xref: /freebsd/sys/kern/uipc_usrreq.c (revision 77a62bf55d9fa10d6376ee53c1ddd9790dd41d36)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2008 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	SEQPACKET, RDM
54  *	rethink name space problems
55  *	need a proper out-of-band
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #include "opt_ddb.h"
62 #include "opt_mac.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/jail.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/mbuf.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/namei.h>
78 #include <sys/proc.h>
79 #include <sys/protosw.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #ifdef DDB
95 #include <ddb/ddb.h>
96 #endif
97 
98 #include <security/mac/mac_framework.h>
99 
100 #include <vm/uma.h>
101 
102 static uma_zone_t	unp_zone;
103 static unp_gen_t	unp_gencnt;
104 static u_int		unp_count;	/* Count of local sockets. */
105 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
106 static int		unp_rights;	/* File descriptors in flight. */
107 static struct unp_head	unp_shead;	/* List of local stream sockets. */
108 static struct unp_head	unp_dhead;	/* List of local datagram sockets. */
109 
110 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
111 
112 /*
113  * Garbage collection of cyclic file descriptor/socket references occurs
114  * asynchronously in a taskqueue context in order to avoid recursion and
115  * reentrance in the UNIX domain socket, file descriptor, and socket layer
116  * code.  See unp_gc() for a full description.
117  */
118 static struct task	unp_gc_task;
119 
120 /*
121  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
122  * stream sockets, although the total for sender and receiver is actually
123  * only PIPSIZ.
124  *
125  * Datagram sockets really use the sendspace as the maximum datagram size,
126  * and don't really want to reserve the sendspace.  Their recvspace should be
127  * large enough for at least one max-size datagram plus address.
128  */
129 #ifndef PIPSIZ
130 #define	PIPSIZ	8192
131 #endif
132 static u_long	unpst_sendspace = PIPSIZ;
133 static u_long	unpst_recvspace = PIPSIZ;
134 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
135 static u_long	unpdg_recvspace = 4*1024;
136 
137 SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
138 SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
139 SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
140 
141 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
142 	   &unpst_sendspace, 0, "Default stream send space.");
143 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
144 	   &unpst_recvspace, 0, "Default stream receive space.");
145 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
146 	   &unpdg_sendspace, 0, "Default datagram send space.");
147 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
148 	   &unpdg_recvspace, 0, "Default datagram receive space.");
149 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
150     "File descriptors in flight.");
151 
152 /*-
153  * Locking and synchronization:
154  *
155  * The global UNIX domain socket rwlock (unp_global_rwlock) protects all
156  * global variables, including the linked lists tracking the set of allocated
157  * UNIX domain sockets.  The global rwlock also serves to prevent deadlock
158  * when more than one PCB lock is acquired at a time (i.e., during
159  * connect()).  Finally, the global rwlock protects uncounted references from
160  * vnodes to sockets bound to those vnodes: to safely dereference the
161  * v_socket pointer, the global rwlock must be held while a full reference is
162  * acquired.
163  *
164  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
165  * allocated in pru_attach() and freed in pru_detach().  The validity of that
166  * pointer is an invariant, so no lock is required to dereference the so_pcb
167  * pointer if a valid socket reference is held by the caller.  In practice,
168  * this is always true during operations performed on a socket.  Each unpcb
169  * has a back-pointer to its socket, unp_socket, which will be stable under
170  * the same circumstances.
171  *
172  * This pointer may only be safely dereferenced as long as a valid reference
173  * to the unpcb is held.  Typically, this reference will be from the socket,
174  * or from another unpcb when the referring unpcb's lock is held (in order
175  * that the reference not be invalidated during use).  For example, to follow
176  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
177  * as unp_socket remains valid as long as the reference to unp_conn is valid.
178  *
179  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
180  * atomic reads without the lock may be performed "lockless", but more
181  * complex reads and read-modify-writes require the mutex to be held.  No
182  * lock order is defined between unpcb locks -- multiple unpcb locks may be
183  * acquired at the same time only when holding the global UNIX domain socket
184  * rwlock exclusively, which prevents deadlocks.
185  *
186  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
187  * protocols, bind() is a non-atomic operation, and connect() requires
188  * potential sleeping in the protocol, due to potentially waiting on local or
189  * distributed file systems.  We try to separate "lookup" operations, which
190  * may sleep, and the IPC operations themselves, which typically can occur
191  * with relative atomicity as locks can be held over the entire operation.
192  *
193  * Another tricky issue is simultaneous multi-threaded or multi-process
194  * access to a single UNIX domain socket.  These are handled by the flags
195  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
196  * binding, both of which involve dropping UNIX domain socket locks in order
197  * to perform namei() and other file system operations.
198  */
199 static struct rwlock	unp_global_rwlock;
200 
201 #define	UNP_GLOBAL_LOCK_INIT()		rw_init(&unp_global_rwlock,	\
202 					    "unp_global_rwlock")
203 
204 #define	UNP_GLOBAL_LOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
205 					    RA_LOCKED)
206 #define	UNP_GLOBAL_UNLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
207 					    RA_UNLOCKED)
208 
209 #define	UNP_GLOBAL_WLOCK()		rw_wlock(&unp_global_rwlock)
210 #define	UNP_GLOBAL_WUNLOCK()		rw_wunlock(&unp_global_rwlock)
211 #define	UNP_GLOBAL_WLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
212 					    RA_WLOCKED)
213 #define	UNP_GLOBAL_WOWNED()		rw_wowned(&unp_global_rwlock)
214 
215 #define	UNP_GLOBAL_RLOCK()		rw_rlock(&unp_global_rwlock)
216 #define	UNP_GLOBAL_RUNLOCK()		rw_runlock(&unp_global_rwlock)
217 #define	UNP_GLOBAL_RLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
218 					    RA_RLOCKED)
219 
220 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
221 					    "unp_mtx", "unp_mtx",	\
222 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
223 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
224 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
225 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
226 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
227 
228 static int	uipc_connect2(struct socket *, struct socket *);
229 static int	uipc_ctloutput(struct socket *, struct sockopt *);
230 static int	unp_connect(struct socket *, struct sockaddr *,
231 		    struct thread *);
232 static int	unp_connect2(struct socket *so, struct socket *so2, int);
233 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
234 static void	unp_dispose(struct mbuf *);
235 static void	unp_shutdown(struct unpcb *);
236 static void	unp_drop(struct unpcb *, int);
237 static void	unp_gc(__unused void *, int);
238 static void	unp_scan(struct mbuf *, void (*)(struct file *));
239 static void	unp_discard(struct file *);
240 static void	unp_freerights(struct file **, int);
241 static void	unp_init(void);
242 static int	unp_internalize(struct mbuf **, struct thread *);
243 static void	unp_internalize_fp(struct file *);
244 static int	unp_externalize(struct mbuf *, struct mbuf **);
245 static void	unp_externalize_fp(struct file *);
246 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
247 
248 /*
249  * Definitions of protocols supported in the LOCAL domain.
250  */
251 static struct domain localdomain;
252 static struct pr_usrreqs uipc_usrreqs;
253 static struct protosw localsw[] = {
254 {
255 	.pr_type =		SOCK_STREAM,
256 	.pr_domain =		&localdomain,
257 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
258 	.pr_ctloutput =		&uipc_ctloutput,
259 	.pr_usrreqs =		&uipc_usrreqs
260 },
261 {
262 	.pr_type =		SOCK_DGRAM,
263 	.pr_domain =		&localdomain,
264 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
265 	.pr_usrreqs =		&uipc_usrreqs
266 },
267 };
268 
269 static struct domain localdomain = {
270 	.dom_family =		AF_LOCAL,
271 	.dom_name =		"local",
272 	.dom_init =		unp_init,
273 	.dom_externalize =	unp_externalize,
274 	.dom_dispose =		unp_dispose,
275 	.dom_protosw =		localsw,
276 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
277 };
278 DOMAIN_SET(local);
279 
280 static void
281 uipc_abort(struct socket *so)
282 {
283 	struct unpcb *unp, *unp2;
284 
285 	unp = sotounpcb(so);
286 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
287 
288 	UNP_GLOBAL_WLOCK();
289 	UNP_PCB_LOCK(unp);
290 	unp2 = unp->unp_conn;
291 	if (unp2 != NULL) {
292 		UNP_PCB_LOCK(unp2);
293 		unp_drop(unp2, ECONNABORTED);
294 		UNP_PCB_UNLOCK(unp2);
295 	}
296 	UNP_PCB_UNLOCK(unp);
297 	UNP_GLOBAL_WUNLOCK();
298 }
299 
300 static int
301 uipc_accept(struct socket *so, struct sockaddr **nam)
302 {
303 	struct unpcb *unp, *unp2;
304 	const struct sockaddr *sa;
305 
306 	/*
307 	 * Pass back name of connected socket, if it was bound and we are
308 	 * still connected (our peer may have closed already!).
309 	 */
310 	unp = sotounpcb(so);
311 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
312 
313 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
314 	UNP_GLOBAL_RLOCK();
315 	unp2 = unp->unp_conn;
316 	if (unp2 != NULL && unp2->unp_addr != NULL) {
317 		UNP_PCB_LOCK(unp2);
318 		sa = (struct sockaddr *) unp2->unp_addr;
319 		bcopy(sa, *nam, sa->sa_len);
320 		UNP_PCB_UNLOCK(unp2);
321 	} else {
322 		sa = &sun_noname;
323 		bcopy(sa, *nam, sa->sa_len);
324 	}
325 	UNP_GLOBAL_RUNLOCK();
326 	return (0);
327 }
328 
329 static int
330 uipc_attach(struct socket *so, int proto, struct thread *td)
331 {
332 	u_long sendspace, recvspace;
333 	struct unpcb *unp;
334 	int error, locked;
335 
336 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
337 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
338 		switch (so->so_type) {
339 		case SOCK_STREAM:
340 			sendspace = unpst_sendspace;
341 			recvspace = unpst_recvspace;
342 			break;
343 
344 		case SOCK_DGRAM:
345 			sendspace = unpdg_sendspace;
346 			recvspace = unpdg_recvspace;
347 			break;
348 
349 		default:
350 			panic("uipc_attach");
351 		}
352 		error = soreserve(so, sendspace, recvspace);
353 		if (error)
354 			return (error);
355 	}
356 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
357 	if (unp == NULL)
358 		return (ENOBUFS);
359 	LIST_INIT(&unp->unp_refs);
360 	UNP_PCB_LOCK_INIT(unp);
361 	unp->unp_socket = so;
362 	so->so_pcb = unp;
363 	unp->unp_refcount = 1;
364 
365 	/*
366 	 * uipc_attach() may be called indirectly from within the UNIX domain
367 	 * socket code via sonewconn() in unp_connect().  Since rwlocks can
368 	 * not be recursed, we do the closest thing.
369 	 */
370 	locked = 0;
371 	if (!UNP_GLOBAL_WOWNED()) {
372 		UNP_GLOBAL_WLOCK();
373 		locked = 1;
374 	}
375 	unp->unp_gencnt = ++unp_gencnt;
376 	unp_count++;
377 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead : &unp_shead,
378 	    unp, unp_link);
379 	if (locked)
380 		UNP_GLOBAL_WUNLOCK();
381 
382 	return (0);
383 }
384 
385 static int
386 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
387 {
388 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
389 	struct vattr vattr;
390 	int error, namelen, vfslocked;
391 	struct nameidata nd;
392 	struct unpcb *unp;
393 	struct vnode *vp;
394 	struct mount *mp;
395 	char *buf;
396 
397 	unp = sotounpcb(so);
398 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
399 
400 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
401 	if (namelen <= 0)
402 		return (EINVAL);
403 
404 	/*
405 	 * We don't allow simultaneous bind() calls on a single UNIX domain
406 	 * socket, so flag in-progress operations, and return an error if an
407 	 * operation is already in progress.
408 	 *
409 	 * Historically, we have not allowed a socket to be rebound, so this
410 	 * also returns an error.  Not allowing re-binding simplifies the
411 	 * implementation and avoids a great many possible failure modes.
412 	 */
413 	UNP_PCB_LOCK(unp);
414 	if (unp->unp_vnode != NULL) {
415 		UNP_PCB_UNLOCK(unp);
416 		return (EINVAL);
417 	}
418 	if (unp->unp_flags & UNP_BINDING) {
419 		UNP_PCB_UNLOCK(unp);
420 		return (EALREADY);
421 	}
422 	unp->unp_flags |= UNP_BINDING;
423 	UNP_PCB_UNLOCK(unp);
424 
425 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
426 	bcopy(soun->sun_path, buf, namelen);
427 	buf[namelen] = 0;
428 
429 restart:
430 	vfslocked = 0;
431 	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
432 	    UIO_SYSSPACE, buf, td);
433 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
434 	error = namei(&nd);
435 	if (error)
436 		goto error;
437 	vp = nd.ni_vp;
438 	vfslocked = NDHASGIANT(&nd);
439 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
440 		NDFREE(&nd, NDF_ONLY_PNBUF);
441 		if (nd.ni_dvp == vp)
442 			vrele(nd.ni_dvp);
443 		else
444 			vput(nd.ni_dvp);
445 		if (vp != NULL) {
446 			vrele(vp);
447 			error = EADDRINUSE;
448 			goto error;
449 		}
450 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
451 		if (error)
452 			goto error;
453 		VFS_UNLOCK_GIANT(vfslocked);
454 		goto restart;
455 	}
456 	VATTR_NULL(&vattr);
457 	vattr.va_type = VSOCK;
458 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
459 #ifdef MAC
460 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
461 	    &vattr);
462 #endif
463 	if (error == 0) {
464 		VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE);
465 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
466 	}
467 	NDFREE(&nd, NDF_ONLY_PNBUF);
468 	vput(nd.ni_dvp);
469 	if (error) {
470 		vn_finished_write(mp);
471 		goto error;
472 	}
473 	vp = nd.ni_vp;
474 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
475 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
476 
477 	UNP_GLOBAL_WLOCK();
478 	UNP_PCB_LOCK(unp);
479 	vp->v_socket = unp->unp_socket;
480 	unp->unp_vnode = vp;
481 	unp->unp_addr = soun;
482 	unp->unp_flags &= ~UNP_BINDING;
483 	UNP_PCB_UNLOCK(unp);
484 	UNP_GLOBAL_WUNLOCK();
485 	VOP_UNLOCK(vp, 0);
486 	vn_finished_write(mp);
487 	VFS_UNLOCK_GIANT(vfslocked);
488 	free(buf, M_TEMP);
489 	return (0);
490 
491 error:
492 	VFS_UNLOCK_GIANT(vfslocked);
493 	UNP_PCB_LOCK(unp);
494 	unp->unp_flags &= ~UNP_BINDING;
495 	UNP_PCB_UNLOCK(unp);
496 	free(buf, M_TEMP);
497 	return (error);
498 }
499 
500 static int
501 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
502 {
503 	int error;
504 
505 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
506 	UNP_GLOBAL_WLOCK();
507 	error = unp_connect(so, nam, td);
508 	UNP_GLOBAL_WUNLOCK();
509 	return (error);
510 }
511 
512 static void
513 uipc_close(struct socket *so)
514 {
515 	struct unpcb *unp, *unp2;
516 
517 	unp = sotounpcb(so);
518 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
519 
520 	UNP_GLOBAL_WLOCK();
521 	UNP_PCB_LOCK(unp);
522 	unp2 = unp->unp_conn;
523 	if (unp2 != NULL) {
524 		UNP_PCB_LOCK(unp2);
525 		unp_disconnect(unp, unp2);
526 		UNP_PCB_UNLOCK(unp2);
527 	}
528 	UNP_PCB_UNLOCK(unp);
529 	UNP_GLOBAL_WUNLOCK();
530 }
531 
532 /*
533  * uipc_connect2() is not static as it is invoked directly by fifofs.
534  */
535 static int
536 uipc_connect2(struct socket *so1, struct socket *so2)
537 {
538 	struct unpcb *unp, *unp2;
539 	int error;
540 
541 	UNP_GLOBAL_WLOCK();
542 	unp = so1->so_pcb;
543 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
544 	UNP_PCB_LOCK(unp);
545 	unp2 = so2->so_pcb;
546 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
547 	UNP_PCB_LOCK(unp2);
548 	error = unp_connect2(so1, so2, PRU_CONNECT2);
549 	UNP_PCB_UNLOCK(unp2);
550 	UNP_PCB_UNLOCK(unp);
551 	UNP_GLOBAL_WUNLOCK();
552 	return (error);
553 }
554 
555 static void
556 uipc_detach(struct socket *so)
557 {
558 	struct unpcb *unp, *unp2;
559 	struct sockaddr_un *saved_unp_addr;
560 	struct vnode *vp;
561 	int freeunp, local_unp_rights;
562 
563 	unp = sotounpcb(so);
564 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
565 
566 	UNP_GLOBAL_WLOCK();
567 	UNP_PCB_LOCK(unp);
568 
569 	LIST_REMOVE(unp, unp_link);
570 	unp->unp_gencnt = ++unp_gencnt;
571 	--unp_count;
572 
573 	/*
574 	 * XXXRW: Should assert vp->v_socket == so.
575 	 */
576 	if ((vp = unp->unp_vnode) != NULL) {
577 		unp->unp_vnode->v_socket = NULL;
578 		unp->unp_vnode = NULL;
579 	}
580 	unp2 = unp->unp_conn;
581 	if (unp2 != NULL) {
582 		UNP_PCB_LOCK(unp2);
583 		unp_disconnect(unp, unp2);
584 		UNP_PCB_UNLOCK(unp2);
585 	}
586 
587 	/*
588 	 * We hold the global lock exclusively, so it's OK to acquire
589 	 * multiple pcb locks at a time.
590 	 */
591 	while (!LIST_EMPTY(&unp->unp_refs)) {
592 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
593 
594 		UNP_PCB_LOCK(ref);
595 		unp_drop(ref, ECONNRESET);
596 		UNP_PCB_UNLOCK(ref);
597 	}
598 	local_unp_rights = unp_rights;
599 	UNP_GLOBAL_WUNLOCK();
600 	unp->unp_socket->so_pcb = NULL;
601 	saved_unp_addr = unp->unp_addr;
602 	unp->unp_addr = NULL;
603 	unp->unp_refcount--;
604 	freeunp = (unp->unp_refcount == 0);
605 	if (saved_unp_addr != NULL)
606 		FREE(saved_unp_addr, M_SONAME);
607 	if (freeunp) {
608 		UNP_PCB_LOCK_DESTROY(unp);
609 		uma_zfree(unp_zone, unp);
610 	} else
611 		UNP_PCB_UNLOCK(unp);
612 	if (vp) {
613 		int vfslocked;
614 
615 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
616 		vrele(vp);
617 		VFS_UNLOCK_GIANT(vfslocked);
618 	}
619 	if (local_unp_rights)
620 		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
621 }
622 
623 static int
624 uipc_disconnect(struct socket *so)
625 {
626 	struct unpcb *unp, *unp2;
627 
628 	unp = sotounpcb(so);
629 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
630 
631 	UNP_GLOBAL_WLOCK();
632 	UNP_PCB_LOCK(unp);
633 	unp2 = unp->unp_conn;
634 	if (unp2 != NULL) {
635 		UNP_PCB_LOCK(unp2);
636 		unp_disconnect(unp, unp2);
637 		UNP_PCB_UNLOCK(unp2);
638 	}
639 	UNP_PCB_UNLOCK(unp);
640 	UNP_GLOBAL_WUNLOCK();
641 	return (0);
642 }
643 
644 static int
645 uipc_listen(struct socket *so, int backlog, struct thread *td)
646 {
647 	struct unpcb *unp;
648 	int error;
649 
650 	unp = sotounpcb(so);
651 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
652 
653 	UNP_PCB_LOCK(unp);
654 	if (unp->unp_vnode == NULL) {
655 		UNP_PCB_UNLOCK(unp);
656 		return (EINVAL);
657 	}
658 
659 	SOCK_LOCK(so);
660 	error = solisten_proto_check(so);
661 	if (error == 0) {
662 		cru2x(td->td_ucred, &unp->unp_peercred);
663 		unp->unp_flags |= UNP_HAVEPCCACHED;
664 		solisten_proto(so, backlog);
665 	}
666 	SOCK_UNLOCK(so);
667 	UNP_PCB_UNLOCK(unp);
668 	return (error);
669 }
670 
671 static int
672 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
673 {
674 	struct unpcb *unp, *unp2;
675 	const struct sockaddr *sa;
676 
677 	unp = sotounpcb(so);
678 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
679 
680 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
681 	UNP_PCB_LOCK(unp);
682 	/*
683 	 * XXX: It seems that this test always fails even when connection is
684 	 * established.  So, this else clause is added as workaround to
685 	 * return PF_LOCAL sockaddr.
686 	 */
687 	unp2 = unp->unp_conn;
688 	if (unp2 != NULL) {
689 		UNP_PCB_LOCK(unp2);
690 		if (unp2->unp_addr != NULL)
691 			sa = (struct sockaddr *) unp->unp_conn->unp_addr;
692 		else
693 			sa = &sun_noname;
694 		bcopy(sa, *nam, sa->sa_len);
695 		UNP_PCB_UNLOCK(unp2);
696 	} else {
697 		sa = &sun_noname;
698 		bcopy(sa, *nam, sa->sa_len);
699 	}
700 	UNP_PCB_UNLOCK(unp);
701 	return (0);
702 }
703 
704 static int
705 uipc_rcvd(struct socket *so, int flags)
706 {
707 	struct unpcb *unp, *unp2;
708 	struct socket *so2;
709 	u_int mbcnt, sbcc;
710 	u_long newhiwat;
711 
712 	unp = sotounpcb(so);
713 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
714 
715 	if (so->so_type == SOCK_DGRAM)
716 		panic("uipc_rcvd DGRAM?");
717 
718 	if (so->so_type != SOCK_STREAM)
719 		panic("uipc_rcvd unknown socktype");
720 
721 	/*
722 	 * Adjust backpressure on sender and wakeup any waiting to write.
723 	 *
724 	 * The unp lock is acquired to maintain the validity of the unp_conn
725 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
726 	 * static as long as we don't permit unp2 to disconnect from unp,
727 	 * which is prevented by the lock on unp.  We cache values from
728 	 * so_rcv to avoid holding the so_rcv lock over the entire
729 	 * transaction on the remote so_snd.
730 	 */
731 	SOCKBUF_LOCK(&so->so_rcv);
732 	mbcnt = so->so_rcv.sb_mbcnt;
733 	sbcc = so->so_rcv.sb_cc;
734 	SOCKBUF_UNLOCK(&so->so_rcv);
735 	UNP_PCB_LOCK(unp);
736 	unp2 = unp->unp_conn;
737 	if (unp2 == NULL) {
738 		UNP_PCB_UNLOCK(unp);
739 		return (0);
740 	}
741 	so2 = unp2->unp_socket;
742 	SOCKBUF_LOCK(&so2->so_snd);
743 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
744 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
745 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
746 	    newhiwat, RLIM_INFINITY);
747 	sowwakeup_locked(so2);
748 	unp->unp_mbcnt = mbcnt;
749 	unp->unp_cc = sbcc;
750 	UNP_PCB_UNLOCK(unp);
751 	return (0);
752 }
753 
754 static int
755 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
756     struct mbuf *control, struct thread *td)
757 {
758 	struct unpcb *unp, *unp2;
759 	struct socket *so2;
760 	u_int mbcnt, sbcc;
761 	u_long newhiwat;
762 	int error = 0;
763 
764 	unp = sotounpcb(so);
765 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
766 
767 	if (flags & PRUS_OOB) {
768 		error = EOPNOTSUPP;
769 		goto release;
770 	}
771 	if (control != NULL && (error = unp_internalize(&control, td)))
772 		goto release;
773 	if ((nam != NULL) || (flags & PRUS_EOF))
774 		UNP_GLOBAL_WLOCK();
775 	else
776 		UNP_GLOBAL_RLOCK();
777 	switch (so->so_type) {
778 	case SOCK_DGRAM:
779 	{
780 		const struct sockaddr *from;
781 
782 		unp2 = unp->unp_conn;
783 		if (nam != NULL) {
784 			UNP_GLOBAL_WLOCK_ASSERT();
785 			if (unp2 != NULL) {
786 				error = EISCONN;
787 				break;
788 			}
789 			error = unp_connect(so, nam, td);
790 			if (error)
791 				break;
792 			unp2 = unp->unp_conn;
793 		}
794 
795 		/*
796 		 * Because connect() and send() are non-atomic in a sendto()
797 		 * with a target address, it's possible that the socket will
798 		 * have disconnected before the send() can run.  In that case
799 		 * return the slightly counter-intuitive but otherwise
800 		 * correct error that the socket is not connected.
801 		 */
802 		if (unp2 == NULL) {
803 			error = ENOTCONN;
804 			break;
805 		}
806 		/* Lockless read. */
807 		if (unp2->unp_flags & UNP_WANTCRED)
808 			control = unp_addsockcred(td, control);
809 		UNP_PCB_LOCK(unp);
810 		if (unp->unp_addr != NULL)
811 			from = (struct sockaddr *)unp->unp_addr;
812 		else
813 			from = &sun_noname;
814 		so2 = unp2->unp_socket;
815 		SOCKBUF_LOCK(&so2->so_rcv);
816 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
817 			sorwakeup_locked(so2);
818 			m = NULL;
819 			control = NULL;
820 		} else {
821 			SOCKBUF_UNLOCK(&so2->so_rcv);
822 			error = ENOBUFS;
823 		}
824 		if (nam != NULL) {
825 			UNP_GLOBAL_WLOCK_ASSERT();
826 			UNP_PCB_LOCK(unp2);
827 			unp_disconnect(unp, unp2);
828 			UNP_PCB_UNLOCK(unp2);
829 		}
830 		UNP_PCB_UNLOCK(unp);
831 		break;
832 	}
833 
834 	case SOCK_STREAM:
835 		if ((so->so_state & SS_ISCONNECTED) == 0) {
836 			if (nam != NULL) {
837 				UNP_GLOBAL_WLOCK_ASSERT();
838 				error = unp_connect(so, nam, td);
839 				if (error)
840 					break;	/* XXX */
841 			} else {
842 				error = ENOTCONN;
843 				break;
844 			}
845 		}
846 
847 		/* Lockless read. */
848 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
849 			error = EPIPE;
850 			break;
851 		}
852 
853 		/*
854 		 * Because connect() and send() are non-atomic in a sendto()
855 		 * with a target address, it's possible that the socket will
856 		 * have disconnected before the send() can run.  In that case
857 		 * return the slightly counter-intuitive but otherwise
858 		 * correct error that the socket is not connected.
859 		 *
860 		 * Locking here must be done carefully: the global lock
861 		 * prevents interconnections between unpcbs from changing, so
862 		 * we can traverse from unp to unp2 without acquiring unp's
863 		 * lock.  Socket buffer locks follow unpcb locks, so we can
864 		 * acquire both remote and lock socket buffer locks.
865 		 */
866 		unp2 = unp->unp_conn;
867 		if (unp2 == NULL) {
868 			error = ENOTCONN;
869 			break;
870 		}
871 		so2 = unp2->unp_socket;
872 		UNP_PCB_LOCK(unp2);
873 		SOCKBUF_LOCK(&so2->so_rcv);
874 		if (unp2->unp_flags & UNP_WANTCRED) {
875 			/*
876 			 * Credentials are passed only once on SOCK_STREAM.
877 			 */
878 			unp2->unp_flags &= ~UNP_WANTCRED;
879 			control = unp_addsockcred(td, control);
880 		}
881 		/*
882 		 * Send to paired receive port, and then reduce send buffer
883 		 * hiwater marks to maintain backpressure.  Wake up readers.
884 		 */
885 		if (control != NULL) {
886 			if (sbappendcontrol_locked(&so2->so_rcv, m, control))
887 				control = NULL;
888 		} else
889 			sbappend_locked(&so2->so_rcv, m);
890 		mbcnt = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
891 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
892 		sbcc = so2->so_rcv.sb_cc;
893 		sorwakeup_locked(so2);
894 
895 		SOCKBUF_LOCK(&so->so_snd);
896 		newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
897 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
898 		    newhiwat, RLIM_INFINITY);
899 		so->so_snd.sb_mbmax -= mbcnt;
900 		SOCKBUF_UNLOCK(&so->so_snd);
901 		unp2->unp_cc = sbcc;
902 		UNP_PCB_UNLOCK(unp2);
903 		m = NULL;
904 		break;
905 
906 	default:
907 		panic("uipc_send unknown socktype");
908 	}
909 
910 	/*
911 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
912 	 */
913 	if (flags & PRUS_EOF) {
914 		UNP_PCB_LOCK(unp);
915 		socantsendmore(so);
916 		unp_shutdown(unp);
917 		UNP_PCB_UNLOCK(unp);
918 	}
919 
920 	if ((nam != NULL) || (flags & PRUS_EOF))
921 		UNP_GLOBAL_WUNLOCK();
922 	else
923 		UNP_GLOBAL_RUNLOCK();
924 
925 	if (control != NULL && error != 0)
926 		unp_dispose(control);
927 
928 release:
929 	if (control != NULL)
930 		m_freem(control);
931 	if (m != NULL)
932 		m_freem(m);
933 	return (error);
934 }
935 
936 static int
937 uipc_sense(struct socket *so, struct stat *sb)
938 {
939 	struct unpcb *unp, *unp2;
940 	struct socket *so2;
941 
942 	unp = sotounpcb(so);
943 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
944 
945 	sb->st_blksize = so->so_snd.sb_hiwat;
946 	UNP_GLOBAL_RLOCK();
947 	UNP_PCB_LOCK(unp);
948 	unp2 = unp->unp_conn;
949 	if (so->so_type == SOCK_STREAM && unp2 != NULL) {
950 		so2 = unp2->unp_socket;
951 		sb->st_blksize += so2->so_rcv.sb_cc;
952 	}
953 	sb->st_dev = NODEV;
954 	if (unp->unp_ino == 0)
955 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
956 	sb->st_ino = unp->unp_ino;
957 	UNP_PCB_UNLOCK(unp);
958 	UNP_GLOBAL_RUNLOCK();
959 	return (0);
960 }
961 
962 static int
963 uipc_shutdown(struct socket *so)
964 {
965 	struct unpcb *unp;
966 
967 	unp = sotounpcb(so);
968 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
969 
970 	UNP_GLOBAL_WLOCK();
971 	UNP_PCB_LOCK(unp);
972 	socantsendmore(so);
973 	unp_shutdown(unp);
974 	UNP_PCB_UNLOCK(unp);
975 	UNP_GLOBAL_WUNLOCK();
976 	return (0);
977 }
978 
979 static int
980 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
981 {
982 	struct unpcb *unp;
983 	const struct sockaddr *sa;
984 
985 	unp = sotounpcb(so);
986 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
987 
988 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
989 	UNP_PCB_LOCK(unp);
990 	if (unp->unp_addr != NULL)
991 		sa = (struct sockaddr *) unp->unp_addr;
992 	else
993 		sa = &sun_noname;
994 	bcopy(sa, *nam, sa->sa_len);
995 	UNP_PCB_UNLOCK(unp);
996 	return (0);
997 }
998 
999 static struct pr_usrreqs uipc_usrreqs = {
1000 	.pru_abort = 		uipc_abort,
1001 	.pru_accept =		uipc_accept,
1002 	.pru_attach =		uipc_attach,
1003 	.pru_bind =		uipc_bind,
1004 	.pru_connect =		uipc_connect,
1005 	.pru_connect2 =		uipc_connect2,
1006 	.pru_detach =		uipc_detach,
1007 	.pru_disconnect =	uipc_disconnect,
1008 	.pru_listen =		uipc_listen,
1009 	.pru_peeraddr =		uipc_peeraddr,
1010 	.pru_rcvd =		uipc_rcvd,
1011 	.pru_send =		uipc_send,
1012 	.pru_sense =		uipc_sense,
1013 	.pru_shutdown =		uipc_shutdown,
1014 	.pru_sockaddr =		uipc_sockaddr,
1015 	.pru_close =		uipc_close,
1016 };
1017 
1018 static int
1019 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1020 {
1021 	struct unpcb *unp;
1022 	struct xucred xu;
1023 	int error, optval;
1024 
1025 	if (sopt->sopt_level != 0)
1026 		return (EINVAL);
1027 
1028 	unp = sotounpcb(so);
1029 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1030 	error = 0;
1031 	switch (sopt->sopt_dir) {
1032 	case SOPT_GET:
1033 		switch (sopt->sopt_name) {
1034 		case LOCAL_PEERCRED:
1035 			UNP_PCB_LOCK(unp);
1036 			if (unp->unp_flags & UNP_HAVEPC)
1037 				xu = unp->unp_peercred;
1038 			else {
1039 				if (so->so_type == SOCK_STREAM)
1040 					error = ENOTCONN;
1041 				else
1042 					error = EINVAL;
1043 			}
1044 			UNP_PCB_UNLOCK(unp);
1045 			if (error == 0)
1046 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1047 			break;
1048 
1049 		case LOCAL_CREDS:
1050 			/* Unlocked read. */
1051 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1052 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1053 			break;
1054 
1055 		case LOCAL_CONNWAIT:
1056 			/* Unlocked read. */
1057 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1058 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1059 			break;
1060 
1061 		default:
1062 			error = EOPNOTSUPP;
1063 			break;
1064 		}
1065 		break;
1066 
1067 	case SOPT_SET:
1068 		switch (sopt->sopt_name) {
1069 		case LOCAL_CREDS:
1070 		case LOCAL_CONNWAIT:
1071 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1072 					    sizeof(optval));
1073 			if (error)
1074 				break;
1075 
1076 #define	OPTSET(bit) do {						\
1077 	UNP_PCB_LOCK(unp);						\
1078 	if (optval)							\
1079 		unp->unp_flags |= bit;					\
1080 	else								\
1081 		unp->unp_flags &= ~bit;					\
1082 	UNP_PCB_UNLOCK(unp);						\
1083 } while (0)
1084 
1085 			switch (sopt->sopt_name) {
1086 			case LOCAL_CREDS:
1087 				OPTSET(UNP_WANTCRED);
1088 				break;
1089 
1090 			case LOCAL_CONNWAIT:
1091 				OPTSET(UNP_CONNWAIT);
1092 				break;
1093 
1094 			default:
1095 				break;
1096 			}
1097 			break;
1098 #undef	OPTSET
1099 		default:
1100 			error = ENOPROTOOPT;
1101 			break;
1102 		}
1103 		break;
1104 
1105 	default:
1106 		error = EOPNOTSUPP;
1107 		break;
1108 	}
1109 	return (error);
1110 }
1111 
1112 static int
1113 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1114 {
1115 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1116 	struct vnode *vp;
1117 	struct socket *so2, *so3;
1118 	struct unpcb *unp, *unp2, *unp3;
1119 	int error, len, vfslocked;
1120 	struct nameidata nd;
1121 	char buf[SOCK_MAXADDRLEN];
1122 	struct sockaddr *sa;
1123 
1124 	UNP_GLOBAL_WLOCK_ASSERT();
1125 
1126 	unp = sotounpcb(so);
1127 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1128 
1129 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1130 	if (len <= 0)
1131 		return (EINVAL);
1132 	bcopy(soun->sun_path, buf, len);
1133 	buf[len] = 0;
1134 
1135 	UNP_PCB_LOCK(unp);
1136 	if (unp->unp_flags & UNP_CONNECTING) {
1137 		UNP_PCB_UNLOCK(unp);
1138 		return (EALREADY);
1139 	}
1140 	UNP_GLOBAL_WUNLOCK();
1141 	unp->unp_flags |= UNP_CONNECTING;
1142 	UNP_PCB_UNLOCK(unp);
1143 
1144 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1145 	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf,
1146 	    td);
1147 	error = namei(&nd);
1148 	if (error)
1149 		vp = NULL;
1150 	else
1151 		vp = nd.ni_vp;
1152 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1153 	vfslocked = NDHASGIANT(&nd);
1154 	NDFREE(&nd, NDF_ONLY_PNBUF);
1155 	if (error)
1156 		goto bad;
1157 
1158 	if (vp->v_type != VSOCK) {
1159 		error = ENOTSOCK;
1160 		goto bad;
1161 	}
1162 #ifdef MAC
1163 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1164 	if (error)
1165 		goto bad;
1166 #endif
1167 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1168 	if (error)
1169 		goto bad;
1170 	VFS_UNLOCK_GIANT(vfslocked);
1171 
1172 	unp = sotounpcb(so);
1173 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1174 
1175 	/*
1176 	 * Lock global lock for two reasons: make sure v_socket is stable,
1177 	 * and to protect simultaneous locking of multiple pcbs.
1178 	 */
1179 	UNP_GLOBAL_WLOCK();
1180 	so2 = vp->v_socket;
1181 	if (so2 == NULL) {
1182 		error = ECONNREFUSED;
1183 		goto bad2;
1184 	}
1185 	if (so->so_type != so2->so_type) {
1186 		error = EPROTOTYPE;
1187 		goto bad2;
1188 	}
1189 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1190 		if (so2->so_options & SO_ACCEPTCONN) {
1191 			/*
1192 			 * We can't drop the global lock here or 'so2' may
1193 			 * become invalid.  As a result, we need to handle
1194 			 * possibly lock recursion in uipc_attach.
1195 			 */
1196 			so3 = sonewconn(so2, 0);
1197 		} else
1198 			so3 = NULL;
1199 		if (so3 == NULL) {
1200 			error = ECONNREFUSED;
1201 			goto bad2;
1202 		}
1203 		unp = sotounpcb(so);
1204 		unp2 = sotounpcb(so2);
1205 		unp3 = sotounpcb(so3);
1206 		UNP_PCB_LOCK(unp);
1207 		UNP_PCB_LOCK(unp2);
1208 		UNP_PCB_LOCK(unp3);
1209 		if (unp2->unp_addr != NULL) {
1210 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1211 			unp3->unp_addr = (struct sockaddr_un *) sa;
1212 			sa = NULL;
1213 		}
1214 		/*
1215 		 * unp_peercred management:
1216 		 *
1217 		 * The connecter's (client's) credentials are copied from its
1218 		 * process structure at the time of connect() (which is now).
1219 		 */
1220 		cru2x(td->td_ucred, &unp3->unp_peercred);
1221 		unp3->unp_flags |= UNP_HAVEPC;
1222 		/*
1223 		 * The receiver's (server's) credentials are copied from the
1224 		 * unp_peercred member of socket on which the former called
1225 		 * listen(); uipc_listen() cached that process's credentials
1226 		 * at that time so we can use them now.
1227 		 */
1228 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1229 		    ("unp_connect: listener without cached peercred"));
1230 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1231 		    sizeof(unp->unp_peercred));
1232 		unp->unp_flags |= UNP_HAVEPC;
1233 		if (unp2->unp_flags & UNP_WANTCRED)
1234 			unp3->unp_flags |= UNP_WANTCRED;
1235 		UNP_PCB_UNLOCK(unp3);
1236 		UNP_PCB_UNLOCK(unp2);
1237 		UNP_PCB_UNLOCK(unp);
1238 #ifdef MAC
1239 		SOCK_LOCK(so);
1240 		mac_socketpeer_set_from_socket(so, so3);
1241 		mac_socketpeer_set_from_socket(so3, so);
1242 		SOCK_UNLOCK(so);
1243 #endif
1244 
1245 		so2 = so3;
1246 	}
1247 	unp = sotounpcb(so);
1248 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1249 	unp2 = sotounpcb(so2);
1250 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1251 	UNP_PCB_LOCK(unp);
1252 	UNP_PCB_LOCK(unp2);
1253 	error = unp_connect2(so, so2, PRU_CONNECT);
1254 	UNP_PCB_UNLOCK(unp2);
1255 	UNP_PCB_UNLOCK(unp);
1256 bad2:
1257 	UNP_GLOBAL_WUNLOCK();
1258 	if (vfslocked)
1259 		/*
1260 		 * Giant has been previously acquired. This means filesystem
1261 		 * isn't MPSAFE.  Do it once again.
1262 		 */
1263 		mtx_lock(&Giant);
1264 bad:
1265 	if (vp != NULL)
1266 		vput(vp);
1267 	VFS_UNLOCK_GIANT(vfslocked);
1268 	free(sa, M_SONAME);
1269 	UNP_GLOBAL_WLOCK();
1270 	UNP_PCB_LOCK(unp);
1271 	unp->unp_flags &= ~UNP_CONNECTING;
1272 	UNP_PCB_UNLOCK(unp);
1273 	return (error);
1274 }
1275 
1276 static int
1277 unp_connect2(struct socket *so, struct socket *so2, int req)
1278 {
1279 	struct unpcb *unp;
1280 	struct unpcb *unp2;
1281 
1282 	unp = sotounpcb(so);
1283 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1284 	unp2 = sotounpcb(so2);
1285 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1286 
1287 	UNP_GLOBAL_WLOCK_ASSERT();
1288 	UNP_PCB_LOCK_ASSERT(unp);
1289 	UNP_PCB_LOCK_ASSERT(unp2);
1290 
1291 	if (so2->so_type != so->so_type)
1292 		return (EPROTOTYPE);
1293 	unp->unp_conn = unp2;
1294 
1295 	switch (so->so_type) {
1296 	case SOCK_DGRAM:
1297 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1298 		soisconnected(so);
1299 		break;
1300 
1301 	case SOCK_STREAM:
1302 		unp2->unp_conn = unp;
1303 		if (req == PRU_CONNECT &&
1304 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1305 			soisconnecting(so);
1306 		else
1307 			soisconnected(so);
1308 		soisconnected(so2);
1309 		break;
1310 
1311 	default:
1312 		panic("unp_connect2");
1313 	}
1314 	return (0);
1315 }
1316 
1317 static void
1318 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1319 {
1320 	struct socket *so;
1321 
1322 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1323 
1324 	UNP_GLOBAL_WLOCK_ASSERT();
1325 	UNP_PCB_LOCK_ASSERT(unp);
1326 	UNP_PCB_LOCK_ASSERT(unp2);
1327 
1328 	unp->unp_conn = NULL;
1329 	switch (unp->unp_socket->so_type) {
1330 	case SOCK_DGRAM:
1331 		LIST_REMOVE(unp, unp_reflink);
1332 		so = unp->unp_socket;
1333 		SOCK_LOCK(so);
1334 		so->so_state &= ~SS_ISCONNECTED;
1335 		SOCK_UNLOCK(so);
1336 		break;
1337 
1338 	case SOCK_STREAM:
1339 		soisdisconnected(unp->unp_socket);
1340 		unp2->unp_conn = NULL;
1341 		soisdisconnected(unp2->unp_socket);
1342 		break;
1343 	}
1344 }
1345 
1346 /*
1347  * unp_pcblist() walks the global list of struct unpcb's to generate a
1348  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1349  * sequentially, validating the generation number on each to see if it has
1350  * been detached.  All of this is necessary because copyout() may sleep on
1351  * disk I/O.
1352  */
1353 static int
1354 unp_pcblist(SYSCTL_HANDLER_ARGS)
1355 {
1356 	int error, i, n;
1357 	int freeunp;
1358 	struct unpcb *unp, **unp_list;
1359 	unp_gen_t gencnt;
1360 	struct xunpgen *xug;
1361 	struct unp_head *head;
1362 	struct xunpcb *xu;
1363 
1364 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1365 
1366 	/*
1367 	 * The process of preparing the PCB list is too time-consuming and
1368 	 * resource-intensive to repeat twice on every request.
1369 	 */
1370 	if (req->oldptr == NULL) {
1371 		n = unp_count;
1372 		req->oldidx = 2 * (sizeof *xug)
1373 			+ (n + n/8) * sizeof(struct xunpcb);
1374 		return (0);
1375 	}
1376 
1377 	if (req->newptr != NULL)
1378 		return (EPERM);
1379 
1380 	/*
1381 	 * OK, now we're committed to doing something.
1382 	 */
1383 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1384 	UNP_GLOBAL_RLOCK();
1385 	gencnt = unp_gencnt;
1386 	n = unp_count;
1387 	UNP_GLOBAL_RUNLOCK();
1388 
1389 	xug->xug_len = sizeof *xug;
1390 	xug->xug_count = n;
1391 	xug->xug_gen = gencnt;
1392 	xug->xug_sogen = so_gencnt;
1393 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1394 	if (error) {
1395 		free(xug, M_TEMP);
1396 		return (error);
1397 	}
1398 
1399 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1400 
1401 	UNP_GLOBAL_RLOCK();
1402 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1403 	     unp = LIST_NEXT(unp, unp_link)) {
1404 		UNP_PCB_LOCK(unp);
1405 		if (unp->unp_gencnt <= gencnt) {
1406 			if (cr_cansee(req->td->td_ucred,
1407 			    unp->unp_socket->so_cred)) {
1408 				UNP_PCB_UNLOCK(unp);
1409 				continue;
1410 			}
1411 			unp_list[i++] = unp;
1412 			unp->unp_refcount++;
1413 		}
1414 		UNP_PCB_UNLOCK(unp);
1415 	}
1416 	UNP_GLOBAL_RUNLOCK();
1417 	n = i;			/* In case we lost some during malloc. */
1418 
1419 	error = 0;
1420 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1421 	for (i = 0; i < n; i++) {
1422 		unp = unp_list[i];
1423 		UNP_PCB_LOCK(unp);
1424 		unp->unp_refcount--;
1425 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1426 			xu->xu_len = sizeof *xu;
1427 			xu->xu_unpp = unp;
1428 			/*
1429 			 * XXX - need more locking here to protect against
1430 			 * connect/disconnect races for SMP.
1431 			 */
1432 			if (unp->unp_addr != NULL)
1433 				bcopy(unp->unp_addr, &xu->xu_addr,
1434 				      unp->unp_addr->sun_len);
1435 			if (unp->unp_conn != NULL &&
1436 			    unp->unp_conn->unp_addr != NULL)
1437 				bcopy(unp->unp_conn->unp_addr,
1438 				      &xu->xu_caddr,
1439 				      unp->unp_conn->unp_addr->sun_len);
1440 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1441 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1442 			UNP_PCB_UNLOCK(unp);
1443 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1444 		} else {
1445 			freeunp = (unp->unp_refcount == 0);
1446 			UNP_PCB_UNLOCK(unp);
1447 			if (freeunp) {
1448 				UNP_PCB_LOCK_DESTROY(unp);
1449 				uma_zfree(unp_zone, unp);
1450 			}
1451 		}
1452 	}
1453 	free(xu, M_TEMP);
1454 	if (!error) {
1455 		/*
1456 		 * Give the user an updated idea of our state.  If the
1457 		 * generation differs from what we told her before, she knows
1458 		 * that something happened while we were processing this
1459 		 * request, and it might be necessary to retry.
1460 		 */
1461 		xug->xug_gen = unp_gencnt;
1462 		xug->xug_sogen = so_gencnt;
1463 		xug->xug_count = unp_count;
1464 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1465 	}
1466 	free(unp_list, M_TEMP);
1467 	free(xug, M_TEMP);
1468 	return (error);
1469 }
1470 
1471 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1472 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1473 	    "List of active local datagram sockets");
1474 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1475 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1476 	    "List of active local stream sockets");
1477 
1478 static void
1479 unp_shutdown(struct unpcb *unp)
1480 {
1481 	struct unpcb *unp2;
1482 	struct socket *so;
1483 
1484 	UNP_GLOBAL_WLOCK_ASSERT();
1485 	UNP_PCB_LOCK_ASSERT(unp);
1486 
1487 	unp2 = unp->unp_conn;
1488 	if (unp->unp_socket->so_type == SOCK_STREAM && unp2 != NULL) {
1489 		so = unp2->unp_socket;
1490 		if (so != NULL)
1491 			socantrcvmore(so);
1492 	}
1493 }
1494 
1495 static void
1496 unp_drop(struct unpcb *unp, int errno)
1497 {
1498 	struct socket *so = unp->unp_socket;
1499 	struct unpcb *unp2;
1500 
1501 	UNP_GLOBAL_WLOCK_ASSERT();
1502 	UNP_PCB_LOCK_ASSERT(unp);
1503 
1504 	so->so_error = errno;
1505 	unp2 = unp->unp_conn;
1506 	if (unp2 == NULL)
1507 		return;
1508 	UNP_PCB_LOCK(unp2);
1509 	unp_disconnect(unp, unp2);
1510 	UNP_PCB_UNLOCK(unp2);
1511 }
1512 
1513 static void
1514 unp_freerights(struct file **rp, int fdcount)
1515 {
1516 	int i;
1517 	struct file *fp;
1518 
1519 	for (i = 0; i < fdcount; i++) {
1520 		/*
1521 		 * Zero the pointer before calling unp_discard since it may
1522 		 * end up in unp_gc()..
1523 		 *
1524 		 * XXXRW: This is less true than it used to be.
1525 		 */
1526 		fp = *rp;
1527 		*rp++ = NULL;
1528 		unp_discard(fp);
1529 	}
1530 }
1531 
1532 static int
1533 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1534 {
1535 	struct thread *td = curthread;		/* XXX */
1536 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1537 	int i;
1538 	int *fdp;
1539 	struct file **rp;
1540 	struct file *fp;
1541 	void *data;
1542 	socklen_t clen = control->m_len, datalen;
1543 	int error, newfds;
1544 	int f;
1545 	u_int newlen;
1546 
1547 	UNP_GLOBAL_UNLOCK_ASSERT();
1548 
1549 	error = 0;
1550 	if (controlp != NULL) /* controlp == NULL => free control messages */
1551 		*controlp = NULL;
1552 	while (cm != NULL) {
1553 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1554 			error = EINVAL;
1555 			break;
1556 		}
1557 		data = CMSG_DATA(cm);
1558 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1559 		if (cm->cmsg_level == SOL_SOCKET
1560 		    && cm->cmsg_type == SCM_RIGHTS) {
1561 			newfds = datalen / sizeof(struct file *);
1562 			rp = data;
1563 
1564 			/* If we're not outputting the descriptors free them. */
1565 			if (error || controlp == NULL) {
1566 				unp_freerights(rp, newfds);
1567 				goto next;
1568 			}
1569 			FILEDESC_XLOCK(td->td_proc->p_fd);
1570 			/* if the new FD's will not fit free them.  */
1571 			if (!fdavail(td, newfds)) {
1572 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1573 				error = EMSGSIZE;
1574 				unp_freerights(rp, newfds);
1575 				goto next;
1576 			}
1577 
1578 			/*
1579 			 * Now change each pointer to an fd in the global
1580 			 * table to an integer that is the index to the local
1581 			 * fd table entry that we set up to point to the
1582 			 * global one we are transferring.
1583 			 */
1584 			newlen = newfds * sizeof(int);
1585 			*controlp = sbcreatecontrol(NULL, newlen,
1586 			    SCM_RIGHTS, SOL_SOCKET);
1587 			if (*controlp == NULL) {
1588 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1589 				error = E2BIG;
1590 				unp_freerights(rp, newfds);
1591 				goto next;
1592 			}
1593 
1594 			fdp = (int *)
1595 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1596 			for (i = 0; i < newfds; i++) {
1597 				if (fdalloc(td, 0, &f))
1598 					panic("unp_externalize fdalloc failed");
1599 				fp = *rp++;
1600 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1601 				unp_externalize_fp(fp);
1602 				*fdp++ = f;
1603 			}
1604 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1605 		} else {
1606 			/* We can just copy anything else across. */
1607 			if (error || controlp == NULL)
1608 				goto next;
1609 			*controlp = sbcreatecontrol(NULL, datalen,
1610 			    cm->cmsg_type, cm->cmsg_level);
1611 			if (*controlp == NULL) {
1612 				error = ENOBUFS;
1613 				goto next;
1614 			}
1615 			bcopy(data,
1616 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1617 			    datalen);
1618 		}
1619 		controlp = &(*controlp)->m_next;
1620 
1621 next:
1622 		if (CMSG_SPACE(datalen) < clen) {
1623 			clen -= CMSG_SPACE(datalen);
1624 			cm = (struct cmsghdr *)
1625 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1626 		} else {
1627 			clen = 0;
1628 			cm = NULL;
1629 		}
1630 	}
1631 
1632 	m_freem(control);
1633 	return (error);
1634 }
1635 
1636 static void
1637 unp_zone_change(void *tag)
1638 {
1639 
1640 	uma_zone_set_max(unp_zone, maxsockets);
1641 }
1642 
1643 static void
1644 unp_init(void)
1645 {
1646 
1647 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1648 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1649 	if (unp_zone == NULL)
1650 		panic("unp_init");
1651 	uma_zone_set_max(unp_zone, maxsockets);
1652 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1653 	    NULL, EVENTHANDLER_PRI_ANY);
1654 	LIST_INIT(&unp_dhead);
1655 	LIST_INIT(&unp_shead);
1656 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1657 	UNP_GLOBAL_LOCK_INIT();
1658 }
1659 
1660 static int
1661 unp_internalize(struct mbuf **controlp, struct thread *td)
1662 {
1663 	struct mbuf *control = *controlp;
1664 	struct proc *p = td->td_proc;
1665 	struct filedesc *fdescp = p->p_fd;
1666 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1667 	struct cmsgcred *cmcred;
1668 	struct file **rp;
1669 	struct file *fp;
1670 	struct timeval *tv;
1671 	int i, fd, *fdp;
1672 	void *data;
1673 	socklen_t clen = control->m_len, datalen;
1674 	int error, oldfds;
1675 	u_int newlen;
1676 
1677 	UNP_GLOBAL_UNLOCK_ASSERT();
1678 
1679 	error = 0;
1680 	*controlp = NULL;
1681 	while (cm != NULL) {
1682 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1683 		    || cm->cmsg_len > clen) {
1684 			error = EINVAL;
1685 			goto out;
1686 		}
1687 		data = CMSG_DATA(cm);
1688 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1689 
1690 		switch (cm->cmsg_type) {
1691 		/*
1692 		 * Fill in credential information.
1693 		 */
1694 		case SCM_CREDS:
1695 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1696 			    SCM_CREDS, SOL_SOCKET);
1697 			if (*controlp == NULL) {
1698 				error = ENOBUFS;
1699 				goto out;
1700 			}
1701 			cmcred = (struct cmsgcred *)
1702 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1703 			cmcred->cmcred_pid = p->p_pid;
1704 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1705 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1706 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1707 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1708 			    CMGROUP_MAX);
1709 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1710 				cmcred->cmcred_groups[i] =
1711 				    td->td_ucred->cr_groups[i];
1712 			break;
1713 
1714 		case SCM_RIGHTS:
1715 			oldfds = datalen / sizeof (int);
1716 			/*
1717 			 * Check that all the FDs passed in refer to legal
1718 			 * files.  If not, reject the entire operation.
1719 			 */
1720 			fdp = data;
1721 			FILEDESC_SLOCK(fdescp);
1722 			for (i = 0; i < oldfds; i++) {
1723 				fd = *fdp++;
1724 				if ((unsigned)fd >= fdescp->fd_nfiles ||
1725 				    fdescp->fd_ofiles[fd] == NULL) {
1726 					FILEDESC_SUNLOCK(fdescp);
1727 					error = EBADF;
1728 					goto out;
1729 				}
1730 				fp = fdescp->fd_ofiles[fd];
1731 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1732 					FILEDESC_SUNLOCK(fdescp);
1733 					error = EOPNOTSUPP;
1734 					goto out;
1735 				}
1736 
1737 			}
1738 
1739 			/*
1740 			 * Now replace the integer FDs with pointers to the
1741 			 * associated global file table entry..
1742 			 */
1743 			newlen = oldfds * sizeof(struct file *);
1744 			*controlp = sbcreatecontrol(NULL, newlen,
1745 			    SCM_RIGHTS, SOL_SOCKET);
1746 			if (*controlp == NULL) {
1747 				FILEDESC_SUNLOCK(fdescp);
1748 				error = E2BIG;
1749 				goto out;
1750 			}
1751 			fdp = data;
1752 			rp = (struct file **)
1753 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1754 			for (i = 0; i < oldfds; i++) {
1755 				fp = fdescp->fd_ofiles[*fdp++];
1756 				*rp++ = fp;
1757 				unp_internalize_fp(fp);
1758 			}
1759 			FILEDESC_SUNLOCK(fdescp);
1760 			break;
1761 
1762 		case SCM_TIMESTAMP:
1763 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1764 			    SCM_TIMESTAMP, SOL_SOCKET);
1765 			if (*controlp == NULL) {
1766 				error = ENOBUFS;
1767 				goto out;
1768 			}
1769 			tv = (struct timeval *)
1770 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1771 			microtime(tv);
1772 			break;
1773 
1774 		default:
1775 			error = EINVAL;
1776 			goto out;
1777 		}
1778 
1779 		controlp = &(*controlp)->m_next;
1780 		if (CMSG_SPACE(datalen) < clen) {
1781 			clen -= CMSG_SPACE(datalen);
1782 			cm = (struct cmsghdr *)
1783 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1784 		} else {
1785 			clen = 0;
1786 			cm = NULL;
1787 		}
1788 	}
1789 
1790 out:
1791 	m_freem(control);
1792 	return (error);
1793 }
1794 
1795 static struct mbuf *
1796 unp_addsockcred(struct thread *td, struct mbuf *control)
1797 {
1798 	struct mbuf *m, *n, *n_prev;
1799 	struct sockcred *sc;
1800 	const struct cmsghdr *cm;
1801 	int ngroups;
1802 	int i;
1803 
1804 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1805 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1806 	if (m == NULL)
1807 		return (control);
1808 
1809 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1810 	sc->sc_uid = td->td_ucred->cr_ruid;
1811 	sc->sc_euid = td->td_ucred->cr_uid;
1812 	sc->sc_gid = td->td_ucred->cr_rgid;
1813 	sc->sc_egid = td->td_ucred->cr_gid;
1814 	sc->sc_ngroups = ngroups;
1815 	for (i = 0; i < sc->sc_ngroups; i++)
1816 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1817 
1818 	/*
1819 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1820 	 * created SCM_CREDS control message (struct sockcred) has another
1821 	 * format.
1822 	 */
1823 	if (control != NULL)
1824 		for (n = control, n_prev = NULL; n != NULL;) {
1825 			cm = mtod(n, struct cmsghdr *);
1826     			if (cm->cmsg_level == SOL_SOCKET &&
1827 			    cm->cmsg_type == SCM_CREDS) {
1828     				if (n_prev == NULL)
1829 					control = n->m_next;
1830 				else
1831 					n_prev->m_next = n->m_next;
1832 				n = m_free(n);
1833 			} else {
1834 				n_prev = n;
1835 				n = n->m_next;
1836 			}
1837 		}
1838 
1839 	/* Prepend it to the head. */
1840 	m->m_next = control;
1841 	return (m);
1842 }
1843 
1844 static struct unpcb *
1845 fptounp(struct file *fp)
1846 {
1847 	struct socket *so;
1848 
1849 	if (fp->f_type != DTYPE_SOCKET)
1850 		return (NULL);
1851 	if ((so = fp->f_data) == NULL)
1852 		return (NULL);
1853 	if (so->so_proto->pr_domain != &localdomain)
1854 		return (NULL);
1855 	return sotounpcb(so);
1856 }
1857 
1858 static void
1859 unp_discard(struct file *fp)
1860 {
1861 
1862 	unp_externalize_fp(fp);
1863 	(void) closef(fp, (struct thread *)NULL);
1864 }
1865 
1866 static void
1867 unp_internalize_fp(struct file *fp)
1868 {
1869 	struct unpcb *unp;
1870 
1871 	UNP_GLOBAL_WLOCK();
1872 	if ((unp = fptounp(fp)) != NULL) {
1873 		unp->unp_file = fp;
1874 		unp->unp_msgcount++;
1875 	}
1876 	fhold(fp);
1877 	unp_rights++;
1878 	UNP_GLOBAL_WUNLOCK();
1879 }
1880 
1881 static void
1882 unp_externalize_fp(struct file *fp)
1883 {
1884 	struct unpcb *unp;
1885 
1886 	UNP_GLOBAL_WLOCK();
1887 	if ((unp = fptounp(fp)) != NULL)
1888 		unp->unp_msgcount--;
1889 	unp_rights--;
1890 	UNP_GLOBAL_WUNLOCK();
1891 }
1892 
1893 /*
1894  * unp_defer indicates whether additional work has been defered for a future
1895  * pass through unp_gc().  It is thread local and does not require explicit
1896  * synchronization.
1897  */
1898 static int	unp_marked;
1899 static int	unp_unreachable;
1900 
1901 static void
1902 unp_accessable(struct file *fp)
1903 {
1904 	struct unpcb *unp;
1905 
1906 	if ((unp = fptounp(fp)) == NULL)
1907 		return;
1908 	if (unp->unp_gcflag & UNPGC_REF)
1909 		return;
1910 	unp->unp_gcflag &= ~UNPGC_DEAD;
1911 	unp->unp_gcflag |= UNPGC_REF;
1912 	unp_marked++;
1913 }
1914 
1915 static void
1916 unp_gc_process(struct unpcb *unp)
1917 {
1918 	struct socket *soa;
1919 	struct socket *so;
1920 	struct file *fp;
1921 
1922 	/* Already processed. */
1923 	if (unp->unp_gcflag & UNPGC_SCANNED)
1924 		return;
1925 	fp = unp->unp_file;
1926 
1927 	/*
1928 	 * Check for a socket potentially in a cycle.  It must be in a
1929 	 * queue as indicated by msgcount, and this must equal the file
1930 	 * reference count.  Note that when msgcount is 0 the file is NULL.
1931 	 */
1932 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
1933 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
1934 		unp->unp_gcflag |= UNPGC_DEAD;
1935 		unp_unreachable++;
1936 		return;
1937 	}
1938 
1939 	/*
1940 	 * Mark all sockets we reference with RIGHTS.
1941 	 */
1942 	so = unp->unp_socket;
1943 	SOCKBUF_LOCK(&so->so_rcv);
1944 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
1945 	SOCKBUF_UNLOCK(&so->so_rcv);
1946 
1947 	/*
1948 	 * Mark all sockets in our accept queue.
1949 	 */
1950 	ACCEPT_LOCK();
1951 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
1952 		SOCKBUF_LOCK(&soa->so_rcv);
1953 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
1954 		SOCKBUF_UNLOCK(&soa->so_rcv);
1955 	}
1956 	ACCEPT_UNLOCK();
1957 	unp->unp_gcflag |= UNPGC_SCANNED;
1958 }
1959 
1960 static int unp_recycled;
1961 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
1962     "Number of unreachable sockets claimed by the garbage collector.");
1963 
1964 static int unp_taskcount;
1965 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
1966     "Number of times the garbage collector has run.");
1967 
1968 static void
1969 unp_gc(__unused void *arg, int pending)
1970 {
1971 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, NULL };
1972 	struct unp_head **head;
1973 	struct file **unref;
1974 	struct unpcb *unp;
1975 	int i;
1976 
1977 	unp_taskcount++;
1978 	UNP_GLOBAL_RLOCK();
1979 	/*
1980 	 * First clear all gc flags from previous runs.
1981 	 */
1982 	for (head = heads; *head != NULL; head++)
1983 		LIST_FOREACH(unp, *head, unp_link)
1984 			unp->unp_gcflag = 0;
1985 
1986 	/*
1987 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
1988 	 * is reachable all of the sockets it references are reachable.
1989 	 * Stop the scan once we do a complete loop without discovering
1990 	 * a new reachable socket.
1991 	 */
1992 	do {
1993 		unp_unreachable = 0;
1994 		unp_marked = 0;
1995 		for (head = heads; *head != NULL; head++)
1996 			LIST_FOREACH(unp, *head, unp_link)
1997 				unp_gc_process(unp);
1998 	} while (unp_marked);
1999 	UNP_GLOBAL_RUNLOCK();
2000 	if (unp_unreachable == 0)
2001 		return;
2002 
2003 	/*
2004 	 * Allocate space for a local list of dead unpcbs.
2005 	 */
2006 	unref = malloc(unp_unreachable * sizeof(struct file *),
2007 	    M_TEMP, M_WAITOK);
2008 
2009 	/*
2010 	 * Iterate looking for sockets which have been specifically marked
2011 	 * as as unreachable and store them locally.
2012 	 */
2013 	UNP_GLOBAL_RLOCK();
2014 	for (i = 0, head = heads; *head != NULL; head++)
2015 		LIST_FOREACH(unp, *head, unp_link)
2016 			if (unp->unp_gcflag & UNPGC_DEAD) {
2017 				unref[i++] = unp->unp_file;
2018 				fhold(unp->unp_file);
2019 				KASSERT(unp->unp_file != NULL,
2020 				    ("unp_gc: Invalid unpcb."));
2021 				KASSERT(i <= unp_unreachable,
2022 				    ("unp_gc: incorrect unreachable count."));
2023 			}
2024 	UNP_GLOBAL_RUNLOCK();
2025 
2026 	/*
2027 	 * Now flush all sockets, free'ing rights.  This will free the
2028 	 * struct files associated with these sockets but leave each socket
2029 	 * with one remaining ref.
2030 	 */
2031 	for (i = 0; i < unp_unreachable; i++)
2032 		sorflush(unref[i]->f_data);
2033 
2034 	/*
2035 	 * And finally release the sockets so they can be reclaimed.
2036 	 */
2037 	for (i = 0; i < unp_unreachable; i++)
2038 		fdrop(unref[i], NULL);
2039 	unp_recycled += unp_unreachable;
2040 	free(unref, M_TEMP);
2041 }
2042 
2043 static void
2044 unp_dispose(struct mbuf *m)
2045 {
2046 
2047 	if (m)
2048 		unp_scan(m, unp_discard);
2049 }
2050 
2051 static void
2052 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2053 {
2054 	struct mbuf *m;
2055 	struct file **rp;
2056 	struct cmsghdr *cm;
2057 	void *data;
2058 	int i;
2059 	socklen_t clen, datalen;
2060 	int qfds;
2061 
2062 	while (m0 != NULL) {
2063 		for (m = m0; m; m = m->m_next) {
2064 			if (m->m_type != MT_CONTROL)
2065 				continue;
2066 
2067 			cm = mtod(m, struct cmsghdr *);
2068 			clen = m->m_len;
2069 
2070 			while (cm != NULL) {
2071 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2072 					break;
2073 
2074 				data = CMSG_DATA(cm);
2075 				datalen = (caddr_t)cm + cm->cmsg_len
2076 				    - (caddr_t)data;
2077 
2078 				if (cm->cmsg_level == SOL_SOCKET &&
2079 				    cm->cmsg_type == SCM_RIGHTS) {
2080 					qfds = datalen / sizeof (struct file *);
2081 					rp = data;
2082 					for (i = 0; i < qfds; i++)
2083 						(*op)(*rp++);
2084 				}
2085 
2086 				if (CMSG_SPACE(datalen) < clen) {
2087 					clen -= CMSG_SPACE(datalen);
2088 					cm = (struct cmsghdr *)
2089 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2090 				} else {
2091 					clen = 0;
2092 					cm = NULL;
2093 				}
2094 			}
2095 		}
2096 		m0 = m0->m_act;
2097 	}
2098 }
2099 
2100 #ifdef DDB
2101 static void
2102 db_print_indent(int indent)
2103 {
2104 	int i;
2105 
2106 	for (i = 0; i < indent; i++)
2107 		db_printf(" ");
2108 }
2109 
2110 static void
2111 db_print_unpflags(int unp_flags)
2112 {
2113 	int comma;
2114 
2115 	comma = 0;
2116 	if (unp_flags & UNP_HAVEPC) {
2117 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2118 		comma = 1;
2119 	}
2120 	if (unp_flags & UNP_HAVEPCCACHED) {
2121 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2122 		comma = 1;
2123 	}
2124 	if (unp_flags & UNP_WANTCRED) {
2125 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2126 		comma = 1;
2127 	}
2128 	if (unp_flags & UNP_CONNWAIT) {
2129 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2130 		comma = 1;
2131 	}
2132 	if (unp_flags & UNP_CONNECTING) {
2133 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2134 		comma = 1;
2135 	}
2136 	if (unp_flags & UNP_BINDING) {
2137 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2138 		comma = 1;
2139 	}
2140 }
2141 
2142 static void
2143 db_print_xucred(int indent, struct xucred *xu)
2144 {
2145 	int comma, i;
2146 
2147 	db_print_indent(indent);
2148 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2149 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2150 	db_print_indent(indent);
2151 	db_printf("cr_groups: ");
2152 	comma = 0;
2153 	for (i = 0; i < xu->cr_ngroups; i++) {
2154 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2155 		comma = 1;
2156 	}
2157 	db_printf("\n");
2158 }
2159 
2160 static void
2161 db_print_unprefs(int indent, struct unp_head *uh)
2162 {
2163 	struct unpcb *unp;
2164 	int counter;
2165 
2166 	counter = 0;
2167 	LIST_FOREACH(unp, uh, unp_reflink) {
2168 		if (counter % 4 == 0)
2169 			db_print_indent(indent);
2170 		db_printf("%p  ", unp);
2171 		if (counter % 4 == 3)
2172 			db_printf("\n");
2173 		counter++;
2174 	}
2175 	if (counter != 0 && counter % 4 != 0)
2176 		db_printf("\n");
2177 }
2178 
2179 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2180 {
2181 	struct unpcb *unp;
2182 
2183         if (!have_addr) {
2184                 db_printf("usage: show unpcb <addr>\n");
2185                 return;
2186         }
2187         unp = (struct unpcb *)addr;
2188 
2189 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2190 	    unp->unp_vnode);
2191 
2192 	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2193 	    unp->unp_conn);
2194 
2195 	db_printf("unp_refs:\n");
2196 	db_print_unprefs(2, &unp->unp_refs);
2197 
2198 	/* XXXRW: Would be nice to print the full address, if any. */
2199 	db_printf("unp_addr: %p\n", unp->unp_addr);
2200 
2201 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2202 	    unp->unp_cc, unp->unp_mbcnt,
2203 	    (unsigned long long)unp->unp_gencnt);
2204 
2205 	db_printf("unp_flags: %x (", unp->unp_flags);
2206 	db_print_unpflags(unp->unp_flags);
2207 	db_printf(")\n");
2208 
2209 	db_printf("unp_peercred:\n");
2210 	db_print_xucred(2, &unp->unp_peercred);
2211 
2212 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2213 }
2214 #endif
2215