xref: /freebsd/sys/kern/uipc_usrreq.c (revision 7778ab7e0cc22f0824eb1d1047a7ef8b4785267a)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	distinguish datagram size limits from flow control limits in SEQPACKET
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 /*
105  * Locking key:
106  * (l)	Locked using list lock
107  * (g)	Locked using linkage lock
108  */
109 
110 static uma_zone_t	unp_zone;
111 static unp_gen_t	unp_gencnt;	/* (l) */
112 static u_int		unp_count;	/* (l) Count of local sockets. */
113 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114 static int		unp_rights;	/* (g) File descriptors in flight. */
115 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118 
119 struct unp_defer {
120 	SLIST_ENTRY(unp_defer) ud_link;
121 	struct file *ud_fp;
122 };
123 static SLIST_HEAD(, unp_defer) unp_defers;
124 static int unp_defers_count;
125 
126 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct task	unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158 static u_long	unpdg_recvspace = 4*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163 SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
164 SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
165 SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
166     "SOCK_SEQPACKET");
167 
168 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
169 	   &unpst_sendspace, 0, "Default stream send space.");
170 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
171 	   &unpst_recvspace, 0, "Default stream receive space.");
172 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
173 	   &unpdg_sendspace, 0, "Default datagram send space.");
174 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
175 	   &unpdg_recvspace, 0, "Default datagram receive space.");
176 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
177 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
178 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
180 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
181     "File descriptors in flight.");
182 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
183     &unp_defers_count, 0,
184     "File descriptors deferred to taskqueue for close.");
185 
186 /*
187  * Locking and synchronization:
188  *
189  * Three types of locks exit in the local domain socket implementation: a
190  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
191  * global locks, the list lock protects the socket count, global generation
192  * number, and stream/datagram global lists.  The linkage lock protects the
193  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
194  * held exclusively over the acquisition of multiple unpcb locks to prevent
195  * deadlock.
196  *
197  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
198  * allocated in pru_attach() and freed in pru_detach().  The validity of that
199  * pointer is an invariant, so no lock is required to dereference the so_pcb
200  * pointer if a valid socket reference is held by the caller.  In practice,
201  * this is always true during operations performed on a socket.  Each unpcb
202  * has a back-pointer to its socket, unp_socket, which will be stable under
203  * the same circumstances.
204  *
205  * This pointer may only be safely dereferenced as long as a valid reference
206  * to the unpcb is held.  Typically, this reference will be from the socket,
207  * or from another unpcb when the referring unpcb's lock is held (in order
208  * that the reference not be invalidated during use).  For example, to follow
209  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
210  * as unp_socket remains valid as long as the reference to unp_conn is valid.
211  *
212  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
213  * atomic reads without the lock may be performed "lockless", but more
214  * complex reads and read-modify-writes require the mutex to be held.  No
215  * lock order is defined between unpcb locks -- multiple unpcb locks may be
216  * acquired at the same time only when holding the linkage rwlock
217  * exclusively, which prevents deadlocks.
218  *
219  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
220  * protocols, bind() is a non-atomic operation, and connect() requires
221  * potential sleeping in the protocol, due to potentially waiting on local or
222  * distributed file systems.  We try to separate "lookup" operations, which
223  * may sleep, and the IPC operations themselves, which typically can occur
224  * with relative atomicity as locks can be held over the entire operation.
225  *
226  * Another tricky issue is simultaneous multi-threaded or multi-process
227  * access to a single UNIX domain socket.  These are handled by the flags
228  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
229  * binding, both of which involve dropping UNIX domain socket locks in order
230  * to perform namei() and other file system operations.
231  */
232 static struct rwlock	unp_link_rwlock;
233 static struct mtx	unp_list_lock;
234 static struct mtx	unp_defers_lock;
235 
236 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
237 					    "unp_link_rwlock")
238 
239 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
240 					    RA_LOCKED)
241 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
242 					    RA_UNLOCKED)
243 
244 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
245 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
246 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
247 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
248 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
249 					    RA_WLOCKED)
250 
251 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
252 					    "unp_list_lock", NULL, MTX_DEF)
253 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
254 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
255 
256 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
257 					    "unp_defer", NULL, MTX_DEF)
258 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
259 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
260 
261 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
262 					    "unp_mtx", "unp_mtx",	\
263 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
264 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
265 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
266 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
267 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
268 
269 static int	uipc_connect2(struct socket *, struct socket *);
270 static int	uipc_ctloutput(struct socket *, struct sockopt *);
271 static int	unp_connect(struct socket *, struct sockaddr *,
272 		    struct thread *);
273 static int	unp_connect2(struct socket *so, struct socket *so2, int);
274 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
275 static void	unp_dispose(struct mbuf *);
276 static void	unp_shutdown(struct unpcb *);
277 static void	unp_drop(struct unpcb *, int);
278 static void	unp_gc(__unused void *, int);
279 static void	unp_scan(struct mbuf *, void (*)(struct file *));
280 static void	unp_discard(struct file *);
281 static void	unp_freerights(struct file **, int);
282 static void	unp_init(void);
283 static int	unp_internalize(struct mbuf **, struct thread *);
284 static void	unp_internalize_fp(struct file *);
285 static int	unp_externalize(struct mbuf *, struct mbuf **);
286 static int	unp_externalize_fp(struct file *);
287 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
288 static void	unp_process_defers(void * __unused, int);
289 
290 /*
291  * Definitions of protocols supported in the LOCAL domain.
292  */
293 static struct domain localdomain;
294 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
295 static struct pr_usrreqs uipc_usrreqs_seqpacket;
296 static struct protosw localsw[] = {
297 {
298 	.pr_type =		SOCK_STREAM,
299 	.pr_domain =		&localdomain,
300 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
301 	.pr_ctloutput =		&uipc_ctloutput,
302 	.pr_usrreqs =		&uipc_usrreqs_stream
303 },
304 {
305 	.pr_type =		SOCK_DGRAM,
306 	.pr_domain =		&localdomain,
307 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
308 	.pr_usrreqs =		&uipc_usrreqs_dgram
309 },
310 {
311 	.pr_type =		SOCK_SEQPACKET,
312 	.pr_domain =		&localdomain,
313 
314 	/*
315 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
316 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
317 	 * that supports both atomic record writes and control data.
318 	 */
319 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
320 				    PR_RIGHTS,
321 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
322 },
323 };
324 
325 static struct domain localdomain = {
326 	.dom_family =		AF_LOCAL,
327 	.dom_name =		"local",
328 	.dom_init =		unp_init,
329 	.dom_externalize =	unp_externalize,
330 	.dom_dispose =		unp_dispose,
331 	.dom_protosw =		localsw,
332 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
333 };
334 DOMAIN_SET(local);
335 
336 static void
337 uipc_abort(struct socket *so)
338 {
339 	struct unpcb *unp, *unp2;
340 
341 	unp = sotounpcb(so);
342 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
343 
344 	UNP_LINK_WLOCK();
345 	UNP_PCB_LOCK(unp);
346 	unp2 = unp->unp_conn;
347 	if (unp2 != NULL) {
348 		UNP_PCB_LOCK(unp2);
349 		unp_drop(unp2, ECONNABORTED);
350 		UNP_PCB_UNLOCK(unp2);
351 	}
352 	UNP_PCB_UNLOCK(unp);
353 	UNP_LINK_WUNLOCK();
354 }
355 
356 static int
357 uipc_accept(struct socket *so, struct sockaddr **nam)
358 {
359 	struct unpcb *unp, *unp2;
360 	const struct sockaddr *sa;
361 
362 	/*
363 	 * Pass back name of connected socket, if it was bound and we are
364 	 * still connected (our peer may have closed already!).
365 	 */
366 	unp = sotounpcb(so);
367 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
368 
369 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
370 	UNP_LINK_RLOCK();
371 	unp2 = unp->unp_conn;
372 	if (unp2 != NULL && unp2->unp_addr != NULL) {
373 		UNP_PCB_LOCK(unp2);
374 		sa = (struct sockaddr *) unp2->unp_addr;
375 		bcopy(sa, *nam, sa->sa_len);
376 		UNP_PCB_UNLOCK(unp2);
377 	} else {
378 		sa = &sun_noname;
379 		bcopy(sa, *nam, sa->sa_len);
380 	}
381 	UNP_LINK_RUNLOCK();
382 	return (0);
383 }
384 
385 static int
386 uipc_attach(struct socket *so, int proto, struct thread *td)
387 {
388 	u_long sendspace, recvspace;
389 	struct unpcb *unp;
390 	int error;
391 
392 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
393 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
394 		switch (so->so_type) {
395 		case SOCK_STREAM:
396 			sendspace = unpst_sendspace;
397 			recvspace = unpst_recvspace;
398 			break;
399 
400 		case SOCK_DGRAM:
401 			sendspace = unpdg_sendspace;
402 			recvspace = unpdg_recvspace;
403 			break;
404 
405 		case SOCK_SEQPACKET:
406 			sendspace = unpsp_sendspace;
407 			recvspace = unpsp_recvspace;
408 			break;
409 
410 		default:
411 			panic("uipc_attach");
412 		}
413 		error = soreserve(so, sendspace, recvspace);
414 		if (error)
415 			return (error);
416 	}
417 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
418 	if (unp == NULL)
419 		return (ENOBUFS);
420 	LIST_INIT(&unp->unp_refs);
421 	UNP_PCB_LOCK_INIT(unp);
422 	unp->unp_socket = so;
423 	so->so_pcb = unp;
424 	unp->unp_refcount = 1;
425 
426 	UNP_LIST_LOCK();
427 	unp->unp_gencnt = ++unp_gencnt;
428 	unp_count++;
429 	switch (so->so_type) {
430 	case SOCK_STREAM:
431 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
432 		break;
433 
434 	case SOCK_DGRAM:
435 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
436 		break;
437 
438 	case SOCK_SEQPACKET:
439 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
440 		break;
441 
442 	default:
443 		panic("uipc_attach");
444 	}
445 	UNP_LIST_UNLOCK();
446 
447 	return (0);
448 }
449 
450 static int
451 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
452 {
453 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
454 	struct vattr vattr;
455 	int error, namelen, vfslocked;
456 	struct nameidata nd;
457 	struct unpcb *unp;
458 	struct vnode *vp;
459 	struct mount *mp;
460 	char *buf;
461 
462 	unp = sotounpcb(so);
463 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
464 
465 	if (soun->sun_len > sizeof(struct sockaddr_un))
466 		return (EINVAL);
467 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
468 	if (namelen <= 0)
469 		return (EINVAL);
470 
471 	/*
472 	 * We don't allow simultaneous bind() calls on a single UNIX domain
473 	 * socket, so flag in-progress operations, and return an error if an
474 	 * operation is already in progress.
475 	 *
476 	 * Historically, we have not allowed a socket to be rebound, so this
477 	 * also returns an error.  Not allowing re-binding simplifies the
478 	 * implementation and avoids a great many possible failure modes.
479 	 */
480 	UNP_PCB_LOCK(unp);
481 	if (unp->unp_vnode != NULL) {
482 		UNP_PCB_UNLOCK(unp);
483 		return (EINVAL);
484 	}
485 	if (unp->unp_flags & UNP_BINDING) {
486 		UNP_PCB_UNLOCK(unp);
487 		return (EALREADY);
488 	}
489 	unp->unp_flags |= UNP_BINDING;
490 	UNP_PCB_UNLOCK(unp);
491 
492 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
493 	bcopy(soun->sun_path, buf, namelen);
494 	buf[namelen] = 0;
495 
496 restart:
497 	vfslocked = 0;
498 	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
499 	    UIO_SYSSPACE, buf, td);
500 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
501 	error = namei(&nd);
502 	if (error)
503 		goto error;
504 	vp = nd.ni_vp;
505 	vfslocked = NDHASGIANT(&nd);
506 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
507 		NDFREE(&nd, NDF_ONLY_PNBUF);
508 		if (nd.ni_dvp == vp)
509 			vrele(nd.ni_dvp);
510 		else
511 			vput(nd.ni_dvp);
512 		if (vp != NULL) {
513 			vrele(vp);
514 			error = EADDRINUSE;
515 			goto error;
516 		}
517 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
518 		if (error)
519 			goto error;
520 		VFS_UNLOCK_GIANT(vfslocked);
521 		goto restart;
522 	}
523 	VATTR_NULL(&vattr);
524 	vattr.va_type = VSOCK;
525 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
526 #ifdef MAC
527 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
528 	    &vattr);
529 #endif
530 	if (error == 0)
531 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
532 	NDFREE(&nd, NDF_ONLY_PNBUF);
533 	vput(nd.ni_dvp);
534 	if (error) {
535 		vn_finished_write(mp);
536 		goto error;
537 	}
538 	vp = nd.ni_vp;
539 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
540 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
541 
542 	UNP_LINK_WLOCK();
543 	UNP_PCB_LOCK(unp);
544 	vp->v_socket = unp->unp_socket;
545 	unp->unp_vnode = vp;
546 	unp->unp_addr = soun;
547 	unp->unp_flags &= ~UNP_BINDING;
548 	UNP_PCB_UNLOCK(unp);
549 	UNP_LINK_WUNLOCK();
550 	VOP_UNLOCK(vp, 0);
551 	vn_finished_write(mp);
552 	VFS_UNLOCK_GIANT(vfslocked);
553 	free(buf, M_TEMP);
554 	return (0);
555 
556 error:
557 	VFS_UNLOCK_GIANT(vfslocked);
558 	UNP_PCB_LOCK(unp);
559 	unp->unp_flags &= ~UNP_BINDING;
560 	UNP_PCB_UNLOCK(unp);
561 	free(buf, M_TEMP);
562 	return (error);
563 }
564 
565 static int
566 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
567 {
568 	int error;
569 
570 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
571 	UNP_LINK_WLOCK();
572 	error = unp_connect(so, nam, td);
573 	UNP_LINK_WUNLOCK();
574 	return (error);
575 }
576 
577 static void
578 uipc_close(struct socket *so)
579 {
580 	struct unpcb *unp, *unp2;
581 
582 	unp = sotounpcb(so);
583 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
584 
585 	UNP_LINK_WLOCK();
586 	UNP_PCB_LOCK(unp);
587 	unp2 = unp->unp_conn;
588 	if (unp2 != NULL) {
589 		UNP_PCB_LOCK(unp2);
590 		unp_disconnect(unp, unp2);
591 		UNP_PCB_UNLOCK(unp2);
592 	}
593 	UNP_PCB_UNLOCK(unp);
594 	UNP_LINK_WUNLOCK();
595 }
596 
597 static int
598 uipc_connect2(struct socket *so1, struct socket *so2)
599 {
600 	struct unpcb *unp, *unp2;
601 	int error;
602 
603 	UNP_LINK_WLOCK();
604 	unp = so1->so_pcb;
605 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
606 	UNP_PCB_LOCK(unp);
607 	unp2 = so2->so_pcb;
608 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
609 	UNP_PCB_LOCK(unp2);
610 	error = unp_connect2(so1, so2, PRU_CONNECT2);
611 	UNP_PCB_UNLOCK(unp2);
612 	UNP_PCB_UNLOCK(unp);
613 	UNP_LINK_WUNLOCK();
614 	return (error);
615 }
616 
617 static void
618 uipc_detach(struct socket *so)
619 {
620 	struct unpcb *unp, *unp2;
621 	struct sockaddr_un *saved_unp_addr;
622 	struct vnode *vp;
623 	int freeunp, local_unp_rights;
624 
625 	unp = sotounpcb(so);
626 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
627 
628 	UNP_LINK_WLOCK();
629 	UNP_LIST_LOCK();
630 	UNP_PCB_LOCK(unp);
631 	LIST_REMOVE(unp, unp_link);
632 	unp->unp_gencnt = ++unp_gencnt;
633 	--unp_count;
634 	UNP_LIST_UNLOCK();
635 
636 	/*
637 	 * XXXRW: Should assert vp->v_socket == so.
638 	 */
639 	if ((vp = unp->unp_vnode) != NULL) {
640 		unp->unp_vnode->v_socket = NULL;
641 		unp->unp_vnode = NULL;
642 	}
643 	unp2 = unp->unp_conn;
644 	if (unp2 != NULL) {
645 		UNP_PCB_LOCK(unp2);
646 		unp_disconnect(unp, unp2);
647 		UNP_PCB_UNLOCK(unp2);
648 	}
649 
650 	/*
651 	 * We hold the linkage lock exclusively, so it's OK to acquire
652 	 * multiple pcb locks at a time.
653 	 */
654 	while (!LIST_EMPTY(&unp->unp_refs)) {
655 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
656 
657 		UNP_PCB_LOCK(ref);
658 		unp_drop(ref, ECONNRESET);
659 		UNP_PCB_UNLOCK(ref);
660 	}
661 	local_unp_rights = unp_rights;
662 	UNP_LINK_WUNLOCK();
663 	unp->unp_socket->so_pcb = NULL;
664 	saved_unp_addr = unp->unp_addr;
665 	unp->unp_addr = NULL;
666 	unp->unp_refcount--;
667 	freeunp = (unp->unp_refcount == 0);
668 	if (saved_unp_addr != NULL)
669 		free(saved_unp_addr, M_SONAME);
670 	if (freeunp) {
671 		UNP_PCB_LOCK_DESTROY(unp);
672 		uma_zfree(unp_zone, unp);
673 	} else
674 		UNP_PCB_UNLOCK(unp);
675 	if (vp) {
676 		int vfslocked;
677 
678 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
679 		vrele(vp);
680 		VFS_UNLOCK_GIANT(vfslocked);
681 	}
682 	if (local_unp_rights)
683 		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
684 }
685 
686 static int
687 uipc_disconnect(struct socket *so)
688 {
689 	struct unpcb *unp, *unp2;
690 
691 	unp = sotounpcb(so);
692 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
693 
694 	UNP_LINK_WLOCK();
695 	UNP_PCB_LOCK(unp);
696 	unp2 = unp->unp_conn;
697 	if (unp2 != NULL) {
698 		UNP_PCB_LOCK(unp2);
699 		unp_disconnect(unp, unp2);
700 		UNP_PCB_UNLOCK(unp2);
701 	}
702 	UNP_PCB_UNLOCK(unp);
703 	UNP_LINK_WUNLOCK();
704 	return (0);
705 }
706 
707 static int
708 uipc_listen(struct socket *so, int backlog, struct thread *td)
709 {
710 	struct unpcb *unp;
711 	int error;
712 
713 	unp = sotounpcb(so);
714 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
715 
716 	UNP_PCB_LOCK(unp);
717 	if (unp->unp_vnode == NULL) {
718 		UNP_PCB_UNLOCK(unp);
719 		return (EINVAL);
720 	}
721 
722 	SOCK_LOCK(so);
723 	error = solisten_proto_check(so);
724 	if (error == 0) {
725 		cru2x(td->td_ucred, &unp->unp_peercred);
726 		unp->unp_flags |= UNP_HAVEPCCACHED;
727 		solisten_proto(so, backlog);
728 	}
729 	SOCK_UNLOCK(so);
730 	UNP_PCB_UNLOCK(unp);
731 	return (error);
732 }
733 
734 static int
735 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
736 {
737 	struct unpcb *unp, *unp2;
738 	const struct sockaddr *sa;
739 
740 	unp = sotounpcb(so);
741 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
742 
743 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
744 	UNP_LINK_RLOCK();
745 	/*
746 	 * XXX: It seems that this test always fails even when connection is
747 	 * established.  So, this else clause is added as workaround to
748 	 * return PF_LOCAL sockaddr.
749 	 */
750 	unp2 = unp->unp_conn;
751 	if (unp2 != NULL) {
752 		UNP_PCB_LOCK(unp2);
753 		if (unp2->unp_addr != NULL)
754 			sa = (struct sockaddr *) unp2->unp_addr;
755 		else
756 			sa = &sun_noname;
757 		bcopy(sa, *nam, sa->sa_len);
758 		UNP_PCB_UNLOCK(unp2);
759 	} else {
760 		sa = &sun_noname;
761 		bcopy(sa, *nam, sa->sa_len);
762 	}
763 	UNP_LINK_RUNLOCK();
764 	return (0);
765 }
766 
767 static int
768 uipc_rcvd(struct socket *so, int flags)
769 {
770 	struct unpcb *unp, *unp2;
771 	struct socket *so2;
772 	u_int mbcnt, sbcc;
773 	u_long newhiwat;
774 
775 	unp = sotounpcb(so);
776 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
777 
778 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
779 		panic("uipc_rcvd socktype %d", so->so_type);
780 
781 	/*
782 	 * Adjust backpressure on sender and wakeup any waiting to write.
783 	 *
784 	 * The unp lock is acquired to maintain the validity of the unp_conn
785 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
786 	 * static as long as we don't permit unp2 to disconnect from unp,
787 	 * which is prevented by the lock on unp.  We cache values from
788 	 * so_rcv to avoid holding the so_rcv lock over the entire
789 	 * transaction on the remote so_snd.
790 	 */
791 	SOCKBUF_LOCK(&so->so_rcv);
792 	mbcnt = so->so_rcv.sb_mbcnt;
793 	sbcc = so->so_rcv.sb_cc;
794 	SOCKBUF_UNLOCK(&so->so_rcv);
795 	UNP_PCB_LOCK(unp);
796 	unp2 = unp->unp_conn;
797 	if (unp2 == NULL) {
798 		UNP_PCB_UNLOCK(unp);
799 		return (0);
800 	}
801 	so2 = unp2->unp_socket;
802 	SOCKBUF_LOCK(&so2->so_snd);
803 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
804 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
805 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
806 	    newhiwat, RLIM_INFINITY);
807 	sowwakeup_locked(so2);
808 	unp->unp_mbcnt = mbcnt;
809 	unp->unp_cc = sbcc;
810 	UNP_PCB_UNLOCK(unp);
811 	return (0);
812 }
813 
814 static int
815 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
816     struct mbuf *control, struct thread *td)
817 {
818 	struct unpcb *unp, *unp2;
819 	struct socket *so2;
820 	u_int mbcnt_delta, sbcc;
821 	u_int newhiwat;
822 	int error = 0;
823 
824 	unp = sotounpcb(so);
825 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
826 
827 	if (flags & PRUS_OOB) {
828 		error = EOPNOTSUPP;
829 		goto release;
830 	}
831 	if (control != NULL && (error = unp_internalize(&control, td)))
832 		goto release;
833 	if ((nam != NULL) || (flags & PRUS_EOF))
834 		UNP_LINK_WLOCK();
835 	else
836 		UNP_LINK_RLOCK();
837 	switch (so->so_type) {
838 	case SOCK_DGRAM:
839 	{
840 		const struct sockaddr *from;
841 
842 		unp2 = unp->unp_conn;
843 		if (nam != NULL) {
844 			UNP_LINK_WLOCK_ASSERT();
845 			if (unp2 != NULL) {
846 				error = EISCONN;
847 				break;
848 			}
849 			error = unp_connect(so, nam, td);
850 			if (error)
851 				break;
852 			unp2 = unp->unp_conn;
853 		}
854 
855 		/*
856 		 * Because connect() and send() are non-atomic in a sendto()
857 		 * with a target address, it's possible that the socket will
858 		 * have disconnected before the send() can run.  In that case
859 		 * return the slightly counter-intuitive but otherwise
860 		 * correct error that the socket is not connected.
861 		 */
862 		if (unp2 == NULL) {
863 			error = ENOTCONN;
864 			break;
865 		}
866 		/* Lockless read. */
867 		if (unp2->unp_flags & UNP_WANTCRED)
868 			control = unp_addsockcred(td, control);
869 		UNP_PCB_LOCK(unp);
870 		if (unp->unp_addr != NULL)
871 			from = (struct sockaddr *)unp->unp_addr;
872 		else
873 			from = &sun_noname;
874 		so2 = unp2->unp_socket;
875 		SOCKBUF_LOCK(&so2->so_rcv);
876 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
877 			sorwakeup_locked(so2);
878 			m = NULL;
879 			control = NULL;
880 		} else {
881 			SOCKBUF_UNLOCK(&so2->so_rcv);
882 			error = ENOBUFS;
883 		}
884 		if (nam != NULL) {
885 			UNP_LINK_WLOCK_ASSERT();
886 			UNP_PCB_LOCK(unp2);
887 			unp_disconnect(unp, unp2);
888 			UNP_PCB_UNLOCK(unp2);
889 		}
890 		UNP_PCB_UNLOCK(unp);
891 		break;
892 	}
893 
894 	case SOCK_SEQPACKET:
895 	case SOCK_STREAM:
896 		if ((so->so_state & SS_ISCONNECTED) == 0) {
897 			if (nam != NULL) {
898 				UNP_LINK_WLOCK_ASSERT();
899 				error = unp_connect(so, nam, td);
900 				if (error)
901 					break;	/* XXX */
902 			} else {
903 				error = ENOTCONN;
904 				break;
905 			}
906 		}
907 
908 		/* Lockless read. */
909 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
910 			error = EPIPE;
911 			break;
912 		}
913 
914 		/*
915 		 * Because connect() and send() are non-atomic in a sendto()
916 		 * with a target address, it's possible that the socket will
917 		 * have disconnected before the send() can run.  In that case
918 		 * return the slightly counter-intuitive but otherwise
919 		 * correct error that the socket is not connected.
920 		 *
921 		 * Locking here must be done carefully: the linkage lock
922 		 * prevents interconnections between unpcbs from changing, so
923 		 * we can traverse from unp to unp2 without acquiring unp's
924 		 * lock.  Socket buffer locks follow unpcb locks, so we can
925 		 * acquire both remote and lock socket buffer locks.
926 		 */
927 		unp2 = unp->unp_conn;
928 		if (unp2 == NULL) {
929 			error = ENOTCONN;
930 			break;
931 		}
932 		so2 = unp2->unp_socket;
933 		UNP_PCB_LOCK(unp2);
934 		SOCKBUF_LOCK(&so2->so_rcv);
935 		if (unp2->unp_flags & UNP_WANTCRED) {
936 			/*
937 			 * Credentials are passed only once on SOCK_STREAM.
938 			 */
939 			unp2->unp_flags &= ~UNP_WANTCRED;
940 			control = unp_addsockcred(td, control);
941 		}
942 		/*
943 		 * Send to paired receive port, and then reduce send buffer
944 		 * hiwater marks to maintain backpressure.  Wake up readers.
945 		 */
946 		switch (so->so_type) {
947 		case SOCK_STREAM:
948 			if (control != NULL) {
949 				if (sbappendcontrol_locked(&so2->so_rcv, m,
950 				    control))
951 					control = NULL;
952 			} else
953 				sbappend_locked(&so2->so_rcv, m);
954 			break;
955 
956 		case SOCK_SEQPACKET: {
957 			const struct sockaddr *from;
958 
959 			from = &sun_noname;
960 			if (sbappendaddr_locked(&so2->so_rcv, from, m,
961 			    control))
962 				control = NULL;
963 			break;
964 			}
965 		}
966 
967 		/*
968 		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
969 		 * datagram size and back-pressure for SOCK_SEQPACKET, which
970 		 * can lead to undesired return of EMSGSIZE on send instead
971 		 * of more desirable blocking.
972 		 */
973 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
974 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
975 		sbcc = so2->so_rcv.sb_cc;
976 		sorwakeup_locked(so2);
977 
978 		SOCKBUF_LOCK(&so->so_snd);
979 		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
980 			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
981 		else
982 			newhiwat = 0;
983 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
984 		    newhiwat, RLIM_INFINITY);
985 		so->so_snd.sb_mbmax -= mbcnt_delta;
986 		SOCKBUF_UNLOCK(&so->so_snd);
987 		unp2->unp_cc = sbcc;
988 		UNP_PCB_UNLOCK(unp2);
989 		m = NULL;
990 		break;
991 
992 	default:
993 		panic("uipc_send unknown socktype");
994 	}
995 
996 	/*
997 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
998 	 */
999 	if (flags & PRUS_EOF) {
1000 		UNP_PCB_LOCK(unp);
1001 		socantsendmore(so);
1002 		unp_shutdown(unp);
1003 		UNP_PCB_UNLOCK(unp);
1004 	}
1005 
1006 	if ((nam != NULL) || (flags & PRUS_EOF))
1007 		UNP_LINK_WUNLOCK();
1008 	else
1009 		UNP_LINK_RUNLOCK();
1010 
1011 	if (control != NULL && error != 0)
1012 		unp_dispose(control);
1013 
1014 release:
1015 	if (control != NULL)
1016 		m_freem(control);
1017 	if (m != NULL)
1018 		m_freem(m);
1019 	return (error);
1020 }
1021 
1022 static int
1023 uipc_sense(struct socket *so, struct stat *sb)
1024 {
1025 	struct unpcb *unp, *unp2;
1026 	struct socket *so2;
1027 
1028 	unp = sotounpcb(so);
1029 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1030 
1031 	sb->st_blksize = so->so_snd.sb_hiwat;
1032 	UNP_LINK_RLOCK();
1033 	UNP_PCB_LOCK(unp);
1034 	unp2 = unp->unp_conn;
1035 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1036 	    unp2 != NULL) {
1037 		so2 = unp2->unp_socket;
1038 		sb->st_blksize += so2->so_rcv.sb_cc;
1039 	}
1040 	sb->st_dev = NODEV;
1041 	if (unp->unp_ino == 0)
1042 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1043 	sb->st_ino = unp->unp_ino;
1044 	UNP_PCB_UNLOCK(unp);
1045 	UNP_LINK_RUNLOCK();
1046 	return (0);
1047 }
1048 
1049 static int
1050 uipc_shutdown(struct socket *so)
1051 {
1052 	struct unpcb *unp;
1053 
1054 	unp = sotounpcb(so);
1055 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1056 
1057 	UNP_LINK_WLOCK();
1058 	UNP_PCB_LOCK(unp);
1059 	socantsendmore(so);
1060 	unp_shutdown(unp);
1061 	UNP_PCB_UNLOCK(unp);
1062 	UNP_LINK_WUNLOCK();
1063 	return (0);
1064 }
1065 
1066 static int
1067 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1068 {
1069 	struct unpcb *unp;
1070 	const struct sockaddr *sa;
1071 
1072 	unp = sotounpcb(so);
1073 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1074 
1075 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1076 	UNP_PCB_LOCK(unp);
1077 	if (unp->unp_addr != NULL)
1078 		sa = (struct sockaddr *) unp->unp_addr;
1079 	else
1080 		sa = &sun_noname;
1081 	bcopy(sa, *nam, sa->sa_len);
1082 	UNP_PCB_UNLOCK(unp);
1083 	return (0);
1084 }
1085 
1086 static struct pr_usrreqs uipc_usrreqs_dgram = {
1087 	.pru_abort = 		uipc_abort,
1088 	.pru_accept =		uipc_accept,
1089 	.pru_attach =		uipc_attach,
1090 	.pru_bind =		uipc_bind,
1091 	.pru_connect =		uipc_connect,
1092 	.pru_connect2 =		uipc_connect2,
1093 	.pru_detach =		uipc_detach,
1094 	.pru_disconnect =	uipc_disconnect,
1095 	.pru_listen =		uipc_listen,
1096 	.pru_peeraddr =		uipc_peeraddr,
1097 	.pru_rcvd =		uipc_rcvd,
1098 	.pru_send =		uipc_send,
1099 	.pru_sense =		uipc_sense,
1100 	.pru_shutdown =		uipc_shutdown,
1101 	.pru_sockaddr =		uipc_sockaddr,
1102 	.pru_soreceive =	soreceive_dgram,
1103 	.pru_close =		uipc_close,
1104 };
1105 
1106 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1107 	.pru_abort =		uipc_abort,
1108 	.pru_accept =		uipc_accept,
1109 	.pru_attach =		uipc_attach,
1110 	.pru_bind =		uipc_bind,
1111 	.pru_connect =		uipc_connect,
1112 	.pru_connect2 =		uipc_connect2,
1113 	.pru_detach =		uipc_detach,
1114 	.pru_disconnect =	uipc_disconnect,
1115 	.pru_listen =		uipc_listen,
1116 	.pru_peeraddr =		uipc_peeraddr,
1117 	.pru_rcvd =		uipc_rcvd,
1118 	.pru_send =		uipc_send,
1119 	.pru_sense =		uipc_sense,
1120 	.pru_shutdown =		uipc_shutdown,
1121 	.pru_sockaddr =		uipc_sockaddr,
1122 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1123 	.pru_close =		uipc_close,
1124 };
1125 
1126 static struct pr_usrreqs uipc_usrreqs_stream = {
1127 	.pru_abort = 		uipc_abort,
1128 	.pru_accept =		uipc_accept,
1129 	.pru_attach =		uipc_attach,
1130 	.pru_bind =		uipc_bind,
1131 	.pru_connect =		uipc_connect,
1132 	.pru_connect2 =		uipc_connect2,
1133 	.pru_detach =		uipc_detach,
1134 	.pru_disconnect =	uipc_disconnect,
1135 	.pru_listen =		uipc_listen,
1136 	.pru_peeraddr =		uipc_peeraddr,
1137 	.pru_rcvd =		uipc_rcvd,
1138 	.pru_send =		uipc_send,
1139 	.pru_sense =		uipc_sense,
1140 	.pru_shutdown =		uipc_shutdown,
1141 	.pru_sockaddr =		uipc_sockaddr,
1142 	.pru_soreceive =	soreceive_generic,
1143 	.pru_close =		uipc_close,
1144 };
1145 
1146 static int
1147 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1148 {
1149 	struct unpcb *unp;
1150 	struct xucred xu;
1151 	int error, optval;
1152 
1153 	if (sopt->sopt_level != 0)
1154 		return (EINVAL);
1155 
1156 	unp = sotounpcb(so);
1157 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1158 	error = 0;
1159 	switch (sopt->sopt_dir) {
1160 	case SOPT_GET:
1161 		switch (sopt->sopt_name) {
1162 		case LOCAL_PEERCRED:
1163 			UNP_PCB_LOCK(unp);
1164 			if (unp->unp_flags & UNP_HAVEPC)
1165 				xu = unp->unp_peercred;
1166 			else {
1167 				if (so->so_type == SOCK_STREAM)
1168 					error = ENOTCONN;
1169 				else
1170 					error = EINVAL;
1171 			}
1172 			UNP_PCB_UNLOCK(unp);
1173 			if (error == 0)
1174 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1175 			break;
1176 
1177 		case LOCAL_CREDS:
1178 			/* Unlocked read. */
1179 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1180 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1181 			break;
1182 
1183 		case LOCAL_CONNWAIT:
1184 			/* Unlocked read. */
1185 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1186 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1187 			break;
1188 
1189 		default:
1190 			error = EOPNOTSUPP;
1191 			break;
1192 		}
1193 		break;
1194 
1195 	case SOPT_SET:
1196 		switch (sopt->sopt_name) {
1197 		case LOCAL_CREDS:
1198 		case LOCAL_CONNWAIT:
1199 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1200 					    sizeof(optval));
1201 			if (error)
1202 				break;
1203 
1204 #define	OPTSET(bit) do {						\
1205 	UNP_PCB_LOCK(unp);						\
1206 	if (optval)							\
1207 		unp->unp_flags |= bit;					\
1208 	else								\
1209 		unp->unp_flags &= ~bit;					\
1210 	UNP_PCB_UNLOCK(unp);						\
1211 } while (0)
1212 
1213 			switch (sopt->sopt_name) {
1214 			case LOCAL_CREDS:
1215 				OPTSET(UNP_WANTCRED);
1216 				break;
1217 
1218 			case LOCAL_CONNWAIT:
1219 				OPTSET(UNP_CONNWAIT);
1220 				break;
1221 
1222 			default:
1223 				break;
1224 			}
1225 			break;
1226 #undef	OPTSET
1227 		default:
1228 			error = ENOPROTOOPT;
1229 			break;
1230 		}
1231 		break;
1232 
1233 	default:
1234 		error = EOPNOTSUPP;
1235 		break;
1236 	}
1237 	return (error);
1238 }
1239 
1240 static int
1241 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1242 {
1243 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1244 	struct vnode *vp;
1245 	struct socket *so2, *so3;
1246 	struct unpcb *unp, *unp2, *unp3;
1247 	int error, len, vfslocked;
1248 	struct nameidata nd;
1249 	char buf[SOCK_MAXADDRLEN];
1250 	struct sockaddr *sa;
1251 
1252 	UNP_LINK_WLOCK_ASSERT();
1253 
1254 	unp = sotounpcb(so);
1255 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1256 
1257 	if (nam->sa_len > sizeof(struct sockaddr_un))
1258 		return (EINVAL);
1259 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1260 	if (len <= 0)
1261 		return (EINVAL);
1262 	bcopy(soun->sun_path, buf, len);
1263 	buf[len] = 0;
1264 
1265 	UNP_PCB_LOCK(unp);
1266 	if (unp->unp_flags & UNP_CONNECTING) {
1267 		UNP_PCB_UNLOCK(unp);
1268 		return (EALREADY);
1269 	}
1270 	UNP_LINK_WUNLOCK();
1271 	unp->unp_flags |= UNP_CONNECTING;
1272 	UNP_PCB_UNLOCK(unp);
1273 
1274 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1275 	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf,
1276 	    td);
1277 	error = namei(&nd);
1278 	if (error)
1279 		vp = NULL;
1280 	else
1281 		vp = nd.ni_vp;
1282 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1283 	vfslocked = NDHASGIANT(&nd);
1284 	NDFREE(&nd, NDF_ONLY_PNBUF);
1285 	if (error)
1286 		goto bad;
1287 
1288 	if (vp->v_type != VSOCK) {
1289 		error = ENOTSOCK;
1290 		goto bad;
1291 	}
1292 #ifdef MAC
1293 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1294 	if (error)
1295 		goto bad;
1296 #endif
1297 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1298 	if (error)
1299 		goto bad;
1300 	VFS_UNLOCK_GIANT(vfslocked);
1301 
1302 	unp = sotounpcb(so);
1303 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1304 
1305 	/*
1306 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1307 	 * and to protect simultaneous locking of multiple pcbs.
1308 	 */
1309 	UNP_LINK_WLOCK();
1310 	so2 = vp->v_socket;
1311 	if (so2 == NULL) {
1312 		error = ECONNREFUSED;
1313 		goto bad2;
1314 	}
1315 	if (so->so_type != so2->so_type) {
1316 		error = EPROTOTYPE;
1317 		goto bad2;
1318 	}
1319 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1320 		if (so2->so_options & SO_ACCEPTCONN) {
1321 			CURVNET_SET(so2->so_vnet);
1322 			so3 = sonewconn(so2, 0);
1323 			CURVNET_RESTORE();
1324 		} else
1325 			so3 = NULL;
1326 		if (so3 == NULL) {
1327 			error = ECONNREFUSED;
1328 			goto bad2;
1329 		}
1330 		unp = sotounpcb(so);
1331 		unp2 = sotounpcb(so2);
1332 		unp3 = sotounpcb(so3);
1333 		UNP_PCB_LOCK(unp);
1334 		UNP_PCB_LOCK(unp2);
1335 		UNP_PCB_LOCK(unp3);
1336 		if (unp2->unp_addr != NULL) {
1337 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1338 			unp3->unp_addr = (struct sockaddr_un *) sa;
1339 			sa = NULL;
1340 		}
1341 
1342 		/*
1343 		 * The connecter's (client's) credentials are copied from its
1344 		 * process structure at the time of connect() (which is now).
1345 		 */
1346 		cru2x(td->td_ucred, &unp3->unp_peercred);
1347 		unp3->unp_flags |= UNP_HAVEPC;
1348 
1349 		/*
1350 		 * The receiver's (server's) credentials are copied from the
1351 		 * unp_peercred member of socket on which the former called
1352 		 * listen(); uipc_listen() cached that process's credentials
1353 		 * at that time so we can use them now.
1354 		 */
1355 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1356 		    ("unp_connect: listener without cached peercred"));
1357 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1358 		    sizeof(unp->unp_peercred));
1359 		unp->unp_flags |= UNP_HAVEPC;
1360 		if (unp2->unp_flags & UNP_WANTCRED)
1361 			unp3->unp_flags |= UNP_WANTCRED;
1362 		UNP_PCB_UNLOCK(unp3);
1363 		UNP_PCB_UNLOCK(unp2);
1364 		UNP_PCB_UNLOCK(unp);
1365 #ifdef MAC
1366 		mac_socketpeer_set_from_socket(so, so3);
1367 		mac_socketpeer_set_from_socket(so3, so);
1368 #endif
1369 
1370 		so2 = so3;
1371 	}
1372 	unp = sotounpcb(so);
1373 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1374 	unp2 = sotounpcb(so2);
1375 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1376 	UNP_PCB_LOCK(unp);
1377 	UNP_PCB_LOCK(unp2);
1378 	error = unp_connect2(so, so2, PRU_CONNECT);
1379 	UNP_PCB_UNLOCK(unp2);
1380 	UNP_PCB_UNLOCK(unp);
1381 bad2:
1382 	UNP_LINK_WUNLOCK();
1383 	if (vfslocked)
1384 		/*
1385 		 * Giant has been previously acquired. This means filesystem
1386 		 * isn't MPSAFE.  Do it once again.
1387 		 */
1388 		mtx_lock(&Giant);
1389 bad:
1390 	if (vp != NULL)
1391 		vput(vp);
1392 	VFS_UNLOCK_GIANT(vfslocked);
1393 	free(sa, M_SONAME);
1394 	UNP_LINK_WLOCK();
1395 	UNP_PCB_LOCK(unp);
1396 	unp->unp_flags &= ~UNP_CONNECTING;
1397 	UNP_PCB_UNLOCK(unp);
1398 	return (error);
1399 }
1400 
1401 static int
1402 unp_connect2(struct socket *so, struct socket *so2, int req)
1403 {
1404 	struct unpcb *unp;
1405 	struct unpcb *unp2;
1406 
1407 	unp = sotounpcb(so);
1408 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1409 	unp2 = sotounpcb(so2);
1410 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1411 
1412 	UNP_LINK_WLOCK_ASSERT();
1413 	UNP_PCB_LOCK_ASSERT(unp);
1414 	UNP_PCB_LOCK_ASSERT(unp2);
1415 
1416 	if (so2->so_type != so->so_type)
1417 		return (EPROTOTYPE);
1418 	unp->unp_conn = unp2;
1419 
1420 	switch (so->so_type) {
1421 	case SOCK_DGRAM:
1422 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1423 		soisconnected(so);
1424 		break;
1425 
1426 	case SOCK_STREAM:
1427 	case SOCK_SEQPACKET:
1428 		unp2->unp_conn = unp;
1429 		if (req == PRU_CONNECT &&
1430 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1431 			soisconnecting(so);
1432 		else
1433 			soisconnected(so);
1434 		soisconnected(so2);
1435 		break;
1436 
1437 	default:
1438 		panic("unp_connect2");
1439 	}
1440 	return (0);
1441 }
1442 
1443 static void
1444 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1445 {
1446 	struct socket *so;
1447 
1448 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1449 
1450 	UNP_LINK_WLOCK_ASSERT();
1451 	UNP_PCB_LOCK_ASSERT(unp);
1452 	UNP_PCB_LOCK_ASSERT(unp2);
1453 
1454 	unp->unp_conn = NULL;
1455 	switch (unp->unp_socket->so_type) {
1456 	case SOCK_DGRAM:
1457 		LIST_REMOVE(unp, unp_reflink);
1458 		so = unp->unp_socket;
1459 		SOCK_LOCK(so);
1460 		so->so_state &= ~SS_ISCONNECTED;
1461 		SOCK_UNLOCK(so);
1462 		break;
1463 
1464 	case SOCK_STREAM:
1465 	case SOCK_SEQPACKET:
1466 		soisdisconnected(unp->unp_socket);
1467 		unp2->unp_conn = NULL;
1468 		soisdisconnected(unp2->unp_socket);
1469 		break;
1470 	}
1471 }
1472 
1473 /*
1474  * unp_pcblist() walks the global list of struct unpcb's to generate a
1475  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1476  * sequentially, validating the generation number on each to see if it has
1477  * been detached.  All of this is necessary because copyout() may sleep on
1478  * disk I/O.
1479  */
1480 static int
1481 unp_pcblist(SYSCTL_HANDLER_ARGS)
1482 {
1483 	int error, i, n;
1484 	int freeunp;
1485 	struct unpcb *unp, **unp_list;
1486 	unp_gen_t gencnt;
1487 	struct xunpgen *xug;
1488 	struct unp_head *head;
1489 	struct xunpcb *xu;
1490 
1491 	switch ((intptr_t)arg1) {
1492 	case SOCK_STREAM:
1493 		head = &unp_shead;
1494 		break;
1495 
1496 	case SOCK_DGRAM:
1497 		head = &unp_dhead;
1498 		break;
1499 
1500 	case SOCK_SEQPACKET:
1501 		head = &unp_sphead;
1502 		break;
1503 
1504 	default:
1505 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1506 	}
1507 
1508 	/*
1509 	 * The process of preparing the PCB list is too time-consuming and
1510 	 * resource-intensive to repeat twice on every request.
1511 	 */
1512 	if (req->oldptr == NULL) {
1513 		n = unp_count;
1514 		req->oldidx = 2 * (sizeof *xug)
1515 			+ (n + n/8) * sizeof(struct xunpcb);
1516 		return (0);
1517 	}
1518 
1519 	if (req->newptr != NULL)
1520 		return (EPERM);
1521 
1522 	/*
1523 	 * OK, now we're committed to doing something.
1524 	 */
1525 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1526 	UNP_LIST_LOCK();
1527 	gencnt = unp_gencnt;
1528 	n = unp_count;
1529 	UNP_LIST_UNLOCK();
1530 
1531 	xug->xug_len = sizeof *xug;
1532 	xug->xug_count = n;
1533 	xug->xug_gen = gencnt;
1534 	xug->xug_sogen = so_gencnt;
1535 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1536 	if (error) {
1537 		free(xug, M_TEMP);
1538 		return (error);
1539 	}
1540 
1541 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1542 
1543 	UNP_LIST_LOCK();
1544 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1545 	     unp = LIST_NEXT(unp, unp_link)) {
1546 		UNP_PCB_LOCK(unp);
1547 		if (unp->unp_gencnt <= gencnt) {
1548 			if (cr_cansee(req->td->td_ucred,
1549 			    unp->unp_socket->so_cred)) {
1550 				UNP_PCB_UNLOCK(unp);
1551 				continue;
1552 			}
1553 			unp_list[i++] = unp;
1554 			unp->unp_refcount++;
1555 		}
1556 		UNP_PCB_UNLOCK(unp);
1557 	}
1558 	UNP_LIST_UNLOCK();
1559 	n = i;			/* In case we lost some during malloc. */
1560 
1561 	error = 0;
1562 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1563 	for (i = 0; i < n; i++) {
1564 		unp = unp_list[i];
1565 		UNP_PCB_LOCK(unp);
1566 		unp->unp_refcount--;
1567 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1568 			xu->xu_len = sizeof *xu;
1569 			xu->xu_unpp = unp;
1570 			/*
1571 			 * XXX - need more locking here to protect against
1572 			 * connect/disconnect races for SMP.
1573 			 */
1574 			if (unp->unp_addr != NULL)
1575 				bcopy(unp->unp_addr, &xu->xu_addr,
1576 				      unp->unp_addr->sun_len);
1577 			if (unp->unp_conn != NULL &&
1578 			    unp->unp_conn->unp_addr != NULL)
1579 				bcopy(unp->unp_conn->unp_addr,
1580 				      &xu->xu_caddr,
1581 				      unp->unp_conn->unp_addr->sun_len);
1582 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1583 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1584 			UNP_PCB_UNLOCK(unp);
1585 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1586 		} else {
1587 			freeunp = (unp->unp_refcount == 0);
1588 			UNP_PCB_UNLOCK(unp);
1589 			if (freeunp) {
1590 				UNP_PCB_LOCK_DESTROY(unp);
1591 				uma_zfree(unp_zone, unp);
1592 			}
1593 		}
1594 	}
1595 	free(xu, M_TEMP);
1596 	if (!error) {
1597 		/*
1598 		 * Give the user an updated idea of our state.  If the
1599 		 * generation differs from what we told her before, she knows
1600 		 * that something happened while we were processing this
1601 		 * request, and it might be necessary to retry.
1602 		 */
1603 		xug->xug_gen = unp_gencnt;
1604 		xug->xug_sogen = so_gencnt;
1605 		xug->xug_count = unp_count;
1606 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1607 	}
1608 	free(unp_list, M_TEMP);
1609 	free(xug, M_TEMP);
1610 	return (error);
1611 }
1612 
1613 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1614     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1615     "List of active local datagram sockets");
1616 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1617     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1618     "List of active local stream sockets");
1619 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1620     CTLTYPE_OPAQUE | CTLFLAG_RD,
1621     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1622     "List of active local seqpacket sockets");
1623 
1624 static void
1625 unp_shutdown(struct unpcb *unp)
1626 {
1627 	struct unpcb *unp2;
1628 	struct socket *so;
1629 
1630 	UNP_LINK_WLOCK_ASSERT();
1631 	UNP_PCB_LOCK_ASSERT(unp);
1632 
1633 	unp2 = unp->unp_conn;
1634 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1635 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1636 		so = unp2->unp_socket;
1637 		if (so != NULL)
1638 			socantrcvmore(so);
1639 	}
1640 }
1641 
1642 static void
1643 unp_drop(struct unpcb *unp, int errno)
1644 {
1645 	struct socket *so = unp->unp_socket;
1646 	struct unpcb *unp2;
1647 
1648 	UNP_LINK_WLOCK_ASSERT();
1649 	UNP_PCB_LOCK_ASSERT(unp);
1650 
1651 	so->so_error = errno;
1652 	unp2 = unp->unp_conn;
1653 	if (unp2 == NULL)
1654 		return;
1655 	UNP_PCB_LOCK(unp2);
1656 	unp_disconnect(unp, unp2);
1657 	UNP_PCB_UNLOCK(unp2);
1658 }
1659 
1660 static void
1661 unp_freerights(struct file **rp, int fdcount)
1662 {
1663 	int i;
1664 	struct file *fp;
1665 
1666 	for (i = 0; i < fdcount; i++) {
1667 		fp = *rp;
1668 		*rp++ = NULL;
1669 		unp_discard(fp);
1670 	}
1671 }
1672 
1673 static int
1674 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1675 {
1676 	struct thread *td = curthread;		/* XXX */
1677 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1678 	int i;
1679 	int *fdp;
1680 	struct file **rp;
1681 	struct file *fp;
1682 	void *data;
1683 	socklen_t clen = control->m_len, datalen;
1684 	int error, newfds;
1685 	int f;
1686 	u_int newlen;
1687 
1688 	UNP_LINK_UNLOCK_ASSERT();
1689 
1690 	error = 0;
1691 	if (controlp != NULL) /* controlp == NULL => free control messages */
1692 		*controlp = NULL;
1693 	while (cm != NULL) {
1694 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1695 			error = EINVAL;
1696 			break;
1697 		}
1698 		data = CMSG_DATA(cm);
1699 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1700 		if (cm->cmsg_level == SOL_SOCKET
1701 		    && cm->cmsg_type == SCM_RIGHTS) {
1702 			newfds = datalen / sizeof(struct file *);
1703 			rp = data;
1704 
1705 			/* If we're not outputting the descriptors free them. */
1706 			if (error || controlp == NULL) {
1707 				unp_freerights(rp, newfds);
1708 				goto next;
1709 			}
1710 			FILEDESC_XLOCK(td->td_proc->p_fd);
1711 			/* if the new FD's will not fit free them.  */
1712 			if (!fdavail(td, newfds)) {
1713 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1714 				error = EMSGSIZE;
1715 				unp_freerights(rp, newfds);
1716 				goto next;
1717 			}
1718 
1719 			/*
1720 			 * Now change each pointer to an fd in the global
1721 			 * table to an integer that is the index to the local
1722 			 * fd table entry that we set up to point to the
1723 			 * global one we are transferring.
1724 			 */
1725 			newlen = newfds * sizeof(int);
1726 			*controlp = sbcreatecontrol(NULL, newlen,
1727 			    SCM_RIGHTS, SOL_SOCKET);
1728 			if (*controlp == NULL) {
1729 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1730 				error = E2BIG;
1731 				unp_freerights(rp, newfds);
1732 				goto next;
1733 			}
1734 
1735 			fdp = (int *)
1736 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1737 			for (i = 0; i < newfds; i++) {
1738 				if (fdalloc(td, 0, &f))
1739 					panic("unp_externalize fdalloc failed");
1740 				fp = *rp++;
1741 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1742 				unp_externalize_fp(fp);
1743 				*fdp++ = f;
1744 			}
1745 			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1746 		} else {
1747 			/* We can just copy anything else across. */
1748 			if (error || controlp == NULL)
1749 				goto next;
1750 			*controlp = sbcreatecontrol(NULL, datalen,
1751 			    cm->cmsg_type, cm->cmsg_level);
1752 			if (*controlp == NULL) {
1753 				error = ENOBUFS;
1754 				goto next;
1755 			}
1756 			bcopy(data,
1757 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1758 			    datalen);
1759 		}
1760 		controlp = &(*controlp)->m_next;
1761 
1762 next:
1763 		if (CMSG_SPACE(datalen) < clen) {
1764 			clen -= CMSG_SPACE(datalen);
1765 			cm = (struct cmsghdr *)
1766 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1767 		} else {
1768 			clen = 0;
1769 			cm = NULL;
1770 		}
1771 	}
1772 
1773 	m_freem(control);
1774 	return (error);
1775 }
1776 
1777 static void
1778 unp_zone_change(void *tag)
1779 {
1780 
1781 	uma_zone_set_max(unp_zone, maxsockets);
1782 }
1783 
1784 static void
1785 unp_init(void)
1786 {
1787 
1788 #ifdef VIMAGE
1789 	if (!IS_DEFAULT_VNET(curvnet))
1790 		return;
1791 #endif
1792 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1793 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1794 	if (unp_zone == NULL)
1795 		panic("unp_init");
1796 	uma_zone_set_max(unp_zone, maxsockets);
1797 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1798 	    NULL, EVENTHANDLER_PRI_ANY);
1799 	LIST_INIT(&unp_dhead);
1800 	LIST_INIT(&unp_shead);
1801 	LIST_INIT(&unp_sphead);
1802 	SLIST_INIT(&unp_defers);
1803 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1804 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1805 	UNP_LINK_LOCK_INIT();
1806 	UNP_LIST_LOCK_INIT();
1807 	UNP_DEFERRED_LOCK_INIT();
1808 }
1809 
1810 static int
1811 unp_internalize(struct mbuf **controlp, struct thread *td)
1812 {
1813 	struct mbuf *control = *controlp;
1814 	struct proc *p = td->td_proc;
1815 	struct filedesc *fdescp = p->p_fd;
1816 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1817 	struct cmsgcred *cmcred;
1818 	struct file **rp;
1819 	struct file *fp;
1820 	struct timeval *tv;
1821 	int i, fd, *fdp;
1822 	void *data;
1823 	socklen_t clen = control->m_len, datalen;
1824 	int error, oldfds;
1825 	u_int newlen;
1826 
1827 	UNP_LINK_UNLOCK_ASSERT();
1828 
1829 	error = 0;
1830 	*controlp = NULL;
1831 	while (cm != NULL) {
1832 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1833 		    || cm->cmsg_len > clen) {
1834 			error = EINVAL;
1835 			goto out;
1836 		}
1837 		data = CMSG_DATA(cm);
1838 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1839 
1840 		switch (cm->cmsg_type) {
1841 		/*
1842 		 * Fill in credential information.
1843 		 */
1844 		case SCM_CREDS:
1845 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1846 			    SCM_CREDS, SOL_SOCKET);
1847 			if (*controlp == NULL) {
1848 				error = ENOBUFS;
1849 				goto out;
1850 			}
1851 			cmcred = (struct cmsgcred *)
1852 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1853 			cmcred->cmcred_pid = p->p_pid;
1854 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1855 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1856 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1857 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1858 			    CMGROUP_MAX);
1859 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1860 				cmcred->cmcred_groups[i] =
1861 				    td->td_ucred->cr_groups[i];
1862 			break;
1863 
1864 		case SCM_RIGHTS:
1865 			oldfds = datalen / sizeof (int);
1866 			/*
1867 			 * Check that all the FDs passed in refer to legal
1868 			 * files.  If not, reject the entire operation.
1869 			 */
1870 			fdp = data;
1871 			FILEDESC_SLOCK(fdescp);
1872 			for (i = 0; i < oldfds; i++) {
1873 				fd = *fdp++;
1874 				if ((unsigned)fd >= fdescp->fd_nfiles ||
1875 				    fdescp->fd_ofiles[fd] == NULL) {
1876 					FILEDESC_SUNLOCK(fdescp);
1877 					error = EBADF;
1878 					goto out;
1879 				}
1880 				fp = fdescp->fd_ofiles[fd];
1881 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1882 					FILEDESC_SUNLOCK(fdescp);
1883 					error = EOPNOTSUPP;
1884 					goto out;
1885 				}
1886 
1887 			}
1888 
1889 			/*
1890 			 * Now replace the integer FDs with pointers to the
1891 			 * associated global file table entry..
1892 			 */
1893 			newlen = oldfds * sizeof(struct file *);
1894 			*controlp = sbcreatecontrol(NULL, newlen,
1895 			    SCM_RIGHTS, SOL_SOCKET);
1896 			if (*controlp == NULL) {
1897 				FILEDESC_SUNLOCK(fdescp);
1898 				error = E2BIG;
1899 				goto out;
1900 			}
1901 			fdp = data;
1902 			rp = (struct file **)
1903 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1904 			for (i = 0; i < oldfds; i++) {
1905 				fp = fdescp->fd_ofiles[*fdp++];
1906 				*rp++ = fp;
1907 				unp_internalize_fp(fp);
1908 			}
1909 			FILEDESC_SUNLOCK(fdescp);
1910 			break;
1911 
1912 		case SCM_TIMESTAMP:
1913 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1914 			    SCM_TIMESTAMP, SOL_SOCKET);
1915 			if (*controlp == NULL) {
1916 				error = ENOBUFS;
1917 				goto out;
1918 			}
1919 			tv = (struct timeval *)
1920 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1921 			microtime(tv);
1922 			break;
1923 
1924 		default:
1925 			error = EINVAL;
1926 			goto out;
1927 		}
1928 
1929 		controlp = &(*controlp)->m_next;
1930 		if (CMSG_SPACE(datalen) < clen) {
1931 			clen -= CMSG_SPACE(datalen);
1932 			cm = (struct cmsghdr *)
1933 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1934 		} else {
1935 			clen = 0;
1936 			cm = NULL;
1937 		}
1938 	}
1939 
1940 out:
1941 	m_freem(control);
1942 	return (error);
1943 }
1944 
1945 static struct mbuf *
1946 unp_addsockcred(struct thread *td, struct mbuf *control)
1947 {
1948 	struct mbuf *m, *n, *n_prev;
1949 	struct sockcred *sc;
1950 	const struct cmsghdr *cm;
1951 	int ngroups;
1952 	int i;
1953 
1954 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1955 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1956 	if (m == NULL)
1957 		return (control);
1958 
1959 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1960 	sc->sc_uid = td->td_ucred->cr_ruid;
1961 	sc->sc_euid = td->td_ucred->cr_uid;
1962 	sc->sc_gid = td->td_ucred->cr_rgid;
1963 	sc->sc_egid = td->td_ucred->cr_gid;
1964 	sc->sc_ngroups = ngroups;
1965 	for (i = 0; i < sc->sc_ngroups; i++)
1966 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1967 
1968 	/*
1969 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1970 	 * created SCM_CREDS control message (struct sockcred) has another
1971 	 * format.
1972 	 */
1973 	if (control != NULL)
1974 		for (n = control, n_prev = NULL; n != NULL;) {
1975 			cm = mtod(n, struct cmsghdr *);
1976     			if (cm->cmsg_level == SOL_SOCKET &&
1977 			    cm->cmsg_type == SCM_CREDS) {
1978     				if (n_prev == NULL)
1979 					control = n->m_next;
1980 				else
1981 					n_prev->m_next = n->m_next;
1982 				n = m_free(n);
1983 			} else {
1984 				n_prev = n;
1985 				n = n->m_next;
1986 			}
1987 		}
1988 
1989 	/* Prepend it to the head. */
1990 	m->m_next = control;
1991 	return (m);
1992 }
1993 
1994 static struct unpcb *
1995 fptounp(struct file *fp)
1996 {
1997 	struct socket *so;
1998 
1999 	if (fp->f_type != DTYPE_SOCKET)
2000 		return (NULL);
2001 	if ((so = fp->f_data) == NULL)
2002 		return (NULL);
2003 	if (so->so_proto->pr_domain != &localdomain)
2004 		return (NULL);
2005 	return sotounpcb(so);
2006 }
2007 
2008 static void
2009 unp_discard(struct file *fp)
2010 {
2011 	struct unp_defer *dr;
2012 
2013 	if (unp_externalize_fp(fp)) {
2014 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2015 		dr->ud_fp = fp;
2016 		UNP_DEFERRED_LOCK();
2017 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2018 		UNP_DEFERRED_UNLOCK();
2019 		atomic_add_int(&unp_defers_count, 1);
2020 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2021 	} else
2022 		(void) closef(fp, (struct thread *)NULL);
2023 }
2024 
2025 static void
2026 unp_process_defers(void *arg __unused, int pending)
2027 {
2028 	struct unp_defer *dr;
2029 	SLIST_HEAD(, unp_defer) drl;
2030 	int count;
2031 
2032 	SLIST_INIT(&drl);
2033 	for (;;) {
2034 		UNP_DEFERRED_LOCK();
2035 		if (SLIST_FIRST(&unp_defers) == NULL) {
2036 			UNP_DEFERRED_UNLOCK();
2037 			break;
2038 		}
2039 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2040 		UNP_DEFERRED_UNLOCK();
2041 		count = 0;
2042 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2043 			SLIST_REMOVE_HEAD(&drl, ud_link);
2044 			closef(dr->ud_fp, NULL);
2045 			free(dr, M_TEMP);
2046 			count++;
2047 		}
2048 		atomic_add_int(&unp_defers_count, -count);
2049 	}
2050 }
2051 
2052 static void
2053 unp_internalize_fp(struct file *fp)
2054 {
2055 	struct unpcb *unp;
2056 
2057 	UNP_LINK_WLOCK();
2058 	if ((unp = fptounp(fp)) != NULL) {
2059 		unp->unp_file = fp;
2060 		unp->unp_msgcount++;
2061 	}
2062 	fhold(fp);
2063 	unp_rights++;
2064 	UNP_LINK_WUNLOCK();
2065 }
2066 
2067 static int
2068 unp_externalize_fp(struct file *fp)
2069 {
2070 	struct unpcb *unp;
2071 	int ret;
2072 
2073 	UNP_LINK_WLOCK();
2074 	if ((unp = fptounp(fp)) != NULL) {
2075 		unp->unp_msgcount--;
2076 		ret = 1;
2077 	} else
2078 		ret = 0;
2079 	unp_rights--;
2080 	UNP_LINK_WUNLOCK();
2081 	return (ret);
2082 }
2083 
2084 /*
2085  * unp_defer indicates whether additional work has been defered for a future
2086  * pass through unp_gc().  It is thread local and does not require explicit
2087  * synchronization.
2088  */
2089 static int	unp_marked;
2090 static int	unp_unreachable;
2091 
2092 static void
2093 unp_accessable(struct file *fp)
2094 {
2095 	struct unpcb *unp;
2096 
2097 	if ((unp = fptounp(fp)) == NULL)
2098 		return;
2099 	if (unp->unp_gcflag & UNPGC_REF)
2100 		return;
2101 	unp->unp_gcflag &= ~UNPGC_DEAD;
2102 	unp->unp_gcflag |= UNPGC_REF;
2103 	unp_marked++;
2104 }
2105 
2106 static void
2107 unp_gc_process(struct unpcb *unp)
2108 {
2109 	struct socket *soa;
2110 	struct socket *so;
2111 	struct file *fp;
2112 
2113 	/* Already processed. */
2114 	if (unp->unp_gcflag & UNPGC_SCANNED)
2115 		return;
2116 	fp = unp->unp_file;
2117 
2118 	/*
2119 	 * Check for a socket potentially in a cycle.  It must be in a
2120 	 * queue as indicated by msgcount, and this must equal the file
2121 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2122 	 */
2123 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2124 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2125 		unp->unp_gcflag |= UNPGC_DEAD;
2126 		unp_unreachable++;
2127 		return;
2128 	}
2129 
2130 	/*
2131 	 * Mark all sockets we reference with RIGHTS.
2132 	 */
2133 	so = unp->unp_socket;
2134 	SOCKBUF_LOCK(&so->so_rcv);
2135 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2136 	SOCKBUF_UNLOCK(&so->so_rcv);
2137 
2138 	/*
2139 	 * Mark all sockets in our accept queue.
2140 	 */
2141 	ACCEPT_LOCK();
2142 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2143 		SOCKBUF_LOCK(&soa->so_rcv);
2144 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2145 		SOCKBUF_UNLOCK(&soa->so_rcv);
2146 	}
2147 	ACCEPT_UNLOCK();
2148 	unp->unp_gcflag |= UNPGC_SCANNED;
2149 }
2150 
2151 static int unp_recycled;
2152 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2153     "Number of unreachable sockets claimed by the garbage collector.");
2154 
2155 static int unp_taskcount;
2156 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2157     "Number of times the garbage collector has run.");
2158 
2159 static void
2160 unp_gc(__unused void *arg, int pending)
2161 {
2162 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2163 				    NULL };
2164 	struct unp_head **head;
2165 	struct file *f, **unref;
2166 	struct unpcb *unp;
2167 	int i, total;
2168 
2169 	unp_taskcount++;
2170 	UNP_LIST_LOCK();
2171 	/*
2172 	 * First clear all gc flags from previous runs.
2173 	 */
2174 	for (head = heads; *head != NULL; head++)
2175 		LIST_FOREACH(unp, *head, unp_link)
2176 			unp->unp_gcflag = 0;
2177 
2178 	/*
2179 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2180 	 * is reachable all of the sockets it references are reachable.
2181 	 * Stop the scan once we do a complete loop without discovering
2182 	 * a new reachable socket.
2183 	 */
2184 	do {
2185 		unp_unreachable = 0;
2186 		unp_marked = 0;
2187 		for (head = heads; *head != NULL; head++)
2188 			LIST_FOREACH(unp, *head, unp_link)
2189 				unp_gc_process(unp);
2190 	} while (unp_marked);
2191 	UNP_LIST_UNLOCK();
2192 	if (unp_unreachable == 0)
2193 		return;
2194 
2195 	/*
2196 	 * Allocate space for a local list of dead unpcbs.
2197 	 */
2198 	unref = malloc(unp_unreachable * sizeof(struct file *),
2199 	    M_TEMP, M_WAITOK);
2200 
2201 	/*
2202 	 * Iterate looking for sockets which have been specifically marked
2203 	 * as as unreachable and store them locally.
2204 	 */
2205 	UNP_LINK_RLOCK();
2206 	UNP_LIST_LOCK();
2207 	for (total = 0, head = heads; *head != NULL; head++)
2208 		LIST_FOREACH(unp, *head, unp_link)
2209 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2210 				f = unp->unp_file;
2211 				if (unp->unp_msgcount == 0 || f == NULL ||
2212 				    f->f_count != unp->unp_msgcount)
2213 					continue;
2214 				unref[total++] = f;
2215 				fhold(f);
2216 				KASSERT(total <= unp_unreachable,
2217 				    ("unp_gc: incorrect unreachable count."));
2218 			}
2219 	UNP_LIST_UNLOCK();
2220 	UNP_LINK_RUNLOCK();
2221 
2222 	/*
2223 	 * Now flush all sockets, free'ing rights.  This will free the
2224 	 * struct files associated with these sockets but leave each socket
2225 	 * with one remaining ref.
2226 	 */
2227 	for (i = 0; i < total; i++) {
2228 		struct socket *so;
2229 
2230 		so = unref[i]->f_data;
2231 		CURVNET_SET(so->so_vnet);
2232 		sorflush(so);
2233 		CURVNET_RESTORE();
2234 	}
2235 
2236 	/*
2237 	 * And finally release the sockets so they can be reclaimed.
2238 	 */
2239 	for (i = 0; i < total; i++)
2240 		fdrop(unref[i], NULL);
2241 	unp_recycled += total;
2242 	free(unref, M_TEMP);
2243 }
2244 
2245 static void
2246 unp_dispose(struct mbuf *m)
2247 {
2248 
2249 	if (m)
2250 		unp_scan(m, unp_discard);
2251 }
2252 
2253 static void
2254 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2255 {
2256 	struct mbuf *m;
2257 	struct file **rp;
2258 	struct cmsghdr *cm;
2259 	void *data;
2260 	int i;
2261 	socklen_t clen, datalen;
2262 	int qfds;
2263 
2264 	while (m0 != NULL) {
2265 		for (m = m0; m; m = m->m_next) {
2266 			if (m->m_type != MT_CONTROL)
2267 				continue;
2268 
2269 			cm = mtod(m, struct cmsghdr *);
2270 			clen = m->m_len;
2271 
2272 			while (cm != NULL) {
2273 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2274 					break;
2275 
2276 				data = CMSG_DATA(cm);
2277 				datalen = (caddr_t)cm + cm->cmsg_len
2278 				    - (caddr_t)data;
2279 
2280 				if (cm->cmsg_level == SOL_SOCKET &&
2281 				    cm->cmsg_type == SCM_RIGHTS) {
2282 					qfds = datalen / sizeof (struct file *);
2283 					rp = data;
2284 					for (i = 0; i < qfds; i++)
2285 						(*op)(*rp++);
2286 				}
2287 
2288 				if (CMSG_SPACE(datalen) < clen) {
2289 					clen -= CMSG_SPACE(datalen);
2290 					cm = (struct cmsghdr *)
2291 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2292 				} else {
2293 					clen = 0;
2294 					cm = NULL;
2295 				}
2296 			}
2297 		}
2298 		m0 = m0->m_act;
2299 	}
2300 }
2301 
2302 #ifdef DDB
2303 static void
2304 db_print_indent(int indent)
2305 {
2306 	int i;
2307 
2308 	for (i = 0; i < indent; i++)
2309 		db_printf(" ");
2310 }
2311 
2312 static void
2313 db_print_unpflags(int unp_flags)
2314 {
2315 	int comma;
2316 
2317 	comma = 0;
2318 	if (unp_flags & UNP_HAVEPC) {
2319 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2320 		comma = 1;
2321 	}
2322 	if (unp_flags & UNP_HAVEPCCACHED) {
2323 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2324 		comma = 1;
2325 	}
2326 	if (unp_flags & UNP_WANTCRED) {
2327 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2328 		comma = 1;
2329 	}
2330 	if (unp_flags & UNP_CONNWAIT) {
2331 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2332 		comma = 1;
2333 	}
2334 	if (unp_flags & UNP_CONNECTING) {
2335 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2336 		comma = 1;
2337 	}
2338 	if (unp_flags & UNP_BINDING) {
2339 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2340 		comma = 1;
2341 	}
2342 }
2343 
2344 static void
2345 db_print_xucred(int indent, struct xucred *xu)
2346 {
2347 	int comma, i;
2348 
2349 	db_print_indent(indent);
2350 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2351 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2352 	db_print_indent(indent);
2353 	db_printf("cr_groups: ");
2354 	comma = 0;
2355 	for (i = 0; i < xu->cr_ngroups; i++) {
2356 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2357 		comma = 1;
2358 	}
2359 	db_printf("\n");
2360 }
2361 
2362 static void
2363 db_print_unprefs(int indent, struct unp_head *uh)
2364 {
2365 	struct unpcb *unp;
2366 	int counter;
2367 
2368 	counter = 0;
2369 	LIST_FOREACH(unp, uh, unp_reflink) {
2370 		if (counter % 4 == 0)
2371 			db_print_indent(indent);
2372 		db_printf("%p  ", unp);
2373 		if (counter % 4 == 3)
2374 			db_printf("\n");
2375 		counter++;
2376 	}
2377 	if (counter != 0 && counter % 4 != 0)
2378 		db_printf("\n");
2379 }
2380 
2381 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2382 {
2383 	struct unpcb *unp;
2384 
2385         if (!have_addr) {
2386                 db_printf("usage: show unpcb <addr>\n");
2387                 return;
2388         }
2389         unp = (struct unpcb *)addr;
2390 
2391 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2392 	    unp->unp_vnode);
2393 
2394 	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2395 	    unp->unp_conn);
2396 
2397 	db_printf("unp_refs:\n");
2398 	db_print_unprefs(2, &unp->unp_refs);
2399 
2400 	/* XXXRW: Would be nice to print the full address, if any. */
2401 	db_printf("unp_addr: %p\n", unp->unp_addr);
2402 
2403 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2404 	    unp->unp_cc, unp->unp_mbcnt,
2405 	    (unsigned long long)unp->unp_gencnt);
2406 
2407 	db_printf("unp_flags: %x (", unp->unp_flags);
2408 	db_print_unpflags(unp->unp_flags);
2409 	db_printf(")\n");
2410 
2411 	db_printf("unp_peercred:\n");
2412 	db_print_xucred(2, &unp->unp_peercred);
2413 
2414 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2415 }
2416 #endif
2417