xref: /freebsd/sys/kern/uipc_usrreq.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	distinguish datagram size limits from flow control limits in SEQPACKET
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 /*
105  * Locking key:
106  * (l)	Locked using list lock
107  * (g)	Locked using linkage lock
108  */
109 
110 static uma_zone_t	unp_zone;
111 static unp_gen_t	unp_gencnt;	/* (l) */
112 static u_int		unp_count;	/* (l) Count of local sockets. */
113 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114 static int		unp_rights;	/* (g) File descriptors in flight. */
115 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118 
119 struct unp_defer {
120 	SLIST_ENTRY(unp_defer) ud_link;
121 	struct file *ud_fp;
122 };
123 static SLIST_HEAD(, unp_defer) unp_defers;
124 static int unp_defers_count;
125 
126 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct task	unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158 static u_long	unpdg_recvspace = 4*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
164     "SOCK_STREAM");
165 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
166 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
167     "SOCK_SEQPACKET");
168 
169 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
170 	   &unpst_sendspace, 0, "Default stream send space.");
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
172 	   &unpst_recvspace, 0, "Default stream receive space.");
173 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
174 	   &unpdg_sendspace, 0, "Default datagram send space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
176 	   &unpdg_recvspace, 0, "Default datagram receive space.");
177 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
178 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
180 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
181 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
182     "File descriptors in flight.");
183 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
184     &unp_defers_count, 0,
185     "File descriptors deferred to taskqueue for close.");
186 
187 /*
188  * Locking and synchronization:
189  *
190  * Three types of locks exit in the local domain socket implementation: a
191  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
192  * global locks, the list lock protects the socket count, global generation
193  * number, and stream/datagram global lists.  The linkage lock protects the
194  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
195  * held exclusively over the acquisition of multiple unpcb locks to prevent
196  * deadlock.
197  *
198  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
199  * allocated in pru_attach() and freed in pru_detach().  The validity of that
200  * pointer is an invariant, so no lock is required to dereference the so_pcb
201  * pointer if a valid socket reference is held by the caller.  In practice,
202  * this is always true during operations performed on a socket.  Each unpcb
203  * has a back-pointer to its socket, unp_socket, which will be stable under
204  * the same circumstances.
205  *
206  * This pointer may only be safely dereferenced as long as a valid reference
207  * to the unpcb is held.  Typically, this reference will be from the socket,
208  * or from another unpcb when the referring unpcb's lock is held (in order
209  * that the reference not be invalidated during use).  For example, to follow
210  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
211  * as unp_socket remains valid as long as the reference to unp_conn is valid.
212  *
213  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
214  * atomic reads without the lock may be performed "lockless", but more
215  * complex reads and read-modify-writes require the mutex to be held.  No
216  * lock order is defined between unpcb locks -- multiple unpcb locks may be
217  * acquired at the same time only when holding the linkage rwlock
218  * exclusively, which prevents deadlocks.
219  *
220  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
221  * protocols, bind() is a non-atomic operation, and connect() requires
222  * potential sleeping in the protocol, due to potentially waiting on local or
223  * distributed file systems.  We try to separate "lookup" operations, which
224  * may sleep, and the IPC operations themselves, which typically can occur
225  * with relative atomicity as locks can be held over the entire operation.
226  *
227  * Another tricky issue is simultaneous multi-threaded or multi-process
228  * access to a single UNIX domain socket.  These are handled by the flags
229  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
230  * binding, both of which involve dropping UNIX domain socket locks in order
231  * to perform namei() and other file system operations.
232  */
233 static struct rwlock	unp_link_rwlock;
234 static struct mtx	unp_list_lock;
235 static struct mtx	unp_defers_lock;
236 
237 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
238 					    "unp_link_rwlock")
239 
240 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
241 					    RA_LOCKED)
242 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243 					    RA_UNLOCKED)
244 
245 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
246 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
247 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
248 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
249 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
250 					    RA_WLOCKED)
251 
252 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
253 					    "unp_list_lock", NULL, MTX_DEF)
254 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
255 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
256 
257 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
258 					    "unp_defer", NULL, MTX_DEF)
259 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
260 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
261 
262 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
263 					    "unp_mtx", "unp_mtx",	\
264 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
265 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
266 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
267 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
268 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
269 
270 static int	uipc_connect2(struct socket *, struct socket *);
271 static int	uipc_ctloutput(struct socket *, struct sockopt *);
272 static int	unp_connect(struct socket *, struct sockaddr *,
273 		    struct thread *);
274 static int	unp_connect2(struct socket *so, struct socket *so2, int);
275 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
276 static void	unp_dispose(struct mbuf *);
277 static void	unp_shutdown(struct unpcb *);
278 static void	unp_drop(struct unpcb *, int);
279 static void	unp_gc(__unused void *, int);
280 static void	unp_scan(struct mbuf *, void (*)(struct file *));
281 static void	unp_discard(struct file *);
282 static void	unp_freerights(struct file **, int);
283 static void	unp_init(void);
284 static int	unp_internalize(struct mbuf **, struct thread *);
285 static void	unp_internalize_fp(struct file *);
286 static int	unp_externalize(struct mbuf *, struct mbuf **);
287 static int	unp_externalize_fp(struct file *);
288 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
289 static void	unp_process_defers(void * __unused, int);
290 
291 /*
292  * Definitions of protocols supported in the LOCAL domain.
293  */
294 static struct domain localdomain;
295 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
296 static struct pr_usrreqs uipc_usrreqs_seqpacket;
297 static struct protosw localsw[] = {
298 {
299 	.pr_type =		SOCK_STREAM,
300 	.pr_domain =		&localdomain,
301 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
302 	.pr_ctloutput =		&uipc_ctloutput,
303 	.pr_usrreqs =		&uipc_usrreqs_stream
304 },
305 {
306 	.pr_type =		SOCK_DGRAM,
307 	.pr_domain =		&localdomain,
308 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
309 	.pr_ctloutput =		&uipc_ctloutput,
310 	.pr_usrreqs =		&uipc_usrreqs_dgram
311 },
312 {
313 	.pr_type =		SOCK_SEQPACKET,
314 	.pr_domain =		&localdomain,
315 
316 	/*
317 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
318 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
319 	 * that supports both atomic record writes and control data.
320 	 */
321 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
322 				    PR_RIGHTS,
323 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
324 },
325 };
326 
327 static struct domain localdomain = {
328 	.dom_family =		AF_LOCAL,
329 	.dom_name =		"local",
330 	.dom_init =		unp_init,
331 	.dom_externalize =	unp_externalize,
332 	.dom_dispose =		unp_dispose,
333 	.dom_protosw =		localsw,
334 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
335 };
336 DOMAIN_SET(local);
337 
338 static void
339 uipc_abort(struct socket *so)
340 {
341 	struct unpcb *unp, *unp2;
342 
343 	unp = sotounpcb(so);
344 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
345 
346 	UNP_LINK_WLOCK();
347 	UNP_PCB_LOCK(unp);
348 	unp2 = unp->unp_conn;
349 	if (unp2 != NULL) {
350 		UNP_PCB_LOCK(unp2);
351 		unp_drop(unp2, ECONNABORTED);
352 		UNP_PCB_UNLOCK(unp2);
353 	}
354 	UNP_PCB_UNLOCK(unp);
355 	UNP_LINK_WUNLOCK();
356 }
357 
358 static int
359 uipc_accept(struct socket *so, struct sockaddr **nam)
360 {
361 	struct unpcb *unp, *unp2;
362 	const struct sockaddr *sa;
363 
364 	/*
365 	 * Pass back name of connected socket, if it was bound and we are
366 	 * still connected (our peer may have closed already!).
367 	 */
368 	unp = sotounpcb(so);
369 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
370 
371 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
372 	UNP_LINK_RLOCK();
373 	unp2 = unp->unp_conn;
374 	if (unp2 != NULL && unp2->unp_addr != NULL) {
375 		UNP_PCB_LOCK(unp2);
376 		sa = (struct sockaddr *) unp2->unp_addr;
377 		bcopy(sa, *nam, sa->sa_len);
378 		UNP_PCB_UNLOCK(unp2);
379 	} else {
380 		sa = &sun_noname;
381 		bcopy(sa, *nam, sa->sa_len);
382 	}
383 	UNP_LINK_RUNLOCK();
384 	return (0);
385 }
386 
387 static int
388 uipc_attach(struct socket *so, int proto, struct thread *td)
389 {
390 	u_long sendspace, recvspace;
391 	struct unpcb *unp;
392 	int error;
393 
394 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
395 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
396 		switch (so->so_type) {
397 		case SOCK_STREAM:
398 			sendspace = unpst_sendspace;
399 			recvspace = unpst_recvspace;
400 			break;
401 
402 		case SOCK_DGRAM:
403 			sendspace = unpdg_sendspace;
404 			recvspace = unpdg_recvspace;
405 			break;
406 
407 		case SOCK_SEQPACKET:
408 			sendspace = unpsp_sendspace;
409 			recvspace = unpsp_recvspace;
410 			break;
411 
412 		default:
413 			panic("uipc_attach");
414 		}
415 		error = soreserve(so, sendspace, recvspace);
416 		if (error)
417 			return (error);
418 	}
419 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
420 	if (unp == NULL)
421 		return (ENOBUFS);
422 	LIST_INIT(&unp->unp_refs);
423 	UNP_PCB_LOCK_INIT(unp);
424 	unp->unp_socket = so;
425 	so->so_pcb = unp;
426 	unp->unp_refcount = 1;
427 
428 	UNP_LIST_LOCK();
429 	unp->unp_gencnt = ++unp_gencnt;
430 	unp_count++;
431 	switch (so->so_type) {
432 	case SOCK_STREAM:
433 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
434 		break;
435 
436 	case SOCK_DGRAM:
437 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
438 		break;
439 
440 	case SOCK_SEQPACKET:
441 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
442 		break;
443 
444 	default:
445 		panic("uipc_attach");
446 	}
447 	UNP_LIST_UNLOCK();
448 
449 	return (0);
450 }
451 
452 static int
453 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
454 {
455 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
456 	struct vattr vattr;
457 	int error, namelen;
458 	struct nameidata nd;
459 	struct unpcb *unp;
460 	struct vnode *vp;
461 	struct mount *mp;
462 	char *buf;
463 
464 	unp = sotounpcb(so);
465 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
466 
467 	if (soun->sun_len > sizeof(struct sockaddr_un))
468 		return (EINVAL);
469 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
470 	if (namelen <= 0)
471 		return (EINVAL);
472 
473 	/*
474 	 * We don't allow simultaneous bind() calls on a single UNIX domain
475 	 * socket, so flag in-progress operations, and return an error if an
476 	 * operation is already in progress.
477 	 *
478 	 * Historically, we have not allowed a socket to be rebound, so this
479 	 * also returns an error.  Not allowing re-binding simplifies the
480 	 * implementation and avoids a great many possible failure modes.
481 	 */
482 	UNP_PCB_LOCK(unp);
483 	if (unp->unp_vnode != NULL) {
484 		UNP_PCB_UNLOCK(unp);
485 		return (EINVAL);
486 	}
487 	if (unp->unp_flags & UNP_BINDING) {
488 		UNP_PCB_UNLOCK(unp);
489 		return (EALREADY);
490 	}
491 	unp->unp_flags |= UNP_BINDING;
492 	UNP_PCB_UNLOCK(unp);
493 
494 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
495 	bcopy(soun->sun_path, buf, namelen);
496 	buf[namelen] = 0;
497 
498 restart:
499 	NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
500 	    UIO_SYSSPACE, buf, td);
501 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
502 	error = namei(&nd);
503 	if (error)
504 		goto error;
505 	vp = nd.ni_vp;
506 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
507 		NDFREE(&nd, NDF_ONLY_PNBUF);
508 		if (nd.ni_dvp == vp)
509 			vrele(nd.ni_dvp);
510 		else
511 			vput(nd.ni_dvp);
512 		if (vp != NULL) {
513 			vrele(vp);
514 			error = EADDRINUSE;
515 			goto error;
516 		}
517 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
518 		if (error)
519 			goto error;
520 		goto restart;
521 	}
522 	VATTR_NULL(&vattr);
523 	vattr.va_type = VSOCK;
524 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
525 #ifdef MAC
526 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
527 	    &vattr);
528 #endif
529 	if (error == 0)
530 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
531 	NDFREE(&nd, NDF_ONLY_PNBUF);
532 	vput(nd.ni_dvp);
533 	if (error) {
534 		vn_finished_write(mp);
535 		goto error;
536 	}
537 	vp = nd.ni_vp;
538 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
539 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
540 
541 	UNP_LINK_WLOCK();
542 	UNP_PCB_LOCK(unp);
543 	VOP_UNP_BIND(vp, unp->unp_socket);
544 	unp->unp_vnode = vp;
545 	unp->unp_addr = soun;
546 	unp->unp_flags &= ~UNP_BINDING;
547 	UNP_PCB_UNLOCK(unp);
548 	UNP_LINK_WUNLOCK();
549 	VOP_UNLOCK(vp, 0);
550 	vn_finished_write(mp);
551 	free(buf, M_TEMP);
552 	return (0);
553 
554 error:
555 	UNP_PCB_LOCK(unp);
556 	unp->unp_flags &= ~UNP_BINDING;
557 	UNP_PCB_UNLOCK(unp);
558 	free(buf, M_TEMP);
559 	return (error);
560 }
561 
562 static int
563 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
564 {
565 	int error;
566 
567 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
568 	UNP_LINK_WLOCK();
569 	error = unp_connect(so, nam, td);
570 	UNP_LINK_WUNLOCK();
571 	return (error);
572 }
573 
574 static void
575 uipc_close(struct socket *so)
576 {
577 	struct unpcb *unp, *unp2;
578 
579 	unp = sotounpcb(so);
580 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
581 
582 	UNP_LINK_WLOCK();
583 	UNP_PCB_LOCK(unp);
584 	unp2 = unp->unp_conn;
585 	if (unp2 != NULL) {
586 		UNP_PCB_LOCK(unp2);
587 		unp_disconnect(unp, unp2);
588 		UNP_PCB_UNLOCK(unp2);
589 	}
590 	UNP_PCB_UNLOCK(unp);
591 	UNP_LINK_WUNLOCK();
592 }
593 
594 static int
595 uipc_connect2(struct socket *so1, struct socket *so2)
596 {
597 	struct unpcb *unp, *unp2;
598 	int error;
599 
600 	UNP_LINK_WLOCK();
601 	unp = so1->so_pcb;
602 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
603 	UNP_PCB_LOCK(unp);
604 	unp2 = so2->so_pcb;
605 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
606 	UNP_PCB_LOCK(unp2);
607 	error = unp_connect2(so1, so2, PRU_CONNECT2);
608 	UNP_PCB_UNLOCK(unp2);
609 	UNP_PCB_UNLOCK(unp);
610 	UNP_LINK_WUNLOCK();
611 	return (error);
612 }
613 
614 static void
615 uipc_detach(struct socket *so)
616 {
617 	struct unpcb *unp, *unp2;
618 	struct sockaddr_un *saved_unp_addr;
619 	struct vnode *vp;
620 	int freeunp, local_unp_rights;
621 
622 	unp = sotounpcb(so);
623 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
624 
625 	UNP_LINK_WLOCK();
626 	UNP_LIST_LOCK();
627 	UNP_PCB_LOCK(unp);
628 	LIST_REMOVE(unp, unp_link);
629 	unp->unp_gencnt = ++unp_gencnt;
630 	--unp_count;
631 	UNP_LIST_UNLOCK();
632 
633 	/*
634 	 * XXXRW: Should assert vp->v_socket == so.
635 	 */
636 	if ((vp = unp->unp_vnode) != NULL) {
637 		VOP_UNP_DETACH(vp);
638 		unp->unp_vnode = NULL;
639 	}
640 	unp2 = unp->unp_conn;
641 	if (unp2 != NULL) {
642 		UNP_PCB_LOCK(unp2);
643 		unp_disconnect(unp, unp2);
644 		UNP_PCB_UNLOCK(unp2);
645 	}
646 
647 	/*
648 	 * We hold the linkage lock exclusively, so it's OK to acquire
649 	 * multiple pcb locks at a time.
650 	 */
651 	while (!LIST_EMPTY(&unp->unp_refs)) {
652 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
653 
654 		UNP_PCB_LOCK(ref);
655 		unp_drop(ref, ECONNRESET);
656 		UNP_PCB_UNLOCK(ref);
657 	}
658 	local_unp_rights = unp_rights;
659 	UNP_LINK_WUNLOCK();
660 	unp->unp_socket->so_pcb = NULL;
661 	saved_unp_addr = unp->unp_addr;
662 	unp->unp_addr = NULL;
663 	unp->unp_refcount--;
664 	freeunp = (unp->unp_refcount == 0);
665 	if (saved_unp_addr != NULL)
666 		free(saved_unp_addr, M_SONAME);
667 	if (freeunp) {
668 		UNP_PCB_LOCK_DESTROY(unp);
669 		uma_zfree(unp_zone, unp);
670 	} else
671 		UNP_PCB_UNLOCK(unp);
672 	if (vp)
673 		vrele(vp);
674 	if (local_unp_rights)
675 		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
676 }
677 
678 static int
679 uipc_disconnect(struct socket *so)
680 {
681 	struct unpcb *unp, *unp2;
682 
683 	unp = sotounpcb(so);
684 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
685 
686 	UNP_LINK_WLOCK();
687 	UNP_PCB_LOCK(unp);
688 	unp2 = unp->unp_conn;
689 	if (unp2 != NULL) {
690 		UNP_PCB_LOCK(unp2);
691 		unp_disconnect(unp, unp2);
692 		UNP_PCB_UNLOCK(unp2);
693 	}
694 	UNP_PCB_UNLOCK(unp);
695 	UNP_LINK_WUNLOCK();
696 	return (0);
697 }
698 
699 static int
700 uipc_listen(struct socket *so, int backlog, struct thread *td)
701 {
702 	struct unpcb *unp;
703 	int error;
704 
705 	unp = sotounpcb(so);
706 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
707 
708 	UNP_PCB_LOCK(unp);
709 	if (unp->unp_vnode == NULL) {
710 		UNP_PCB_UNLOCK(unp);
711 		return (EINVAL);
712 	}
713 
714 	SOCK_LOCK(so);
715 	error = solisten_proto_check(so);
716 	if (error == 0) {
717 		cru2x(td->td_ucred, &unp->unp_peercred);
718 		unp->unp_flags |= UNP_HAVEPCCACHED;
719 		solisten_proto(so, backlog);
720 	}
721 	SOCK_UNLOCK(so);
722 	UNP_PCB_UNLOCK(unp);
723 	return (error);
724 }
725 
726 static int
727 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
728 {
729 	struct unpcb *unp, *unp2;
730 	const struct sockaddr *sa;
731 
732 	unp = sotounpcb(so);
733 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
734 
735 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
736 	UNP_LINK_RLOCK();
737 	/*
738 	 * XXX: It seems that this test always fails even when connection is
739 	 * established.  So, this else clause is added as workaround to
740 	 * return PF_LOCAL sockaddr.
741 	 */
742 	unp2 = unp->unp_conn;
743 	if (unp2 != NULL) {
744 		UNP_PCB_LOCK(unp2);
745 		if (unp2->unp_addr != NULL)
746 			sa = (struct sockaddr *) unp2->unp_addr;
747 		else
748 			sa = &sun_noname;
749 		bcopy(sa, *nam, sa->sa_len);
750 		UNP_PCB_UNLOCK(unp2);
751 	} else {
752 		sa = &sun_noname;
753 		bcopy(sa, *nam, sa->sa_len);
754 	}
755 	UNP_LINK_RUNLOCK();
756 	return (0);
757 }
758 
759 static int
760 uipc_rcvd(struct socket *so, int flags)
761 {
762 	struct unpcb *unp, *unp2;
763 	struct socket *so2;
764 	u_int mbcnt, sbcc;
765 	u_long newhiwat;
766 
767 	unp = sotounpcb(so);
768 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
769 
770 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
771 		panic("uipc_rcvd socktype %d", so->so_type);
772 
773 	/*
774 	 * Adjust backpressure on sender and wakeup any waiting to write.
775 	 *
776 	 * The unp lock is acquired to maintain the validity of the unp_conn
777 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
778 	 * static as long as we don't permit unp2 to disconnect from unp,
779 	 * which is prevented by the lock on unp.  We cache values from
780 	 * so_rcv to avoid holding the so_rcv lock over the entire
781 	 * transaction on the remote so_snd.
782 	 */
783 	SOCKBUF_LOCK(&so->so_rcv);
784 	mbcnt = so->so_rcv.sb_mbcnt;
785 	sbcc = so->so_rcv.sb_cc;
786 	SOCKBUF_UNLOCK(&so->so_rcv);
787 	UNP_PCB_LOCK(unp);
788 	unp2 = unp->unp_conn;
789 	if (unp2 == NULL) {
790 		UNP_PCB_UNLOCK(unp);
791 		return (0);
792 	}
793 	so2 = unp2->unp_socket;
794 	SOCKBUF_LOCK(&so2->so_snd);
795 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
796 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
797 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
798 	    newhiwat, RLIM_INFINITY);
799 	sowwakeup_locked(so2);
800 	unp->unp_mbcnt = mbcnt;
801 	unp->unp_cc = sbcc;
802 	UNP_PCB_UNLOCK(unp);
803 	return (0);
804 }
805 
806 static int
807 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
808     struct mbuf *control, struct thread *td)
809 {
810 	struct unpcb *unp, *unp2;
811 	struct socket *so2;
812 	u_int mbcnt_delta, sbcc;
813 	u_int newhiwat;
814 	int error = 0;
815 
816 	unp = sotounpcb(so);
817 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
818 
819 	if (flags & PRUS_OOB) {
820 		error = EOPNOTSUPP;
821 		goto release;
822 	}
823 	if (control != NULL && (error = unp_internalize(&control, td)))
824 		goto release;
825 	if ((nam != NULL) || (flags & PRUS_EOF))
826 		UNP_LINK_WLOCK();
827 	else
828 		UNP_LINK_RLOCK();
829 	switch (so->so_type) {
830 	case SOCK_DGRAM:
831 	{
832 		const struct sockaddr *from;
833 
834 		unp2 = unp->unp_conn;
835 		if (nam != NULL) {
836 			UNP_LINK_WLOCK_ASSERT();
837 			if (unp2 != NULL) {
838 				error = EISCONN;
839 				break;
840 			}
841 			error = unp_connect(so, nam, td);
842 			if (error)
843 				break;
844 			unp2 = unp->unp_conn;
845 		}
846 
847 		/*
848 		 * Because connect() and send() are non-atomic in a sendto()
849 		 * with a target address, it's possible that the socket will
850 		 * have disconnected before the send() can run.  In that case
851 		 * return the slightly counter-intuitive but otherwise
852 		 * correct error that the socket is not connected.
853 		 */
854 		if (unp2 == NULL) {
855 			error = ENOTCONN;
856 			break;
857 		}
858 		/* Lockless read. */
859 		if (unp2->unp_flags & UNP_WANTCRED)
860 			control = unp_addsockcred(td, control);
861 		UNP_PCB_LOCK(unp);
862 		if (unp->unp_addr != NULL)
863 			from = (struct sockaddr *)unp->unp_addr;
864 		else
865 			from = &sun_noname;
866 		so2 = unp2->unp_socket;
867 		SOCKBUF_LOCK(&so2->so_rcv);
868 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
869 			sorwakeup_locked(so2);
870 			m = NULL;
871 			control = NULL;
872 		} else {
873 			SOCKBUF_UNLOCK(&so2->so_rcv);
874 			error = ENOBUFS;
875 		}
876 		if (nam != NULL) {
877 			UNP_LINK_WLOCK_ASSERT();
878 			UNP_PCB_LOCK(unp2);
879 			unp_disconnect(unp, unp2);
880 			UNP_PCB_UNLOCK(unp2);
881 		}
882 		UNP_PCB_UNLOCK(unp);
883 		break;
884 	}
885 
886 	case SOCK_SEQPACKET:
887 	case SOCK_STREAM:
888 		if ((so->so_state & SS_ISCONNECTED) == 0) {
889 			if (nam != NULL) {
890 				UNP_LINK_WLOCK_ASSERT();
891 				error = unp_connect(so, nam, td);
892 				if (error)
893 					break;	/* XXX */
894 			} else {
895 				error = ENOTCONN;
896 				break;
897 			}
898 		}
899 
900 		/* Lockless read. */
901 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
902 			error = EPIPE;
903 			break;
904 		}
905 
906 		/*
907 		 * Because connect() and send() are non-atomic in a sendto()
908 		 * with a target address, it's possible that the socket will
909 		 * have disconnected before the send() can run.  In that case
910 		 * return the slightly counter-intuitive but otherwise
911 		 * correct error that the socket is not connected.
912 		 *
913 		 * Locking here must be done carefully: the linkage lock
914 		 * prevents interconnections between unpcbs from changing, so
915 		 * we can traverse from unp to unp2 without acquiring unp's
916 		 * lock.  Socket buffer locks follow unpcb locks, so we can
917 		 * acquire both remote and lock socket buffer locks.
918 		 */
919 		unp2 = unp->unp_conn;
920 		if (unp2 == NULL) {
921 			error = ENOTCONN;
922 			break;
923 		}
924 		so2 = unp2->unp_socket;
925 		UNP_PCB_LOCK(unp2);
926 		SOCKBUF_LOCK(&so2->so_rcv);
927 		if (unp2->unp_flags & UNP_WANTCRED) {
928 			/*
929 			 * Credentials are passed only once on SOCK_STREAM.
930 			 */
931 			unp2->unp_flags &= ~UNP_WANTCRED;
932 			control = unp_addsockcred(td, control);
933 		}
934 		/*
935 		 * Send to paired receive port, and then reduce send buffer
936 		 * hiwater marks to maintain backpressure.  Wake up readers.
937 		 */
938 		switch (so->so_type) {
939 		case SOCK_STREAM:
940 			if (control != NULL) {
941 				if (sbappendcontrol_locked(&so2->so_rcv, m,
942 				    control))
943 					control = NULL;
944 			} else
945 				sbappend_locked(&so2->so_rcv, m);
946 			break;
947 
948 		case SOCK_SEQPACKET: {
949 			const struct sockaddr *from;
950 
951 			from = &sun_noname;
952 			if (sbappendaddr_locked(&so2->so_rcv, from, m,
953 			    control))
954 				control = NULL;
955 			break;
956 			}
957 		}
958 
959 		/*
960 		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
961 		 * datagram size and back-pressure for SOCK_SEQPACKET, which
962 		 * can lead to undesired return of EMSGSIZE on send instead
963 		 * of more desirable blocking.
964 		 */
965 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
966 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
967 		sbcc = so2->so_rcv.sb_cc;
968 		sorwakeup_locked(so2);
969 
970 		SOCKBUF_LOCK(&so->so_snd);
971 		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
972 			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
973 		else
974 			newhiwat = 0;
975 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
976 		    newhiwat, RLIM_INFINITY);
977 		so->so_snd.sb_mbmax -= mbcnt_delta;
978 		SOCKBUF_UNLOCK(&so->so_snd);
979 		unp2->unp_cc = sbcc;
980 		UNP_PCB_UNLOCK(unp2);
981 		m = NULL;
982 		break;
983 
984 	default:
985 		panic("uipc_send unknown socktype");
986 	}
987 
988 	/*
989 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
990 	 */
991 	if (flags & PRUS_EOF) {
992 		UNP_PCB_LOCK(unp);
993 		socantsendmore(so);
994 		unp_shutdown(unp);
995 		UNP_PCB_UNLOCK(unp);
996 	}
997 
998 	if ((nam != NULL) || (flags & PRUS_EOF))
999 		UNP_LINK_WUNLOCK();
1000 	else
1001 		UNP_LINK_RUNLOCK();
1002 
1003 	if (control != NULL && error != 0)
1004 		unp_dispose(control);
1005 
1006 release:
1007 	if (control != NULL)
1008 		m_freem(control);
1009 	if (m != NULL)
1010 		m_freem(m);
1011 	return (error);
1012 }
1013 
1014 static int
1015 uipc_sense(struct socket *so, struct stat *sb)
1016 {
1017 	struct unpcb *unp, *unp2;
1018 	struct socket *so2;
1019 
1020 	unp = sotounpcb(so);
1021 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1022 
1023 	sb->st_blksize = so->so_snd.sb_hiwat;
1024 	UNP_LINK_RLOCK();
1025 	UNP_PCB_LOCK(unp);
1026 	unp2 = unp->unp_conn;
1027 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1028 	    unp2 != NULL) {
1029 		so2 = unp2->unp_socket;
1030 		sb->st_blksize += so2->so_rcv.sb_cc;
1031 	}
1032 	sb->st_dev = NODEV;
1033 	if (unp->unp_ino == 0)
1034 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1035 	sb->st_ino = unp->unp_ino;
1036 	UNP_PCB_UNLOCK(unp);
1037 	UNP_LINK_RUNLOCK();
1038 	return (0);
1039 }
1040 
1041 static int
1042 uipc_shutdown(struct socket *so)
1043 {
1044 	struct unpcb *unp;
1045 
1046 	unp = sotounpcb(so);
1047 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1048 
1049 	UNP_LINK_WLOCK();
1050 	UNP_PCB_LOCK(unp);
1051 	socantsendmore(so);
1052 	unp_shutdown(unp);
1053 	UNP_PCB_UNLOCK(unp);
1054 	UNP_LINK_WUNLOCK();
1055 	return (0);
1056 }
1057 
1058 static int
1059 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1060 {
1061 	struct unpcb *unp;
1062 	const struct sockaddr *sa;
1063 
1064 	unp = sotounpcb(so);
1065 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1066 
1067 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1068 	UNP_PCB_LOCK(unp);
1069 	if (unp->unp_addr != NULL)
1070 		sa = (struct sockaddr *) unp->unp_addr;
1071 	else
1072 		sa = &sun_noname;
1073 	bcopy(sa, *nam, sa->sa_len);
1074 	UNP_PCB_UNLOCK(unp);
1075 	return (0);
1076 }
1077 
1078 static struct pr_usrreqs uipc_usrreqs_dgram = {
1079 	.pru_abort = 		uipc_abort,
1080 	.pru_accept =		uipc_accept,
1081 	.pru_attach =		uipc_attach,
1082 	.pru_bind =		uipc_bind,
1083 	.pru_connect =		uipc_connect,
1084 	.pru_connect2 =		uipc_connect2,
1085 	.pru_detach =		uipc_detach,
1086 	.pru_disconnect =	uipc_disconnect,
1087 	.pru_listen =		uipc_listen,
1088 	.pru_peeraddr =		uipc_peeraddr,
1089 	.pru_rcvd =		uipc_rcvd,
1090 	.pru_send =		uipc_send,
1091 	.pru_sense =		uipc_sense,
1092 	.pru_shutdown =		uipc_shutdown,
1093 	.pru_sockaddr =		uipc_sockaddr,
1094 	.pru_soreceive =	soreceive_dgram,
1095 	.pru_close =		uipc_close,
1096 };
1097 
1098 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1099 	.pru_abort =		uipc_abort,
1100 	.pru_accept =		uipc_accept,
1101 	.pru_attach =		uipc_attach,
1102 	.pru_bind =		uipc_bind,
1103 	.pru_connect =		uipc_connect,
1104 	.pru_connect2 =		uipc_connect2,
1105 	.pru_detach =		uipc_detach,
1106 	.pru_disconnect =	uipc_disconnect,
1107 	.pru_listen =		uipc_listen,
1108 	.pru_peeraddr =		uipc_peeraddr,
1109 	.pru_rcvd =		uipc_rcvd,
1110 	.pru_send =		uipc_send,
1111 	.pru_sense =		uipc_sense,
1112 	.pru_shutdown =		uipc_shutdown,
1113 	.pru_sockaddr =		uipc_sockaddr,
1114 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1115 	.pru_close =		uipc_close,
1116 };
1117 
1118 static struct pr_usrreqs uipc_usrreqs_stream = {
1119 	.pru_abort = 		uipc_abort,
1120 	.pru_accept =		uipc_accept,
1121 	.pru_attach =		uipc_attach,
1122 	.pru_bind =		uipc_bind,
1123 	.pru_connect =		uipc_connect,
1124 	.pru_connect2 =		uipc_connect2,
1125 	.pru_detach =		uipc_detach,
1126 	.pru_disconnect =	uipc_disconnect,
1127 	.pru_listen =		uipc_listen,
1128 	.pru_peeraddr =		uipc_peeraddr,
1129 	.pru_rcvd =		uipc_rcvd,
1130 	.pru_send =		uipc_send,
1131 	.pru_sense =		uipc_sense,
1132 	.pru_shutdown =		uipc_shutdown,
1133 	.pru_sockaddr =		uipc_sockaddr,
1134 	.pru_soreceive =	soreceive_generic,
1135 	.pru_close =		uipc_close,
1136 };
1137 
1138 static int
1139 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1140 {
1141 	struct unpcb *unp;
1142 	struct xucred xu;
1143 	int error, optval;
1144 
1145 	if (sopt->sopt_level != 0)
1146 		return (EINVAL);
1147 
1148 	unp = sotounpcb(so);
1149 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1150 	error = 0;
1151 	switch (sopt->sopt_dir) {
1152 	case SOPT_GET:
1153 		switch (sopt->sopt_name) {
1154 		case LOCAL_PEERCRED:
1155 			UNP_PCB_LOCK(unp);
1156 			if (unp->unp_flags & UNP_HAVEPC)
1157 				xu = unp->unp_peercred;
1158 			else {
1159 				if (so->so_type == SOCK_STREAM)
1160 					error = ENOTCONN;
1161 				else
1162 					error = EINVAL;
1163 			}
1164 			UNP_PCB_UNLOCK(unp);
1165 			if (error == 0)
1166 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1167 			break;
1168 
1169 		case LOCAL_CREDS:
1170 			/* Unlocked read. */
1171 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1172 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1173 			break;
1174 
1175 		case LOCAL_CONNWAIT:
1176 			/* Unlocked read. */
1177 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1178 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1179 			break;
1180 
1181 		default:
1182 			error = EOPNOTSUPP;
1183 			break;
1184 		}
1185 		break;
1186 
1187 	case SOPT_SET:
1188 		switch (sopt->sopt_name) {
1189 		case LOCAL_CREDS:
1190 		case LOCAL_CONNWAIT:
1191 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1192 					    sizeof(optval));
1193 			if (error)
1194 				break;
1195 
1196 #define	OPTSET(bit) do {						\
1197 	UNP_PCB_LOCK(unp);						\
1198 	if (optval)							\
1199 		unp->unp_flags |= bit;					\
1200 	else								\
1201 		unp->unp_flags &= ~bit;					\
1202 	UNP_PCB_UNLOCK(unp);						\
1203 } while (0)
1204 
1205 			switch (sopt->sopt_name) {
1206 			case LOCAL_CREDS:
1207 				OPTSET(UNP_WANTCRED);
1208 				break;
1209 
1210 			case LOCAL_CONNWAIT:
1211 				OPTSET(UNP_CONNWAIT);
1212 				break;
1213 
1214 			default:
1215 				break;
1216 			}
1217 			break;
1218 #undef	OPTSET
1219 		default:
1220 			error = ENOPROTOOPT;
1221 			break;
1222 		}
1223 		break;
1224 
1225 	default:
1226 		error = EOPNOTSUPP;
1227 		break;
1228 	}
1229 	return (error);
1230 }
1231 
1232 static int
1233 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1234 {
1235 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1236 	struct vnode *vp;
1237 	struct socket *so2, *so3;
1238 	struct unpcb *unp, *unp2, *unp3;
1239 	int error, len;
1240 	struct nameidata nd;
1241 	char buf[SOCK_MAXADDRLEN];
1242 	struct sockaddr *sa;
1243 
1244 	UNP_LINK_WLOCK_ASSERT();
1245 
1246 	unp = sotounpcb(so);
1247 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1248 
1249 	if (nam->sa_len > sizeof(struct sockaddr_un))
1250 		return (EINVAL);
1251 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1252 	if (len <= 0)
1253 		return (EINVAL);
1254 	bcopy(soun->sun_path, buf, len);
1255 	buf[len] = 0;
1256 
1257 	UNP_PCB_LOCK(unp);
1258 	if (unp->unp_flags & UNP_CONNECTING) {
1259 		UNP_PCB_UNLOCK(unp);
1260 		return (EALREADY);
1261 	}
1262 	UNP_LINK_WUNLOCK();
1263 	unp->unp_flags |= UNP_CONNECTING;
1264 	UNP_PCB_UNLOCK(unp);
1265 
1266 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1267 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1268 	    UIO_SYSSPACE, buf, td);
1269 	error = namei(&nd);
1270 	if (error)
1271 		vp = NULL;
1272 	else
1273 		vp = nd.ni_vp;
1274 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1275 	NDFREE(&nd, NDF_ONLY_PNBUF);
1276 	if (error)
1277 		goto bad;
1278 
1279 	if (vp->v_type != VSOCK) {
1280 		error = ENOTSOCK;
1281 		goto bad;
1282 	}
1283 #ifdef MAC
1284 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1285 	if (error)
1286 		goto bad;
1287 #endif
1288 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1289 	if (error)
1290 		goto bad;
1291 
1292 	unp = sotounpcb(so);
1293 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1294 
1295 	/*
1296 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1297 	 * and to protect simultaneous locking of multiple pcbs.
1298 	 */
1299 	UNP_LINK_WLOCK();
1300 	VOP_UNP_CONNECT(vp, &so2);
1301 	if (so2 == NULL) {
1302 		error = ECONNREFUSED;
1303 		goto bad2;
1304 	}
1305 	if (so->so_type != so2->so_type) {
1306 		error = EPROTOTYPE;
1307 		goto bad2;
1308 	}
1309 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1310 		if (so2->so_options & SO_ACCEPTCONN) {
1311 			CURVNET_SET(so2->so_vnet);
1312 			so3 = sonewconn(so2, 0);
1313 			CURVNET_RESTORE();
1314 		} else
1315 			so3 = NULL;
1316 		if (so3 == NULL) {
1317 			error = ECONNREFUSED;
1318 			goto bad2;
1319 		}
1320 		unp = sotounpcb(so);
1321 		unp2 = sotounpcb(so2);
1322 		unp3 = sotounpcb(so3);
1323 		UNP_PCB_LOCK(unp);
1324 		UNP_PCB_LOCK(unp2);
1325 		UNP_PCB_LOCK(unp3);
1326 		if (unp2->unp_addr != NULL) {
1327 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1328 			unp3->unp_addr = (struct sockaddr_un *) sa;
1329 			sa = NULL;
1330 		}
1331 
1332 		/*
1333 		 * The connecter's (client's) credentials are copied from its
1334 		 * process structure at the time of connect() (which is now).
1335 		 */
1336 		cru2x(td->td_ucred, &unp3->unp_peercred);
1337 		unp3->unp_flags |= UNP_HAVEPC;
1338 
1339 		/*
1340 		 * The receiver's (server's) credentials are copied from the
1341 		 * unp_peercred member of socket on which the former called
1342 		 * listen(); uipc_listen() cached that process's credentials
1343 		 * at that time so we can use them now.
1344 		 */
1345 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1346 		    ("unp_connect: listener without cached peercred"));
1347 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1348 		    sizeof(unp->unp_peercred));
1349 		unp->unp_flags |= UNP_HAVEPC;
1350 		if (unp2->unp_flags & UNP_WANTCRED)
1351 			unp3->unp_flags |= UNP_WANTCRED;
1352 		UNP_PCB_UNLOCK(unp3);
1353 		UNP_PCB_UNLOCK(unp2);
1354 		UNP_PCB_UNLOCK(unp);
1355 #ifdef MAC
1356 		mac_socketpeer_set_from_socket(so, so3);
1357 		mac_socketpeer_set_from_socket(so3, so);
1358 #endif
1359 
1360 		so2 = so3;
1361 	}
1362 	unp = sotounpcb(so);
1363 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1364 	unp2 = sotounpcb(so2);
1365 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1366 	UNP_PCB_LOCK(unp);
1367 	UNP_PCB_LOCK(unp2);
1368 	error = unp_connect2(so, so2, PRU_CONNECT);
1369 	UNP_PCB_UNLOCK(unp2);
1370 	UNP_PCB_UNLOCK(unp);
1371 bad2:
1372 	UNP_LINK_WUNLOCK();
1373 bad:
1374 	if (vp != NULL)
1375 		vput(vp);
1376 	free(sa, M_SONAME);
1377 	UNP_LINK_WLOCK();
1378 	UNP_PCB_LOCK(unp);
1379 	unp->unp_flags &= ~UNP_CONNECTING;
1380 	UNP_PCB_UNLOCK(unp);
1381 	return (error);
1382 }
1383 
1384 static int
1385 unp_connect2(struct socket *so, struct socket *so2, int req)
1386 {
1387 	struct unpcb *unp;
1388 	struct unpcb *unp2;
1389 
1390 	unp = sotounpcb(so);
1391 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1392 	unp2 = sotounpcb(so2);
1393 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1394 
1395 	UNP_LINK_WLOCK_ASSERT();
1396 	UNP_PCB_LOCK_ASSERT(unp);
1397 	UNP_PCB_LOCK_ASSERT(unp2);
1398 
1399 	if (so2->so_type != so->so_type)
1400 		return (EPROTOTYPE);
1401 	unp->unp_conn = unp2;
1402 
1403 	switch (so->so_type) {
1404 	case SOCK_DGRAM:
1405 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1406 		soisconnected(so);
1407 		break;
1408 
1409 	case SOCK_STREAM:
1410 	case SOCK_SEQPACKET:
1411 		unp2->unp_conn = unp;
1412 		if (req == PRU_CONNECT &&
1413 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1414 			soisconnecting(so);
1415 		else
1416 			soisconnected(so);
1417 		soisconnected(so2);
1418 		break;
1419 
1420 	default:
1421 		panic("unp_connect2");
1422 	}
1423 	return (0);
1424 }
1425 
1426 static void
1427 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1428 {
1429 	struct socket *so;
1430 
1431 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1432 
1433 	UNP_LINK_WLOCK_ASSERT();
1434 	UNP_PCB_LOCK_ASSERT(unp);
1435 	UNP_PCB_LOCK_ASSERT(unp2);
1436 
1437 	unp->unp_conn = NULL;
1438 	switch (unp->unp_socket->so_type) {
1439 	case SOCK_DGRAM:
1440 		LIST_REMOVE(unp, unp_reflink);
1441 		so = unp->unp_socket;
1442 		SOCK_LOCK(so);
1443 		so->so_state &= ~SS_ISCONNECTED;
1444 		SOCK_UNLOCK(so);
1445 		break;
1446 
1447 	case SOCK_STREAM:
1448 	case SOCK_SEQPACKET:
1449 		soisdisconnected(unp->unp_socket);
1450 		unp2->unp_conn = NULL;
1451 		soisdisconnected(unp2->unp_socket);
1452 		break;
1453 	}
1454 }
1455 
1456 /*
1457  * unp_pcblist() walks the global list of struct unpcb's to generate a
1458  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1459  * sequentially, validating the generation number on each to see if it has
1460  * been detached.  All of this is necessary because copyout() may sleep on
1461  * disk I/O.
1462  */
1463 static int
1464 unp_pcblist(SYSCTL_HANDLER_ARGS)
1465 {
1466 	int error, i, n;
1467 	int freeunp;
1468 	struct unpcb *unp, **unp_list;
1469 	unp_gen_t gencnt;
1470 	struct xunpgen *xug;
1471 	struct unp_head *head;
1472 	struct xunpcb *xu;
1473 
1474 	switch ((intptr_t)arg1) {
1475 	case SOCK_STREAM:
1476 		head = &unp_shead;
1477 		break;
1478 
1479 	case SOCK_DGRAM:
1480 		head = &unp_dhead;
1481 		break;
1482 
1483 	case SOCK_SEQPACKET:
1484 		head = &unp_sphead;
1485 		break;
1486 
1487 	default:
1488 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1489 	}
1490 
1491 	/*
1492 	 * The process of preparing the PCB list is too time-consuming and
1493 	 * resource-intensive to repeat twice on every request.
1494 	 */
1495 	if (req->oldptr == NULL) {
1496 		n = unp_count;
1497 		req->oldidx = 2 * (sizeof *xug)
1498 			+ (n + n/8) * sizeof(struct xunpcb);
1499 		return (0);
1500 	}
1501 
1502 	if (req->newptr != NULL)
1503 		return (EPERM);
1504 
1505 	/*
1506 	 * OK, now we're committed to doing something.
1507 	 */
1508 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1509 	UNP_LIST_LOCK();
1510 	gencnt = unp_gencnt;
1511 	n = unp_count;
1512 	UNP_LIST_UNLOCK();
1513 
1514 	xug->xug_len = sizeof *xug;
1515 	xug->xug_count = n;
1516 	xug->xug_gen = gencnt;
1517 	xug->xug_sogen = so_gencnt;
1518 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1519 	if (error) {
1520 		free(xug, M_TEMP);
1521 		return (error);
1522 	}
1523 
1524 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1525 
1526 	UNP_LIST_LOCK();
1527 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1528 	     unp = LIST_NEXT(unp, unp_link)) {
1529 		UNP_PCB_LOCK(unp);
1530 		if (unp->unp_gencnt <= gencnt) {
1531 			if (cr_cansee(req->td->td_ucred,
1532 			    unp->unp_socket->so_cred)) {
1533 				UNP_PCB_UNLOCK(unp);
1534 				continue;
1535 			}
1536 			unp_list[i++] = unp;
1537 			unp->unp_refcount++;
1538 		}
1539 		UNP_PCB_UNLOCK(unp);
1540 	}
1541 	UNP_LIST_UNLOCK();
1542 	n = i;			/* In case we lost some during malloc. */
1543 
1544 	error = 0;
1545 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1546 	for (i = 0; i < n; i++) {
1547 		unp = unp_list[i];
1548 		UNP_PCB_LOCK(unp);
1549 		unp->unp_refcount--;
1550 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1551 			xu->xu_len = sizeof *xu;
1552 			xu->xu_unpp = unp;
1553 			/*
1554 			 * XXX - need more locking here to protect against
1555 			 * connect/disconnect races for SMP.
1556 			 */
1557 			if (unp->unp_addr != NULL)
1558 				bcopy(unp->unp_addr, &xu->xu_addr,
1559 				      unp->unp_addr->sun_len);
1560 			if (unp->unp_conn != NULL &&
1561 			    unp->unp_conn->unp_addr != NULL)
1562 				bcopy(unp->unp_conn->unp_addr,
1563 				      &xu->xu_caddr,
1564 				      unp->unp_conn->unp_addr->sun_len);
1565 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1566 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1567 			UNP_PCB_UNLOCK(unp);
1568 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1569 		} else {
1570 			freeunp = (unp->unp_refcount == 0);
1571 			UNP_PCB_UNLOCK(unp);
1572 			if (freeunp) {
1573 				UNP_PCB_LOCK_DESTROY(unp);
1574 				uma_zfree(unp_zone, unp);
1575 			}
1576 		}
1577 	}
1578 	free(xu, M_TEMP);
1579 	if (!error) {
1580 		/*
1581 		 * Give the user an updated idea of our state.  If the
1582 		 * generation differs from what we told her before, she knows
1583 		 * that something happened while we were processing this
1584 		 * request, and it might be necessary to retry.
1585 		 */
1586 		xug->xug_gen = unp_gencnt;
1587 		xug->xug_sogen = so_gencnt;
1588 		xug->xug_count = unp_count;
1589 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1590 	}
1591 	free(unp_list, M_TEMP);
1592 	free(xug, M_TEMP);
1593 	return (error);
1594 }
1595 
1596 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1597     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1598     "List of active local datagram sockets");
1599 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1600     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1601     "List of active local stream sockets");
1602 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1603     CTLTYPE_OPAQUE | CTLFLAG_RD,
1604     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1605     "List of active local seqpacket sockets");
1606 
1607 static void
1608 unp_shutdown(struct unpcb *unp)
1609 {
1610 	struct unpcb *unp2;
1611 	struct socket *so;
1612 
1613 	UNP_LINK_WLOCK_ASSERT();
1614 	UNP_PCB_LOCK_ASSERT(unp);
1615 
1616 	unp2 = unp->unp_conn;
1617 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1618 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1619 		so = unp2->unp_socket;
1620 		if (so != NULL)
1621 			socantrcvmore(so);
1622 	}
1623 }
1624 
1625 static void
1626 unp_drop(struct unpcb *unp, int errno)
1627 {
1628 	struct socket *so = unp->unp_socket;
1629 	struct unpcb *unp2;
1630 
1631 	UNP_LINK_WLOCK_ASSERT();
1632 	UNP_PCB_LOCK_ASSERT(unp);
1633 
1634 	so->so_error = errno;
1635 	unp2 = unp->unp_conn;
1636 	if (unp2 == NULL)
1637 		return;
1638 	UNP_PCB_LOCK(unp2);
1639 	unp_disconnect(unp, unp2);
1640 	UNP_PCB_UNLOCK(unp2);
1641 }
1642 
1643 static void
1644 unp_freerights(struct file **rp, int fdcount)
1645 {
1646 	int i;
1647 	struct file *fp;
1648 
1649 	for (i = 0; i < fdcount; i++) {
1650 		fp = *rp;
1651 		*rp++ = NULL;
1652 		unp_discard(fp);
1653 	}
1654 }
1655 
1656 static int
1657 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1658 {
1659 	struct thread *td = curthread;		/* XXX */
1660 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1661 	int i;
1662 	int *fdp;
1663 	struct file **rp;
1664 	struct file *fp;
1665 	void *data;
1666 	socklen_t clen = control->m_len, datalen;
1667 	int error, newfds;
1668 	int f;
1669 	u_int newlen;
1670 
1671 	UNP_LINK_UNLOCK_ASSERT();
1672 
1673 	error = 0;
1674 	if (controlp != NULL) /* controlp == NULL => free control messages */
1675 		*controlp = NULL;
1676 	while (cm != NULL) {
1677 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1678 			error = EINVAL;
1679 			break;
1680 		}
1681 		data = CMSG_DATA(cm);
1682 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1683 		if (cm->cmsg_level == SOL_SOCKET
1684 		    && cm->cmsg_type == SCM_RIGHTS) {
1685 			newfds = datalen / sizeof(struct file *);
1686 			rp = data;
1687 
1688 			/* If we're not outputting the descriptors free them. */
1689 			if (error || controlp == NULL) {
1690 				unp_freerights(rp, newfds);
1691 				goto next;
1692 			}
1693 			FILEDESC_XLOCK(td->td_proc->p_fd);
1694 			/* if the new FD's will not fit free them.  */
1695 			if (!fdavail(td, newfds)) {
1696 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1697 				error = EMSGSIZE;
1698 				unp_freerights(rp, newfds);
1699 				goto next;
1700 			}
1701 
1702 			/*
1703 			 * Now change each pointer to an fd in the global
1704 			 * table to an integer that is the index to the local
1705 			 * fd table entry that we set up to point to the
1706 			 * global one we are transferring.
1707 			 */
1708 			newlen = newfds * sizeof(int);
1709 			*controlp = sbcreatecontrol(NULL, newlen,
1710 			    SCM_RIGHTS, SOL_SOCKET);
1711 			if (*controlp == NULL) {
1712 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1713 				error = E2BIG;
1714 				unp_freerights(rp, newfds);
1715 				goto next;
1716 			}
1717 
1718 			fdp = (int *)
1719 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1720 			for (i = 0; i < newfds; i++) {
1721 				if (fdalloc(td, 0, &f))
1722 					panic("unp_externalize fdalloc failed");
1723 				fp = *rp++;
1724 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1725 				unp_externalize_fp(fp);
1726 				*fdp++ = f;
1727 			}
1728 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1729 		} else {
1730 			/* We can just copy anything else across. */
1731 			if (error || controlp == NULL)
1732 				goto next;
1733 			*controlp = sbcreatecontrol(NULL, datalen,
1734 			    cm->cmsg_type, cm->cmsg_level);
1735 			if (*controlp == NULL) {
1736 				error = ENOBUFS;
1737 				goto next;
1738 			}
1739 			bcopy(data,
1740 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1741 			    datalen);
1742 		}
1743 		controlp = &(*controlp)->m_next;
1744 
1745 next:
1746 		if (CMSG_SPACE(datalen) < clen) {
1747 			clen -= CMSG_SPACE(datalen);
1748 			cm = (struct cmsghdr *)
1749 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1750 		} else {
1751 			clen = 0;
1752 			cm = NULL;
1753 		}
1754 	}
1755 
1756 	m_freem(control);
1757 	return (error);
1758 }
1759 
1760 static void
1761 unp_zone_change(void *tag)
1762 {
1763 
1764 	uma_zone_set_max(unp_zone, maxsockets);
1765 }
1766 
1767 static void
1768 unp_init(void)
1769 {
1770 
1771 #ifdef VIMAGE
1772 	if (!IS_DEFAULT_VNET(curvnet))
1773 		return;
1774 #endif
1775 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1776 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1777 	if (unp_zone == NULL)
1778 		panic("unp_init");
1779 	uma_zone_set_max(unp_zone, maxsockets);
1780 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1781 	    NULL, EVENTHANDLER_PRI_ANY);
1782 	LIST_INIT(&unp_dhead);
1783 	LIST_INIT(&unp_shead);
1784 	LIST_INIT(&unp_sphead);
1785 	SLIST_INIT(&unp_defers);
1786 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1787 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1788 	UNP_LINK_LOCK_INIT();
1789 	UNP_LIST_LOCK_INIT();
1790 	UNP_DEFERRED_LOCK_INIT();
1791 }
1792 
1793 static int
1794 unp_internalize(struct mbuf **controlp, struct thread *td)
1795 {
1796 	struct mbuf *control = *controlp;
1797 	struct proc *p = td->td_proc;
1798 	struct filedesc *fdescp = p->p_fd;
1799 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1800 	struct cmsgcred *cmcred;
1801 	struct file **rp;
1802 	struct file *fp;
1803 	struct timeval *tv;
1804 	int i, fd, *fdp;
1805 	void *data;
1806 	socklen_t clen = control->m_len, datalen;
1807 	int error, oldfds;
1808 	u_int newlen;
1809 
1810 	UNP_LINK_UNLOCK_ASSERT();
1811 
1812 	error = 0;
1813 	*controlp = NULL;
1814 	while (cm != NULL) {
1815 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1816 		    || cm->cmsg_len > clen) {
1817 			error = EINVAL;
1818 			goto out;
1819 		}
1820 		data = CMSG_DATA(cm);
1821 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1822 
1823 		switch (cm->cmsg_type) {
1824 		/*
1825 		 * Fill in credential information.
1826 		 */
1827 		case SCM_CREDS:
1828 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1829 			    SCM_CREDS, SOL_SOCKET);
1830 			if (*controlp == NULL) {
1831 				error = ENOBUFS;
1832 				goto out;
1833 			}
1834 			cmcred = (struct cmsgcred *)
1835 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1836 			cmcred->cmcred_pid = p->p_pid;
1837 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1838 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1839 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1840 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1841 			    CMGROUP_MAX);
1842 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1843 				cmcred->cmcred_groups[i] =
1844 				    td->td_ucred->cr_groups[i];
1845 			break;
1846 
1847 		case SCM_RIGHTS:
1848 			oldfds = datalen / sizeof (int);
1849 			/*
1850 			 * Check that all the FDs passed in refer to legal
1851 			 * files.  If not, reject the entire operation.
1852 			 */
1853 			fdp = data;
1854 			FILEDESC_SLOCK(fdescp);
1855 			for (i = 0; i < oldfds; i++) {
1856 				fd = *fdp++;
1857 				if (fd < 0 || fd >= fdescp->fd_nfiles ||
1858 				    fdescp->fd_ofiles[fd] == NULL) {
1859 					FILEDESC_SUNLOCK(fdescp);
1860 					error = EBADF;
1861 					goto out;
1862 				}
1863 				fp = fdescp->fd_ofiles[fd];
1864 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1865 					FILEDESC_SUNLOCK(fdescp);
1866 					error = EOPNOTSUPP;
1867 					goto out;
1868 				}
1869 
1870 			}
1871 
1872 			/*
1873 			 * Now replace the integer FDs with pointers to the
1874 			 * associated global file table entry..
1875 			 */
1876 			newlen = oldfds * sizeof(struct file *);
1877 			*controlp = sbcreatecontrol(NULL, newlen,
1878 			    SCM_RIGHTS, SOL_SOCKET);
1879 			if (*controlp == NULL) {
1880 				FILEDESC_SUNLOCK(fdescp);
1881 				error = E2BIG;
1882 				goto out;
1883 			}
1884 			fdp = data;
1885 			rp = (struct file **)
1886 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1887 			for (i = 0; i < oldfds; i++) {
1888 				fp = fdescp->fd_ofiles[*fdp++];
1889 				*rp++ = fp;
1890 				unp_internalize_fp(fp);
1891 			}
1892 			FILEDESC_SUNLOCK(fdescp);
1893 			break;
1894 
1895 		case SCM_TIMESTAMP:
1896 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1897 			    SCM_TIMESTAMP, SOL_SOCKET);
1898 			if (*controlp == NULL) {
1899 				error = ENOBUFS;
1900 				goto out;
1901 			}
1902 			tv = (struct timeval *)
1903 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1904 			microtime(tv);
1905 			break;
1906 
1907 		default:
1908 			error = EINVAL;
1909 			goto out;
1910 		}
1911 
1912 		controlp = &(*controlp)->m_next;
1913 		if (CMSG_SPACE(datalen) < clen) {
1914 			clen -= CMSG_SPACE(datalen);
1915 			cm = (struct cmsghdr *)
1916 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1917 		} else {
1918 			clen = 0;
1919 			cm = NULL;
1920 		}
1921 	}
1922 
1923 out:
1924 	m_freem(control);
1925 	return (error);
1926 }
1927 
1928 static struct mbuf *
1929 unp_addsockcred(struct thread *td, struct mbuf *control)
1930 {
1931 	struct mbuf *m, *n, *n_prev;
1932 	struct sockcred *sc;
1933 	const struct cmsghdr *cm;
1934 	int ngroups;
1935 	int i;
1936 
1937 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1938 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1939 	if (m == NULL)
1940 		return (control);
1941 
1942 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1943 	sc->sc_uid = td->td_ucred->cr_ruid;
1944 	sc->sc_euid = td->td_ucred->cr_uid;
1945 	sc->sc_gid = td->td_ucred->cr_rgid;
1946 	sc->sc_egid = td->td_ucred->cr_gid;
1947 	sc->sc_ngroups = ngroups;
1948 	for (i = 0; i < sc->sc_ngroups; i++)
1949 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1950 
1951 	/*
1952 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1953 	 * created SCM_CREDS control message (struct sockcred) has another
1954 	 * format.
1955 	 */
1956 	if (control != NULL)
1957 		for (n = control, n_prev = NULL; n != NULL;) {
1958 			cm = mtod(n, struct cmsghdr *);
1959     			if (cm->cmsg_level == SOL_SOCKET &&
1960 			    cm->cmsg_type == SCM_CREDS) {
1961     				if (n_prev == NULL)
1962 					control = n->m_next;
1963 				else
1964 					n_prev->m_next = n->m_next;
1965 				n = m_free(n);
1966 			} else {
1967 				n_prev = n;
1968 				n = n->m_next;
1969 			}
1970 		}
1971 
1972 	/* Prepend it to the head. */
1973 	m->m_next = control;
1974 	return (m);
1975 }
1976 
1977 static struct unpcb *
1978 fptounp(struct file *fp)
1979 {
1980 	struct socket *so;
1981 
1982 	if (fp->f_type != DTYPE_SOCKET)
1983 		return (NULL);
1984 	if ((so = fp->f_data) == NULL)
1985 		return (NULL);
1986 	if (so->so_proto->pr_domain != &localdomain)
1987 		return (NULL);
1988 	return sotounpcb(so);
1989 }
1990 
1991 static void
1992 unp_discard(struct file *fp)
1993 {
1994 	struct unp_defer *dr;
1995 
1996 	if (unp_externalize_fp(fp)) {
1997 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
1998 		dr->ud_fp = fp;
1999 		UNP_DEFERRED_LOCK();
2000 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2001 		UNP_DEFERRED_UNLOCK();
2002 		atomic_add_int(&unp_defers_count, 1);
2003 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2004 	} else
2005 		(void) closef(fp, (struct thread *)NULL);
2006 }
2007 
2008 static void
2009 unp_process_defers(void *arg __unused, int pending)
2010 {
2011 	struct unp_defer *dr;
2012 	SLIST_HEAD(, unp_defer) drl;
2013 	int count;
2014 
2015 	SLIST_INIT(&drl);
2016 	for (;;) {
2017 		UNP_DEFERRED_LOCK();
2018 		if (SLIST_FIRST(&unp_defers) == NULL) {
2019 			UNP_DEFERRED_UNLOCK();
2020 			break;
2021 		}
2022 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2023 		UNP_DEFERRED_UNLOCK();
2024 		count = 0;
2025 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2026 			SLIST_REMOVE_HEAD(&drl, ud_link);
2027 			closef(dr->ud_fp, NULL);
2028 			free(dr, M_TEMP);
2029 			count++;
2030 		}
2031 		atomic_add_int(&unp_defers_count, -count);
2032 	}
2033 }
2034 
2035 static void
2036 unp_internalize_fp(struct file *fp)
2037 {
2038 	struct unpcb *unp;
2039 
2040 	UNP_LINK_WLOCK();
2041 	if ((unp = fptounp(fp)) != NULL) {
2042 		unp->unp_file = fp;
2043 		unp->unp_msgcount++;
2044 	}
2045 	fhold(fp);
2046 	unp_rights++;
2047 	UNP_LINK_WUNLOCK();
2048 }
2049 
2050 static int
2051 unp_externalize_fp(struct file *fp)
2052 {
2053 	struct unpcb *unp;
2054 	int ret;
2055 
2056 	UNP_LINK_WLOCK();
2057 	if ((unp = fptounp(fp)) != NULL) {
2058 		unp->unp_msgcount--;
2059 		ret = 1;
2060 	} else
2061 		ret = 0;
2062 	unp_rights--;
2063 	UNP_LINK_WUNLOCK();
2064 	return (ret);
2065 }
2066 
2067 /*
2068  * unp_defer indicates whether additional work has been defered for a future
2069  * pass through unp_gc().  It is thread local and does not require explicit
2070  * synchronization.
2071  */
2072 static int	unp_marked;
2073 static int	unp_unreachable;
2074 
2075 static void
2076 unp_accessable(struct file *fp)
2077 {
2078 	struct unpcb *unp;
2079 
2080 	if ((unp = fptounp(fp)) == NULL)
2081 		return;
2082 	if (unp->unp_gcflag & UNPGC_REF)
2083 		return;
2084 	unp->unp_gcflag &= ~UNPGC_DEAD;
2085 	unp->unp_gcflag |= UNPGC_REF;
2086 	unp_marked++;
2087 }
2088 
2089 static void
2090 unp_gc_process(struct unpcb *unp)
2091 {
2092 	struct socket *soa;
2093 	struct socket *so;
2094 	struct file *fp;
2095 
2096 	/* Already processed. */
2097 	if (unp->unp_gcflag & UNPGC_SCANNED)
2098 		return;
2099 	fp = unp->unp_file;
2100 
2101 	/*
2102 	 * Check for a socket potentially in a cycle.  It must be in a
2103 	 * queue as indicated by msgcount, and this must equal the file
2104 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2105 	 */
2106 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2107 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2108 		unp->unp_gcflag |= UNPGC_DEAD;
2109 		unp_unreachable++;
2110 		return;
2111 	}
2112 
2113 	/*
2114 	 * Mark all sockets we reference with RIGHTS.
2115 	 */
2116 	so = unp->unp_socket;
2117 	SOCKBUF_LOCK(&so->so_rcv);
2118 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2119 	SOCKBUF_UNLOCK(&so->so_rcv);
2120 
2121 	/*
2122 	 * Mark all sockets in our accept queue.
2123 	 */
2124 	ACCEPT_LOCK();
2125 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2126 		SOCKBUF_LOCK(&soa->so_rcv);
2127 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2128 		SOCKBUF_UNLOCK(&soa->so_rcv);
2129 	}
2130 	ACCEPT_UNLOCK();
2131 	unp->unp_gcflag |= UNPGC_SCANNED;
2132 }
2133 
2134 static int unp_recycled;
2135 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2136     "Number of unreachable sockets claimed by the garbage collector.");
2137 
2138 static int unp_taskcount;
2139 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2140     "Number of times the garbage collector has run.");
2141 
2142 static void
2143 unp_gc(__unused void *arg, int pending)
2144 {
2145 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2146 				    NULL };
2147 	struct unp_head **head;
2148 	struct file *f, **unref;
2149 	struct unpcb *unp;
2150 	int i, total;
2151 
2152 	unp_taskcount++;
2153 	UNP_LIST_LOCK();
2154 	/*
2155 	 * First clear all gc flags from previous runs.
2156 	 */
2157 	for (head = heads; *head != NULL; head++)
2158 		LIST_FOREACH(unp, *head, unp_link)
2159 			unp->unp_gcflag = 0;
2160 
2161 	/*
2162 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2163 	 * is reachable all of the sockets it references are reachable.
2164 	 * Stop the scan once we do a complete loop without discovering
2165 	 * a new reachable socket.
2166 	 */
2167 	do {
2168 		unp_unreachable = 0;
2169 		unp_marked = 0;
2170 		for (head = heads; *head != NULL; head++)
2171 			LIST_FOREACH(unp, *head, unp_link)
2172 				unp_gc_process(unp);
2173 	} while (unp_marked);
2174 	UNP_LIST_UNLOCK();
2175 	if (unp_unreachable == 0)
2176 		return;
2177 
2178 	/*
2179 	 * Allocate space for a local list of dead unpcbs.
2180 	 */
2181 	unref = malloc(unp_unreachable * sizeof(struct file *),
2182 	    M_TEMP, M_WAITOK);
2183 
2184 	/*
2185 	 * Iterate looking for sockets which have been specifically marked
2186 	 * as as unreachable and store them locally.
2187 	 */
2188 	UNP_LINK_RLOCK();
2189 	UNP_LIST_LOCK();
2190 	for (total = 0, head = heads; *head != NULL; head++)
2191 		LIST_FOREACH(unp, *head, unp_link)
2192 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2193 				f = unp->unp_file;
2194 				if (unp->unp_msgcount == 0 || f == NULL ||
2195 				    f->f_count != unp->unp_msgcount)
2196 					continue;
2197 				unref[total++] = f;
2198 				fhold(f);
2199 				KASSERT(total <= unp_unreachable,
2200 				    ("unp_gc: incorrect unreachable count."));
2201 			}
2202 	UNP_LIST_UNLOCK();
2203 	UNP_LINK_RUNLOCK();
2204 
2205 	/*
2206 	 * Now flush all sockets, free'ing rights.  This will free the
2207 	 * struct files associated with these sockets but leave each socket
2208 	 * with one remaining ref.
2209 	 */
2210 	for (i = 0; i < total; i++) {
2211 		struct socket *so;
2212 
2213 		so = unref[i]->f_data;
2214 		CURVNET_SET(so->so_vnet);
2215 		sorflush(so);
2216 		CURVNET_RESTORE();
2217 	}
2218 
2219 	/*
2220 	 * And finally release the sockets so they can be reclaimed.
2221 	 */
2222 	for (i = 0; i < total; i++)
2223 		fdrop(unref[i], NULL);
2224 	unp_recycled += total;
2225 	free(unref, M_TEMP);
2226 }
2227 
2228 static void
2229 unp_dispose(struct mbuf *m)
2230 {
2231 
2232 	if (m)
2233 		unp_scan(m, unp_discard);
2234 }
2235 
2236 static void
2237 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2238 {
2239 	struct mbuf *m;
2240 	struct file **rp;
2241 	struct cmsghdr *cm;
2242 	void *data;
2243 	int i;
2244 	socklen_t clen, datalen;
2245 	int qfds;
2246 
2247 	while (m0 != NULL) {
2248 		for (m = m0; m; m = m->m_next) {
2249 			if (m->m_type != MT_CONTROL)
2250 				continue;
2251 
2252 			cm = mtod(m, struct cmsghdr *);
2253 			clen = m->m_len;
2254 
2255 			while (cm != NULL) {
2256 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2257 					break;
2258 
2259 				data = CMSG_DATA(cm);
2260 				datalen = (caddr_t)cm + cm->cmsg_len
2261 				    - (caddr_t)data;
2262 
2263 				if (cm->cmsg_level == SOL_SOCKET &&
2264 				    cm->cmsg_type == SCM_RIGHTS) {
2265 					qfds = datalen / sizeof (struct file *);
2266 					rp = data;
2267 					for (i = 0; i < qfds; i++)
2268 						(*op)(*rp++);
2269 				}
2270 
2271 				if (CMSG_SPACE(datalen) < clen) {
2272 					clen -= CMSG_SPACE(datalen);
2273 					cm = (struct cmsghdr *)
2274 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2275 				} else {
2276 					clen = 0;
2277 					cm = NULL;
2278 				}
2279 			}
2280 		}
2281 		m0 = m0->m_act;
2282 	}
2283 }
2284 
2285 /*
2286  * A helper function called by VFS before socket-type vnode reclamation.
2287  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2288  * use count.
2289  */
2290 void
2291 vfs_unp_reclaim(struct vnode *vp)
2292 {
2293 	struct socket *so;
2294 	struct unpcb *unp;
2295 	int active;
2296 
2297 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2298 	KASSERT(vp->v_type == VSOCK,
2299 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2300 
2301 	active = 0;
2302 	UNP_LINK_WLOCK();
2303 	VOP_UNP_CONNECT(vp, &so);
2304 	if (so == NULL)
2305 		goto done;
2306 	unp = sotounpcb(so);
2307 	if (unp == NULL)
2308 		goto done;
2309 	UNP_PCB_LOCK(unp);
2310 	if (unp->unp_vnode == vp) {
2311 		VOP_UNP_DETACH(vp);
2312 		unp->unp_vnode = NULL;
2313 		active = 1;
2314 	}
2315 	UNP_PCB_UNLOCK(unp);
2316 done:
2317 	UNP_LINK_WUNLOCK();
2318 	if (active)
2319 		vunref(vp);
2320 }
2321 
2322 #ifdef DDB
2323 static void
2324 db_print_indent(int indent)
2325 {
2326 	int i;
2327 
2328 	for (i = 0; i < indent; i++)
2329 		db_printf(" ");
2330 }
2331 
2332 static void
2333 db_print_unpflags(int unp_flags)
2334 {
2335 	int comma;
2336 
2337 	comma = 0;
2338 	if (unp_flags & UNP_HAVEPC) {
2339 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2340 		comma = 1;
2341 	}
2342 	if (unp_flags & UNP_HAVEPCCACHED) {
2343 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2344 		comma = 1;
2345 	}
2346 	if (unp_flags & UNP_WANTCRED) {
2347 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2348 		comma = 1;
2349 	}
2350 	if (unp_flags & UNP_CONNWAIT) {
2351 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2352 		comma = 1;
2353 	}
2354 	if (unp_flags & UNP_CONNECTING) {
2355 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2356 		comma = 1;
2357 	}
2358 	if (unp_flags & UNP_BINDING) {
2359 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2360 		comma = 1;
2361 	}
2362 }
2363 
2364 static void
2365 db_print_xucred(int indent, struct xucred *xu)
2366 {
2367 	int comma, i;
2368 
2369 	db_print_indent(indent);
2370 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2371 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2372 	db_print_indent(indent);
2373 	db_printf("cr_groups: ");
2374 	comma = 0;
2375 	for (i = 0; i < xu->cr_ngroups; i++) {
2376 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2377 		comma = 1;
2378 	}
2379 	db_printf("\n");
2380 }
2381 
2382 static void
2383 db_print_unprefs(int indent, struct unp_head *uh)
2384 {
2385 	struct unpcb *unp;
2386 	int counter;
2387 
2388 	counter = 0;
2389 	LIST_FOREACH(unp, uh, unp_reflink) {
2390 		if (counter % 4 == 0)
2391 			db_print_indent(indent);
2392 		db_printf("%p  ", unp);
2393 		if (counter % 4 == 3)
2394 			db_printf("\n");
2395 		counter++;
2396 	}
2397 	if (counter != 0 && counter % 4 != 0)
2398 		db_printf("\n");
2399 }
2400 
2401 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2402 {
2403 	struct unpcb *unp;
2404 
2405         if (!have_addr) {
2406                 db_printf("usage: show unpcb <addr>\n");
2407                 return;
2408         }
2409         unp = (struct unpcb *)addr;
2410 
2411 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2412 	    unp->unp_vnode);
2413 
2414 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2415 	    unp->unp_conn);
2416 
2417 	db_printf("unp_refs:\n");
2418 	db_print_unprefs(2, &unp->unp_refs);
2419 
2420 	/* XXXRW: Would be nice to print the full address, if any. */
2421 	db_printf("unp_addr: %p\n", unp->unp_addr);
2422 
2423 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2424 	    unp->unp_cc, unp->unp_mbcnt,
2425 	    (unsigned long long)unp->unp_gencnt);
2426 
2427 	db_printf("unp_flags: %x (", unp->unp_flags);
2428 	db_print_unpflags(unp->unp_flags);
2429 	db_printf(")\n");
2430 
2431 	db_printf("unp_peercred:\n");
2432 	db_print_xucred(2, &unp->unp_peercred);
2433 
2434 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2435 }
2436 #endif
2437