1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/eventhandler.h> 69 #include <sys/fcntl.h> 70 #include <sys/file.h> 71 #include <sys/filedesc.h> 72 #include <sys/kernel.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * See unpcb.h for the locking key. 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 165 "Local domain"); 166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "SOCK_DGRAM"); 172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 174 "SOCK_SEQPACKET"); 175 176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 177 &unpst_sendspace, 0, "Default stream send space."); 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 179 &unpst_recvspace, 0, "Default stream receive space."); 180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 181 &unpdg_sendspace, 0, "Default datagram send space."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 183 &unpdg_recvspace, 0, "Default datagram receive space."); 184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 185 &unpsp_sendspace, 0, "Default seqpacket send space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 187 &unpsp_recvspace, 0, "Default seqpacket receive space."); 188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 189 "File descriptors in flight."); 190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 191 &unp_defers_count, 0, 192 "File descriptors deferred to taskqueue for close."); 193 194 /* 195 * Locking and synchronization: 196 * 197 * Several types of locks exist in the local domain socket implementation: 198 * - a global linkage lock 199 * - a global connection list lock 200 * - the mtxpool lock 201 * - per-unpcb mutexes 202 * 203 * The linkage lock protects the global socket lists, the generation number 204 * counter and garbage collector state. 205 * 206 * The connection list lock protects the list of referring sockets in a datagram 207 * socket PCB. This lock is also overloaded to protect a global list of 208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS 209 * messages. To avoid recursion, such references are released by a dedicated 210 * thread. 211 * 212 * The mtxpool lock protects the vnode from being modified while referenced. 213 * Lock ordering rules require that it be acquired before any PCB locks. 214 * 215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the 216 * unpcb. This includes the unp_conn field, which either links two connected 217 * PCBs together (for connected socket types) or points at the destination 218 * socket (for connectionless socket types). The operations of creating or 219 * destroying a connection therefore involve locking multiple PCBs. To avoid 220 * lock order reversals, in some cases this involves dropping a PCB lock and 221 * using a reference counter to maintain liveness. 222 * 223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 224 * allocated in pru_attach() and freed in pru_detach(). The validity of that 225 * pointer is an invariant, so no lock is required to dereference the so_pcb 226 * pointer if a valid socket reference is held by the caller. In practice, 227 * this is always true during operations performed on a socket. Each unpcb 228 * has a back-pointer to its socket, unp_socket, which will be stable under 229 * the same circumstances. 230 * 231 * This pointer may only be safely dereferenced as long as a valid reference 232 * to the unpcb is held. Typically, this reference will be from the socket, 233 * or from another unpcb when the referring unpcb's lock is held (in order 234 * that the reference not be invalidated during use). For example, to follow 235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 236 * that detach is not run clearing unp_socket. 237 * 238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 239 * protocols, bind() is a non-atomic operation, and connect() requires 240 * potential sleeping in the protocol, due to potentially waiting on local or 241 * distributed file systems. We try to separate "lookup" operations, which 242 * may sleep, and the IPC operations themselves, which typically can occur 243 * with relative atomicity as locks can be held over the entire operation. 244 * 245 * Another tricky issue is simultaneous multi-threaded or multi-process 246 * access to a single UNIX domain socket. These are handled by the flags 247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 248 * binding, both of which involve dropping UNIX domain socket locks in order 249 * to perform namei() and other file system operations. 250 */ 251 static struct rwlock unp_link_rwlock; 252 static struct mtx unp_defers_lock; 253 254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 255 "unp_link_rwlock") 256 257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 258 RA_LOCKED) 259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 260 RA_UNLOCKED) 261 262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 267 RA_WLOCKED) 268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 269 270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 271 "unp_defer", NULL, MTX_DEF) 272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 274 275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 277 278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 279 "unp", "unp", \ 280 MTX_DUPOK|MTX_DEF) 281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx) 283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 289 290 static int uipc_connect2(struct socket *, struct socket *); 291 static int uipc_ctloutput(struct socket *, struct sockopt *); 292 static int unp_connect(struct socket *, struct sockaddr *, 293 struct thread *); 294 static int unp_connectat(int, struct socket *, struct sockaddr *, 295 struct thread *); 296 static int unp_connect2(struct socket *so, struct socket *so2, int); 297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 298 static void unp_dispose(struct socket *so); 299 static void unp_dispose_mbuf(struct mbuf *); 300 static void unp_shutdown(struct unpcb *); 301 static void unp_drop(struct unpcb *); 302 static void unp_gc(__unused void *, int); 303 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 304 static void unp_discard(struct file *); 305 static void unp_freerights(struct filedescent **, int); 306 static void unp_init(void); 307 static int unp_internalize(struct mbuf **, struct thread *); 308 static void unp_internalize_fp(struct file *); 309 static int unp_externalize(struct mbuf *, struct mbuf **, int); 310 static int unp_externalize_fp(struct file *); 311 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *, int); 312 static void unp_process_defers(void * __unused, int); 313 314 static void 315 unp_pcb_hold(struct unpcb *unp) 316 { 317 u_int old __unused; 318 319 old = refcount_acquire(&unp->unp_refcount); 320 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp)); 321 } 322 323 static __result_use_check bool 324 unp_pcb_rele(struct unpcb *unp) 325 { 326 bool ret; 327 328 UNP_PCB_LOCK_ASSERT(unp); 329 330 if ((ret = refcount_release(&unp->unp_refcount))) { 331 UNP_PCB_UNLOCK(unp); 332 UNP_PCB_LOCK_DESTROY(unp); 333 uma_zfree(unp_zone, unp); 334 } 335 return (ret); 336 } 337 338 static void 339 unp_pcb_rele_notlast(struct unpcb *unp) 340 { 341 bool ret __unused; 342 343 ret = refcount_release(&unp->unp_refcount); 344 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp)); 345 } 346 347 static void 348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2) 349 { 350 UNP_PCB_UNLOCK_ASSERT(unp); 351 UNP_PCB_UNLOCK_ASSERT(unp2); 352 353 if (unp == unp2) { 354 UNP_PCB_LOCK(unp); 355 } else if ((uintptr_t)unp2 > (uintptr_t)unp) { 356 UNP_PCB_LOCK(unp); 357 UNP_PCB_LOCK(unp2); 358 } else { 359 UNP_PCB_LOCK(unp2); 360 UNP_PCB_LOCK(unp); 361 } 362 } 363 364 static void 365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2) 366 { 367 UNP_PCB_UNLOCK(unp); 368 if (unp != unp2) 369 UNP_PCB_UNLOCK(unp2); 370 } 371 372 /* 373 * Try to lock the connected peer of an already locked socket. In some cases 374 * this requires that we unlock the current socket. The pairbusy counter is 375 * used to block concurrent connection attempts while the lock is dropped. The 376 * caller must be careful to revalidate PCB state. 377 */ 378 static struct unpcb * 379 unp_pcb_lock_peer(struct unpcb *unp) 380 { 381 struct unpcb *unp2; 382 383 UNP_PCB_LOCK_ASSERT(unp); 384 unp2 = unp->unp_conn; 385 if (__predict_false(unp2 == NULL)) 386 return (NULL); 387 if (__predict_false(unp == unp2)) 388 return (unp); 389 390 UNP_PCB_UNLOCK_ASSERT(unp2); 391 392 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) 393 return (unp2); 394 if ((uintptr_t)unp2 > (uintptr_t)unp) { 395 UNP_PCB_LOCK(unp2); 396 return (unp2); 397 } 398 unp->unp_pairbusy++; 399 unp_pcb_hold(unp2); 400 UNP_PCB_UNLOCK(unp); 401 402 UNP_PCB_LOCK(unp2); 403 UNP_PCB_LOCK(unp); 404 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL, 405 ("%s: socket %p was reconnected", __func__, unp)); 406 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) { 407 unp->unp_flags &= ~UNP_WAITING; 408 wakeup(unp); 409 } 410 if (unp_pcb_rele(unp2)) { 411 /* unp2 is unlocked. */ 412 return (NULL); 413 } 414 if (unp->unp_conn == NULL) { 415 UNP_PCB_UNLOCK(unp2); 416 return (NULL); 417 } 418 return (unp2); 419 } 420 421 /* 422 * Definitions of protocols supported in the LOCAL domain. 423 */ 424 static struct domain localdomain; 425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 426 static struct pr_usrreqs uipc_usrreqs_seqpacket; 427 static struct protosw localsw[] = { 428 { 429 .pr_type = SOCK_STREAM, 430 .pr_domain = &localdomain, 431 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 432 .pr_ctloutput = &uipc_ctloutput, 433 .pr_usrreqs = &uipc_usrreqs_stream 434 }, 435 { 436 .pr_type = SOCK_DGRAM, 437 .pr_domain = &localdomain, 438 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 439 .pr_ctloutput = &uipc_ctloutput, 440 .pr_usrreqs = &uipc_usrreqs_dgram 441 }, 442 { 443 .pr_type = SOCK_SEQPACKET, 444 .pr_domain = &localdomain, 445 446 /* 447 * XXXRW: For now, PR_ADDR because soreceive will bump into them 448 * due to our use of sbappendaddr. A new sbappend variants is needed 449 * that supports both atomic record writes and control data. 450 */ 451 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 452 PR_RIGHTS, 453 .pr_ctloutput = &uipc_ctloutput, 454 .pr_usrreqs = &uipc_usrreqs_seqpacket, 455 }, 456 }; 457 458 static struct domain localdomain = { 459 .dom_family = AF_LOCAL, 460 .dom_name = "local", 461 .dom_init = unp_init, 462 .dom_externalize = unp_externalize, 463 .dom_dispose = unp_dispose, 464 .dom_protosw = localsw, 465 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 466 }; 467 DOMAIN_SET(local); 468 469 static void 470 uipc_abort(struct socket *so) 471 { 472 struct unpcb *unp, *unp2; 473 474 unp = sotounpcb(so); 475 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 476 UNP_PCB_UNLOCK_ASSERT(unp); 477 478 UNP_PCB_LOCK(unp); 479 unp2 = unp->unp_conn; 480 if (unp2 != NULL) { 481 unp_pcb_hold(unp2); 482 UNP_PCB_UNLOCK(unp); 483 unp_drop(unp2); 484 } else 485 UNP_PCB_UNLOCK(unp); 486 } 487 488 static int 489 uipc_accept(struct socket *so, struct sockaddr **nam) 490 { 491 struct unpcb *unp, *unp2; 492 const struct sockaddr *sa; 493 494 /* 495 * Pass back name of connected socket, if it was bound and we are 496 * still connected (our peer may have closed already!). 497 */ 498 unp = sotounpcb(so); 499 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 500 501 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 502 UNP_PCB_LOCK(unp); 503 unp2 = unp_pcb_lock_peer(unp); 504 if (unp2 != NULL && unp2->unp_addr != NULL) 505 sa = (struct sockaddr *)unp2->unp_addr; 506 else 507 sa = &sun_noname; 508 bcopy(sa, *nam, sa->sa_len); 509 if (unp2 != NULL) 510 unp_pcb_unlock_pair(unp, unp2); 511 else 512 UNP_PCB_UNLOCK(unp); 513 return (0); 514 } 515 516 static int 517 uipc_attach(struct socket *so, int proto, struct thread *td) 518 { 519 u_long sendspace, recvspace; 520 struct unpcb *unp; 521 int error; 522 bool locked; 523 524 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 525 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 526 switch (so->so_type) { 527 case SOCK_STREAM: 528 sendspace = unpst_sendspace; 529 recvspace = unpst_recvspace; 530 break; 531 532 case SOCK_DGRAM: 533 sendspace = unpdg_sendspace; 534 recvspace = unpdg_recvspace; 535 break; 536 537 case SOCK_SEQPACKET: 538 sendspace = unpsp_sendspace; 539 recvspace = unpsp_recvspace; 540 break; 541 542 default: 543 panic("uipc_attach"); 544 } 545 error = soreserve(so, sendspace, recvspace); 546 if (error) 547 return (error); 548 } 549 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 550 if (unp == NULL) 551 return (ENOBUFS); 552 LIST_INIT(&unp->unp_refs); 553 UNP_PCB_LOCK_INIT(unp); 554 unp->unp_socket = so; 555 so->so_pcb = unp; 556 refcount_init(&unp->unp_refcount, 1); 557 558 if ((locked = UNP_LINK_WOWNED()) == false) 559 UNP_LINK_WLOCK(); 560 561 unp->unp_gencnt = ++unp_gencnt; 562 unp->unp_ino = ++unp_ino; 563 unp_count++; 564 switch (so->so_type) { 565 case SOCK_STREAM: 566 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 567 break; 568 569 case SOCK_DGRAM: 570 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 571 break; 572 573 case SOCK_SEQPACKET: 574 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 575 break; 576 577 default: 578 panic("uipc_attach"); 579 } 580 581 if (locked == false) 582 UNP_LINK_WUNLOCK(); 583 584 return (0); 585 } 586 587 static int 588 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 589 { 590 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 591 struct vattr vattr; 592 int error, namelen; 593 struct nameidata nd; 594 struct unpcb *unp; 595 struct vnode *vp; 596 struct mount *mp; 597 cap_rights_t rights; 598 char *buf; 599 600 if (nam->sa_family != AF_UNIX) 601 return (EAFNOSUPPORT); 602 603 unp = sotounpcb(so); 604 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 605 606 if (soun->sun_len > sizeof(struct sockaddr_un)) 607 return (EINVAL); 608 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 609 if (namelen <= 0) 610 return (EINVAL); 611 612 /* 613 * We don't allow simultaneous bind() calls on a single UNIX domain 614 * socket, so flag in-progress operations, and return an error if an 615 * operation is already in progress. 616 * 617 * Historically, we have not allowed a socket to be rebound, so this 618 * also returns an error. Not allowing re-binding simplifies the 619 * implementation and avoids a great many possible failure modes. 620 */ 621 UNP_PCB_LOCK(unp); 622 if (unp->unp_vnode != NULL) { 623 UNP_PCB_UNLOCK(unp); 624 return (EINVAL); 625 } 626 if (unp->unp_flags & UNP_BINDING) { 627 UNP_PCB_UNLOCK(unp); 628 return (EALREADY); 629 } 630 unp->unp_flags |= UNP_BINDING; 631 UNP_PCB_UNLOCK(unp); 632 633 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 634 bcopy(soun->sun_path, buf, namelen); 635 buf[namelen] = 0; 636 637 restart: 638 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 639 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 640 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 641 error = namei(&nd); 642 if (error) 643 goto error; 644 vp = nd.ni_vp; 645 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 646 NDFREE(&nd, NDF_ONLY_PNBUF); 647 if (nd.ni_dvp == vp) 648 vrele(nd.ni_dvp); 649 else 650 vput(nd.ni_dvp); 651 if (vp != NULL) { 652 vrele(vp); 653 error = EADDRINUSE; 654 goto error; 655 } 656 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 657 if (error) 658 goto error; 659 goto restart; 660 } 661 VATTR_NULL(&vattr); 662 vattr.va_type = VSOCK; 663 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask); 664 #ifdef MAC 665 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 666 &vattr); 667 #endif 668 if (error == 0) 669 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 670 NDFREE(&nd, NDF_ONLY_PNBUF); 671 vput(nd.ni_dvp); 672 if (error) { 673 vn_finished_write(mp); 674 if (error == ERELOOKUP) 675 goto restart; 676 goto error; 677 } 678 vp = nd.ni_vp; 679 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 680 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 681 682 UNP_PCB_LOCK(unp); 683 VOP_UNP_BIND(vp, unp); 684 unp->unp_vnode = vp; 685 unp->unp_addr = soun; 686 unp->unp_flags &= ~UNP_BINDING; 687 UNP_PCB_UNLOCK(unp); 688 VOP_UNLOCK(vp); 689 vn_finished_write(mp); 690 free(buf, M_TEMP); 691 return (0); 692 693 error: 694 UNP_PCB_LOCK(unp); 695 unp->unp_flags &= ~UNP_BINDING; 696 UNP_PCB_UNLOCK(unp); 697 free(buf, M_TEMP); 698 return (error); 699 } 700 701 static int 702 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 703 { 704 705 return (uipc_bindat(AT_FDCWD, so, nam, td)); 706 } 707 708 static int 709 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 710 { 711 int error; 712 713 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 714 error = unp_connect(so, nam, td); 715 return (error); 716 } 717 718 static int 719 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 720 struct thread *td) 721 { 722 int error; 723 724 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 725 error = unp_connectat(fd, so, nam, td); 726 return (error); 727 } 728 729 static void 730 uipc_close(struct socket *so) 731 { 732 struct unpcb *unp, *unp2; 733 struct vnode *vp = NULL; 734 struct mtx *vplock; 735 736 unp = sotounpcb(so); 737 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 738 739 vplock = NULL; 740 if ((vp = unp->unp_vnode) != NULL) { 741 vplock = mtx_pool_find(mtxpool_sleep, vp); 742 mtx_lock(vplock); 743 } 744 UNP_PCB_LOCK(unp); 745 if (vp && unp->unp_vnode == NULL) { 746 mtx_unlock(vplock); 747 vp = NULL; 748 } 749 if (vp != NULL) { 750 VOP_UNP_DETACH(vp); 751 unp->unp_vnode = NULL; 752 } 753 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 754 unp_disconnect(unp, unp2); 755 else 756 UNP_PCB_UNLOCK(unp); 757 if (vp) { 758 mtx_unlock(vplock); 759 vrele(vp); 760 } 761 } 762 763 static int 764 uipc_connect2(struct socket *so1, struct socket *so2) 765 { 766 struct unpcb *unp, *unp2; 767 int error; 768 769 unp = so1->so_pcb; 770 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 771 unp2 = so2->so_pcb; 772 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 773 unp_pcb_lock_pair(unp, unp2); 774 error = unp_connect2(so1, so2, PRU_CONNECT2); 775 unp_pcb_unlock_pair(unp, unp2); 776 return (error); 777 } 778 779 static void 780 uipc_detach(struct socket *so) 781 { 782 struct unpcb *unp, *unp2; 783 struct mtx *vplock; 784 struct vnode *vp; 785 int local_unp_rights; 786 787 unp = sotounpcb(so); 788 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 789 790 vp = NULL; 791 vplock = NULL; 792 793 SOCK_LOCK(so); 794 if (!SOLISTENING(so)) { 795 /* 796 * Once the socket is removed from the global lists, 797 * uipc_ready() will not be able to locate its socket buffer, so 798 * clear the buffer now. At this point internalized rights have 799 * already been disposed of. 800 */ 801 sbrelease(&so->so_rcv, so); 802 } 803 SOCK_UNLOCK(so); 804 805 UNP_LINK_WLOCK(); 806 LIST_REMOVE(unp, unp_link); 807 if (unp->unp_gcflag & UNPGC_DEAD) 808 LIST_REMOVE(unp, unp_dead); 809 unp->unp_gencnt = ++unp_gencnt; 810 --unp_count; 811 UNP_LINK_WUNLOCK(); 812 813 UNP_PCB_UNLOCK_ASSERT(unp); 814 restart: 815 if ((vp = unp->unp_vnode) != NULL) { 816 vplock = mtx_pool_find(mtxpool_sleep, vp); 817 mtx_lock(vplock); 818 } 819 UNP_PCB_LOCK(unp); 820 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { 821 if (vplock) 822 mtx_unlock(vplock); 823 UNP_PCB_UNLOCK(unp); 824 goto restart; 825 } 826 if ((vp = unp->unp_vnode) != NULL) { 827 VOP_UNP_DETACH(vp); 828 unp->unp_vnode = NULL; 829 } 830 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 831 unp_disconnect(unp, unp2); 832 else 833 UNP_PCB_UNLOCK(unp); 834 835 UNP_REF_LIST_LOCK(); 836 while (!LIST_EMPTY(&unp->unp_refs)) { 837 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 838 839 unp_pcb_hold(ref); 840 UNP_REF_LIST_UNLOCK(); 841 842 MPASS(ref != unp); 843 UNP_PCB_UNLOCK_ASSERT(ref); 844 unp_drop(ref); 845 UNP_REF_LIST_LOCK(); 846 } 847 UNP_REF_LIST_UNLOCK(); 848 849 UNP_PCB_LOCK(unp); 850 local_unp_rights = unp_rights; 851 unp->unp_socket->so_pcb = NULL; 852 unp->unp_socket = NULL; 853 free(unp->unp_addr, M_SONAME); 854 unp->unp_addr = NULL; 855 if (!unp_pcb_rele(unp)) 856 UNP_PCB_UNLOCK(unp); 857 if (vp) { 858 mtx_unlock(vplock); 859 vrele(vp); 860 } 861 if (local_unp_rights) 862 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 863 } 864 865 static int 866 uipc_disconnect(struct socket *so) 867 { 868 struct unpcb *unp, *unp2; 869 870 unp = sotounpcb(so); 871 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 872 873 UNP_PCB_LOCK(unp); 874 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 875 unp_disconnect(unp, unp2); 876 else 877 UNP_PCB_UNLOCK(unp); 878 return (0); 879 } 880 881 static int 882 uipc_listen(struct socket *so, int backlog, struct thread *td) 883 { 884 struct unpcb *unp; 885 int error; 886 887 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 888 return (EOPNOTSUPP); 889 890 unp = sotounpcb(so); 891 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 892 893 UNP_PCB_LOCK(unp); 894 if (unp->unp_vnode == NULL) { 895 /* Already connected or not bound to an address. */ 896 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 897 UNP_PCB_UNLOCK(unp); 898 return (error); 899 } 900 901 SOCK_LOCK(so); 902 error = solisten_proto_check(so); 903 if (error == 0) { 904 cru2xt(td, &unp->unp_peercred); 905 solisten_proto(so, backlog); 906 } 907 SOCK_UNLOCK(so); 908 UNP_PCB_UNLOCK(unp); 909 return (error); 910 } 911 912 static int 913 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 914 { 915 struct unpcb *unp, *unp2; 916 const struct sockaddr *sa; 917 918 unp = sotounpcb(so); 919 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 920 921 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 922 UNP_LINK_RLOCK(); 923 /* 924 * XXX: It seems that this test always fails even when connection is 925 * established. So, this else clause is added as workaround to 926 * return PF_LOCAL sockaddr. 927 */ 928 unp2 = unp->unp_conn; 929 if (unp2 != NULL) { 930 UNP_PCB_LOCK(unp2); 931 if (unp2->unp_addr != NULL) 932 sa = (struct sockaddr *) unp2->unp_addr; 933 else 934 sa = &sun_noname; 935 bcopy(sa, *nam, sa->sa_len); 936 UNP_PCB_UNLOCK(unp2); 937 } else { 938 sa = &sun_noname; 939 bcopy(sa, *nam, sa->sa_len); 940 } 941 UNP_LINK_RUNLOCK(); 942 return (0); 943 } 944 945 static int 946 uipc_rcvd(struct socket *so, int flags) 947 { 948 struct unpcb *unp, *unp2; 949 struct socket *so2; 950 u_int mbcnt, sbcc; 951 952 unp = sotounpcb(so); 953 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 954 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 955 ("%s: socktype %d", __func__, so->so_type)); 956 957 /* 958 * Adjust backpressure on sender and wakeup any waiting to write. 959 * 960 * The unp lock is acquired to maintain the validity of the unp_conn 961 * pointer; no lock on unp2 is required as unp2->unp_socket will be 962 * static as long as we don't permit unp2 to disconnect from unp, 963 * which is prevented by the lock on unp. We cache values from 964 * so_rcv to avoid holding the so_rcv lock over the entire 965 * transaction on the remote so_snd. 966 */ 967 SOCKBUF_LOCK(&so->so_rcv); 968 mbcnt = so->so_rcv.sb_mbcnt; 969 sbcc = sbavail(&so->so_rcv); 970 SOCKBUF_UNLOCK(&so->so_rcv); 971 /* 972 * There is a benign race condition at this point. If we're planning to 973 * clear SB_STOP, but uipc_send is called on the connected socket at 974 * this instant, it might add data to the sockbuf and set SB_STOP. Then 975 * we would erroneously clear SB_STOP below, even though the sockbuf is 976 * full. The race is benign because the only ill effect is to allow the 977 * sockbuf to exceed its size limit, and the size limits are not 978 * strictly guaranteed anyway. 979 */ 980 UNP_PCB_LOCK(unp); 981 unp2 = unp->unp_conn; 982 if (unp2 == NULL) { 983 UNP_PCB_UNLOCK(unp); 984 return (0); 985 } 986 so2 = unp2->unp_socket; 987 SOCKBUF_LOCK(&so2->so_snd); 988 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 989 so2->so_snd.sb_flags &= ~SB_STOP; 990 sowwakeup_locked(so2); 991 UNP_PCB_UNLOCK(unp); 992 return (0); 993 } 994 995 static int 996 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 997 struct mbuf *control, struct thread *td) 998 { 999 struct unpcb *unp, *unp2; 1000 struct socket *so2; 1001 u_int mbcnt, sbcc; 1002 int freed, error; 1003 1004 unp = sotounpcb(so); 1005 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1006 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1007 so->so_type == SOCK_SEQPACKET, 1008 ("%s: socktype %d", __func__, so->so_type)); 1009 1010 freed = error = 0; 1011 if (flags & PRUS_OOB) { 1012 error = EOPNOTSUPP; 1013 goto release; 1014 } 1015 if (control != NULL && (error = unp_internalize(&control, td))) 1016 goto release; 1017 1018 unp2 = NULL; 1019 switch (so->so_type) { 1020 case SOCK_DGRAM: 1021 { 1022 const struct sockaddr *from; 1023 1024 if (nam != NULL) { 1025 error = unp_connect(so, nam, td); 1026 if (error != 0) 1027 break; 1028 } 1029 UNP_PCB_LOCK(unp); 1030 1031 /* 1032 * Because connect() and send() are non-atomic in a sendto() 1033 * with a target address, it's possible that the socket will 1034 * have disconnected before the send() can run. In that case 1035 * return the slightly counter-intuitive but otherwise 1036 * correct error that the socket is not connected. 1037 */ 1038 unp2 = unp_pcb_lock_peer(unp); 1039 if (unp2 == NULL) { 1040 UNP_PCB_UNLOCK(unp); 1041 error = ENOTCONN; 1042 break; 1043 } 1044 1045 if (unp2->unp_flags & UNP_WANTCRED_MASK) 1046 control = unp_addsockcred(td, control, 1047 unp2->unp_flags); 1048 if (unp->unp_addr != NULL) 1049 from = (struct sockaddr *)unp->unp_addr; 1050 else 1051 from = &sun_noname; 1052 so2 = unp2->unp_socket; 1053 SOCKBUF_LOCK(&so2->so_rcv); 1054 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1055 control)) { 1056 sorwakeup_locked(so2); 1057 m = NULL; 1058 control = NULL; 1059 } else { 1060 SOCKBUF_UNLOCK(&so2->so_rcv); 1061 error = ENOBUFS; 1062 } 1063 if (nam != NULL) 1064 unp_disconnect(unp, unp2); 1065 else 1066 unp_pcb_unlock_pair(unp, unp2); 1067 break; 1068 } 1069 1070 case SOCK_SEQPACKET: 1071 case SOCK_STREAM: 1072 if ((so->so_state & SS_ISCONNECTED) == 0) { 1073 if (nam != NULL) { 1074 error = unp_connect(so, nam, td); 1075 if (error != 0) 1076 break; 1077 } else { 1078 error = ENOTCONN; 1079 break; 1080 } 1081 } 1082 1083 UNP_PCB_LOCK(unp); 1084 if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) { 1085 UNP_PCB_UNLOCK(unp); 1086 error = ENOTCONN; 1087 break; 1088 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1089 unp_pcb_unlock_pair(unp, unp2); 1090 error = EPIPE; 1091 break; 1092 } 1093 UNP_PCB_UNLOCK(unp); 1094 if ((so2 = unp2->unp_socket) == NULL) { 1095 UNP_PCB_UNLOCK(unp2); 1096 error = ENOTCONN; 1097 break; 1098 } 1099 SOCKBUF_LOCK(&so2->so_rcv); 1100 if (unp2->unp_flags & UNP_WANTCRED_MASK) { 1101 /* 1102 * Credentials are passed only once on SOCK_STREAM and 1103 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or 1104 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS). 1105 */ 1106 control = unp_addsockcred(td, control, unp2->unp_flags); 1107 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT; 1108 } 1109 1110 /* 1111 * Send to paired receive port and wake up readers. Don't 1112 * check for space available in the receive buffer if we're 1113 * attaching ancillary data; Unix domain sockets only check 1114 * for space in the sending sockbuf, and that check is 1115 * performed one level up the stack. At that level we cannot 1116 * precisely account for the amount of buffer space used 1117 * (e.g., because control messages are not yet internalized). 1118 */ 1119 switch (so->so_type) { 1120 case SOCK_STREAM: 1121 if (control != NULL) { 1122 sbappendcontrol_locked(&so2->so_rcv, m, 1123 control, flags); 1124 control = NULL; 1125 } else 1126 sbappend_locked(&so2->so_rcv, m, flags); 1127 break; 1128 1129 case SOCK_SEQPACKET: 1130 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1131 &sun_noname, m, control)) 1132 control = NULL; 1133 break; 1134 } 1135 1136 mbcnt = so2->so_rcv.sb_mbcnt; 1137 sbcc = sbavail(&so2->so_rcv); 1138 if (sbcc) 1139 sorwakeup_locked(so2); 1140 else 1141 SOCKBUF_UNLOCK(&so2->so_rcv); 1142 1143 /* 1144 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1145 * it would be possible for uipc_rcvd to be called at this 1146 * point, drain the receiving sockbuf, clear SB_STOP, and then 1147 * we would set SB_STOP below. That could lead to an empty 1148 * sockbuf having SB_STOP set 1149 */ 1150 SOCKBUF_LOCK(&so->so_snd); 1151 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1152 so->so_snd.sb_flags |= SB_STOP; 1153 SOCKBUF_UNLOCK(&so->so_snd); 1154 UNP_PCB_UNLOCK(unp2); 1155 m = NULL; 1156 break; 1157 } 1158 1159 /* 1160 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1161 */ 1162 if (flags & PRUS_EOF) { 1163 UNP_PCB_LOCK(unp); 1164 socantsendmore(so); 1165 unp_shutdown(unp); 1166 UNP_PCB_UNLOCK(unp); 1167 } 1168 if (control != NULL && error != 0) 1169 unp_dispose_mbuf(control); 1170 1171 release: 1172 if (control != NULL) 1173 m_freem(control); 1174 /* 1175 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1176 * for freeing memory. 1177 */ 1178 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1179 m_freem(m); 1180 return (error); 1181 } 1182 1183 static bool 1184 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp) 1185 { 1186 struct mbuf *mb, *n; 1187 struct sockbuf *sb; 1188 1189 SOCK_LOCK(so); 1190 if (SOLISTENING(so)) { 1191 SOCK_UNLOCK(so); 1192 return (false); 1193 } 1194 mb = NULL; 1195 sb = &so->so_rcv; 1196 SOCKBUF_LOCK(sb); 1197 if (sb->sb_fnrdy != NULL) { 1198 for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) { 1199 if (mb == m) { 1200 *errorp = sbready(sb, m, count); 1201 break; 1202 } 1203 mb = mb->m_next; 1204 if (mb == NULL) { 1205 mb = n; 1206 if (mb != NULL) 1207 n = mb->m_nextpkt; 1208 } 1209 } 1210 } 1211 SOCKBUF_UNLOCK(sb); 1212 SOCK_UNLOCK(so); 1213 return (mb != NULL); 1214 } 1215 1216 static int 1217 uipc_ready(struct socket *so, struct mbuf *m, int count) 1218 { 1219 struct unpcb *unp, *unp2; 1220 struct socket *so2; 1221 int error, i; 1222 1223 unp = sotounpcb(so); 1224 1225 KASSERT(so->so_type == SOCK_STREAM, 1226 ("%s: unexpected socket type for %p", __func__, so)); 1227 1228 UNP_PCB_LOCK(unp); 1229 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1230 UNP_PCB_UNLOCK(unp); 1231 so2 = unp2->unp_socket; 1232 SOCKBUF_LOCK(&so2->so_rcv); 1233 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1234 sorwakeup_locked(so2); 1235 else 1236 SOCKBUF_UNLOCK(&so2->so_rcv); 1237 UNP_PCB_UNLOCK(unp2); 1238 return (error); 1239 } 1240 UNP_PCB_UNLOCK(unp); 1241 1242 /* 1243 * The receiving socket has been disconnected, but may still be valid. 1244 * In this case, the now-ready mbufs are still present in its socket 1245 * buffer, so perform an exhaustive search before giving up and freeing 1246 * the mbufs. 1247 */ 1248 UNP_LINK_RLOCK(); 1249 LIST_FOREACH(unp, &unp_shead, unp_link) { 1250 if (uipc_ready_scan(unp->unp_socket, m, count, &error)) 1251 break; 1252 } 1253 UNP_LINK_RUNLOCK(); 1254 1255 if (unp == NULL) { 1256 for (i = 0; i < count; i++) 1257 m = m_free(m); 1258 error = ECONNRESET; 1259 } 1260 return (error); 1261 } 1262 1263 static int 1264 uipc_sense(struct socket *so, struct stat *sb) 1265 { 1266 struct unpcb *unp; 1267 1268 unp = sotounpcb(so); 1269 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1270 1271 sb->st_blksize = so->so_snd.sb_hiwat; 1272 sb->st_dev = NODEV; 1273 sb->st_ino = unp->unp_ino; 1274 return (0); 1275 } 1276 1277 static int 1278 uipc_shutdown(struct socket *so) 1279 { 1280 struct unpcb *unp; 1281 1282 unp = sotounpcb(so); 1283 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1284 1285 UNP_PCB_LOCK(unp); 1286 socantsendmore(so); 1287 unp_shutdown(unp); 1288 UNP_PCB_UNLOCK(unp); 1289 return (0); 1290 } 1291 1292 static int 1293 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1294 { 1295 struct unpcb *unp; 1296 const struct sockaddr *sa; 1297 1298 unp = sotounpcb(so); 1299 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1300 1301 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1302 UNP_PCB_LOCK(unp); 1303 if (unp->unp_addr != NULL) 1304 sa = (struct sockaddr *) unp->unp_addr; 1305 else 1306 sa = &sun_noname; 1307 bcopy(sa, *nam, sa->sa_len); 1308 UNP_PCB_UNLOCK(unp); 1309 return (0); 1310 } 1311 1312 static struct pr_usrreqs uipc_usrreqs_dgram = { 1313 .pru_abort = uipc_abort, 1314 .pru_accept = uipc_accept, 1315 .pru_attach = uipc_attach, 1316 .pru_bind = uipc_bind, 1317 .pru_bindat = uipc_bindat, 1318 .pru_connect = uipc_connect, 1319 .pru_connectat = uipc_connectat, 1320 .pru_connect2 = uipc_connect2, 1321 .pru_detach = uipc_detach, 1322 .pru_disconnect = uipc_disconnect, 1323 .pru_listen = uipc_listen, 1324 .pru_peeraddr = uipc_peeraddr, 1325 .pru_rcvd = uipc_rcvd, 1326 .pru_send = uipc_send, 1327 .pru_sense = uipc_sense, 1328 .pru_shutdown = uipc_shutdown, 1329 .pru_sockaddr = uipc_sockaddr, 1330 .pru_soreceive = soreceive_dgram, 1331 .pru_close = uipc_close, 1332 }; 1333 1334 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1335 .pru_abort = uipc_abort, 1336 .pru_accept = uipc_accept, 1337 .pru_attach = uipc_attach, 1338 .pru_bind = uipc_bind, 1339 .pru_bindat = uipc_bindat, 1340 .pru_connect = uipc_connect, 1341 .pru_connectat = uipc_connectat, 1342 .pru_connect2 = uipc_connect2, 1343 .pru_detach = uipc_detach, 1344 .pru_disconnect = uipc_disconnect, 1345 .pru_listen = uipc_listen, 1346 .pru_peeraddr = uipc_peeraddr, 1347 .pru_rcvd = uipc_rcvd, 1348 .pru_send = uipc_send, 1349 .pru_sense = uipc_sense, 1350 .pru_shutdown = uipc_shutdown, 1351 .pru_sockaddr = uipc_sockaddr, 1352 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1353 .pru_close = uipc_close, 1354 }; 1355 1356 static struct pr_usrreqs uipc_usrreqs_stream = { 1357 .pru_abort = uipc_abort, 1358 .pru_accept = uipc_accept, 1359 .pru_attach = uipc_attach, 1360 .pru_bind = uipc_bind, 1361 .pru_bindat = uipc_bindat, 1362 .pru_connect = uipc_connect, 1363 .pru_connectat = uipc_connectat, 1364 .pru_connect2 = uipc_connect2, 1365 .pru_detach = uipc_detach, 1366 .pru_disconnect = uipc_disconnect, 1367 .pru_listen = uipc_listen, 1368 .pru_peeraddr = uipc_peeraddr, 1369 .pru_rcvd = uipc_rcvd, 1370 .pru_send = uipc_send, 1371 .pru_ready = uipc_ready, 1372 .pru_sense = uipc_sense, 1373 .pru_shutdown = uipc_shutdown, 1374 .pru_sockaddr = uipc_sockaddr, 1375 .pru_soreceive = soreceive_generic, 1376 .pru_close = uipc_close, 1377 }; 1378 1379 static int 1380 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1381 { 1382 struct unpcb *unp; 1383 struct xucred xu; 1384 int error, optval; 1385 1386 if (sopt->sopt_level != SOL_LOCAL) 1387 return (EINVAL); 1388 1389 unp = sotounpcb(so); 1390 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1391 error = 0; 1392 switch (sopt->sopt_dir) { 1393 case SOPT_GET: 1394 switch (sopt->sopt_name) { 1395 case LOCAL_PEERCRED: 1396 UNP_PCB_LOCK(unp); 1397 if (unp->unp_flags & UNP_HAVEPC) 1398 xu = unp->unp_peercred; 1399 else { 1400 if (so->so_type == SOCK_STREAM) 1401 error = ENOTCONN; 1402 else 1403 error = EINVAL; 1404 } 1405 UNP_PCB_UNLOCK(unp); 1406 if (error == 0) 1407 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1408 break; 1409 1410 case LOCAL_CREDS: 1411 /* Unlocked read. */ 1412 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0; 1413 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1414 break; 1415 1416 case LOCAL_CREDS_PERSISTENT: 1417 /* Unlocked read. */ 1418 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0; 1419 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1420 break; 1421 1422 case LOCAL_CONNWAIT: 1423 /* Unlocked read. */ 1424 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1425 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1426 break; 1427 1428 default: 1429 error = EOPNOTSUPP; 1430 break; 1431 } 1432 break; 1433 1434 case SOPT_SET: 1435 switch (sopt->sopt_name) { 1436 case LOCAL_CREDS: 1437 case LOCAL_CREDS_PERSISTENT: 1438 case LOCAL_CONNWAIT: 1439 error = sooptcopyin(sopt, &optval, sizeof(optval), 1440 sizeof(optval)); 1441 if (error) 1442 break; 1443 1444 #define OPTSET(bit, exclusive) do { \ 1445 UNP_PCB_LOCK(unp); \ 1446 if (optval) { \ 1447 if ((unp->unp_flags & (exclusive)) != 0) { \ 1448 UNP_PCB_UNLOCK(unp); \ 1449 error = EINVAL; \ 1450 break; \ 1451 } \ 1452 unp->unp_flags |= (bit); \ 1453 } else \ 1454 unp->unp_flags &= ~(bit); \ 1455 UNP_PCB_UNLOCK(unp); \ 1456 } while (0) 1457 1458 switch (sopt->sopt_name) { 1459 case LOCAL_CREDS: 1460 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS); 1461 break; 1462 1463 case LOCAL_CREDS_PERSISTENT: 1464 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT); 1465 break; 1466 1467 case LOCAL_CONNWAIT: 1468 OPTSET(UNP_CONNWAIT, 0); 1469 break; 1470 1471 default: 1472 break; 1473 } 1474 break; 1475 #undef OPTSET 1476 default: 1477 error = ENOPROTOOPT; 1478 break; 1479 } 1480 break; 1481 1482 default: 1483 error = EOPNOTSUPP; 1484 break; 1485 } 1486 return (error); 1487 } 1488 1489 static int 1490 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1491 { 1492 1493 return (unp_connectat(AT_FDCWD, so, nam, td)); 1494 } 1495 1496 static int 1497 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1498 struct thread *td) 1499 { 1500 struct mtx *vplock; 1501 struct sockaddr_un *soun; 1502 struct vnode *vp; 1503 struct socket *so2; 1504 struct unpcb *unp, *unp2, *unp3; 1505 struct nameidata nd; 1506 char buf[SOCK_MAXADDRLEN]; 1507 struct sockaddr *sa; 1508 cap_rights_t rights; 1509 int error, len; 1510 bool connreq; 1511 1512 if (nam->sa_family != AF_UNIX) 1513 return (EAFNOSUPPORT); 1514 if (nam->sa_len > sizeof(struct sockaddr_un)) 1515 return (EINVAL); 1516 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1517 if (len <= 0) 1518 return (EINVAL); 1519 soun = (struct sockaddr_un *)nam; 1520 bcopy(soun->sun_path, buf, len); 1521 buf[len] = 0; 1522 1523 unp = sotounpcb(so); 1524 UNP_PCB_LOCK(unp); 1525 for (;;) { 1526 /* 1527 * Wait for connection state to stabilize. If a connection 1528 * already exists, give up. For datagram sockets, which permit 1529 * multiple consecutive connect(2) calls, upper layers are 1530 * responsible for disconnecting in advance of a subsequent 1531 * connect(2), but this is not synchronized with PCB connection 1532 * state. 1533 * 1534 * Also make sure that no threads are currently attempting to 1535 * lock the peer socket, to ensure that unp_conn cannot 1536 * transition between two valid sockets while locks are dropped. 1537 */ 1538 if (unp->unp_conn != NULL) { 1539 UNP_PCB_UNLOCK(unp); 1540 return (EISCONN); 1541 } 1542 if ((unp->unp_flags & UNP_CONNECTING) != 0) { 1543 UNP_PCB_UNLOCK(unp); 1544 return (EALREADY); 1545 } 1546 if (unp->unp_pairbusy > 0) { 1547 unp->unp_flags |= UNP_WAITING; 1548 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0); 1549 continue; 1550 } 1551 break; 1552 } 1553 unp->unp_flags |= UNP_CONNECTING; 1554 UNP_PCB_UNLOCK(unp); 1555 1556 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0; 1557 if (connreq) 1558 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1559 else 1560 sa = NULL; 1561 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1562 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1563 error = namei(&nd); 1564 if (error) 1565 vp = NULL; 1566 else 1567 vp = nd.ni_vp; 1568 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1569 NDFREE(&nd, NDF_ONLY_PNBUF); 1570 if (error) 1571 goto bad; 1572 1573 if (vp->v_type != VSOCK) { 1574 error = ENOTSOCK; 1575 goto bad; 1576 } 1577 #ifdef MAC 1578 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1579 if (error) 1580 goto bad; 1581 #endif 1582 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1583 if (error) 1584 goto bad; 1585 1586 unp = sotounpcb(so); 1587 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1588 1589 vplock = mtx_pool_find(mtxpool_sleep, vp); 1590 mtx_lock(vplock); 1591 VOP_UNP_CONNECT(vp, &unp2); 1592 if (unp2 == NULL) { 1593 error = ECONNREFUSED; 1594 goto bad2; 1595 } 1596 so2 = unp2->unp_socket; 1597 if (so->so_type != so2->so_type) { 1598 error = EPROTOTYPE; 1599 goto bad2; 1600 } 1601 if (connreq) { 1602 if (so2->so_options & SO_ACCEPTCONN) { 1603 CURVNET_SET(so2->so_vnet); 1604 so2 = sonewconn(so2, 0); 1605 CURVNET_RESTORE(); 1606 } else 1607 so2 = NULL; 1608 if (so2 == NULL) { 1609 error = ECONNREFUSED; 1610 goto bad2; 1611 } 1612 unp3 = sotounpcb(so2); 1613 unp_pcb_lock_pair(unp2, unp3); 1614 if (unp2->unp_addr != NULL) { 1615 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1616 unp3->unp_addr = (struct sockaddr_un *) sa; 1617 sa = NULL; 1618 } 1619 1620 unp_copy_peercred(td, unp3, unp, unp2); 1621 1622 UNP_PCB_UNLOCK(unp2); 1623 unp2 = unp3; 1624 1625 /* 1626 * It is safe to block on the PCB lock here since unp2 is 1627 * nascent and cannot be connected to any other sockets. 1628 */ 1629 UNP_PCB_LOCK(unp); 1630 #ifdef MAC 1631 mac_socketpeer_set_from_socket(so, so2); 1632 mac_socketpeer_set_from_socket(so2, so); 1633 #endif 1634 } else { 1635 unp_pcb_lock_pair(unp, unp2); 1636 } 1637 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1638 sotounpcb(so2) == unp2, 1639 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1640 error = unp_connect2(so, so2, PRU_CONNECT); 1641 unp_pcb_unlock_pair(unp, unp2); 1642 bad2: 1643 mtx_unlock(vplock); 1644 bad: 1645 if (vp != NULL) { 1646 vput(vp); 1647 } 1648 free(sa, M_SONAME); 1649 UNP_PCB_LOCK(unp); 1650 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 1651 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 1652 unp->unp_flags &= ~UNP_CONNECTING; 1653 UNP_PCB_UNLOCK(unp); 1654 return (error); 1655 } 1656 1657 /* 1658 * Set socket peer credentials at connection time. 1659 * 1660 * The client's PCB credentials are copied from its process structure. The 1661 * server's PCB credentials are copied from the socket on which it called 1662 * listen(2). uipc_listen cached that process's credentials at the time. 1663 */ 1664 void 1665 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 1666 struct unpcb *server_unp, struct unpcb *listen_unp) 1667 { 1668 cru2xt(td, &client_unp->unp_peercred); 1669 client_unp->unp_flags |= UNP_HAVEPC; 1670 1671 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 1672 sizeof(server_unp->unp_peercred)); 1673 server_unp->unp_flags |= UNP_HAVEPC; 1674 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK); 1675 } 1676 1677 static int 1678 unp_connect2(struct socket *so, struct socket *so2, int req) 1679 { 1680 struct unpcb *unp; 1681 struct unpcb *unp2; 1682 1683 unp = sotounpcb(so); 1684 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1685 unp2 = sotounpcb(so2); 1686 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1687 1688 UNP_PCB_LOCK_ASSERT(unp); 1689 UNP_PCB_LOCK_ASSERT(unp2); 1690 KASSERT(unp->unp_conn == NULL, 1691 ("%s: socket %p is already connected", __func__, unp)); 1692 1693 if (so2->so_type != so->so_type) 1694 return (EPROTOTYPE); 1695 unp->unp_conn = unp2; 1696 unp_pcb_hold(unp2); 1697 unp_pcb_hold(unp); 1698 switch (so->so_type) { 1699 case SOCK_DGRAM: 1700 UNP_REF_LIST_LOCK(); 1701 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1702 UNP_REF_LIST_UNLOCK(); 1703 soisconnected(so); 1704 break; 1705 1706 case SOCK_STREAM: 1707 case SOCK_SEQPACKET: 1708 KASSERT(unp2->unp_conn == NULL, 1709 ("%s: socket %p is already connected", __func__, unp2)); 1710 unp2->unp_conn = unp; 1711 if (req == PRU_CONNECT && 1712 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1713 soisconnecting(so); 1714 else 1715 soisconnected(so); 1716 soisconnected(so2); 1717 break; 1718 1719 default: 1720 panic("unp_connect2"); 1721 } 1722 return (0); 1723 } 1724 1725 static void 1726 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1727 { 1728 struct socket *so, *so2; 1729 #ifdef INVARIANTS 1730 struct unpcb *unptmp; 1731 #endif 1732 1733 UNP_PCB_LOCK_ASSERT(unp); 1734 UNP_PCB_LOCK_ASSERT(unp2); 1735 KASSERT(unp->unp_conn == unp2, 1736 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2)); 1737 1738 unp->unp_conn = NULL; 1739 so = unp->unp_socket; 1740 so2 = unp2->unp_socket; 1741 switch (unp->unp_socket->so_type) { 1742 case SOCK_DGRAM: 1743 UNP_REF_LIST_LOCK(); 1744 #ifdef INVARIANTS 1745 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) { 1746 if (unptmp == unp) 1747 break; 1748 } 1749 KASSERT(unptmp != NULL, 1750 ("%s: %p not found in reflist of %p", __func__, unp, unp2)); 1751 #endif 1752 LIST_REMOVE(unp, unp_reflink); 1753 UNP_REF_LIST_UNLOCK(); 1754 if (so) { 1755 SOCK_LOCK(so); 1756 so->so_state &= ~SS_ISCONNECTED; 1757 SOCK_UNLOCK(so); 1758 } 1759 break; 1760 1761 case SOCK_STREAM: 1762 case SOCK_SEQPACKET: 1763 if (so) 1764 soisdisconnected(so); 1765 MPASS(unp2->unp_conn == unp); 1766 unp2->unp_conn = NULL; 1767 if (so2) 1768 soisdisconnected(so2); 1769 break; 1770 } 1771 1772 if (unp == unp2) { 1773 unp_pcb_rele_notlast(unp); 1774 if (!unp_pcb_rele(unp)) 1775 UNP_PCB_UNLOCK(unp); 1776 } else { 1777 if (!unp_pcb_rele(unp)) 1778 UNP_PCB_UNLOCK(unp); 1779 if (!unp_pcb_rele(unp2)) 1780 UNP_PCB_UNLOCK(unp2); 1781 } 1782 } 1783 1784 /* 1785 * unp_pcblist() walks the global list of struct unpcb's to generate a 1786 * pointer list, bumping the refcount on each unpcb. It then copies them out 1787 * sequentially, validating the generation number on each to see if it has 1788 * been detached. All of this is necessary because copyout() may sleep on 1789 * disk I/O. 1790 */ 1791 static int 1792 unp_pcblist(SYSCTL_HANDLER_ARGS) 1793 { 1794 struct unpcb *unp, **unp_list; 1795 unp_gen_t gencnt; 1796 struct xunpgen *xug; 1797 struct unp_head *head; 1798 struct xunpcb *xu; 1799 u_int i; 1800 int error, n; 1801 1802 switch ((intptr_t)arg1) { 1803 case SOCK_STREAM: 1804 head = &unp_shead; 1805 break; 1806 1807 case SOCK_DGRAM: 1808 head = &unp_dhead; 1809 break; 1810 1811 case SOCK_SEQPACKET: 1812 head = &unp_sphead; 1813 break; 1814 1815 default: 1816 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1817 } 1818 1819 /* 1820 * The process of preparing the PCB list is too time-consuming and 1821 * resource-intensive to repeat twice on every request. 1822 */ 1823 if (req->oldptr == NULL) { 1824 n = unp_count; 1825 req->oldidx = 2 * (sizeof *xug) 1826 + (n + n/8) * sizeof(struct xunpcb); 1827 return (0); 1828 } 1829 1830 if (req->newptr != NULL) 1831 return (EPERM); 1832 1833 /* 1834 * OK, now we're committed to doing something. 1835 */ 1836 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 1837 UNP_LINK_RLOCK(); 1838 gencnt = unp_gencnt; 1839 n = unp_count; 1840 UNP_LINK_RUNLOCK(); 1841 1842 xug->xug_len = sizeof *xug; 1843 xug->xug_count = n; 1844 xug->xug_gen = gencnt; 1845 xug->xug_sogen = so_gencnt; 1846 error = SYSCTL_OUT(req, xug, sizeof *xug); 1847 if (error) { 1848 free(xug, M_TEMP); 1849 return (error); 1850 } 1851 1852 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1853 1854 UNP_LINK_RLOCK(); 1855 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1856 unp = LIST_NEXT(unp, unp_link)) { 1857 UNP_PCB_LOCK(unp); 1858 if (unp->unp_gencnt <= gencnt) { 1859 if (cr_cansee(req->td->td_ucred, 1860 unp->unp_socket->so_cred)) { 1861 UNP_PCB_UNLOCK(unp); 1862 continue; 1863 } 1864 unp_list[i++] = unp; 1865 unp_pcb_hold(unp); 1866 } 1867 UNP_PCB_UNLOCK(unp); 1868 } 1869 UNP_LINK_RUNLOCK(); 1870 n = i; /* In case we lost some during malloc. */ 1871 1872 error = 0; 1873 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1874 for (i = 0; i < n; i++) { 1875 unp = unp_list[i]; 1876 UNP_PCB_LOCK(unp); 1877 if (unp_pcb_rele(unp)) 1878 continue; 1879 1880 if (unp->unp_gencnt <= gencnt) { 1881 xu->xu_len = sizeof *xu; 1882 xu->xu_unpp = (uintptr_t)unp; 1883 /* 1884 * XXX - need more locking here to protect against 1885 * connect/disconnect races for SMP. 1886 */ 1887 if (unp->unp_addr != NULL) 1888 bcopy(unp->unp_addr, &xu->xu_addr, 1889 unp->unp_addr->sun_len); 1890 else 1891 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1892 if (unp->unp_conn != NULL && 1893 unp->unp_conn->unp_addr != NULL) 1894 bcopy(unp->unp_conn->unp_addr, 1895 &xu->xu_caddr, 1896 unp->unp_conn->unp_addr->sun_len); 1897 else 1898 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1899 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 1900 xu->unp_conn = (uintptr_t)unp->unp_conn; 1901 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 1902 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 1903 xu->unp_gencnt = unp->unp_gencnt; 1904 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1905 UNP_PCB_UNLOCK(unp); 1906 error = SYSCTL_OUT(req, xu, sizeof *xu); 1907 } else { 1908 UNP_PCB_UNLOCK(unp); 1909 } 1910 } 1911 free(xu, M_TEMP); 1912 if (!error) { 1913 /* 1914 * Give the user an updated idea of our state. If the 1915 * generation differs from what we told her before, she knows 1916 * that something happened while we were processing this 1917 * request, and it might be necessary to retry. 1918 */ 1919 xug->xug_gen = unp_gencnt; 1920 xug->xug_sogen = so_gencnt; 1921 xug->xug_count = unp_count; 1922 error = SYSCTL_OUT(req, xug, sizeof *xug); 1923 } 1924 free(unp_list, M_TEMP); 1925 free(xug, M_TEMP); 1926 return (error); 1927 } 1928 1929 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 1930 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1931 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1932 "List of active local datagram sockets"); 1933 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 1934 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1935 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1936 "List of active local stream sockets"); 1937 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1938 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1939 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1940 "List of active local seqpacket sockets"); 1941 1942 static void 1943 unp_shutdown(struct unpcb *unp) 1944 { 1945 struct unpcb *unp2; 1946 struct socket *so; 1947 1948 UNP_PCB_LOCK_ASSERT(unp); 1949 1950 unp2 = unp->unp_conn; 1951 if ((unp->unp_socket->so_type == SOCK_STREAM || 1952 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1953 so = unp2->unp_socket; 1954 if (so != NULL) 1955 socantrcvmore(so); 1956 } 1957 } 1958 1959 static void 1960 unp_drop(struct unpcb *unp) 1961 { 1962 struct socket *so = unp->unp_socket; 1963 struct unpcb *unp2; 1964 1965 /* 1966 * Regardless of whether the socket's peer dropped the connection 1967 * with this socket by aborting or disconnecting, POSIX requires 1968 * that ECONNRESET is returned. 1969 */ 1970 1971 UNP_PCB_LOCK(unp); 1972 if (so) 1973 so->so_error = ECONNRESET; 1974 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1975 /* Last reference dropped in unp_disconnect(). */ 1976 unp_pcb_rele_notlast(unp); 1977 unp_disconnect(unp, unp2); 1978 } else if (!unp_pcb_rele(unp)) { 1979 UNP_PCB_UNLOCK(unp); 1980 } 1981 } 1982 1983 static void 1984 unp_freerights(struct filedescent **fdep, int fdcount) 1985 { 1986 struct file *fp; 1987 int i; 1988 1989 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1990 1991 for (i = 0; i < fdcount; i++) { 1992 fp = fdep[i]->fde_file; 1993 filecaps_free(&fdep[i]->fde_caps); 1994 unp_discard(fp); 1995 } 1996 free(fdep[0], M_FILECAPS); 1997 } 1998 1999 static int 2000 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 2001 { 2002 struct thread *td = curthread; /* XXX */ 2003 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2004 int i; 2005 int *fdp; 2006 struct filedesc *fdesc = td->td_proc->p_fd; 2007 struct filedescent **fdep; 2008 void *data; 2009 socklen_t clen = control->m_len, datalen; 2010 int error, newfds; 2011 u_int newlen; 2012 2013 UNP_LINK_UNLOCK_ASSERT(); 2014 2015 error = 0; 2016 if (controlp != NULL) /* controlp == NULL => free control messages */ 2017 *controlp = NULL; 2018 while (cm != NULL) { 2019 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 2020 error = EINVAL; 2021 break; 2022 } 2023 data = CMSG_DATA(cm); 2024 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2025 if (cm->cmsg_level == SOL_SOCKET 2026 && cm->cmsg_type == SCM_RIGHTS) { 2027 newfds = datalen / sizeof(*fdep); 2028 if (newfds == 0) 2029 goto next; 2030 fdep = data; 2031 2032 /* If we're not outputting the descriptors free them. */ 2033 if (error || controlp == NULL) { 2034 unp_freerights(fdep, newfds); 2035 goto next; 2036 } 2037 FILEDESC_XLOCK(fdesc); 2038 2039 /* 2040 * Now change each pointer to an fd in the global 2041 * table to an integer that is the index to the local 2042 * fd table entry that we set up to point to the 2043 * global one we are transferring. 2044 */ 2045 newlen = newfds * sizeof(int); 2046 *controlp = sbcreatecontrol(NULL, newlen, 2047 SCM_RIGHTS, SOL_SOCKET); 2048 if (*controlp == NULL) { 2049 FILEDESC_XUNLOCK(fdesc); 2050 error = E2BIG; 2051 unp_freerights(fdep, newfds); 2052 goto next; 2053 } 2054 2055 fdp = (int *) 2056 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2057 if (fdallocn(td, 0, fdp, newfds) != 0) { 2058 FILEDESC_XUNLOCK(fdesc); 2059 error = EMSGSIZE; 2060 unp_freerights(fdep, newfds); 2061 m_freem(*controlp); 2062 *controlp = NULL; 2063 goto next; 2064 } 2065 for (i = 0; i < newfds; i++, fdp++) { 2066 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2067 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 2068 &fdep[i]->fde_caps); 2069 unp_externalize_fp(fdep[i]->fde_file); 2070 } 2071 2072 /* 2073 * The new type indicates that the mbuf data refers to 2074 * kernel resources that may need to be released before 2075 * the mbuf is freed. 2076 */ 2077 m_chtype(*controlp, MT_EXTCONTROL); 2078 FILEDESC_XUNLOCK(fdesc); 2079 free(fdep[0], M_FILECAPS); 2080 } else { 2081 /* We can just copy anything else across. */ 2082 if (error || controlp == NULL) 2083 goto next; 2084 *controlp = sbcreatecontrol(NULL, datalen, 2085 cm->cmsg_type, cm->cmsg_level); 2086 if (*controlp == NULL) { 2087 error = ENOBUFS; 2088 goto next; 2089 } 2090 bcopy(data, 2091 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2092 datalen); 2093 } 2094 controlp = &(*controlp)->m_next; 2095 2096 next: 2097 if (CMSG_SPACE(datalen) < clen) { 2098 clen -= CMSG_SPACE(datalen); 2099 cm = (struct cmsghdr *) 2100 ((caddr_t)cm + CMSG_SPACE(datalen)); 2101 } else { 2102 clen = 0; 2103 cm = NULL; 2104 } 2105 } 2106 2107 m_freem(control); 2108 return (error); 2109 } 2110 2111 static void 2112 unp_zone_change(void *tag) 2113 { 2114 2115 uma_zone_set_max(unp_zone, maxsockets); 2116 } 2117 2118 #ifdef INVARIANTS 2119 static void 2120 unp_zdtor(void *mem, int size __unused, void *arg __unused) 2121 { 2122 struct unpcb *unp; 2123 2124 unp = mem; 2125 2126 KASSERT(LIST_EMPTY(&unp->unp_refs), 2127 ("%s: unpcb %p has lingering refs", __func__, unp)); 2128 KASSERT(unp->unp_socket == NULL, 2129 ("%s: unpcb %p has socket backpointer", __func__, unp)); 2130 KASSERT(unp->unp_vnode == NULL, 2131 ("%s: unpcb %p has vnode references", __func__, unp)); 2132 KASSERT(unp->unp_conn == NULL, 2133 ("%s: unpcb %p is still connected", __func__, unp)); 2134 KASSERT(unp->unp_addr == NULL, 2135 ("%s: unpcb %p has leaked addr", __func__, unp)); 2136 } 2137 #endif 2138 2139 static void 2140 unp_init(void) 2141 { 2142 uma_dtor dtor; 2143 2144 #ifdef VIMAGE 2145 if (!IS_DEFAULT_VNET(curvnet)) 2146 return; 2147 #endif 2148 2149 #ifdef INVARIANTS 2150 dtor = unp_zdtor; 2151 #else 2152 dtor = NULL; 2153 #endif 2154 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor, 2155 NULL, NULL, UMA_ALIGN_CACHE, 0); 2156 uma_zone_set_max(unp_zone, maxsockets); 2157 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2158 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2159 NULL, EVENTHANDLER_PRI_ANY); 2160 LIST_INIT(&unp_dhead); 2161 LIST_INIT(&unp_shead); 2162 LIST_INIT(&unp_sphead); 2163 SLIST_INIT(&unp_defers); 2164 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2165 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2166 UNP_LINK_LOCK_INIT(); 2167 UNP_DEFERRED_LOCK_INIT(); 2168 } 2169 2170 static void 2171 unp_internalize_cleanup_rights(struct mbuf *control) 2172 { 2173 struct cmsghdr *cp; 2174 struct mbuf *m; 2175 void *data; 2176 socklen_t datalen; 2177 2178 for (m = control; m != NULL; m = m->m_next) { 2179 cp = mtod(m, struct cmsghdr *); 2180 if (cp->cmsg_level != SOL_SOCKET || 2181 cp->cmsg_type != SCM_RIGHTS) 2182 continue; 2183 data = CMSG_DATA(cp); 2184 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 2185 unp_freerights(data, datalen / sizeof(struct filedesc *)); 2186 } 2187 } 2188 2189 static int 2190 unp_internalize(struct mbuf **controlp, struct thread *td) 2191 { 2192 struct mbuf *control, **initial_controlp; 2193 struct proc *p; 2194 struct filedesc *fdesc; 2195 struct bintime *bt; 2196 struct cmsghdr *cm; 2197 struct cmsgcred *cmcred; 2198 struct filedescent *fde, **fdep, *fdev; 2199 struct file *fp; 2200 struct timeval *tv; 2201 struct timespec *ts; 2202 void *data; 2203 socklen_t clen, datalen; 2204 int i, j, error, *fdp, oldfds; 2205 u_int newlen; 2206 2207 UNP_LINK_UNLOCK_ASSERT(); 2208 2209 p = td->td_proc; 2210 fdesc = p->p_fd; 2211 error = 0; 2212 control = *controlp; 2213 clen = control->m_len; 2214 *controlp = NULL; 2215 initial_controlp = controlp; 2216 for (cm = mtod(control, struct cmsghdr *); cm != NULL;) { 2217 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2218 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2219 error = EINVAL; 2220 goto out; 2221 } 2222 data = CMSG_DATA(cm); 2223 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2224 2225 switch (cm->cmsg_type) { 2226 /* 2227 * Fill in credential information. 2228 */ 2229 case SCM_CREDS: 2230 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2231 SCM_CREDS, SOL_SOCKET); 2232 if (*controlp == NULL) { 2233 error = ENOBUFS; 2234 goto out; 2235 } 2236 cmcred = (struct cmsgcred *) 2237 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2238 cmcred->cmcred_pid = p->p_pid; 2239 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2240 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2241 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2242 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2243 CMGROUP_MAX); 2244 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2245 cmcred->cmcred_groups[i] = 2246 td->td_ucred->cr_groups[i]; 2247 break; 2248 2249 case SCM_RIGHTS: 2250 oldfds = datalen / sizeof (int); 2251 if (oldfds == 0) 2252 break; 2253 /* 2254 * Check that all the FDs passed in refer to legal 2255 * files. If not, reject the entire operation. 2256 */ 2257 fdp = data; 2258 FILEDESC_SLOCK(fdesc); 2259 for (i = 0; i < oldfds; i++, fdp++) { 2260 fp = fget_locked(fdesc, *fdp); 2261 if (fp == NULL) { 2262 FILEDESC_SUNLOCK(fdesc); 2263 error = EBADF; 2264 goto out; 2265 } 2266 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2267 FILEDESC_SUNLOCK(fdesc); 2268 error = EOPNOTSUPP; 2269 goto out; 2270 } 2271 } 2272 2273 /* 2274 * Now replace the integer FDs with pointers to the 2275 * file structure and capability rights. 2276 */ 2277 newlen = oldfds * sizeof(fdep[0]); 2278 *controlp = sbcreatecontrol(NULL, newlen, 2279 SCM_RIGHTS, SOL_SOCKET); 2280 if (*controlp == NULL) { 2281 FILEDESC_SUNLOCK(fdesc); 2282 error = E2BIG; 2283 goto out; 2284 } 2285 fdp = data; 2286 for (i = 0; i < oldfds; i++, fdp++) { 2287 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 2288 fdp = data; 2289 for (j = 0; j < i; j++, fdp++) { 2290 fdrop(fdesc->fd_ofiles[*fdp]. 2291 fde_file, td); 2292 } 2293 FILEDESC_SUNLOCK(fdesc); 2294 error = EBADF; 2295 goto out; 2296 } 2297 } 2298 fdp = data; 2299 fdep = (struct filedescent **) 2300 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2301 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2302 M_WAITOK); 2303 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2304 fde = &fdesc->fd_ofiles[*fdp]; 2305 fdep[i] = fdev; 2306 fdep[i]->fde_file = fde->fde_file; 2307 filecaps_copy(&fde->fde_caps, 2308 &fdep[i]->fde_caps, true); 2309 unp_internalize_fp(fdep[i]->fde_file); 2310 } 2311 FILEDESC_SUNLOCK(fdesc); 2312 break; 2313 2314 case SCM_TIMESTAMP: 2315 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2316 SCM_TIMESTAMP, SOL_SOCKET); 2317 if (*controlp == NULL) { 2318 error = ENOBUFS; 2319 goto out; 2320 } 2321 tv = (struct timeval *) 2322 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2323 microtime(tv); 2324 break; 2325 2326 case SCM_BINTIME: 2327 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2328 SCM_BINTIME, SOL_SOCKET); 2329 if (*controlp == NULL) { 2330 error = ENOBUFS; 2331 goto out; 2332 } 2333 bt = (struct bintime *) 2334 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2335 bintime(bt); 2336 break; 2337 2338 case SCM_REALTIME: 2339 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2340 SCM_REALTIME, SOL_SOCKET); 2341 if (*controlp == NULL) { 2342 error = ENOBUFS; 2343 goto out; 2344 } 2345 ts = (struct timespec *) 2346 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2347 nanotime(ts); 2348 break; 2349 2350 case SCM_MONOTONIC: 2351 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2352 SCM_MONOTONIC, SOL_SOCKET); 2353 if (*controlp == NULL) { 2354 error = ENOBUFS; 2355 goto out; 2356 } 2357 ts = (struct timespec *) 2358 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2359 nanouptime(ts); 2360 break; 2361 2362 default: 2363 error = EINVAL; 2364 goto out; 2365 } 2366 2367 if (*controlp != NULL) 2368 controlp = &(*controlp)->m_next; 2369 if (CMSG_SPACE(datalen) < clen) { 2370 clen -= CMSG_SPACE(datalen); 2371 cm = (struct cmsghdr *) 2372 ((caddr_t)cm + CMSG_SPACE(datalen)); 2373 } else { 2374 clen = 0; 2375 cm = NULL; 2376 } 2377 } 2378 2379 out: 2380 if (error != 0 && initial_controlp != NULL) 2381 unp_internalize_cleanup_rights(*initial_controlp); 2382 m_freem(control); 2383 return (error); 2384 } 2385 2386 static struct mbuf * 2387 unp_addsockcred(struct thread *td, struct mbuf *control, int mode) 2388 { 2389 struct mbuf *m, *n, *n_prev; 2390 const struct cmsghdr *cm; 2391 int ngroups, i, cmsgtype; 2392 size_t ctrlsz; 2393 2394 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2395 if (mode & UNP_WANTCRED_ALWAYS) { 2396 ctrlsz = SOCKCRED2SIZE(ngroups); 2397 cmsgtype = SCM_CREDS2; 2398 } else { 2399 ctrlsz = SOCKCREDSIZE(ngroups); 2400 cmsgtype = SCM_CREDS; 2401 } 2402 2403 m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET); 2404 if (m == NULL) 2405 return (control); 2406 2407 if (mode & UNP_WANTCRED_ALWAYS) { 2408 struct sockcred2 *sc; 2409 2410 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2411 sc->sc_version = 0; 2412 sc->sc_pid = td->td_proc->p_pid; 2413 sc->sc_uid = td->td_ucred->cr_ruid; 2414 sc->sc_euid = td->td_ucred->cr_uid; 2415 sc->sc_gid = td->td_ucred->cr_rgid; 2416 sc->sc_egid = td->td_ucred->cr_gid; 2417 sc->sc_ngroups = ngroups; 2418 for (i = 0; i < sc->sc_ngroups; i++) 2419 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2420 } else { 2421 struct sockcred *sc; 2422 2423 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2424 sc->sc_uid = td->td_ucred->cr_ruid; 2425 sc->sc_euid = td->td_ucred->cr_uid; 2426 sc->sc_gid = td->td_ucred->cr_rgid; 2427 sc->sc_egid = td->td_ucred->cr_gid; 2428 sc->sc_ngroups = ngroups; 2429 for (i = 0; i < sc->sc_ngroups; i++) 2430 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2431 } 2432 2433 /* 2434 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2435 * created SCM_CREDS control message (struct sockcred) has another 2436 * format. 2437 */ 2438 if (control != NULL && cmsgtype == SCM_CREDS) 2439 for (n = control, n_prev = NULL; n != NULL;) { 2440 cm = mtod(n, struct cmsghdr *); 2441 if (cm->cmsg_level == SOL_SOCKET && 2442 cm->cmsg_type == SCM_CREDS) { 2443 if (n_prev == NULL) 2444 control = n->m_next; 2445 else 2446 n_prev->m_next = n->m_next; 2447 n = m_free(n); 2448 } else { 2449 n_prev = n; 2450 n = n->m_next; 2451 } 2452 } 2453 2454 /* Prepend it to the head. */ 2455 m->m_next = control; 2456 return (m); 2457 } 2458 2459 static struct unpcb * 2460 fptounp(struct file *fp) 2461 { 2462 struct socket *so; 2463 2464 if (fp->f_type != DTYPE_SOCKET) 2465 return (NULL); 2466 if ((so = fp->f_data) == NULL) 2467 return (NULL); 2468 if (so->so_proto->pr_domain != &localdomain) 2469 return (NULL); 2470 return sotounpcb(so); 2471 } 2472 2473 static void 2474 unp_discard(struct file *fp) 2475 { 2476 struct unp_defer *dr; 2477 2478 if (unp_externalize_fp(fp)) { 2479 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2480 dr->ud_fp = fp; 2481 UNP_DEFERRED_LOCK(); 2482 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2483 UNP_DEFERRED_UNLOCK(); 2484 atomic_add_int(&unp_defers_count, 1); 2485 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2486 } else 2487 (void) closef(fp, (struct thread *)NULL); 2488 } 2489 2490 static void 2491 unp_process_defers(void *arg __unused, int pending) 2492 { 2493 struct unp_defer *dr; 2494 SLIST_HEAD(, unp_defer) drl; 2495 int count; 2496 2497 SLIST_INIT(&drl); 2498 for (;;) { 2499 UNP_DEFERRED_LOCK(); 2500 if (SLIST_FIRST(&unp_defers) == NULL) { 2501 UNP_DEFERRED_UNLOCK(); 2502 break; 2503 } 2504 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2505 UNP_DEFERRED_UNLOCK(); 2506 count = 0; 2507 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2508 SLIST_REMOVE_HEAD(&drl, ud_link); 2509 closef(dr->ud_fp, NULL); 2510 free(dr, M_TEMP); 2511 count++; 2512 } 2513 atomic_add_int(&unp_defers_count, -count); 2514 } 2515 } 2516 2517 static void 2518 unp_internalize_fp(struct file *fp) 2519 { 2520 struct unpcb *unp; 2521 2522 UNP_LINK_WLOCK(); 2523 if ((unp = fptounp(fp)) != NULL) { 2524 unp->unp_file = fp; 2525 unp->unp_msgcount++; 2526 } 2527 unp_rights++; 2528 UNP_LINK_WUNLOCK(); 2529 } 2530 2531 static int 2532 unp_externalize_fp(struct file *fp) 2533 { 2534 struct unpcb *unp; 2535 int ret; 2536 2537 UNP_LINK_WLOCK(); 2538 if ((unp = fptounp(fp)) != NULL) { 2539 unp->unp_msgcount--; 2540 ret = 1; 2541 } else 2542 ret = 0; 2543 unp_rights--; 2544 UNP_LINK_WUNLOCK(); 2545 return (ret); 2546 } 2547 2548 /* 2549 * unp_defer indicates whether additional work has been defered for a future 2550 * pass through unp_gc(). It is thread local and does not require explicit 2551 * synchronization. 2552 */ 2553 static int unp_marked; 2554 2555 static void 2556 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 2557 { 2558 struct unpcb *unp; 2559 struct file *fp; 2560 int i; 2561 2562 /* 2563 * This function can only be called from the gc task. 2564 */ 2565 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2566 ("%s: not on gc callout", __func__)); 2567 UNP_LINK_LOCK_ASSERT(); 2568 2569 for (i = 0; i < fdcount; i++) { 2570 fp = fdep[i]->fde_file; 2571 if ((unp = fptounp(fp)) == NULL) 2572 continue; 2573 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2574 continue; 2575 unp->unp_gcrefs--; 2576 } 2577 } 2578 2579 static void 2580 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 2581 { 2582 struct unpcb *unp; 2583 struct file *fp; 2584 int i; 2585 2586 /* 2587 * This function can only be called from the gc task. 2588 */ 2589 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2590 ("%s: not on gc callout", __func__)); 2591 UNP_LINK_LOCK_ASSERT(); 2592 2593 for (i = 0; i < fdcount; i++) { 2594 fp = fdep[i]->fde_file; 2595 if ((unp = fptounp(fp)) == NULL) 2596 continue; 2597 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2598 continue; 2599 unp->unp_gcrefs++; 2600 unp_marked++; 2601 } 2602 } 2603 2604 static void 2605 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 2606 { 2607 struct socket *so, *soa; 2608 2609 so = unp->unp_socket; 2610 SOCK_LOCK(so); 2611 if (SOLISTENING(so)) { 2612 /* 2613 * Mark all sockets in our accept queue. 2614 */ 2615 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2616 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2617 continue; 2618 SOCKBUF_LOCK(&soa->so_rcv); 2619 unp_scan(soa->so_rcv.sb_mb, op); 2620 SOCKBUF_UNLOCK(&soa->so_rcv); 2621 } 2622 } else { 2623 /* 2624 * Mark all sockets we reference with RIGHTS. 2625 */ 2626 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2627 SOCKBUF_LOCK(&so->so_rcv); 2628 unp_scan(so->so_rcv.sb_mb, op); 2629 SOCKBUF_UNLOCK(&so->so_rcv); 2630 } 2631 } 2632 SOCK_UNLOCK(so); 2633 } 2634 2635 static int unp_recycled; 2636 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2637 "Number of unreachable sockets claimed by the garbage collector."); 2638 2639 static int unp_taskcount; 2640 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2641 "Number of times the garbage collector has run."); 2642 2643 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 2644 "Number of active local sockets."); 2645 2646 static void 2647 unp_gc(__unused void *arg, int pending) 2648 { 2649 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2650 NULL }; 2651 struct unp_head **head; 2652 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 2653 struct file *f, **unref; 2654 struct unpcb *unp, *unptmp; 2655 int i, total, unp_unreachable; 2656 2657 LIST_INIT(&unp_deadhead); 2658 unp_taskcount++; 2659 UNP_LINK_RLOCK(); 2660 /* 2661 * First determine which sockets may be in cycles. 2662 */ 2663 unp_unreachable = 0; 2664 2665 for (head = heads; *head != NULL; head++) 2666 LIST_FOREACH(unp, *head, unp_link) { 2667 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 2668 ("%s: unp %p has unexpected gc flags 0x%x", 2669 __func__, unp, (unsigned int)unp->unp_gcflag)); 2670 2671 f = unp->unp_file; 2672 2673 /* 2674 * Check for an unreachable socket potentially in a 2675 * cycle. It must be in a queue as indicated by 2676 * msgcount, and this must equal the file reference 2677 * count. Note that when msgcount is 0 the file is 2678 * NULL. 2679 */ 2680 if (f != NULL && unp->unp_msgcount != 0 && 2681 refcount_load(&f->f_count) == unp->unp_msgcount) { 2682 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 2683 unp->unp_gcflag |= UNPGC_DEAD; 2684 unp->unp_gcrefs = unp->unp_msgcount; 2685 unp_unreachable++; 2686 } 2687 } 2688 2689 /* 2690 * Scan all sockets previously marked as potentially being in a cycle 2691 * and remove the references each socket holds on any UNPGC_DEAD 2692 * sockets in its queue. After this step, all remaining references on 2693 * sockets marked UNPGC_DEAD should not be part of any cycle. 2694 */ 2695 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 2696 unp_gc_scan(unp, unp_remove_dead_ref); 2697 2698 /* 2699 * If a socket still has a non-negative refcount, it cannot be in a 2700 * cycle. In this case increment refcount of all children iteratively. 2701 * Stop the scan once we do a complete loop without discovering 2702 * a new reachable socket. 2703 */ 2704 do { 2705 unp_marked = 0; 2706 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 2707 if (unp->unp_gcrefs > 0) { 2708 unp->unp_gcflag &= ~UNPGC_DEAD; 2709 LIST_REMOVE(unp, unp_dead); 2710 KASSERT(unp_unreachable > 0, 2711 ("%s: unp_unreachable underflow.", 2712 __func__)); 2713 unp_unreachable--; 2714 unp_gc_scan(unp, unp_restore_undead_ref); 2715 } 2716 } while (unp_marked); 2717 2718 UNP_LINK_RUNLOCK(); 2719 2720 if (unp_unreachable == 0) 2721 return; 2722 2723 /* 2724 * Allocate space for a local array of dead unpcbs. 2725 * TODO: can this path be simplified by instead using the local 2726 * dead list at unp_deadhead, after taking out references 2727 * on the file object and/or unpcb and dropping the link lock? 2728 */ 2729 unref = malloc(unp_unreachable * sizeof(struct file *), 2730 M_TEMP, M_WAITOK); 2731 2732 /* 2733 * Iterate looking for sockets which have been specifically marked 2734 * as unreachable and store them locally. 2735 */ 2736 UNP_LINK_RLOCK(); 2737 total = 0; 2738 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 2739 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 2740 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 2741 unp->unp_gcflag &= ~UNPGC_DEAD; 2742 f = unp->unp_file; 2743 if (unp->unp_msgcount == 0 || f == NULL || 2744 refcount_load(&f->f_count) != unp->unp_msgcount || 2745 !fhold(f)) 2746 continue; 2747 unref[total++] = f; 2748 KASSERT(total <= unp_unreachable, 2749 ("%s: incorrect unreachable count.", __func__)); 2750 } 2751 UNP_LINK_RUNLOCK(); 2752 2753 /* 2754 * Now flush all sockets, free'ing rights. This will free the 2755 * struct files associated with these sockets but leave each socket 2756 * with one remaining ref. 2757 */ 2758 for (i = 0; i < total; i++) { 2759 struct socket *so; 2760 2761 so = unref[i]->f_data; 2762 CURVNET_SET(so->so_vnet); 2763 sorflush(so); 2764 CURVNET_RESTORE(); 2765 } 2766 2767 /* 2768 * And finally release the sockets so they can be reclaimed. 2769 */ 2770 for (i = 0; i < total; i++) 2771 fdrop(unref[i], NULL); 2772 unp_recycled += total; 2773 free(unref, M_TEMP); 2774 } 2775 2776 static void 2777 unp_dispose_mbuf(struct mbuf *m) 2778 { 2779 2780 if (m) 2781 unp_scan(m, unp_freerights); 2782 } 2783 2784 /* 2785 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2786 */ 2787 static void 2788 unp_dispose(struct socket *so) 2789 { 2790 struct unpcb *unp; 2791 2792 unp = sotounpcb(so); 2793 UNP_LINK_WLOCK(); 2794 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2795 UNP_LINK_WUNLOCK(); 2796 if (!SOLISTENING(so)) 2797 unp_dispose_mbuf(so->so_rcv.sb_mb); 2798 } 2799 2800 static void 2801 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2802 { 2803 struct mbuf *m; 2804 struct cmsghdr *cm; 2805 void *data; 2806 socklen_t clen, datalen; 2807 2808 while (m0 != NULL) { 2809 for (m = m0; m; m = m->m_next) { 2810 if (m->m_type != MT_CONTROL) 2811 continue; 2812 2813 cm = mtod(m, struct cmsghdr *); 2814 clen = m->m_len; 2815 2816 while (cm != NULL) { 2817 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2818 break; 2819 2820 data = CMSG_DATA(cm); 2821 datalen = (caddr_t)cm + cm->cmsg_len 2822 - (caddr_t)data; 2823 2824 if (cm->cmsg_level == SOL_SOCKET && 2825 cm->cmsg_type == SCM_RIGHTS) { 2826 (*op)(data, datalen / 2827 sizeof(struct filedescent *)); 2828 } 2829 2830 if (CMSG_SPACE(datalen) < clen) { 2831 clen -= CMSG_SPACE(datalen); 2832 cm = (struct cmsghdr *) 2833 ((caddr_t)cm + CMSG_SPACE(datalen)); 2834 } else { 2835 clen = 0; 2836 cm = NULL; 2837 } 2838 } 2839 } 2840 m0 = m0->m_nextpkt; 2841 } 2842 } 2843 2844 /* 2845 * A helper function called by VFS before socket-type vnode reclamation. 2846 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2847 * use count. 2848 */ 2849 void 2850 vfs_unp_reclaim(struct vnode *vp) 2851 { 2852 struct unpcb *unp; 2853 int active; 2854 struct mtx *vplock; 2855 2856 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2857 KASSERT(vp->v_type == VSOCK, 2858 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2859 2860 active = 0; 2861 vplock = mtx_pool_find(mtxpool_sleep, vp); 2862 mtx_lock(vplock); 2863 VOP_UNP_CONNECT(vp, &unp); 2864 if (unp == NULL) 2865 goto done; 2866 UNP_PCB_LOCK(unp); 2867 if (unp->unp_vnode == vp) { 2868 VOP_UNP_DETACH(vp); 2869 unp->unp_vnode = NULL; 2870 active = 1; 2871 } 2872 UNP_PCB_UNLOCK(unp); 2873 done: 2874 mtx_unlock(vplock); 2875 if (active) 2876 vunref(vp); 2877 } 2878 2879 #ifdef DDB 2880 static void 2881 db_print_indent(int indent) 2882 { 2883 int i; 2884 2885 for (i = 0; i < indent; i++) 2886 db_printf(" "); 2887 } 2888 2889 static void 2890 db_print_unpflags(int unp_flags) 2891 { 2892 int comma; 2893 2894 comma = 0; 2895 if (unp_flags & UNP_HAVEPC) { 2896 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2897 comma = 1; 2898 } 2899 if (unp_flags & UNP_WANTCRED_ALWAYS) { 2900 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : ""); 2901 comma = 1; 2902 } 2903 if (unp_flags & UNP_WANTCRED_ONESHOT) { 2904 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : ""); 2905 comma = 1; 2906 } 2907 if (unp_flags & UNP_CONNWAIT) { 2908 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2909 comma = 1; 2910 } 2911 if (unp_flags & UNP_CONNECTING) { 2912 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2913 comma = 1; 2914 } 2915 if (unp_flags & UNP_BINDING) { 2916 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2917 comma = 1; 2918 } 2919 } 2920 2921 static void 2922 db_print_xucred(int indent, struct xucred *xu) 2923 { 2924 int comma, i; 2925 2926 db_print_indent(indent); 2927 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 2928 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 2929 db_print_indent(indent); 2930 db_printf("cr_groups: "); 2931 comma = 0; 2932 for (i = 0; i < xu->cr_ngroups; i++) { 2933 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2934 comma = 1; 2935 } 2936 db_printf("\n"); 2937 } 2938 2939 static void 2940 db_print_unprefs(int indent, struct unp_head *uh) 2941 { 2942 struct unpcb *unp; 2943 int counter; 2944 2945 counter = 0; 2946 LIST_FOREACH(unp, uh, unp_reflink) { 2947 if (counter % 4 == 0) 2948 db_print_indent(indent); 2949 db_printf("%p ", unp); 2950 if (counter % 4 == 3) 2951 db_printf("\n"); 2952 counter++; 2953 } 2954 if (counter != 0 && counter % 4 != 0) 2955 db_printf("\n"); 2956 } 2957 2958 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2959 { 2960 struct unpcb *unp; 2961 2962 if (!have_addr) { 2963 db_printf("usage: show unpcb <addr>\n"); 2964 return; 2965 } 2966 unp = (struct unpcb *)addr; 2967 2968 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2969 unp->unp_vnode); 2970 2971 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2972 unp->unp_conn); 2973 2974 db_printf("unp_refs:\n"); 2975 db_print_unprefs(2, &unp->unp_refs); 2976 2977 /* XXXRW: Would be nice to print the full address, if any. */ 2978 db_printf("unp_addr: %p\n", unp->unp_addr); 2979 2980 db_printf("unp_gencnt: %llu\n", 2981 (unsigned long long)unp->unp_gencnt); 2982 2983 db_printf("unp_flags: %x (", unp->unp_flags); 2984 db_print_unpflags(unp->unp_flags); 2985 db_printf(")\n"); 2986 2987 db_printf("unp_peercred:\n"); 2988 db_print_xucred(2, &unp->unp_peercred); 2989 2990 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2991 } 2992 #endif 2993