sockaddr *sa; 493 494 /* 495 * Pass back name of connected socket, if it was bound and we are 496 * still connected (our peer may have closed already!). 497 */ 498 unp = sotounpcb(so); 499 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 500 501 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 502 UNP_PCB_LOCK(unp); 503 unp2 = unp_pcb_lock_peer(unp); 504 if (unp2 != NULL && unp2->unp_addr != NULL) 505 sa = (struct sockaddr *)unp2->unp_addr; 506 else 507 sa = &sun_noname; 508 bcopy(sa, *nam, sa->sa_len); 509 if (unp2 != NULL) 510 unp_pcb_unlock_pair(unp, unp2); 511 else 512 UNP_PCB_UNLOCK(unp); 513 return (0); 514 } 515 516 static int 517 uipc_attach(struct socket *so, int proto, struct thread *td) 518 { 519 u_long sendspace, recvspace; 520 struct unpcb *unp; 521 int error; 522 bool locked; 523 524 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 525 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 526 switch (so->so_type) { 527 case SOCK_STREAM: 528 sendspace = unpst_sendspace; 529 recvspace = unpst_recvspace; 530 break; 531 532 case SOCK_DGRAM: 533 sendspace = unpdg_sendspace; 534 recvspace = unpdg_recvspace; 535 break; 536 537 case SOCK_SEQPACKET: 538 sendspace = unpsp_sendspace; 539 recvspace = unpsp_recvspace; 540 break; 541 542 default: 543 panic("uipc_attach"); 544 } 545 error = soreserve(so, sendspace, recvspace); 546 if (error) 547 return (error); 548 } 549 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 550 if (unp == NULL) 551 return (ENOBUFS); 552 LIST_INIT(&unp->unp_refs); 553 UNP_PCB_LOCK_INIT(unp); 554 unp->unp_socket = so; 555 so->so_pcb = unp; 556 refcount_init(&unp->unp_refcount, 1); 557 558 if ((locked = UNP_LINK_WOWNED()) == false) 559 UNP_LINK_WLOCK(); 560 561 unp->unp_gencnt = ++unp_gencnt; 562 unp->unp_ino = ++unp_ino; 563 unp_count++; 564 switch (so->so_type) { 565 case SOCK_STREAM: 566 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 567 break; 568 569 case SOCK_DGRAM: 570 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 571 break; 572 573 case SOCK_SEQPACKET: 574 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 575 break; 576 577 default: 578 panic("uipc_attach"); 579 } 580 581 if (locked == false) 582 UNP_LINK_WUNLOCK(); 583 584 return (0); 585 } 586 587 static int 588 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 589 { 590 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 591 struct vattr vattr; 592 int error, namelen; 593 struct nameidata nd; 594 struct unpcb *unp; 595 struct vnode *vp; 596 struct mount *mp; 597 cap_rights_t rights; 598 char *buf; 599 600 if (nam->sa_family != AF_UNIX) 601 return (EAFNOSUPPORT); 602 603 unp = sotounpcb(so); 604 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 605 606 if (soun->sun_len > sizeof(struct sockaddr_un)) 607 return (EINVAL); 608 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 609 if (namelen <= 0) 610 return (EINVAL); 611 612 /* 613 * We don't allow simultaneous bind() calls on a single UNIX domain 614 * socket, so flag in-progress operations, and return an error if an 615 * operation is already in progress. 616 * 617 * Historically, we have not allowed a socket to be rebound, so this 618 * also returns an error. Not allowing re-binding simplifies the 619 * implementation and avoids a great many possible failure modes. 620 */ 621 UNP_PCB_LOCK(unp); 622 if (unp->unp_vnode != NULL) { 623 UNP_PCB_UNLOCK(unp); 624 return (EINVAL); 625 } 626 if (unp->unp_flags & UNP_BINDING) { 627 UNP_PCB_UNLOCK(unp); 628 return (EALREADY); 629 } 630 unp->unp_flags |= UNP_BINDING; 631 UNP_PCB_UNLOCK(unp); 632 633 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 634 bcopy(soun->sun_path, buf, namelen); 635 buf[namelen] = 0; 636 637 restart: 638 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 639 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 640 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 641 error = namei(&nd); 642 if (error) 643 goto error; 644 vp = nd.ni_vp; 645 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 646 NDFREE(&nd, NDF_ONLY_PNBUF); 647 if (nd.ni_dvp == vp) 648 vrele(nd.ni_dvp); 649 else 650 vput(nd.ni_dvp); 651 if (vp != NULL) { 652 vrele(vp); 653 error = EADDRINUSE; 654 goto error; 655 } 656 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 657 if (error) 658 goto error; 659 goto restart; 660 } 661 VATTR_NULL(&vattr); 662 vattr.va_type = VSOCK; 663 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 664 #ifdef MAC 665 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 666 &vattr); 667 #endif 668 if (error == 0) 669 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 670 NDFREE(&nd, NDF_ONLY_PNBUF); 671 vput(nd.ni_dvp); 672 if (error) { 673 vn_finished_write(mp); 674 goto error; 675 } 676 vp = nd.ni_vp; 677 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 678 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 679 680 UNP_PCB_LOCK(unp); 681 VOP_UNP_BIND(vp, unp); 682 unp->unp_vnode = vp; 683 unp->unp_addr = soun; 684 unp->unp_flags &= ~UNP_BINDING; 685 UNP_PCB_UNLOCK(unp); 686 VOP_UNLOCK(vp); 687 vn_finished_write(mp); 688 free(buf, M_TEMP); 689 return (0); 690 691 error: 692 UNP_PCB_LOCK(unp); 693 unp->unp_flags &= ~UNP_BINDING; 694 UNP_PCB_UNLOCK(unp); 695 free(buf, M_TEMP); 696 return (error); 697 } 698 699 static int 700 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 701 { 702 703 return (uipc_bindat(AT_FDCWD, so, nam, td)); 704 } 705 706 static int 707 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 708 { 709 int error; 710 711 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 712 error = unp_connect(so, nam, td); 713 return (error); 714 } 715 716 static int 717 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 718 struct thread *td) 719 { 720 int error; 721 722 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 723 error = unp_connectat(fd, so, nam, td); 724 return (error); 725 } 726 727 static void 728 uipc_close(struct socket *so) 729 { 730 struct unpcb *unp, *unp2; 731 struct vnode *vp = NULL; 732 struct mtx *vplock; 733 734 unp = sotounpcb(so); 735 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 736 737 vplock = NULL; 738 if ((vp = unp->unp_vnode) != NULL) { 739 vplock = mtx_pool_find(mtxpool_sleep, vp); 740 mtx_lock(vplock); 741 } 742 UNP_PCB_LOCK(unp); 743 if (vp && unp->unp_vnode == NULL) { 744 mtx_unlock(vplock); 745 vp = NULL; 746 } 747 if (vp != NULL) { 748 VOP_UNP_DETACH(vp); 749 unp->unp_vnode = NULL; 750 } 751 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 752 unp_disconnect(unp, unp2); 753 else 754 UNP_PCB_UNLOCK(unp); 755 if (vp) { 756 mtx_unlock(vplock); 757 vrele(vp); 758 } 759 } 760 761 static int 762 uipc_connect2(struct socket *so1, struct socket *so2) 763 { 764 struct unpcb *unp, *unp2; 765 int error; 766 767 unp = so1->so_pcb; 768 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 769 unp2 = so2->so_pcb; 770 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 771 unp_pcb_lock_pair(unp, unp2); 772 error = unp_connect2(so1, so2, PRU_CONNECT2); 773 unp_pcb_unlock_pair(unp, unp2); 774 return (error); 775 } 776 777 static void 778 uipc_detach(struct socket *so) 779 { 780 struct unpcb *unp, *unp2; 781 struct mtx *vplock; 782 struct vnode *vp; 783 int local_unp_rights; 784 785 unp = sotounpcb(so); 786 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 787 788 vp = NULL; 789 vplock = NULL; 790 791 SOCK_LOCK(so); 792 if (!SOLISTENING(so)) { 793 /* 794 * Once the socket is removed from the global lists, 795 * uipc_ready() will not be able to locate its socket buffer, so 796 * clear the buffer now. At this point internalized rights have 797 * already been disposed of. 798 */ 799 sbrelease(&so->so_rcv, so); 800 } 801 SOCK_UNLOCK(so); 802 803 UNP_LINK_WLOCK(); 804 LIST_REMOVE(unp, unp_link); 805 if (unp->unp_gcflag & UNPGC_DEAD) 806 LIST_REMOVE(unp, unp_dead); 807 unp->unp_gencnt = ++unp_gencnt; 808 --unp_count; 809 UNP_LINK_WUNLOCK(); 810 811 UNP_PCB_UNLOCK_ASSERT(unp); 812 restart: 813 if ((vp = unp->unp_vnode) != NULL) { 814 vplock = mtx_pool_find(mtxpool_sleep, vp); 815 mtx_lock(vplock); 816 } 817 UNP_PCB_LOCK(unp); 818 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { 819 if (vplock) 820 mtx_unlock(vplock); 821 UNP_PCB_UNLOCK(unp); 822 goto restart; 823 } 824 if ((vp = unp->unp_vnode) != NULL) { 825 VOP_UNP_DETACH(vp); 826 unp->unp_vnode = NULL; 827 } 828 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 829 unp_disconnect(unp, unp2); 830 else 831 UNP_PCB_UNLOCK(unp); 832 833 UNP_REF_LIST_LOCK(); 834 while (!LIST_EMPTY(&unp->unp_refs)) { 835 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 836 837 unp_pcb_hold(ref); 838 UNP_REF_LIST_UNLOCK(); 839 840 MPASS(ref != unp); 841 UNP_PCB_UNLOCK_ASSERT(ref); 842 unp_drop(ref); 843 UNP_REF_LIST_LOCK(); 844 } 845 UNP_REF_LIST_UNLOCK(); 846 847 UNP_PCB_LOCK(unp); 848 local_unp_rights = unp_rights; 849 unp->unp_socket->so_pcb = NULL; 850 unp->unp_socket = NULL; 851 free(unp->unp_addr, M_SONAME); 852 unp->unp_addr = NULL; 853 if (!unp_pcb_rele(unp)) 854 UNP_PCB_UNLOCK(unp); 855 if (vp) { 856 mtx_unlock(vplock); 857 vrele(vp); 858 } 859 if (local_unp_rights) 860 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 861 } 862 863 static int 864 uipc_disconnect(struct socket *so) 865 { 866 struct unpcb *unp, *unp2; 867 868 unp = sotounpcb(so); 869 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 870 871 UNP_PCB_LOCK(unp); 872 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 873 unp_disconnect(unp, unp2); 874 else 875 UNP_PCB_UNLOCK(unp); 876 return (0); 877 } 878 879 static int 880 uipc_listen(struct socket *so, int backlog, struct thread *td) 881 { 882 struct unpcb *unp; 883 int error; 884 885 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 886 return (EOPNOTSUPP); 887 888 unp = sotounpcb(so); 889 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 890 891 UNP_PCB_LOCK(unp); 892 if (unp->unp_vnode == NULL) { 893 /* Already connected or not bound to an address. */ 894 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 895 UNP_PCB_UNLOCK(unp); 896 return (error); 897 } 898 899 SOCK_LOCK(so); 900 error = solisten_proto_check(so); 901 if (error == 0) { 902 cru2xt(td, &unp->unp_peercred); 903 solisten_proto(so, backlog); 904 } 905 SOCK_UNLOCK(so); 906 UNP_PCB_UNLOCK(unp); 907 return (error); 908 } 909 910 static int 911 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 912 { 913 struct unpcb *unp, *unp2; 914 const struct sockaddr *sa; 915 916 unp = sotounpcb(so); 917 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 918 919 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 920 UNP_LINK_RLOCK(); 921 /* 922 * XXX: It seems that this test always fails even when connection is 923 * established. So, this else clause is added as workaround to 924 * return PF_LOCAL sockaddr. 925 */ 926 unp2 = unp->unp_conn; 927 if (unp2 != NULL) { 928 UNP_PCB_LOCK(unp2); 929 if (unp2->unp_addr != NULL) 930 sa = (struct sockaddr *) unp2->unp_addr; 931 else 932 sa = &sun_noname; 933 bcopy(sa, *nam, sa->sa_len); 934 UNP_PCB_UNLOCK(unp2); 935 } else { 936 sa = &sun_noname; 937 bcopy(sa, *nam, sa->sa_len); 938 } 939 UNP_LINK_RUNLOCK(); 940 return (0); 941 } 942 943 static int 944 uipc_rcvd(struct socket *so, int flags) 945 { 946 struct unpcb *unp, *unp2; 947 struct socket *so2; 948 u_int mbcnt, sbcc; 949 950 unp = sotounpcb(so); 951 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 952 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 953 ("%s: socktype %d", __func__, so->so_type)); 954 955 /* 956 * Adjust backpressure on sender and wakeup any waiting to write. 957 * 958 * The unp lock is acquired to maintain the validity of the unp_conn 959 * pointer; no lock on unp2 is required as unp2->unp_socket will be 960 * static as long as we don't permit unp2 to disconnect from unp, 961 * which is prevented by the lock on unp. We cache values from 962 * so_rcv to avoid holding the so_rcv lock over the entire 963 * transaction on the remote so_snd. 964 */ 965 SOCKBUF_LOCK(&so->so_rcv); 966 mbcnt = so->so_rcv.sb_mbcnt; 967 sbcc = sbavail(&so->so_rcv); 968 SOCKBUF_UNLOCK(&so->so_rcv); 969 /* 970 * There is a benign race condition at this point. If we're planning to 971 * clear SB_STOP, but uipc_send is called on the connected socket at 972 * this instant, it might add data to the sockbuf and set SB_STOP. Then 973 * we would erroneously clear SB_STOP below, even though the sockbuf is 974 * full. The race is benign because the only ill effect is to allow the 975 * sockbuf to exceed its size limit, and the size limits are not 976 * strictly guaranteed anyway. 977 */ 978 UNP_PCB_LOCK(unp); 979 unp2 = unp->unp_conn; 980 if (unp2 == NULL) { 981 UNP_PCB_UNLOCK(unp); 982 return (0); 983 } 984 so2 = unp2->unp_socket; 985 SOCKBUF_LOCK(&so2->so_snd); 986 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 987 so2->so_snd.sb_flags &= ~SB_STOP; 988 sowwakeup_locked(so2); 989 UNP_PCB_UNLOCK(unp); 990 return (0); 991 } 992 993 static int 994 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 995 struct mbuf *control, struct thread *td) 996 { 997 struct unpcb *unp, *unp2; 998 struct socket *so2; 999 u_int mbcnt, sbcc; 1000 int freed, error; 1001 1002 unp = sotounpcb(so); 1003 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1004 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1005 so->so_type == SOCK_SEQPACKET, 1006 ("%s: socktype %d", __func__, so->so_type)); 1007 1008 freed = error = 0; 1009 if (flags & PRUS_OOB) { 1010 error = EOPNOTSUPP; 1011 goto release; 1012 } 1013 if (control != NULL && (error = unp_internalize(&control, td))) 1014 goto release; 1015 1016 unp2 = NULL; 1017 switch (so->so_type) { 1018 case SOCK_DGRAM: 1019 { 1020 const struct sockaddr *from; 1021 1022 if (nam != NULL) { 1023 error = unp_connect(so, nam, td); 1024 if (error != 0) 1025 break; 1026 } 1027 UNP_PCB_LOCK(unp); 1028 1029 /* 1030 * Because connect() and send() are non-atomic in a sendto() 1031 * with a target address, it's possible that the socket will 1032 * have disconnected before the send() can run. In that case 1033 * return the slightly counter-intuitive but otherwise 1034 * correct error that the socket is not connected. 1035 */ 1036 unp2 = unp_pcb_lock_peer(unp); 1037 if (unp2 == NULL) { 1038 UNP_PCB_UNLOCK(unp); 1039 error = ENOTCONN; 1040 break; 1041 } 1042 1043 if (unp2->unp_flags & UNP_WANTCRED_MASK) 1044 control = unp_addsockcred(td, control); 1045 if (unp->unp_addr != NULL) 1046 from = (struct sockaddr *)unp->unp_addr; 1047 else 1048 from = &sun_noname; 1049 so2 = unp2->unp_socket; 1050 SOCKBUF_LOCK(&so2->so_rcv); 1051 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1052 control)) { 1053 sorwakeup_locked(so2); 1054 m = NULL; 1055 control = NULL; 1056 } else { 1057 SOCKBUF_UNLOCK(&so2->so_rcv); 1058 error = ENOBUFS; 1059 } 1060 if (nam != NULL) 1061 unp_disconnect(unp, unp2); 1062 else 1063 unp_pcb_unlock_pair(unp, unp2); 1064 break; 1065 } 1066 1067 case SOCK_SEQPACKET: 1068 case SOCK_STREAM: 1069 if ((so->so_state & SS_ISCONNECTED) == 0) { 1070 if (nam != NULL) { 1071 error = unp_connect(so, nam, td); 1072 if (error != 0) 1073 break; 1074 } else { 1075 error = ENOTCONN; 1076 break; 1077 } 1078 } 1079 1080 UNP_PCB_LOCK(unp); 1081 if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) { 1082 UNP_PCB_UNLOCK(unp); 1083 error = ENOTCONN; 1084 break; 1085 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1086 unp_pcb_unlock_pair(unp, unp2); 1087 error = EPIPE; 1088 break; 1089 } 1090 UNP_PCB_UNLOCK(unp); 1091 if ((so2 = unp2->unp_socket) == NULL) { 1092 UNP_PCB_UNLOCK(unp2); 1093 error = ENOTCONN; 1094 break; 1095 } 1096 SOCKBUF_LOCK(&so2->so_rcv); 1097 if (unp2->unp_flags & UNP_WANTCRED_MASK) { 1098 /* 1099 * Credentials are passed only once on SOCK_STREAM and 1100 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or 1101 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS). 1102 */ 1103 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT; 1104 control = unp_addsockcred(td, control); 1105 } 1106 1107 /* 1108 * Send to paired receive port and wake up readers. Don't 1109 * check for space available in the receive buffer if we're 1110 * attaching ancillary data; Unix domain sockets only check 1111 * for space in the sending sockbuf, and that check is 1112 * performed one level up the stack. At that level we cannot 1113 * precisely account for the amount of buffer space used 1114 * (e.g., because control messages are not yet internalized). 1115 */ 1116 switch (so->so_type) { 1117 case SOCK_STREAM: 1118 if (control != NULL) { 1119 sbappendcontrol_locked(&so2->so_rcv, m, 1120 control, flags); 1121 control = NULL; 1122 } else 1123 sbappend_locked(&so2->so_rcv, m, flags); 1124 break; 1125 1126 case SOCK_SEQPACKET: 1127 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1128 &sun_noname, m, control)) 1129 control = NULL; 1130 break; 1131 } 1132 1133 mbcnt = so2->so_rcv.sb_mbcnt; 1134 sbcc = sbavail(&so2->so_rcv); 1135 if (sbcc) 1136 sorwakeup_locked(so2); 1137 else 1138 SOCKBUF_UNLOCK(&so2->so_rcv); 1139 1140 /* 1141 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1142 * it would be possible for uipc_rcvd to be called at this 1143 * point, drain the receiving sockbuf, clear SB_STOP, and then 1144 * we would set SB_STOP below. That could lead to an empty 1145 * sockbuf having SB_STOP set 1146 */ 1147 SOCKBUF_LOCK(&so->so_snd); 1148 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1149 so->so_snd.sb_flags |= SB_STOP; 1150 SOCKBUF_UNLOCK(&so->so_snd); 1151 UNP_PCB_UNLOCK(unp2); 1152 m = NULL; 1153 break; 1154 } 1155 1156 /* 1157 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1158 */ 1159 if (flags & PRUS_EOF) { 1160 UNP_PCB_LOCK(unp); 1161 socantsendmore(so); 1162 unp_shutdown(unp); 1163 UNP_PCB_UNLOCK(unp); 1164 } 1165 if (control != NULL && error != 0) 1166 unp_dispose_mbuf(control); 1167 1168 release: 1169 if (control != NULL) 1170 m_freem(control); 1171 /* 1172 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1173 * for freeing memory. 1174 */ 1175 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1176 m_freem(m); 1177 return (error); 1178 } 1179 1180 static bool 1181 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp) 1182 { 1183 struct mbuf *mb, *n; 1184 struct sockbuf *sb; 1185 1186 SOCK_LOCK(so); 1187 if (SOLISTENING(so)) { 1188 SOCK_UNLOCK(so); 1189 return (false); 1190 } 1191 mb = NULL; 1192 sb = &so->so_rcv; 1193 SOCKBUF_LOCK(sb); 1194 if (sb->sb_fnrdy != NULL) { 1195 for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) { 1196 if (mb == m) { 1197 *errorp = sbready(sb, m, count); 1198 break; 1199 } 1200 mb = mb->m_next; 1201 if (mb == NULL) { 1202 mb = n; 1203 if (mb != NULL) 1204 n = mb->m_nextpkt; 1205 } 1206 } 1207 } 1208 SOCKBUF_UNLOCK(sb); 1209 SOCK_UNLOCK(so); 1210 return (mb != NULL); 1211 } 1212 1213 static int 1214 uipc_ready(struct socket *so, struct mbuf *m, int count) 1215 { 1216 struct unpcb *unp, *unp2; 1217 struct socket *so2; 1218 int error, i; 1219 1220 unp = sotounpcb(so); 1221 1222 KASSERT(so->so_type == SOCK_STREAM, 1223 ("%s: unexpected socket type for %p", __func__, so)); 1224 1225 UNP_PCB_LOCK(unp); 1226 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1227 UNP_PCB_UNLOCK(unp); 1228 so2 = unp2->unp_socket; 1229 SOCKBUF_LOCK(&so2->so_rcv); 1230 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1231 sorwakeup_locked(so2); 1232 else 1233 SOCKBUF_UNLOCK(&so2->so_rcv); 1234 UNP_PCB_UNLOCK(unp2); 1235 return (error); 1236 } 1237 UNP_PCB_UNLOCK(unp); 1238 1239 /* 1240 * The receiving socket has been disconnected, but may still be valid. 1241 * In this case, the now-ready mbufs are still present in its socket 1242 * buffer, so perform an exhaustive search before giving up and freeing 1243 * the mbufs. 1244 */ 1245 UNP_LINK_RLOCK(); 1246 LIST_FOREACH(unp, &unp_shead, unp_link) { 1247 if (uipc_ready_scan(unp->unp_socket, m, count, &error)) 1248 break; 1249 } 1250 UNP_LINK_RUNLOCK(); 1251 1252 if (unp == NULL) { 1253 for (i = 0; i < count; i++) 1254 m = m_free(m); 1255 error = ECONNRESET; 1256 } 1257 return (error); 1258 } 1259 1260 static int 1261 uipc_sense(struct socket *so, struct stat *sb) 1262 { 1263 struct unpcb *unp; 1264 1265 unp = sotounpcb(so); 1266 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1267 1268 sb->st_blksize = so->so_snd.sb_hiwat; 1269 sb->st_dev = NODEV; 1270 sb->st_ino = unp->unp_ino; 1271 return (0); 1272 } 1273 1274 static int 1275 uipc_shutdown(struct socket *so) 1276 { 1277 struct unpcb *unp; 1278 1279 unp = sotounpcb(so); 1280 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1281 1282 UNP_PCB_LOCK(unp); 1283 socantsendmore(so); 1284 unp_shutdown(unp); 1285 UNP_PCB_UNLOCK(unp); 1286 return (0); 1287 } 1288 1289 static int 1290 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1291 { 1292 struct unpcb *unp; 1293 const struct sockaddr *sa; 1294 1295 unp = sotounpcb(so); 1296 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1297 1298 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1299 UNP_PCB_LOCK(unp); 1300 if (unp->unp_addr != NULL) 1301 sa = (struct sockaddr *) unp->unp_addr; 1302 else 1303 sa = &sun_noname; 1304 bcopy(sa, *nam, sa->sa_len); 1305 UNP_PCB_UNLOCK(unp); 1306 return (0); 1307 } 1308 1309 static struct pr_usrreqs uipc_usrreqs_dgram = { 1310 .pru_abort = uipc_abort, 1311 .pru_accept = uipc_accept, 1312 .pru_attach = uipc_attach, 1313 .pru_bind = uipc_bind, 1314 .pru_bindat = uipc_bindat, 1315 .pru_connect = uipc_connect, 1316 .pru_connectat = uipc_connectat, 1317 .pru_connect2 = uipc_connect2, 1318 .pru_detach = uipc_detach, 1319 .pru_disconnect = uipc_disconnect, 1320 .pru_listen = uipc_listen, 1321 .pru_peeraddr = uipc_peeraddr, 1322 .pru_rcvd = uipc_rcvd, 1323 .pru_send = uipc_send, 1324 .pru_sense = uipc_sense, 1325 .pru_shutdown = uipc_shutdown, 1326 .pru_sockaddr = uipc_sockaddr, 1327 .pru_soreceive = soreceive_dgram, 1328 .pru_close = uipc_close, 1329 }; 1330 1331 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1332 .pru_abort = uipc_abort, 1333 .pru_accept = uipc_accept, 1334 .pru_attach = uipc_attach, 1335 .pru_bind = uipc_bind, 1336 .pru_bindat = uipc_bindat, 1337 .pru_connect = uipc_connect, 1338 .pru_connectat = uipc_connectat, 1339 .pru_connect2 = uipc_connect2, 1340 .pru_detach = uipc_detach, 1341 .pru_disconnect = uipc_disconnect, 1342 .pru_listen = uipc_listen, 1343 .pru_peeraddr = uipc_peeraddr, 1344 .pru_rcvd = uipc_rcvd, 1345 .pru_send = uipc_send, 1346 .pru_sense = uipc_sense, 1347 .pru_shutdown = uipc_shutdown, 1348 .pru_sockaddr = uipc_sockaddr, 1349 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1350 .pru_close = uipc_close, 1351 }; 1352 1353 static struct pr_usrreqs uipc_usrreqs_stream = { 1354 .pru_abort = uipc_abort, 1355 .pru_accept = uipc_accept, 1356 .pru_attach = uipc_attach, 1357 .pru_bind = uipc_bind, 1358 .pru_bindat = uipc_bindat, 1359 .pru_connect = uipc_connect, 1360 .pru_connectat = uipc_connectat, 1361 .pru_connect2 = uipc_connect2, 1362 .pru_detach = uipc_detach, 1363 .pru_disconnect = uipc_disconnect, 1364 .pru_listen = uipc_listen, 1365 .pru_peeraddr = uipc_peeraddr, 1366 .pru_rcvd = uipc_rcvd, 1367 .pru_send = uipc_send, 1368 .pru_ready = uipc_ready, 1369 .pru_sense = uipc_sense, 1370 .pru_shutdown = uipc_shutdown, 1371 .pru_sockaddr = uipc_sockaddr, 1372 .pru_soreceive = soreceive_generic, 1373 .pru_close = uipc_close, 1374 }; 1375 1376 static int 1377 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1378 { 1379 struct unpcb *unp; 1380 struct xucred xu; 1381 int error, optval; 1382 1383 if (sopt->sopt_level != SOL_LOCAL) 1384 return (EINVAL); 1385 1386 unp = sotounpcb(so); 1387 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1388 error = 0; 1389 switch (sopt->sopt_dir) { 1390 case SOPT_GET: 1391 switch (sopt->sopt_name) { 1392 case LOCAL_PEERCRED: 1393 UNP_PCB_LOCK(unp); 1394 if (unp->unp_flags & UNP_HAVEPC) 1395 xu = unp->unp_peercred; 1396 else { 1397 if (so->so_type == SOCK_STREAM) 1398 error = ENOTCONN; 1399 else 1400 error = EINVAL; 1401 } 1402 UNP_PCB_UNLOCK(unp); 1403 if (error == 0) 1404 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1405 break; 1406 1407 case LOCAL_CREDS: 1408 /* Unlocked read. */ 1409 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0; 1410 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1411 break; 1412 1413 case LOCAL_CREDS_PERSISTENT: 1414 /* Unlocked read. */ 1415 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0; 1416 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1417 break; 1418 1419 case LOCAL_CONNWAIT: 1420 /* Unlocked read. */ 1421 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1422 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1423 break; 1424 1425 default: 1426 error = EOPNOTSUPP; 1427 break; 1428 } 1429 break; 1430 1431 case SOPT_SET: 1432 switch (sopt->sopt_name) { 1433 case LOCAL_CREDS: 1434 case LOCAL_CREDS_PERSISTENT: 1435 case LOCAL_CONNWAIT: 1436 error = sooptcopyin(sopt, &optval, sizeof(optval), 1437 sizeof(optval)); 1438 if (error) 1439 break; 1440 1441 #define OPTSET(bit, exclusive) do { \ 1442 UNP_PCB_LOCK(unp); \ 1443 if (optval) { \ 1444 if ((unp->unp_flags & (exclusive)) != 0) { \ 1445 UNP_PCB_UNLOCK(unp); \ 1446 error = EINVAL; \ 1447 break; \ 1448 } \ 1449 unp->unp_flags |= (bit); \ 1450 } else \ 1451 unp->unp_flags &= ~(bit); \ 1452 UNP_PCB_UNLOCK(unp); \ 1453 } while (0) 1454 1455 switch (sopt->sopt_name) { 1456 case LOCAL_CREDS: 1457 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS); 1458 break; 1459 1460 case LOCAL_CREDS_PERSISTENT: 1461 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT); 1462 break; 1463 1464 case LOCAL_CONNWAIT: 1465 OPTSET(UNP_CONNWAIT, 0); 1466 break; 1467 1468 default: 1469 break; 1470 } 1471 break; 1472 #undef OPTSET 1473 default: 1474 error = ENOPROTOOPT; 1475 break; 1476 } 1477 break; 1478 1479 default: 1480 error = EOPNOTSUPP; 1481 break; 1482 } 1483 return (error); 1484 } 1485 1486 static int 1487 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1488 { 1489 1490 return (unp_connectat(AT_FDCWD, so, nam, td)); 1491 } 1492 1493 static int 1494 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1495 struct thread *td) 1496 { 1497 struct mtx *vplock; 1498 struct sockaddr_un *soun; 1499 struct vnode *vp; 1500 struct socket *so2; 1501 struct unpcb *unp, *unp2, *unp3; 1502 struct nameidata nd; 1503 char buf[SOCK_MAXADDRLEN]; 1504 struct sockaddr *sa; 1505 cap_rights_t rights; 1506 int error, len; 1507 bool connreq; 1508 1509 if (nam->sa_family != AF_UNIX) 1510 return (EAFNOSUPPORT); 1511 if (nam->sa_len > sizeof(struct sockaddr_un)) 1512 return (EINVAL); 1513 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1514 if (len <= 0) 1515 return (EINVAL); 1516 soun = (struct sockaddr_un *)nam; 1517 bcopy(soun->sun_path, buf, len); 1518 buf[len] = 0; 1519 1520 unp = sotounpcb(so); 1521 UNP_PCB_LOCK(unp); 1522 for (;;) { 1523 /* 1524 * Wait for connection state to stabilize. If a connection 1525 * already exists, give up. For datagram sockets, which permit 1526 * multiple consecutive connect(2) calls, upper layers are 1527 * responsible for disconnecting in advance of a subsequent 1528 * connect(2), but this is not synchronized with PCB connection 1529 * state. 1530 * 1531 * Also make sure that no threads are currently attempting to 1532 * lock the peer socket, to ensure that unp_conn cannot 1533 * transition between two valid sockets while locks are dropped. 1534 */ 1535 if (unp->unp_conn != NULL) { 1536 UNP_PCB_UNLOCK(unp); 1537 return (EISCONN); 1538 } 1539 if ((unp->unp_flags & UNP_CONNECTING) != 0) { 1540 UNP_PCB_UNLOCK(unp); 1541 return (EALREADY); 1542 } 1543 if (unp->unp_pairbusy > 0) { 1544 unp->unp_flags |= UNP_WAITING; 1545 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0); 1546 continue; 1547 } 1548 break; 1549 } 1550 unp->unp_flags |= UNP_CONNECTING; 1551 UNP_PCB_UNLOCK(unp); 1552 1553 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0; 1554 if (connreq) 1555 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1556 else 1557 sa = NULL; 1558 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1559 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1560 error = namei(&nd); 1561 if (error) 1562 vp = NULL; 1563 else 1564 vp = nd.ni_vp; 1565 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1566 NDFREE(&nd, NDF_ONLY_PNBUF); 1567 if (error) 1568 goto bad; 1569 1570 if (vp->v_type != VSOCK) { 1571 error = ENOTSOCK; 1572 goto bad; 1573 } 1574 #ifdef MAC 1575 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1576 if (error) 1577 goto bad; 1578 #endif 1579 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1580 if (error) 1581 goto bad; 1582 1583 unp = sotounpcb(so); 1584 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1585 1586 vplock = mtx_pool_find(mtxpool_sleep, vp); 1587 mtx_lock(vplock); 1588 VOP_UNP_CONNECT(vp, &unp2); 1589 if (unp2 == NULL) { 1590 error = ECONNREFUSED; 1591 goto bad2; 1592 } 1593 so2 = unp2->unp_socket; 1594 if (so->so_type != so2->so_type) { 1595 error = EPROTOTYPE; 1596 goto bad2; 1597 } 1598 if (connreq) { 1599 if (so2->so_options & SO_ACCEPTCONN) { 1600 CURVNET_SET(so2->so_vnet); 1601 so2 = sonewconn(so2, 0); 1602 CURVNET_RESTORE(); 1603 } else 1604 so2 = NULL; 1605 if (so2 == NULL) { 1606 error = ECONNREFUSED; 1607 goto bad2; 1608 } 1609 unp3 = sotounpcb(so2); 1610 unp_pcb_lock_pair(unp2, unp3); 1611 if (unp2->unp_addr != NULL) { 1612 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1613 unp3->unp_addr = (struct sockaddr_un *) sa; 1614 sa = NULL; 1615 } 1616 1617 unp_copy_peercred(td, unp3, unp, unp2); 1618 1619 UNP_PCB_UNLOCK(unp2); 1620 unp2 = unp3; 1621 1622 /* 1623 * It is safe to block on the PCB lock here since unp2 is 1624 * nascent and cannot be connected to any other sockets. 1625 */ 1626 UNP_PCB_LOCK(unp); 1627 #ifdef MAC 1628 mac_socketpeer_set_from_socket(so, so2); 1629 mac_socketpeer_set_from_socket(so2, so); 1630 #endif 1631 } else { 1632 unp_pcb_lock_pair(unp, unp2); 1633 } 1634 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1635 sotounpcb(so2) == unp2, 1636 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1637 error = unp_connect2(so, so2, PRU_CONNECT); 1638 unp_pcb_unlock_pair(unp, unp2); 1639 bad2: 1640 mtx_unlock(vplock); 1641 bad: 1642 if (vp != NULL) { 1643 vput(vp); 1644 } 1645 free(sa, M_SONAME); 1646 UNP_PCB_LOCK(unp); 1647 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 1648 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 1649 unp->unp_flags &= ~UNP_CONNECTING; 1650 UNP_PCB_UNLOCK(unp); 1651 return (error); 1652 } 1653 1654 /* 1655 * Set socket peer credentials at connection time. 1656 * 1657 * The client's PCB credentials are copied from its process structure. The 1658 * server's PCB credentials are copied from the socket on which it called 1659 * listen(2). uipc_listen cached that process's credentials at the time. 1660 */ 1661 void 1662 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 1663 struct unpcb *server_unp, struct unpcb *listen_unp) 1664 { 1665 cru2xt(td, &client_unp->unp_peercred); 1666 client_unp->unp_flags |= UNP_HAVEPC; 1667 1668 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 1669 sizeof(server_unp->unp_peercred)); 1670 server_unp->unp_flags |= UNP_HAVEPC; 1671 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK); 1672 } 1673 1674 static int 1675 unp_connect2(struct socket *so, struct socket *so2, int req) 1676 { 1677 struct unpcb *unp; 1678 struct unpcb *unp2; 1679 1680 unp = sotounpcb(so); 1681 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1682 unp2 = sotounpcb(so2); 1683 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1684 1685 UNP_PCB_LOCK_ASSERT(unp); 1686 UNP_PCB_LOCK_ASSERT(unp2); 1687 KASSERT(unp->unp_conn == NULL, 1688 ("%s: socket %p is already connected", __func__, unp)); 1689 1690 if (so2->so_type != so->so_type) 1691 return (EPROTOTYPE); 1692 unp->unp_conn = unp2; 1693 unp_pcb_hold(unp2); 1694 unp_pcb_hold(unp); 1695 switch (so->so_type) { 1696 case SOCK_DGRAM: 1697 UNP_REF_LIST_LOCK(); 1698 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1699 UNP_REF_LIST_UNLOCK(); 1700 soisconnected(so); 1701 break; 1702 1703 case SOCK_STREAM: 1704 case SOCK_SEQPACKET: 1705 KASSERT(unp2->unp_conn == NULL, 1706 ("%s: socket %p is already connected", __func__, unp2)); 1707 unp2->unp_conn = unp; 1708 if (req == PRU_CONNECT && 1709 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1710 soisconnecting(so); 1711 else 1712 soisconnected(so); 1713 soisconnected(so2); 1714 break; 1715 1716 default: 1717 panic("unp_connect2"); 1718 } 1719 return (0); 1720 } 1721 1722 static void 1723 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1724 { 1725 struct socket *so, *so2; 1726 #ifdef INVARIANTS 1727 struct unpcb *unptmp; 1728 #endif 1729 1730 UNP_PCB_LOCK_ASSERT(unp); 1731 UNP_PCB_LOCK_ASSERT(unp2); 1732 KASSERT(unp->unp_conn == unp2, 1733 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2)); 1734 1735 unp->unp_conn = NULL; 1736 so = unp->unp_socket; 1737 so2 = unp2->unp_socket; 1738 switch (unp->unp_socket->so_type) { 1739 case SOCK_DGRAM: 1740 UNP_REF_LIST_LOCK(); 1741 #ifdef INVARIANTS 1742 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) { 1743 if (unptmp == unp) 1744 break; 1745 } 1746 KASSERT(unptmp != NULL, 1747 ("%s: %p not found in reflist of %p", __func__, unp, unp2)); 1748 #endif 1749 LIST_REMOVE(unp, unp_reflink); 1750 UNP_REF_LIST_UNLOCK(); 1751 if (so) { 1752 SOCK_LOCK(so); 1753 so->so_state &= ~SS_ISCONNECTED; 1754 SOCK_UNLOCK(so); 1755 } 1756 break; 1757 1758 case SOCK_STREAM: 1759 case SOCK_SEQPACKET: 1760 if (so) 1761 soisdisconnected(so); 1762 MPASS(unp2->unp_conn == unp); 1763 unp2->unp_conn = NULL; 1764 if (so2) 1765 soisdisconnected(so2); 1766 break; 1767 } 1768 1769 if (unp == unp2) { 1770 unp_pcb_rele_notlast(unp); 1771 if (!unp_pcb_rele(unp)) 1772 UNP_PCB_UNLOCK(unp); 1773 } else { 1774 if (!unp_pcb_rele(unp)) 1775 UNP_PCB_UNLOCK(unp); 1776 if (!unp_pcb_rele(unp2)) 1777 UNP_PCB_UNLOCK(unp2); 1778 } 1779 } 1780 1781 /* 1782 * unp_pcblist() walks the global list of struct unpcb's to generate a 1783 * pointer list, bumping the refcount on each unpcb. It then copies them out 1784 * sequentially, validating the generation number on each to see if it has 1785 * been detached. All of this is necessary because copyout() may sleep on 1786 * disk I/O. 1787 */ 1788 static int 1789 unp_pcblist(SYSCTL_HANDLER_ARGS) 1790 { 1791 struct unpcb *unp, **unp_list; 1792 unp_gen_t gencnt; 1793 struct xunpgen *xug; 1794 struct unp_head *head; 1795 struct xunpcb *xu; 1796 u_int i; 1797 int error, n; 1798 1799 switch ((intptr_t)arg1) { 1800 case SOCK_STREAM: 1801 head = &unp_shead; 1802 break; 1803 1804 case SOCK_DGRAM: 1805 head = &unp_dhead; 1806 break; 1807 1808 case SOCK_SEQPACKET: 1809 head = &unp_sphead; 1810 break; 1811 1812 default: 1813 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1814 } 1815 1816 /* 1817 * The process of preparing the PCB list is too time-consuming and 1818 * resource-intensive to repeat twice on every request. 1819 */ 1820 if (req->oldptr == NULL) { 1821 n = unp_count; 1822 req->oldidx = 2 * (sizeof *xug) 1823 + (n + n/8) * sizeof(struct xunpcb); 1824 return (0); 1825 } 1826 1827 if (req->newptr != NULL) 1828 return (EPERM); 1829 1830 /* 1831 * OK, now we're committed to doing something. 1832 */ 1833 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 1834 UNP_LINK_RLOCK(); 1835 gencnt = unp_gencnt; 1836 n = unp_count; 1837 UNP_LINK_RUNLOCK(); 1838 1839 xug->xug_len = sizeof *xug; 1840 xug->xug_count = n; 1841 xug->xug_gen = gencnt; 1842 xug->xug_sogen = so_gencnt; 1843 error = SYSCTL_OUT(req, xug, sizeof *xug); 1844 if (error) { 1845 free(xug, M_TEMP); 1846 return (error); 1847 } 1848 1849 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1850 1851 UNP_LINK_RLOCK(); 1852 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1853 unp = LIST_NEXT(unp, unp_link)) { 1854 UNP_PCB_LOCK(unp); 1855 if (unp->unp_gencnt <= gencnt) { 1856 if (cr_cansee(req->td->td_ucred, 1857 unp->unp_socket->so_cred)) { 1858 UNP_PCB_UNLOCK(unp); 1859 continue; 1860 } 1861 unp_list[i++] = unp; 1862 unp_pcb_hold(unp); 1863 } 1864 UNP_PCB_UNLOCK(unp); 1865 } 1866 UNP_LINK_RUNLOCK(); 1867 n = i; /* In case we lost some during malloc. */ 1868 1869 error = 0; 1870 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1871 for (i = 0; i < n; i++) { 1872 unp = unp_list[i]; 1873 UNP_PCB_LOCK(unp); 1874 if (unp_pcb_rele(unp)) 1875 continue; 1876 1877 if (unp->unp_gencnt <= gencnt) { 1878 xu->xu_len = sizeof *xu; 1879 xu->xu_unpp = (uintptr_t)unp; 1880 /* 1881 * XXX - need more locking here to protect against 1882 * connect/disconnect races for SMP. 1883 */ 1884 if (unp->unp_addr != NULL) 1885 bcopy(unp->unp_addr, &xu->xu_addr, 1886 unp->unp_addr->sun_len); 1887 else 1888 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1889 if (unp->unp_conn != NULL && 1890 unp->unp_conn->unp_addr != NULL) 1891 bcopy(unp->unp_conn->unp_addr, 1892 &xu->xu_caddr, 1893 unp->unp_conn->unp_addr->sun_len); 1894 else 1895 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1896 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 1897 xu->unp_conn = (uintptr_t)unp->unp_conn; 1898 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 1899 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 1900 xu->unp_gencnt = unp->unp_gencnt; 1901 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1902 UNP_PCB_UNLOCK(unp); 1903 error = SYSCTL_OUT(req, xu, sizeof *xu); 1904 } else { 1905 UNP_PCB_UNLOCK(unp); 1906 } 1907 } 1908 free(xu, M_TEMP); 1909 if (!error) { 1910 /* 1911 * Give the user an updated idea of our state. If the 1912 * generation differs from what we told her before, she knows 1913 * that something happened while we were processing this 1914 * request, and it might be necessary to retry. 1915 */ 1916 xug->xug_gen = unp_gencnt; 1917 xug->xug_sogen = so_gencnt; 1918 xug->xug_count = unp_count; 1919 error = SYSCTL_OUT(req, xug, sizeof *xug); 1920 } 1921 free(unp_list, M_TEMP); 1922 free(xug, M_TEMP); 1923 return (error); 1924 } 1925 1926 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 1927 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1928 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1929 "List of active local datagram sockets"); 1930 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 1931 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1932 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1933 "List of active local stream sockets"); 1934 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1935 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1936 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1937 "List of active local seqpacket sockets"); 1938 1939 static void 1940 unp_shutdown(struct unpcb *unp) 1941 { 1942 struct unpcb *unp2; 1943 struct socket *so; 1944 1945 UNP_PCB_LOCK_ASSERT(unp); 1946 1947 unp2 = unp->unp_conn; 1948 if ((unp->unp_socket->so_type == SOCK_STREAM || 1949 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1950 so = unp2->unp_socket; 1951 if (so != NULL) 1952 socantrcvmore(so); 1953 } 1954 } 1955 1956 static void 1957 unp_drop(struct unpcb *unp) 1958 { 1959 struct socket *so = unp->unp_socket; 1960 struct unpcb *unp2; 1961 1962 /* 1963 * Regardless of whether the socket's peer dropped the connection 1964 * with this socket by aborting or disconnecting, POSIX requires 1965 * that ECONNRESET is returned. 1966 */ 1967 1968 UNP_PCB_LOCK(unp); 1969 if (so) 1970 so->so_error = ECONNRESET; 1971 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1972 /* Last reference dropped in unp_disconnect(). */ 1973 unp_pcb_rele_notlast(unp); 1974 unp_disconnect(unp, unp2); 1975 } else if (!unp_pcb_rele(unp)) { 1976 UNP_PCB_UNLOCK(unp); 1977 } 1978 } 1979 1980 static void 1981 unp_freerights(struct filedescent **fdep, int fdcount) 1982 { 1983 struct file *fp; 1984 int i; 1985 1986 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1987 1988 for (i = 0; i < fdcount; i++) { 1989 fp = fdep[i]->fde_file; 1990 filecaps_free(&fdep[i]->fde_caps); 1991 unp_discard(fp); 1992 } 1993 free(fdep[0], M_FILECAPS); 1994 } 1995 1996 static int 1997 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1998 { 1999 struct thread *td = curthread; /* XXX */ 2000 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2001 int i; 2002 int *fdp; 2003 struct filedesc *fdesc = td->td_proc->p_fd; 2004 struct filedescent **fdep; 2005 void *data; 2006 socklen_t clen = control->m_len, datalen; 2007 int error, newfds; 2008 u_int newlen; 2009 2010 UNP_LINK_UNLOCK_ASSERT(); 2011 2012 error = 0; 2013 if (controlp != NULL) /* controlp == NULL => free control messages */ 2014 *controlp = NULL; 2015 while (cm != NULL) { 2016 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 2017 error = EINVAL; 2018 break; 2019 } 2020 data = CMSG_DATA(cm); 2021 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2022 if (cm->cmsg_level == SOL_SOCKET 2023 && cm->cmsg_type == SCM_RIGHTS) { 2024 newfds = datalen / sizeof(*fdep); 2025 if (newfds == 0) 2026 goto next; 2027 fdep = data; 2028 2029 /* If we're not outputting the descriptors free them. */ 2030 if (error || controlp == NULL) { 2031 unp_freerights(fdep, newfds); 2032 goto next; 2033 } 2034 FILEDESC_XLOCK(fdesc); 2035 2036 /* 2037 * Now change each pointer to an fd in the global 2038 * table to an integer that is the index to the local 2039 * fd table entry that we set up to point to the 2040 * global one we are transferring. 2041 */ 2042 newlen = newfds * sizeof(int); 2043 *controlp = sbcreatecontrol(NULL, newlen, 2044 SCM_RIGHTS, SOL_SOCKET); 2045 if (*controlp == NULL) { 2046 FILEDESC_XUNLOCK(fdesc); 2047 error = E2BIG; 2048 unp_freerights(fdep, newfds); 2049 goto next; 2050 } 2051 2052 fdp = (int *) 2053 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2054 if (fdallocn(td, 0, fdp, newfds) != 0) { 2055 FILEDESC_XUNLOCK(fdesc); 2056 error = EMSGSIZE; 2057 unp_freerights(fdep, newfds); 2058 m_freem(*controlp); 2059 *controlp = NULL; 2060 goto next; 2061 } 2062 for (i = 0; i < newfds; i++, fdp++) { 2063 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2064 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 2065 &fdep[i]->fde_caps); 2066 unp_externalize_fp(fdep[i]->fde_file); 2067 } 2068 2069 /* 2070 * The new type indicates that the mbuf data refers to 2071 * kernel resources that may need to be released before 2072 * the mbuf is freed. 2073 */ 2074 m_chtype(*controlp, MT_EXTCONTROL); 2075 FILEDESC_XUNLOCK(fdesc); 2076 free(fdep[0], M_FILECAPS); 2077 } else { 2078 /* We can just copy anything else across. */ 2079 if (error || controlp == NULL) 2080 goto next; 2081 *controlp = sbcreatecontrol(NULL, datalen, 2082 cm->cmsg_type, cm->cmsg_level); 2083 if (*controlp == NULL) { 2084 error = ENOBUFS; 2085 goto next; 2086 } 2087 bcopy(data, 2088 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2089 datalen); 2090 } 2091 controlp = &(*controlp)->m_next; 2092 2093 next: 2094 if (CMSG_SPACE(datalen) < clen) { 2095 clen -= CMSG_SPACE(datalen); 2096 cm = (struct cmsghdr *) 2097 ((caddr_t)cm + CMSG_SPACE(datalen)); 2098 } else { 2099 clen = 0; 2100 cm = NULL; 2101 } 2102 } 2103 2104 m_freem(control); 2105 return (error); 2106 } 2107 2108 static void 2109 unp_zone_change(void *tag) 2110 { 2111 2112 uma_zone_set_max(unp_zone, maxsockets); 2113 } 2114 2115 #ifdef INVARIANTS 2116 static void 2117 unp_zdtor(void *mem, int size __unused, void *arg __unused) 2118 { 2119 struct unpcb *unp; 2120 2121 unp = mem; 2122 2123 KASSERT(LIST_EMPTY(&unp->unp_refs), 2124 ("%s: unpcb %p has lingering refs", __func__, unp)); 2125 KASSERT(unp->unp_socket == NULL, 2126 ("%s: unpcb %p has socket backpointer", __func__, unp)); 2127 KASSERT(unp->unp_vnode == NULL, 2128 ("%s: unpcb %p has vnode references", __func__, unp)); 2129 KASSERT(unp->unp_conn == NULL, 2130 ("%s: unpcb %p is still connected", __func__, unp)); 2131 KASSERT(unp->unp_addr == NULL, 2132 ("%s: unpcb %p has leaked addr", __func__, unp)); 2133 } 2134 #endif 2135 2136 static void 2137 unp_init(void) 2138 { 2139 uma_dtor dtor; 2140 2141 #ifdef VIMAGE 2142 if (!IS_DEFAULT_VNET(curvnet)) 2143 return; 2144 #endif 2145 2146 #ifdef INVARIANTS 2147 dtor = unp_zdtor; 2148 #else 2149 dtor = NULL; 2150 #endif 2151 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor, 2152 NULL, NULL, UMA_ALIGN_CACHE, 0); 2153 uma_zone_set_max(unp_zone, maxsockets); 2154 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2155 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2156 NULL, EVENTHANDLER_PRI_ANY); 2157 LIST_INIT(&unp_dhead); 2158 LIST_INIT(&unp_shead); 2159 LIST_INIT(&unp_sphead); 2160 SLIST_INIT(&unp_defers); 2161 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2162 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2163 UNP_LINK_LOCK_INIT(); 2164 UNP_DEFERRED_LOCK_INIT(); 2165 } 2166 2167 static void 2168 unp_internalize_cleanup_rights(struct mbuf *control) 2169 { 2170 struct cmsghdr *cp; 2171 struct mbuf *m; 2172 void *data; 2173 socklen_t datalen; 2174 2175 for (m = control; m != NULL; m = m->m_next) { 2176 cp = mtod(m, struct cmsghdr *); 2177 if (cp->cmsg_level != SOL_SOCKET || 2178 cp->cmsg_type != SCM_RIGHTS) 2179 continue; 2180 data = CMSG_DATA(cp); 2181 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 2182 unp_freerights(data, datalen / sizeof(struct filedesc *)); 2183 } 2184 } 2185 2186 static int 2187 unp_internalize(struct mbuf **controlp, struct thread *td) 2188 { 2189 struct mbuf *control, **initial_controlp; 2190 struct proc *p; 2191 struct filedesc *fdesc; 2192 struct bintime *bt; 2193 struct cmsghdr *cm; 2194 struct cmsgcred *cmcred; 2195 struct filedescent *fde, **fdep, *fdev; 2196 struct file *fp; 2197 struct timeval *tv; 2198 struct timespec *ts; 2199 void *data; 2200 socklen_t clen, datalen; 2201 int i, j, error, *fdp, oldfds; 2202 u_int newlen; 2203 2204 UNP_LINK_UNLOCK_ASSERT(); 2205 2206 p = td->td_proc; 2207 fdesc = p->p_fd; 2208 error = 0; 2209 control = *controlp; 2210 clen = control->m_len; 2211 *controlp = NULL; 2212 initial_controlp = controlp; 2213 for (cm = mtod(control, struct cmsghdr *); cm != NULL;) { 2214 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2215 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2216 error = EINVAL; 2217 goto out; 2218 } 2219 data = CMSG_DATA(cm); 2220 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2221 2222 switch (cm->cmsg_type) { 2223 /* 2224 * Fill in credential information. 2225 */ 2226 case SCM_CREDS: 2227 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2228 SCM_CREDS, SOL_SOCKET); 2229 if (*controlp == NULL) { 2230 error = ENOBUFS; 2231 goto out; 2232 } 2233 cmcred = (struct cmsgcred *) 2234 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2235 cmcred->cmcred_pid = p->p_pid; 2236 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2237 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2238 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2239 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2240 CMGROUP_MAX); 2241 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2242 cmcred->cmcred_groups[i] = 2243 td->td_ucred->cr_groups[i]; 2244 break; 2245 2246 case SCM_RIGHTS: 2247 oldfds = datalen / sizeof (int); 2248 if (oldfds == 0) 2249 break; 2250 /* 2251 * Check that all the FDs passed in refer to legal 2252 * files. If not, reject the entire operation. 2253 */ 2254 fdp = data; 2255 FILEDESC_SLOCK(fdesc); 2256 for (i = 0; i < oldfds; i++, fdp++) { 2257 fp = fget_locked(fdesc, *fdp); 2258 if (fp == NULL) { 2259 FILEDESC_SUNLOCK(fdesc); 2260 error = EBADF; 2261 goto out; 2262 } 2263 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2264 FILEDESC_SUNLOCK(fdesc); 2265 error = EOPNOTSUPP; 2266 goto out; 2267 } 2268 } 2269 2270 /* 2271 * Now replace the integer FDs with pointers to the 2272 * file structure and capability rights. 2273 */ 2274 newlen = oldfds * sizeof(fdep[0]); 2275 *controlp = sbcreatecontrol(NULL, newlen, 2276 SCM_RIGHTS, SOL_SOCKET); 2277 if (*controlp == NULL) { 2278 FILEDESC_SUNLOCK(fdesc); 2279 error = E2BIG; 2280 goto out; 2281 } 2282 fdp = data; 2283 for (i = 0; i < oldfds; i++, fdp++) { 2284 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 2285 fdp = data; 2286 for (j = 0; j < i; j++, fdp++) { 2287 fdrop(fdesc->fd_ofiles[*fdp]. 2288 fde_file, td); 2289 } 2290 FILEDESC_SUNLOCK(fdesc); 2291 error = EBADF; 2292 goto out; 2293 } 2294 } 2295 fdp = data; 2296 fdep = (struct filedescent **) 2297 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2298 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2299 M_WAITOK); 2300 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2301 fde = &fdesc->fd_ofiles[*fdp]; 2302 fdep[i] = fdev; 2303 fdep[i]->fde_file = fde->fde_file; 2304 filecaps_copy(&fde->fde_caps, 2305 &fdep[i]->fde_caps, true); 2306 unp_internalize_fp(fdep[i]->fde_file); 2307 } 2308 FILEDESC_SUNLOCK(fdesc); 2309 break; 2310 2311 case SCM_TIMESTAMP: 2312 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2313 SCM_TIMESTAMP, SOL_SOCKET); 2314 if (*controlp == NULL) { 2315 error = ENOBUFS; 2316 goto out; 2317 } 2318 tv = (struct timeval *) 2319 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2320 microtime(tv); 2321 break; 2322 2323 case SCM_BINTIME: 2324 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2325 SCM_BINTIME, SOL_SOCKET); 2326 if (*controlp == NULL) { 2327 error = ENOBUFS; 2328 goto out; 2329 } 2330 bt = (struct bintime *) 2331 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2332 bintime(bt); 2333 break; 2334 2335 case SCM_REALTIME: 2336 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2337 SCM_REALTIME, SOL_SOCKET); 2338 if (*controlp == NULL) { 2339 error = ENOBUFS; 2340 goto out; 2341 } 2342 ts = (struct timespec *) 2343 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2344 nanotime(ts); 2345 break; 2346 2347 case SCM_MONOTONIC: 2348 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2349 SCM_MONOTONIC, SOL_SOCKET); 2350 if (*controlp == NULL) { 2351 error = ENOBUFS; 2352 goto out; 2353 } 2354 ts = (struct timespec *) 2355 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2356 nanouptime(ts); 2357 break; 2358 2359 default: 2360 error = EINVAL; 2361 goto out; 2362 } 2363 2364 if (*controlp != NULL) 2365 controlp = &(*controlp)->m_next; 2366 if (CMSG_SPACE(datalen) < clen) { 2367 clen -= CMSG_SPACE(datalen); 2368 cm = (struct cmsghdr *) 2369 ((caddr_t)cm + CMSG_SPACE(datalen)); 2370 } else { 2371 clen = 0; 2372 cm = NULL; 2373 } 2374 } 2375 2376 out: 2377 if (error != 0 && initial_controlp != NULL) 2378 unp_internalize_cleanup_rights(*initial_controlp); 2379 m_freem(control); 2380 return (error); 2381 } 2382 2383 static struct mbuf * 2384 unp_addsockcred(struct thread *td, struct mbuf *control) 2385 { 2386 struct mbuf *m, *n, *n_prev; 2387 struct sockcred *sc; 2388 const struct cmsghdr *cm; 2389 int ngroups; 2390 int i; 2391 2392 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2393 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2394 if (m == NULL) 2395 return (control); 2396 2397 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2398 sc->sc_uid = td->td_ucred->cr_ruid; 2399 sc->sc_euid = td->td_ucred->cr_uid; 2400 sc->sc_gid = td->td_ucred->cr_rgid; 2401 sc->sc_egid = td->td_ucred->cr_gid; 2402 sc->sc_ngroups = ngroups; 2403 for (i = 0; i < sc->sc_ngroups; i++) 2404 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2405 2406 /* 2407 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2408 * created SCM_CREDS control message (struct sockcred) has another 2409 * format. 2410 */ 2411 if (control != NULL) 2412 for (n = control, n_prev = NULL; n != NULL;) { 2413 cm = mtod(n, struct cmsghdr *); 2414 if (cm->cmsg_level == SOL_SOCKET && 2415 cm->cmsg_type == SCM_CREDS) { 2416 if (n_prev == NULL) 2417 control = n->m_next; 2418 else 2419 n_prev->m_next = n->m_next; 2420 n = m_free(n); 2421 } else { 2422 n_prev = n; 2423 n = n->m_next; 2424 } 2425 } 2426 2427 /* Prepend it to the head. */ 2428 m->m_next = control; 2429 return (m); 2430 } 2431 2432 static struct unpcb * 2433 fptounp(struct file *fp) 2434 { 2435 struct socket *so; 2436 2437 if (fp->f_type != DTYPE_SOCKET) 2438 return (NULL); 2439 if ((so = fp->f_data) == NULL) 2440 return (NULL); 2441 if (so->so_proto->pr_domain != &localdomain) 2442 return (NULL); 2443 return sotounpcb(so); 2444 } 2445 2446 static void 2447 unp_discard(struct file *fp) 2448 { 2449 struct unp_defer *dr; 2450 2451 if (unp_externalize_fp(fp)) { 2452 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2453 dr->ud_fp = fp; 2454 UNP_DEFERRED_LOCK(); 2455 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2456 UNP_DEFERRED_UNLOCK(); 2457 atomic_add_int(&unp_defers_count, 1); 2458 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2459 } else 2460 (void) closef(fp, (struct thread *)NULL); 2461 } 2462 2463 static void 2464 unp_process_defers(void *arg __unused, int pending) 2465 { 2466 struct unp_defer *dr; 2467 SLIST_HEAD(, unp_defer) drl; 2468 int count; 2469 2470 SLIST_INIT(&drl); 2471 for (;;) { 2472 UNP_DEFERRED_LOCK(); 2473 if (SLIST_FIRST(&unp_defers) == NULL) { 2474 UNP_DEFERRED_UNLOCK(); 2475 break; 2476 } 2477 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2478 UNP_DEFERRED_UNLOCK(); 2479 count = 0; 2480 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2481 SLIST_REMOVE_HEAD(&drl, ud_link); 2482 closef(dr->ud_fp, NULL); 2483 free(dr, M_TEMP); 2484 count++; 2485 } 2486 atomic_add_int(&unp_defers_count, -count); 2487 } 2488 } 2489 2490 static void 2491 unp_internalize_fp(struct file *fp) 2492 { 2493 struct unpcb *unp; 2494 2495 UNP_LINK_WLOCK(); 2496 if ((unp = fptounp(fp)) != NULL) { 2497 unp->unp_file = fp; 2498 unp->unp_msgcount++; 2499 } 2500 unp_rights++; 2501 UNP_LINK_WUNLOCK(); 2502 } 2503 2504 static int 2505 unp_externalize_fp(struct file *fp) 2506 { 2507 struct unpcb *unp; 2508 int ret; 2509 2510 UNP_LINK_WLOCK(); 2511 if ((unp = fptounp(fp)) != NULL) { 2512 unp->unp_msgcount--; 2513 ret = 1; 2514 } else 2515 ret = 0; 2516 unp_rights--; 2517 UNP_LINK_WUNLOCK(); 2518 return (ret); 2519 } 2520 2521 /* 2522 * unp_defer indicates whether additional work has been defered for a future 2523 * pass through unp_gc(). It is thread local and does not require explicit 2524 * synchronization. 2525 */ 2526 static int unp_marked; 2527 2528 static void 2529 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 2530 { 2531 struct unpcb *unp; 2532 struct file *fp; 2533 int i; 2534 2535 /* 2536 * This function can only be called from the gc task. 2537 */ 2538 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2539 ("%s: not on gc callout", __func__)); 2540 UNP_LINK_LOCK_ASSERT(); 2541 2542 for (i = 0; i < fdcount; i++) { 2543 fp = fdep[i]->fde_file; 2544 if ((unp = fptounp(fp)) == NULL) 2545 continue; 2546 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2547 continue; 2548 unp->unp_gcrefs--; 2549 } 2550 } 2551 2552 static void 2553 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 2554 { 2555 struct unpcb *unp; 2556 struct file *fp; 2557 int i; 2558 2559 /* 2560 * This function can only be called from the gc task. 2561 */ 2562 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2563 ("%s: not on gc callout", __func__)); 2564 UNP_LINK_LOCK_ASSERT(); 2565 2566 for (i = 0; i < fdcount; i++) { 2567 fp = fdep[i]->fde_file; 2568 if ((unp = fptounp(fp)) == NULL) 2569 continue; 2570 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2571 continue; 2572 unp->unp_gcrefs++; 2573 unp_marked++; 2574 } 2575 } 2576 2577 static void 2578 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 2579 { 2580 struct socket *so, *soa; 2581 2582 so = unp->unp_socket; 2583 SOCK_LOCK(so); 2584 if (SOLISTENING(so)) { 2585 /* 2586 * Mark all sockets in our accept queue. 2587 */ 2588 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2589 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2590 continue; 2591 SOCKBUF_LOCK(&soa->so_rcv); 2592 unp_scan(soa->so_rcv.sb_mb, op); 2593 SOCKBUF_UNLOCK(&soa->so_rcv); 2594 } 2595 } else { 2596 /* 2597 * Mark all sockets we reference with RIGHTS. 2598 */ 2599 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2600 SOCKBUF_LOCK(&so->so_rcv); 2601 unp_scan(so->so_rcv.sb_mb, op); 2602 SOCKBUF_UNLOCK(&so->so_rcv); 2603 } 2604 } 2605 SOCK_UNLOCK(so); 2606 } 2607 2608 static int unp_recycled; 2609 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2610 "Number of unreachable sockets claimed by the garbage collector."); 2611 2612 static int unp_taskcount; 2613 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2614 "Number of times the garbage collector has run."); 2615 2616 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 2617 "Number of active local sockets."); 2618 2619 static void 2620 unp_gc(__unused void *arg, int pending) 2621 { 2622 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2623 NULL }; 2624 struct unp_head **head; 2625 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 2626 struct file *f, **unref; 2627 struct unpcb *unp, *unptmp; 2628 int i, total, unp_unreachable; 2629 2630 LIST_INIT(&unp_deadhead); 2631 unp_taskcount++; 2632 UNP_LINK_RLOCK(); 2633 /* 2634 * First determine which sockets may be in cycles. 2635 */ 2636 unp_unreachable = 0; 2637 2638 for (head = heads; *head != NULL; head++) 2639 LIST_FOREACH(unp, *head, unp_link) { 2640 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 2641 ("%s: unp %p has unexpected gc flags 0x%x", 2642 __func__, unp, (unsigned int)unp->unp_gcflag)); 2643 2644 f = unp->unp_file; 2645 2646 /* 2647 * Check for an unreachable socket potentially in a 2648 * cycle. It must be in a queue as indicated by 2649 * msgcount, and this must equal the file reference 2650 * count. Note that when msgcount is 0 the file is 2651 * NULL. 2652 */ 2653 if (f != NULL && unp->unp_msgcount != 0 && 2654 f->f_count == unp->unp_msgcount) { 2655 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 2656 unp->unp_gcflag |= UNPGC_DEAD; 2657 unp->unp_gcrefs = unp->unp_msgcount; 2658 unp_unreachable++; 2659 } 2660 } 2661 2662 /* 2663 * Scan all sockets previously marked as potentially being in a cycle 2664 * and remove the references each socket holds on any UNPGC_DEAD 2665 * sockets in its queue. After this step, all remaining references on 2666 * sockets marked UNPGC_DEAD should not be part of any cycle. 2667 */ 2668 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 2669 unp_gc_scan(unp, unp_remove_dead_ref); 2670 2671 /* 2672 * If a socket still has a non-negative refcount, it cannot be in a 2673 * cycle. In this case increment refcount of all children iteratively. 2674 * Stop the scan once we do a complete loop without discovering 2675 * a new reachable socket. 2676 */ 2677 do { 2678 unp_marked = 0; 2679 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 2680 if (unp->unp_gcrefs > 0) { 2681 unp->unp_gcflag &= ~UNPGC_DEAD; 2682 LIST_REMOVE(unp, unp_dead); 2683 KASSERT(unp_unreachable > 0, 2684 ("%s: unp_unreachable underflow.", 2685 __func__)); 2686 unp_unreachable--; 2687 unp_gc_scan(unp, unp_restore_undead_ref); 2688 } 2689 } while (unp_marked); 2690 2691 UNP_LINK_RUNLOCK(); 2692 2693 if (unp_unreachable == 0) 2694 return; 2695 2696 /* 2697 * Allocate space for a local array of dead unpcbs. 2698 * TODO: can this path be simplified by instead using the local 2699 * dead list at unp_deadhead, after taking out references 2700 * on the file object and/or unpcb and dropping the link lock? 2701 */ 2702 unref = malloc(unp_unreachable * sizeof(struct file *), 2703 M_TEMP, M_WAITOK); 2704 2705 /* 2706 * Iterate looking for sockets which have been specifically marked 2707 * as unreachable and store them locally. 2708 */ 2709 UNP_LINK_RLOCK(); 2710 total = 0; 2711 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 2712 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 2713 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 2714 unp->unp_gcflag &= ~UNPGC_DEAD; 2715 f = unp->unp_file; 2716 if (unp->unp_msgcount == 0 || f == NULL || 2717 f->f_count != unp->unp_msgcount || 2718 !fhold(f)) 2719 continue; 2720 unref[total++] = f; 2721 KASSERT(total <= unp_unreachable, 2722 ("%s: incorrect unreachable count.", __func__)); 2723 } 2724 UNP_LINK_RUNLOCK(); 2725 2726 /* 2727 * Now flush all sockets, free'ing rights. This will free the 2728 * struct files associated with these sockets but leave each socket 2729 * with one remaining ref. 2730 */ 2731 for (i = 0; i < total; i++) { 2732 struct socket *so; 2733 2734 so = unref[i]->f_data; 2735 CURVNET_SET(so->so_vnet); 2736 sorflush(so); 2737 CURVNET_RESTORE(); 2738 } 2739 2740 /* 2741 * And finally release the sockets so they can be reclaimed. 2742 */ 2743 for (i = 0; i < total; i++) 2744 fdrop(unref[i], NULL); 2745 unp_recycled += total; 2746 free(unref, M_TEMP); 2747 } 2748 2749 static void 2750 unp_dispose_mbuf(struct mbuf *m) 2751 { 2752 2753 if (m) 2754 unp_scan(m, unp_freerights); 2755 } 2756 2757 /* 2758 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2759 */ 2760 static void 2761 unp_dispose(struct socket *so) 2762 { 2763 struct unpcb *unp; 2764 2765 unp = sotounpcb(so); 2766 UNP_LINK_WLOCK(); 2767 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2768 UNP_LINK_WUNLOCK(); 2769 if (!SOLISTENING(so)) 2770 unp_dispose_mbuf(so->so_rcv.sb_mb); 2771 } 2772 2773 static void 2774 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2775 { 2776 struct mbuf *m; 2777 struct cmsghdr *cm; 2778 void *data; 2779 socklen_t clen, datalen; 2780 2781 while (m0 != NULL) { 2782 for (m = m0; m; m = m->m_next) { 2783 if (m->m_type != MT_CONTROL) 2784 continue; 2785 2786 cm = mtod(m, struct cmsghdr *); 2787 clen = m->m_len; 2788 2789 while (cm != NULL) { 2790 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2791 break; 2792 2793 data = CMSG_DATA(cm); 2794 datalen = (caddr_t)cm + cm->cmsg_len 2795 - (caddr_t)data; 2796 2797 if (cm->cmsg_level == SOL_SOCKET && 2798 cm->cmsg_type == SCM_RIGHTS) { 2799 (*op)(data, datalen / 2800 sizeof(struct filedescent *)); 2801 } 2802 2803 if (CMSG_SPACE(datalen) < clen) { 2804 clen -= CMSG_SPACE(datalen); 2805 cm = (struct cmsghdr *) 2806 ((caddr_t)cm + CMSG_SPACE(datalen)); 2807 } else { 2808 clen = 0; 2809 cm = NULL; 2810 } 2811 } 2812 } 2813 m0 = m0->m_nextpkt; 2814 } 2815 } 2816 2817 /* 2818 * A helper function called by VFS before socket-type vnode reclamation. 2819 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2820 * use count. 2821 */ 2822 void 2823 vfs_unp_reclaim(struct vnode *vp) 2824 { 2825 struct unpcb *unp; 2826 int active; 2827 struct mtx *vplock; 2828 2829 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2830 KASSERT(vp->v_type == VSOCK, 2831 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2832 2833 active = 0; 2834 vplock = mtx_pool_find(mtxpool_sleep, vp); 2835 mtx_lock(vplock); 2836 VOP_UNP_CONNECT(vp, &unp); 2837 if (unp == NULL) 2838 goto done; 2839 UNP_PCB_LOCK(unp); 2840 if (unp->unp_vnode == vp) { 2841 VOP_UNP_DETACH(vp); 2842 unp->unp_vnode = NULL; 2843 active = 1; 2844 } 2845 UNP_PCB_UNLOCK(unp); 2846 done: 2847 mtx_unlock(vplock); 2848 if (active) 2849 vunref(vp); 2850 } 2851 2852 #ifdef DDB 2853 static void 2854 db_print_indent(int indent) 2855 { 2856 int i; 2857 2858 for (i = 0; i < indent; i++) 2859 db_printf(" "); 2860 } 2861 2862 static void 2863 db_print_unpflags(int unp_flags) 2864 { 2865 int comma; 2866 2867 comma = 0; 2868 if (unp_flags & UNP_HAVEPC) { 2869 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2870 comma = 1; 2871 } 2872 if (unp_flags & UNP_WANTCRED_ALWAYS) { 2873 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : ""); 2874 comma = 1; 2875 } 2876 if (unp_flags & UNP_WANTCRED_ONESHOT) { 2877 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : ""); 2878 comma = 1; 2879 } 2880 if (unp_flags & UNP_CONNWAIT) { 2881 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2882 comma = 1; 2883 } 2884 if (unp_flags & UNP_CONNECTING) { 2885 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2886 comma = 1; 2887 } 2888 if (unp_flags & UNP_BINDING) { 2889 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2890 comma = 1; 2891 } 2892 } 2893 2894 static void 2895 db_print_xucred(int indent, struct xucred *xu) 2896 { 2897 int comma, i; 2898 2899 db_print_indent(indent); 2900 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 2901 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 2902 db_print_indent(indent); 2903 db_printf("cr_groups: "); 2904 comma = 0; 2905 for (i = 0; i < xu->cr_ngroups; i++) { 2906 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2907 comma = 1; 2908 } 2909 db_printf("\n"); 2910 } 2911 2912 static void 2913 db_print_unprefs(int indent, struct unp_head *uh) 2914 { 2915 struct unpcb *unp; 2916 int counter; 2917 2918 counter = 0; 2919 LIST_FOREACH(unp, uh, unp_reflink) { 2920 if (counter % 4 == 0) 2921 db_print_indent(indent); 2922 db_printf("%p ", unp); 2923 if (counter % 4 == 3) 2924 db_printf("\n"); 2925 counter++; 2926 } 2927 if (counter != 0 && counter % 4 != 0) 2928 db_printf("\n"); 2929 } 2930 2931 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2932 { 2933 struct unpcb *unp; 2934 2935 if (!have_addr) { 2936 db_printf("usage: show unpcb <addr>\n"); 2937 return; 2938 } 2939 unp = (struct unpcb *)addr; 2940 2941 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2942 unp->unp_vnode); 2943 2944 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2945 unp->unp_conn); 2946 2947 db_printf("unp_refs:\n"); 2948 db_print_unprefs(2, &unp->unp_refs); 2949 2950 /* XXXRW: Would be nice to print the full address, if any. */ 2951 db_printf("unp_addr: %p\n", unp->unp_addr); 2952 2953 db_printf("unp_gencnt: %llu\n", 2954 (unsigned long long)unp->unp_gencnt); 2955 2956 db_printf("unp_flags: %x (", unp->unp_flags); 2957 db_print_unpflags(unp->unp_flags); 2958 db_printf(")\n"); 2959 2960 db_printf("unp_peercred:\n"); 2961 db_print_xucred(2, &unp->unp_peercred); 2962 2963 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2964 } 2965 #endif 2966