1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004-2009 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/fcntl.h> 69 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 70 #include <sys/eventhandler.h> 71 #include <sys/file.h> 72 #include <sys/filedesc.h> 73 #include <sys/kernel.h> 74 #include <sys/lock.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * Locking key: 110 * (l) Locked using list lock 111 * (g) Locked using linkage lock 112 */ 113 114 static uma_zone_t unp_zone; 115 static unp_gen_t unp_gencnt; /* (l) */ 116 static u_int unp_count; /* (l) Count of local sockets. */ 117 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 118 static int unp_rights; /* (g) File descriptors in flight. */ 119 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 120 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 121 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 122 123 struct unp_defer { 124 SLIST_ENTRY(unp_defer) ud_link; 125 struct file *ud_fp; 126 }; 127 static SLIST_HEAD(, unp_defer) unp_defers; 128 static int unp_defers_count; 129 130 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 131 132 /* 133 * Garbage collection of cyclic file descriptor/socket references occurs 134 * asynchronously in a taskqueue context in order to avoid recursion and 135 * reentrance in the UNIX domain socket, file descriptor, and socket layer 136 * code. See unp_gc() for a full description. 137 */ 138 static struct timeout_task unp_gc_task; 139 140 /* 141 * The close of unix domain sockets attached as SCM_RIGHTS is 142 * postponed to the taskqueue, to avoid arbitrary recursion depth. 143 * The attached sockets might have another sockets attached. 144 */ 145 static struct task unp_defer_task; 146 147 /* 148 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 149 * stream sockets, although the total for sender and receiver is actually 150 * only PIPSIZ. 151 * 152 * Datagram sockets really use the sendspace as the maximum datagram size, 153 * and don't really want to reserve the sendspace. Their recvspace should be 154 * large enough for at least one max-size datagram plus address. 155 */ 156 #ifndef PIPSIZ 157 #define PIPSIZ 8192 158 #endif 159 static u_long unpst_sendspace = PIPSIZ; 160 static u_long unpst_recvspace = PIPSIZ; 161 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 162 static u_long unpdg_recvspace = 4*1024; 163 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 164 static u_long unpsp_recvspace = PIPSIZ; 165 166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); 167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); 170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0, 171 "SOCK_SEQPACKET"); 172 173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 174 &unpst_sendspace, 0, "Default stream send space."); 175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 176 &unpst_recvspace, 0, "Default stream receive space."); 177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 178 &unpdg_sendspace, 0, "Default datagram send space."); 179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 180 &unpdg_recvspace, 0, "Default datagram receive space."); 181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 182 &unpsp_sendspace, 0, "Default seqpacket send space."); 183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 184 &unpsp_recvspace, 0, "Default seqpacket receive space."); 185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 186 "File descriptors in flight."); 187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 188 &unp_defers_count, 0, 189 "File descriptors deferred to taskqueue for close."); 190 191 /* 192 * Locking and synchronization: 193 * 194 * Two types of locks exist in the local domain socket implementation: a 195 * a global linkage rwlock and per-unpcb mutexes. The linkage lock protects 196 * the socket count, global generation number, stream/datagram global lists and 197 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be 198 * held exclusively over the acquisition of multiple unpcb locks to prevent 199 * deadlock. 200 * 201 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 202 * allocated in pru_attach() and freed in pru_detach(). The validity of that 203 * pointer is an invariant, so no lock is required to dereference the so_pcb 204 * pointer if a valid socket reference is held by the caller. In practice, 205 * this is always true during operations performed on a socket. Each unpcb 206 * has a back-pointer to its socket, unp_socket, which will be stable under 207 * the same circumstances. 208 * 209 * This pointer may only be safely dereferenced as long as a valid reference 210 * to the unpcb is held. Typically, this reference will be from the socket, 211 * or from another unpcb when the referring unpcb's lock is held (in order 212 * that the reference not be invalidated during use). For example, to follow 213 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn, 214 * as unp_socket remains valid as long as the reference to unp_conn is valid. 215 * 216 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx. Individual 217 * atomic reads without the lock may be performed "lockless", but more 218 * complex reads and read-modify-writes require the mutex to be held. No 219 * lock order is defined between unpcb locks -- multiple unpcb locks may be 220 * acquired at the same time only when holding the linkage rwlock 221 * exclusively, which prevents deadlocks. 222 * 223 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 224 * protocols, bind() is a non-atomic operation, and connect() requires 225 * potential sleeping in the protocol, due to potentially waiting on local or 226 * distributed file systems. We try to separate "lookup" operations, which 227 * may sleep, and the IPC operations themselves, which typically can occur 228 * with relative atomicity as locks can be held over the entire operation. 229 * 230 * Another tricky issue is simultaneous multi-threaded or multi-process 231 * access to a single UNIX domain socket. These are handled by the flags 232 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 233 * binding, both of which involve dropping UNIX domain socket locks in order 234 * to perform namei() and other file system operations. 235 */ 236 static struct rwlock unp_link_rwlock; 237 static struct mtx unp_defers_lock; 238 239 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 240 "unp_link_rwlock") 241 242 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 243 RA_LOCKED) 244 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 245 RA_UNLOCKED) 246 247 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 248 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 249 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 250 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 251 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 252 RA_WLOCKED) 253 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 254 255 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 256 "unp_defer", NULL, MTX_DEF) 257 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 258 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 259 260 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 261 "unp_mtx", "unp_mtx", \ 262 MTX_DUPOK|MTX_DEF|MTX_RECURSE) 263 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 264 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 265 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 266 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 267 268 static int uipc_connect2(struct socket *, struct socket *); 269 static int uipc_ctloutput(struct socket *, struct sockopt *); 270 static int unp_connect(struct socket *, struct sockaddr *, 271 struct thread *); 272 static int unp_connectat(int, struct socket *, struct sockaddr *, 273 struct thread *); 274 static int unp_connect2(struct socket *so, struct socket *so2, int); 275 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 276 static void unp_dispose(struct socket *so); 277 static void unp_dispose_mbuf(struct mbuf *); 278 static void unp_shutdown(struct unpcb *); 279 static void unp_drop(struct unpcb *); 280 static void unp_gc(__unused void *, int); 281 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 282 static void unp_discard(struct file *); 283 static void unp_freerights(struct filedescent **, int); 284 static void unp_init(void); 285 static int unp_internalize(struct mbuf **, struct thread *); 286 static void unp_internalize_fp(struct file *); 287 static int unp_externalize(struct mbuf *, struct mbuf **, int); 288 static int unp_externalize_fp(struct file *); 289 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 290 static void unp_process_defers(void * __unused, int); 291 292 /* 293 * Definitions of protocols supported in the LOCAL domain. 294 */ 295 static struct domain localdomain; 296 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 297 static struct pr_usrreqs uipc_usrreqs_seqpacket; 298 static struct protosw localsw[] = { 299 { 300 .pr_type = SOCK_STREAM, 301 .pr_domain = &localdomain, 302 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 303 .pr_ctloutput = &uipc_ctloutput, 304 .pr_usrreqs = &uipc_usrreqs_stream 305 }, 306 { 307 .pr_type = SOCK_DGRAM, 308 .pr_domain = &localdomain, 309 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 310 .pr_ctloutput = &uipc_ctloutput, 311 .pr_usrreqs = &uipc_usrreqs_dgram 312 }, 313 { 314 .pr_type = SOCK_SEQPACKET, 315 .pr_domain = &localdomain, 316 317 /* 318 * XXXRW: For now, PR_ADDR because soreceive will bump into them 319 * due to our use of sbappendaddr. A new sbappend variants is needed 320 * that supports both atomic record writes and control data. 321 */ 322 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 323 PR_RIGHTS, 324 .pr_ctloutput = &uipc_ctloutput, 325 .pr_usrreqs = &uipc_usrreqs_seqpacket, 326 }, 327 }; 328 329 static struct domain localdomain = { 330 .dom_family = AF_LOCAL, 331 .dom_name = "local", 332 .dom_init = unp_init, 333 .dom_externalize = unp_externalize, 334 .dom_dispose = unp_dispose, 335 .dom_protosw = localsw, 336 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 337 }; 338 DOMAIN_SET(local); 339 340 static void 341 uipc_abort(struct socket *so) 342 { 343 struct unpcb *unp, *unp2; 344 345 unp = sotounpcb(so); 346 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 347 348 UNP_LINK_WLOCK(); 349 UNP_PCB_LOCK(unp); 350 unp2 = unp->unp_conn; 351 if (unp2 != NULL) { 352 UNP_PCB_LOCK(unp2); 353 unp_drop(unp2); 354 UNP_PCB_UNLOCK(unp2); 355 } 356 UNP_PCB_UNLOCK(unp); 357 UNP_LINK_WUNLOCK(); 358 } 359 360 static int 361 uipc_accept(struct socket *so, struct sockaddr **nam) 362 { 363 struct unpcb *unp, *unp2; 364 const struct sockaddr *sa; 365 366 /* 367 * Pass back name of connected socket, if it was bound and we are 368 * still connected (our peer may have closed already!). 369 */ 370 unp = sotounpcb(so); 371 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 372 373 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 374 UNP_LINK_RLOCK(); 375 unp2 = unp->unp_conn; 376 if (unp2 != NULL && unp2->unp_addr != NULL) { 377 UNP_PCB_LOCK(unp2); 378 sa = (struct sockaddr *) unp2->unp_addr; 379 bcopy(sa, *nam, sa->sa_len); 380 UNP_PCB_UNLOCK(unp2); 381 } else { 382 sa = &sun_noname; 383 bcopy(sa, *nam, sa->sa_len); 384 } 385 UNP_LINK_RUNLOCK(); 386 return (0); 387 } 388 389 static int 390 uipc_attach(struct socket *so, int proto, struct thread *td) 391 { 392 u_long sendspace, recvspace; 393 struct unpcb *unp; 394 int error; 395 bool locked; 396 397 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 398 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 399 switch (so->so_type) { 400 case SOCK_STREAM: 401 sendspace = unpst_sendspace; 402 recvspace = unpst_recvspace; 403 break; 404 405 case SOCK_DGRAM: 406 sendspace = unpdg_sendspace; 407 recvspace = unpdg_recvspace; 408 break; 409 410 case SOCK_SEQPACKET: 411 sendspace = unpsp_sendspace; 412 recvspace = unpsp_recvspace; 413 break; 414 415 default: 416 panic("uipc_attach"); 417 } 418 error = soreserve(so, sendspace, recvspace); 419 if (error) 420 return (error); 421 } 422 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 423 if (unp == NULL) 424 return (ENOBUFS); 425 LIST_INIT(&unp->unp_refs); 426 UNP_PCB_LOCK_INIT(unp); 427 unp->unp_socket = so; 428 so->so_pcb = unp; 429 unp->unp_refcount = 1; 430 if (so->so_listen != NULL) 431 unp->unp_flags |= UNP_NASCENT; 432 433 if ((locked = UNP_LINK_WOWNED()) == false) 434 UNP_LINK_WLOCK(); 435 436 unp->unp_gencnt = ++unp_gencnt; 437 unp_count++; 438 switch (so->so_type) { 439 case SOCK_STREAM: 440 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 441 break; 442 443 case SOCK_DGRAM: 444 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 445 break; 446 447 case SOCK_SEQPACKET: 448 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 449 break; 450 451 default: 452 panic("uipc_attach"); 453 } 454 455 if (locked == false) 456 UNP_LINK_WUNLOCK(); 457 458 return (0); 459 } 460 461 static int 462 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 463 { 464 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 465 struct vattr vattr; 466 int error, namelen; 467 struct nameidata nd; 468 struct unpcb *unp; 469 struct vnode *vp; 470 struct mount *mp; 471 cap_rights_t rights; 472 char *buf; 473 474 if (nam->sa_family != AF_UNIX) 475 return (EAFNOSUPPORT); 476 477 unp = sotounpcb(so); 478 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 479 480 if (soun->sun_len > sizeof(struct sockaddr_un)) 481 return (EINVAL); 482 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 483 if (namelen <= 0) 484 return (EINVAL); 485 486 /* 487 * We don't allow simultaneous bind() calls on a single UNIX domain 488 * socket, so flag in-progress operations, and return an error if an 489 * operation is already in progress. 490 * 491 * Historically, we have not allowed a socket to be rebound, so this 492 * also returns an error. Not allowing re-binding simplifies the 493 * implementation and avoids a great many possible failure modes. 494 */ 495 UNP_PCB_LOCK(unp); 496 if (unp->unp_vnode != NULL) { 497 UNP_PCB_UNLOCK(unp); 498 return (EINVAL); 499 } 500 if (unp->unp_flags & UNP_BINDING) { 501 UNP_PCB_UNLOCK(unp); 502 return (EALREADY); 503 } 504 unp->unp_flags |= UNP_BINDING; 505 UNP_PCB_UNLOCK(unp); 506 507 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 508 bcopy(soun->sun_path, buf, namelen); 509 buf[namelen] = 0; 510 511 restart: 512 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 513 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 514 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 515 error = namei(&nd); 516 if (error) 517 goto error; 518 vp = nd.ni_vp; 519 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 520 NDFREE(&nd, NDF_ONLY_PNBUF); 521 if (nd.ni_dvp == vp) 522 vrele(nd.ni_dvp); 523 else 524 vput(nd.ni_dvp); 525 if (vp != NULL) { 526 vrele(vp); 527 error = EADDRINUSE; 528 goto error; 529 } 530 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 531 if (error) 532 goto error; 533 goto restart; 534 } 535 VATTR_NULL(&vattr); 536 vattr.va_type = VSOCK; 537 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 538 #ifdef MAC 539 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 540 &vattr); 541 #endif 542 if (error == 0) 543 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 544 NDFREE(&nd, NDF_ONLY_PNBUF); 545 vput(nd.ni_dvp); 546 if (error) { 547 vn_finished_write(mp); 548 goto error; 549 } 550 vp = nd.ni_vp; 551 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 552 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 553 554 UNP_LINK_WLOCK(); 555 UNP_PCB_LOCK(unp); 556 VOP_UNP_BIND(vp, unp); 557 unp->unp_vnode = vp; 558 unp->unp_addr = soun; 559 unp->unp_flags &= ~UNP_BINDING; 560 UNP_PCB_UNLOCK(unp); 561 UNP_LINK_WUNLOCK(); 562 VOP_UNLOCK(vp, 0); 563 vn_finished_write(mp); 564 free(buf, M_TEMP); 565 return (0); 566 567 error: 568 UNP_PCB_LOCK(unp); 569 unp->unp_flags &= ~UNP_BINDING; 570 UNP_PCB_UNLOCK(unp); 571 free(buf, M_TEMP); 572 return (error); 573 } 574 575 static int 576 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 577 { 578 579 return (uipc_bindat(AT_FDCWD, so, nam, td)); 580 } 581 582 static int 583 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 584 { 585 int error; 586 587 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 588 UNP_LINK_WLOCK(); 589 error = unp_connect(so, nam, td); 590 UNP_LINK_WUNLOCK(); 591 return (error); 592 } 593 594 static int 595 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 596 struct thread *td) 597 { 598 int error; 599 600 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 601 UNP_LINK_WLOCK(); 602 error = unp_connectat(fd, so, nam, td); 603 UNP_LINK_WUNLOCK(); 604 return (error); 605 } 606 607 static void 608 uipc_close(struct socket *so) 609 { 610 struct unpcb *unp, *unp2; 611 struct vnode *vp = NULL; 612 613 unp = sotounpcb(so); 614 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 615 616 UNP_LINK_WLOCK(); 617 UNP_PCB_LOCK(unp); 618 unp2 = unp->unp_conn; 619 if (unp2 != NULL) { 620 UNP_PCB_LOCK(unp2); 621 unp_disconnect(unp, unp2); 622 UNP_PCB_UNLOCK(unp2); 623 } 624 if (SOLISTENING(so) && ((vp = unp->unp_vnode) != NULL)) { 625 VOP_UNP_DETACH(vp); 626 unp->unp_vnode = NULL; 627 } 628 UNP_PCB_UNLOCK(unp); 629 UNP_LINK_WUNLOCK(); 630 if (vp) 631 vrele(vp); 632 } 633 634 static int 635 uipc_connect2(struct socket *so1, struct socket *so2) 636 { 637 struct unpcb *unp, *unp2; 638 int error; 639 640 UNP_LINK_WLOCK(); 641 unp = so1->so_pcb; 642 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 643 UNP_PCB_LOCK(unp); 644 unp2 = so2->so_pcb; 645 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 646 UNP_PCB_LOCK(unp2); 647 error = unp_connect2(so1, so2, PRU_CONNECT2); 648 UNP_PCB_UNLOCK(unp2); 649 UNP_PCB_UNLOCK(unp); 650 UNP_LINK_WUNLOCK(); 651 return (error); 652 } 653 654 static void 655 uipc_detach(struct socket *so) 656 { 657 struct unpcb *unp, *unp2; 658 struct sockaddr_un *saved_unp_addr; 659 struct vnode *vp; 660 int freeunp, local_unp_rights; 661 662 unp = sotounpcb(so); 663 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 664 665 vp = NULL; 666 local_unp_rights = 0; 667 668 UNP_LINK_WLOCK(); 669 LIST_REMOVE(unp, unp_link); 670 unp->unp_gencnt = ++unp_gencnt; 671 --unp_count; 672 UNP_PCB_LOCK(unp); 673 if ((unp->unp_flags & UNP_NASCENT) != 0) 674 goto teardown; 675 676 if ((vp = unp->unp_vnode) != NULL) { 677 VOP_UNP_DETACH(vp); 678 unp->unp_vnode = NULL; 679 } 680 unp2 = unp->unp_conn; 681 if (unp2 != NULL) { 682 UNP_PCB_LOCK(unp2); 683 unp_disconnect(unp, unp2); 684 UNP_PCB_UNLOCK(unp2); 685 } 686 687 /* 688 * We hold the linkage lock exclusively, so it's OK to acquire 689 * multiple pcb locks at a time. 690 */ 691 while (!LIST_EMPTY(&unp->unp_refs)) { 692 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 693 694 UNP_PCB_LOCK(ref); 695 unp_drop(ref); 696 UNP_PCB_UNLOCK(ref); 697 } 698 local_unp_rights = unp_rights; 699 teardown: 700 UNP_LINK_WUNLOCK(); 701 unp->unp_socket->so_pcb = NULL; 702 saved_unp_addr = unp->unp_addr; 703 unp->unp_addr = NULL; 704 unp->unp_refcount--; 705 freeunp = (unp->unp_refcount == 0); 706 if (saved_unp_addr != NULL) 707 free(saved_unp_addr, M_SONAME); 708 if (freeunp) { 709 UNP_PCB_LOCK_DESTROY(unp); 710 uma_zfree(unp_zone, unp); 711 } else 712 UNP_PCB_UNLOCK(unp); 713 if (vp) 714 vrele(vp); 715 if (local_unp_rights) 716 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 717 } 718 719 static int 720 uipc_disconnect(struct socket *so) 721 { 722 struct unpcb *unp, *unp2; 723 724 unp = sotounpcb(so); 725 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 726 727 UNP_LINK_WLOCK(); 728 UNP_PCB_LOCK(unp); 729 unp2 = unp->unp_conn; 730 if (unp2 != NULL) { 731 UNP_PCB_LOCK(unp2); 732 unp_disconnect(unp, unp2); 733 UNP_PCB_UNLOCK(unp2); 734 } 735 UNP_PCB_UNLOCK(unp); 736 UNP_LINK_WUNLOCK(); 737 return (0); 738 } 739 740 static int 741 uipc_listen(struct socket *so, int backlog, struct thread *td) 742 { 743 struct unpcb *unp; 744 int error; 745 746 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 747 return (EOPNOTSUPP); 748 749 unp = sotounpcb(so); 750 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 751 752 UNP_PCB_LOCK(unp); 753 if (unp->unp_vnode == NULL) { 754 /* Already connected or not bound to an address. */ 755 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 756 UNP_PCB_UNLOCK(unp); 757 return (error); 758 } 759 760 SOCK_LOCK(so); 761 error = solisten_proto_check(so); 762 if (error == 0) { 763 cru2x(td->td_ucred, &unp->unp_peercred); 764 solisten_proto(so, backlog); 765 } 766 SOCK_UNLOCK(so); 767 UNP_PCB_UNLOCK(unp); 768 return (error); 769 } 770 771 static int 772 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 773 { 774 struct unpcb *unp, *unp2; 775 const struct sockaddr *sa; 776 777 unp = sotounpcb(so); 778 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 779 780 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 781 UNP_LINK_RLOCK(); 782 /* 783 * XXX: It seems that this test always fails even when connection is 784 * established. So, this else clause is added as workaround to 785 * return PF_LOCAL sockaddr. 786 */ 787 unp2 = unp->unp_conn; 788 if (unp2 != NULL) { 789 UNP_PCB_LOCK(unp2); 790 if (unp2->unp_addr != NULL) 791 sa = (struct sockaddr *) unp2->unp_addr; 792 else 793 sa = &sun_noname; 794 bcopy(sa, *nam, sa->sa_len); 795 UNP_PCB_UNLOCK(unp2); 796 } else { 797 sa = &sun_noname; 798 bcopy(sa, *nam, sa->sa_len); 799 } 800 UNP_LINK_RUNLOCK(); 801 return (0); 802 } 803 804 static int 805 uipc_rcvd(struct socket *so, int flags) 806 { 807 struct unpcb *unp, *unp2; 808 struct socket *so2; 809 u_int mbcnt, sbcc; 810 811 unp = sotounpcb(so); 812 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 813 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 814 ("%s: socktype %d", __func__, so->so_type)); 815 816 /* 817 * Adjust backpressure on sender and wakeup any waiting to write. 818 * 819 * The unp lock is acquired to maintain the validity of the unp_conn 820 * pointer; no lock on unp2 is required as unp2->unp_socket will be 821 * static as long as we don't permit unp2 to disconnect from unp, 822 * which is prevented by the lock on unp. We cache values from 823 * so_rcv to avoid holding the so_rcv lock over the entire 824 * transaction on the remote so_snd. 825 */ 826 SOCKBUF_LOCK(&so->so_rcv); 827 mbcnt = so->so_rcv.sb_mbcnt; 828 sbcc = sbavail(&so->so_rcv); 829 SOCKBUF_UNLOCK(&so->so_rcv); 830 /* 831 * There is a benign race condition at this point. If we're planning to 832 * clear SB_STOP, but uipc_send is called on the connected socket at 833 * this instant, it might add data to the sockbuf and set SB_STOP. Then 834 * we would erroneously clear SB_STOP below, even though the sockbuf is 835 * full. The race is benign because the only ill effect is to allow the 836 * sockbuf to exceed its size limit, and the size limits are not 837 * strictly guaranteed anyway. 838 */ 839 UNP_PCB_LOCK(unp); 840 unp2 = unp->unp_conn; 841 if (unp2 == NULL) { 842 UNP_PCB_UNLOCK(unp); 843 return (0); 844 } 845 so2 = unp2->unp_socket; 846 SOCKBUF_LOCK(&so2->so_snd); 847 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 848 so2->so_snd.sb_flags &= ~SB_STOP; 849 sowwakeup_locked(so2); 850 UNP_PCB_UNLOCK(unp); 851 return (0); 852 } 853 854 static int 855 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 856 struct mbuf *control, struct thread *td) 857 { 858 struct unpcb *unp, *unp2; 859 struct socket *so2; 860 u_int mbcnt, sbcc; 861 int error = 0; 862 863 unp = sotounpcb(so); 864 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 865 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 866 so->so_type == SOCK_SEQPACKET, 867 ("%s: socktype %d", __func__, so->so_type)); 868 869 if (flags & PRUS_OOB) { 870 error = EOPNOTSUPP; 871 goto release; 872 } 873 if (control != NULL && (error = unp_internalize(&control, td))) 874 goto release; 875 if ((nam != NULL) || (flags & PRUS_EOF)) 876 UNP_LINK_WLOCK(); 877 else 878 UNP_LINK_RLOCK(); 879 switch (so->so_type) { 880 case SOCK_DGRAM: 881 { 882 const struct sockaddr *from; 883 884 unp2 = unp->unp_conn; 885 if (nam != NULL) { 886 UNP_LINK_WLOCK_ASSERT(); 887 if (unp2 != NULL) { 888 error = EISCONN; 889 break; 890 } 891 error = unp_connect(so, nam, td); 892 if (error) 893 break; 894 unp2 = unp->unp_conn; 895 } 896 897 /* 898 * Because connect() and send() are non-atomic in a sendto() 899 * with a target address, it's possible that the socket will 900 * have disconnected before the send() can run. In that case 901 * return the slightly counter-intuitive but otherwise 902 * correct error that the socket is not connected. 903 */ 904 if (unp2 == NULL) { 905 error = ENOTCONN; 906 break; 907 } 908 /* Lockless read. */ 909 if (unp2->unp_flags & UNP_WANTCRED) 910 control = unp_addsockcred(td, control); 911 UNP_PCB_LOCK(unp); 912 if (unp->unp_addr != NULL) 913 from = (struct sockaddr *)unp->unp_addr; 914 else 915 from = &sun_noname; 916 so2 = unp2->unp_socket; 917 SOCKBUF_LOCK(&so2->so_rcv); 918 if (sbappendaddr_locked(&so2->so_rcv, from, m, 919 control)) { 920 sorwakeup_locked(so2); 921 m = NULL; 922 control = NULL; 923 } else { 924 SOCKBUF_UNLOCK(&so2->so_rcv); 925 error = ENOBUFS; 926 } 927 if (nam != NULL) { 928 UNP_LINK_WLOCK_ASSERT(); 929 UNP_PCB_LOCK(unp2); 930 unp_disconnect(unp, unp2); 931 UNP_PCB_UNLOCK(unp2); 932 } 933 UNP_PCB_UNLOCK(unp); 934 break; 935 } 936 937 case SOCK_SEQPACKET: 938 case SOCK_STREAM: 939 if ((so->so_state & SS_ISCONNECTED) == 0) { 940 if (nam != NULL) { 941 UNP_LINK_WLOCK_ASSERT(); 942 error = unp_connect(so, nam, td); 943 if (error) 944 break; /* XXX */ 945 } else { 946 error = ENOTCONN; 947 break; 948 } 949 } 950 951 /* Lockless read. */ 952 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 953 error = EPIPE; 954 break; 955 } 956 957 /* 958 * Because connect() and send() are non-atomic in a sendto() 959 * with a target address, it's possible that the socket will 960 * have disconnected before the send() can run. In that case 961 * return the slightly counter-intuitive but otherwise 962 * correct error that the socket is not connected. 963 * 964 * Locking here must be done carefully: the linkage lock 965 * prevents interconnections between unpcbs from changing, so 966 * we can traverse from unp to unp2 without acquiring unp's 967 * lock. Socket buffer locks follow unpcb locks, so we can 968 * acquire both remote and lock socket buffer locks. 969 */ 970 unp2 = unp->unp_conn; 971 if (unp2 == NULL) { 972 error = ENOTCONN; 973 break; 974 } 975 so2 = unp2->unp_socket; 976 UNP_PCB_LOCK(unp2); 977 SOCKBUF_LOCK(&so2->so_rcv); 978 if (unp2->unp_flags & UNP_WANTCRED) { 979 /* 980 * Credentials are passed only once on SOCK_STREAM 981 * and SOCK_SEQPACKET. 982 */ 983 unp2->unp_flags &= ~UNP_WANTCRED; 984 control = unp_addsockcred(td, control); 985 } 986 /* 987 * Send to paired receive port, and then reduce send buffer 988 * hiwater marks to maintain backpressure. Wake up readers. 989 */ 990 switch (so->so_type) { 991 case SOCK_STREAM: 992 if (control != NULL) { 993 if (sbappendcontrol_locked(&so2->so_rcv, m, 994 control)) 995 control = NULL; 996 } else 997 sbappend_locked(&so2->so_rcv, m, flags); 998 break; 999 1000 case SOCK_SEQPACKET: { 1001 const struct sockaddr *from; 1002 1003 from = &sun_noname; 1004 /* 1005 * Don't check for space available in so2->so_rcv. 1006 * Unix domain sockets only check for space in the 1007 * sending sockbuf, and that check is performed one 1008 * level up the stack. 1009 */ 1010 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1011 from, m, control)) 1012 control = NULL; 1013 break; 1014 } 1015 } 1016 1017 mbcnt = so2->so_rcv.sb_mbcnt; 1018 sbcc = sbavail(&so2->so_rcv); 1019 if (sbcc) 1020 sorwakeup_locked(so2); 1021 else 1022 SOCKBUF_UNLOCK(&so2->so_rcv); 1023 1024 /* 1025 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1026 * it would be possible for uipc_rcvd to be called at this 1027 * point, drain the receiving sockbuf, clear SB_STOP, and then 1028 * we would set SB_STOP below. That could lead to an empty 1029 * sockbuf having SB_STOP set 1030 */ 1031 SOCKBUF_LOCK(&so->so_snd); 1032 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1033 so->so_snd.sb_flags |= SB_STOP; 1034 SOCKBUF_UNLOCK(&so->so_snd); 1035 UNP_PCB_UNLOCK(unp2); 1036 m = NULL; 1037 break; 1038 } 1039 1040 /* 1041 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1042 */ 1043 if (flags & PRUS_EOF) { 1044 UNP_PCB_LOCK(unp); 1045 socantsendmore(so); 1046 unp_shutdown(unp); 1047 UNP_PCB_UNLOCK(unp); 1048 } 1049 1050 if ((nam != NULL) || (flags & PRUS_EOF)) 1051 UNP_LINK_WUNLOCK(); 1052 else 1053 UNP_LINK_RUNLOCK(); 1054 1055 if (control != NULL && error != 0) 1056 unp_dispose_mbuf(control); 1057 1058 release: 1059 if (control != NULL) 1060 m_freem(control); 1061 /* 1062 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1063 * for freeing memory. 1064 */ 1065 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1066 m_freem(m); 1067 return (error); 1068 } 1069 1070 static int 1071 uipc_ready(struct socket *so, struct mbuf *m, int count) 1072 { 1073 struct unpcb *unp, *unp2; 1074 struct socket *so2; 1075 int error; 1076 1077 unp = sotounpcb(so); 1078 1079 UNP_LINK_RLOCK(); 1080 if ((unp2 = unp->unp_conn) == NULL) { 1081 UNP_LINK_RUNLOCK(); 1082 for (int i = 0; i < count; i++) 1083 m = m_free(m); 1084 return (ECONNRESET); 1085 } 1086 UNP_PCB_LOCK(unp2); 1087 so2 = unp2->unp_socket; 1088 1089 SOCKBUF_LOCK(&so2->so_rcv); 1090 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1091 sorwakeup_locked(so2); 1092 else 1093 SOCKBUF_UNLOCK(&so2->so_rcv); 1094 1095 UNP_PCB_UNLOCK(unp2); 1096 UNP_LINK_RUNLOCK(); 1097 1098 return (error); 1099 } 1100 1101 static int 1102 uipc_sense(struct socket *so, struct stat *sb) 1103 { 1104 struct unpcb *unp; 1105 1106 unp = sotounpcb(so); 1107 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1108 1109 sb->st_blksize = so->so_snd.sb_hiwat; 1110 UNP_PCB_LOCK(unp); 1111 sb->st_dev = NODEV; 1112 if (unp->unp_ino == 0) 1113 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 1114 sb->st_ino = unp->unp_ino; 1115 UNP_PCB_UNLOCK(unp); 1116 return (0); 1117 } 1118 1119 static int 1120 uipc_shutdown(struct socket *so) 1121 { 1122 struct unpcb *unp; 1123 1124 unp = sotounpcb(so); 1125 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1126 1127 UNP_LINK_WLOCK(); 1128 UNP_PCB_LOCK(unp); 1129 socantsendmore(so); 1130 unp_shutdown(unp); 1131 UNP_PCB_UNLOCK(unp); 1132 UNP_LINK_WUNLOCK(); 1133 return (0); 1134 } 1135 1136 static int 1137 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1138 { 1139 struct unpcb *unp; 1140 const struct sockaddr *sa; 1141 1142 unp = sotounpcb(so); 1143 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1144 1145 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1146 UNP_PCB_LOCK(unp); 1147 if (unp->unp_addr != NULL) 1148 sa = (struct sockaddr *) unp->unp_addr; 1149 else 1150 sa = &sun_noname; 1151 bcopy(sa, *nam, sa->sa_len); 1152 UNP_PCB_UNLOCK(unp); 1153 return (0); 1154 } 1155 1156 static struct pr_usrreqs uipc_usrreqs_dgram = { 1157 .pru_abort = uipc_abort, 1158 .pru_accept = uipc_accept, 1159 .pru_attach = uipc_attach, 1160 .pru_bind = uipc_bind, 1161 .pru_bindat = uipc_bindat, 1162 .pru_connect = uipc_connect, 1163 .pru_connectat = uipc_connectat, 1164 .pru_connect2 = uipc_connect2, 1165 .pru_detach = uipc_detach, 1166 .pru_disconnect = uipc_disconnect, 1167 .pru_listen = uipc_listen, 1168 .pru_peeraddr = uipc_peeraddr, 1169 .pru_rcvd = uipc_rcvd, 1170 .pru_send = uipc_send, 1171 .pru_sense = uipc_sense, 1172 .pru_shutdown = uipc_shutdown, 1173 .pru_sockaddr = uipc_sockaddr, 1174 .pru_soreceive = soreceive_dgram, 1175 .pru_close = uipc_close, 1176 }; 1177 1178 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1179 .pru_abort = uipc_abort, 1180 .pru_accept = uipc_accept, 1181 .pru_attach = uipc_attach, 1182 .pru_bind = uipc_bind, 1183 .pru_bindat = uipc_bindat, 1184 .pru_connect = uipc_connect, 1185 .pru_connectat = uipc_connectat, 1186 .pru_connect2 = uipc_connect2, 1187 .pru_detach = uipc_detach, 1188 .pru_disconnect = uipc_disconnect, 1189 .pru_listen = uipc_listen, 1190 .pru_peeraddr = uipc_peeraddr, 1191 .pru_rcvd = uipc_rcvd, 1192 .pru_send = uipc_send, 1193 .pru_sense = uipc_sense, 1194 .pru_shutdown = uipc_shutdown, 1195 .pru_sockaddr = uipc_sockaddr, 1196 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1197 .pru_close = uipc_close, 1198 }; 1199 1200 static struct pr_usrreqs uipc_usrreqs_stream = { 1201 .pru_abort = uipc_abort, 1202 .pru_accept = uipc_accept, 1203 .pru_attach = uipc_attach, 1204 .pru_bind = uipc_bind, 1205 .pru_bindat = uipc_bindat, 1206 .pru_connect = uipc_connect, 1207 .pru_connectat = uipc_connectat, 1208 .pru_connect2 = uipc_connect2, 1209 .pru_detach = uipc_detach, 1210 .pru_disconnect = uipc_disconnect, 1211 .pru_listen = uipc_listen, 1212 .pru_peeraddr = uipc_peeraddr, 1213 .pru_rcvd = uipc_rcvd, 1214 .pru_send = uipc_send, 1215 .pru_ready = uipc_ready, 1216 .pru_sense = uipc_sense, 1217 .pru_shutdown = uipc_shutdown, 1218 .pru_sockaddr = uipc_sockaddr, 1219 .pru_soreceive = soreceive_generic, 1220 .pru_close = uipc_close, 1221 }; 1222 1223 static int 1224 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1225 { 1226 struct unpcb *unp; 1227 struct xucred xu; 1228 int error, optval; 1229 1230 if (sopt->sopt_level != 0) 1231 return (EINVAL); 1232 1233 unp = sotounpcb(so); 1234 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1235 error = 0; 1236 switch (sopt->sopt_dir) { 1237 case SOPT_GET: 1238 switch (sopt->sopt_name) { 1239 case LOCAL_PEERCRED: 1240 UNP_PCB_LOCK(unp); 1241 if (unp->unp_flags & UNP_HAVEPC) 1242 xu = unp->unp_peercred; 1243 else { 1244 if (so->so_type == SOCK_STREAM) 1245 error = ENOTCONN; 1246 else 1247 error = EINVAL; 1248 } 1249 UNP_PCB_UNLOCK(unp); 1250 if (error == 0) 1251 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1252 break; 1253 1254 case LOCAL_CREDS: 1255 /* Unlocked read. */ 1256 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1257 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1258 break; 1259 1260 case LOCAL_CONNWAIT: 1261 /* Unlocked read. */ 1262 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1263 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1264 break; 1265 1266 default: 1267 error = EOPNOTSUPP; 1268 break; 1269 } 1270 break; 1271 1272 case SOPT_SET: 1273 switch (sopt->sopt_name) { 1274 case LOCAL_CREDS: 1275 case LOCAL_CONNWAIT: 1276 error = sooptcopyin(sopt, &optval, sizeof(optval), 1277 sizeof(optval)); 1278 if (error) 1279 break; 1280 1281 #define OPTSET(bit) do { \ 1282 UNP_PCB_LOCK(unp); \ 1283 if (optval) \ 1284 unp->unp_flags |= bit; \ 1285 else \ 1286 unp->unp_flags &= ~bit; \ 1287 UNP_PCB_UNLOCK(unp); \ 1288 } while (0) 1289 1290 switch (sopt->sopt_name) { 1291 case LOCAL_CREDS: 1292 OPTSET(UNP_WANTCRED); 1293 break; 1294 1295 case LOCAL_CONNWAIT: 1296 OPTSET(UNP_CONNWAIT); 1297 break; 1298 1299 default: 1300 break; 1301 } 1302 break; 1303 #undef OPTSET 1304 default: 1305 error = ENOPROTOOPT; 1306 break; 1307 } 1308 break; 1309 1310 default: 1311 error = EOPNOTSUPP; 1312 break; 1313 } 1314 return (error); 1315 } 1316 1317 static int 1318 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1319 { 1320 1321 return (unp_connectat(AT_FDCWD, so, nam, td)); 1322 } 1323 1324 static int 1325 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1326 struct thread *td) 1327 { 1328 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1329 struct vnode *vp; 1330 struct socket *so2; 1331 struct unpcb *unp, *unp2, *unp3; 1332 struct nameidata nd; 1333 char buf[SOCK_MAXADDRLEN]; 1334 struct sockaddr *sa; 1335 cap_rights_t rights; 1336 int error, len; 1337 1338 if (nam->sa_family != AF_UNIX) 1339 return (EAFNOSUPPORT); 1340 1341 UNP_LINK_WLOCK_ASSERT(); 1342 1343 unp = sotounpcb(so); 1344 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1345 1346 if (nam->sa_len > sizeof(struct sockaddr_un)) 1347 return (EINVAL); 1348 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1349 if (len <= 0) 1350 return (EINVAL); 1351 bcopy(soun->sun_path, buf, len); 1352 buf[len] = 0; 1353 1354 UNP_PCB_LOCK(unp); 1355 if (unp->unp_flags & UNP_CONNECTING) { 1356 UNP_PCB_UNLOCK(unp); 1357 return (EALREADY); 1358 } 1359 UNP_LINK_WUNLOCK(); 1360 unp->unp_flags |= UNP_CONNECTING; 1361 UNP_PCB_UNLOCK(unp); 1362 1363 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1364 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1365 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1366 error = namei(&nd); 1367 if (error) 1368 vp = NULL; 1369 else 1370 vp = nd.ni_vp; 1371 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1372 NDFREE(&nd, NDF_ONLY_PNBUF); 1373 if (error) 1374 goto bad; 1375 1376 if (vp->v_type != VSOCK) { 1377 error = ENOTSOCK; 1378 goto bad; 1379 } 1380 #ifdef MAC 1381 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1382 if (error) 1383 goto bad; 1384 #endif 1385 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1386 if (error) 1387 goto bad; 1388 1389 unp = sotounpcb(so); 1390 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1391 1392 /* 1393 * Lock linkage lock for two reasons: make sure v_socket is stable, 1394 * and to protect simultaneous locking of multiple pcbs. 1395 */ 1396 UNP_LINK_WLOCK(); 1397 VOP_UNP_CONNECT(vp, &unp2); 1398 if (unp2 == NULL) { 1399 error = ECONNREFUSED; 1400 goto bad2; 1401 } 1402 so2 = unp2->unp_socket; 1403 if (so->so_type != so2->so_type) { 1404 error = EPROTOTYPE; 1405 goto bad2; 1406 } 1407 UNP_PCB_LOCK(unp); 1408 UNP_PCB_LOCK(unp2); 1409 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1410 if (so2->so_options & SO_ACCEPTCONN) { 1411 CURVNET_SET(so2->so_vnet); 1412 so2 = sonewconn(so2, 0); 1413 CURVNET_RESTORE(); 1414 } else 1415 so2 = NULL; 1416 if (so2 == NULL) { 1417 error = ECONNREFUSED; 1418 goto bad3; 1419 } 1420 unp3 = sotounpcb(so2); 1421 UNP_PCB_LOCK(unp3); 1422 if (unp2->unp_addr != NULL) { 1423 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1424 unp3->unp_addr = (struct sockaddr_un *) sa; 1425 sa = NULL; 1426 } 1427 1428 /* 1429 * The connector's (client's) credentials are copied from its 1430 * process structure at the time of connect() (which is now). 1431 */ 1432 cru2x(td->td_ucred, &unp3->unp_peercred); 1433 unp3->unp_flags |= UNP_HAVEPC; 1434 1435 /* 1436 * The receiver's (server's) credentials are copied from the 1437 * unp_peercred member of socket on which the former called 1438 * listen(); uipc_listen() cached that process's credentials 1439 * at that time so we can use them now. 1440 */ 1441 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 1442 sizeof(unp->unp_peercred)); 1443 unp->unp_flags |= UNP_HAVEPC; 1444 if (unp2->unp_flags & UNP_WANTCRED) 1445 unp3->unp_flags |= UNP_WANTCRED; 1446 UNP_PCB_UNLOCK(unp2); 1447 unp2 = unp3; 1448 #ifdef MAC 1449 mac_socketpeer_set_from_socket(so, so2); 1450 mac_socketpeer_set_from_socket(so2, so); 1451 #endif 1452 } 1453 1454 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1455 sotounpcb(so2) == unp2, 1456 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1457 error = unp_connect2(so, so2, PRU_CONNECT); 1458 bad3: 1459 UNP_PCB_UNLOCK(unp2); 1460 UNP_PCB_UNLOCK(unp); 1461 bad2: 1462 UNP_LINK_WUNLOCK(); 1463 bad: 1464 if (vp != NULL) 1465 vput(vp); 1466 free(sa, M_SONAME); 1467 UNP_LINK_WLOCK(); 1468 UNP_PCB_LOCK(unp); 1469 unp->unp_flags &= ~UNP_CONNECTING; 1470 UNP_PCB_UNLOCK(unp); 1471 return (error); 1472 } 1473 1474 static int 1475 unp_connect2(struct socket *so, struct socket *so2, int req) 1476 { 1477 struct unpcb *unp; 1478 struct unpcb *unp2; 1479 1480 unp = sotounpcb(so); 1481 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1482 unp2 = sotounpcb(so2); 1483 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1484 1485 UNP_LINK_WLOCK_ASSERT(); 1486 UNP_PCB_LOCK_ASSERT(unp); 1487 UNP_PCB_LOCK_ASSERT(unp2); 1488 1489 if (so2->so_type != so->so_type) 1490 return (EPROTOTYPE); 1491 unp2->unp_flags &= ~UNP_NASCENT; 1492 unp->unp_conn = unp2; 1493 1494 switch (so->so_type) { 1495 case SOCK_DGRAM: 1496 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1497 soisconnected(so); 1498 break; 1499 1500 case SOCK_STREAM: 1501 case SOCK_SEQPACKET: 1502 unp2->unp_conn = unp; 1503 if (req == PRU_CONNECT && 1504 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1505 soisconnecting(so); 1506 else 1507 soisconnected(so); 1508 soisconnected(so2); 1509 break; 1510 1511 default: 1512 panic("unp_connect2"); 1513 } 1514 return (0); 1515 } 1516 1517 static void 1518 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1519 { 1520 struct socket *so; 1521 1522 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1523 1524 UNP_LINK_WLOCK_ASSERT(); 1525 UNP_PCB_LOCK_ASSERT(unp); 1526 UNP_PCB_LOCK_ASSERT(unp2); 1527 1528 unp->unp_conn = NULL; 1529 switch (unp->unp_socket->so_type) { 1530 case SOCK_DGRAM: 1531 LIST_REMOVE(unp, unp_reflink); 1532 so = unp->unp_socket; 1533 SOCK_LOCK(so); 1534 so->so_state &= ~SS_ISCONNECTED; 1535 SOCK_UNLOCK(so); 1536 break; 1537 1538 case SOCK_STREAM: 1539 case SOCK_SEQPACKET: 1540 soisdisconnected(unp->unp_socket); 1541 unp2->unp_conn = NULL; 1542 soisdisconnected(unp2->unp_socket); 1543 break; 1544 } 1545 } 1546 1547 /* 1548 * unp_pcblist() walks the global list of struct unpcb's to generate a 1549 * pointer list, bumping the refcount on each unpcb. It then copies them out 1550 * sequentially, validating the generation number on each to see if it has 1551 * been detached. All of this is necessary because copyout() may sleep on 1552 * disk I/O. 1553 */ 1554 static int 1555 unp_pcblist(SYSCTL_HANDLER_ARGS) 1556 { 1557 struct unpcb *unp, **unp_list; 1558 unp_gen_t gencnt; 1559 struct xunpgen *xug; 1560 struct unp_head *head; 1561 struct xunpcb *xu; 1562 u_int i; 1563 int error, freeunp, n; 1564 1565 switch ((intptr_t)arg1) { 1566 case SOCK_STREAM: 1567 head = &unp_shead; 1568 break; 1569 1570 case SOCK_DGRAM: 1571 head = &unp_dhead; 1572 break; 1573 1574 case SOCK_SEQPACKET: 1575 head = &unp_sphead; 1576 break; 1577 1578 default: 1579 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1580 } 1581 1582 /* 1583 * The process of preparing the PCB list is too time-consuming and 1584 * resource-intensive to repeat twice on every request. 1585 */ 1586 if (req->oldptr == NULL) { 1587 n = unp_count; 1588 req->oldidx = 2 * (sizeof *xug) 1589 + (n + n/8) * sizeof(struct xunpcb); 1590 return (0); 1591 } 1592 1593 if (req->newptr != NULL) 1594 return (EPERM); 1595 1596 /* 1597 * OK, now we're committed to doing something. 1598 */ 1599 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); 1600 UNP_LINK_RLOCK(); 1601 gencnt = unp_gencnt; 1602 n = unp_count; 1603 UNP_LINK_RUNLOCK(); 1604 1605 xug->xug_len = sizeof *xug; 1606 xug->xug_count = n; 1607 xug->xug_gen = gencnt; 1608 xug->xug_sogen = so_gencnt; 1609 error = SYSCTL_OUT(req, xug, sizeof *xug); 1610 if (error) { 1611 free(xug, M_TEMP); 1612 return (error); 1613 } 1614 1615 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1616 1617 UNP_LINK_RLOCK(); 1618 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1619 unp = LIST_NEXT(unp, unp_link)) { 1620 UNP_PCB_LOCK(unp); 1621 if (unp->unp_gencnt <= gencnt) { 1622 if (cr_cansee(req->td->td_ucred, 1623 unp->unp_socket->so_cred)) { 1624 UNP_PCB_UNLOCK(unp); 1625 continue; 1626 } 1627 unp_list[i++] = unp; 1628 unp->unp_refcount++; 1629 } 1630 UNP_PCB_UNLOCK(unp); 1631 } 1632 UNP_LINK_RUNLOCK(); 1633 n = i; /* In case we lost some during malloc. */ 1634 1635 error = 0; 1636 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1637 for (i = 0; i < n; i++) { 1638 unp = unp_list[i]; 1639 UNP_PCB_LOCK(unp); 1640 unp->unp_refcount--; 1641 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) { 1642 xu->xu_len = sizeof *xu; 1643 xu->xu_unpp = unp; 1644 /* 1645 * XXX - need more locking here to protect against 1646 * connect/disconnect races for SMP. 1647 */ 1648 if (unp->unp_addr != NULL) 1649 bcopy(unp->unp_addr, &xu->xu_addr, 1650 unp->unp_addr->sun_len); 1651 else 1652 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1653 if (unp->unp_conn != NULL && 1654 unp->unp_conn->unp_addr != NULL) 1655 bcopy(unp->unp_conn->unp_addr, 1656 &xu->xu_caddr, 1657 unp->unp_conn->unp_addr->sun_len); 1658 else 1659 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1660 xu->unp_vnode = unp->unp_vnode; 1661 xu->unp_conn = unp->unp_conn; 1662 xu->xu_firstref = LIST_FIRST(&unp->unp_refs); 1663 xu->xu_nextref = LIST_NEXT(unp, unp_reflink); 1664 xu->unp_gencnt = unp->unp_gencnt; 1665 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1666 UNP_PCB_UNLOCK(unp); 1667 error = SYSCTL_OUT(req, xu, sizeof *xu); 1668 } else { 1669 freeunp = (unp->unp_refcount == 0); 1670 UNP_PCB_UNLOCK(unp); 1671 if (freeunp) { 1672 UNP_PCB_LOCK_DESTROY(unp); 1673 uma_zfree(unp_zone, unp); 1674 } 1675 } 1676 } 1677 free(xu, M_TEMP); 1678 if (!error) { 1679 /* 1680 * Give the user an updated idea of our state. If the 1681 * generation differs from what we told her before, she knows 1682 * that something happened while we were processing this 1683 * request, and it might be necessary to retry. 1684 */ 1685 xug->xug_gen = unp_gencnt; 1686 xug->xug_sogen = so_gencnt; 1687 xug->xug_count = unp_count; 1688 error = SYSCTL_OUT(req, xug, sizeof *xug); 1689 } 1690 free(unp_list, M_TEMP); 1691 free(xug, M_TEMP); 1692 return (error); 1693 } 1694 1695 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1696 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1697 "List of active local datagram sockets"); 1698 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1699 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1700 "List of active local stream sockets"); 1701 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1702 CTLTYPE_OPAQUE | CTLFLAG_RD, 1703 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1704 "List of active local seqpacket sockets"); 1705 1706 static void 1707 unp_shutdown(struct unpcb *unp) 1708 { 1709 struct unpcb *unp2; 1710 struct socket *so; 1711 1712 UNP_LINK_WLOCK_ASSERT(); 1713 UNP_PCB_LOCK_ASSERT(unp); 1714 1715 unp2 = unp->unp_conn; 1716 if ((unp->unp_socket->so_type == SOCK_STREAM || 1717 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1718 so = unp2->unp_socket; 1719 if (so != NULL) 1720 socantrcvmore(so); 1721 } 1722 } 1723 1724 static void 1725 unp_drop(struct unpcb *unp) 1726 { 1727 struct socket *so = unp->unp_socket; 1728 struct unpcb *unp2; 1729 1730 UNP_LINK_WLOCK_ASSERT(); 1731 UNP_PCB_LOCK_ASSERT(unp); 1732 1733 /* 1734 * Regardless of whether the socket's peer dropped the connection 1735 * with this socket by aborting or disconnecting, POSIX requires 1736 * that ECONNRESET is returned. 1737 */ 1738 so->so_error = ECONNRESET; 1739 unp2 = unp->unp_conn; 1740 if (unp2 == NULL) 1741 return; 1742 UNP_PCB_LOCK(unp2); 1743 unp_disconnect(unp, unp2); 1744 UNP_PCB_UNLOCK(unp2); 1745 } 1746 1747 static void 1748 unp_freerights(struct filedescent **fdep, int fdcount) 1749 { 1750 struct file *fp; 1751 int i; 1752 1753 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1754 1755 for (i = 0; i < fdcount; i++) { 1756 fp = fdep[i]->fde_file; 1757 filecaps_free(&fdep[i]->fde_caps); 1758 unp_discard(fp); 1759 } 1760 free(fdep[0], M_FILECAPS); 1761 } 1762 1763 static int 1764 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1765 { 1766 struct thread *td = curthread; /* XXX */ 1767 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1768 int i; 1769 int *fdp; 1770 struct filedesc *fdesc = td->td_proc->p_fd; 1771 struct filedescent **fdep; 1772 void *data; 1773 socklen_t clen = control->m_len, datalen; 1774 int error, newfds; 1775 u_int newlen; 1776 1777 UNP_LINK_UNLOCK_ASSERT(); 1778 1779 error = 0; 1780 if (controlp != NULL) /* controlp == NULL => free control messages */ 1781 *controlp = NULL; 1782 while (cm != NULL) { 1783 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 1784 error = EINVAL; 1785 break; 1786 } 1787 data = CMSG_DATA(cm); 1788 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1789 if (cm->cmsg_level == SOL_SOCKET 1790 && cm->cmsg_type == SCM_RIGHTS) { 1791 newfds = datalen / sizeof(*fdep); 1792 if (newfds == 0) 1793 goto next; 1794 fdep = data; 1795 1796 /* If we're not outputting the descriptors free them. */ 1797 if (error || controlp == NULL) { 1798 unp_freerights(fdep, newfds); 1799 goto next; 1800 } 1801 FILEDESC_XLOCK(fdesc); 1802 1803 /* 1804 * Now change each pointer to an fd in the global 1805 * table to an integer that is the index to the local 1806 * fd table entry that we set up to point to the 1807 * global one we are transferring. 1808 */ 1809 newlen = newfds * sizeof(int); 1810 *controlp = sbcreatecontrol(NULL, newlen, 1811 SCM_RIGHTS, SOL_SOCKET); 1812 if (*controlp == NULL) { 1813 FILEDESC_XUNLOCK(fdesc); 1814 error = E2BIG; 1815 unp_freerights(fdep, newfds); 1816 goto next; 1817 } 1818 1819 fdp = (int *) 1820 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1821 if (fdallocn(td, 0, fdp, newfds) != 0) { 1822 FILEDESC_XUNLOCK(fdesc); 1823 error = EMSGSIZE; 1824 unp_freerights(fdep, newfds); 1825 m_freem(*controlp); 1826 *controlp = NULL; 1827 goto next; 1828 } 1829 for (i = 0; i < newfds; i++, fdp++) { 1830 _finstall(fdesc, fdep[i]->fde_file, *fdp, 1831 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 1832 &fdep[i]->fde_caps); 1833 unp_externalize_fp(fdep[i]->fde_file); 1834 } 1835 FILEDESC_XUNLOCK(fdesc); 1836 free(fdep[0], M_FILECAPS); 1837 } else { 1838 /* We can just copy anything else across. */ 1839 if (error || controlp == NULL) 1840 goto next; 1841 *controlp = sbcreatecontrol(NULL, datalen, 1842 cm->cmsg_type, cm->cmsg_level); 1843 if (*controlp == NULL) { 1844 error = ENOBUFS; 1845 goto next; 1846 } 1847 bcopy(data, 1848 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 1849 datalen); 1850 } 1851 controlp = &(*controlp)->m_next; 1852 1853 next: 1854 if (CMSG_SPACE(datalen) < clen) { 1855 clen -= CMSG_SPACE(datalen); 1856 cm = (struct cmsghdr *) 1857 ((caddr_t)cm + CMSG_SPACE(datalen)); 1858 } else { 1859 clen = 0; 1860 cm = NULL; 1861 } 1862 } 1863 1864 m_freem(control); 1865 return (error); 1866 } 1867 1868 static void 1869 unp_zone_change(void *tag) 1870 { 1871 1872 uma_zone_set_max(unp_zone, maxsockets); 1873 } 1874 1875 static void 1876 unp_init(void) 1877 { 1878 1879 #ifdef VIMAGE 1880 if (!IS_DEFAULT_VNET(curvnet)) 1881 return; 1882 #endif 1883 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 1884 NULL, NULL, UMA_ALIGN_PTR, 0); 1885 if (unp_zone == NULL) 1886 panic("unp_init"); 1887 uma_zone_set_max(unp_zone, maxsockets); 1888 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 1889 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 1890 NULL, EVENTHANDLER_PRI_ANY); 1891 LIST_INIT(&unp_dhead); 1892 LIST_INIT(&unp_shead); 1893 LIST_INIT(&unp_sphead); 1894 SLIST_INIT(&unp_defers); 1895 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 1896 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 1897 UNP_LINK_LOCK_INIT(); 1898 UNP_DEFERRED_LOCK_INIT(); 1899 } 1900 1901 static int 1902 unp_internalize(struct mbuf **controlp, struct thread *td) 1903 { 1904 struct mbuf *control = *controlp; 1905 struct proc *p = td->td_proc; 1906 struct filedesc *fdesc = p->p_fd; 1907 struct bintime *bt; 1908 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1909 struct cmsgcred *cmcred; 1910 struct filedescent *fde, **fdep, *fdev; 1911 struct file *fp; 1912 struct timeval *tv; 1913 struct timespec *ts; 1914 int i, *fdp; 1915 void *data; 1916 socklen_t clen = control->m_len, datalen; 1917 int error, oldfds; 1918 u_int newlen; 1919 1920 UNP_LINK_UNLOCK_ASSERT(); 1921 1922 error = 0; 1923 *controlp = NULL; 1924 while (cm != NULL) { 1925 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 1926 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 1927 error = EINVAL; 1928 goto out; 1929 } 1930 data = CMSG_DATA(cm); 1931 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1932 1933 switch (cm->cmsg_type) { 1934 /* 1935 * Fill in credential information. 1936 */ 1937 case SCM_CREDS: 1938 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 1939 SCM_CREDS, SOL_SOCKET); 1940 if (*controlp == NULL) { 1941 error = ENOBUFS; 1942 goto out; 1943 } 1944 cmcred = (struct cmsgcred *) 1945 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1946 cmcred->cmcred_pid = p->p_pid; 1947 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 1948 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 1949 cmcred->cmcred_euid = td->td_ucred->cr_uid; 1950 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 1951 CMGROUP_MAX); 1952 for (i = 0; i < cmcred->cmcred_ngroups; i++) 1953 cmcred->cmcred_groups[i] = 1954 td->td_ucred->cr_groups[i]; 1955 break; 1956 1957 case SCM_RIGHTS: 1958 oldfds = datalen / sizeof (int); 1959 if (oldfds == 0) 1960 break; 1961 /* 1962 * Check that all the FDs passed in refer to legal 1963 * files. If not, reject the entire operation. 1964 */ 1965 fdp = data; 1966 FILEDESC_SLOCK(fdesc); 1967 for (i = 0; i < oldfds; i++, fdp++) { 1968 fp = fget_locked(fdesc, *fdp); 1969 if (fp == NULL) { 1970 FILEDESC_SUNLOCK(fdesc); 1971 error = EBADF; 1972 goto out; 1973 } 1974 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 1975 FILEDESC_SUNLOCK(fdesc); 1976 error = EOPNOTSUPP; 1977 goto out; 1978 } 1979 1980 } 1981 1982 /* 1983 * Now replace the integer FDs with pointers to the 1984 * file structure and capability rights. 1985 */ 1986 newlen = oldfds * sizeof(fdep[0]); 1987 *controlp = sbcreatecontrol(NULL, newlen, 1988 SCM_RIGHTS, SOL_SOCKET); 1989 if (*controlp == NULL) { 1990 FILEDESC_SUNLOCK(fdesc); 1991 error = E2BIG; 1992 goto out; 1993 } 1994 fdp = data; 1995 fdep = (struct filedescent **) 1996 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1997 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 1998 M_WAITOK); 1999 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2000 fde = &fdesc->fd_ofiles[*fdp]; 2001 fdep[i] = fdev; 2002 fdep[i]->fde_file = fde->fde_file; 2003 filecaps_copy(&fde->fde_caps, 2004 &fdep[i]->fde_caps, true); 2005 unp_internalize_fp(fdep[i]->fde_file); 2006 } 2007 FILEDESC_SUNLOCK(fdesc); 2008 break; 2009 2010 case SCM_TIMESTAMP: 2011 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2012 SCM_TIMESTAMP, SOL_SOCKET); 2013 if (*controlp == NULL) { 2014 error = ENOBUFS; 2015 goto out; 2016 } 2017 tv = (struct timeval *) 2018 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2019 microtime(tv); 2020 break; 2021 2022 case SCM_BINTIME: 2023 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2024 SCM_BINTIME, SOL_SOCKET); 2025 if (*controlp == NULL) { 2026 error = ENOBUFS; 2027 goto out; 2028 } 2029 bt = (struct bintime *) 2030 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2031 bintime(bt); 2032 break; 2033 2034 case SCM_REALTIME: 2035 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2036 SCM_REALTIME, SOL_SOCKET); 2037 if (*controlp == NULL) { 2038 error = ENOBUFS; 2039 goto out; 2040 } 2041 ts = (struct timespec *) 2042 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2043 nanotime(ts); 2044 break; 2045 2046 case SCM_MONOTONIC: 2047 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2048 SCM_MONOTONIC, SOL_SOCKET); 2049 if (*controlp == NULL) { 2050 error = ENOBUFS; 2051 goto out; 2052 } 2053 ts = (struct timespec *) 2054 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2055 nanouptime(ts); 2056 break; 2057 2058 default: 2059 error = EINVAL; 2060 goto out; 2061 } 2062 2063 controlp = &(*controlp)->m_next; 2064 if (CMSG_SPACE(datalen) < clen) { 2065 clen -= CMSG_SPACE(datalen); 2066 cm = (struct cmsghdr *) 2067 ((caddr_t)cm + CMSG_SPACE(datalen)); 2068 } else { 2069 clen = 0; 2070 cm = NULL; 2071 } 2072 } 2073 2074 out: 2075 m_freem(control); 2076 return (error); 2077 } 2078 2079 static struct mbuf * 2080 unp_addsockcred(struct thread *td, struct mbuf *control) 2081 { 2082 struct mbuf *m, *n, *n_prev; 2083 struct sockcred *sc; 2084 const struct cmsghdr *cm; 2085 int ngroups; 2086 int i; 2087 2088 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2089 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2090 if (m == NULL) 2091 return (control); 2092 2093 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2094 sc->sc_uid = td->td_ucred->cr_ruid; 2095 sc->sc_euid = td->td_ucred->cr_uid; 2096 sc->sc_gid = td->td_ucred->cr_rgid; 2097 sc->sc_egid = td->td_ucred->cr_gid; 2098 sc->sc_ngroups = ngroups; 2099 for (i = 0; i < sc->sc_ngroups; i++) 2100 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2101 2102 /* 2103 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2104 * created SCM_CREDS control message (struct sockcred) has another 2105 * format. 2106 */ 2107 if (control != NULL) 2108 for (n = control, n_prev = NULL; n != NULL;) { 2109 cm = mtod(n, struct cmsghdr *); 2110 if (cm->cmsg_level == SOL_SOCKET && 2111 cm->cmsg_type == SCM_CREDS) { 2112 if (n_prev == NULL) 2113 control = n->m_next; 2114 else 2115 n_prev->m_next = n->m_next; 2116 n = m_free(n); 2117 } else { 2118 n_prev = n; 2119 n = n->m_next; 2120 } 2121 } 2122 2123 /* Prepend it to the head. */ 2124 m->m_next = control; 2125 return (m); 2126 } 2127 2128 static struct unpcb * 2129 fptounp(struct file *fp) 2130 { 2131 struct socket *so; 2132 2133 if (fp->f_type != DTYPE_SOCKET) 2134 return (NULL); 2135 if ((so = fp->f_data) == NULL) 2136 return (NULL); 2137 if (so->so_proto->pr_domain != &localdomain) 2138 return (NULL); 2139 return sotounpcb(so); 2140 } 2141 2142 static void 2143 unp_discard(struct file *fp) 2144 { 2145 struct unp_defer *dr; 2146 2147 if (unp_externalize_fp(fp)) { 2148 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2149 dr->ud_fp = fp; 2150 UNP_DEFERRED_LOCK(); 2151 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2152 UNP_DEFERRED_UNLOCK(); 2153 atomic_add_int(&unp_defers_count, 1); 2154 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2155 } else 2156 (void) closef(fp, (struct thread *)NULL); 2157 } 2158 2159 static void 2160 unp_process_defers(void *arg __unused, int pending) 2161 { 2162 struct unp_defer *dr; 2163 SLIST_HEAD(, unp_defer) drl; 2164 int count; 2165 2166 SLIST_INIT(&drl); 2167 for (;;) { 2168 UNP_DEFERRED_LOCK(); 2169 if (SLIST_FIRST(&unp_defers) == NULL) { 2170 UNP_DEFERRED_UNLOCK(); 2171 break; 2172 } 2173 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2174 UNP_DEFERRED_UNLOCK(); 2175 count = 0; 2176 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2177 SLIST_REMOVE_HEAD(&drl, ud_link); 2178 closef(dr->ud_fp, NULL); 2179 free(dr, M_TEMP); 2180 count++; 2181 } 2182 atomic_add_int(&unp_defers_count, -count); 2183 } 2184 } 2185 2186 static void 2187 unp_internalize_fp(struct file *fp) 2188 { 2189 struct unpcb *unp; 2190 2191 UNP_LINK_WLOCK(); 2192 if ((unp = fptounp(fp)) != NULL) { 2193 unp->unp_file = fp; 2194 unp->unp_msgcount++; 2195 } 2196 fhold(fp); 2197 unp_rights++; 2198 UNP_LINK_WUNLOCK(); 2199 } 2200 2201 static int 2202 unp_externalize_fp(struct file *fp) 2203 { 2204 struct unpcb *unp; 2205 int ret; 2206 2207 UNP_LINK_WLOCK(); 2208 if ((unp = fptounp(fp)) != NULL) { 2209 unp->unp_msgcount--; 2210 ret = 1; 2211 } else 2212 ret = 0; 2213 unp_rights--; 2214 UNP_LINK_WUNLOCK(); 2215 return (ret); 2216 } 2217 2218 /* 2219 * unp_defer indicates whether additional work has been defered for a future 2220 * pass through unp_gc(). It is thread local and does not require explicit 2221 * synchronization. 2222 */ 2223 static int unp_marked; 2224 static int unp_unreachable; 2225 2226 static void 2227 unp_accessable(struct filedescent **fdep, int fdcount) 2228 { 2229 struct unpcb *unp; 2230 struct file *fp; 2231 int i; 2232 2233 for (i = 0; i < fdcount; i++) { 2234 fp = fdep[i]->fde_file; 2235 if ((unp = fptounp(fp)) == NULL) 2236 continue; 2237 if (unp->unp_gcflag & UNPGC_REF) 2238 continue; 2239 unp->unp_gcflag &= ~UNPGC_DEAD; 2240 unp->unp_gcflag |= UNPGC_REF; 2241 unp_marked++; 2242 } 2243 } 2244 2245 static void 2246 unp_gc_process(struct unpcb *unp) 2247 { 2248 struct socket *so, *soa; 2249 struct file *fp; 2250 2251 /* Already processed. */ 2252 if (unp->unp_gcflag & UNPGC_SCANNED) 2253 return; 2254 fp = unp->unp_file; 2255 2256 /* 2257 * Check for a socket potentially in a cycle. It must be in a 2258 * queue as indicated by msgcount, and this must equal the file 2259 * reference count. Note that when msgcount is 0 the file is NULL. 2260 */ 2261 if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp && 2262 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) { 2263 unp->unp_gcflag |= UNPGC_DEAD; 2264 unp_unreachable++; 2265 return; 2266 } 2267 2268 so = unp->unp_socket; 2269 SOCK_LOCK(so); 2270 if (SOLISTENING(so)) { 2271 /* 2272 * Mark all sockets in our accept queue. 2273 */ 2274 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2275 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2276 continue; 2277 SOCKBUF_LOCK(&soa->so_rcv); 2278 unp_scan(soa->so_rcv.sb_mb, unp_accessable); 2279 SOCKBUF_UNLOCK(&soa->so_rcv); 2280 } 2281 } else { 2282 /* 2283 * Mark all sockets we reference with RIGHTS. 2284 */ 2285 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2286 SOCKBUF_LOCK(&so->so_rcv); 2287 unp_scan(so->so_rcv.sb_mb, unp_accessable); 2288 SOCKBUF_UNLOCK(&so->so_rcv); 2289 } 2290 } 2291 SOCK_UNLOCK(so); 2292 unp->unp_gcflag |= UNPGC_SCANNED; 2293 } 2294 2295 static int unp_recycled; 2296 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2297 "Number of unreachable sockets claimed by the garbage collector."); 2298 2299 static int unp_taskcount; 2300 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2301 "Number of times the garbage collector has run."); 2302 2303 static void 2304 unp_gc(__unused void *arg, int pending) 2305 { 2306 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2307 NULL }; 2308 struct unp_head **head; 2309 struct file *f, **unref; 2310 struct unpcb *unp; 2311 int i, total; 2312 2313 unp_taskcount++; 2314 UNP_LINK_RLOCK(); 2315 /* 2316 * First clear all gc flags from previous runs, apart from 2317 * UNPGC_IGNORE_RIGHTS. 2318 */ 2319 for (head = heads; *head != NULL; head++) 2320 LIST_FOREACH(unp, *head, unp_link) 2321 unp->unp_gcflag = 2322 (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS); 2323 2324 /* 2325 * Scan marking all reachable sockets with UNPGC_REF. Once a socket 2326 * is reachable all of the sockets it references are reachable. 2327 * Stop the scan once we do a complete loop without discovering 2328 * a new reachable socket. 2329 */ 2330 do { 2331 unp_unreachable = 0; 2332 unp_marked = 0; 2333 for (head = heads; *head != NULL; head++) 2334 LIST_FOREACH(unp, *head, unp_link) 2335 unp_gc_process(unp); 2336 } while (unp_marked); 2337 UNP_LINK_RUNLOCK(); 2338 if (unp_unreachable == 0) 2339 return; 2340 2341 /* 2342 * Allocate space for a local list of dead unpcbs. 2343 */ 2344 unref = malloc(unp_unreachable * sizeof(struct file *), 2345 M_TEMP, M_WAITOK); 2346 2347 /* 2348 * Iterate looking for sockets which have been specifically marked 2349 * as as unreachable and store them locally. 2350 */ 2351 UNP_LINK_RLOCK(); 2352 for (total = 0, head = heads; *head != NULL; head++) 2353 LIST_FOREACH(unp, *head, unp_link) 2354 if ((unp->unp_gcflag & UNPGC_DEAD) != 0) { 2355 f = unp->unp_file; 2356 if (unp->unp_msgcount == 0 || f == NULL || 2357 f->f_count != unp->unp_msgcount) 2358 continue; 2359 unref[total++] = f; 2360 fhold(f); 2361 KASSERT(total <= unp_unreachable, 2362 ("unp_gc: incorrect unreachable count.")); 2363 } 2364 UNP_LINK_RUNLOCK(); 2365 2366 /* 2367 * Now flush all sockets, free'ing rights. This will free the 2368 * struct files associated with these sockets but leave each socket 2369 * with one remaining ref. 2370 */ 2371 for (i = 0; i < total; i++) { 2372 struct socket *so; 2373 2374 so = unref[i]->f_data; 2375 CURVNET_SET(so->so_vnet); 2376 sorflush(so); 2377 CURVNET_RESTORE(); 2378 } 2379 2380 /* 2381 * And finally release the sockets so they can be reclaimed. 2382 */ 2383 for (i = 0; i < total; i++) 2384 fdrop(unref[i], NULL); 2385 unp_recycled += total; 2386 free(unref, M_TEMP); 2387 } 2388 2389 static void 2390 unp_dispose_mbuf(struct mbuf *m) 2391 { 2392 2393 if (m) 2394 unp_scan(m, unp_freerights); 2395 } 2396 2397 /* 2398 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2399 */ 2400 static void 2401 unp_dispose(struct socket *so) 2402 { 2403 struct unpcb *unp; 2404 2405 unp = sotounpcb(so); 2406 UNP_LINK_WLOCK(); 2407 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2408 UNP_LINK_WUNLOCK(); 2409 if (!SOLISTENING(so)) 2410 unp_dispose_mbuf(so->so_rcv.sb_mb); 2411 } 2412 2413 static void 2414 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2415 { 2416 struct mbuf *m; 2417 struct cmsghdr *cm; 2418 void *data; 2419 socklen_t clen, datalen; 2420 2421 while (m0 != NULL) { 2422 for (m = m0; m; m = m->m_next) { 2423 if (m->m_type != MT_CONTROL) 2424 continue; 2425 2426 cm = mtod(m, struct cmsghdr *); 2427 clen = m->m_len; 2428 2429 while (cm != NULL) { 2430 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2431 break; 2432 2433 data = CMSG_DATA(cm); 2434 datalen = (caddr_t)cm + cm->cmsg_len 2435 - (caddr_t)data; 2436 2437 if (cm->cmsg_level == SOL_SOCKET && 2438 cm->cmsg_type == SCM_RIGHTS) { 2439 (*op)(data, datalen / 2440 sizeof(struct filedescent *)); 2441 } 2442 2443 if (CMSG_SPACE(datalen) < clen) { 2444 clen -= CMSG_SPACE(datalen); 2445 cm = (struct cmsghdr *) 2446 ((caddr_t)cm + CMSG_SPACE(datalen)); 2447 } else { 2448 clen = 0; 2449 cm = NULL; 2450 } 2451 } 2452 } 2453 m0 = m0->m_nextpkt; 2454 } 2455 } 2456 2457 /* 2458 * A helper function called by VFS before socket-type vnode reclamation. 2459 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2460 * use count. 2461 */ 2462 void 2463 vfs_unp_reclaim(struct vnode *vp) 2464 { 2465 struct unpcb *unp; 2466 int active; 2467 2468 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2469 KASSERT(vp->v_type == VSOCK, 2470 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2471 2472 active = 0; 2473 UNP_LINK_WLOCK(); 2474 VOP_UNP_CONNECT(vp, &unp); 2475 if (unp == NULL) 2476 goto done; 2477 UNP_PCB_LOCK(unp); 2478 if (unp->unp_vnode == vp) { 2479 VOP_UNP_DETACH(vp); 2480 unp->unp_vnode = NULL; 2481 active = 1; 2482 } 2483 UNP_PCB_UNLOCK(unp); 2484 done: 2485 UNP_LINK_WUNLOCK(); 2486 if (active) 2487 vunref(vp); 2488 } 2489 2490 #ifdef DDB 2491 static void 2492 db_print_indent(int indent) 2493 { 2494 int i; 2495 2496 for (i = 0; i < indent; i++) 2497 db_printf(" "); 2498 } 2499 2500 static void 2501 db_print_unpflags(int unp_flags) 2502 { 2503 int comma; 2504 2505 comma = 0; 2506 if (unp_flags & UNP_HAVEPC) { 2507 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2508 comma = 1; 2509 } 2510 if (unp_flags & UNP_WANTCRED) { 2511 db_printf("%sUNP_WANTCRED", comma ? ", " : ""); 2512 comma = 1; 2513 } 2514 if (unp_flags & UNP_CONNWAIT) { 2515 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2516 comma = 1; 2517 } 2518 if (unp_flags & UNP_CONNECTING) { 2519 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2520 comma = 1; 2521 } 2522 if (unp_flags & UNP_BINDING) { 2523 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2524 comma = 1; 2525 } 2526 } 2527 2528 static void 2529 db_print_xucred(int indent, struct xucred *xu) 2530 { 2531 int comma, i; 2532 2533 db_print_indent(indent); 2534 db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n", 2535 xu->cr_version, xu->cr_uid, xu->cr_ngroups); 2536 db_print_indent(indent); 2537 db_printf("cr_groups: "); 2538 comma = 0; 2539 for (i = 0; i < xu->cr_ngroups; i++) { 2540 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2541 comma = 1; 2542 } 2543 db_printf("\n"); 2544 } 2545 2546 static void 2547 db_print_unprefs(int indent, struct unp_head *uh) 2548 { 2549 struct unpcb *unp; 2550 int counter; 2551 2552 counter = 0; 2553 LIST_FOREACH(unp, uh, unp_reflink) { 2554 if (counter % 4 == 0) 2555 db_print_indent(indent); 2556 db_printf("%p ", unp); 2557 if (counter % 4 == 3) 2558 db_printf("\n"); 2559 counter++; 2560 } 2561 if (counter != 0 && counter % 4 != 0) 2562 db_printf("\n"); 2563 } 2564 2565 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2566 { 2567 struct unpcb *unp; 2568 2569 if (!have_addr) { 2570 db_printf("usage: show unpcb <addr>\n"); 2571 return; 2572 } 2573 unp = (struct unpcb *)addr; 2574 2575 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2576 unp->unp_vnode); 2577 2578 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2579 unp->unp_conn); 2580 2581 db_printf("unp_refs:\n"); 2582 db_print_unprefs(2, &unp->unp_refs); 2583 2584 /* XXXRW: Would be nice to print the full address, if any. */ 2585 db_printf("unp_addr: %p\n", unp->unp_addr); 2586 2587 db_printf("unp_gencnt: %llu\n", 2588 (unsigned long long)unp->unp_gencnt); 2589 2590 db_printf("unp_flags: %x (", unp->unp_flags); 2591 db_print_unpflags(unp->unp_flags); 2592 db_printf(")\n"); 2593 2594 db_printf("unp_peercred:\n"); 2595 db_print_xucred(2, &unp->unp_peercred); 2596 2597 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2598 } 2599 #endif 2600