xref: /freebsd/sys/kern/uipc_usrreq.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 #include "opt_ddb.h"
61 
62 #include <sys/param.h>
63 #include <sys/capsicum.h>
64 #include <sys/domain.h>
65 #include <sys/eventhandler.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/filedesc.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/proc.h>
77 #include <sys/protosw.h>
78 #include <sys/queue.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/stat.h>
85 #include <sys/sx.h>
86 #include <sys/sysctl.h>
87 #include <sys/systm.h>
88 #include <sys/taskqueue.h>
89 #include <sys/un.h>
90 #include <sys/unpcb.h>
91 #include <sys/vnode.h>
92 
93 #include <net/vnet.h>
94 
95 #ifdef DDB
96 #include <ddb/ddb.h>
97 #endif
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/uma.h>
102 
103 MALLOC_DECLARE(M_FILECAPS);
104 
105 static struct domain localdomain;
106 
107 static uma_zone_t	unp_zone;
108 static unp_gen_t	unp_gencnt;	/* (l) */
109 static u_int		unp_count;	/* (l) Count of local sockets. */
110 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
111 static int		unp_rights;	/* (g) File descriptors in flight. */
112 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
113 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
114 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
115 
116 struct unp_defer {
117 	SLIST_ENTRY(unp_defer) ud_link;
118 	struct file *ud_fp;
119 };
120 static SLIST_HEAD(, unp_defer) unp_defers;
121 static int unp_defers_count;
122 
123 static const struct sockaddr	sun_noname = {
124 	.sa_len = sizeof(sun_noname),
125 	.sa_family = AF_LOCAL,
126 };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct timeout_task unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
158 static u_long	unpdg_recvspace = 16*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
163     "Local domain");
164 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
165     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "SOCK_SEQPACKET");
173 
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
175 	   &unpst_sendspace, 0, "Default stream send space.");
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
177 	   &unpst_recvspace, 0, "Default stream receive space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
179 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpdg_recvspace, 0, "Default datagram receive space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
183 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
186 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
187     "File descriptors in flight.");
188 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
189     &unp_defers_count, 0,
190     "File descriptors deferred to taskqueue for close.");
191 
192 /*
193  * Locking and synchronization:
194  *
195  * Several types of locks exist in the local domain socket implementation:
196  * - a global linkage lock
197  * - a global connection list lock
198  * - the mtxpool lock
199  * - per-unpcb mutexes
200  *
201  * The linkage lock protects the global socket lists, the generation number
202  * counter and garbage collector state.
203  *
204  * The connection list lock protects the list of referring sockets in a datagram
205  * socket PCB.  This lock is also overloaded to protect a global list of
206  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
207  * messages.  To avoid recursion, such references are released by a dedicated
208  * thread.
209  *
210  * The mtxpool lock protects the vnode from being modified while referenced.
211  * Lock ordering rules require that it be acquired before any PCB locks.
212  *
213  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
214  * unpcb.  This includes the unp_conn field, which either links two connected
215  * PCBs together (for connected socket types) or points at the destination
216  * socket (for connectionless socket types).  The operations of creating or
217  * destroying a connection therefore involve locking multiple PCBs.  To avoid
218  * lock order reversals, in some cases this involves dropping a PCB lock and
219  * using a reference counter to maintain liveness.
220  *
221  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
222  * allocated in pr_attach() and freed in pr_detach().  The validity of that
223  * pointer is an invariant, so no lock is required to dereference the so_pcb
224  * pointer if a valid socket reference is held by the caller.  In practice,
225  * this is always true during operations performed on a socket.  Each unpcb
226  * has a back-pointer to its socket, unp_socket, which will be stable under
227  * the same circumstances.
228  *
229  * This pointer may only be safely dereferenced as long as a valid reference
230  * to the unpcb is held.  Typically, this reference will be from the socket,
231  * or from another unpcb when the referring unpcb's lock is held (in order
232  * that the reference not be invalidated during use).  For example, to follow
233  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
234  * that detach is not run clearing unp_socket.
235  *
236  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
237  * protocols, bind() is a non-atomic operation, and connect() requires
238  * potential sleeping in the protocol, due to potentially waiting on local or
239  * distributed file systems.  We try to separate "lookup" operations, which
240  * may sleep, and the IPC operations themselves, which typically can occur
241  * with relative atomicity as locks can be held over the entire operation.
242  *
243  * Another tricky issue is simultaneous multi-threaded or multi-process
244  * access to a single UNIX domain socket.  These are handled by the flags
245  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
246  * binding, both of which involve dropping UNIX domain socket locks in order
247  * to perform namei() and other file system operations.
248  */
249 static struct rwlock	unp_link_rwlock;
250 static struct mtx	unp_defers_lock;
251 
252 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
253 					    "unp_link_rwlock")
254 
255 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
256 					    RA_LOCKED)
257 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
258 					    RA_UNLOCKED)
259 
260 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
261 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
262 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
263 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
265 					    RA_WLOCKED)
266 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
267 
268 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
269 					    "unp_defer", NULL, MTX_DEF)
270 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
271 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
272 
273 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
274 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
275 
276 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
277 					    "unp", "unp",	\
278 					    MTX_DUPOK|MTX_DEF)
279 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
280 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
281 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
282 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
283 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
284 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
285 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
286 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
287 
288 static int	uipc_connect2(struct socket *, struct socket *);
289 static int	uipc_ctloutput(struct socket *, struct sockopt *);
290 static int	unp_connect(struct socket *, struct sockaddr *,
291 		    struct thread *);
292 static int	unp_connectat(int, struct socket *, struct sockaddr *,
293 		    struct thread *, bool);
294 typedef enum { PRU_CONNECT, PRU_CONNECT2 } conn2_how;
295 static void	unp_connect2(struct socket *so, struct socket *so2, conn2_how);
296 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
297 static void	unp_dispose(struct socket *so);
298 static void	unp_shutdown(struct unpcb *);
299 static void	unp_drop(struct unpcb *);
300 static void	unp_gc(__unused void *, int);
301 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void	unp_discard(struct file *);
303 static void	unp_freerights(struct filedescent **, int);
304 static int	unp_internalize(struct mbuf **, struct thread *,
305 		    struct mbuf **, u_int *, u_int *);
306 static void	unp_internalize_fp(struct file *);
307 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int	unp_externalize_fp(struct file *);
309 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *,
310 		    int, struct mbuf **, u_int *, u_int *);
311 static void	unp_process_defers(void * __unused, int);
312 
313 static void
314 unp_pcb_hold(struct unpcb *unp)
315 {
316 	u_int old __unused;
317 
318 	old = refcount_acquire(&unp->unp_refcount);
319 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
320 }
321 
322 static __result_use_check bool
323 unp_pcb_rele(struct unpcb *unp)
324 {
325 	bool ret;
326 
327 	UNP_PCB_LOCK_ASSERT(unp);
328 
329 	if ((ret = refcount_release(&unp->unp_refcount))) {
330 		UNP_PCB_UNLOCK(unp);
331 		UNP_PCB_LOCK_DESTROY(unp);
332 		uma_zfree(unp_zone, unp);
333 	}
334 	return (ret);
335 }
336 
337 static void
338 unp_pcb_rele_notlast(struct unpcb *unp)
339 {
340 	bool ret __unused;
341 
342 	ret = refcount_release(&unp->unp_refcount);
343 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
344 }
345 
346 static void
347 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
348 {
349 	UNP_PCB_UNLOCK_ASSERT(unp);
350 	UNP_PCB_UNLOCK_ASSERT(unp2);
351 
352 	if (unp == unp2) {
353 		UNP_PCB_LOCK(unp);
354 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static void
364 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
365 {
366 	UNP_PCB_UNLOCK(unp);
367 	if (unp != unp2)
368 		UNP_PCB_UNLOCK(unp2);
369 }
370 
371 /*
372  * Try to lock the connected peer of an already locked socket.  In some cases
373  * this requires that we unlock the current socket.  The pairbusy counter is
374  * used to block concurrent connection attempts while the lock is dropped.  The
375  * caller must be careful to revalidate PCB state.
376  */
377 static struct unpcb *
378 unp_pcb_lock_peer(struct unpcb *unp)
379 {
380 	struct unpcb *unp2;
381 
382 	UNP_PCB_LOCK_ASSERT(unp);
383 	unp2 = unp->unp_conn;
384 	if (unp2 == NULL)
385 		return (NULL);
386 	if (__predict_false(unp == unp2))
387 		return (unp);
388 
389 	UNP_PCB_UNLOCK_ASSERT(unp2);
390 
391 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
392 		return (unp2);
393 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
394 		UNP_PCB_LOCK(unp2);
395 		return (unp2);
396 	}
397 	unp->unp_pairbusy++;
398 	unp_pcb_hold(unp2);
399 	UNP_PCB_UNLOCK(unp);
400 
401 	UNP_PCB_LOCK(unp2);
402 	UNP_PCB_LOCK(unp);
403 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
404 	    ("%s: socket %p was reconnected", __func__, unp));
405 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
406 		unp->unp_flags &= ~UNP_WAITING;
407 		wakeup(unp);
408 	}
409 	if (unp_pcb_rele(unp2)) {
410 		/* unp2 is unlocked. */
411 		return (NULL);
412 	}
413 	if (unp->unp_conn == NULL) {
414 		UNP_PCB_UNLOCK(unp2);
415 		return (NULL);
416 	}
417 	return (unp2);
418 }
419 
420 static void
421 uipc_abort(struct socket *so)
422 {
423 	struct unpcb *unp, *unp2;
424 
425 	unp = sotounpcb(so);
426 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
427 	UNP_PCB_UNLOCK_ASSERT(unp);
428 
429 	UNP_PCB_LOCK(unp);
430 	unp2 = unp->unp_conn;
431 	if (unp2 != NULL) {
432 		unp_pcb_hold(unp2);
433 		UNP_PCB_UNLOCK(unp);
434 		unp_drop(unp2);
435 	} else
436 		UNP_PCB_UNLOCK(unp);
437 }
438 
439 static int
440 uipc_attach(struct socket *so, int proto, struct thread *td)
441 {
442 	u_long sendspace, recvspace;
443 	struct unpcb *unp;
444 	int error;
445 	bool locked;
446 
447 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
448 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
449 		switch (so->so_type) {
450 		case SOCK_STREAM:
451 			sendspace = unpst_sendspace;
452 			recvspace = unpst_recvspace;
453 			break;
454 
455 		case SOCK_DGRAM:
456 			STAILQ_INIT(&so->so_rcv.uxdg_mb);
457 			STAILQ_INIT(&so->so_snd.uxdg_mb);
458 			TAILQ_INIT(&so->so_rcv.uxdg_conns);
459 			/*
460 			 * Since send buffer is either bypassed or is a part
461 			 * of one-to-many receive buffer, we assign both space
462 			 * limits to unpdg_recvspace.
463 			 */
464 			sendspace = recvspace = unpdg_recvspace;
465 			break;
466 
467 		case SOCK_SEQPACKET:
468 			sendspace = unpsp_sendspace;
469 			recvspace = unpsp_recvspace;
470 			break;
471 
472 		default:
473 			panic("uipc_attach");
474 		}
475 		error = soreserve(so, sendspace, recvspace);
476 		if (error)
477 			return (error);
478 	}
479 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
480 	if (unp == NULL)
481 		return (ENOBUFS);
482 	LIST_INIT(&unp->unp_refs);
483 	UNP_PCB_LOCK_INIT(unp);
484 	unp->unp_socket = so;
485 	so->so_pcb = unp;
486 	refcount_init(&unp->unp_refcount, 1);
487 
488 	if ((locked = UNP_LINK_WOWNED()) == false)
489 		UNP_LINK_WLOCK();
490 
491 	unp->unp_gencnt = ++unp_gencnt;
492 	unp->unp_ino = ++unp_ino;
493 	unp_count++;
494 	switch (so->so_type) {
495 	case SOCK_STREAM:
496 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
497 		break;
498 
499 	case SOCK_DGRAM:
500 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
501 		break;
502 
503 	case SOCK_SEQPACKET:
504 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
505 		break;
506 
507 	default:
508 		panic("uipc_attach");
509 	}
510 
511 	if (locked == false)
512 		UNP_LINK_WUNLOCK();
513 
514 	return (0);
515 }
516 
517 static int
518 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
519 {
520 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
521 	struct vattr vattr;
522 	int error, namelen;
523 	struct nameidata nd;
524 	struct unpcb *unp;
525 	struct vnode *vp;
526 	struct mount *mp;
527 	cap_rights_t rights;
528 	char *buf;
529 
530 	if (nam->sa_family != AF_UNIX)
531 		return (EAFNOSUPPORT);
532 
533 	unp = sotounpcb(so);
534 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
535 
536 	if (soun->sun_len > sizeof(struct sockaddr_un))
537 		return (EINVAL);
538 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
539 	if (namelen <= 0)
540 		return (EINVAL);
541 
542 	/*
543 	 * We don't allow simultaneous bind() calls on a single UNIX domain
544 	 * socket, so flag in-progress operations, and return an error if an
545 	 * operation is already in progress.
546 	 *
547 	 * Historically, we have not allowed a socket to be rebound, so this
548 	 * also returns an error.  Not allowing re-binding simplifies the
549 	 * implementation and avoids a great many possible failure modes.
550 	 */
551 	UNP_PCB_LOCK(unp);
552 	if (unp->unp_vnode != NULL) {
553 		UNP_PCB_UNLOCK(unp);
554 		return (EINVAL);
555 	}
556 	if (unp->unp_flags & UNP_BINDING) {
557 		UNP_PCB_UNLOCK(unp);
558 		return (EALREADY);
559 	}
560 	unp->unp_flags |= UNP_BINDING;
561 	UNP_PCB_UNLOCK(unp);
562 
563 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
564 	bcopy(soun->sun_path, buf, namelen);
565 	buf[namelen] = 0;
566 
567 restart:
568 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
569 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
570 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
571 	error = namei(&nd);
572 	if (error)
573 		goto error;
574 	vp = nd.ni_vp;
575 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
576 		NDFREE_PNBUF(&nd);
577 		if (nd.ni_dvp == vp)
578 			vrele(nd.ni_dvp);
579 		else
580 			vput(nd.ni_dvp);
581 		if (vp != NULL) {
582 			vrele(vp);
583 			error = EADDRINUSE;
584 			goto error;
585 		}
586 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
587 		if (error)
588 			goto error;
589 		goto restart;
590 	}
591 	VATTR_NULL(&vattr);
592 	vattr.va_type = VSOCK;
593 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
594 #ifdef MAC
595 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
596 	    &vattr);
597 #endif
598 	if (error == 0)
599 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
600 	NDFREE_PNBUF(&nd);
601 	if (error) {
602 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
603 		vn_finished_write(mp);
604 		if (error == ERELOOKUP)
605 			goto restart;
606 		goto error;
607 	}
608 	vp = nd.ni_vp;
609 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
610 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
611 
612 	UNP_PCB_LOCK(unp);
613 	VOP_UNP_BIND(vp, unp);
614 	unp->unp_vnode = vp;
615 	unp->unp_addr = soun;
616 	unp->unp_flags &= ~UNP_BINDING;
617 	UNP_PCB_UNLOCK(unp);
618 	vref(vp);
619 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
620 	vn_finished_write(mp);
621 	free(buf, M_TEMP);
622 	return (0);
623 
624 error:
625 	UNP_PCB_LOCK(unp);
626 	unp->unp_flags &= ~UNP_BINDING;
627 	UNP_PCB_UNLOCK(unp);
628 	free(buf, M_TEMP);
629 	return (error);
630 }
631 
632 static int
633 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
634 {
635 
636 	return (uipc_bindat(AT_FDCWD, so, nam, td));
637 }
638 
639 static int
640 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
641 {
642 	int error;
643 
644 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
645 	error = unp_connect(so, nam, td);
646 	return (error);
647 }
648 
649 static int
650 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
651     struct thread *td)
652 {
653 	int error;
654 
655 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
656 	error = unp_connectat(fd, so, nam, td, false);
657 	return (error);
658 }
659 
660 static void
661 uipc_close(struct socket *so)
662 {
663 	struct unpcb *unp, *unp2;
664 	struct vnode *vp = NULL;
665 	struct mtx *vplock;
666 
667 	unp = sotounpcb(so);
668 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
669 
670 	vplock = NULL;
671 	if ((vp = unp->unp_vnode) != NULL) {
672 		vplock = mtx_pool_find(mtxpool_sleep, vp);
673 		mtx_lock(vplock);
674 	}
675 	UNP_PCB_LOCK(unp);
676 	if (vp && unp->unp_vnode == NULL) {
677 		mtx_unlock(vplock);
678 		vp = NULL;
679 	}
680 	if (vp != NULL) {
681 		VOP_UNP_DETACH(vp);
682 		unp->unp_vnode = NULL;
683 	}
684 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
685 		unp_disconnect(unp, unp2);
686 	else
687 		UNP_PCB_UNLOCK(unp);
688 	if (vp) {
689 		mtx_unlock(vplock);
690 		vrele(vp);
691 	}
692 }
693 
694 static int
695 uipc_connect2(struct socket *so1, struct socket *so2)
696 {
697 	struct unpcb *unp, *unp2;
698 
699 	if (so1->so_type != so2->so_type)
700 		return (EPROTOTYPE);
701 
702 	unp = so1->so_pcb;
703 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
704 	unp2 = so2->so_pcb;
705 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
706 	unp_pcb_lock_pair(unp, unp2);
707 	unp_connect2(so1, so2, PRU_CONNECT2);
708 	unp_pcb_unlock_pair(unp, unp2);
709 
710 	return (0);
711 }
712 
713 static void
714 uipc_detach(struct socket *so)
715 {
716 	struct unpcb *unp, *unp2;
717 	struct mtx *vplock;
718 	struct vnode *vp;
719 	int local_unp_rights;
720 
721 	unp = sotounpcb(so);
722 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
723 
724 	vp = NULL;
725 	vplock = NULL;
726 
727 	UNP_LINK_WLOCK();
728 	LIST_REMOVE(unp, unp_link);
729 	if (unp->unp_gcflag & UNPGC_DEAD)
730 		LIST_REMOVE(unp, unp_dead);
731 	unp->unp_gencnt = ++unp_gencnt;
732 	--unp_count;
733 	UNP_LINK_WUNLOCK();
734 
735 	UNP_PCB_UNLOCK_ASSERT(unp);
736  restart:
737 	if ((vp = unp->unp_vnode) != NULL) {
738 		vplock = mtx_pool_find(mtxpool_sleep, vp);
739 		mtx_lock(vplock);
740 	}
741 	UNP_PCB_LOCK(unp);
742 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
743 		if (vplock)
744 			mtx_unlock(vplock);
745 		UNP_PCB_UNLOCK(unp);
746 		goto restart;
747 	}
748 	if ((vp = unp->unp_vnode) != NULL) {
749 		VOP_UNP_DETACH(vp);
750 		unp->unp_vnode = NULL;
751 	}
752 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
753 		unp_disconnect(unp, unp2);
754 	else
755 		UNP_PCB_UNLOCK(unp);
756 
757 	UNP_REF_LIST_LOCK();
758 	while (!LIST_EMPTY(&unp->unp_refs)) {
759 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
760 
761 		unp_pcb_hold(ref);
762 		UNP_REF_LIST_UNLOCK();
763 
764 		MPASS(ref != unp);
765 		UNP_PCB_UNLOCK_ASSERT(ref);
766 		unp_drop(ref);
767 		UNP_REF_LIST_LOCK();
768 	}
769 	UNP_REF_LIST_UNLOCK();
770 
771 	UNP_PCB_LOCK(unp);
772 	local_unp_rights = unp_rights;
773 	unp->unp_socket->so_pcb = NULL;
774 	unp->unp_socket = NULL;
775 	free(unp->unp_addr, M_SONAME);
776 	unp->unp_addr = NULL;
777 	if (!unp_pcb_rele(unp))
778 		UNP_PCB_UNLOCK(unp);
779 	if (vp) {
780 		mtx_unlock(vplock);
781 		vrele(vp);
782 	}
783 	if (local_unp_rights)
784 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
785 
786 	switch (so->so_type) {
787 	case SOCK_DGRAM:
788 		/*
789 		 * Everything should have been unlinked/freed by unp_dispose()
790 		 * and/or unp_disconnect().
791 		 */
792 		MPASS(so->so_rcv.uxdg_peeked == NULL);
793 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
794 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
795 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
796 	}
797 }
798 
799 static int
800 uipc_disconnect(struct socket *so)
801 {
802 	struct unpcb *unp, *unp2;
803 
804 	unp = sotounpcb(so);
805 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
806 
807 	UNP_PCB_LOCK(unp);
808 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
809 		unp_disconnect(unp, unp2);
810 	else
811 		UNP_PCB_UNLOCK(unp);
812 	return (0);
813 }
814 
815 static int
816 uipc_listen(struct socket *so, int backlog, struct thread *td)
817 {
818 	struct unpcb *unp;
819 	int error;
820 
821 	MPASS(so->so_type != SOCK_DGRAM);
822 
823 	/*
824 	 * Synchronize with concurrent connection attempts.
825 	 */
826 	error = 0;
827 	unp = sotounpcb(so);
828 	UNP_PCB_LOCK(unp);
829 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
830 		error = EINVAL;
831 	else if (unp->unp_vnode == NULL)
832 		error = EDESTADDRREQ;
833 	if (error != 0) {
834 		UNP_PCB_UNLOCK(unp);
835 		return (error);
836 	}
837 
838 	SOCK_LOCK(so);
839 	error = solisten_proto_check(so);
840 	if (error == 0) {
841 		cru2xt(td, &unp->unp_peercred);
842 		solisten_proto(so, backlog);
843 	}
844 	SOCK_UNLOCK(so);
845 	UNP_PCB_UNLOCK(unp);
846 	return (error);
847 }
848 
849 static int
850 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
851 {
852 	struct unpcb *unp, *unp2;
853 	const struct sockaddr *sa;
854 
855 	unp = sotounpcb(so);
856 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
857 
858 	UNP_PCB_LOCK(unp);
859 	unp2 = unp_pcb_lock_peer(unp);
860 	if (unp2 != NULL) {
861 		if (unp2->unp_addr != NULL)
862 			sa = (struct sockaddr *)unp2->unp_addr;
863 		else
864 			sa = &sun_noname;
865 		bcopy(sa, ret, sa->sa_len);
866 		unp_pcb_unlock_pair(unp, unp2);
867 	} else {
868 		UNP_PCB_UNLOCK(unp);
869 		sa = &sun_noname;
870 		bcopy(sa, ret, sa->sa_len);
871 	}
872 	return (0);
873 }
874 
875 static int
876 uipc_rcvd(struct socket *so, int flags)
877 {
878 	struct unpcb *unp, *unp2;
879 	struct socket *so2;
880 	u_int mbcnt, sbcc;
881 
882 	unp = sotounpcb(so);
883 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
884 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
885 	    ("%s: socktype %d", __func__, so->so_type));
886 
887 	/*
888 	 * Adjust backpressure on sender and wakeup any waiting to write.
889 	 *
890 	 * The unp lock is acquired to maintain the validity of the unp_conn
891 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
892 	 * static as long as we don't permit unp2 to disconnect from unp,
893 	 * which is prevented by the lock on unp.  We cache values from
894 	 * so_rcv to avoid holding the so_rcv lock over the entire
895 	 * transaction on the remote so_snd.
896 	 */
897 	SOCKBUF_LOCK(&so->so_rcv);
898 	mbcnt = so->so_rcv.sb_mbcnt;
899 	sbcc = sbavail(&so->so_rcv);
900 	SOCKBUF_UNLOCK(&so->so_rcv);
901 	/*
902 	 * There is a benign race condition at this point.  If we're planning to
903 	 * clear SB_STOP, but uipc_send is called on the connected socket at
904 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
905 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
906 	 * full.  The race is benign because the only ill effect is to allow the
907 	 * sockbuf to exceed its size limit, and the size limits are not
908 	 * strictly guaranteed anyway.
909 	 */
910 	UNP_PCB_LOCK(unp);
911 	unp2 = unp->unp_conn;
912 	if (unp2 == NULL) {
913 		UNP_PCB_UNLOCK(unp);
914 		return (0);
915 	}
916 	so2 = unp2->unp_socket;
917 	SOCKBUF_LOCK(&so2->so_snd);
918 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
919 		so2->so_snd.sb_flags &= ~SB_STOP;
920 	sowwakeup_locked(so2);
921 	UNP_PCB_UNLOCK(unp);
922 	return (0);
923 }
924 
925 static int
926 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
927     struct mbuf *control, struct thread *td)
928 {
929 	struct unpcb *unp, *unp2;
930 	struct socket *so2;
931 	u_int mbcnt, sbcc;
932 	int error;
933 
934 	unp = sotounpcb(so);
935 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
936 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
937 	    ("%s: socktype %d", __func__, so->so_type));
938 
939 	error = 0;
940 	if (flags & PRUS_OOB) {
941 		error = EOPNOTSUPP;
942 		goto release;
943 	}
944 	if (control != NULL &&
945 	    (error = unp_internalize(&control, td, NULL, NULL, NULL)))
946 		goto release;
947 
948 	unp2 = NULL;
949 	if ((so->so_state & SS_ISCONNECTED) == 0) {
950 		if (nam != NULL) {
951 			if ((error = unp_connect(so, nam, td)) != 0)
952 				goto out;
953 		} else {
954 			error = ENOTCONN;
955 			goto out;
956 		}
957 	}
958 
959 	UNP_PCB_LOCK(unp);
960 	if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
961 		UNP_PCB_UNLOCK(unp);
962 		error = ENOTCONN;
963 		goto out;
964 	} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
965 		unp_pcb_unlock_pair(unp, unp2);
966 		error = EPIPE;
967 		goto out;
968 	}
969 	UNP_PCB_UNLOCK(unp);
970 	if ((so2 = unp2->unp_socket) == NULL) {
971 		UNP_PCB_UNLOCK(unp2);
972 		error = ENOTCONN;
973 		goto out;
974 	}
975 	SOCKBUF_LOCK(&so2->so_rcv);
976 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
977 		/*
978 		 * Credentials are passed only once on SOCK_STREAM and
979 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
980 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
981 		 */
982 		control = unp_addsockcred(td, control, unp2->unp_flags, NULL,
983 		    NULL, NULL);
984 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
985 	}
986 
987 	/*
988 	 * Send to paired receive port and wake up readers.  Don't
989 	 * check for space available in the receive buffer if we're
990 	 * attaching ancillary data; Unix domain sockets only check
991 	 * for space in the sending sockbuf, and that check is
992 	 * performed one level up the stack.  At that level we cannot
993 	 * precisely account for the amount of buffer space used
994 	 * (e.g., because control messages are not yet internalized).
995 	 */
996 	switch (so->so_type) {
997 	case SOCK_STREAM:
998 		if (control != NULL) {
999 			sbappendcontrol_locked(&so2->so_rcv, m,
1000 			    control, flags);
1001 			control = NULL;
1002 		} else
1003 			sbappend_locked(&so2->so_rcv, m, flags);
1004 		break;
1005 
1006 	case SOCK_SEQPACKET:
1007 		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1008 		    &sun_noname, m, control))
1009 			control = NULL;
1010 		break;
1011 	}
1012 
1013 	mbcnt = so2->so_rcv.sb_mbcnt;
1014 	sbcc = sbavail(&so2->so_rcv);
1015 	if (sbcc)
1016 		sorwakeup_locked(so2);
1017 	else
1018 		SOCKBUF_UNLOCK(&so2->so_rcv);
1019 
1020 	/*
1021 	 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1022 	 * it would be possible for uipc_rcvd to be called at this
1023 	 * point, drain the receiving sockbuf, clear SB_STOP, and then
1024 	 * we would set SB_STOP below.  That could lead to an empty
1025 	 * sockbuf having SB_STOP set
1026 	 */
1027 	SOCKBUF_LOCK(&so->so_snd);
1028 	if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1029 		so->so_snd.sb_flags |= SB_STOP;
1030 	SOCKBUF_UNLOCK(&so->so_snd);
1031 	UNP_PCB_UNLOCK(unp2);
1032 	m = NULL;
1033 out:
1034 	/*
1035 	 * PRUS_EOF is equivalent to pr_send followed by pr_shutdown.
1036 	 */
1037 	if (flags & PRUS_EOF) {
1038 		UNP_PCB_LOCK(unp);
1039 		socantsendmore(so);
1040 		unp_shutdown(unp);
1041 		UNP_PCB_UNLOCK(unp);
1042 	}
1043 	if (control != NULL && error != 0)
1044 		unp_scan(control, unp_freerights);
1045 
1046 release:
1047 	if (control != NULL)
1048 		m_freem(control);
1049 	/*
1050 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1051 	 * for freeing memory.
1052 	 */
1053 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1054 		m_freem(m);
1055 	return (error);
1056 }
1057 
1058 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1059 static inline bool
1060 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1061 {
1062 	u_int bleft, mleft;
1063 
1064 	/*
1065 	 * Negative space may happen if send(2) is followed by
1066 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1067 	 */
1068 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1069 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1070 		return (false);
1071 
1072 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1073 		return (false);
1074 
1075 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1076 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1077 
1078 	return (bleft >= cc && mleft >= mbcnt);
1079 }
1080 
1081 /*
1082  * PF_UNIX/SOCK_DGRAM send
1083  *
1084  * Allocate a record consisting of 3 mbufs in the sequence of
1085  * from -> control -> data and append it to the socket buffer.
1086  *
1087  * The first mbuf carries sender's name and is a pkthdr that stores
1088  * overall length of datagram, its memory consumption and control length.
1089  */
1090 #define	ctllen	PH_loc.thirtytwo[1]
1091 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1092     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1093 static int
1094 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1095     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1096 {
1097 	struct unpcb *unp, *unp2;
1098 	const struct sockaddr *from;
1099 	struct socket *so2;
1100 	struct sockbuf *sb;
1101 	struct mbuf *f, *clast;
1102 	u_int cc, ctl, mbcnt;
1103 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1104 	int error;
1105 
1106 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1107 
1108 	error = 0;
1109 	f = NULL;
1110 	ctl = 0;
1111 
1112 	if (__predict_false(flags & MSG_OOB)) {
1113 		error = EOPNOTSUPP;
1114 		goto out;
1115 	}
1116 	if (m == NULL) {
1117 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1118 			error = EMSGSIZE;
1119 			goto out;
1120 		}
1121 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1122 		if (__predict_false(m == NULL)) {
1123 			error = EFAULT;
1124 			goto out;
1125 		}
1126 		f = m_gethdr(M_WAITOK, MT_SONAME);
1127 		cc = m->m_pkthdr.len;
1128 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1129 		if (c != NULL &&
1130 		    (error = unp_internalize(&c, td, &clast, &ctl, &mbcnt)))
1131 			goto out;
1132 	} else {
1133 		/* pr_sosend() with mbuf usually is a kernel thread. */
1134 
1135 		M_ASSERTPKTHDR(m);
1136 		if (__predict_false(c != NULL))
1137 			panic("%s: control from a kernel thread", __func__);
1138 
1139 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1140 			error = EMSGSIZE;
1141 			goto out;
1142 		}
1143 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1144 			error = ENOBUFS;
1145 			goto out;
1146 		}
1147 		/* Condition the foreign mbuf to our standards. */
1148 		m_clrprotoflags(m);
1149 		m_tag_delete_chain(m, NULL);
1150 		m->m_pkthdr.rcvif = NULL;
1151 		m->m_pkthdr.flowid = 0;
1152 		m->m_pkthdr.csum_flags = 0;
1153 		m->m_pkthdr.fibnum = 0;
1154 		m->m_pkthdr.rsstype = 0;
1155 
1156 		cc = m->m_pkthdr.len;
1157 		mbcnt = MSIZE;
1158 		for (struct mbuf *mb = m; mb != NULL; mb = mb->m_next) {
1159 			mbcnt += MSIZE;
1160 			if (mb->m_flags & M_EXT)
1161 				mbcnt += mb->m_ext.ext_size;
1162 		}
1163 	}
1164 
1165 	unp = sotounpcb(so);
1166 	MPASS(unp);
1167 
1168 	/*
1169 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1170 	 * and avoid this lock, which is not only extraneous, but also being
1171 	 * released, thus still leaving possibility for a race.  We can easily
1172 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1173 	 * is more difficult to invent something to handle so_error.
1174 	 */
1175 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1176 	if (error)
1177 		goto out2;
1178 	SOCK_SENDBUF_LOCK(so);
1179 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1180 		SOCK_SENDBUF_UNLOCK(so);
1181 		error = EPIPE;
1182 		goto out3;
1183 	}
1184 	if (so->so_error != 0) {
1185 		error = so->so_error;
1186 		so->so_error = 0;
1187 		SOCK_SENDBUF_UNLOCK(so);
1188 		goto out3;
1189 	}
1190 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
1191 		SOCK_SENDBUF_UNLOCK(so);
1192 		error = EDESTADDRREQ;
1193 		goto out3;
1194 	}
1195 	SOCK_SENDBUF_UNLOCK(so);
1196 
1197 	if (addr != NULL) {
1198 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
1199 			goto out3;
1200 		UNP_PCB_LOCK_ASSERT(unp);
1201 		unp2 = unp->unp_conn;
1202 		UNP_PCB_LOCK_ASSERT(unp2);
1203 	} else {
1204 		UNP_PCB_LOCK(unp);
1205 		unp2 = unp_pcb_lock_peer(unp);
1206 		if (unp2 == NULL) {
1207 			UNP_PCB_UNLOCK(unp);
1208 			error = ENOTCONN;
1209 			goto out3;
1210 		}
1211 	}
1212 
1213 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
1214 		c = unp_addsockcred(td, c, unp2->unp_flags, &clast, &ctl,
1215 		    &mbcnt);
1216 	if (unp->unp_addr != NULL)
1217 		from = (struct sockaddr *)unp->unp_addr;
1218 	else
1219 		from = &sun_noname;
1220 	f->m_len = from->sa_len;
1221 	MPASS(from->sa_len <= MLEN);
1222 	bcopy(from, mtod(f, void *), from->sa_len);
1223 	ctl += f->m_len;
1224 
1225 	/*
1226 	 * Concatenate mbufs: from -> control -> data.
1227 	 * Save overall cc and mbcnt in "from" mbuf.
1228 	 */
1229 	if (c != NULL) {
1230 #ifdef INVARIANTS
1231 		struct mbuf *mc;
1232 
1233 		for (mc = c; mc->m_next != NULL; mc = mc->m_next);
1234 		MPASS(mc == clast);
1235 #endif
1236 		f->m_next = c;
1237 		clast->m_next = m;
1238 		c = NULL;
1239 	} else
1240 		f->m_next = m;
1241 	m = NULL;
1242 #ifdef INVARIANTS
1243 	dcc = dctl = dmbcnt = 0;
1244 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
1245 		if (mb->m_type == MT_DATA)
1246 			dcc += mb->m_len;
1247 		else
1248 			dctl += mb->m_len;
1249 		dmbcnt += MSIZE;
1250 		if (mb->m_flags & M_EXT)
1251 			dmbcnt += mb->m_ext.ext_size;
1252 	}
1253 	MPASS(dcc == cc);
1254 	MPASS(dctl == ctl);
1255 	MPASS(dmbcnt == mbcnt);
1256 #endif
1257 	f->m_pkthdr.len = cc + ctl;
1258 	f->m_pkthdr.memlen = mbcnt;
1259 	f->m_pkthdr.ctllen = ctl;
1260 
1261 	/*
1262 	 * Destination socket buffer selection.
1263 	 *
1264 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
1265 	 * destination address is supplied, create a temporary connection for
1266 	 * the run time of the function (see call to unp_connectat() above and
1267 	 * to unp_disconnect() below).  We distinguish them by condition of
1268 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
1269 	 * that condition, since, again, through the run time of this code we
1270 	 * are always connected.  For such "unconnected" sends, the destination
1271 	 * buffer would be the receive buffer of destination socket so2.
1272 	 *
1273 	 * For connected sends, data lands on the send buffer of the sender's
1274 	 * socket "so".  Then, if we just added the very first datagram
1275 	 * on this send buffer, we need to add the send buffer on to the
1276 	 * receiving socket's buffer list.  We put ourselves on top of the
1277 	 * list.  Such logic gives infrequent senders priority over frequent
1278 	 * senders.
1279 	 *
1280 	 * Note on byte count management. As long as event methods kevent(2),
1281 	 * select(2) are not protocol specific (yet), we need to maintain
1282 	 * meaningful values on the receive buffer.  So, the receive buffer
1283 	 * would accumulate counters from all connected buffers potentially
1284 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
1285 	 */
1286 	so2 = unp2->unp_socket;
1287 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
1288 	SOCK_RECVBUF_LOCK(so2);
1289 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
1290 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
1291 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
1292 			    uxdg_clist);
1293 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
1294 		sb->uxdg_cc += cc + ctl;
1295 		sb->uxdg_ctl += ctl;
1296 		sb->uxdg_mbcnt += mbcnt;
1297 		so2->so_rcv.sb_acc += cc + ctl;
1298 		so2->so_rcv.sb_ccc += cc + ctl;
1299 		so2->so_rcv.sb_ctl += ctl;
1300 		so2->so_rcv.sb_mbcnt += mbcnt;
1301 		sorwakeup_locked(so2);
1302 		f = NULL;
1303 	} else {
1304 		soroverflow_locked(so2);
1305 		error = ENOBUFS;
1306 		if (f->m_next->m_type == MT_CONTROL) {
1307 			c = f->m_next;
1308 			f->m_next = NULL;
1309 		}
1310 	}
1311 
1312 	if (addr != NULL)
1313 		unp_disconnect(unp, unp2);
1314 	else
1315 		unp_pcb_unlock_pair(unp, unp2);
1316 
1317 	td->td_ru.ru_msgsnd++;
1318 
1319 out3:
1320 	SOCK_IO_SEND_UNLOCK(so);
1321 out2:
1322 	if (c)
1323 		unp_scan(c, unp_freerights);
1324 out:
1325 	if (f)
1326 		m_freem(f);
1327 	if (c)
1328 		m_freem(c);
1329 	if (m)
1330 		m_freem(m);
1331 
1332 	return (error);
1333 }
1334 
1335 /*
1336  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
1337  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
1338  * and needs to be linked onto uxdg_peeked of receive socket buffer.
1339  */
1340 static int
1341 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
1342     struct uio *uio, struct mbuf **controlp, int *flagsp)
1343 {
1344 	ssize_t len = 0;
1345 	int error;
1346 
1347 	so->so_rcv.uxdg_peeked = m;
1348 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
1349 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
1350 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
1351 	SOCK_RECVBUF_UNLOCK(so);
1352 
1353 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1354 	if (psa != NULL)
1355 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1356 
1357 	m = m->m_next;
1358 	KASSERT(m, ("%s: no data or control after soname", __func__));
1359 
1360 	/*
1361 	 * With MSG_PEEK the control isn't executed, just copied.
1362 	 */
1363 	while (m != NULL && m->m_type == MT_CONTROL) {
1364 		if (controlp != NULL) {
1365 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
1366 			controlp = &(*controlp)->m_next;
1367 		}
1368 		m = m->m_next;
1369 	}
1370 	KASSERT(m == NULL || m->m_type == MT_DATA,
1371 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1372 	while (m != NULL && uio->uio_resid > 0) {
1373 		len = uio->uio_resid;
1374 		if (len > m->m_len)
1375 			len = m->m_len;
1376 		error = uiomove(mtod(m, char *), (int)len, uio);
1377 		if (error) {
1378 			SOCK_IO_RECV_UNLOCK(so);
1379 			return (error);
1380 		}
1381 		if (len == m->m_len)
1382 			m = m->m_next;
1383 	}
1384 	SOCK_IO_RECV_UNLOCK(so);
1385 
1386 	if (flagsp != NULL) {
1387 		if (m != NULL) {
1388 			if (*flagsp & MSG_TRUNC) {
1389 				/* Report real length of the packet */
1390 				uio->uio_resid -= m_length(m, NULL) - len;
1391 			}
1392 			*flagsp |= MSG_TRUNC;
1393 		} else
1394 			*flagsp &= ~MSG_TRUNC;
1395 	}
1396 
1397 	return (0);
1398 }
1399 
1400 /*
1401  * PF_UNIX/SOCK_DGRAM receive
1402  */
1403 static int
1404 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1405     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1406 {
1407 	struct sockbuf *sb = NULL;
1408 	struct mbuf *m;
1409 	int flags, error;
1410 	ssize_t len = 0;
1411 	bool nonblock;
1412 
1413 	MPASS(mp0 == NULL);
1414 
1415 	if (psa != NULL)
1416 		*psa = NULL;
1417 	if (controlp != NULL)
1418 		*controlp = NULL;
1419 
1420 	flags = flagsp != NULL ? *flagsp : 0;
1421 	nonblock = (so->so_state & SS_NBIO) ||
1422 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1423 
1424 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1425 	if (__predict_false(error))
1426 		return (error);
1427 
1428 	/*
1429 	 * Loop blocking while waiting for a datagram.  Prioritize connected
1430 	 * peers over unconnected sends.  Set sb to selected socket buffer
1431 	 * containing an mbuf on exit from the wait loop.  A datagram that
1432 	 * had already been peeked at has top priority.
1433 	 */
1434 	SOCK_RECVBUF_LOCK(so);
1435 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
1436 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
1437 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
1438 		if (so->so_error) {
1439 			error = so->so_error;
1440 			so->so_error = 0;
1441 			SOCK_RECVBUF_UNLOCK(so);
1442 			SOCK_IO_RECV_UNLOCK(so);
1443 			return (error);
1444 		}
1445 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1446 		    uio->uio_resid == 0) {
1447 			SOCK_RECVBUF_UNLOCK(so);
1448 			SOCK_IO_RECV_UNLOCK(so);
1449 			return (0);
1450 		}
1451 		if (nonblock) {
1452 			SOCK_RECVBUF_UNLOCK(so);
1453 			SOCK_IO_RECV_UNLOCK(so);
1454 			return (EWOULDBLOCK);
1455 		}
1456 		error = sbwait(so, SO_RCV);
1457 		if (error) {
1458 			SOCK_RECVBUF_UNLOCK(so);
1459 			SOCK_IO_RECV_UNLOCK(so);
1460 			return (error);
1461 		}
1462 	}
1463 
1464 	if (sb == NULL)
1465 		sb = &so->so_rcv;
1466 	else if (m == NULL)
1467 		m = STAILQ_FIRST(&sb->uxdg_mb);
1468 	else
1469 		MPASS(m == so->so_rcv.uxdg_peeked);
1470 
1471 	MPASS(sb->uxdg_cc > 0);
1472 	M_ASSERTPKTHDR(m);
1473 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1474 
1475 	if (uio->uio_td)
1476 		uio->uio_td->td_ru.ru_msgrcv++;
1477 
1478 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
1479 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
1480 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
1481 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
1482 	} else
1483 		so->so_rcv.uxdg_peeked = NULL;
1484 
1485 	sb->uxdg_cc -= m->m_pkthdr.len;
1486 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
1487 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
1488 
1489 	if (__predict_false(flags & MSG_PEEK))
1490 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
1491 
1492 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
1493 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
1494 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
1495 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
1496 	SOCK_RECVBUF_UNLOCK(so);
1497 
1498 	if (psa != NULL)
1499 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1500 	m = m_free(m);
1501 	KASSERT(m, ("%s: no data or control after soname", __func__));
1502 
1503 	/*
1504 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1505 	 * queue.
1506 	 *
1507 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1508 	 * in the first mbuf chain on the socket buffer.  We call into the
1509 	 * unp_externalize() to perform externalization (or freeing if
1510 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
1511 	 * without MT_DATA mbufs.
1512 	 */
1513 	while (m != NULL && m->m_type == MT_CONTROL) {
1514 		struct mbuf *cm;
1515 
1516 		/* XXXGL: unp_externalize() is also dom_externalize() KBI and
1517 		 * it frees whole chain, so we must disconnect the mbuf.
1518 		 */
1519 		cm = m; m = m->m_next; cm->m_next = NULL;
1520 		error = unp_externalize(cm, controlp, flags);
1521 		if (error != 0) {
1522 			SOCK_IO_RECV_UNLOCK(so);
1523 			unp_scan(m, unp_freerights);
1524 			m_freem(m);
1525 			return (error);
1526 		}
1527 		if (controlp != NULL) {
1528 			while (*controlp != NULL)
1529 				controlp = &(*controlp)->m_next;
1530 		}
1531 	}
1532 	KASSERT(m == NULL || m->m_type == MT_DATA,
1533 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1534 	while (m != NULL && uio->uio_resid > 0) {
1535 		len = uio->uio_resid;
1536 		if (len > m->m_len)
1537 			len = m->m_len;
1538 		error = uiomove(mtod(m, char *), (int)len, uio);
1539 		if (error) {
1540 			SOCK_IO_RECV_UNLOCK(so);
1541 			m_freem(m);
1542 			return (error);
1543 		}
1544 		if (len == m->m_len)
1545 			m = m_free(m);
1546 		else {
1547 			m->m_data += len;
1548 			m->m_len -= len;
1549 		}
1550 	}
1551 	SOCK_IO_RECV_UNLOCK(so);
1552 
1553 	if (m != NULL) {
1554 		if (flagsp != NULL) {
1555 			if (flags & MSG_TRUNC) {
1556 				/* Report real length of the packet */
1557 				uio->uio_resid -= m_length(m, NULL);
1558 			}
1559 			*flagsp |= MSG_TRUNC;
1560 		}
1561 		m_freem(m);
1562 	} else if (flagsp != NULL)
1563 		*flagsp &= ~MSG_TRUNC;
1564 
1565 	return (0);
1566 }
1567 
1568 static bool
1569 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1570 {
1571 	struct mbuf *mb, *n;
1572 	struct sockbuf *sb;
1573 
1574 	SOCK_LOCK(so);
1575 	if (SOLISTENING(so)) {
1576 		SOCK_UNLOCK(so);
1577 		return (false);
1578 	}
1579 	mb = NULL;
1580 	sb = &so->so_rcv;
1581 	SOCKBUF_LOCK(sb);
1582 	if (sb->sb_fnrdy != NULL) {
1583 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1584 			if (mb == m) {
1585 				*errorp = sbready(sb, m, count);
1586 				break;
1587 			}
1588 			mb = mb->m_next;
1589 			if (mb == NULL) {
1590 				mb = n;
1591 				if (mb != NULL)
1592 					n = mb->m_nextpkt;
1593 			}
1594 		}
1595 	}
1596 	SOCKBUF_UNLOCK(sb);
1597 	SOCK_UNLOCK(so);
1598 	return (mb != NULL);
1599 }
1600 
1601 static int
1602 uipc_ready(struct socket *so, struct mbuf *m, int count)
1603 {
1604 	struct unpcb *unp, *unp2;
1605 	struct socket *so2;
1606 	int error, i;
1607 
1608 	unp = sotounpcb(so);
1609 
1610 	KASSERT(so->so_type == SOCK_STREAM,
1611 	    ("%s: unexpected socket type for %p", __func__, so));
1612 
1613 	UNP_PCB_LOCK(unp);
1614 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1615 		UNP_PCB_UNLOCK(unp);
1616 		so2 = unp2->unp_socket;
1617 		SOCKBUF_LOCK(&so2->so_rcv);
1618 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1619 			sorwakeup_locked(so2);
1620 		else
1621 			SOCKBUF_UNLOCK(&so2->so_rcv);
1622 		UNP_PCB_UNLOCK(unp2);
1623 		return (error);
1624 	}
1625 	UNP_PCB_UNLOCK(unp);
1626 
1627 	/*
1628 	 * The receiving socket has been disconnected, but may still be valid.
1629 	 * In this case, the now-ready mbufs are still present in its socket
1630 	 * buffer, so perform an exhaustive search before giving up and freeing
1631 	 * the mbufs.
1632 	 */
1633 	UNP_LINK_RLOCK();
1634 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1635 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1636 			break;
1637 	}
1638 	UNP_LINK_RUNLOCK();
1639 
1640 	if (unp == NULL) {
1641 		for (i = 0; i < count; i++)
1642 			m = m_free(m);
1643 		error = ECONNRESET;
1644 	}
1645 	return (error);
1646 }
1647 
1648 static int
1649 uipc_sense(struct socket *so, struct stat *sb)
1650 {
1651 	struct unpcb *unp;
1652 
1653 	unp = sotounpcb(so);
1654 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1655 
1656 	sb->st_blksize = so->so_snd.sb_hiwat;
1657 	sb->st_dev = NODEV;
1658 	sb->st_ino = unp->unp_ino;
1659 	return (0);
1660 }
1661 
1662 static int
1663 uipc_shutdown(struct socket *so)
1664 {
1665 	struct unpcb *unp;
1666 
1667 	unp = sotounpcb(so);
1668 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1669 
1670 	UNP_PCB_LOCK(unp);
1671 	socantsendmore(so);
1672 	unp_shutdown(unp);
1673 	UNP_PCB_UNLOCK(unp);
1674 	return (0);
1675 }
1676 
1677 static int
1678 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
1679 {
1680 	struct unpcb *unp;
1681 	const struct sockaddr *sa;
1682 
1683 	unp = sotounpcb(so);
1684 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1685 
1686 	UNP_PCB_LOCK(unp);
1687 	if (unp->unp_addr != NULL)
1688 		sa = (struct sockaddr *) unp->unp_addr;
1689 	else
1690 		sa = &sun_noname;
1691 	bcopy(sa, ret, sa->sa_len);
1692 	UNP_PCB_UNLOCK(unp);
1693 	return (0);
1694 }
1695 
1696 static int
1697 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1698 {
1699 	struct unpcb *unp;
1700 	struct xucred xu;
1701 	int error, optval;
1702 
1703 	if (sopt->sopt_level != SOL_LOCAL)
1704 		return (EINVAL);
1705 
1706 	unp = sotounpcb(so);
1707 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1708 	error = 0;
1709 	switch (sopt->sopt_dir) {
1710 	case SOPT_GET:
1711 		switch (sopt->sopt_name) {
1712 		case LOCAL_PEERCRED:
1713 			UNP_PCB_LOCK(unp);
1714 			if (unp->unp_flags & UNP_HAVEPC)
1715 				xu = unp->unp_peercred;
1716 			else {
1717 				if (so->so_type == SOCK_STREAM)
1718 					error = ENOTCONN;
1719 				else
1720 					error = EINVAL;
1721 			}
1722 			UNP_PCB_UNLOCK(unp);
1723 			if (error == 0)
1724 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1725 			break;
1726 
1727 		case LOCAL_CREDS:
1728 			/* Unlocked read. */
1729 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1730 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1731 			break;
1732 
1733 		case LOCAL_CREDS_PERSISTENT:
1734 			/* Unlocked read. */
1735 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1736 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1737 			break;
1738 
1739 		case LOCAL_CONNWAIT:
1740 			/* Unlocked read. */
1741 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1742 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1743 			break;
1744 
1745 		default:
1746 			error = EOPNOTSUPP;
1747 			break;
1748 		}
1749 		break;
1750 
1751 	case SOPT_SET:
1752 		switch (sopt->sopt_name) {
1753 		case LOCAL_CREDS:
1754 		case LOCAL_CREDS_PERSISTENT:
1755 		case LOCAL_CONNWAIT:
1756 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1757 					    sizeof(optval));
1758 			if (error)
1759 				break;
1760 
1761 #define	OPTSET(bit, exclusive) do {					\
1762 	UNP_PCB_LOCK(unp);						\
1763 	if (optval) {							\
1764 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1765 			UNP_PCB_UNLOCK(unp);				\
1766 			error = EINVAL;					\
1767 			break;						\
1768 		}							\
1769 		unp->unp_flags |= (bit);				\
1770 	} else								\
1771 		unp->unp_flags &= ~(bit);				\
1772 	UNP_PCB_UNLOCK(unp);						\
1773 } while (0)
1774 
1775 			switch (sopt->sopt_name) {
1776 			case LOCAL_CREDS:
1777 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1778 				break;
1779 
1780 			case LOCAL_CREDS_PERSISTENT:
1781 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1782 				break;
1783 
1784 			case LOCAL_CONNWAIT:
1785 				OPTSET(UNP_CONNWAIT, 0);
1786 				break;
1787 
1788 			default:
1789 				break;
1790 			}
1791 			break;
1792 #undef	OPTSET
1793 		default:
1794 			error = ENOPROTOOPT;
1795 			break;
1796 		}
1797 		break;
1798 
1799 	default:
1800 		error = EOPNOTSUPP;
1801 		break;
1802 	}
1803 	return (error);
1804 }
1805 
1806 static int
1807 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1808 {
1809 
1810 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
1811 }
1812 
1813 static int
1814 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1815     struct thread *td, bool return_locked)
1816 {
1817 	struct mtx *vplock;
1818 	struct sockaddr_un *soun;
1819 	struct vnode *vp;
1820 	struct socket *so2;
1821 	struct unpcb *unp, *unp2, *unp3;
1822 	struct nameidata nd;
1823 	char buf[SOCK_MAXADDRLEN];
1824 	struct sockaddr *sa;
1825 	cap_rights_t rights;
1826 	int error, len;
1827 	bool connreq;
1828 
1829 	if (nam->sa_family != AF_UNIX)
1830 		return (EAFNOSUPPORT);
1831 	if (nam->sa_len > sizeof(struct sockaddr_un))
1832 		return (EINVAL);
1833 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1834 	if (len <= 0)
1835 		return (EINVAL);
1836 	soun = (struct sockaddr_un *)nam;
1837 	bcopy(soun->sun_path, buf, len);
1838 	buf[len] = 0;
1839 
1840 	error = 0;
1841 	unp = sotounpcb(so);
1842 	UNP_PCB_LOCK(unp);
1843 	for (;;) {
1844 		/*
1845 		 * Wait for connection state to stabilize.  If a connection
1846 		 * already exists, give up.  For datagram sockets, which permit
1847 		 * multiple consecutive connect(2) calls, upper layers are
1848 		 * responsible for disconnecting in advance of a subsequent
1849 		 * connect(2), but this is not synchronized with PCB connection
1850 		 * state.
1851 		 *
1852 		 * Also make sure that no threads are currently attempting to
1853 		 * lock the peer socket, to ensure that unp_conn cannot
1854 		 * transition between two valid sockets while locks are dropped.
1855 		 */
1856 		if (SOLISTENING(so))
1857 			error = EOPNOTSUPP;
1858 		else if (unp->unp_conn != NULL)
1859 			error = EISCONN;
1860 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1861 			error = EALREADY;
1862 		}
1863 		if (error != 0) {
1864 			UNP_PCB_UNLOCK(unp);
1865 			return (error);
1866 		}
1867 		if (unp->unp_pairbusy > 0) {
1868 			unp->unp_flags |= UNP_WAITING;
1869 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1870 			continue;
1871 		}
1872 		break;
1873 	}
1874 	unp->unp_flags |= UNP_CONNECTING;
1875 	UNP_PCB_UNLOCK(unp);
1876 
1877 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1878 	if (connreq)
1879 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1880 	else
1881 		sa = NULL;
1882 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1883 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1884 	error = namei(&nd);
1885 	if (error)
1886 		vp = NULL;
1887 	else
1888 		vp = nd.ni_vp;
1889 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1890 	if (error)
1891 		goto bad;
1892 	NDFREE_PNBUF(&nd);
1893 
1894 	if (vp->v_type != VSOCK) {
1895 		error = ENOTSOCK;
1896 		goto bad;
1897 	}
1898 #ifdef MAC
1899 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1900 	if (error)
1901 		goto bad;
1902 #endif
1903 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1904 	if (error)
1905 		goto bad;
1906 
1907 	unp = sotounpcb(so);
1908 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1909 
1910 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1911 	mtx_lock(vplock);
1912 	VOP_UNP_CONNECT(vp, &unp2);
1913 	if (unp2 == NULL) {
1914 		error = ECONNREFUSED;
1915 		goto bad2;
1916 	}
1917 	so2 = unp2->unp_socket;
1918 	if (so->so_type != so2->so_type) {
1919 		error = EPROTOTYPE;
1920 		goto bad2;
1921 	}
1922 	if (connreq) {
1923 		if (SOLISTENING(so2)) {
1924 			CURVNET_SET(so2->so_vnet);
1925 			so2 = sonewconn(so2, 0);
1926 			CURVNET_RESTORE();
1927 		} else
1928 			so2 = NULL;
1929 		if (so2 == NULL) {
1930 			error = ECONNREFUSED;
1931 			goto bad2;
1932 		}
1933 		unp3 = sotounpcb(so2);
1934 		unp_pcb_lock_pair(unp2, unp3);
1935 		if (unp2->unp_addr != NULL) {
1936 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1937 			unp3->unp_addr = (struct sockaddr_un *) sa;
1938 			sa = NULL;
1939 		}
1940 
1941 		unp_copy_peercred(td, unp3, unp, unp2);
1942 
1943 		UNP_PCB_UNLOCK(unp2);
1944 		unp2 = unp3;
1945 
1946 		/*
1947 		 * It is safe to block on the PCB lock here since unp2 is
1948 		 * nascent and cannot be connected to any other sockets.
1949 		 */
1950 		UNP_PCB_LOCK(unp);
1951 #ifdef MAC
1952 		mac_socketpeer_set_from_socket(so, so2);
1953 		mac_socketpeer_set_from_socket(so2, so);
1954 #endif
1955 	} else {
1956 		unp_pcb_lock_pair(unp, unp2);
1957 	}
1958 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1959 	    sotounpcb(so2) == unp2,
1960 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1961 	unp_connect2(so, so2, PRU_CONNECT);
1962 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1963 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1964 	unp->unp_flags &= ~UNP_CONNECTING;
1965 	if (!return_locked)
1966 		unp_pcb_unlock_pair(unp, unp2);
1967 bad2:
1968 	mtx_unlock(vplock);
1969 bad:
1970 	if (vp != NULL) {
1971 		/*
1972 		 * If we are returning locked (called via uipc_sosend_dgram()),
1973 		 * we need to be sure that vput() won't sleep.  This is
1974 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
1975 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
1976 		 */
1977 		MPASS(!(return_locked && connreq));
1978 		vput(vp);
1979 	}
1980 	free(sa, M_SONAME);
1981 	if (__predict_false(error)) {
1982 		UNP_PCB_LOCK(unp);
1983 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1984 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1985 		unp->unp_flags &= ~UNP_CONNECTING;
1986 		UNP_PCB_UNLOCK(unp);
1987 	}
1988 	return (error);
1989 }
1990 
1991 /*
1992  * Set socket peer credentials at connection time.
1993  *
1994  * The client's PCB credentials are copied from its process structure.  The
1995  * server's PCB credentials are copied from the socket on which it called
1996  * listen(2).  uipc_listen cached that process's credentials at the time.
1997  */
1998 void
1999 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2000     struct unpcb *server_unp, struct unpcb *listen_unp)
2001 {
2002 	cru2xt(td, &client_unp->unp_peercred);
2003 	client_unp->unp_flags |= UNP_HAVEPC;
2004 
2005 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
2006 	    sizeof(server_unp->unp_peercred));
2007 	server_unp->unp_flags |= UNP_HAVEPC;
2008 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
2009 }
2010 
2011 static void
2012 unp_connect2(struct socket *so, struct socket *so2, conn2_how req)
2013 {
2014 	struct unpcb *unp;
2015 	struct unpcb *unp2;
2016 
2017 	MPASS(so2->so_type == so->so_type);
2018 	unp = sotounpcb(so);
2019 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
2020 	unp2 = sotounpcb(so2);
2021 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
2022 
2023 	UNP_PCB_LOCK_ASSERT(unp);
2024 	UNP_PCB_LOCK_ASSERT(unp2);
2025 	KASSERT(unp->unp_conn == NULL,
2026 	    ("%s: socket %p is already connected", __func__, unp));
2027 
2028 	unp->unp_conn = unp2;
2029 	unp_pcb_hold(unp2);
2030 	unp_pcb_hold(unp);
2031 	switch (so->so_type) {
2032 	case SOCK_DGRAM:
2033 		UNP_REF_LIST_LOCK();
2034 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2035 		UNP_REF_LIST_UNLOCK();
2036 		soisconnected(so);
2037 		break;
2038 
2039 	case SOCK_STREAM:
2040 	case SOCK_SEQPACKET:
2041 		KASSERT(unp2->unp_conn == NULL,
2042 		    ("%s: socket %p is already connected", __func__, unp2));
2043 		unp2->unp_conn = unp;
2044 		if (req == PRU_CONNECT &&
2045 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
2046 			soisconnecting(so);
2047 		else
2048 			soisconnected(so);
2049 		soisconnected(so2);
2050 		break;
2051 
2052 	default:
2053 		panic("unp_connect2");
2054 	}
2055 }
2056 
2057 static void
2058 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
2059 {
2060 	struct socket *so, *so2;
2061 	struct mbuf *m = NULL;
2062 #ifdef INVARIANTS
2063 	struct unpcb *unptmp;
2064 #endif
2065 
2066 	UNP_PCB_LOCK_ASSERT(unp);
2067 	UNP_PCB_LOCK_ASSERT(unp2);
2068 	KASSERT(unp->unp_conn == unp2,
2069 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
2070 
2071 	unp->unp_conn = NULL;
2072 	so = unp->unp_socket;
2073 	so2 = unp2->unp_socket;
2074 	switch (unp->unp_socket->so_type) {
2075 	case SOCK_DGRAM:
2076 		/*
2077 		 * Remove our send socket buffer from the peer's receive buffer.
2078 		 * Move the data to the receive buffer only if it is empty.
2079 		 * This is a protection against a scenario where a peer
2080 		 * connects, floods and disconnects, effectively blocking
2081 		 * sendto() from unconnected sockets.
2082 		 */
2083 		SOCK_RECVBUF_LOCK(so2);
2084 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
2085 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
2086 			    uxdg_clist);
2087 			if (__predict_true((so2->so_rcv.sb_state &
2088 			    SBS_CANTRCVMORE) == 0) &&
2089 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
2090 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
2091 				    &so->so_snd.uxdg_mb);
2092 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
2093 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
2094 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
2095 			} else {
2096 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
2097 				STAILQ_INIT(&so->so_snd.uxdg_mb);
2098 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
2099 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
2100 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
2101 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
2102 			}
2103 			/* Note: so may reconnect. */
2104 			so->so_snd.uxdg_cc = 0;
2105 			so->so_snd.uxdg_ctl = 0;
2106 			so->so_snd.uxdg_mbcnt = 0;
2107 		}
2108 		SOCK_RECVBUF_UNLOCK(so2);
2109 		UNP_REF_LIST_LOCK();
2110 #ifdef INVARIANTS
2111 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
2112 			if (unptmp == unp)
2113 				break;
2114 		}
2115 		KASSERT(unptmp != NULL,
2116 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
2117 #endif
2118 		LIST_REMOVE(unp, unp_reflink);
2119 		UNP_REF_LIST_UNLOCK();
2120 		if (so) {
2121 			SOCK_LOCK(so);
2122 			so->so_state &= ~SS_ISCONNECTED;
2123 			SOCK_UNLOCK(so);
2124 		}
2125 		break;
2126 
2127 	case SOCK_STREAM:
2128 	case SOCK_SEQPACKET:
2129 		if (so)
2130 			soisdisconnected(so);
2131 		MPASS(unp2->unp_conn == unp);
2132 		unp2->unp_conn = NULL;
2133 		if (so2)
2134 			soisdisconnected(so2);
2135 		break;
2136 	}
2137 
2138 	if (unp == unp2) {
2139 		unp_pcb_rele_notlast(unp);
2140 		if (!unp_pcb_rele(unp))
2141 			UNP_PCB_UNLOCK(unp);
2142 	} else {
2143 		if (!unp_pcb_rele(unp))
2144 			UNP_PCB_UNLOCK(unp);
2145 		if (!unp_pcb_rele(unp2))
2146 			UNP_PCB_UNLOCK(unp2);
2147 	}
2148 
2149 	if (m != NULL) {
2150 		unp_scan(m, unp_freerights);
2151 		m_freem(m);
2152 	}
2153 }
2154 
2155 /*
2156  * unp_pcblist() walks the global list of struct unpcb's to generate a
2157  * pointer list, bumping the refcount on each unpcb.  It then copies them out
2158  * sequentially, validating the generation number on each to see if it has
2159  * been detached.  All of this is necessary because copyout() may sleep on
2160  * disk I/O.
2161  */
2162 static int
2163 unp_pcblist(SYSCTL_HANDLER_ARGS)
2164 {
2165 	struct unpcb *unp, **unp_list;
2166 	unp_gen_t gencnt;
2167 	struct xunpgen *xug;
2168 	struct unp_head *head;
2169 	struct xunpcb *xu;
2170 	u_int i;
2171 	int error, n;
2172 
2173 	switch ((intptr_t)arg1) {
2174 	case SOCK_STREAM:
2175 		head = &unp_shead;
2176 		break;
2177 
2178 	case SOCK_DGRAM:
2179 		head = &unp_dhead;
2180 		break;
2181 
2182 	case SOCK_SEQPACKET:
2183 		head = &unp_sphead;
2184 		break;
2185 
2186 	default:
2187 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
2188 	}
2189 
2190 	/*
2191 	 * The process of preparing the PCB list is too time-consuming and
2192 	 * resource-intensive to repeat twice on every request.
2193 	 */
2194 	if (req->oldptr == NULL) {
2195 		n = unp_count;
2196 		req->oldidx = 2 * (sizeof *xug)
2197 			+ (n + n/8) * sizeof(struct xunpcb);
2198 		return (0);
2199 	}
2200 
2201 	if (req->newptr != NULL)
2202 		return (EPERM);
2203 
2204 	/*
2205 	 * OK, now we're committed to doing something.
2206 	 */
2207 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
2208 	UNP_LINK_RLOCK();
2209 	gencnt = unp_gencnt;
2210 	n = unp_count;
2211 	UNP_LINK_RUNLOCK();
2212 
2213 	xug->xug_len = sizeof *xug;
2214 	xug->xug_count = n;
2215 	xug->xug_gen = gencnt;
2216 	xug->xug_sogen = so_gencnt;
2217 	error = SYSCTL_OUT(req, xug, sizeof *xug);
2218 	if (error) {
2219 		free(xug, M_TEMP);
2220 		return (error);
2221 	}
2222 
2223 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
2224 
2225 	UNP_LINK_RLOCK();
2226 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
2227 	     unp = LIST_NEXT(unp, unp_link)) {
2228 		UNP_PCB_LOCK(unp);
2229 		if (unp->unp_gencnt <= gencnt) {
2230 			if (cr_cansee(req->td->td_ucred,
2231 			    unp->unp_socket->so_cred)) {
2232 				UNP_PCB_UNLOCK(unp);
2233 				continue;
2234 			}
2235 			unp_list[i++] = unp;
2236 			unp_pcb_hold(unp);
2237 		}
2238 		UNP_PCB_UNLOCK(unp);
2239 	}
2240 	UNP_LINK_RUNLOCK();
2241 	n = i;			/* In case we lost some during malloc. */
2242 
2243 	error = 0;
2244 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
2245 	for (i = 0; i < n; i++) {
2246 		unp = unp_list[i];
2247 		UNP_PCB_LOCK(unp);
2248 		if (unp_pcb_rele(unp))
2249 			continue;
2250 
2251 		if (unp->unp_gencnt <= gencnt) {
2252 			xu->xu_len = sizeof *xu;
2253 			xu->xu_unpp = (uintptr_t)unp;
2254 			/*
2255 			 * XXX - need more locking here to protect against
2256 			 * connect/disconnect races for SMP.
2257 			 */
2258 			if (unp->unp_addr != NULL)
2259 				bcopy(unp->unp_addr, &xu->xu_addr,
2260 				      unp->unp_addr->sun_len);
2261 			else
2262 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
2263 			if (unp->unp_conn != NULL &&
2264 			    unp->unp_conn->unp_addr != NULL)
2265 				bcopy(unp->unp_conn->unp_addr,
2266 				      &xu->xu_caddr,
2267 				      unp->unp_conn->unp_addr->sun_len);
2268 			else
2269 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
2270 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
2271 			xu->unp_conn = (uintptr_t)unp->unp_conn;
2272 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
2273 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
2274 			xu->unp_gencnt = unp->unp_gencnt;
2275 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
2276 			UNP_PCB_UNLOCK(unp);
2277 			error = SYSCTL_OUT(req, xu, sizeof *xu);
2278 		} else {
2279 			UNP_PCB_UNLOCK(unp);
2280 		}
2281 	}
2282 	free(xu, M_TEMP);
2283 	if (!error) {
2284 		/*
2285 		 * Give the user an updated idea of our state.  If the
2286 		 * generation differs from what we told her before, she knows
2287 		 * that something happened while we were processing this
2288 		 * request, and it might be necessary to retry.
2289 		 */
2290 		xug->xug_gen = unp_gencnt;
2291 		xug->xug_sogen = so_gencnt;
2292 		xug->xug_count = unp_count;
2293 		error = SYSCTL_OUT(req, xug, sizeof *xug);
2294 	}
2295 	free(unp_list, M_TEMP);
2296 	free(xug, M_TEMP);
2297 	return (error);
2298 }
2299 
2300 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
2301     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2302     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
2303     "List of active local datagram sockets");
2304 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
2305     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2306     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
2307     "List of active local stream sockets");
2308 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
2309     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2310     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
2311     "List of active local seqpacket sockets");
2312 
2313 static void
2314 unp_shutdown(struct unpcb *unp)
2315 {
2316 	struct unpcb *unp2;
2317 	struct socket *so;
2318 
2319 	UNP_PCB_LOCK_ASSERT(unp);
2320 
2321 	unp2 = unp->unp_conn;
2322 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
2323 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
2324 		so = unp2->unp_socket;
2325 		if (so != NULL)
2326 			socantrcvmore(so);
2327 	}
2328 }
2329 
2330 static void
2331 unp_drop(struct unpcb *unp)
2332 {
2333 	struct socket *so;
2334 	struct unpcb *unp2;
2335 
2336 	/*
2337 	 * Regardless of whether the socket's peer dropped the connection
2338 	 * with this socket by aborting or disconnecting, POSIX requires
2339 	 * that ECONNRESET is returned.
2340 	 */
2341 
2342 	UNP_PCB_LOCK(unp);
2343 	so = unp->unp_socket;
2344 	if (so)
2345 		so->so_error = ECONNRESET;
2346 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
2347 		/* Last reference dropped in unp_disconnect(). */
2348 		unp_pcb_rele_notlast(unp);
2349 		unp_disconnect(unp, unp2);
2350 	} else if (!unp_pcb_rele(unp)) {
2351 		UNP_PCB_UNLOCK(unp);
2352 	}
2353 }
2354 
2355 static void
2356 unp_freerights(struct filedescent **fdep, int fdcount)
2357 {
2358 	struct file *fp;
2359 	int i;
2360 
2361 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2362 
2363 	for (i = 0; i < fdcount; i++) {
2364 		fp = fdep[i]->fde_file;
2365 		filecaps_free(&fdep[i]->fde_caps);
2366 		unp_discard(fp);
2367 	}
2368 	free(fdep[0], M_FILECAPS);
2369 }
2370 
2371 static int
2372 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2373 {
2374 	struct thread *td = curthread;		/* XXX */
2375 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2376 	int i;
2377 	int *fdp;
2378 	struct filedesc *fdesc = td->td_proc->p_fd;
2379 	struct filedescent **fdep;
2380 	void *data;
2381 	socklen_t clen = control->m_len, datalen;
2382 	int error, newfds;
2383 	u_int newlen;
2384 
2385 	UNP_LINK_UNLOCK_ASSERT();
2386 
2387 	error = 0;
2388 	if (controlp != NULL) /* controlp == NULL => free control messages */
2389 		*controlp = NULL;
2390 	while (cm != NULL) {
2391 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
2392 
2393 		data = CMSG_DATA(cm);
2394 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2395 		if (cm->cmsg_level == SOL_SOCKET
2396 		    && cm->cmsg_type == SCM_RIGHTS) {
2397 			newfds = datalen / sizeof(*fdep);
2398 			if (newfds == 0)
2399 				goto next;
2400 			fdep = data;
2401 
2402 			/* If we're not outputting the descriptors free them. */
2403 			if (error || controlp == NULL) {
2404 				unp_freerights(fdep, newfds);
2405 				goto next;
2406 			}
2407 			FILEDESC_XLOCK(fdesc);
2408 
2409 			/*
2410 			 * Now change each pointer to an fd in the global
2411 			 * table to an integer that is the index to the local
2412 			 * fd table entry that we set up to point to the
2413 			 * global one we are transferring.
2414 			 */
2415 			newlen = newfds * sizeof(int);
2416 			*controlp = sbcreatecontrol(NULL, newlen,
2417 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2418 
2419 			fdp = (int *)
2420 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2421 			if ((error = fdallocn(td, 0, fdp, newfds))) {
2422 				FILEDESC_XUNLOCK(fdesc);
2423 				unp_freerights(fdep, newfds);
2424 				m_freem(*controlp);
2425 				*controlp = NULL;
2426 				goto next;
2427 			}
2428 			for (i = 0; i < newfds; i++, fdp++) {
2429 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2430 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2431 				    &fdep[i]->fde_caps);
2432 				unp_externalize_fp(fdep[i]->fde_file);
2433 			}
2434 
2435 			/*
2436 			 * The new type indicates that the mbuf data refers to
2437 			 * kernel resources that may need to be released before
2438 			 * the mbuf is freed.
2439 			 */
2440 			m_chtype(*controlp, MT_EXTCONTROL);
2441 			FILEDESC_XUNLOCK(fdesc);
2442 			free(fdep[0], M_FILECAPS);
2443 		} else {
2444 			/* We can just copy anything else across. */
2445 			if (error || controlp == NULL)
2446 				goto next;
2447 			*controlp = sbcreatecontrol(NULL, datalen,
2448 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
2449 			bcopy(data,
2450 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2451 			    datalen);
2452 		}
2453 		controlp = &(*controlp)->m_next;
2454 
2455 next:
2456 		if (CMSG_SPACE(datalen) < clen) {
2457 			clen -= CMSG_SPACE(datalen);
2458 			cm = (struct cmsghdr *)
2459 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2460 		} else {
2461 			clen = 0;
2462 			cm = NULL;
2463 		}
2464 	}
2465 
2466 	m_freem(control);
2467 	return (error);
2468 }
2469 
2470 static void
2471 unp_zone_change(void *tag)
2472 {
2473 
2474 	uma_zone_set_max(unp_zone, maxsockets);
2475 }
2476 
2477 #ifdef INVARIANTS
2478 static void
2479 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2480 {
2481 	struct unpcb *unp;
2482 
2483 	unp = mem;
2484 
2485 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2486 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2487 	KASSERT(unp->unp_socket == NULL,
2488 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2489 	KASSERT(unp->unp_vnode == NULL,
2490 	    ("%s: unpcb %p has vnode references", __func__, unp));
2491 	KASSERT(unp->unp_conn == NULL,
2492 	    ("%s: unpcb %p is still connected", __func__, unp));
2493 	KASSERT(unp->unp_addr == NULL,
2494 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2495 }
2496 #endif
2497 
2498 static void
2499 unp_init(void *arg __unused)
2500 {
2501 	uma_dtor dtor;
2502 
2503 #ifdef INVARIANTS
2504 	dtor = unp_zdtor;
2505 #else
2506 	dtor = NULL;
2507 #endif
2508 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2509 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2510 	uma_zone_set_max(unp_zone, maxsockets);
2511 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2512 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2513 	    NULL, EVENTHANDLER_PRI_ANY);
2514 	LIST_INIT(&unp_dhead);
2515 	LIST_INIT(&unp_shead);
2516 	LIST_INIT(&unp_sphead);
2517 	SLIST_INIT(&unp_defers);
2518 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2519 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2520 	UNP_LINK_LOCK_INIT();
2521 	UNP_DEFERRED_LOCK_INIT();
2522 }
2523 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2524 
2525 static void
2526 unp_internalize_cleanup_rights(struct mbuf *control)
2527 {
2528 	struct cmsghdr *cp;
2529 	struct mbuf *m;
2530 	void *data;
2531 	socklen_t datalen;
2532 
2533 	for (m = control; m != NULL; m = m->m_next) {
2534 		cp = mtod(m, struct cmsghdr *);
2535 		if (cp->cmsg_level != SOL_SOCKET ||
2536 		    cp->cmsg_type != SCM_RIGHTS)
2537 			continue;
2538 		data = CMSG_DATA(cp);
2539 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2540 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2541 	}
2542 }
2543 
2544 static int
2545 unp_internalize(struct mbuf **controlp, struct thread *td,
2546     struct mbuf **clast, u_int *space, u_int *mbcnt)
2547 {
2548 	struct mbuf *control, **initial_controlp;
2549 	struct proc *p;
2550 	struct filedesc *fdesc;
2551 	struct bintime *bt;
2552 	struct cmsghdr *cm;
2553 	struct cmsgcred *cmcred;
2554 	struct filedescent *fde, **fdep, *fdev;
2555 	struct file *fp;
2556 	struct timeval *tv;
2557 	struct timespec *ts;
2558 	void *data;
2559 	socklen_t clen, datalen;
2560 	int i, j, error, *fdp, oldfds;
2561 	u_int newlen;
2562 
2563 	MPASS((*controlp)->m_next == NULL); /* COMPAT_OLDSOCK may violate */
2564 	UNP_LINK_UNLOCK_ASSERT();
2565 
2566 	p = td->td_proc;
2567 	fdesc = p->p_fd;
2568 	error = 0;
2569 	control = *controlp;
2570 	*controlp = NULL;
2571 	initial_controlp = controlp;
2572 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
2573 	    data = CMSG_DATA(cm);
2574 
2575 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
2576 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
2577 	    (char *)cm + cm->cmsg_len >= (char *)data;
2578 
2579 	    clen -= min(CMSG_SPACE(datalen), clen),
2580 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
2581 	    data = CMSG_DATA(cm)) {
2582 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
2583 		switch (cm->cmsg_type) {
2584 		case SCM_CREDS:
2585 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2586 			    SCM_CREDS, SOL_SOCKET, M_WAITOK);
2587 			cmcred = (struct cmsgcred *)
2588 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2589 			cmcred->cmcred_pid = p->p_pid;
2590 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2591 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2592 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2593 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2594 			    CMGROUP_MAX);
2595 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2596 				cmcred->cmcred_groups[i] =
2597 				    td->td_ucred->cr_groups[i];
2598 			break;
2599 
2600 		case SCM_RIGHTS:
2601 			oldfds = datalen / sizeof (int);
2602 			if (oldfds == 0)
2603 				continue;
2604 			/* On some machines sizeof pointer is bigger than
2605 			 * sizeof int, so we need to check if data fits into
2606 			 * single mbuf.  We could allocate several mbufs, and
2607 			 * unp_externalize() should even properly handle that.
2608 			 * But it is not worth to complicate the code for an
2609 			 * insane scenario of passing over 200 file descriptors
2610 			 * at once.
2611 			 */
2612 			newlen = oldfds * sizeof(fdep[0]);
2613 			if (CMSG_SPACE(newlen) > MCLBYTES) {
2614 				error = EMSGSIZE;
2615 				goto out;
2616 			}
2617 			/*
2618 			 * Check that all the FDs passed in refer to legal
2619 			 * files.  If not, reject the entire operation.
2620 			 */
2621 			fdp = data;
2622 			FILEDESC_SLOCK(fdesc);
2623 			for (i = 0; i < oldfds; i++, fdp++) {
2624 				fp = fget_noref(fdesc, *fdp);
2625 				if (fp == NULL) {
2626 					FILEDESC_SUNLOCK(fdesc);
2627 					error = EBADF;
2628 					goto out;
2629 				}
2630 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2631 					FILEDESC_SUNLOCK(fdesc);
2632 					error = EOPNOTSUPP;
2633 					goto out;
2634 				}
2635 			}
2636 
2637 			/*
2638 			 * Now replace the integer FDs with pointers to the
2639 			 * file structure and capability rights.
2640 			 */
2641 			*controlp = sbcreatecontrol(NULL, newlen,
2642 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2643 			fdp = data;
2644 			for (i = 0; i < oldfds; i++, fdp++) {
2645 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2646 					fdp = data;
2647 					for (j = 0; j < i; j++, fdp++) {
2648 						fdrop(fdesc->fd_ofiles[*fdp].
2649 						    fde_file, td);
2650 					}
2651 					FILEDESC_SUNLOCK(fdesc);
2652 					error = EBADF;
2653 					goto out;
2654 				}
2655 			}
2656 			fdp = data;
2657 			fdep = (struct filedescent **)
2658 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2659 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2660 			    M_WAITOK);
2661 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2662 				fde = &fdesc->fd_ofiles[*fdp];
2663 				fdep[i] = fdev;
2664 				fdep[i]->fde_file = fde->fde_file;
2665 				filecaps_copy(&fde->fde_caps,
2666 				    &fdep[i]->fde_caps, true);
2667 				unp_internalize_fp(fdep[i]->fde_file);
2668 			}
2669 			FILEDESC_SUNLOCK(fdesc);
2670 			break;
2671 
2672 		case SCM_TIMESTAMP:
2673 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2674 			    SCM_TIMESTAMP, SOL_SOCKET, M_WAITOK);
2675 			tv = (struct timeval *)
2676 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2677 			microtime(tv);
2678 			break;
2679 
2680 		case SCM_BINTIME:
2681 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2682 			    SCM_BINTIME, SOL_SOCKET, M_WAITOK);
2683 			bt = (struct bintime *)
2684 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2685 			bintime(bt);
2686 			break;
2687 
2688 		case SCM_REALTIME:
2689 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2690 			    SCM_REALTIME, SOL_SOCKET, M_WAITOK);
2691 			ts = (struct timespec *)
2692 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2693 			nanotime(ts);
2694 			break;
2695 
2696 		case SCM_MONOTONIC:
2697 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2698 			    SCM_MONOTONIC, SOL_SOCKET, M_WAITOK);
2699 			ts = (struct timespec *)
2700 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2701 			nanouptime(ts);
2702 			break;
2703 
2704 		default:
2705 			error = EINVAL;
2706 			goto out;
2707 		}
2708 
2709 		if (space != NULL) {
2710 			*space += (*controlp)->m_len;
2711 			*mbcnt += MSIZE;
2712 			if ((*controlp)->m_flags & M_EXT)
2713 				*mbcnt += (*controlp)->m_ext.ext_size;
2714 			*clast = *controlp;
2715 		}
2716 		controlp = &(*controlp)->m_next;
2717 	}
2718 	if (clen > 0)
2719 		error = EINVAL;
2720 
2721 out:
2722 	if (error != 0 && initial_controlp != NULL)
2723 		unp_internalize_cleanup_rights(*initial_controlp);
2724 	m_freem(control);
2725 	return (error);
2726 }
2727 
2728 static struct mbuf *
2729 unp_addsockcred(struct thread *td, struct mbuf *control, int mode,
2730     struct mbuf **clast, u_int *space, u_int *mbcnt)
2731 {
2732 	struct mbuf *m, *n, *n_prev;
2733 	const struct cmsghdr *cm;
2734 	int ngroups, i, cmsgtype;
2735 	size_t ctrlsz;
2736 
2737 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2738 	if (mode & UNP_WANTCRED_ALWAYS) {
2739 		ctrlsz = SOCKCRED2SIZE(ngroups);
2740 		cmsgtype = SCM_CREDS2;
2741 	} else {
2742 		ctrlsz = SOCKCREDSIZE(ngroups);
2743 		cmsgtype = SCM_CREDS;
2744 	}
2745 
2746 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
2747 	if (m == NULL)
2748 		return (control);
2749 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
2750 
2751 	if (mode & UNP_WANTCRED_ALWAYS) {
2752 		struct sockcred2 *sc;
2753 
2754 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2755 		sc->sc_version = 0;
2756 		sc->sc_pid = td->td_proc->p_pid;
2757 		sc->sc_uid = td->td_ucred->cr_ruid;
2758 		sc->sc_euid = td->td_ucred->cr_uid;
2759 		sc->sc_gid = td->td_ucred->cr_rgid;
2760 		sc->sc_egid = td->td_ucred->cr_gid;
2761 		sc->sc_ngroups = ngroups;
2762 		for (i = 0; i < sc->sc_ngroups; i++)
2763 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2764 	} else {
2765 		struct sockcred *sc;
2766 
2767 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2768 		sc->sc_uid = td->td_ucred->cr_ruid;
2769 		sc->sc_euid = td->td_ucred->cr_uid;
2770 		sc->sc_gid = td->td_ucred->cr_rgid;
2771 		sc->sc_egid = td->td_ucred->cr_gid;
2772 		sc->sc_ngroups = ngroups;
2773 		for (i = 0; i < sc->sc_ngroups; i++)
2774 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2775 	}
2776 
2777 	/*
2778 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2779 	 * created SCM_CREDS control message (struct sockcred) has another
2780 	 * format.
2781 	 */
2782 	if (control != NULL && cmsgtype == SCM_CREDS)
2783 		for (n = control, n_prev = NULL; n != NULL;) {
2784 			cm = mtod(n, struct cmsghdr *);
2785     			if (cm->cmsg_level == SOL_SOCKET &&
2786 			    cm->cmsg_type == SCM_CREDS) {
2787     				if (n_prev == NULL)
2788 					control = n->m_next;
2789 				else
2790 					n_prev->m_next = n->m_next;
2791 				if (space != NULL) {
2792 					MPASS(*space >= n->m_len);
2793 					*space -= n->m_len;
2794 					MPASS(*mbcnt >= MSIZE);
2795 					*mbcnt -= MSIZE;
2796 					if (n->m_flags & M_EXT) {
2797 						MPASS(*mbcnt >=
2798 						    n->m_ext.ext_size);
2799 						*mbcnt -= n->m_ext.ext_size;
2800 					}
2801 					MPASS(clast);
2802 					if (*clast == n) {
2803 						MPASS(n->m_next == NULL);
2804 						if (n_prev == NULL)
2805 							*clast = m;
2806 						else
2807 							*clast = n_prev;
2808 					}
2809 				}
2810 				n = m_free(n);
2811 			} else {
2812 				n_prev = n;
2813 				n = n->m_next;
2814 			}
2815 		}
2816 
2817 	/* Prepend it to the head. */
2818 	m->m_next = control;
2819 	if (space != NULL) {
2820 		*space += m->m_len;
2821 		*mbcnt += MSIZE;
2822 		if (control == NULL)
2823 			*clast = m;
2824 	}
2825 	return (m);
2826 }
2827 
2828 static struct unpcb *
2829 fptounp(struct file *fp)
2830 {
2831 	struct socket *so;
2832 
2833 	if (fp->f_type != DTYPE_SOCKET)
2834 		return (NULL);
2835 	if ((so = fp->f_data) == NULL)
2836 		return (NULL);
2837 	if (so->so_proto->pr_domain != &localdomain)
2838 		return (NULL);
2839 	return sotounpcb(so);
2840 }
2841 
2842 static void
2843 unp_discard(struct file *fp)
2844 {
2845 	struct unp_defer *dr;
2846 
2847 	if (unp_externalize_fp(fp)) {
2848 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2849 		dr->ud_fp = fp;
2850 		UNP_DEFERRED_LOCK();
2851 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2852 		UNP_DEFERRED_UNLOCK();
2853 		atomic_add_int(&unp_defers_count, 1);
2854 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2855 	} else
2856 		closef_nothread(fp);
2857 }
2858 
2859 static void
2860 unp_process_defers(void *arg __unused, int pending)
2861 {
2862 	struct unp_defer *dr;
2863 	SLIST_HEAD(, unp_defer) drl;
2864 	int count;
2865 
2866 	SLIST_INIT(&drl);
2867 	for (;;) {
2868 		UNP_DEFERRED_LOCK();
2869 		if (SLIST_FIRST(&unp_defers) == NULL) {
2870 			UNP_DEFERRED_UNLOCK();
2871 			break;
2872 		}
2873 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2874 		UNP_DEFERRED_UNLOCK();
2875 		count = 0;
2876 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2877 			SLIST_REMOVE_HEAD(&drl, ud_link);
2878 			closef_nothread(dr->ud_fp);
2879 			free(dr, M_TEMP);
2880 			count++;
2881 		}
2882 		atomic_add_int(&unp_defers_count, -count);
2883 	}
2884 }
2885 
2886 static void
2887 unp_internalize_fp(struct file *fp)
2888 {
2889 	struct unpcb *unp;
2890 
2891 	UNP_LINK_WLOCK();
2892 	if ((unp = fptounp(fp)) != NULL) {
2893 		unp->unp_file = fp;
2894 		unp->unp_msgcount++;
2895 	}
2896 	unp_rights++;
2897 	UNP_LINK_WUNLOCK();
2898 }
2899 
2900 static int
2901 unp_externalize_fp(struct file *fp)
2902 {
2903 	struct unpcb *unp;
2904 	int ret;
2905 
2906 	UNP_LINK_WLOCK();
2907 	if ((unp = fptounp(fp)) != NULL) {
2908 		unp->unp_msgcount--;
2909 		ret = 1;
2910 	} else
2911 		ret = 0;
2912 	unp_rights--;
2913 	UNP_LINK_WUNLOCK();
2914 	return (ret);
2915 }
2916 
2917 /*
2918  * unp_defer indicates whether additional work has been defered for a future
2919  * pass through unp_gc().  It is thread local and does not require explicit
2920  * synchronization.
2921  */
2922 static int	unp_marked;
2923 
2924 static void
2925 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2926 {
2927 	struct unpcb *unp;
2928 	struct file *fp;
2929 	int i;
2930 
2931 	/*
2932 	 * This function can only be called from the gc task.
2933 	 */
2934 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2935 	    ("%s: not on gc callout", __func__));
2936 	UNP_LINK_LOCK_ASSERT();
2937 
2938 	for (i = 0; i < fdcount; i++) {
2939 		fp = fdep[i]->fde_file;
2940 		if ((unp = fptounp(fp)) == NULL)
2941 			continue;
2942 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2943 			continue;
2944 		unp->unp_gcrefs--;
2945 	}
2946 }
2947 
2948 static void
2949 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2950 {
2951 	struct unpcb *unp;
2952 	struct file *fp;
2953 	int i;
2954 
2955 	/*
2956 	 * This function can only be called from the gc task.
2957 	 */
2958 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2959 	    ("%s: not on gc callout", __func__));
2960 	UNP_LINK_LOCK_ASSERT();
2961 
2962 	for (i = 0; i < fdcount; i++) {
2963 		fp = fdep[i]->fde_file;
2964 		if ((unp = fptounp(fp)) == NULL)
2965 			continue;
2966 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2967 			continue;
2968 		unp->unp_gcrefs++;
2969 		unp_marked++;
2970 	}
2971 }
2972 
2973 static void
2974 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
2975 {
2976 	struct sockbuf *sb;
2977 
2978 	SOCK_LOCK_ASSERT(so);
2979 
2980 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2981 		return;
2982 
2983 	SOCK_RECVBUF_LOCK(so);
2984 	switch (so->so_type) {
2985 	case SOCK_DGRAM:
2986 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
2987 		unp_scan(so->so_rcv.uxdg_peeked, op);
2988 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
2989 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
2990 		break;
2991 	case SOCK_STREAM:
2992 	case SOCK_SEQPACKET:
2993 		unp_scan(so->so_rcv.sb_mb, op);
2994 		break;
2995 	}
2996 	SOCK_RECVBUF_UNLOCK(so);
2997 }
2998 
2999 static void
3000 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
3001 {
3002 	struct socket *so, *soa;
3003 
3004 	so = unp->unp_socket;
3005 	SOCK_LOCK(so);
3006 	if (SOLISTENING(so)) {
3007 		/*
3008 		 * Mark all sockets in our accept queue.
3009 		 */
3010 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
3011 			unp_scan_socket(soa, op);
3012 	} else {
3013 		/*
3014 		 * Mark all sockets we reference with RIGHTS.
3015 		 */
3016 		unp_scan_socket(so, op);
3017 	}
3018 	SOCK_UNLOCK(so);
3019 }
3020 
3021 static int unp_recycled;
3022 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
3023     "Number of unreachable sockets claimed by the garbage collector.");
3024 
3025 static int unp_taskcount;
3026 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
3027     "Number of times the garbage collector has run.");
3028 
3029 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
3030     "Number of active local sockets.");
3031 
3032 static void
3033 unp_gc(__unused void *arg, int pending)
3034 {
3035 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
3036 				    NULL };
3037 	struct unp_head **head;
3038 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
3039 	struct file *f, **unref;
3040 	struct unpcb *unp, *unptmp;
3041 	int i, total, unp_unreachable;
3042 
3043 	LIST_INIT(&unp_deadhead);
3044 	unp_taskcount++;
3045 	UNP_LINK_RLOCK();
3046 	/*
3047 	 * First determine which sockets may be in cycles.
3048 	 */
3049 	unp_unreachable = 0;
3050 
3051 	for (head = heads; *head != NULL; head++)
3052 		LIST_FOREACH(unp, *head, unp_link) {
3053 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
3054 			    ("%s: unp %p has unexpected gc flags 0x%x",
3055 			    __func__, unp, (unsigned int)unp->unp_gcflag));
3056 
3057 			f = unp->unp_file;
3058 
3059 			/*
3060 			 * Check for an unreachable socket potentially in a
3061 			 * cycle.  It must be in a queue as indicated by
3062 			 * msgcount, and this must equal the file reference
3063 			 * count.  Note that when msgcount is 0 the file is
3064 			 * NULL.
3065 			 */
3066 			if (f != NULL && unp->unp_msgcount != 0 &&
3067 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
3068 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
3069 				unp->unp_gcflag |= UNPGC_DEAD;
3070 				unp->unp_gcrefs = unp->unp_msgcount;
3071 				unp_unreachable++;
3072 			}
3073 		}
3074 
3075 	/*
3076 	 * Scan all sockets previously marked as potentially being in a cycle
3077 	 * and remove the references each socket holds on any UNPGC_DEAD
3078 	 * sockets in its queue.  After this step, all remaining references on
3079 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
3080 	 */
3081 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
3082 		unp_gc_scan(unp, unp_remove_dead_ref);
3083 
3084 	/*
3085 	 * If a socket still has a non-negative refcount, it cannot be in a
3086 	 * cycle.  In this case increment refcount of all children iteratively.
3087 	 * Stop the scan once we do a complete loop without discovering
3088 	 * a new reachable socket.
3089 	 */
3090 	do {
3091 		unp_marked = 0;
3092 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
3093 			if (unp->unp_gcrefs > 0) {
3094 				unp->unp_gcflag &= ~UNPGC_DEAD;
3095 				LIST_REMOVE(unp, unp_dead);
3096 				KASSERT(unp_unreachable > 0,
3097 				    ("%s: unp_unreachable underflow.",
3098 				    __func__));
3099 				unp_unreachable--;
3100 				unp_gc_scan(unp, unp_restore_undead_ref);
3101 			}
3102 	} while (unp_marked);
3103 
3104 	UNP_LINK_RUNLOCK();
3105 
3106 	if (unp_unreachable == 0)
3107 		return;
3108 
3109 	/*
3110 	 * Allocate space for a local array of dead unpcbs.
3111 	 * TODO: can this path be simplified by instead using the local
3112 	 * dead list at unp_deadhead, after taking out references
3113 	 * on the file object and/or unpcb and dropping the link lock?
3114 	 */
3115 	unref = malloc(unp_unreachable * sizeof(struct file *),
3116 	    M_TEMP, M_WAITOK);
3117 
3118 	/*
3119 	 * Iterate looking for sockets which have been specifically marked
3120 	 * as unreachable and store them locally.
3121 	 */
3122 	UNP_LINK_RLOCK();
3123 	total = 0;
3124 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
3125 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
3126 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
3127 		unp->unp_gcflag &= ~UNPGC_DEAD;
3128 		f = unp->unp_file;
3129 		if (unp->unp_msgcount == 0 || f == NULL ||
3130 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
3131 		    !fhold(f))
3132 			continue;
3133 		unref[total++] = f;
3134 		KASSERT(total <= unp_unreachable,
3135 		    ("%s: incorrect unreachable count.", __func__));
3136 	}
3137 	UNP_LINK_RUNLOCK();
3138 
3139 	/*
3140 	 * Now flush all sockets, free'ing rights.  This will free the
3141 	 * struct files associated with these sockets but leave each socket
3142 	 * with one remaining ref.
3143 	 */
3144 	for (i = 0; i < total; i++) {
3145 		struct socket *so;
3146 
3147 		so = unref[i]->f_data;
3148 		CURVNET_SET(so->so_vnet);
3149 		sorflush(so);
3150 		CURVNET_RESTORE();
3151 	}
3152 
3153 	/*
3154 	 * And finally release the sockets so they can be reclaimed.
3155 	 */
3156 	for (i = 0; i < total; i++)
3157 		fdrop(unref[i], NULL);
3158 	unp_recycled += total;
3159 	free(unref, M_TEMP);
3160 }
3161 
3162 /*
3163  * Synchronize against unp_gc, which can trip over data as we are freeing it.
3164  */
3165 static void
3166 unp_dispose(struct socket *so)
3167 {
3168 	struct sockbuf *sb;
3169 	struct unpcb *unp;
3170 	struct mbuf *m;
3171 
3172 	MPASS(!SOLISTENING(so));
3173 
3174 	unp = sotounpcb(so);
3175 	UNP_LINK_WLOCK();
3176 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
3177 	UNP_LINK_WUNLOCK();
3178 
3179 	/*
3180 	 * Grab our special mbufs before calling sbrelease().
3181 	 */
3182 	SOCK_RECVBUF_LOCK(so);
3183 	switch (so->so_type) {
3184 	case SOCK_DGRAM:
3185 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
3186 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
3187 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
3188 			/* Note: socket of sb may reconnect. */
3189 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
3190 		}
3191 		sb = &so->so_rcv;
3192 		if (sb->uxdg_peeked != NULL) {
3193 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
3194 			    m_stailqpkt);
3195 			sb->uxdg_peeked = NULL;
3196 		}
3197 		m = STAILQ_FIRST(&sb->uxdg_mb);
3198 		STAILQ_INIT(&sb->uxdg_mb);
3199 		/* XXX: our shortened sbrelease() */
3200 		(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
3201 		    RLIM_INFINITY);
3202 		/*
3203 		 * XXXGL Mark sb with SBS_CANTRCVMORE.  This is needed to
3204 		 * prevent uipc_sosend_dgram() or unp_disconnect() adding more
3205 		 * data to the socket.
3206 		 * We are now in dom_dispose and it could be a call from
3207 		 * soshutdown() or from the final sofree().  The sofree() case
3208 		 * is simple as it guarantees that no more sends will happen,
3209 		 * however we can race with unp_disconnect() from our peer.
3210 		 * The shutdown(2) case is more exotic.  It would call into
3211 		 * dom_dispose() only if socket is SS_ISCONNECTED.  This is
3212 		 * possible if we did connect(2) on this socket and we also
3213 		 * had it bound with bind(2) and receive connections from other
3214 		 * sockets.  Because soshutdown() violates POSIX (see comment
3215 		 * there) we will end up here shutting down our receive side.
3216 		 * Of course this will have affect not only on the peer we
3217 		 * connect(2)ed to, but also on all of the peers who had
3218 		 * connect(2)ed to us.  Their sends would end up with ENOBUFS.
3219 		 */
3220 		sb->sb_state |= SBS_CANTRCVMORE;
3221 		break;
3222 	case SOCK_STREAM:
3223 	case SOCK_SEQPACKET:
3224 		sb = &so->so_rcv;
3225 		m = sbcut_locked(sb, sb->sb_ccc);
3226 		KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
3227 		    ("%s: ccc %u mb %p mbcnt %u", __func__,
3228 		    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
3229 		sbrelease_locked(so, SO_RCV);
3230 		break;
3231 	}
3232 	SOCK_RECVBUF_UNLOCK(so);
3233 	if (SOCK_IO_RECV_OWNED(so))
3234 		SOCK_IO_RECV_UNLOCK(so);
3235 
3236 	if (m != NULL) {
3237 		unp_scan(m, unp_freerights);
3238 		m_freem(m);
3239 	}
3240 }
3241 
3242 static void
3243 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
3244 {
3245 	struct mbuf *m;
3246 	struct cmsghdr *cm;
3247 	void *data;
3248 	socklen_t clen, datalen;
3249 
3250 	while (m0 != NULL) {
3251 		for (m = m0; m; m = m->m_next) {
3252 			if (m->m_type != MT_CONTROL)
3253 				continue;
3254 
3255 			cm = mtod(m, struct cmsghdr *);
3256 			clen = m->m_len;
3257 
3258 			while (cm != NULL) {
3259 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
3260 					break;
3261 
3262 				data = CMSG_DATA(cm);
3263 				datalen = (caddr_t)cm + cm->cmsg_len
3264 				    - (caddr_t)data;
3265 
3266 				if (cm->cmsg_level == SOL_SOCKET &&
3267 				    cm->cmsg_type == SCM_RIGHTS) {
3268 					(*op)(data, datalen /
3269 					    sizeof(struct filedescent *));
3270 				}
3271 
3272 				if (CMSG_SPACE(datalen) < clen) {
3273 					clen -= CMSG_SPACE(datalen);
3274 					cm = (struct cmsghdr *)
3275 					    ((caddr_t)cm + CMSG_SPACE(datalen));
3276 				} else {
3277 					clen = 0;
3278 					cm = NULL;
3279 				}
3280 			}
3281 		}
3282 		m0 = m0->m_nextpkt;
3283 	}
3284 }
3285 
3286 /*
3287  * Definitions of protocols supported in the LOCAL domain.
3288  */
3289 static struct protosw streamproto = {
3290 	.pr_type =		SOCK_STREAM,
3291 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS|
3292 				    PR_CAPATTACH,
3293 	.pr_ctloutput =		&uipc_ctloutput,
3294 	.pr_abort = 		uipc_abort,
3295 	.pr_accept =		uipc_peeraddr,
3296 	.pr_attach =		uipc_attach,
3297 	.pr_bind =		uipc_bind,
3298 	.pr_bindat =		uipc_bindat,
3299 	.pr_connect =		uipc_connect,
3300 	.pr_connectat =		uipc_connectat,
3301 	.pr_connect2 =		uipc_connect2,
3302 	.pr_detach =		uipc_detach,
3303 	.pr_disconnect =	uipc_disconnect,
3304 	.pr_listen =		uipc_listen,
3305 	.pr_peeraddr =		uipc_peeraddr,
3306 	.pr_rcvd =		uipc_rcvd,
3307 	.pr_send =		uipc_send,
3308 	.pr_ready =		uipc_ready,
3309 	.pr_sense =		uipc_sense,
3310 	.pr_shutdown =		uipc_shutdown,
3311 	.pr_sockaddr =		uipc_sockaddr,
3312 	.pr_soreceive =		soreceive_generic,
3313 	.pr_close =		uipc_close,
3314 };
3315 
3316 static struct protosw dgramproto = {
3317 	.pr_type =		SOCK_DGRAM,
3318 	.pr_flags =		PR_ATOMIC | PR_ADDR |PR_RIGHTS | PR_CAPATTACH |
3319 				    PR_SOCKBUF,
3320 	.pr_ctloutput =		&uipc_ctloutput,
3321 	.pr_abort = 		uipc_abort,
3322 	.pr_accept =		uipc_peeraddr,
3323 	.pr_attach =		uipc_attach,
3324 	.pr_bind =		uipc_bind,
3325 	.pr_bindat =		uipc_bindat,
3326 	.pr_connect =		uipc_connect,
3327 	.pr_connectat =		uipc_connectat,
3328 	.pr_connect2 =		uipc_connect2,
3329 	.pr_detach =		uipc_detach,
3330 	.pr_disconnect =	uipc_disconnect,
3331 	.pr_peeraddr =		uipc_peeraddr,
3332 	.pr_sosend =		uipc_sosend_dgram,
3333 	.pr_sense =		uipc_sense,
3334 	.pr_shutdown =		uipc_shutdown,
3335 	.pr_sockaddr =		uipc_sockaddr,
3336 	.pr_soreceive =		uipc_soreceive_dgram,
3337 	.pr_close =		uipc_close,
3338 };
3339 
3340 static struct protosw seqpacketproto = {
3341 	.pr_type =		SOCK_SEQPACKET,
3342 	/*
3343 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
3344 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
3345 	 * that supports both atomic record writes and control data.
3346 	 */
3347 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|
3348 				    PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH,
3349 	.pr_ctloutput =		&uipc_ctloutput,
3350 	.pr_abort =		uipc_abort,
3351 	.pr_accept =		uipc_peeraddr,
3352 	.pr_attach =		uipc_attach,
3353 	.pr_bind =		uipc_bind,
3354 	.pr_bindat =		uipc_bindat,
3355 	.pr_connect =		uipc_connect,
3356 	.pr_connectat =		uipc_connectat,
3357 	.pr_connect2 =		uipc_connect2,
3358 	.pr_detach =		uipc_detach,
3359 	.pr_disconnect =	uipc_disconnect,
3360 	.pr_listen =		uipc_listen,
3361 	.pr_peeraddr =		uipc_peeraddr,
3362 	.pr_rcvd =		uipc_rcvd,
3363 	.pr_send =		uipc_send,
3364 	.pr_sense =		uipc_sense,
3365 	.pr_shutdown =		uipc_shutdown,
3366 	.pr_sockaddr =		uipc_sockaddr,
3367 	.pr_soreceive =		soreceive_generic,	/* XXX: or...? */
3368 	.pr_close =		uipc_close,
3369 };
3370 
3371 static struct domain localdomain = {
3372 	.dom_family =		AF_LOCAL,
3373 	.dom_name =		"local",
3374 	.dom_externalize =	unp_externalize,
3375 	.dom_dispose =		unp_dispose,
3376 	.dom_nprotosw =		3,
3377 	.dom_protosw =		{
3378 		&streamproto,
3379 		&dgramproto,
3380 		&seqpacketproto,
3381 	}
3382 };
3383 DOMAIN_SET(local);
3384 
3385 /*
3386  * A helper function called by VFS before socket-type vnode reclamation.
3387  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
3388  * use count.
3389  */
3390 void
3391 vfs_unp_reclaim(struct vnode *vp)
3392 {
3393 	struct unpcb *unp;
3394 	int active;
3395 	struct mtx *vplock;
3396 
3397 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
3398 	KASSERT(vp->v_type == VSOCK,
3399 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
3400 
3401 	active = 0;
3402 	vplock = mtx_pool_find(mtxpool_sleep, vp);
3403 	mtx_lock(vplock);
3404 	VOP_UNP_CONNECT(vp, &unp);
3405 	if (unp == NULL)
3406 		goto done;
3407 	UNP_PCB_LOCK(unp);
3408 	if (unp->unp_vnode == vp) {
3409 		VOP_UNP_DETACH(vp);
3410 		unp->unp_vnode = NULL;
3411 		active = 1;
3412 	}
3413 	UNP_PCB_UNLOCK(unp);
3414  done:
3415 	mtx_unlock(vplock);
3416 	if (active)
3417 		vunref(vp);
3418 }
3419 
3420 #ifdef DDB
3421 static void
3422 db_print_indent(int indent)
3423 {
3424 	int i;
3425 
3426 	for (i = 0; i < indent; i++)
3427 		db_printf(" ");
3428 }
3429 
3430 static void
3431 db_print_unpflags(int unp_flags)
3432 {
3433 	int comma;
3434 
3435 	comma = 0;
3436 	if (unp_flags & UNP_HAVEPC) {
3437 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
3438 		comma = 1;
3439 	}
3440 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
3441 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
3442 		comma = 1;
3443 	}
3444 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
3445 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
3446 		comma = 1;
3447 	}
3448 	if (unp_flags & UNP_CONNWAIT) {
3449 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
3450 		comma = 1;
3451 	}
3452 	if (unp_flags & UNP_CONNECTING) {
3453 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
3454 		comma = 1;
3455 	}
3456 	if (unp_flags & UNP_BINDING) {
3457 		db_printf("%sUNP_BINDING", comma ? ", " : "");
3458 		comma = 1;
3459 	}
3460 }
3461 
3462 static void
3463 db_print_xucred(int indent, struct xucred *xu)
3464 {
3465 	int comma, i;
3466 
3467 	db_print_indent(indent);
3468 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
3469 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
3470 	db_print_indent(indent);
3471 	db_printf("cr_groups: ");
3472 	comma = 0;
3473 	for (i = 0; i < xu->cr_ngroups; i++) {
3474 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
3475 		comma = 1;
3476 	}
3477 	db_printf("\n");
3478 }
3479 
3480 static void
3481 db_print_unprefs(int indent, struct unp_head *uh)
3482 {
3483 	struct unpcb *unp;
3484 	int counter;
3485 
3486 	counter = 0;
3487 	LIST_FOREACH(unp, uh, unp_reflink) {
3488 		if (counter % 4 == 0)
3489 			db_print_indent(indent);
3490 		db_printf("%p  ", unp);
3491 		if (counter % 4 == 3)
3492 			db_printf("\n");
3493 		counter++;
3494 	}
3495 	if (counter != 0 && counter % 4 != 0)
3496 		db_printf("\n");
3497 }
3498 
3499 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
3500 {
3501 	struct unpcb *unp;
3502 
3503         if (!have_addr) {
3504                 db_printf("usage: show unpcb <addr>\n");
3505                 return;
3506         }
3507         unp = (struct unpcb *)addr;
3508 
3509 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
3510 	    unp->unp_vnode);
3511 
3512 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
3513 	    unp->unp_conn);
3514 
3515 	db_printf("unp_refs:\n");
3516 	db_print_unprefs(2, &unp->unp_refs);
3517 
3518 	/* XXXRW: Would be nice to print the full address, if any. */
3519 	db_printf("unp_addr: %p\n", unp->unp_addr);
3520 
3521 	db_printf("unp_gencnt: %llu\n",
3522 	    (unsigned long long)unp->unp_gencnt);
3523 
3524 	db_printf("unp_flags: %x (", unp->unp_flags);
3525 	db_print_unpflags(unp->unp_flags);
3526 	db_printf(")\n");
3527 
3528 	db_printf("unp_peercred:\n");
3529 	db_print_xucred(2, &unp->unp_peercred);
3530 
3531 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3532 }
3533 #endif
3534