1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * UNIX Domain (Local) Sockets 36 * 37 * This is an implementation of UNIX (local) domain sockets. Each socket has 38 * an associated struct unpcb (UNIX protocol control block). Stream sockets 39 * may be connected to 0 or 1 other socket. Datagram sockets may be 40 * connected to 0, 1, or many other sockets. Sockets may be created and 41 * connected in pairs (socketpair(2)), or bound/connected to using the file 42 * system name space. For most purposes, only the receive socket buffer is 43 * used, as sending on one socket delivers directly to the receive socket 44 * buffer of a second socket. 45 * 46 * The implementation is substantially complicated by the fact that 47 * "ancillary data", such as file descriptors or credentials, may be passed 48 * across UNIX domain sockets. The potential for passing UNIX domain sockets 49 * over other UNIX domain sockets requires the implementation of a simple 50 * garbage collector to find and tear down cycles of disconnected sockets. 51 * 52 * TODO: 53 * RDM 54 * rethink name space problems 55 * need a proper out-of-band 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #include "opt_ddb.h" 62 63 #include <sys/param.h> 64 #include <sys/capsicum.h> 65 #include <sys/domain.h> 66 #include <sys/fcntl.h> 67 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 68 #include <sys/eventhandler.h> 69 #include <sys/file.h> 70 #include <sys/filedesc.h> 71 #include <sys/kernel.h> 72 #include <sys/lock.h> 73 #include <sys/mbuf.h> 74 #include <sys/mount.h> 75 #include <sys/mutex.h> 76 #include <sys/namei.h> 77 #include <sys/proc.h> 78 #include <sys/protosw.h> 79 #include <sys/queue.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/signalvar.h> 85 #include <sys/stat.h> 86 #include <sys/sx.h> 87 #include <sys/sysctl.h> 88 #include <sys/systm.h> 89 #include <sys/taskqueue.h> 90 #include <sys/un.h> 91 #include <sys/unpcb.h> 92 #include <sys/vnode.h> 93 94 #include <net/vnet.h> 95 96 #ifdef DDB 97 #include <ddb/ddb.h> 98 #endif 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/uma.h> 103 104 MALLOC_DECLARE(M_FILECAPS); 105 106 /* 107 * Locking key: 108 * (l) Locked using list lock 109 * (g) Locked using linkage lock 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); 165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, 166 "SOCK_STREAM"); 167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); 168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0, 169 "SOCK_SEQPACKET"); 170 171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 172 &unpst_sendspace, 0, "Default stream send space."); 173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 174 &unpst_recvspace, 0, "Default stream receive space."); 175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 176 &unpdg_sendspace, 0, "Default datagram send space."); 177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 178 &unpdg_recvspace, 0, "Default datagram receive space."); 179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 180 &unpsp_sendspace, 0, "Default seqpacket send space."); 181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 182 &unpsp_recvspace, 0, "Default seqpacket receive space."); 183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 184 "File descriptors in flight."); 185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 186 &unp_defers_count, 0, 187 "File descriptors deferred to taskqueue for close."); 188 189 /* 190 * Locking and synchronization: 191 * 192 * Two types of locks exist in the local domain socket implementation: a 193 * a global linkage rwlock and per-unpcb mutexes. The linkage lock protects 194 * the socket count, global generation number, stream/datagram global lists and 195 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be 196 * held exclusively over the acquisition of multiple unpcb locks to prevent 197 * deadlock. 198 * 199 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 200 * allocated in pru_attach() and freed in pru_detach(). The validity of that 201 * pointer is an invariant, so no lock is required to dereference the so_pcb 202 * pointer if a valid socket reference is held by the caller. In practice, 203 * this is always true during operations performed on a socket. Each unpcb 204 * has a back-pointer to its socket, unp_socket, which will be stable under 205 * the same circumstances. 206 * 207 * This pointer may only be safely dereferenced as long as a valid reference 208 * to the unpcb is held. Typically, this reference will be from the socket, 209 * or from another unpcb when the referring unpcb's lock is held (in order 210 * that the reference not be invalidated during use). For example, to follow 211 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn, 212 * as unp_socket remains valid as long as the reference to unp_conn is valid. 213 * 214 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx. Individual 215 * atomic reads without the lock may be performed "lockless", but more 216 * complex reads and read-modify-writes require the mutex to be held. No 217 * lock order is defined between unpcb locks -- multiple unpcb locks may be 218 * acquired at the same time only when holding the linkage rwlock 219 * exclusively, which prevents deadlocks. 220 * 221 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 222 * protocols, bind() is a non-atomic operation, and connect() requires 223 * potential sleeping in the protocol, due to potentially waiting on local or 224 * distributed file systems. We try to separate "lookup" operations, which 225 * may sleep, and the IPC operations themselves, which typically can occur 226 * with relative atomicity as locks can be held over the entire operation. 227 * 228 * Another tricky issue is simultaneous multi-threaded or multi-process 229 * access to a single UNIX domain socket. These are handled by the flags 230 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 231 * binding, both of which involve dropping UNIX domain socket locks in order 232 * to perform namei() and other file system operations. 233 */ 234 static struct rwlock unp_link_rwlock; 235 static struct mtx unp_defers_lock; 236 237 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 238 "unp_link_rwlock") 239 240 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 241 RA_LOCKED) 242 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 243 RA_UNLOCKED) 244 245 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 246 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 247 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 248 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 249 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 250 RA_WLOCKED) 251 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 252 253 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 254 "unp_defer", NULL, MTX_DEF) 255 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 256 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 257 258 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 259 "unp_mtx", "unp_mtx", \ 260 MTX_DUPOK|MTX_DEF|MTX_RECURSE) 261 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 262 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 263 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 264 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 265 266 static int uipc_connect2(struct socket *, struct socket *); 267 static int uipc_ctloutput(struct socket *, struct sockopt *); 268 static int unp_connect(struct socket *, struct sockaddr *, 269 struct thread *); 270 static int unp_connectat(int, struct socket *, struct sockaddr *, 271 struct thread *); 272 static int unp_connect2(struct socket *so, struct socket *so2, int); 273 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 274 static void unp_dispose(struct socket *so); 275 static void unp_dispose_mbuf(struct mbuf *); 276 static void unp_shutdown(struct unpcb *); 277 static void unp_drop(struct unpcb *); 278 static void unp_gc(__unused void *, int); 279 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 280 static void unp_discard(struct file *); 281 static void unp_freerights(struct filedescent **, int); 282 static void unp_init(void); 283 static int unp_internalize(struct mbuf **, struct thread *); 284 static void unp_internalize_fp(struct file *); 285 static int unp_externalize(struct mbuf *, struct mbuf **, int); 286 static int unp_externalize_fp(struct file *); 287 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 288 static void unp_process_defers(void * __unused, int); 289 290 /* 291 * Definitions of protocols supported in the LOCAL domain. 292 */ 293 static struct domain localdomain; 294 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 295 static struct pr_usrreqs uipc_usrreqs_seqpacket; 296 static struct protosw localsw[] = { 297 { 298 .pr_type = SOCK_STREAM, 299 .pr_domain = &localdomain, 300 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 301 .pr_ctloutput = &uipc_ctloutput, 302 .pr_usrreqs = &uipc_usrreqs_stream 303 }, 304 { 305 .pr_type = SOCK_DGRAM, 306 .pr_domain = &localdomain, 307 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 308 .pr_ctloutput = &uipc_ctloutput, 309 .pr_usrreqs = &uipc_usrreqs_dgram 310 }, 311 { 312 .pr_type = SOCK_SEQPACKET, 313 .pr_domain = &localdomain, 314 315 /* 316 * XXXRW: For now, PR_ADDR because soreceive will bump into them 317 * due to our use of sbappendaddr. A new sbappend variants is needed 318 * that supports both atomic record writes and control data. 319 */ 320 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 321 PR_RIGHTS, 322 .pr_ctloutput = &uipc_ctloutput, 323 .pr_usrreqs = &uipc_usrreqs_seqpacket, 324 }, 325 }; 326 327 static struct domain localdomain = { 328 .dom_family = AF_LOCAL, 329 .dom_name = "local", 330 .dom_init = unp_init, 331 .dom_externalize = unp_externalize, 332 .dom_dispose = unp_dispose, 333 .dom_protosw = localsw, 334 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 335 }; 336 DOMAIN_SET(local); 337 338 static void 339 uipc_abort(struct socket *so) 340 { 341 struct unpcb *unp, *unp2; 342 343 unp = sotounpcb(so); 344 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 345 346 UNP_LINK_WLOCK(); 347 UNP_PCB_LOCK(unp); 348 unp2 = unp->unp_conn; 349 if (unp2 != NULL) { 350 UNP_PCB_LOCK(unp2); 351 unp_drop(unp2); 352 UNP_PCB_UNLOCK(unp2); 353 } 354 UNP_PCB_UNLOCK(unp); 355 UNP_LINK_WUNLOCK(); 356 } 357 358 static int 359 uipc_accept(struct socket *so, struct sockaddr **nam) 360 { 361 struct unpcb *unp, *unp2; 362 const struct sockaddr *sa; 363 364 /* 365 * Pass back name of connected socket, if it was bound and we are 366 * still connected (our peer may have closed already!). 367 */ 368 unp = sotounpcb(so); 369 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 370 371 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 372 UNP_LINK_RLOCK(); 373 unp2 = unp->unp_conn; 374 if (unp2 != NULL && unp2->unp_addr != NULL) { 375 UNP_PCB_LOCK(unp2); 376 sa = (struct sockaddr *) unp2->unp_addr; 377 bcopy(sa, *nam, sa->sa_len); 378 UNP_PCB_UNLOCK(unp2); 379 } else { 380 sa = &sun_noname; 381 bcopy(sa, *nam, sa->sa_len); 382 } 383 UNP_LINK_RUNLOCK(); 384 return (0); 385 } 386 387 static int 388 uipc_attach(struct socket *so, int proto, struct thread *td) 389 { 390 u_long sendspace, recvspace; 391 struct unpcb *unp; 392 int error; 393 bool locked; 394 395 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 396 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 397 switch (so->so_type) { 398 case SOCK_STREAM: 399 sendspace = unpst_sendspace; 400 recvspace = unpst_recvspace; 401 break; 402 403 case SOCK_DGRAM: 404 sendspace = unpdg_sendspace; 405 recvspace = unpdg_recvspace; 406 break; 407 408 case SOCK_SEQPACKET: 409 sendspace = unpsp_sendspace; 410 recvspace = unpsp_recvspace; 411 break; 412 413 default: 414 panic("uipc_attach"); 415 } 416 error = soreserve(so, sendspace, recvspace); 417 if (error) 418 return (error); 419 } 420 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 421 if (unp == NULL) 422 return (ENOBUFS); 423 LIST_INIT(&unp->unp_refs); 424 UNP_PCB_LOCK_INIT(unp); 425 unp->unp_socket = so; 426 so->so_pcb = unp; 427 unp->unp_refcount = 1; 428 if (so->so_listen != NULL) 429 unp->unp_flags |= UNP_NASCENT; 430 431 if ((locked = UNP_LINK_WOWNED()) == false) 432 UNP_LINK_WLOCK(); 433 434 unp->unp_gencnt = ++unp_gencnt; 435 unp_count++; 436 switch (so->so_type) { 437 case SOCK_STREAM: 438 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 439 break; 440 441 case SOCK_DGRAM: 442 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 443 break; 444 445 case SOCK_SEQPACKET: 446 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 447 break; 448 449 default: 450 panic("uipc_attach"); 451 } 452 453 if (locked == false) 454 UNP_LINK_WUNLOCK(); 455 456 return (0); 457 } 458 459 static int 460 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 461 { 462 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 463 struct vattr vattr; 464 int error, namelen; 465 struct nameidata nd; 466 struct unpcb *unp; 467 struct vnode *vp; 468 struct mount *mp; 469 cap_rights_t rights; 470 char *buf; 471 472 if (nam->sa_family != AF_UNIX) 473 return (EAFNOSUPPORT); 474 475 unp = sotounpcb(so); 476 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 477 478 if (soun->sun_len > sizeof(struct sockaddr_un)) 479 return (EINVAL); 480 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 481 if (namelen <= 0) 482 return (EINVAL); 483 484 /* 485 * We don't allow simultaneous bind() calls on a single UNIX domain 486 * socket, so flag in-progress operations, and return an error if an 487 * operation is already in progress. 488 * 489 * Historically, we have not allowed a socket to be rebound, so this 490 * also returns an error. Not allowing re-binding simplifies the 491 * implementation and avoids a great many possible failure modes. 492 */ 493 UNP_PCB_LOCK(unp); 494 if (unp->unp_vnode != NULL) { 495 UNP_PCB_UNLOCK(unp); 496 return (EINVAL); 497 } 498 if (unp->unp_flags & UNP_BINDING) { 499 UNP_PCB_UNLOCK(unp); 500 return (EALREADY); 501 } 502 unp->unp_flags |= UNP_BINDING; 503 UNP_PCB_UNLOCK(unp); 504 505 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 506 bcopy(soun->sun_path, buf, namelen); 507 buf[namelen] = 0; 508 509 restart: 510 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 511 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 512 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 513 error = namei(&nd); 514 if (error) 515 goto error; 516 vp = nd.ni_vp; 517 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 518 NDFREE(&nd, NDF_ONLY_PNBUF); 519 if (nd.ni_dvp == vp) 520 vrele(nd.ni_dvp); 521 else 522 vput(nd.ni_dvp); 523 if (vp != NULL) { 524 vrele(vp); 525 error = EADDRINUSE; 526 goto error; 527 } 528 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 529 if (error) 530 goto error; 531 goto restart; 532 } 533 VATTR_NULL(&vattr); 534 vattr.va_type = VSOCK; 535 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 536 #ifdef MAC 537 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 538 &vattr); 539 #endif 540 if (error == 0) 541 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 542 NDFREE(&nd, NDF_ONLY_PNBUF); 543 vput(nd.ni_dvp); 544 if (error) { 545 vn_finished_write(mp); 546 goto error; 547 } 548 vp = nd.ni_vp; 549 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 550 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 551 552 UNP_LINK_WLOCK(); 553 UNP_PCB_LOCK(unp); 554 VOP_UNP_BIND(vp, unp); 555 unp->unp_vnode = vp; 556 unp->unp_addr = soun; 557 unp->unp_flags &= ~UNP_BINDING; 558 UNP_PCB_UNLOCK(unp); 559 UNP_LINK_WUNLOCK(); 560 VOP_UNLOCK(vp, 0); 561 vn_finished_write(mp); 562 free(buf, M_TEMP); 563 return (0); 564 565 error: 566 UNP_PCB_LOCK(unp); 567 unp->unp_flags &= ~UNP_BINDING; 568 UNP_PCB_UNLOCK(unp); 569 free(buf, M_TEMP); 570 return (error); 571 } 572 573 static int 574 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 575 { 576 577 return (uipc_bindat(AT_FDCWD, so, nam, td)); 578 } 579 580 static int 581 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 582 { 583 int error; 584 585 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 586 UNP_LINK_WLOCK(); 587 error = unp_connect(so, nam, td); 588 UNP_LINK_WUNLOCK(); 589 return (error); 590 } 591 592 static int 593 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 594 struct thread *td) 595 { 596 int error; 597 598 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 599 UNP_LINK_WLOCK(); 600 error = unp_connectat(fd, so, nam, td); 601 UNP_LINK_WUNLOCK(); 602 return (error); 603 } 604 605 static void 606 uipc_close(struct socket *so) 607 { 608 struct unpcb *unp, *unp2; 609 struct vnode *vp = NULL; 610 611 unp = sotounpcb(so); 612 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 613 614 UNP_LINK_WLOCK(); 615 UNP_PCB_LOCK(unp); 616 unp2 = unp->unp_conn; 617 if (unp2 != NULL) { 618 UNP_PCB_LOCK(unp2); 619 unp_disconnect(unp, unp2); 620 UNP_PCB_UNLOCK(unp2); 621 } 622 if (SOLISTENING(so) && ((vp = unp->unp_vnode) != NULL)) { 623 VOP_UNP_DETACH(vp); 624 unp->unp_vnode = NULL; 625 } 626 UNP_PCB_UNLOCK(unp); 627 UNP_LINK_WUNLOCK(); 628 if (vp) 629 vrele(vp); 630 } 631 632 static int 633 uipc_connect2(struct socket *so1, struct socket *so2) 634 { 635 struct unpcb *unp, *unp2; 636 int error; 637 638 UNP_LINK_WLOCK(); 639 unp = so1->so_pcb; 640 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 641 UNP_PCB_LOCK(unp); 642 unp2 = so2->so_pcb; 643 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 644 UNP_PCB_LOCK(unp2); 645 error = unp_connect2(so1, so2, PRU_CONNECT2); 646 UNP_PCB_UNLOCK(unp2); 647 UNP_PCB_UNLOCK(unp); 648 UNP_LINK_WUNLOCK(); 649 return (error); 650 } 651 652 static void 653 uipc_detach(struct socket *so) 654 { 655 struct unpcb *unp, *unp2; 656 struct sockaddr_un *saved_unp_addr; 657 struct vnode *vp; 658 int freeunp, local_unp_rights; 659 660 unp = sotounpcb(so); 661 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 662 663 vp = NULL; 664 local_unp_rights = 0; 665 666 UNP_LINK_WLOCK(); 667 LIST_REMOVE(unp, unp_link); 668 unp->unp_gencnt = ++unp_gencnt; 669 --unp_count; 670 UNP_PCB_LOCK(unp); 671 if ((unp->unp_flags & UNP_NASCENT) != 0) 672 goto teardown; 673 674 if ((vp = unp->unp_vnode) != NULL) { 675 VOP_UNP_DETACH(vp); 676 unp->unp_vnode = NULL; 677 } 678 unp2 = unp->unp_conn; 679 if (unp2 != NULL) { 680 UNP_PCB_LOCK(unp2); 681 unp_disconnect(unp, unp2); 682 UNP_PCB_UNLOCK(unp2); 683 } 684 685 /* 686 * We hold the linkage lock exclusively, so it's OK to acquire 687 * multiple pcb locks at a time. 688 */ 689 while (!LIST_EMPTY(&unp->unp_refs)) { 690 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 691 692 UNP_PCB_LOCK(ref); 693 unp_drop(ref); 694 UNP_PCB_UNLOCK(ref); 695 } 696 local_unp_rights = unp_rights; 697 teardown: 698 UNP_LINK_WUNLOCK(); 699 unp->unp_socket->so_pcb = NULL; 700 saved_unp_addr = unp->unp_addr; 701 unp->unp_addr = NULL; 702 unp->unp_refcount--; 703 freeunp = (unp->unp_refcount == 0); 704 if (saved_unp_addr != NULL) 705 free(saved_unp_addr, M_SONAME); 706 if (freeunp) { 707 UNP_PCB_LOCK_DESTROY(unp); 708 uma_zfree(unp_zone, unp); 709 } else 710 UNP_PCB_UNLOCK(unp); 711 if (vp) 712 vrele(vp); 713 if (local_unp_rights) 714 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 715 } 716 717 static int 718 uipc_disconnect(struct socket *so) 719 { 720 struct unpcb *unp, *unp2; 721 722 unp = sotounpcb(so); 723 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 724 725 UNP_LINK_WLOCK(); 726 UNP_PCB_LOCK(unp); 727 unp2 = unp->unp_conn; 728 if (unp2 != NULL) { 729 UNP_PCB_LOCK(unp2); 730 unp_disconnect(unp, unp2); 731 UNP_PCB_UNLOCK(unp2); 732 } 733 UNP_PCB_UNLOCK(unp); 734 UNP_LINK_WUNLOCK(); 735 return (0); 736 } 737 738 static int 739 uipc_listen(struct socket *so, int backlog, struct thread *td) 740 { 741 struct unpcb *unp; 742 int error; 743 744 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 745 return (EOPNOTSUPP); 746 747 unp = sotounpcb(so); 748 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 749 750 UNP_PCB_LOCK(unp); 751 if (unp->unp_vnode == NULL) { 752 /* Already connected or not bound to an address. */ 753 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 754 UNP_PCB_UNLOCK(unp); 755 return (error); 756 } 757 758 SOCK_LOCK(so); 759 error = solisten_proto_check(so); 760 if (error == 0) { 761 cru2x(td->td_ucred, &unp->unp_peercred); 762 solisten_proto(so, backlog); 763 } 764 SOCK_UNLOCK(so); 765 UNP_PCB_UNLOCK(unp); 766 return (error); 767 } 768 769 static int 770 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 771 { 772 struct unpcb *unp, *unp2; 773 const struct sockaddr *sa; 774 775 unp = sotounpcb(so); 776 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 777 778 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 779 UNP_LINK_RLOCK(); 780 /* 781 * XXX: It seems that this test always fails even when connection is 782 * established. So, this else clause is added as workaround to 783 * return PF_LOCAL sockaddr. 784 */ 785 unp2 = unp->unp_conn; 786 if (unp2 != NULL) { 787 UNP_PCB_LOCK(unp2); 788 if (unp2->unp_addr != NULL) 789 sa = (struct sockaddr *) unp2->unp_addr; 790 else 791 sa = &sun_noname; 792 bcopy(sa, *nam, sa->sa_len); 793 UNP_PCB_UNLOCK(unp2); 794 } else { 795 sa = &sun_noname; 796 bcopy(sa, *nam, sa->sa_len); 797 } 798 UNP_LINK_RUNLOCK(); 799 return (0); 800 } 801 802 static int 803 uipc_rcvd(struct socket *so, int flags) 804 { 805 struct unpcb *unp, *unp2; 806 struct socket *so2; 807 u_int mbcnt, sbcc; 808 809 unp = sotounpcb(so); 810 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 811 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 812 ("%s: socktype %d", __func__, so->so_type)); 813 814 /* 815 * Adjust backpressure on sender and wakeup any waiting to write. 816 * 817 * The unp lock is acquired to maintain the validity of the unp_conn 818 * pointer; no lock on unp2 is required as unp2->unp_socket will be 819 * static as long as we don't permit unp2 to disconnect from unp, 820 * which is prevented by the lock on unp. We cache values from 821 * so_rcv to avoid holding the so_rcv lock over the entire 822 * transaction on the remote so_snd. 823 */ 824 SOCKBUF_LOCK(&so->so_rcv); 825 mbcnt = so->so_rcv.sb_mbcnt; 826 sbcc = sbavail(&so->so_rcv); 827 SOCKBUF_UNLOCK(&so->so_rcv); 828 /* 829 * There is a benign race condition at this point. If we're planning to 830 * clear SB_STOP, but uipc_send is called on the connected socket at 831 * this instant, it might add data to the sockbuf and set SB_STOP. Then 832 * we would erroneously clear SB_STOP below, even though the sockbuf is 833 * full. The race is benign because the only ill effect is to allow the 834 * sockbuf to exceed its size limit, and the size limits are not 835 * strictly guaranteed anyway. 836 */ 837 UNP_PCB_LOCK(unp); 838 unp2 = unp->unp_conn; 839 if (unp2 == NULL) { 840 UNP_PCB_UNLOCK(unp); 841 return (0); 842 } 843 so2 = unp2->unp_socket; 844 SOCKBUF_LOCK(&so2->so_snd); 845 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 846 so2->so_snd.sb_flags &= ~SB_STOP; 847 sowwakeup_locked(so2); 848 UNP_PCB_UNLOCK(unp); 849 return (0); 850 } 851 852 static int 853 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 854 struct mbuf *control, struct thread *td) 855 { 856 struct unpcb *unp, *unp2; 857 struct socket *so2; 858 u_int mbcnt, sbcc; 859 int error = 0; 860 861 unp = sotounpcb(so); 862 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 863 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 864 so->so_type == SOCK_SEQPACKET, 865 ("%s: socktype %d", __func__, so->so_type)); 866 867 if (flags & PRUS_OOB) { 868 error = EOPNOTSUPP; 869 goto release; 870 } 871 if (control != NULL && (error = unp_internalize(&control, td))) 872 goto release; 873 if ((nam != NULL) || (flags & PRUS_EOF)) 874 UNP_LINK_WLOCK(); 875 else 876 UNP_LINK_RLOCK(); 877 switch (so->so_type) { 878 case SOCK_DGRAM: 879 { 880 const struct sockaddr *from; 881 882 unp2 = unp->unp_conn; 883 if (nam != NULL) { 884 UNP_LINK_WLOCK_ASSERT(); 885 if (unp2 != NULL) { 886 error = EISCONN; 887 break; 888 } 889 error = unp_connect(so, nam, td); 890 if (error) 891 break; 892 unp2 = unp->unp_conn; 893 } 894 895 /* 896 * Because connect() and send() are non-atomic in a sendto() 897 * with a target address, it's possible that the socket will 898 * have disconnected before the send() can run. In that case 899 * return the slightly counter-intuitive but otherwise 900 * correct error that the socket is not connected. 901 */ 902 if (unp2 == NULL) { 903 error = ENOTCONN; 904 break; 905 } 906 /* Lockless read. */ 907 if (unp2->unp_flags & UNP_WANTCRED) 908 control = unp_addsockcred(td, control); 909 UNP_PCB_LOCK(unp); 910 if (unp->unp_addr != NULL) 911 from = (struct sockaddr *)unp->unp_addr; 912 else 913 from = &sun_noname; 914 so2 = unp2->unp_socket; 915 SOCKBUF_LOCK(&so2->so_rcv); 916 if (sbappendaddr_locked(&so2->so_rcv, from, m, 917 control)) { 918 sorwakeup_locked(so2); 919 m = NULL; 920 control = NULL; 921 } else { 922 SOCKBUF_UNLOCK(&so2->so_rcv); 923 error = ENOBUFS; 924 } 925 if (nam != NULL) { 926 UNP_LINK_WLOCK_ASSERT(); 927 UNP_PCB_LOCK(unp2); 928 unp_disconnect(unp, unp2); 929 UNP_PCB_UNLOCK(unp2); 930 } 931 UNP_PCB_UNLOCK(unp); 932 break; 933 } 934 935 case SOCK_SEQPACKET: 936 case SOCK_STREAM: 937 if ((so->so_state & SS_ISCONNECTED) == 0) { 938 if (nam != NULL) { 939 UNP_LINK_WLOCK_ASSERT(); 940 error = unp_connect(so, nam, td); 941 if (error) 942 break; /* XXX */ 943 } else { 944 error = ENOTCONN; 945 break; 946 } 947 } 948 949 /* Lockless read. */ 950 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 951 error = EPIPE; 952 break; 953 } 954 955 /* 956 * Because connect() and send() are non-atomic in a sendto() 957 * with a target address, it's possible that the socket will 958 * have disconnected before the send() can run. In that case 959 * return the slightly counter-intuitive but otherwise 960 * correct error that the socket is not connected. 961 * 962 * Locking here must be done carefully: the linkage lock 963 * prevents interconnections between unpcbs from changing, so 964 * we can traverse from unp to unp2 without acquiring unp's 965 * lock. Socket buffer locks follow unpcb locks, so we can 966 * acquire both remote and lock socket buffer locks. 967 */ 968 unp2 = unp->unp_conn; 969 if (unp2 == NULL) { 970 error = ENOTCONN; 971 break; 972 } 973 so2 = unp2->unp_socket; 974 UNP_PCB_LOCK(unp2); 975 SOCKBUF_LOCK(&so2->so_rcv); 976 if (unp2->unp_flags & UNP_WANTCRED) { 977 /* 978 * Credentials are passed only once on SOCK_STREAM 979 * and SOCK_SEQPACKET. 980 */ 981 unp2->unp_flags &= ~UNP_WANTCRED; 982 control = unp_addsockcred(td, control); 983 } 984 /* 985 * Send to paired receive port, and then reduce send buffer 986 * hiwater marks to maintain backpressure. Wake up readers. 987 */ 988 switch (so->so_type) { 989 case SOCK_STREAM: 990 if (control != NULL) { 991 if (sbappendcontrol_locked(&so2->so_rcv, m, 992 control)) 993 control = NULL; 994 } else 995 sbappend_locked(&so2->so_rcv, m, flags); 996 break; 997 998 case SOCK_SEQPACKET: { 999 const struct sockaddr *from; 1000 1001 from = &sun_noname; 1002 /* 1003 * Don't check for space available in so2->so_rcv. 1004 * Unix domain sockets only check for space in the 1005 * sending sockbuf, and that check is performed one 1006 * level up the stack. 1007 */ 1008 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1009 from, m, control)) 1010 control = NULL; 1011 break; 1012 } 1013 } 1014 1015 mbcnt = so2->so_rcv.sb_mbcnt; 1016 sbcc = sbavail(&so2->so_rcv); 1017 if (sbcc) 1018 sorwakeup_locked(so2); 1019 else 1020 SOCKBUF_UNLOCK(&so2->so_rcv); 1021 1022 /* 1023 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1024 * it would be possible for uipc_rcvd to be called at this 1025 * point, drain the receiving sockbuf, clear SB_STOP, and then 1026 * we would set SB_STOP below. That could lead to an empty 1027 * sockbuf having SB_STOP set 1028 */ 1029 SOCKBUF_LOCK(&so->so_snd); 1030 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1031 so->so_snd.sb_flags |= SB_STOP; 1032 SOCKBUF_UNLOCK(&so->so_snd); 1033 UNP_PCB_UNLOCK(unp2); 1034 m = NULL; 1035 break; 1036 } 1037 1038 /* 1039 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1040 */ 1041 if (flags & PRUS_EOF) { 1042 UNP_PCB_LOCK(unp); 1043 socantsendmore(so); 1044 unp_shutdown(unp); 1045 UNP_PCB_UNLOCK(unp); 1046 } 1047 1048 if ((nam != NULL) || (flags & PRUS_EOF)) 1049 UNP_LINK_WUNLOCK(); 1050 else 1051 UNP_LINK_RUNLOCK(); 1052 1053 if (control != NULL && error != 0) 1054 unp_dispose_mbuf(control); 1055 1056 release: 1057 if (control != NULL) 1058 m_freem(control); 1059 /* 1060 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1061 * for freeing memory. 1062 */ 1063 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1064 m_freem(m); 1065 return (error); 1066 } 1067 1068 static int 1069 uipc_ready(struct socket *so, struct mbuf *m, int count) 1070 { 1071 struct unpcb *unp, *unp2; 1072 struct socket *so2; 1073 int error; 1074 1075 unp = sotounpcb(so); 1076 1077 UNP_LINK_RLOCK(); 1078 if ((unp2 = unp->unp_conn) == NULL) { 1079 UNP_LINK_RUNLOCK(); 1080 for (int i = 0; i < count; i++) 1081 m = m_free(m); 1082 return (ECONNRESET); 1083 } 1084 UNP_PCB_LOCK(unp2); 1085 so2 = unp2->unp_socket; 1086 1087 SOCKBUF_LOCK(&so2->so_rcv); 1088 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1089 sorwakeup_locked(so2); 1090 else 1091 SOCKBUF_UNLOCK(&so2->so_rcv); 1092 1093 UNP_PCB_UNLOCK(unp2); 1094 UNP_LINK_RUNLOCK(); 1095 1096 return (error); 1097 } 1098 1099 static int 1100 uipc_sense(struct socket *so, struct stat *sb) 1101 { 1102 struct unpcb *unp; 1103 1104 unp = sotounpcb(so); 1105 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1106 1107 sb->st_blksize = so->so_snd.sb_hiwat; 1108 UNP_PCB_LOCK(unp); 1109 sb->st_dev = NODEV; 1110 if (unp->unp_ino == 0) 1111 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 1112 sb->st_ino = unp->unp_ino; 1113 UNP_PCB_UNLOCK(unp); 1114 return (0); 1115 } 1116 1117 static int 1118 uipc_shutdown(struct socket *so) 1119 { 1120 struct unpcb *unp; 1121 1122 unp = sotounpcb(so); 1123 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1124 1125 UNP_LINK_WLOCK(); 1126 UNP_PCB_LOCK(unp); 1127 socantsendmore(so); 1128 unp_shutdown(unp); 1129 UNP_PCB_UNLOCK(unp); 1130 UNP_LINK_WUNLOCK(); 1131 return (0); 1132 } 1133 1134 static int 1135 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1136 { 1137 struct unpcb *unp; 1138 const struct sockaddr *sa; 1139 1140 unp = sotounpcb(so); 1141 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1142 1143 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1144 UNP_PCB_LOCK(unp); 1145 if (unp->unp_addr != NULL) 1146 sa = (struct sockaddr *) unp->unp_addr; 1147 else 1148 sa = &sun_noname; 1149 bcopy(sa, *nam, sa->sa_len); 1150 UNP_PCB_UNLOCK(unp); 1151 return (0); 1152 } 1153 1154 static struct pr_usrreqs uipc_usrreqs_dgram = { 1155 .pru_abort = uipc_abort, 1156 .pru_accept = uipc_accept, 1157 .pru_attach = uipc_attach, 1158 .pru_bind = uipc_bind, 1159 .pru_bindat = uipc_bindat, 1160 .pru_connect = uipc_connect, 1161 .pru_connectat = uipc_connectat, 1162 .pru_connect2 = uipc_connect2, 1163 .pru_detach = uipc_detach, 1164 .pru_disconnect = uipc_disconnect, 1165 .pru_listen = uipc_listen, 1166 .pru_peeraddr = uipc_peeraddr, 1167 .pru_rcvd = uipc_rcvd, 1168 .pru_send = uipc_send, 1169 .pru_sense = uipc_sense, 1170 .pru_shutdown = uipc_shutdown, 1171 .pru_sockaddr = uipc_sockaddr, 1172 .pru_soreceive = soreceive_dgram, 1173 .pru_close = uipc_close, 1174 }; 1175 1176 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1177 .pru_abort = uipc_abort, 1178 .pru_accept = uipc_accept, 1179 .pru_attach = uipc_attach, 1180 .pru_bind = uipc_bind, 1181 .pru_bindat = uipc_bindat, 1182 .pru_connect = uipc_connect, 1183 .pru_connectat = uipc_connectat, 1184 .pru_connect2 = uipc_connect2, 1185 .pru_detach = uipc_detach, 1186 .pru_disconnect = uipc_disconnect, 1187 .pru_listen = uipc_listen, 1188 .pru_peeraddr = uipc_peeraddr, 1189 .pru_rcvd = uipc_rcvd, 1190 .pru_send = uipc_send, 1191 .pru_sense = uipc_sense, 1192 .pru_shutdown = uipc_shutdown, 1193 .pru_sockaddr = uipc_sockaddr, 1194 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1195 .pru_close = uipc_close, 1196 }; 1197 1198 static struct pr_usrreqs uipc_usrreqs_stream = { 1199 .pru_abort = uipc_abort, 1200 .pru_accept = uipc_accept, 1201 .pru_attach = uipc_attach, 1202 .pru_bind = uipc_bind, 1203 .pru_bindat = uipc_bindat, 1204 .pru_connect = uipc_connect, 1205 .pru_connectat = uipc_connectat, 1206 .pru_connect2 = uipc_connect2, 1207 .pru_detach = uipc_detach, 1208 .pru_disconnect = uipc_disconnect, 1209 .pru_listen = uipc_listen, 1210 .pru_peeraddr = uipc_peeraddr, 1211 .pru_rcvd = uipc_rcvd, 1212 .pru_send = uipc_send, 1213 .pru_ready = uipc_ready, 1214 .pru_sense = uipc_sense, 1215 .pru_shutdown = uipc_shutdown, 1216 .pru_sockaddr = uipc_sockaddr, 1217 .pru_soreceive = soreceive_generic, 1218 .pru_close = uipc_close, 1219 }; 1220 1221 static int 1222 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1223 { 1224 struct unpcb *unp; 1225 struct xucred xu; 1226 int error, optval; 1227 1228 if (sopt->sopt_level != 0) 1229 return (EINVAL); 1230 1231 unp = sotounpcb(so); 1232 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1233 error = 0; 1234 switch (sopt->sopt_dir) { 1235 case SOPT_GET: 1236 switch (sopt->sopt_name) { 1237 case LOCAL_PEERCRED: 1238 UNP_PCB_LOCK(unp); 1239 if (unp->unp_flags & UNP_HAVEPC) 1240 xu = unp->unp_peercred; 1241 else { 1242 if (so->so_type == SOCK_STREAM) 1243 error = ENOTCONN; 1244 else 1245 error = EINVAL; 1246 } 1247 UNP_PCB_UNLOCK(unp); 1248 if (error == 0) 1249 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1250 break; 1251 1252 case LOCAL_CREDS: 1253 /* Unlocked read. */ 1254 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1255 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1256 break; 1257 1258 case LOCAL_CONNWAIT: 1259 /* Unlocked read. */ 1260 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1261 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1262 break; 1263 1264 default: 1265 error = EOPNOTSUPP; 1266 break; 1267 } 1268 break; 1269 1270 case SOPT_SET: 1271 switch (sopt->sopt_name) { 1272 case LOCAL_CREDS: 1273 case LOCAL_CONNWAIT: 1274 error = sooptcopyin(sopt, &optval, sizeof(optval), 1275 sizeof(optval)); 1276 if (error) 1277 break; 1278 1279 #define OPTSET(bit) do { \ 1280 UNP_PCB_LOCK(unp); \ 1281 if (optval) \ 1282 unp->unp_flags |= bit; \ 1283 else \ 1284 unp->unp_flags &= ~bit; \ 1285 UNP_PCB_UNLOCK(unp); \ 1286 } while (0) 1287 1288 switch (sopt->sopt_name) { 1289 case LOCAL_CREDS: 1290 OPTSET(UNP_WANTCRED); 1291 break; 1292 1293 case LOCAL_CONNWAIT: 1294 OPTSET(UNP_CONNWAIT); 1295 break; 1296 1297 default: 1298 break; 1299 } 1300 break; 1301 #undef OPTSET 1302 default: 1303 error = ENOPROTOOPT; 1304 break; 1305 } 1306 break; 1307 1308 default: 1309 error = EOPNOTSUPP; 1310 break; 1311 } 1312 return (error); 1313 } 1314 1315 static int 1316 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1317 { 1318 1319 return (unp_connectat(AT_FDCWD, so, nam, td)); 1320 } 1321 1322 static int 1323 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1324 struct thread *td) 1325 { 1326 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1327 struct vnode *vp; 1328 struct socket *so2; 1329 struct unpcb *unp, *unp2, *unp3; 1330 struct nameidata nd; 1331 char buf[SOCK_MAXADDRLEN]; 1332 struct sockaddr *sa; 1333 cap_rights_t rights; 1334 int error, len; 1335 1336 if (nam->sa_family != AF_UNIX) 1337 return (EAFNOSUPPORT); 1338 1339 UNP_LINK_WLOCK_ASSERT(); 1340 1341 unp = sotounpcb(so); 1342 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1343 1344 if (nam->sa_len > sizeof(struct sockaddr_un)) 1345 return (EINVAL); 1346 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1347 if (len <= 0) 1348 return (EINVAL); 1349 bcopy(soun->sun_path, buf, len); 1350 buf[len] = 0; 1351 1352 UNP_PCB_LOCK(unp); 1353 if (unp->unp_flags & UNP_CONNECTING) { 1354 UNP_PCB_UNLOCK(unp); 1355 return (EALREADY); 1356 } 1357 UNP_LINK_WUNLOCK(); 1358 unp->unp_flags |= UNP_CONNECTING; 1359 UNP_PCB_UNLOCK(unp); 1360 1361 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1362 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1363 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1364 error = namei(&nd); 1365 if (error) 1366 vp = NULL; 1367 else 1368 vp = nd.ni_vp; 1369 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1370 NDFREE(&nd, NDF_ONLY_PNBUF); 1371 if (error) 1372 goto bad; 1373 1374 if (vp->v_type != VSOCK) { 1375 error = ENOTSOCK; 1376 goto bad; 1377 } 1378 #ifdef MAC 1379 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1380 if (error) 1381 goto bad; 1382 #endif 1383 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1384 if (error) 1385 goto bad; 1386 1387 unp = sotounpcb(so); 1388 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1389 1390 /* 1391 * Lock linkage lock for two reasons: make sure v_socket is stable, 1392 * and to protect simultaneous locking of multiple pcbs. 1393 */ 1394 UNP_LINK_WLOCK(); 1395 VOP_UNP_CONNECT(vp, &unp2); 1396 if (unp2 == NULL) { 1397 error = ECONNREFUSED; 1398 goto bad2; 1399 } 1400 so2 = unp2->unp_socket; 1401 if (so->so_type != so2->so_type) { 1402 error = EPROTOTYPE; 1403 goto bad2; 1404 } 1405 UNP_PCB_LOCK(unp); 1406 UNP_PCB_LOCK(unp2); 1407 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1408 if (so2->so_options & SO_ACCEPTCONN) { 1409 CURVNET_SET(so2->so_vnet); 1410 so2 = sonewconn(so2, 0); 1411 CURVNET_RESTORE(); 1412 } else 1413 so2 = NULL; 1414 if (so2 == NULL) { 1415 error = ECONNREFUSED; 1416 goto bad3; 1417 } 1418 unp3 = sotounpcb(so2); 1419 UNP_PCB_LOCK(unp3); 1420 if (unp2->unp_addr != NULL) { 1421 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1422 unp3->unp_addr = (struct sockaddr_un *) sa; 1423 sa = NULL; 1424 } 1425 1426 /* 1427 * The connector's (client's) credentials are copied from its 1428 * process structure at the time of connect() (which is now). 1429 */ 1430 cru2x(td->td_ucred, &unp3->unp_peercred); 1431 unp3->unp_flags |= UNP_HAVEPC; 1432 1433 /* 1434 * The receiver's (server's) credentials are copied from the 1435 * unp_peercred member of socket on which the former called 1436 * listen(); uipc_listen() cached that process's credentials 1437 * at that time so we can use them now. 1438 */ 1439 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 1440 sizeof(unp->unp_peercred)); 1441 unp->unp_flags |= UNP_HAVEPC; 1442 if (unp2->unp_flags & UNP_WANTCRED) 1443 unp3->unp_flags |= UNP_WANTCRED; 1444 UNP_PCB_UNLOCK(unp2); 1445 unp2 = unp3; 1446 #ifdef MAC 1447 mac_socketpeer_set_from_socket(so, so2); 1448 mac_socketpeer_set_from_socket(so2, so); 1449 #endif 1450 } 1451 1452 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1453 sotounpcb(so2) == unp2, 1454 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1455 error = unp_connect2(so, so2, PRU_CONNECT); 1456 bad3: 1457 UNP_PCB_UNLOCK(unp2); 1458 UNP_PCB_UNLOCK(unp); 1459 bad2: 1460 UNP_LINK_WUNLOCK(); 1461 bad: 1462 if (vp != NULL) 1463 vput(vp); 1464 free(sa, M_SONAME); 1465 UNP_LINK_WLOCK(); 1466 UNP_PCB_LOCK(unp); 1467 unp->unp_flags &= ~UNP_CONNECTING; 1468 UNP_PCB_UNLOCK(unp); 1469 return (error); 1470 } 1471 1472 static int 1473 unp_connect2(struct socket *so, struct socket *so2, int req) 1474 { 1475 struct unpcb *unp; 1476 struct unpcb *unp2; 1477 1478 unp = sotounpcb(so); 1479 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1480 unp2 = sotounpcb(so2); 1481 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1482 1483 UNP_LINK_WLOCK_ASSERT(); 1484 UNP_PCB_LOCK_ASSERT(unp); 1485 UNP_PCB_LOCK_ASSERT(unp2); 1486 1487 if (so2->so_type != so->so_type) 1488 return (EPROTOTYPE); 1489 unp2->unp_flags &= ~UNP_NASCENT; 1490 unp->unp_conn = unp2; 1491 1492 switch (so->so_type) { 1493 case SOCK_DGRAM: 1494 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1495 soisconnected(so); 1496 break; 1497 1498 case SOCK_STREAM: 1499 case SOCK_SEQPACKET: 1500 unp2->unp_conn = unp; 1501 if (req == PRU_CONNECT && 1502 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1503 soisconnecting(so); 1504 else 1505 soisconnected(so); 1506 soisconnected(so2); 1507 break; 1508 1509 default: 1510 panic("unp_connect2"); 1511 } 1512 return (0); 1513 } 1514 1515 static void 1516 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1517 { 1518 struct socket *so; 1519 1520 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1521 1522 UNP_LINK_WLOCK_ASSERT(); 1523 UNP_PCB_LOCK_ASSERT(unp); 1524 UNP_PCB_LOCK_ASSERT(unp2); 1525 1526 unp->unp_conn = NULL; 1527 switch (unp->unp_socket->so_type) { 1528 case SOCK_DGRAM: 1529 LIST_REMOVE(unp, unp_reflink); 1530 so = unp->unp_socket; 1531 SOCK_LOCK(so); 1532 so->so_state &= ~SS_ISCONNECTED; 1533 SOCK_UNLOCK(so); 1534 break; 1535 1536 case SOCK_STREAM: 1537 case SOCK_SEQPACKET: 1538 soisdisconnected(unp->unp_socket); 1539 unp2->unp_conn = NULL; 1540 soisdisconnected(unp2->unp_socket); 1541 break; 1542 } 1543 } 1544 1545 /* 1546 * unp_pcblist() walks the global list of struct unpcb's to generate a 1547 * pointer list, bumping the refcount on each unpcb. It then copies them out 1548 * sequentially, validating the generation number on each to see if it has 1549 * been detached. All of this is necessary because copyout() may sleep on 1550 * disk I/O. 1551 */ 1552 static int 1553 unp_pcblist(SYSCTL_HANDLER_ARGS) 1554 { 1555 int error, i, n; 1556 int freeunp; 1557 struct unpcb *unp, **unp_list; 1558 unp_gen_t gencnt; 1559 struct xunpgen *xug; 1560 struct unp_head *head; 1561 struct xunpcb *xu; 1562 1563 switch ((intptr_t)arg1) { 1564 case SOCK_STREAM: 1565 head = &unp_shead; 1566 break; 1567 1568 case SOCK_DGRAM: 1569 head = &unp_dhead; 1570 break; 1571 1572 case SOCK_SEQPACKET: 1573 head = &unp_sphead; 1574 break; 1575 1576 default: 1577 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1578 } 1579 1580 /* 1581 * The process of preparing the PCB list is too time-consuming and 1582 * resource-intensive to repeat twice on every request. 1583 */ 1584 if (req->oldptr == NULL) { 1585 n = unp_count; 1586 req->oldidx = 2 * (sizeof *xug) 1587 + (n + n/8) * sizeof(struct xunpcb); 1588 return (0); 1589 } 1590 1591 if (req->newptr != NULL) 1592 return (EPERM); 1593 1594 /* 1595 * OK, now we're committed to doing something. 1596 */ 1597 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); 1598 UNP_LINK_RLOCK(); 1599 gencnt = unp_gencnt; 1600 n = unp_count; 1601 UNP_LINK_RUNLOCK(); 1602 1603 xug->xug_len = sizeof *xug; 1604 xug->xug_count = n; 1605 xug->xug_gen = gencnt; 1606 xug->xug_sogen = so_gencnt; 1607 error = SYSCTL_OUT(req, xug, sizeof *xug); 1608 if (error) { 1609 free(xug, M_TEMP); 1610 return (error); 1611 } 1612 1613 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1614 1615 UNP_LINK_RLOCK(); 1616 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1617 unp = LIST_NEXT(unp, unp_link)) { 1618 UNP_PCB_LOCK(unp); 1619 if (unp->unp_gencnt <= gencnt) { 1620 if (cr_cansee(req->td->td_ucred, 1621 unp->unp_socket->so_cred)) { 1622 UNP_PCB_UNLOCK(unp); 1623 continue; 1624 } 1625 unp_list[i++] = unp; 1626 unp->unp_refcount++; 1627 } 1628 UNP_PCB_UNLOCK(unp); 1629 } 1630 UNP_LINK_RUNLOCK(); 1631 n = i; /* In case we lost some during malloc. */ 1632 1633 error = 0; 1634 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1635 for (i = 0; i < n; i++) { 1636 unp = unp_list[i]; 1637 UNP_PCB_LOCK(unp); 1638 unp->unp_refcount--; 1639 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) { 1640 xu->xu_len = sizeof *xu; 1641 xu->xu_unpp = unp; 1642 /* 1643 * XXX - need more locking here to protect against 1644 * connect/disconnect races for SMP. 1645 */ 1646 if (unp->unp_addr != NULL) 1647 bcopy(unp->unp_addr, &xu->xu_addr, 1648 unp->unp_addr->sun_len); 1649 if (unp->unp_conn != NULL && 1650 unp->unp_conn->unp_addr != NULL) 1651 bcopy(unp->unp_conn->unp_addr, 1652 &xu->xu_caddr, 1653 unp->unp_conn->unp_addr->sun_len); 1654 bcopy(unp, &xu->xu_unp, sizeof *unp); 1655 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1656 UNP_PCB_UNLOCK(unp); 1657 error = SYSCTL_OUT(req, xu, sizeof *xu); 1658 } else { 1659 freeunp = (unp->unp_refcount == 0); 1660 UNP_PCB_UNLOCK(unp); 1661 if (freeunp) { 1662 UNP_PCB_LOCK_DESTROY(unp); 1663 uma_zfree(unp_zone, unp); 1664 } 1665 } 1666 } 1667 free(xu, M_TEMP); 1668 if (!error) { 1669 /* 1670 * Give the user an updated idea of our state. If the 1671 * generation differs from what we told her before, she knows 1672 * that something happened while we were processing this 1673 * request, and it might be necessary to retry. 1674 */ 1675 xug->xug_gen = unp_gencnt; 1676 xug->xug_sogen = so_gencnt; 1677 xug->xug_count = unp_count; 1678 error = SYSCTL_OUT(req, xug, sizeof *xug); 1679 } 1680 free(unp_list, M_TEMP); 1681 free(xug, M_TEMP); 1682 return (error); 1683 } 1684 1685 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1686 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1687 "List of active local datagram sockets"); 1688 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1689 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1690 "List of active local stream sockets"); 1691 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1692 CTLTYPE_OPAQUE | CTLFLAG_RD, 1693 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1694 "List of active local seqpacket sockets"); 1695 1696 static void 1697 unp_shutdown(struct unpcb *unp) 1698 { 1699 struct unpcb *unp2; 1700 struct socket *so; 1701 1702 UNP_LINK_WLOCK_ASSERT(); 1703 UNP_PCB_LOCK_ASSERT(unp); 1704 1705 unp2 = unp->unp_conn; 1706 if ((unp->unp_socket->so_type == SOCK_STREAM || 1707 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1708 so = unp2->unp_socket; 1709 if (so != NULL) 1710 socantrcvmore(so); 1711 } 1712 } 1713 1714 static void 1715 unp_drop(struct unpcb *unp) 1716 { 1717 struct socket *so = unp->unp_socket; 1718 struct unpcb *unp2; 1719 1720 UNP_LINK_WLOCK_ASSERT(); 1721 UNP_PCB_LOCK_ASSERT(unp); 1722 1723 /* 1724 * Regardless of whether the socket's peer dropped the connection 1725 * with this socket by aborting or disconnecting, POSIX requires 1726 * that ECONNRESET is returned. 1727 */ 1728 so->so_error = ECONNRESET; 1729 unp2 = unp->unp_conn; 1730 if (unp2 == NULL) 1731 return; 1732 UNP_PCB_LOCK(unp2); 1733 unp_disconnect(unp, unp2); 1734 UNP_PCB_UNLOCK(unp2); 1735 } 1736 1737 static void 1738 unp_freerights(struct filedescent **fdep, int fdcount) 1739 { 1740 struct file *fp; 1741 int i; 1742 1743 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1744 1745 for (i = 0; i < fdcount; i++) { 1746 fp = fdep[i]->fde_file; 1747 filecaps_free(&fdep[i]->fde_caps); 1748 unp_discard(fp); 1749 } 1750 free(fdep[0], M_FILECAPS); 1751 } 1752 1753 static int 1754 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1755 { 1756 struct thread *td = curthread; /* XXX */ 1757 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1758 int i; 1759 int *fdp; 1760 struct filedesc *fdesc = td->td_proc->p_fd; 1761 struct filedescent **fdep; 1762 void *data; 1763 socklen_t clen = control->m_len, datalen; 1764 int error, newfds; 1765 u_int newlen; 1766 1767 UNP_LINK_UNLOCK_ASSERT(); 1768 1769 error = 0; 1770 if (controlp != NULL) /* controlp == NULL => free control messages */ 1771 *controlp = NULL; 1772 while (cm != NULL) { 1773 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 1774 error = EINVAL; 1775 break; 1776 } 1777 data = CMSG_DATA(cm); 1778 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1779 if (cm->cmsg_level == SOL_SOCKET 1780 && cm->cmsg_type == SCM_RIGHTS) { 1781 newfds = datalen / sizeof(*fdep); 1782 if (newfds == 0) 1783 goto next; 1784 fdep = data; 1785 1786 /* If we're not outputting the descriptors free them. */ 1787 if (error || controlp == NULL) { 1788 unp_freerights(fdep, newfds); 1789 goto next; 1790 } 1791 FILEDESC_XLOCK(fdesc); 1792 1793 /* 1794 * Now change each pointer to an fd in the global 1795 * table to an integer that is the index to the local 1796 * fd table entry that we set up to point to the 1797 * global one we are transferring. 1798 */ 1799 newlen = newfds * sizeof(int); 1800 *controlp = sbcreatecontrol(NULL, newlen, 1801 SCM_RIGHTS, SOL_SOCKET); 1802 if (*controlp == NULL) { 1803 FILEDESC_XUNLOCK(fdesc); 1804 error = E2BIG; 1805 unp_freerights(fdep, newfds); 1806 goto next; 1807 } 1808 1809 fdp = (int *) 1810 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1811 if (fdallocn(td, 0, fdp, newfds) != 0) { 1812 FILEDESC_XUNLOCK(fdesc); 1813 error = EMSGSIZE; 1814 unp_freerights(fdep, newfds); 1815 m_freem(*controlp); 1816 *controlp = NULL; 1817 goto next; 1818 } 1819 for (i = 0; i < newfds; i++, fdp++) { 1820 _finstall(fdesc, fdep[i]->fde_file, *fdp, 1821 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 1822 &fdep[i]->fde_caps); 1823 unp_externalize_fp(fdep[i]->fde_file); 1824 } 1825 FILEDESC_XUNLOCK(fdesc); 1826 free(fdep[0], M_FILECAPS); 1827 } else { 1828 /* We can just copy anything else across. */ 1829 if (error || controlp == NULL) 1830 goto next; 1831 *controlp = sbcreatecontrol(NULL, datalen, 1832 cm->cmsg_type, cm->cmsg_level); 1833 if (*controlp == NULL) { 1834 error = ENOBUFS; 1835 goto next; 1836 } 1837 bcopy(data, 1838 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 1839 datalen); 1840 } 1841 controlp = &(*controlp)->m_next; 1842 1843 next: 1844 if (CMSG_SPACE(datalen) < clen) { 1845 clen -= CMSG_SPACE(datalen); 1846 cm = (struct cmsghdr *) 1847 ((caddr_t)cm + CMSG_SPACE(datalen)); 1848 } else { 1849 clen = 0; 1850 cm = NULL; 1851 } 1852 } 1853 1854 m_freem(control); 1855 return (error); 1856 } 1857 1858 static void 1859 unp_zone_change(void *tag) 1860 { 1861 1862 uma_zone_set_max(unp_zone, maxsockets); 1863 } 1864 1865 static void 1866 unp_init(void) 1867 { 1868 1869 #ifdef VIMAGE 1870 if (!IS_DEFAULT_VNET(curvnet)) 1871 return; 1872 #endif 1873 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 1874 NULL, NULL, UMA_ALIGN_PTR, 0); 1875 if (unp_zone == NULL) 1876 panic("unp_init"); 1877 uma_zone_set_max(unp_zone, maxsockets); 1878 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 1879 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 1880 NULL, EVENTHANDLER_PRI_ANY); 1881 LIST_INIT(&unp_dhead); 1882 LIST_INIT(&unp_shead); 1883 LIST_INIT(&unp_sphead); 1884 SLIST_INIT(&unp_defers); 1885 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 1886 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 1887 UNP_LINK_LOCK_INIT(); 1888 UNP_DEFERRED_LOCK_INIT(); 1889 } 1890 1891 static int 1892 unp_internalize(struct mbuf **controlp, struct thread *td) 1893 { 1894 struct mbuf *control = *controlp; 1895 struct proc *p = td->td_proc; 1896 struct filedesc *fdesc = p->p_fd; 1897 struct bintime *bt; 1898 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1899 struct cmsgcred *cmcred; 1900 struct filedescent *fde, **fdep, *fdev; 1901 struct file *fp; 1902 struct timeval *tv; 1903 struct timespec *ts; 1904 int i, *fdp; 1905 void *data; 1906 socklen_t clen = control->m_len, datalen; 1907 int error, oldfds; 1908 u_int newlen; 1909 1910 UNP_LINK_UNLOCK_ASSERT(); 1911 1912 error = 0; 1913 *controlp = NULL; 1914 while (cm != NULL) { 1915 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 1916 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 1917 error = EINVAL; 1918 goto out; 1919 } 1920 data = CMSG_DATA(cm); 1921 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1922 1923 switch (cm->cmsg_type) { 1924 /* 1925 * Fill in credential information. 1926 */ 1927 case SCM_CREDS: 1928 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 1929 SCM_CREDS, SOL_SOCKET); 1930 if (*controlp == NULL) { 1931 error = ENOBUFS; 1932 goto out; 1933 } 1934 cmcred = (struct cmsgcred *) 1935 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1936 cmcred->cmcred_pid = p->p_pid; 1937 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 1938 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 1939 cmcred->cmcred_euid = td->td_ucred->cr_uid; 1940 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 1941 CMGROUP_MAX); 1942 for (i = 0; i < cmcred->cmcred_ngroups; i++) 1943 cmcred->cmcred_groups[i] = 1944 td->td_ucred->cr_groups[i]; 1945 break; 1946 1947 case SCM_RIGHTS: 1948 oldfds = datalen / sizeof (int); 1949 if (oldfds == 0) 1950 break; 1951 /* 1952 * Check that all the FDs passed in refer to legal 1953 * files. If not, reject the entire operation. 1954 */ 1955 fdp = data; 1956 FILEDESC_SLOCK(fdesc); 1957 for (i = 0; i < oldfds; i++, fdp++) { 1958 fp = fget_locked(fdesc, *fdp); 1959 if (fp == NULL) { 1960 FILEDESC_SUNLOCK(fdesc); 1961 error = EBADF; 1962 goto out; 1963 } 1964 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 1965 FILEDESC_SUNLOCK(fdesc); 1966 error = EOPNOTSUPP; 1967 goto out; 1968 } 1969 1970 } 1971 1972 /* 1973 * Now replace the integer FDs with pointers to the 1974 * file structure and capability rights. 1975 */ 1976 newlen = oldfds * sizeof(fdep[0]); 1977 *controlp = sbcreatecontrol(NULL, newlen, 1978 SCM_RIGHTS, SOL_SOCKET); 1979 if (*controlp == NULL) { 1980 FILEDESC_SUNLOCK(fdesc); 1981 error = E2BIG; 1982 goto out; 1983 } 1984 fdp = data; 1985 fdep = (struct filedescent **) 1986 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1987 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 1988 M_WAITOK); 1989 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 1990 fde = &fdesc->fd_ofiles[*fdp]; 1991 fdep[i] = fdev; 1992 fdep[i]->fde_file = fde->fde_file; 1993 filecaps_copy(&fde->fde_caps, 1994 &fdep[i]->fde_caps, true); 1995 unp_internalize_fp(fdep[i]->fde_file); 1996 } 1997 FILEDESC_SUNLOCK(fdesc); 1998 break; 1999 2000 case SCM_TIMESTAMP: 2001 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2002 SCM_TIMESTAMP, SOL_SOCKET); 2003 if (*controlp == NULL) { 2004 error = ENOBUFS; 2005 goto out; 2006 } 2007 tv = (struct timeval *) 2008 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2009 microtime(tv); 2010 break; 2011 2012 case SCM_BINTIME: 2013 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2014 SCM_BINTIME, SOL_SOCKET); 2015 if (*controlp == NULL) { 2016 error = ENOBUFS; 2017 goto out; 2018 } 2019 bt = (struct bintime *) 2020 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2021 bintime(bt); 2022 break; 2023 2024 case SCM_REALTIME: 2025 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2026 SCM_REALTIME, SOL_SOCKET); 2027 if (*controlp == NULL) { 2028 error = ENOBUFS; 2029 goto out; 2030 } 2031 ts = (struct timespec *) 2032 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2033 nanotime(ts); 2034 break; 2035 2036 case SCM_MONOTONIC: 2037 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2038 SCM_MONOTONIC, SOL_SOCKET); 2039 if (*controlp == NULL) { 2040 error = ENOBUFS; 2041 goto out; 2042 } 2043 ts = (struct timespec *) 2044 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2045 nanouptime(ts); 2046 break; 2047 2048 default: 2049 error = EINVAL; 2050 goto out; 2051 } 2052 2053 controlp = &(*controlp)->m_next; 2054 if (CMSG_SPACE(datalen) < clen) { 2055 clen -= CMSG_SPACE(datalen); 2056 cm = (struct cmsghdr *) 2057 ((caddr_t)cm + CMSG_SPACE(datalen)); 2058 } else { 2059 clen = 0; 2060 cm = NULL; 2061 } 2062 } 2063 2064 out: 2065 m_freem(control); 2066 return (error); 2067 } 2068 2069 static struct mbuf * 2070 unp_addsockcred(struct thread *td, struct mbuf *control) 2071 { 2072 struct mbuf *m, *n, *n_prev; 2073 struct sockcred *sc; 2074 const struct cmsghdr *cm; 2075 int ngroups; 2076 int i; 2077 2078 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2079 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2080 if (m == NULL) 2081 return (control); 2082 2083 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2084 sc->sc_uid = td->td_ucred->cr_ruid; 2085 sc->sc_euid = td->td_ucred->cr_uid; 2086 sc->sc_gid = td->td_ucred->cr_rgid; 2087 sc->sc_egid = td->td_ucred->cr_gid; 2088 sc->sc_ngroups = ngroups; 2089 for (i = 0; i < sc->sc_ngroups; i++) 2090 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2091 2092 /* 2093 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2094 * created SCM_CREDS control message (struct sockcred) has another 2095 * format. 2096 */ 2097 if (control != NULL) 2098 for (n = control, n_prev = NULL; n != NULL;) { 2099 cm = mtod(n, struct cmsghdr *); 2100 if (cm->cmsg_level == SOL_SOCKET && 2101 cm->cmsg_type == SCM_CREDS) { 2102 if (n_prev == NULL) 2103 control = n->m_next; 2104 else 2105 n_prev->m_next = n->m_next; 2106 n = m_free(n); 2107 } else { 2108 n_prev = n; 2109 n = n->m_next; 2110 } 2111 } 2112 2113 /* Prepend it to the head. */ 2114 m->m_next = control; 2115 return (m); 2116 } 2117 2118 static struct unpcb * 2119 fptounp(struct file *fp) 2120 { 2121 struct socket *so; 2122 2123 if (fp->f_type != DTYPE_SOCKET) 2124 return (NULL); 2125 if ((so = fp->f_data) == NULL) 2126 return (NULL); 2127 if (so->so_proto->pr_domain != &localdomain) 2128 return (NULL); 2129 return sotounpcb(so); 2130 } 2131 2132 static void 2133 unp_discard(struct file *fp) 2134 { 2135 struct unp_defer *dr; 2136 2137 if (unp_externalize_fp(fp)) { 2138 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2139 dr->ud_fp = fp; 2140 UNP_DEFERRED_LOCK(); 2141 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2142 UNP_DEFERRED_UNLOCK(); 2143 atomic_add_int(&unp_defers_count, 1); 2144 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2145 } else 2146 (void) closef(fp, (struct thread *)NULL); 2147 } 2148 2149 static void 2150 unp_process_defers(void *arg __unused, int pending) 2151 { 2152 struct unp_defer *dr; 2153 SLIST_HEAD(, unp_defer) drl; 2154 int count; 2155 2156 SLIST_INIT(&drl); 2157 for (;;) { 2158 UNP_DEFERRED_LOCK(); 2159 if (SLIST_FIRST(&unp_defers) == NULL) { 2160 UNP_DEFERRED_UNLOCK(); 2161 break; 2162 } 2163 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2164 UNP_DEFERRED_UNLOCK(); 2165 count = 0; 2166 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2167 SLIST_REMOVE_HEAD(&drl, ud_link); 2168 closef(dr->ud_fp, NULL); 2169 free(dr, M_TEMP); 2170 count++; 2171 } 2172 atomic_add_int(&unp_defers_count, -count); 2173 } 2174 } 2175 2176 static void 2177 unp_internalize_fp(struct file *fp) 2178 { 2179 struct unpcb *unp; 2180 2181 UNP_LINK_WLOCK(); 2182 if ((unp = fptounp(fp)) != NULL) { 2183 unp->unp_file = fp; 2184 unp->unp_msgcount++; 2185 } 2186 fhold(fp); 2187 unp_rights++; 2188 UNP_LINK_WUNLOCK(); 2189 } 2190 2191 static int 2192 unp_externalize_fp(struct file *fp) 2193 { 2194 struct unpcb *unp; 2195 int ret; 2196 2197 UNP_LINK_WLOCK(); 2198 if ((unp = fptounp(fp)) != NULL) { 2199 unp->unp_msgcount--; 2200 ret = 1; 2201 } else 2202 ret = 0; 2203 unp_rights--; 2204 UNP_LINK_WUNLOCK(); 2205 return (ret); 2206 } 2207 2208 /* 2209 * unp_defer indicates whether additional work has been defered for a future 2210 * pass through unp_gc(). It is thread local and does not require explicit 2211 * synchronization. 2212 */ 2213 static int unp_marked; 2214 static int unp_unreachable; 2215 2216 static void 2217 unp_accessable(struct filedescent **fdep, int fdcount) 2218 { 2219 struct unpcb *unp; 2220 struct file *fp; 2221 int i; 2222 2223 for (i = 0; i < fdcount; i++) { 2224 fp = fdep[i]->fde_file; 2225 if ((unp = fptounp(fp)) == NULL) 2226 continue; 2227 if (unp->unp_gcflag & UNPGC_REF) 2228 continue; 2229 unp->unp_gcflag &= ~UNPGC_DEAD; 2230 unp->unp_gcflag |= UNPGC_REF; 2231 unp_marked++; 2232 } 2233 } 2234 2235 static void 2236 unp_gc_process(struct unpcb *unp) 2237 { 2238 struct socket *so, *soa; 2239 struct file *fp; 2240 2241 /* Already processed. */ 2242 if (unp->unp_gcflag & UNPGC_SCANNED) 2243 return; 2244 fp = unp->unp_file; 2245 2246 /* 2247 * Check for a socket potentially in a cycle. It must be in a 2248 * queue as indicated by msgcount, and this must equal the file 2249 * reference count. Note that when msgcount is 0 the file is NULL. 2250 */ 2251 if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp && 2252 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) { 2253 unp->unp_gcflag |= UNPGC_DEAD; 2254 unp_unreachable++; 2255 return; 2256 } 2257 2258 so = unp->unp_socket; 2259 SOCK_LOCK(so); 2260 if (SOLISTENING(so)) { 2261 /* 2262 * Mark all sockets in our accept queue. 2263 */ 2264 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2265 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2266 continue; 2267 SOCKBUF_LOCK(&soa->so_rcv); 2268 unp_scan(soa->so_rcv.sb_mb, unp_accessable); 2269 SOCKBUF_UNLOCK(&soa->so_rcv); 2270 } 2271 } else { 2272 /* 2273 * Mark all sockets we reference with RIGHTS. 2274 */ 2275 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2276 SOCKBUF_LOCK(&so->so_rcv); 2277 unp_scan(so->so_rcv.sb_mb, unp_accessable); 2278 SOCKBUF_UNLOCK(&so->so_rcv); 2279 } 2280 } 2281 SOCK_UNLOCK(so); 2282 unp->unp_gcflag |= UNPGC_SCANNED; 2283 } 2284 2285 static int unp_recycled; 2286 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2287 "Number of unreachable sockets claimed by the garbage collector."); 2288 2289 static int unp_taskcount; 2290 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2291 "Number of times the garbage collector has run."); 2292 2293 static void 2294 unp_gc(__unused void *arg, int pending) 2295 { 2296 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2297 NULL }; 2298 struct unp_head **head; 2299 struct file *f, **unref; 2300 struct unpcb *unp; 2301 int i, total; 2302 2303 unp_taskcount++; 2304 UNP_LINK_RLOCK(); 2305 /* 2306 * First clear all gc flags from previous runs, apart from 2307 * UNPGC_IGNORE_RIGHTS. 2308 */ 2309 for (head = heads; *head != NULL; head++) 2310 LIST_FOREACH(unp, *head, unp_link) 2311 unp->unp_gcflag = 2312 (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS); 2313 2314 /* 2315 * Scan marking all reachable sockets with UNPGC_REF. Once a socket 2316 * is reachable all of the sockets it references are reachable. 2317 * Stop the scan once we do a complete loop without discovering 2318 * a new reachable socket. 2319 */ 2320 do { 2321 unp_unreachable = 0; 2322 unp_marked = 0; 2323 for (head = heads; *head != NULL; head++) 2324 LIST_FOREACH(unp, *head, unp_link) 2325 unp_gc_process(unp); 2326 } while (unp_marked); 2327 UNP_LINK_RUNLOCK(); 2328 if (unp_unreachable == 0) 2329 return; 2330 2331 /* 2332 * Allocate space for a local list of dead unpcbs. 2333 */ 2334 unref = malloc(unp_unreachable * sizeof(struct file *), 2335 M_TEMP, M_WAITOK); 2336 2337 /* 2338 * Iterate looking for sockets which have been specifically marked 2339 * as as unreachable and store them locally. 2340 */ 2341 UNP_LINK_RLOCK(); 2342 for (total = 0, head = heads; *head != NULL; head++) 2343 LIST_FOREACH(unp, *head, unp_link) 2344 if ((unp->unp_gcflag & UNPGC_DEAD) != 0) { 2345 f = unp->unp_file; 2346 if (unp->unp_msgcount == 0 || f == NULL || 2347 f->f_count != unp->unp_msgcount) 2348 continue; 2349 unref[total++] = f; 2350 fhold(f); 2351 KASSERT(total <= unp_unreachable, 2352 ("unp_gc: incorrect unreachable count.")); 2353 } 2354 UNP_LINK_RUNLOCK(); 2355 2356 /* 2357 * Now flush all sockets, free'ing rights. This will free the 2358 * struct files associated with these sockets but leave each socket 2359 * with one remaining ref. 2360 */ 2361 for (i = 0; i < total; i++) { 2362 struct socket *so; 2363 2364 so = unref[i]->f_data; 2365 CURVNET_SET(so->so_vnet); 2366 sorflush(so); 2367 CURVNET_RESTORE(); 2368 } 2369 2370 /* 2371 * And finally release the sockets so they can be reclaimed. 2372 */ 2373 for (i = 0; i < total; i++) 2374 fdrop(unref[i], NULL); 2375 unp_recycled += total; 2376 free(unref, M_TEMP); 2377 } 2378 2379 static void 2380 unp_dispose_mbuf(struct mbuf *m) 2381 { 2382 2383 if (m) 2384 unp_scan(m, unp_freerights); 2385 } 2386 2387 /* 2388 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2389 */ 2390 static void 2391 unp_dispose(struct socket *so) 2392 { 2393 struct unpcb *unp; 2394 2395 unp = sotounpcb(so); 2396 UNP_LINK_WLOCK(); 2397 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2398 UNP_LINK_WUNLOCK(); 2399 if (!SOLISTENING(so)) 2400 unp_dispose_mbuf(so->so_rcv.sb_mb); 2401 } 2402 2403 static void 2404 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2405 { 2406 struct mbuf *m; 2407 struct cmsghdr *cm; 2408 void *data; 2409 socklen_t clen, datalen; 2410 2411 while (m0 != NULL) { 2412 for (m = m0; m; m = m->m_next) { 2413 if (m->m_type != MT_CONTROL) 2414 continue; 2415 2416 cm = mtod(m, struct cmsghdr *); 2417 clen = m->m_len; 2418 2419 while (cm != NULL) { 2420 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2421 break; 2422 2423 data = CMSG_DATA(cm); 2424 datalen = (caddr_t)cm + cm->cmsg_len 2425 - (caddr_t)data; 2426 2427 if (cm->cmsg_level == SOL_SOCKET && 2428 cm->cmsg_type == SCM_RIGHTS) { 2429 (*op)(data, datalen / 2430 sizeof(struct filedescent *)); 2431 } 2432 2433 if (CMSG_SPACE(datalen) < clen) { 2434 clen -= CMSG_SPACE(datalen); 2435 cm = (struct cmsghdr *) 2436 ((caddr_t)cm + CMSG_SPACE(datalen)); 2437 } else { 2438 clen = 0; 2439 cm = NULL; 2440 } 2441 } 2442 } 2443 m0 = m0->m_nextpkt; 2444 } 2445 } 2446 2447 /* 2448 * A helper function called by VFS before socket-type vnode reclamation. 2449 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2450 * use count. 2451 */ 2452 void 2453 vfs_unp_reclaim(struct vnode *vp) 2454 { 2455 struct unpcb *unp; 2456 int active; 2457 2458 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2459 KASSERT(vp->v_type == VSOCK, 2460 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2461 2462 active = 0; 2463 UNP_LINK_WLOCK(); 2464 VOP_UNP_CONNECT(vp, &unp); 2465 if (unp == NULL) 2466 goto done; 2467 UNP_PCB_LOCK(unp); 2468 if (unp->unp_vnode == vp) { 2469 VOP_UNP_DETACH(vp); 2470 unp->unp_vnode = NULL; 2471 active = 1; 2472 } 2473 UNP_PCB_UNLOCK(unp); 2474 done: 2475 UNP_LINK_WUNLOCK(); 2476 if (active) 2477 vunref(vp); 2478 } 2479 2480 #ifdef DDB 2481 static void 2482 db_print_indent(int indent) 2483 { 2484 int i; 2485 2486 for (i = 0; i < indent; i++) 2487 db_printf(" "); 2488 } 2489 2490 static void 2491 db_print_unpflags(int unp_flags) 2492 { 2493 int comma; 2494 2495 comma = 0; 2496 if (unp_flags & UNP_HAVEPC) { 2497 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2498 comma = 1; 2499 } 2500 if (unp_flags & UNP_WANTCRED) { 2501 db_printf("%sUNP_WANTCRED", comma ? ", " : ""); 2502 comma = 1; 2503 } 2504 if (unp_flags & UNP_CONNWAIT) { 2505 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2506 comma = 1; 2507 } 2508 if (unp_flags & UNP_CONNECTING) { 2509 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2510 comma = 1; 2511 } 2512 if (unp_flags & UNP_BINDING) { 2513 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2514 comma = 1; 2515 } 2516 } 2517 2518 static void 2519 db_print_xucred(int indent, struct xucred *xu) 2520 { 2521 int comma, i; 2522 2523 db_print_indent(indent); 2524 db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n", 2525 xu->cr_version, xu->cr_uid, xu->cr_ngroups); 2526 db_print_indent(indent); 2527 db_printf("cr_groups: "); 2528 comma = 0; 2529 for (i = 0; i < xu->cr_ngroups; i++) { 2530 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2531 comma = 1; 2532 } 2533 db_printf("\n"); 2534 } 2535 2536 static void 2537 db_print_unprefs(int indent, struct unp_head *uh) 2538 { 2539 struct unpcb *unp; 2540 int counter; 2541 2542 counter = 0; 2543 LIST_FOREACH(unp, uh, unp_reflink) { 2544 if (counter % 4 == 0) 2545 db_print_indent(indent); 2546 db_printf("%p ", unp); 2547 if (counter % 4 == 3) 2548 db_printf("\n"); 2549 counter++; 2550 } 2551 if (counter != 0 && counter % 4 != 0) 2552 db_printf("\n"); 2553 } 2554 2555 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2556 { 2557 struct unpcb *unp; 2558 2559 if (!have_addr) { 2560 db_printf("usage: show unpcb <addr>\n"); 2561 return; 2562 } 2563 unp = (struct unpcb *)addr; 2564 2565 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2566 unp->unp_vnode); 2567 2568 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2569 unp->unp_conn); 2570 2571 db_printf("unp_refs:\n"); 2572 db_print_unprefs(2, &unp->unp_refs); 2573 2574 /* XXXRW: Would be nice to print the full address, if any. */ 2575 db_printf("unp_addr: %p\n", unp->unp_addr); 2576 2577 db_printf("unp_gencnt: %llu\n", 2578 (unsigned long long)unp->unp_gencnt); 2579 2580 db_printf("unp_flags: %x (", unp->unp_flags); 2581 db_print_unpflags(unp->unp_flags); 2582 db_printf(")\n"); 2583 2584 db_printf("unp_peercred:\n"); 2585 db_print_xucred(2, &unp->unp_peercred); 2586 2587 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2588 } 2589 #endif 2590