xref: /freebsd/sys/kern/uipc_usrreq.c (revision 6990ffd8a95caaba6858ad44ff1b3157d1efba8f)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/fcntl.h>
41 #include <sys/domain.h>
42 #include <sys/filedesc.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
45 #include <sys/file.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/namei.h>
49 #include <sys/proc.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/stat.h>
55 #include <sys/sysctl.h>
56 #include <sys/un.h>
57 #include <sys/unpcb.h>
58 #include <sys/vnode.h>
59 #include <sys/jail.h>
60 
61 #include <vm/vm_zone.h>
62 
63 static	struct vm_zone *unp_zone;
64 static	unp_gen_t unp_gencnt;
65 static	u_int unp_count;
66 
67 static	struct unp_head unp_shead, unp_dhead;
68 
69 /*
70  * Unix communications domain.
71  *
72  * TODO:
73  *	SEQPACKET, RDM
74  *	rethink name space problems
75  *	need a proper out-of-band
76  *	lock pushdown
77  */
78 static struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
79 static ino_t	unp_ino;		/* prototype for fake inode numbers */
80 
81 static int     unp_attach __P((struct socket *));
82 static void    unp_detach __P((struct unpcb *));
83 static int     unp_bind __P((struct unpcb *,struct sockaddr *, struct thread *));
84 static int     unp_connect __P((struct socket *,struct sockaddr *,
85 				struct thread *));
86 static void    unp_disconnect __P((struct unpcb *));
87 static void    unp_shutdown __P((struct unpcb *));
88 static void    unp_drop __P((struct unpcb *, int));
89 static void    unp_gc __P((void));
90 static void    unp_scan __P((struct mbuf *, void (*)(struct file *)));
91 static void    unp_mark __P((struct file *));
92 static void    unp_discard __P((struct file *));
93 static int     unp_internalize __P((struct mbuf *, struct thread *));
94 static int     unp_listen __P((struct unpcb *, struct proc *));
95 
96 static int
97 uipc_abort(struct socket *so)
98 {
99 	struct unpcb *unp = sotounpcb(so);
100 
101 	if (unp == 0)
102 		return EINVAL;
103 	unp_drop(unp, ECONNABORTED);
104 	return 0;
105 }
106 
107 static int
108 uipc_accept(struct socket *so, struct sockaddr **nam)
109 {
110 	struct unpcb *unp = sotounpcb(so);
111 
112 	if (unp == 0)
113 		return EINVAL;
114 
115 	/*
116 	 * Pass back name of connected socket,
117 	 * if it was bound and we are still connected
118 	 * (our peer may have closed already!).
119 	 */
120 	if (unp->unp_conn && unp->unp_conn->unp_addr) {
121 		*nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr,
122 				    1);
123 	} else {
124 		*nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
125 	}
126 	return 0;
127 }
128 
129 static int
130 uipc_attach(struct socket *so, int proto, struct thread *td)
131 {
132 	struct unpcb *unp = sotounpcb(so);
133 
134 	if (unp != 0)
135 		return EISCONN;
136 	return unp_attach(so);
137 }
138 
139 static int
140 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
141 {
142 	struct unpcb *unp = sotounpcb(so);
143 
144 	if (unp == 0)
145 		return EINVAL;
146 
147 	return unp_bind(unp, nam, td);
148 }
149 
150 static int
151 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
152 {
153 	struct unpcb *unp = sotounpcb(so);
154 
155 	if (unp == 0)
156 		return EINVAL;
157 	return unp_connect(so, nam, curthread);
158 }
159 
160 static int
161 uipc_connect2(struct socket *so1, struct socket *so2)
162 {
163 	struct unpcb *unp = sotounpcb(so1);
164 
165 	if (unp == 0)
166 		return EINVAL;
167 
168 	return unp_connect2(so1, so2);
169 }
170 
171 /* control is EOPNOTSUPP */
172 
173 static int
174 uipc_detach(struct socket *so)
175 {
176 	struct unpcb *unp = sotounpcb(so);
177 
178 	if (unp == 0)
179 		return EINVAL;
180 
181 	unp_detach(unp);
182 	return 0;
183 }
184 
185 static int
186 uipc_disconnect(struct socket *so)
187 {
188 	struct unpcb *unp = sotounpcb(so);
189 
190 	if (unp == 0)
191 		return EINVAL;
192 	unp_disconnect(unp);
193 	return 0;
194 }
195 
196 static int
197 uipc_listen(struct socket *so, struct thread *td)
198 {
199 	struct unpcb *unp = sotounpcb(so);
200 
201 	if (unp == 0 || unp->unp_vnode == 0)
202 		return EINVAL;
203 	return unp_listen(unp, td->td_proc);
204 }
205 
206 static int
207 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
208 {
209 	struct unpcb *unp = sotounpcb(so);
210 
211 	if (unp == 0)
212 		return EINVAL;
213 	if (unp->unp_conn && unp->unp_conn->unp_addr)
214 		*nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr,
215 				    1);
216 	return 0;
217 }
218 
219 static int
220 uipc_rcvd(struct socket *so, int flags)
221 {
222 	struct unpcb *unp = sotounpcb(so);
223 	struct socket *so2;
224 	u_long newhiwat;
225 
226 	if (unp == 0)
227 		return EINVAL;
228 	switch (so->so_type) {
229 	case SOCK_DGRAM:
230 		panic("uipc_rcvd DGRAM?");
231 		/*NOTREACHED*/
232 
233 	case SOCK_STREAM:
234 		if (unp->unp_conn == 0)
235 			break;
236 		so2 = unp->unp_conn->unp_socket;
237 		/*
238 		 * Adjust backpressure on sender
239 		 * and wakeup any waiting to write.
240 		 */
241 		so2->so_snd.sb_mbmax += unp->unp_mbcnt - so->so_rcv.sb_mbcnt;
242 		unp->unp_mbcnt = so->so_rcv.sb_mbcnt;
243 		newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc -
244 		    so->so_rcv.sb_cc;
245 		(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
246 		    newhiwat, RLIM_INFINITY);
247 		unp->unp_cc = so->so_rcv.sb_cc;
248 		sowwakeup(so2);
249 		break;
250 
251 	default:
252 		panic("uipc_rcvd unknown socktype");
253 	}
254 	return 0;
255 }
256 
257 /* pru_rcvoob is EOPNOTSUPP */
258 
259 static int
260 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
261 	  struct mbuf *control, struct thread *td)
262 {
263 	int error = 0;
264 	struct unpcb *unp = sotounpcb(so);
265 	struct socket *so2;
266 	u_long newhiwat;
267 
268 	if (unp == 0) {
269 		error = EINVAL;
270 		goto release;
271 	}
272 	if (flags & PRUS_OOB) {
273 		error = EOPNOTSUPP;
274 		goto release;
275 	}
276 
277 	if (control && (error = unp_internalize(control, td)))
278 		goto release;
279 
280 	switch (so->so_type) {
281 	case SOCK_DGRAM:
282 	{
283 		struct sockaddr *from;
284 
285 		if (nam) {
286 			if (unp->unp_conn) {
287 				error = EISCONN;
288 				break;
289 			}
290 			error = unp_connect(so, nam, td);
291 			if (error)
292 				break;
293 		} else {
294 			if (unp->unp_conn == 0) {
295 				error = ENOTCONN;
296 				break;
297 			}
298 		}
299 		so2 = unp->unp_conn->unp_socket;
300 		if (unp->unp_addr)
301 			from = (struct sockaddr *)unp->unp_addr;
302 		else
303 			from = &sun_noname;
304 		if (sbappendaddr(&so2->so_rcv, from, m, control)) {
305 			sorwakeup(so2);
306 			m = 0;
307 			control = 0;
308 		} else
309 			error = ENOBUFS;
310 		if (nam)
311 			unp_disconnect(unp);
312 		break;
313 	}
314 
315 	case SOCK_STREAM:
316 		/* Connect if not connected yet. */
317 		/*
318 		 * Note: A better implementation would complain
319 		 * if not equal to the peer's address.
320 		 */
321 		if ((so->so_state & SS_ISCONNECTED) == 0) {
322 			if (nam) {
323 				error = unp_connect(so, nam, td);
324 				if (error)
325 					break;	/* XXX */
326 			} else {
327 				error = ENOTCONN;
328 				break;
329 			}
330 		}
331 
332 		if (so->so_state & SS_CANTSENDMORE) {
333 			error = EPIPE;
334 			break;
335 		}
336 		if (unp->unp_conn == 0)
337 			panic("uipc_send connected but no connection?");
338 		so2 = unp->unp_conn->unp_socket;
339 		/*
340 		 * Send to paired receive port, and then reduce
341 		 * send buffer hiwater marks to maintain backpressure.
342 		 * Wake up readers.
343 		 */
344 		if (control) {
345 			if (sbappendcontrol(&so2->so_rcv, m, control))
346 				control = 0;
347 		} else
348 			sbappend(&so2->so_rcv, m);
349 		so->so_snd.sb_mbmax -=
350 			so2->so_rcv.sb_mbcnt - unp->unp_conn->unp_mbcnt;
351 		unp->unp_conn->unp_mbcnt = so2->so_rcv.sb_mbcnt;
352 		newhiwat = so->so_snd.sb_hiwat -
353 		    (so2->so_rcv.sb_cc - unp->unp_conn->unp_cc);
354 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
355 		    newhiwat, RLIM_INFINITY);
356 		unp->unp_conn->unp_cc = so2->so_rcv.sb_cc;
357 		sorwakeup(so2);
358 		m = 0;
359 		break;
360 
361 	default:
362 		panic("uipc_send unknown socktype");
363 	}
364 
365 	/*
366 	 * SEND_EOF is equivalent to a SEND followed by
367 	 * a SHUTDOWN.
368 	 */
369 	if (flags & PRUS_EOF) {
370 		socantsendmore(so);
371 		unp_shutdown(unp);
372 	}
373 
374 	if (control && error != 0)
375 		unp_dispose(control);
376 
377 release:
378 	if (control)
379 		m_freem(control);
380 	if (m)
381 		m_freem(m);
382 	return error;
383 }
384 
385 static int
386 uipc_sense(struct socket *so, struct stat *sb)
387 {
388 	struct unpcb *unp = sotounpcb(so);
389 	struct socket *so2;
390 
391 	if (unp == 0)
392 		return EINVAL;
393 	sb->st_blksize = so->so_snd.sb_hiwat;
394 	if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
395 		so2 = unp->unp_conn->unp_socket;
396 		sb->st_blksize += so2->so_rcv.sb_cc;
397 	}
398 	sb->st_dev = NOUDEV;
399 	if (unp->unp_ino == 0)
400 		unp->unp_ino = unp_ino++;
401 	sb->st_ino = unp->unp_ino;
402 	return (0);
403 }
404 
405 static int
406 uipc_shutdown(struct socket *so)
407 {
408 	struct unpcb *unp = sotounpcb(so);
409 
410 	if (unp == 0)
411 		return EINVAL;
412 	socantsendmore(so);
413 	unp_shutdown(unp);
414 	return 0;
415 }
416 
417 static int
418 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
419 {
420 	struct unpcb *unp = sotounpcb(so);
421 
422 	if (unp == 0)
423 		return EINVAL;
424 	if (unp->unp_addr)
425 		*nam = dup_sockaddr((struct sockaddr *)unp->unp_addr, 1);
426 	else
427 		*nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
428 	return 0;
429 }
430 
431 struct pr_usrreqs uipc_usrreqs = {
432 	uipc_abort, uipc_accept, uipc_attach, uipc_bind, uipc_connect,
433 	uipc_connect2, pru_control_notsupp, uipc_detach, uipc_disconnect,
434 	uipc_listen, uipc_peeraddr, uipc_rcvd, pru_rcvoob_notsupp,
435 	uipc_send, uipc_sense, uipc_shutdown, uipc_sockaddr,
436 	sosend, soreceive, sopoll
437 };
438 
439 int
440 uipc_ctloutput(so, sopt)
441 	struct socket *so;
442 	struct sockopt *sopt;
443 {
444 	struct unpcb *unp = sotounpcb(so);
445 	int error;
446 
447 	switch (sopt->sopt_dir) {
448 	case SOPT_GET:
449 		switch (sopt->sopt_name) {
450 		case LOCAL_PEERCRED:
451 			if (unp->unp_flags & UNP_HAVEPC)
452 				error = sooptcopyout(sopt, &unp->unp_peercred,
453 				    sizeof(unp->unp_peercred));
454 			else {
455 				if (so->so_type == SOCK_STREAM)
456 					error = ENOTCONN;
457 				else
458 					error = EINVAL;
459 			}
460 			break;
461 		default:
462 			error = EOPNOTSUPP;
463 			break;
464 		}
465 		break;
466 	case SOPT_SET:
467 	default:
468 		error = EOPNOTSUPP;
469 		break;
470 	}
471 	return (error);
472 }
473 
474 /*
475  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
476  * for stream sockets, although the total for sender and receiver is
477  * actually only PIPSIZ.
478  * Datagram sockets really use the sendspace as the maximum datagram size,
479  * and don't really want to reserve the sendspace.  Their recvspace should
480  * be large enough for at least one max-size datagram plus address.
481  */
482 #ifndef PIPSIZ
483 #define	PIPSIZ	8192
484 #endif
485 static u_long	unpst_sendspace = PIPSIZ;
486 static u_long	unpst_recvspace = PIPSIZ;
487 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
488 static u_long	unpdg_recvspace = 4*1024;
489 
490 static int	unp_rights;			/* file descriptors in flight */
491 
492 SYSCTL_DECL(_net_local_stream);
493 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
494 	   &unpst_sendspace, 0, "");
495 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
496 	   &unpst_recvspace, 0, "");
497 SYSCTL_DECL(_net_local_dgram);
498 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
499 	   &unpdg_sendspace, 0, "");
500 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
501 	   &unpdg_recvspace, 0, "");
502 SYSCTL_DECL(_net_local);
503 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
504 
505 static int
506 unp_attach(so)
507 	struct socket *so;
508 {
509 	register struct unpcb *unp;
510 	int error;
511 
512 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
513 		switch (so->so_type) {
514 
515 		case SOCK_STREAM:
516 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
517 			break;
518 
519 		case SOCK_DGRAM:
520 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
521 			break;
522 
523 		default:
524 			panic("unp_attach");
525 		}
526 		if (error)
527 			return (error);
528 	}
529 	unp = zalloc(unp_zone);
530 	if (unp == NULL)
531 		return (ENOBUFS);
532 	bzero(unp, sizeof *unp);
533 	unp->unp_gencnt = ++unp_gencnt;
534 	unp_count++;
535 	LIST_INIT(&unp->unp_refs);
536 	unp->unp_socket = so;
537 	unp->unp_rvnode = curthread->td_proc->p_fd->fd_rdir;
538 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
539 			 : &unp_shead, unp, unp_link);
540 	so->so_pcb = (caddr_t)unp;
541 	return (0);
542 }
543 
544 static void
545 unp_detach(unp)
546 	register struct unpcb *unp;
547 {
548 	LIST_REMOVE(unp, unp_link);
549 	unp->unp_gencnt = ++unp_gencnt;
550 	--unp_count;
551 	if (unp->unp_vnode) {
552 		unp->unp_vnode->v_socket = 0;
553 		vrele(unp->unp_vnode);
554 		unp->unp_vnode = 0;
555 	}
556 	if (unp->unp_conn)
557 		unp_disconnect(unp);
558 	while (!LIST_EMPTY(&unp->unp_refs))
559 		unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET);
560 	soisdisconnected(unp->unp_socket);
561 	unp->unp_socket->so_pcb = 0;
562 	if (unp_rights) {
563 		/*
564 		 * Normally the receive buffer is flushed later,
565 		 * in sofree, but if our receive buffer holds references
566 		 * to descriptors that are now garbage, we will dispose
567 		 * of those descriptor references after the garbage collector
568 		 * gets them (resulting in a "panic: closef: count < 0").
569 		 */
570 		sorflush(unp->unp_socket);
571 		unp_gc();
572 	}
573 	if (unp->unp_addr)
574 		FREE(unp->unp_addr, M_SONAME);
575 	zfree(unp_zone, unp);
576 }
577 
578 static int
579 unp_bind(unp, nam, td)
580 	struct unpcb *unp;
581 	struct sockaddr *nam;
582 	struct thread *td;
583 {
584 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
585 	struct vnode *vp;
586 	struct mount *mp;
587 	struct vattr vattr;
588 	int error, namelen;
589 	struct nameidata nd;
590 	char *buf;
591 
592 	if (unp->unp_vnode != NULL)
593 		return (EINVAL);
594 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
595 	if (namelen <= 0)
596 		return EINVAL;
597 	buf = malloc(SOCK_MAXADDRLEN, M_TEMP, M_WAITOK);
598 	strncpy(buf, soun->sun_path, namelen);
599 	buf[namelen] = 0;	/* null-terminate the string */
600 restart:
601 	NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT, UIO_SYSSPACE,
602 	    buf, td);
603 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
604 	error = namei(&nd);
605 	if (error) {
606 		free(buf, M_TEMP);
607 		return (error);
608 	}
609 	vp = nd.ni_vp;
610 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
611 		NDFREE(&nd, NDF_ONLY_PNBUF);
612 		if (nd.ni_dvp == vp)
613 			vrele(nd.ni_dvp);
614 		else
615 			vput(nd.ni_dvp);
616 		if (vp != NULL) {
617 			vrele(vp);
618 			free(buf, M_TEMP);
619 			return (EADDRINUSE);
620 		}
621 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
622 		if (error) {
623 			free(buf, M_TEMP);
624 			return (error);
625 		}
626 		goto restart;
627 	}
628 	VATTR_NULL(&vattr);
629 	vattr.va_type = VSOCK;
630 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
631 	VOP_LEASE(nd.ni_dvp, td, td->td_proc->p_ucred, LEASE_WRITE);
632 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
633 	NDFREE(&nd, NDF_ONLY_PNBUF);
634 	vput(nd.ni_dvp);
635 	if (error) {
636 		free(buf, M_TEMP);
637 		return (error);
638 	}
639 	vp = nd.ni_vp;
640 	vp->v_socket = unp->unp_socket;
641 	unp->unp_vnode = vp;
642 	unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam, 1);
643 	VOP_UNLOCK(vp, 0, td);
644 	vn_finished_write(mp);
645 	free(buf, M_TEMP);
646 	return (0);
647 }
648 
649 static int
650 unp_connect(so, nam, td)
651 	struct socket *so;
652 	struct sockaddr *nam;
653 	struct thread *td;
654 {
655 	register struct sockaddr_un *soun = (struct sockaddr_un *)nam;
656 	register struct vnode *vp;
657 	register struct socket *so2, *so3;
658 	struct unpcb *unp, *unp2, *unp3;
659 	int error, len;
660 	struct nameidata nd;
661 	char buf[SOCK_MAXADDRLEN];
662 
663 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
664 	if (len <= 0)
665 		return EINVAL;
666 	strncpy(buf, soun->sun_path, len);
667 	buf[len] = 0;
668 
669 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf, td);
670 	error = namei(&nd);
671 	if (error)
672 		return (error);
673 	vp = nd.ni_vp;
674 	NDFREE(&nd, NDF_ONLY_PNBUF);
675 	if (vp->v_type != VSOCK) {
676 		error = ENOTSOCK;
677 		goto bad;
678 	}
679 	error = VOP_ACCESS(vp, VWRITE, td->td_proc->p_ucred, td);
680 	if (error)
681 		goto bad;
682 	so2 = vp->v_socket;
683 	if (so2 == 0) {
684 		error = ECONNREFUSED;
685 		goto bad;
686 	}
687 	if (so->so_type != so2->so_type) {
688 		error = EPROTOTYPE;
689 		goto bad;
690 	}
691 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
692 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
693 		    (so3 = sonewconn3(so2, 0, td)) == 0) {
694 			error = ECONNREFUSED;
695 			goto bad;
696 		}
697 		unp = sotounpcb(so);
698 		unp2 = sotounpcb(so2);
699 		unp3 = sotounpcb(so3);
700 		if (unp2->unp_addr)
701 			unp3->unp_addr = (struct sockaddr_un *)
702 				dup_sockaddr((struct sockaddr *)
703 					     unp2->unp_addr, 1);
704 
705 		/*
706 		 * unp_peercred management:
707 		 *
708 		 * The connecter's (client's) credentials are copied
709 		 * from its process structure at the time of connect()
710 		 * (which is now).
711 		 */
712 		memset(&unp3->unp_peercred, '\0', sizeof(unp3->unp_peercred));
713 		unp3->unp_peercred.cr_uid = td->td_proc->p_ucred->cr_uid;
714 		unp3->unp_peercred.cr_ngroups = td->td_proc->p_ucred->cr_ngroups;
715 		memcpy(unp3->unp_peercred.cr_groups, td->td_proc->p_ucred->cr_groups,
716 		    sizeof(unp3->unp_peercred.cr_groups));
717 		unp3->unp_flags |= UNP_HAVEPC;
718 		/*
719 		 * The receiver's (server's) credentials are copied
720 		 * from the unp_peercred member of socket on which the
721 		 * former called listen(); unp_listen() cached that
722 		 * process's credentials at that time so we can use
723 		 * them now.
724 		 */
725 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
726 		    ("unp_connect: listener without cached peercred"));
727 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
728 		    sizeof(unp->unp_peercred));
729 		unp->unp_flags |= UNP_HAVEPC;
730 
731 		so2 = so3;
732 	}
733 	error = unp_connect2(so, so2);
734 bad:
735 	vput(vp);
736 	return (error);
737 }
738 
739 int
740 unp_connect2(so, so2)
741 	register struct socket *so;
742 	register struct socket *so2;
743 {
744 	register struct unpcb *unp = sotounpcb(so);
745 	register struct unpcb *unp2;
746 
747 	if (so2->so_type != so->so_type)
748 		return (EPROTOTYPE);
749 	unp2 = sotounpcb(so2);
750 	unp->unp_conn = unp2;
751 	switch (so->so_type) {
752 
753 	case SOCK_DGRAM:
754 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
755 		soisconnected(so);
756 		break;
757 
758 	case SOCK_STREAM:
759 		unp2->unp_conn = unp;
760 		soisconnected(so);
761 		soisconnected(so2);
762 		break;
763 
764 	default:
765 		panic("unp_connect2");
766 	}
767 	return (0);
768 }
769 
770 static void
771 unp_disconnect(unp)
772 	struct unpcb *unp;
773 {
774 	register struct unpcb *unp2 = unp->unp_conn;
775 
776 	if (unp2 == 0)
777 		return;
778 	unp->unp_conn = 0;
779 	switch (unp->unp_socket->so_type) {
780 
781 	case SOCK_DGRAM:
782 		LIST_REMOVE(unp, unp_reflink);
783 		unp->unp_socket->so_state &= ~SS_ISCONNECTED;
784 		break;
785 
786 	case SOCK_STREAM:
787 		soisdisconnected(unp->unp_socket);
788 		unp2->unp_conn = 0;
789 		soisdisconnected(unp2->unp_socket);
790 		break;
791 	}
792 }
793 
794 #ifdef notdef
795 void
796 unp_abort(unp)
797 	struct unpcb *unp;
798 {
799 
800 	unp_detach(unp);
801 }
802 #endif
803 
804 static int
805 prison_unpcb(struct proc *p, struct unpcb *unp)
806 {
807 	if (!jailed(p->p_ucred))
808 		return (0);
809 	if (p->p_fd->fd_rdir == unp->unp_rvnode)
810 		return (0);
811 	return (1);
812 }
813 
814 static int
815 unp_pcblist(SYSCTL_HANDLER_ARGS)
816 {
817 	int error, i, n;
818 	struct unpcb *unp, **unp_list;
819 	unp_gen_t gencnt;
820 	struct xunpgen *xug;
821 	struct unp_head *head;
822 	struct xunpcb *xu;
823 
824 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
825 
826 	/*
827 	 * The process of preparing the PCB list is too time-consuming and
828 	 * resource-intensive to repeat twice on every request.
829 	 */
830 	if (req->oldptr == 0) {
831 		n = unp_count;
832 		req->oldidx = 2 * (sizeof *xug)
833 			+ (n + n/8) * sizeof(struct xunpcb);
834 		return 0;
835 	}
836 
837 	if (req->newptr != 0)
838 		return EPERM;
839 
840 	/*
841 	 * OK, now we're committed to doing something.
842 	 */
843 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
844 	gencnt = unp_gencnt;
845 	n = unp_count;
846 
847 	xug->xug_len = sizeof *xug;
848 	xug->xug_count = n;
849 	xug->xug_gen = gencnt;
850 	xug->xug_sogen = so_gencnt;
851 	error = SYSCTL_OUT(req, xug, sizeof *xug);
852 	if (error) {
853 		free(xug, M_TEMP);
854 		return error;
855 	}
856 
857 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
858 
859 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
860 	     unp = LIST_NEXT(unp, unp_link)) {
861 		if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->p, unp))
862 			unp_list[i++] = unp;
863 	}
864 	n = i;			/* in case we lost some during malloc */
865 
866 	error = 0;
867 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK);
868 	for (i = 0; i < n; i++) {
869 		unp = unp_list[i];
870 		if (unp->unp_gencnt <= gencnt) {
871 			xu->xu_len = sizeof *xu;
872 			xu->xu_unpp = unp;
873 			/*
874 			 * XXX - need more locking here to protect against
875 			 * connect/disconnect races for SMP.
876 			 */
877 			if (unp->unp_addr)
878 				bcopy(unp->unp_addr, &xu->xu_addr,
879 				      unp->unp_addr->sun_len);
880 			if (unp->unp_conn && unp->unp_conn->unp_addr)
881 				bcopy(unp->unp_conn->unp_addr,
882 				      &xu->xu_caddr,
883 				      unp->unp_conn->unp_addr->sun_len);
884 			bcopy(unp, &xu->xu_unp, sizeof *unp);
885 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
886 			error = SYSCTL_OUT(req, xu, sizeof *xu);
887 		}
888 	}
889 	free(xu, M_TEMP);
890 	if (!error) {
891 		/*
892 		 * Give the user an updated idea of our state.
893 		 * If the generation differs from what we told
894 		 * her before, she knows that something happened
895 		 * while we were processing this request, and it
896 		 * might be necessary to retry.
897 		 */
898 		xug->xug_gen = unp_gencnt;
899 		xug->xug_sogen = so_gencnt;
900 		xug->xug_count = unp_count;
901 		error = SYSCTL_OUT(req, xug, sizeof *xug);
902 	}
903 	free(unp_list, M_TEMP);
904 	free(xug, M_TEMP);
905 	return error;
906 }
907 
908 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
909 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
910 	    "List of active local datagram sockets");
911 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
912 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
913 	    "List of active local stream sockets");
914 
915 static void
916 unp_shutdown(unp)
917 	struct unpcb *unp;
918 {
919 	struct socket *so;
920 
921 	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
922 	    (so = unp->unp_conn->unp_socket))
923 		socantrcvmore(so);
924 }
925 
926 static void
927 unp_drop(unp, errno)
928 	struct unpcb *unp;
929 	int errno;
930 {
931 	struct socket *so = unp->unp_socket;
932 
933 	so->so_error = errno;
934 	unp_disconnect(unp);
935 	if (so->so_head) {
936 		LIST_REMOVE(unp, unp_link);
937 		unp->unp_gencnt = ++unp_gencnt;
938 		unp_count--;
939 		so->so_pcb = (caddr_t) 0;
940 		if (unp->unp_addr)
941 			FREE(unp->unp_addr, M_SONAME);
942 		zfree(unp_zone, unp);
943 		sofree(so);
944 	}
945 }
946 
947 #ifdef notdef
948 void
949 unp_drain()
950 {
951 
952 }
953 #endif
954 
955 int
956 unp_externalize(rights)
957 	struct mbuf *rights;
958 {
959 	struct thread *td = curthread;		/* XXX */
960 	register int i;
961 	register struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
962 	register int *fdp;
963 	register struct file **rp;
964 	register struct file *fp;
965 	int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm))
966 		/ sizeof (struct file *);
967 	int f;
968 
969 	/*
970 	 * if the new FD's will not fit, then we free them all
971 	 */
972 	if (!fdavail(td, newfds)) {
973 		rp = (struct file **)CMSG_DATA(cm);
974 		for (i = 0; i < newfds; i++) {
975 			fp = *rp;
976 			/*
977 			 * zero the pointer before calling unp_discard,
978 			 * since it may end up in unp_gc()..
979 			 */
980 			*rp++ = 0;
981 			unp_discard(fp);
982 		}
983 		return (EMSGSIZE);
984 	}
985 	/*
986 	 * now change each pointer to an fd in the global table to
987 	 * an integer that is the index to the local fd table entry
988 	 * that we set up to point to the global one we are transferring.
989 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
990 	 * then do it in forward order. In that case, an integer will
991 	 * always come in the same place or before its corresponding
992 	 * struct file pointer.
993 	 * If sizeof (struct file *) is smaller than sizeof int, then
994 	 * do it in reverse order.
995 	 */
996 	if (sizeof (struct file *) >= sizeof (int)) {
997 		fdp = (int *)(cm + 1);
998 		rp = (struct file **)CMSG_DATA(cm);
999 		for (i = 0; i < newfds; i++) {
1000 			if (fdalloc(td, 0, &f))
1001 				panic("unp_externalize");
1002 			fp = *rp++;
1003 			td->td_proc->p_fd->fd_ofiles[f] = fp;
1004 			fp->f_msgcount--;
1005 			unp_rights--;
1006 			*fdp++ = f;
1007 		}
1008 	} else {
1009 		fdp = (int *)(cm + 1) + newfds - 1;
1010 		rp = (struct file **)CMSG_DATA(cm) + newfds - 1;
1011 		for (i = 0; i < newfds; i++) {
1012 			if (fdalloc(td, 0, &f))
1013 				panic("unp_externalize");
1014 			fp = *rp--;
1015 			td->td_proc->p_fd->fd_ofiles[f] = fp;
1016 			fp->f_msgcount--;
1017 			unp_rights--;
1018 			*fdp-- = f;
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1024 	 * differs.
1025 	 */
1026 	cm->cmsg_len = CMSG_LEN(newfds * sizeof(int));
1027 	rights->m_len = cm->cmsg_len;
1028 	return (0);
1029 }
1030 
1031 void
1032 unp_init(void)
1033 {
1034 	unp_zone = zinit("unpcb", sizeof(struct unpcb), nmbclusters, 0, 0);
1035 	if (unp_zone == 0)
1036 		panic("unp_init");
1037 	LIST_INIT(&unp_dhead);
1038 	LIST_INIT(&unp_shead);
1039 }
1040 
1041 #ifndef MIN
1042 #define	MIN(a,b) (((a)<(b))?(a):(b))
1043 #endif
1044 
1045 static int
1046 unp_internalize(control, td)
1047 	struct mbuf *control;
1048 	struct thread *td;
1049 {
1050 	struct proc *p = td->td_proc;
1051 	struct filedesc *fdescp = p->p_fd;
1052 	register struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1053 	register struct file **rp;
1054 	register struct file *fp;
1055 	register int i, fd, *fdp;
1056 	register struct cmsgcred *cmcred;
1057 	int oldfds;
1058 	u_int newlen;
1059 
1060 	if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) ||
1061 	    cm->cmsg_level != SOL_SOCKET || cm->cmsg_len != control->m_len)
1062 		return (EINVAL);
1063 
1064 	/*
1065 	 * Fill in credential information.
1066 	 */
1067 	if (cm->cmsg_type == SCM_CREDS) {
1068 		cmcred = (struct cmsgcred *)(cm + 1);
1069 		cmcred->cmcred_pid = p->p_pid;
1070 		cmcred->cmcred_uid = p->p_ucred->cr_ruid;
1071 		cmcred->cmcred_gid = p->p_ucred->cr_rgid;
1072 		cmcred->cmcred_euid = p->p_ucred->cr_uid;
1073 		cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups,
1074 							CMGROUP_MAX);
1075 		for (i = 0; i < cmcred->cmcred_ngroups; i++)
1076 			cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i];
1077 		return(0);
1078 	}
1079 
1080 	oldfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int);
1081 	/*
1082 	 * check that all the FDs passed in refer to legal OPEN files
1083 	 * If not, reject the entire operation.
1084 	 */
1085 	fdp = (int *)(cm + 1);
1086 	for (i = 0; i < oldfds; i++) {
1087 		fd = *fdp++;
1088 		if ((unsigned)fd >= fdescp->fd_nfiles ||
1089 		    fdescp->fd_ofiles[fd] == NULL)
1090 			return (EBADF);
1091 	}
1092 	/*
1093 	 * Now replace the integer FDs with pointers to
1094 	 * the associated global file table entry..
1095 	 * Allocate a bigger buffer as necessary. But if an cluster is not
1096 	 * enough, return E2BIG.
1097 	 */
1098 	newlen = CMSG_LEN(oldfds * sizeof(struct file *));
1099 	if (newlen > MCLBYTES)
1100 		return (E2BIG);
1101 	if (newlen - control->m_len > M_TRAILINGSPACE(control)) {
1102 		if (control->m_flags & M_EXT)
1103 			return (E2BIG);
1104 		MCLGET(control, M_TRYWAIT);
1105 		if ((control->m_flags & M_EXT) == 0)
1106 			return (ENOBUFS);
1107 
1108 		/* copy the data to the cluster */
1109 		memcpy(mtod(control, char *), cm, cm->cmsg_len);
1110 		cm = mtod(control, struct cmsghdr *);
1111 	}
1112 
1113 	/*
1114 	 * Adjust length, in case sizeof(struct file *) and sizeof(int)
1115 	 * differs.
1116 	 */
1117 	control->m_len = cm->cmsg_len = newlen;
1118 
1119 	/*
1120 	 * Transform the file descriptors into struct file pointers.
1121 	 * If sizeof (struct file *) is bigger than or equal to sizeof int,
1122 	 * then do it in reverse order so that the int won't get until
1123 	 * we're done.
1124 	 * If sizeof (struct file *) is smaller than sizeof int, then
1125 	 * do it in forward order.
1126 	 */
1127 	if (sizeof (struct file *) >= sizeof (int)) {
1128 		fdp = (int *)(cm + 1) + oldfds - 1;
1129 		rp = (struct file **)CMSG_DATA(cm) + oldfds - 1;
1130 		for (i = 0; i < oldfds; i++) {
1131 			fp = fdescp->fd_ofiles[*fdp--];
1132 			*rp-- = fp;
1133 			fp->f_count++;
1134 			fp->f_msgcount++;
1135 			unp_rights++;
1136 		}
1137 	} else {
1138 		fdp = (int *)(cm + 1);
1139 		rp = (struct file **)CMSG_DATA(cm);
1140 		for (i = 0; i < oldfds; i++) {
1141 			fp = fdescp->fd_ofiles[*fdp++];
1142 			*rp++ = fp;
1143 			fp->f_count++;
1144 			fp->f_msgcount++;
1145 			unp_rights++;
1146 		}
1147 	}
1148 	return (0);
1149 }
1150 
1151 static int	unp_defer, unp_gcing;
1152 
1153 static void
1154 unp_gc()
1155 {
1156 	register struct file *fp, *nextfp;
1157 	register struct socket *so;
1158 	struct file **extra_ref, **fpp;
1159 	int nunref, i;
1160 
1161 	if (unp_gcing)
1162 		return;
1163 	unp_gcing = 1;
1164 	unp_defer = 0;
1165 	/*
1166 	 * before going through all this, set all FDs to
1167 	 * be NOT defered and NOT externally accessible
1168 	 */
1169 	LIST_FOREACH(fp, &filehead, f_list)
1170 		fp->f_flag &= ~(FMARK|FDEFER);
1171 	do {
1172 		LIST_FOREACH(fp, &filehead, f_list) {
1173 			/*
1174 			 * If the file is not open, skip it
1175 			 */
1176 			if (fp->f_count == 0)
1177 				continue;
1178 			/*
1179 			 * If we already marked it as 'defer'  in a
1180 			 * previous pass, then try process it this time
1181 			 * and un-mark it
1182 			 */
1183 			if (fp->f_flag & FDEFER) {
1184 				fp->f_flag &= ~FDEFER;
1185 				unp_defer--;
1186 			} else {
1187 				/*
1188 				 * if it's not defered, then check if it's
1189 				 * already marked.. if so skip it
1190 				 */
1191 				if (fp->f_flag & FMARK)
1192 					continue;
1193 				/*
1194 				 * If all references are from messages
1195 				 * in transit, then skip it. it's not
1196 				 * externally accessible.
1197 				 */
1198 				if (fp->f_count == fp->f_msgcount)
1199 					continue;
1200 				/*
1201 				 * If it got this far then it must be
1202 				 * externally accessible.
1203 				 */
1204 				fp->f_flag |= FMARK;
1205 			}
1206 			/*
1207 			 * either it was defered, or it is externally
1208 			 * accessible and not already marked so.
1209 			 * Now check if it is possibly one of OUR sockets.
1210 			 */
1211 			if (fp->f_type != DTYPE_SOCKET ||
1212 			    (so = (struct socket *)fp->f_data) == 0)
1213 				continue;
1214 			if (so->so_proto->pr_domain != &localdomain ||
1215 			    (so->so_proto->pr_flags&PR_RIGHTS) == 0)
1216 				continue;
1217 #ifdef notdef
1218 			if (so->so_rcv.sb_flags & SB_LOCK) {
1219 				/*
1220 				 * This is problematical; it's not clear
1221 				 * we need to wait for the sockbuf to be
1222 				 * unlocked (on a uniprocessor, at least),
1223 				 * and it's also not clear what to do
1224 				 * if sbwait returns an error due to receipt
1225 				 * of a signal.  If sbwait does return
1226 				 * an error, we'll go into an infinite
1227 				 * loop.  Delete all of this for now.
1228 				 */
1229 				(void) sbwait(&so->so_rcv);
1230 				goto restart;
1231 			}
1232 #endif
1233 			/*
1234 			 * So, Ok, it's one of our sockets and it IS externally
1235 			 * accessible (or was defered). Now we look
1236 			 * to see if we hold any file descriptors in its
1237 			 * message buffers. Follow those links and mark them
1238 			 * as accessible too.
1239 			 */
1240 			unp_scan(so->so_rcv.sb_mb, unp_mark);
1241 		}
1242 	} while (unp_defer);
1243 	/*
1244 	 * We grab an extra reference to each of the file table entries
1245 	 * that are not otherwise accessible and then free the rights
1246 	 * that are stored in messages on them.
1247 	 *
1248 	 * The bug in the orginal code is a little tricky, so I'll describe
1249 	 * what's wrong with it here.
1250 	 *
1251 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1252 	 * times -- consider the case of sockets A and B that contain
1253 	 * references to each other.  On a last close of some other socket,
1254 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1255 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1256 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1257 	 * results in the following chain.  Closef calls soo_close, which
1258 	 * calls soclose.   Soclose calls first (through the switch
1259 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1260 	 * returns because the previous instance had set unp_gcing, and
1261 	 * we return all the way back to soclose, which marks the socket
1262 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1263 	 * to free up the rights that are queued in messages on the socket A,
1264 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1265 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1266 	 * instance of unp_discard just calls closef on B.
1267 	 *
1268 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1269 	 * which results in another closef on A.  Unfortunately, A is already
1270 	 * being closed, and the descriptor has already been marked with
1271 	 * SS_NOFDREF, and soclose panics at this point.
1272 	 *
1273 	 * Here, we first take an extra reference to each inaccessible
1274 	 * descriptor.  Then, we call sorflush ourself, since we know
1275 	 * it is a Unix domain socket anyhow.  After we destroy all the
1276 	 * rights carried in messages, we do a last closef to get rid
1277 	 * of our extra reference.  This is the last close, and the
1278 	 * unp_detach etc will shut down the socket.
1279 	 *
1280 	 * 91/09/19, bsy@cs.cmu.edu
1281 	 */
1282 	extra_ref = malloc(nfiles * sizeof(struct file *), M_FILE, M_WAITOK);
1283 	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1284 	    fp = nextfp) {
1285 		nextfp = LIST_NEXT(fp, f_list);
1286 		/*
1287 		 * If it's not open, skip it
1288 		 */
1289 		if (fp->f_count == 0)
1290 			continue;
1291 		/*
1292 		 * If all refs are from msgs, and it's not marked accessible
1293 		 * then it must be referenced from some unreachable cycle
1294 		 * of (shut-down) FDs, so include it in our
1295 		 * list of FDs to remove
1296 		 */
1297 		if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1298 			*fpp++ = fp;
1299 			nunref++;
1300 			fp->f_count++;
1301 		}
1302 	}
1303 	/*
1304 	 * for each FD on our hit list, do the following two things
1305 	 */
1306 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1307 		struct file *tfp = *fpp;
1308 		if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL)
1309 			sorflush((struct socket *)(tfp->f_data));
1310 	}
1311 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp)
1312 		closef(*fpp, (struct thread *) NULL);
1313 	free((caddr_t)extra_ref, M_FILE);
1314 	unp_gcing = 0;
1315 }
1316 
1317 void
1318 unp_dispose(m)
1319 	struct mbuf *m;
1320 {
1321 
1322 	if (m)
1323 		unp_scan(m, unp_discard);
1324 }
1325 
1326 static int
1327 unp_listen(unp, p)
1328 	struct unpcb *unp;
1329 	struct proc *p;
1330 {
1331 
1332 	bzero(&unp->unp_peercred, sizeof(unp->unp_peercred));
1333 	unp->unp_peercred.cr_uid = p->p_ucred->cr_uid;
1334 	unp->unp_peercred.cr_ngroups = p->p_ucred->cr_ngroups;
1335 	bcopy(p->p_ucred->cr_groups, unp->unp_peercred.cr_groups,
1336 	    sizeof(unp->unp_peercred.cr_groups));
1337 	unp->unp_flags |= UNP_HAVEPCCACHED;
1338 	return (0);
1339 }
1340 
1341 static void
1342 unp_scan(m0, op)
1343 	register struct mbuf *m0;
1344 	void (*op) __P((struct file *));
1345 {
1346 	register struct mbuf *m;
1347 	register struct file **rp;
1348 	register struct cmsghdr *cm;
1349 	register int i;
1350 	int qfds;
1351 
1352 	while (m0) {
1353 		for (m = m0; m; m = m->m_next)
1354 			if (m->m_type == MT_CONTROL &&
1355 			    m->m_len >= sizeof(*cm)) {
1356 				cm = mtod(m, struct cmsghdr *);
1357 				if (cm->cmsg_level != SOL_SOCKET ||
1358 				    cm->cmsg_type != SCM_RIGHTS)
1359 					continue;
1360 				qfds = (cm->cmsg_len -
1361 					(CMSG_DATA(cm) - (u_char *)cm))
1362 						/ sizeof (struct file *);
1363 				rp = (struct file **)CMSG_DATA(cm);
1364 				for (i = 0; i < qfds; i++)
1365 					(*op)(*rp++);
1366 				break;		/* XXX, but saves time */
1367 			}
1368 		m0 = m0->m_act;
1369 	}
1370 }
1371 
1372 static void
1373 unp_mark(fp)
1374 	struct file *fp;
1375 {
1376 
1377 	if (fp->f_flag & FMARK)
1378 		return;
1379 	unp_defer++;
1380 	fp->f_flag |= (FMARK|FDEFER);
1381 }
1382 
1383 static void
1384 unp_discard(fp)
1385 	struct file *fp;
1386 {
1387 
1388 	fp->f_msgcount--;
1389 	unp_rights--;
1390 	(void) closef(fp, (struct thread *)NULL);
1391 }
1392