xref: /freebsd/sys/kern/uipc_usrreq.c (revision 58a0f0d00c0cc4a90ce584a61470290751bfcac7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * Locking key:
110  * (l)	Locked using list lock
111  * (g)	Locked using linkage lock
112  */
113 
114 static uma_zone_t	unp_zone;
115 static unp_gen_t	unp_gencnt;	/* (l) */
116 static u_int		unp_count;	/* (l) Count of local sockets. */
117 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
118 static int		unp_rights;	/* (g) File descriptors in flight. */
119 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
120 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
121 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
122 
123 struct unp_defer {
124 	SLIST_ENTRY(unp_defer) ud_link;
125 	struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129 
130 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
131 
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139 
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task	unp_defer_task;
146 
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define	PIPSIZ	8192
158 #endif
159 static u_long	unpst_sendspace = PIPSIZ;
160 static u_long	unpst_recvspace = PIPSIZ;
161 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
162 static u_long	unpdg_recvspace = 4*1024;
163 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
164 static u_long	unpsp_recvspace = PIPSIZ;
165 
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
171     "SOCK_SEQPACKET");
172 
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
174 	   &unpst_sendspace, 0, "Default stream send space.");
175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
176 	   &unpst_recvspace, 0, "Default stream receive space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
178 	   &unpdg_sendspace, 0, "Default datagram send space.");
179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
180 	   &unpdg_recvspace, 0, "Default datagram receive space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
182 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
184 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
186     "File descriptors in flight.");
187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
188     &unp_defers_count, 0,
189     "File descriptors deferred to taskqueue for close.");
190 
191 /*
192  * Locking and synchronization:
193  *
194  * Three types of locks exist in the local domain socket implementation: a
195  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
196  * The linkage lock protects the socket count, global generation number,
197  * and stream/datagram global lists.
198  *
199  * The mtxpool lock protects the vnode from being modified while referenced.
200  * Lock ordering requires that it be acquired before any unpcb locks.
201  *
202  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
203  * note is that this includes the unp_conn field. So long as the unpcb lock
204  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
205  * require that the unpcb pointed to by unp_conn remain live in cases where
206  * we need to drop the unp_mtx as when we need to acquire the lock for a
207  * second unpcb the caller must first acquire an additional reference on the
208  * second unpcb and then revalidate any state (typically check that unp_conn
209  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
210  * between unpcbs is the conventional ascending address order. Two helper
211  * routines exist for this:
212  *
213  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
214  *     safe ordering.
215  *
216  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
217  *     when called. If unp is unlocked and unp2 is subsequently freed
218  *     freed will be set to 1.
219  *
220  * The helper routines for references are:
221  *
222  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
223  *     reference to unp.
224  *
225  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
226  *      releasing the last reference, detach must have been called thus
227  *      unp->unp_socket be NULL.
228  *
229  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
230  * allocated in pru_attach() and freed in pru_detach().  The validity of that
231  * pointer is an invariant, so no lock is required to dereference the so_pcb
232  * pointer if a valid socket reference is held by the caller.  In practice,
233  * this is always true during operations performed on a socket.  Each unpcb
234  * has a back-pointer to its socket, unp_socket, which will be stable under
235  * the same circumstances.
236  *
237  * This pointer may only be safely dereferenced as long as a valid reference
238  * to the unpcb is held.  Typically, this reference will be from the socket,
239  * or from another unpcb when the referring unpcb's lock is held (in order
240  * that the reference not be invalidated during use).  For example, to follow
241  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
242  * that detach is not run clearing unp_socket.
243  *
244  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
245  * protocols, bind() is a non-atomic operation, and connect() requires
246  * potential sleeping in the protocol, due to potentially waiting on local or
247  * distributed file systems.  We try to separate "lookup" operations, which
248  * may sleep, and the IPC operations themselves, which typically can occur
249  * with relative atomicity as locks can be held over the entire operation.
250  *
251  * Another tricky issue is simultaneous multi-threaded or multi-process
252  * access to a single UNIX domain socket.  These are handled by the flags
253  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
254  * binding, both of which involve dropping UNIX domain socket locks in order
255  * to perform namei() and other file system operations.
256  */
257 static struct rwlock	unp_link_rwlock;
258 static struct mtx	unp_defers_lock;
259 
260 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
261 					    "unp_link_rwlock")
262 
263 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
264 					    RA_LOCKED)
265 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
266 					    RA_UNLOCKED)
267 
268 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
269 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
270 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
271 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
272 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
273 					    RA_WLOCKED)
274 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
275 
276 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
277 					    "unp_defer", NULL, MTX_DEF)
278 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
279 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
280 
281 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
282 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
283 
284 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
285 					    "unp", "unp",	\
286 					    MTX_DUPOK|MTX_DEF)
287 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
288 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
289 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
290 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
291 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
292 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
293 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
294 
295 static int	uipc_connect2(struct socket *, struct socket *);
296 static int	uipc_ctloutput(struct socket *, struct sockopt *);
297 static int	unp_connect(struct socket *, struct sockaddr *,
298 		    struct thread *);
299 static int	unp_connectat(int, struct socket *, struct sockaddr *,
300 		    struct thread *);
301 static int	unp_connect2(struct socket *so, struct socket *so2, int);
302 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
303 static void	unp_dispose(struct socket *so);
304 static void	unp_dispose_mbuf(struct mbuf *);
305 static void	unp_shutdown(struct unpcb *);
306 static void	unp_drop(struct unpcb *);
307 static void	unp_gc(__unused void *, int);
308 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
309 static void	unp_discard(struct file *);
310 static void	unp_freerights(struct filedescent **, int);
311 static void	unp_init(void);
312 static int	unp_internalize(struct mbuf **, struct thread *);
313 static void	unp_internalize_fp(struct file *);
314 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
315 static int	unp_externalize_fp(struct file *);
316 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
317 static void	unp_process_defers(void * __unused, int);
318 
319 
320 static void
321 unp_pcb_hold(struct unpcb *unp)
322 {
323 	MPASS(unp->unp_refcount);
324 	refcount_acquire(&unp->unp_refcount);
325 }
326 
327 static int
328 unp_pcb_rele(struct unpcb *unp)
329 {
330 	int freed;
331 
332 	UNP_PCB_LOCK_ASSERT(unp);
333 	MPASS(unp->unp_refcount);
334 	if ((freed = refcount_release(&unp->unp_refcount))) {
335 		/* we got here with having detached? */
336 		MPASS(unp->unp_socket == NULL);
337 		UNP_PCB_UNLOCK(unp);
338 		UNP_PCB_LOCK_DESTROY(unp);
339 		uma_zfree(unp_zone, unp);
340 	}
341 	return (freed);
342 }
343 
344 static void
345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
346 {
347 	UNP_PCB_UNLOCK_ASSERT(unp);
348 	UNP_PCB_UNLOCK_ASSERT(unp2);
349 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
350 		UNP_PCB_LOCK(unp);
351 		UNP_PCB_LOCK(unp2);
352 	} else {
353 		UNP_PCB_LOCK(unp2);
354 		UNP_PCB_LOCK(unp);
355 	}
356 }
357 
358 static __noinline void
359 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, int *freed)
360 
361 {
362 	struct unpcb *unp2;
363 
364 	unp2 = *unp2p;
365 	unp_pcb_hold((unp2));
366 	UNP_PCB_UNLOCK((unp));
367 	UNP_PCB_LOCK((unp2));
368 	UNP_PCB_LOCK((unp));
369 	*freed = unp_pcb_rele((unp2));
370 	if (*freed)
371 		*unp2p = NULL;
372 }
373 
374 #define unp_pcb_owned_lock2(unp, unp2, freed) do {					\
375 		freed = 0;													\
376 		UNP_PCB_LOCK_ASSERT((unp));									\
377 		UNP_PCB_UNLOCK_ASSERT((unp2));								\
378 		if (__predict_true(UNP_PCB_TRYLOCK((unp2))))				\
379 			break;													\
380 		else if ((uintptr_t)(unp2) > (uintptr_t)(unp))				\
381 			UNP_PCB_LOCK((unp2));									\
382 		else {														\
383 			unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);	\
384 		}															\
385 } while (0)
386 
387 
388 /*
389  * Definitions of protocols supported in the LOCAL domain.
390  */
391 static struct domain localdomain;
392 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
393 static struct pr_usrreqs uipc_usrreqs_seqpacket;
394 static struct protosw localsw[] = {
395 {
396 	.pr_type =		SOCK_STREAM,
397 	.pr_domain =		&localdomain,
398 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
399 	.pr_ctloutput =		&uipc_ctloutput,
400 	.pr_usrreqs =		&uipc_usrreqs_stream
401 },
402 {
403 	.pr_type =		SOCK_DGRAM,
404 	.pr_domain =		&localdomain,
405 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
406 	.pr_ctloutput =		&uipc_ctloutput,
407 	.pr_usrreqs =		&uipc_usrreqs_dgram
408 },
409 {
410 	.pr_type =		SOCK_SEQPACKET,
411 	.pr_domain =		&localdomain,
412 
413 	/*
414 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
415 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
416 	 * that supports both atomic record writes and control data.
417 	 */
418 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
419 				    PR_RIGHTS,
420 	.pr_ctloutput =		&uipc_ctloutput,
421 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
422 },
423 };
424 
425 static struct domain localdomain = {
426 	.dom_family =		AF_LOCAL,
427 	.dom_name =		"local",
428 	.dom_init =		unp_init,
429 	.dom_externalize =	unp_externalize,
430 	.dom_dispose =		unp_dispose,
431 	.dom_protosw =		localsw,
432 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
433 };
434 DOMAIN_SET(local);
435 
436 static void
437 uipc_abort(struct socket *so)
438 {
439 	struct unpcb *unp, *unp2;
440 
441 	unp = sotounpcb(so);
442 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
443 	UNP_PCB_UNLOCK_ASSERT(unp);
444 
445 	UNP_PCB_LOCK(unp);
446 	unp2 = unp->unp_conn;
447 	if (unp2 != NULL) {
448 		unp_pcb_hold(unp2);
449 		UNP_PCB_UNLOCK(unp);
450 		unp_drop(unp2);
451 	} else
452 		UNP_PCB_UNLOCK(unp);
453 }
454 
455 static int
456 uipc_accept(struct socket *so, struct sockaddr **nam)
457 {
458 	struct unpcb *unp, *unp2;
459 	const struct sockaddr *sa;
460 
461 	/*
462 	 * Pass back name of connected socket, if it was bound and we are
463 	 * still connected (our peer may have closed already!).
464 	 */
465 	unp = sotounpcb(so);
466 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
467 
468 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
469 	UNP_LINK_RLOCK();
470 	unp2 = unp->unp_conn;
471 	if (unp2 != NULL && unp2->unp_addr != NULL) {
472 		UNP_PCB_LOCK(unp2);
473 		sa = (struct sockaddr *) unp2->unp_addr;
474 		bcopy(sa, *nam, sa->sa_len);
475 		UNP_PCB_UNLOCK(unp2);
476 	} else {
477 		sa = &sun_noname;
478 		bcopy(sa, *nam, sa->sa_len);
479 	}
480 	UNP_LINK_RUNLOCK();
481 	return (0);
482 }
483 
484 static int
485 uipc_attach(struct socket *so, int proto, struct thread *td)
486 {
487 	u_long sendspace, recvspace;
488 	struct unpcb *unp;
489 	int error;
490 	bool locked;
491 
492 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
493 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
494 		switch (so->so_type) {
495 		case SOCK_STREAM:
496 			sendspace = unpst_sendspace;
497 			recvspace = unpst_recvspace;
498 			break;
499 
500 		case SOCK_DGRAM:
501 			sendspace = unpdg_sendspace;
502 			recvspace = unpdg_recvspace;
503 			break;
504 
505 		case SOCK_SEQPACKET:
506 			sendspace = unpsp_sendspace;
507 			recvspace = unpsp_recvspace;
508 			break;
509 
510 		default:
511 			panic("uipc_attach");
512 		}
513 		error = soreserve(so, sendspace, recvspace);
514 		if (error)
515 			return (error);
516 	}
517 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
518 	if (unp == NULL)
519 		return (ENOBUFS);
520 	LIST_INIT(&unp->unp_refs);
521 	UNP_PCB_LOCK_INIT(unp);
522 	unp->unp_socket = so;
523 	so->so_pcb = unp;
524 	unp->unp_refcount = 1;
525 	if (so->so_listen != NULL)
526 		unp->unp_flags |= UNP_NASCENT;
527 
528 	if ((locked = UNP_LINK_WOWNED()) == false)
529 		UNP_LINK_WLOCK();
530 
531 	unp->unp_gencnt = ++unp_gencnt;
532 	unp_count++;
533 	switch (so->so_type) {
534 	case SOCK_STREAM:
535 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
536 		break;
537 
538 	case SOCK_DGRAM:
539 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
540 		break;
541 
542 	case SOCK_SEQPACKET:
543 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
544 		break;
545 
546 	default:
547 		panic("uipc_attach");
548 	}
549 
550 	if (locked == false)
551 		UNP_LINK_WUNLOCK();
552 
553 	return (0);
554 }
555 
556 static int
557 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
558 {
559 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
560 	struct vattr vattr;
561 	int error, namelen;
562 	struct nameidata nd;
563 	struct unpcb *unp;
564 	struct vnode *vp;
565 	struct mount *mp;
566 	cap_rights_t rights;
567 	char *buf;
568 
569 	if (nam->sa_family != AF_UNIX)
570 		return (EAFNOSUPPORT);
571 
572 	unp = sotounpcb(so);
573 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
574 
575 	if (soun->sun_len > sizeof(struct sockaddr_un))
576 		return (EINVAL);
577 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
578 	if (namelen <= 0)
579 		return (EINVAL);
580 
581 	/*
582 	 * We don't allow simultaneous bind() calls on a single UNIX domain
583 	 * socket, so flag in-progress operations, and return an error if an
584 	 * operation is already in progress.
585 	 *
586 	 * Historically, we have not allowed a socket to be rebound, so this
587 	 * also returns an error.  Not allowing re-binding simplifies the
588 	 * implementation and avoids a great many possible failure modes.
589 	 */
590 	UNP_PCB_LOCK(unp);
591 	if (unp->unp_vnode != NULL) {
592 		UNP_PCB_UNLOCK(unp);
593 		return (EINVAL);
594 	}
595 	if (unp->unp_flags & UNP_BINDING) {
596 		UNP_PCB_UNLOCK(unp);
597 		return (EALREADY);
598 	}
599 	unp->unp_flags |= UNP_BINDING;
600 	UNP_PCB_UNLOCK(unp);
601 
602 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
603 	bcopy(soun->sun_path, buf, namelen);
604 	buf[namelen] = 0;
605 
606 restart:
607 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
608 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
609 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
610 	error = namei(&nd);
611 	if (error)
612 		goto error;
613 	vp = nd.ni_vp;
614 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
615 		NDFREE(&nd, NDF_ONLY_PNBUF);
616 		if (nd.ni_dvp == vp)
617 			vrele(nd.ni_dvp);
618 		else
619 			vput(nd.ni_dvp);
620 		if (vp != NULL) {
621 			vrele(vp);
622 			error = EADDRINUSE;
623 			goto error;
624 		}
625 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
626 		if (error)
627 			goto error;
628 		goto restart;
629 	}
630 	VATTR_NULL(&vattr);
631 	vattr.va_type = VSOCK;
632 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
633 #ifdef MAC
634 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
635 	    &vattr);
636 #endif
637 	if (error == 0)
638 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
639 	NDFREE(&nd, NDF_ONLY_PNBUF);
640 	vput(nd.ni_dvp);
641 	if (error) {
642 		vn_finished_write(mp);
643 		goto error;
644 	}
645 	vp = nd.ni_vp;
646 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
647 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
648 
649 	UNP_PCB_LOCK(unp);
650 	VOP_UNP_BIND(vp, unp);
651 	unp->unp_vnode = vp;
652 	unp->unp_addr = soun;
653 	unp->unp_flags &= ~UNP_BINDING;
654 	UNP_PCB_UNLOCK(unp);
655 	VOP_UNLOCK(vp, 0);
656 	vn_finished_write(mp);
657 	free(buf, M_TEMP);
658 	return (0);
659 
660 error:
661 	UNP_PCB_LOCK(unp);
662 	unp->unp_flags &= ~UNP_BINDING;
663 	UNP_PCB_UNLOCK(unp);
664 	free(buf, M_TEMP);
665 	return (error);
666 }
667 
668 static int
669 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
670 {
671 
672 	return (uipc_bindat(AT_FDCWD, so, nam, td));
673 }
674 
675 static int
676 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
677 {
678 	int error;
679 
680 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
681 	error = unp_connect(so, nam, td);
682 	return (error);
683 }
684 
685 static int
686 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
687     struct thread *td)
688 {
689 	int error;
690 
691 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
692 	error = unp_connectat(fd, so, nam, td);
693 	return (error);
694 }
695 
696 static void
697 uipc_close(struct socket *so)
698 {
699 	struct unpcb *unp, *unp2;
700 	struct vnode *vp = NULL;
701 	struct mtx *vplock;
702 	int freed;
703 	unp = sotounpcb(so);
704 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
705 
706 
707 	vplock = NULL;
708 	if ((vp = unp->unp_vnode) != NULL) {
709 		vplock = mtx_pool_find(mtxpool_sleep, vp);
710 		mtx_lock(vplock);
711 	}
712 	UNP_PCB_LOCK(unp);
713 	if (vp && unp->unp_vnode == NULL) {
714 		mtx_unlock(vplock);
715 		vp = NULL;
716 	}
717 	if (vp != NULL) {
718 		VOP_UNP_DETACH(vp);
719 		unp->unp_vnode = NULL;
720 	}
721 	unp2 = unp->unp_conn;
722 	unp_pcb_hold(unp);
723 	if (unp2 != NULL) {
724 		unp_pcb_hold(unp2);
725 		unp_pcb_owned_lock2(unp, unp2, freed);
726 		unp_disconnect(unp, unp2);
727 		if (unp_pcb_rele(unp2) == 0)
728 			UNP_PCB_UNLOCK(unp2);
729 	}
730 	if (unp_pcb_rele(unp) == 0)
731 		UNP_PCB_UNLOCK(unp);
732 	if (vp) {
733 		mtx_unlock(vplock);
734 		vrele(vp);
735 	}
736 }
737 
738 static int
739 uipc_connect2(struct socket *so1, struct socket *so2)
740 {
741 	struct unpcb *unp, *unp2;
742 	int error;
743 
744 	unp = so1->so_pcb;
745 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
746 	unp2 = so2->so_pcb;
747 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
748 	unp_pcb_lock2(unp, unp2);
749 	error = unp_connect2(so1, so2, PRU_CONNECT2);
750 	UNP_PCB_UNLOCK(unp2);
751 	UNP_PCB_UNLOCK(unp);
752 	return (error);
753 }
754 
755 static void
756 uipc_detach(struct socket *so)
757 {
758 	struct unpcb *unp, *unp2;
759 	struct mtx *vplock;
760 	struct sockaddr_un *saved_unp_addr;
761 	struct vnode *vp;
762 	int freeunp, local_unp_rights;
763 
764 	unp = sotounpcb(so);
765 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
766 
767 	vp = NULL;
768 	vplock = NULL;
769 	local_unp_rights = 0;
770 
771 	UNP_LINK_WLOCK();
772 	LIST_REMOVE(unp, unp_link);
773 	unp->unp_gencnt = ++unp_gencnt;
774 	--unp_count;
775 	UNP_LINK_WUNLOCK();
776 
777 	UNP_PCB_UNLOCK_ASSERT(unp);
778  restart:
779 	if ((vp = unp->unp_vnode) != NULL) {
780 		vplock = mtx_pool_find(mtxpool_sleep, vp);
781 		mtx_lock(vplock);
782 	}
783 	UNP_PCB_LOCK(unp);
784 	if ((unp2 = unp->unp_conn) != NULL) {
785 		unp_pcb_owned_lock2(unp, unp2, freeunp);
786 		if (freeunp)
787 			unp2 = NULL;
788 	}
789 	if (unp->unp_vnode != vp &&
790 		unp->unp_vnode != NULL) {
791 		if (vplock)
792 			mtx_unlock(vplock);
793 		UNP_PCB_UNLOCK(unp);
794 		if (unp2)
795 			UNP_PCB_UNLOCK(unp2);
796 		goto restart;
797 	}
798 	if ((unp->unp_flags & UNP_NASCENT) != 0) {
799 		if (unp2)
800 			UNP_PCB_UNLOCK(unp2);
801 		goto teardown;
802 	}
803 	if ((vp = unp->unp_vnode) != NULL) {
804 		VOP_UNP_DETACH(vp);
805 		unp->unp_vnode = NULL;
806 	}
807 	unp_pcb_hold(unp);
808 	if (unp2 != NULL) {
809 		unp_pcb_hold(unp2);
810 		unp_disconnect(unp, unp2);
811 		if (unp_pcb_rele(unp2) == 0)
812 			UNP_PCB_UNLOCK(unp2);
813 	}
814 	UNP_PCB_UNLOCK(unp);
815 	UNP_REF_LIST_LOCK();
816 	while (!LIST_EMPTY(&unp->unp_refs)) {
817 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
818 
819 		unp_pcb_hold(ref);
820 		UNP_REF_LIST_UNLOCK();
821 
822 		MPASS(ref != unp);
823 		UNP_PCB_UNLOCK_ASSERT(ref);
824 		unp_drop(ref);
825 		UNP_REF_LIST_LOCK();
826 	}
827 
828 	UNP_REF_LIST_UNLOCK();
829 	UNP_PCB_LOCK(unp);
830 	freeunp = unp_pcb_rele(unp);
831 	MPASS(freeunp == 0);
832 	local_unp_rights = unp_rights;
833 teardown:
834 	unp->unp_socket->so_pcb = NULL;
835 	saved_unp_addr = unp->unp_addr;
836 	unp->unp_addr = NULL;
837 	unp->unp_socket = NULL;
838 	freeunp = unp_pcb_rele(unp);
839 	if (saved_unp_addr != NULL)
840 		free(saved_unp_addr, M_SONAME);
841 	if (!freeunp)
842 		UNP_PCB_UNLOCK(unp);
843 	if (vp) {
844 		mtx_unlock(vplock);
845 		vrele(vp);
846 	}
847 	if (local_unp_rights)
848 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
849 }
850 
851 static int
852 uipc_disconnect(struct socket *so)
853 {
854 	struct unpcb *unp, *unp2;
855 	int freed;
856 
857 	unp = sotounpcb(so);
858 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
859 
860 	UNP_PCB_LOCK(unp);
861 	if ((unp2 = unp->unp_conn) == NULL) {
862 		UNP_PCB_UNLOCK(unp);
863 		return (0);
864 	}
865 	unp_pcb_owned_lock2(unp, unp2, freed);
866 	if (__predict_false(freed)) {
867 		UNP_PCB_UNLOCK(unp);
868 		return (0);
869 	}
870 	unp_pcb_hold(unp2);
871 	unp_pcb_hold(unp);
872 	unp_disconnect(unp, unp2);
873 	if (unp_pcb_rele(unp) == 0)
874 		UNP_PCB_UNLOCK(unp);
875 	if (unp_pcb_rele(unp2) == 0)
876 		UNP_PCB_UNLOCK(unp2);
877 	return (0);
878 }
879 
880 static int
881 uipc_listen(struct socket *so, int backlog, struct thread *td)
882 {
883 	struct unpcb *unp;
884 	int error;
885 
886 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
887 		return (EOPNOTSUPP);
888 
889 	unp = sotounpcb(so);
890 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
891 
892 	UNP_PCB_LOCK(unp);
893 	if (unp->unp_vnode == NULL) {
894 		/* Already connected or not bound to an address. */
895 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
896 		UNP_PCB_UNLOCK(unp);
897 		return (error);
898 	}
899 
900 	SOCK_LOCK(so);
901 	error = solisten_proto_check(so);
902 	if (error == 0) {
903 		cru2x(td->td_ucred, &unp->unp_peercred);
904 		solisten_proto(so, backlog);
905 	}
906 	SOCK_UNLOCK(so);
907 	UNP_PCB_UNLOCK(unp);
908 	return (error);
909 }
910 
911 static int
912 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
913 {
914 	struct unpcb *unp, *unp2;
915 	const struct sockaddr *sa;
916 
917 	unp = sotounpcb(so);
918 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
919 
920 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
921 	UNP_LINK_RLOCK();
922 	/*
923 	 * XXX: It seems that this test always fails even when connection is
924 	 * established.  So, this else clause is added as workaround to
925 	 * return PF_LOCAL sockaddr.
926 	 */
927 	unp2 = unp->unp_conn;
928 	if (unp2 != NULL) {
929 		UNP_PCB_LOCK(unp2);
930 		if (unp2->unp_addr != NULL)
931 			sa = (struct sockaddr *) unp2->unp_addr;
932 		else
933 			sa = &sun_noname;
934 		bcopy(sa, *nam, sa->sa_len);
935 		UNP_PCB_UNLOCK(unp2);
936 	} else {
937 		sa = &sun_noname;
938 		bcopy(sa, *nam, sa->sa_len);
939 	}
940 	UNP_LINK_RUNLOCK();
941 	return (0);
942 }
943 
944 static int
945 uipc_rcvd(struct socket *so, int flags)
946 {
947 	struct unpcb *unp, *unp2;
948 	struct socket *so2;
949 	u_int mbcnt, sbcc;
950 
951 	unp = sotounpcb(so);
952 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
953 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
954 	    ("%s: socktype %d", __func__, so->so_type));
955 
956 	/*
957 	 * Adjust backpressure on sender and wakeup any waiting to write.
958 	 *
959 	 * The unp lock is acquired to maintain the validity of the unp_conn
960 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
961 	 * static as long as we don't permit unp2 to disconnect from unp,
962 	 * which is prevented by the lock on unp.  We cache values from
963 	 * so_rcv to avoid holding the so_rcv lock over the entire
964 	 * transaction on the remote so_snd.
965 	 */
966 	SOCKBUF_LOCK(&so->so_rcv);
967 	mbcnt = so->so_rcv.sb_mbcnt;
968 	sbcc = sbavail(&so->so_rcv);
969 	SOCKBUF_UNLOCK(&so->so_rcv);
970 	/*
971 	 * There is a benign race condition at this point.  If we're planning to
972 	 * clear SB_STOP, but uipc_send is called on the connected socket at
973 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
974 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
975 	 * full.  The race is benign because the only ill effect is to allow the
976 	 * sockbuf to exceed its size limit, and the size limits are not
977 	 * strictly guaranteed anyway.
978 	 */
979 	UNP_PCB_LOCK(unp);
980 	unp2 = unp->unp_conn;
981 	if (unp2 == NULL) {
982 		UNP_PCB_UNLOCK(unp);
983 		return (0);
984 	}
985 	so2 = unp2->unp_socket;
986 	SOCKBUF_LOCK(&so2->so_snd);
987 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
988 		so2->so_snd.sb_flags &= ~SB_STOP;
989 	sowwakeup_locked(so2);
990 	UNP_PCB_UNLOCK(unp);
991 	return (0);
992 }
993 
994 static int
995 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
996 {
997 	int error;
998 	struct unpcb *unp;
999 
1000 	unp = so->so_pcb;
1001 	if (unp->unp_conn != NULL)
1002 		return (EISCONN);
1003 	error = unp_connect(so, nam, td);
1004 	if (error)
1005 		return (error);
1006 	UNP_PCB_LOCK(unp);
1007 	if (unp->unp_conn == NULL) {
1008 		UNP_PCB_UNLOCK(unp);
1009 		if (error == 0)
1010 			error = ENOTCONN;
1011 	}
1012 	return (error);
1013 }
1014 
1015 
1016 static int
1017 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1018     struct mbuf *control, struct thread *td)
1019 {
1020 	struct unpcb *unp, *unp2;
1021 	struct socket *so2;
1022 	u_int mbcnt, sbcc;
1023 	int freed, error;
1024 
1025 	unp = sotounpcb(so);
1026 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1027 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1028 	    so->so_type == SOCK_SEQPACKET,
1029 	    ("%s: socktype %d", __func__, so->so_type));
1030 
1031 	freed = error = 0;
1032 	if (flags & PRUS_OOB) {
1033 		error = EOPNOTSUPP;
1034 		goto release;
1035 	}
1036 	if (control != NULL && (error = unp_internalize(&control, td)))
1037 		goto release;
1038 
1039 	unp2 = NULL;
1040 	switch (so->so_type) {
1041 	case SOCK_DGRAM:
1042 	{
1043 		const struct sockaddr *from;
1044 
1045 		if (nam != NULL) {
1046 			/*
1047 			 * We return with UNP_PCB_LOCK_HELD so we know that
1048 			 * the reference is live if the pointer is valid.
1049 			 */
1050 			if ((error = connect_internal(so, nam, td)))
1051 				break;
1052 			MPASS(unp->unp_conn != NULL);
1053 			unp2 = unp->unp_conn;
1054 		} else  {
1055 			UNP_PCB_LOCK(unp);
1056 
1057 			/*
1058 			 * Because connect() and send() are non-atomic in a sendto()
1059 			 * with a target address, it's possible that the socket will
1060 			 * have disconnected before the send() can run.  In that case
1061 			 * return the slightly counter-intuitive but otherwise
1062 			 * correct error that the socket is not connected.
1063 			 */
1064 			if ((unp2 = unp->unp_conn)  == NULL) {
1065 				UNP_PCB_UNLOCK(unp);
1066 				error = ENOTCONN;
1067 				break;
1068 			}
1069 		}
1070 		unp_pcb_owned_lock2(unp, unp2, freed);
1071 		if (__predict_false(freed)) {
1072 			UNP_PCB_UNLOCK(unp);
1073 			error = ENOTCONN;
1074 			break;
1075 		}
1076 		/*
1077 		 * The socket referencing unp2 may have been closed
1078 		 * or unp may have been disconnected if the unp lock
1079 		 * was dropped to acquire unp2.
1080 		 */
1081 		if (__predict_false(unp->unp_conn == NULL) ||
1082 			unp2->unp_socket == NULL) {
1083 			UNP_PCB_UNLOCK(unp);
1084 			if (unp_pcb_rele(unp2) == 0)
1085 				UNP_PCB_UNLOCK(unp2);
1086 			error = ENOTCONN;
1087 			break;
1088 		}
1089 		if (unp2->unp_flags & UNP_WANTCRED)
1090 			control = unp_addsockcred(td, control);
1091 		if (unp->unp_addr != NULL)
1092 			from = (struct sockaddr *)unp->unp_addr;
1093 		else
1094 			from = &sun_noname;
1095 		so2 = unp2->unp_socket;
1096 		SOCKBUF_LOCK(&so2->so_rcv);
1097 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1098 		    control)) {
1099 			sorwakeup_locked(so2);
1100 			m = NULL;
1101 			control = NULL;
1102 		} else {
1103 			SOCKBUF_UNLOCK(&so2->so_rcv);
1104 			error = ENOBUFS;
1105 		}
1106 		if (nam != NULL)
1107 			unp_disconnect(unp, unp2);
1108 		UNP_PCB_UNLOCK(unp2);
1109 		UNP_PCB_UNLOCK(unp);
1110 		break;
1111 	}
1112 
1113 	case SOCK_SEQPACKET:
1114 	case SOCK_STREAM:
1115 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1116 			if (nam != NULL) {
1117 				if ((error = connect_internal(so, nam, td)))
1118 					break;
1119 			} else  {
1120 				error = ENOTCONN;
1121 				break;
1122 			}
1123 		} else if ((unp2 = unp->unp_conn) == NULL) {
1124 			error = ENOTCONN;
1125 			break;
1126 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1127 			error = EPIPE;
1128 			break;
1129 		} else {
1130 			UNP_PCB_LOCK(unp);
1131 			if ((unp2 = unp->unp_conn) == NULL) {
1132 				UNP_PCB_UNLOCK(unp);
1133 				error = ENOTCONN;
1134 				break;
1135 			}
1136 		}
1137 		unp_pcb_owned_lock2(unp, unp2, freed);
1138 		UNP_PCB_UNLOCK(unp);
1139 		if (__predict_false(freed)) {
1140 			error = ENOTCONN;
1141 			break;
1142 		}
1143 		if ((so2 = unp2->unp_socket) == NULL) {
1144 			UNP_PCB_UNLOCK(unp2);
1145 			error = ENOTCONN;
1146 			break;
1147 		}
1148 		SOCKBUF_LOCK(&so2->so_rcv);
1149 		if (unp2->unp_flags & UNP_WANTCRED) {
1150 			/*
1151 			 * Credentials are passed only once on SOCK_STREAM
1152 			 * and SOCK_SEQPACKET.
1153 			 */
1154 			unp2->unp_flags &= ~UNP_WANTCRED;
1155 			control = unp_addsockcred(td, control);
1156 		}
1157 		/*
1158 		 * Send to paired receive port, and then reduce send buffer
1159 		 * hiwater marks to maintain backpressure.  Wake up readers.
1160 		 */
1161 		switch (so->so_type) {
1162 		case SOCK_STREAM:
1163 			if (control != NULL) {
1164 				if (sbappendcontrol_locked(&so2->so_rcv, m,
1165 				    control))
1166 					control = NULL;
1167 			} else
1168 				sbappend_locked(&so2->so_rcv, m, flags);
1169 			break;
1170 
1171 		case SOCK_SEQPACKET: {
1172 			const struct sockaddr *from;
1173 
1174 			from = &sun_noname;
1175 			/*
1176 			 * Don't check for space available in so2->so_rcv.
1177 			 * Unix domain sockets only check for space in the
1178 			 * sending sockbuf, and that check is performed one
1179 			 * level up the stack.
1180 			 */
1181 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1182 				from, m, control))
1183 				control = NULL;
1184 			break;
1185 			}
1186 		}
1187 
1188 		mbcnt = so2->so_rcv.sb_mbcnt;
1189 		sbcc = sbavail(&so2->so_rcv);
1190 		if (sbcc)
1191 			sorwakeup_locked(so2);
1192 		else
1193 			SOCKBUF_UNLOCK(&so2->so_rcv);
1194 
1195 		/*
1196 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1197 		 * it would be possible for uipc_rcvd to be called at this
1198 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1199 		 * we would set SB_STOP below.  That could lead to an empty
1200 		 * sockbuf having SB_STOP set
1201 		 */
1202 		SOCKBUF_LOCK(&so->so_snd);
1203 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1204 			so->so_snd.sb_flags |= SB_STOP;
1205 		SOCKBUF_UNLOCK(&so->so_snd);
1206 		UNP_PCB_UNLOCK(unp2);
1207 		m = NULL;
1208 		break;
1209 	}
1210 
1211 	/*
1212 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1213 	 */
1214 	if (flags & PRUS_EOF) {
1215 		UNP_PCB_LOCK(unp);
1216 		socantsendmore(so);
1217 		unp_shutdown(unp);
1218 		UNP_PCB_UNLOCK(unp);
1219 	}
1220 	if (control != NULL && error != 0)
1221 		unp_dispose_mbuf(control);
1222 
1223 release:
1224 	if (control != NULL)
1225 		m_freem(control);
1226 	/*
1227 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1228 	 * for freeing memory.
1229 	 */
1230 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1231 		m_freem(m);
1232 	return (error);
1233 }
1234 
1235 static int
1236 uipc_ready(struct socket *so, struct mbuf *m, int count)
1237 {
1238 	struct unpcb *unp, *unp2;
1239 	struct socket *so2;
1240 	int error;
1241 
1242 	unp = sotounpcb(so);
1243 
1244 	UNP_LINK_RLOCK();
1245 	if ((unp2 = unp->unp_conn) == NULL) {
1246 		UNP_LINK_RUNLOCK();
1247 		for (int i = 0; i < count; i++)
1248 			m = m_free(m);
1249 		return (ECONNRESET);
1250 	}
1251 	UNP_PCB_LOCK(unp2);
1252 	so2 = unp2->unp_socket;
1253 
1254 	SOCKBUF_LOCK(&so2->so_rcv);
1255 	if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1256 		sorwakeup_locked(so2);
1257 	else
1258 		SOCKBUF_UNLOCK(&so2->so_rcv);
1259 
1260 	UNP_PCB_UNLOCK(unp2);
1261 	UNP_LINK_RUNLOCK();
1262 
1263 	return (error);
1264 }
1265 
1266 static int
1267 uipc_sense(struct socket *so, struct stat *sb)
1268 {
1269 	struct unpcb *unp;
1270 
1271 	unp = sotounpcb(so);
1272 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1273 
1274 	sb->st_blksize = so->so_snd.sb_hiwat;
1275 	UNP_PCB_LOCK(unp);
1276 	sb->st_dev = NODEV;
1277 	if (unp->unp_ino == 0)
1278 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1279 	sb->st_ino = unp->unp_ino;
1280 	UNP_PCB_UNLOCK(unp);
1281 	return (0);
1282 }
1283 
1284 static int
1285 uipc_shutdown(struct socket *so)
1286 {
1287 	struct unpcb *unp;
1288 
1289 	unp = sotounpcb(so);
1290 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1291 
1292 	UNP_PCB_LOCK(unp);
1293 	socantsendmore(so);
1294 	unp_shutdown(unp);
1295 	UNP_PCB_UNLOCK(unp);
1296 	return (0);
1297 }
1298 
1299 static int
1300 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1301 {
1302 	struct unpcb *unp;
1303 	const struct sockaddr *sa;
1304 
1305 	unp = sotounpcb(so);
1306 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1307 
1308 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1309 	UNP_PCB_LOCK(unp);
1310 	if (unp->unp_addr != NULL)
1311 		sa = (struct sockaddr *) unp->unp_addr;
1312 	else
1313 		sa = &sun_noname;
1314 	bcopy(sa, *nam, sa->sa_len);
1315 	UNP_PCB_UNLOCK(unp);
1316 	return (0);
1317 }
1318 
1319 static struct pr_usrreqs uipc_usrreqs_dgram = {
1320 	.pru_abort = 		uipc_abort,
1321 	.pru_accept =		uipc_accept,
1322 	.pru_attach =		uipc_attach,
1323 	.pru_bind =		uipc_bind,
1324 	.pru_bindat =		uipc_bindat,
1325 	.pru_connect =		uipc_connect,
1326 	.pru_connectat =	uipc_connectat,
1327 	.pru_connect2 =		uipc_connect2,
1328 	.pru_detach =		uipc_detach,
1329 	.pru_disconnect =	uipc_disconnect,
1330 	.pru_listen =		uipc_listen,
1331 	.pru_peeraddr =		uipc_peeraddr,
1332 	.pru_rcvd =		uipc_rcvd,
1333 	.pru_send =		uipc_send,
1334 	.pru_sense =		uipc_sense,
1335 	.pru_shutdown =		uipc_shutdown,
1336 	.pru_sockaddr =		uipc_sockaddr,
1337 	.pru_soreceive =	soreceive_dgram,
1338 	.pru_close =		uipc_close,
1339 };
1340 
1341 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1342 	.pru_abort =		uipc_abort,
1343 	.pru_accept =		uipc_accept,
1344 	.pru_attach =		uipc_attach,
1345 	.pru_bind =		uipc_bind,
1346 	.pru_bindat =		uipc_bindat,
1347 	.pru_connect =		uipc_connect,
1348 	.pru_connectat =	uipc_connectat,
1349 	.pru_connect2 =		uipc_connect2,
1350 	.pru_detach =		uipc_detach,
1351 	.pru_disconnect =	uipc_disconnect,
1352 	.pru_listen =		uipc_listen,
1353 	.pru_peeraddr =		uipc_peeraddr,
1354 	.pru_rcvd =		uipc_rcvd,
1355 	.pru_send =		uipc_send,
1356 	.pru_sense =		uipc_sense,
1357 	.pru_shutdown =		uipc_shutdown,
1358 	.pru_sockaddr =		uipc_sockaddr,
1359 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1360 	.pru_close =		uipc_close,
1361 };
1362 
1363 static struct pr_usrreqs uipc_usrreqs_stream = {
1364 	.pru_abort = 		uipc_abort,
1365 	.pru_accept =		uipc_accept,
1366 	.pru_attach =		uipc_attach,
1367 	.pru_bind =		uipc_bind,
1368 	.pru_bindat =		uipc_bindat,
1369 	.pru_connect =		uipc_connect,
1370 	.pru_connectat =	uipc_connectat,
1371 	.pru_connect2 =		uipc_connect2,
1372 	.pru_detach =		uipc_detach,
1373 	.pru_disconnect =	uipc_disconnect,
1374 	.pru_listen =		uipc_listen,
1375 	.pru_peeraddr =		uipc_peeraddr,
1376 	.pru_rcvd =		uipc_rcvd,
1377 	.pru_send =		uipc_send,
1378 	.pru_ready =		uipc_ready,
1379 	.pru_sense =		uipc_sense,
1380 	.pru_shutdown =		uipc_shutdown,
1381 	.pru_sockaddr =		uipc_sockaddr,
1382 	.pru_soreceive =	soreceive_generic,
1383 	.pru_close =		uipc_close,
1384 };
1385 
1386 static int
1387 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1388 {
1389 	struct unpcb *unp;
1390 	struct xucred xu;
1391 	int error, optval;
1392 
1393 	if (sopt->sopt_level != 0)
1394 		return (EINVAL);
1395 
1396 	unp = sotounpcb(so);
1397 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1398 	error = 0;
1399 	switch (sopt->sopt_dir) {
1400 	case SOPT_GET:
1401 		switch (sopt->sopt_name) {
1402 		case LOCAL_PEERCRED:
1403 			UNP_PCB_LOCK(unp);
1404 			if (unp->unp_flags & UNP_HAVEPC)
1405 				xu = unp->unp_peercred;
1406 			else {
1407 				if (so->so_type == SOCK_STREAM)
1408 					error = ENOTCONN;
1409 				else
1410 					error = EINVAL;
1411 			}
1412 			UNP_PCB_UNLOCK(unp);
1413 			if (error == 0)
1414 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1415 			break;
1416 
1417 		case LOCAL_CREDS:
1418 			/* Unlocked read. */
1419 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1420 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1421 			break;
1422 
1423 		case LOCAL_CONNWAIT:
1424 			/* Unlocked read. */
1425 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1426 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1427 			break;
1428 
1429 		default:
1430 			error = EOPNOTSUPP;
1431 			break;
1432 		}
1433 		break;
1434 
1435 	case SOPT_SET:
1436 		switch (sopt->sopt_name) {
1437 		case LOCAL_CREDS:
1438 		case LOCAL_CONNWAIT:
1439 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1440 					    sizeof(optval));
1441 			if (error)
1442 				break;
1443 
1444 #define	OPTSET(bit) do {						\
1445 	UNP_PCB_LOCK(unp);						\
1446 	if (optval)							\
1447 		unp->unp_flags |= bit;					\
1448 	else								\
1449 		unp->unp_flags &= ~bit;					\
1450 	UNP_PCB_UNLOCK(unp);						\
1451 } while (0)
1452 
1453 			switch (sopt->sopt_name) {
1454 			case LOCAL_CREDS:
1455 				OPTSET(UNP_WANTCRED);
1456 				break;
1457 
1458 			case LOCAL_CONNWAIT:
1459 				OPTSET(UNP_CONNWAIT);
1460 				break;
1461 
1462 			default:
1463 				break;
1464 			}
1465 			break;
1466 #undef	OPTSET
1467 		default:
1468 			error = ENOPROTOOPT;
1469 			break;
1470 		}
1471 		break;
1472 
1473 	default:
1474 		error = EOPNOTSUPP;
1475 		break;
1476 	}
1477 	return (error);
1478 }
1479 
1480 static int
1481 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1482 {
1483 
1484 	return (unp_connectat(AT_FDCWD, so, nam, td));
1485 }
1486 
1487 static int
1488 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1489     struct thread *td)
1490 {
1491 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1492 	struct vnode *vp;
1493 	struct socket *so2;
1494 	struct unpcb *unp, *unp2, *unp3;
1495 	struct nameidata nd;
1496 	char buf[SOCK_MAXADDRLEN];
1497 	struct sockaddr *sa;
1498 	cap_rights_t rights;
1499 	int error, len, freed;
1500 	struct mtx *vplock;
1501 
1502 	if (nam->sa_family != AF_UNIX)
1503 		return (EAFNOSUPPORT);
1504 	if (nam->sa_len > sizeof(struct sockaddr_un))
1505 		return (EINVAL);
1506 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1507 	if (len <= 0)
1508 		return (EINVAL);
1509 	bcopy(soun->sun_path, buf, len);
1510 	buf[len] = 0;
1511 
1512 	unp = sotounpcb(so);
1513 	UNP_PCB_LOCK(unp);
1514 	if (unp->unp_flags & UNP_CONNECTING) {
1515 		UNP_PCB_UNLOCK(unp);
1516 		return (EALREADY);
1517 	}
1518 	unp->unp_flags |= UNP_CONNECTING;
1519 	UNP_PCB_UNLOCK(unp);
1520 
1521 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1522 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1523 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1524 	error = namei(&nd);
1525 	if (error)
1526 		vp = NULL;
1527 	else
1528 		vp = nd.ni_vp;
1529 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1530 	NDFREE(&nd, NDF_ONLY_PNBUF);
1531 	if (error)
1532 		goto bad;
1533 
1534 	if (vp->v_type != VSOCK) {
1535 		error = ENOTSOCK;
1536 		goto bad;
1537 	}
1538 #ifdef MAC
1539 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1540 	if (error)
1541 		goto bad;
1542 #endif
1543 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1544 	if (error)
1545 		goto bad;
1546 
1547 	unp = sotounpcb(so);
1548 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1549 
1550 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1551 	mtx_lock(vplock);
1552 	VOP_UNP_CONNECT(vp, &unp2);
1553 	if (unp2 == NULL) {
1554 		error = ECONNREFUSED;
1555 		goto bad2;
1556 	}
1557 	so2 = unp2->unp_socket;
1558 	if (so->so_type != so2->so_type) {
1559 		error = EPROTOTYPE;
1560 		goto bad2;
1561 	}
1562 	unp_pcb_lock2(unp, unp2);
1563 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1564 		if (so2->so_options & SO_ACCEPTCONN) {
1565 			CURVNET_SET(so2->so_vnet);
1566 			so2 = sonewconn(so2, 0);
1567 			CURVNET_RESTORE();
1568 		} else
1569 			so2 = NULL;
1570 		if (so2 == NULL) {
1571 			error = ECONNREFUSED;
1572 			goto bad3;
1573 		}
1574 		unp3 = sotounpcb(so2);
1575 		UNP_PCB_UNLOCK(unp);
1576 		unp_pcb_owned_lock2(unp2, unp3, freed);
1577 		MPASS(!freed);
1578 		if (unp2->unp_addr != NULL) {
1579 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1580 			unp3->unp_addr = (struct sockaddr_un *) sa;
1581 			sa = NULL;
1582 		}
1583 
1584 		/*
1585 		 * The connector's (client's) credentials are copied from its
1586 		 * process structure at the time of connect() (which is now).
1587 		 */
1588 		cru2x(td->td_ucred, &unp3->unp_peercred);
1589 		unp3->unp_flags |= UNP_HAVEPC;
1590 
1591 		/*
1592 		 * The receiver's (server's) credentials are copied from the
1593 		 * unp_peercred member of socket on which the former called
1594 		 * listen(); uipc_listen() cached that process's credentials
1595 		 * at that time so we can use them now.
1596 		 */
1597 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1598 		    sizeof(unp->unp_peercred));
1599 		unp->unp_flags |= UNP_HAVEPC;
1600 		if (unp2->unp_flags & UNP_WANTCRED)
1601 			unp3->unp_flags |= UNP_WANTCRED;
1602 		UNP_PCB_UNLOCK(unp2);
1603 		unp2 = unp3;
1604 		unp_pcb_owned_lock2(unp2, unp, freed);
1605 		MPASS(!freed);
1606 #ifdef MAC
1607 		mac_socketpeer_set_from_socket(so, so2);
1608 		mac_socketpeer_set_from_socket(so2, so);
1609 #endif
1610 	}
1611 
1612 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1613 	    sotounpcb(so2) == unp2,
1614 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1615 	error = unp_connect2(so, so2, PRU_CONNECT);
1616 bad3:
1617 	UNP_PCB_UNLOCK(unp2);
1618 	UNP_PCB_UNLOCK(unp);
1619 bad2:
1620 	mtx_unlock(vplock);
1621 bad:
1622 	if (vp != NULL) {
1623 		vput(vp);
1624 	}
1625 	free(sa, M_SONAME);
1626 	UNP_PCB_LOCK(unp);
1627 	unp->unp_flags &= ~UNP_CONNECTING;
1628 	UNP_PCB_UNLOCK(unp);
1629 	return (error);
1630 }
1631 
1632 static int
1633 unp_connect2(struct socket *so, struct socket *so2, int req)
1634 {
1635 	struct unpcb *unp;
1636 	struct unpcb *unp2;
1637 
1638 	unp = sotounpcb(so);
1639 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1640 	unp2 = sotounpcb(so2);
1641 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1642 
1643 	UNP_PCB_LOCK_ASSERT(unp);
1644 	UNP_PCB_LOCK_ASSERT(unp2);
1645 
1646 	if (so2->so_type != so->so_type)
1647 		return (EPROTOTYPE);
1648 	unp2->unp_flags &= ~UNP_NASCENT;
1649 	unp->unp_conn = unp2;
1650 	unp_pcb_hold(unp2);
1651 	unp_pcb_hold(unp);
1652 	switch (so->so_type) {
1653 	case SOCK_DGRAM:
1654 		UNP_REF_LIST_LOCK();
1655 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1656 		UNP_REF_LIST_UNLOCK();
1657 		soisconnected(so);
1658 		break;
1659 
1660 	case SOCK_STREAM:
1661 	case SOCK_SEQPACKET:
1662 		unp2->unp_conn = unp;
1663 		if (req == PRU_CONNECT &&
1664 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1665 			soisconnecting(so);
1666 		else
1667 			soisconnected(so);
1668 		soisconnected(so2);
1669 		break;
1670 
1671 	default:
1672 		panic("unp_connect2");
1673 	}
1674 	return (0);
1675 }
1676 
1677 static void
1678 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1679 {
1680 	struct socket *so, *so2;
1681 	int freed __unused;
1682 
1683 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1684 
1685 	UNP_PCB_LOCK_ASSERT(unp);
1686 	UNP_PCB_LOCK_ASSERT(unp2);
1687 
1688 	if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1689 		return;
1690 
1691 	MPASS(unp->unp_conn == unp2);
1692 	unp->unp_conn = NULL;
1693 	so = unp->unp_socket;
1694 	so2 = unp2->unp_socket;
1695 	switch (unp->unp_socket->so_type) {
1696 	case SOCK_DGRAM:
1697 		UNP_REF_LIST_LOCK();
1698 		LIST_REMOVE(unp, unp_reflink);
1699 		UNP_REF_LIST_UNLOCK();
1700 		if (so) {
1701 			SOCK_LOCK(so);
1702 			so->so_state &= ~SS_ISCONNECTED;
1703 			SOCK_UNLOCK(so);
1704 		}
1705 		break;
1706 
1707 	case SOCK_STREAM:
1708 	case SOCK_SEQPACKET:
1709 		if (so)
1710 			soisdisconnected(so);
1711 		MPASS(unp2->unp_conn == unp);
1712 		unp2->unp_conn = NULL;
1713 		if (so2)
1714 			soisdisconnected(so2);
1715 		break;
1716 	}
1717 	freed = unp_pcb_rele(unp);
1718 	MPASS(freed == 0);
1719 	freed = unp_pcb_rele(unp2);
1720 	MPASS(freed == 0);
1721 }
1722 
1723 /*
1724  * unp_pcblist() walks the global list of struct unpcb's to generate a
1725  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1726  * sequentially, validating the generation number on each to see if it has
1727  * been detached.  All of this is necessary because copyout() may sleep on
1728  * disk I/O.
1729  */
1730 static int
1731 unp_pcblist(SYSCTL_HANDLER_ARGS)
1732 {
1733 	struct unpcb *unp, **unp_list;
1734 	unp_gen_t gencnt;
1735 	struct xunpgen *xug;
1736 	struct unp_head *head;
1737 	struct xunpcb *xu;
1738 	u_int i;
1739 	int error, freeunp, n;
1740 
1741 	switch ((intptr_t)arg1) {
1742 	case SOCK_STREAM:
1743 		head = &unp_shead;
1744 		break;
1745 
1746 	case SOCK_DGRAM:
1747 		head = &unp_dhead;
1748 		break;
1749 
1750 	case SOCK_SEQPACKET:
1751 		head = &unp_sphead;
1752 		break;
1753 
1754 	default:
1755 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1756 	}
1757 
1758 	/*
1759 	 * The process of preparing the PCB list is too time-consuming and
1760 	 * resource-intensive to repeat twice on every request.
1761 	 */
1762 	if (req->oldptr == NULL) {
1763 		n = unp_count;
1764 		req->oldidx = 2 * (sizeof *xug)
1765 			+ (n + n/8) * sizeof(struct xunpcb);
1766 		return (0);
1767 	}
1768 
1769 	if (req->newptr != NULL)
1770 		return (EPERM);
1771 
1772 	/*
1773 	 * OK, now we're committed to doing something.
1774 	 */
1775 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1776 	UNP_LINK_RLOCK();
1777 	gencnt = unp_gencnt;
1778 	n = unp_count;
1779 	UNP_LINK_RUNLOCK();
1780 
1781 	xug->xug_len = sizeof *xug;
1782 	xug->xug_count = n;
1783 	xug->xug_gen = gencnt;
1784 	xug->xug_sogen = so_gencnt;
1785 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1786 	if (error) {
1787 		free(xug, M_TEMP);
1788 		return (error);
1789 	}
1790 
1791 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1792 
1793 	UNP_LINK_RLOCK();
1794 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1795 	     unp = LIST_NEXT(unp, unp_link)) {
1796 		UNP_PCB_LOCK(unp);
1797 		if (unp->unp_gencnt <= gencnt) {
1798 			if (cr_cansee(req->td->td_ucred,
1799 			    unp->unp_socket->so_cred)) {
1800 				UNP_PCB_UNLOCK(unp);
1801 				continue;
1802 			}
1803 			unp_list[i++] = unp;
1804 			unp_pcb_hold(unp);
1805 		}
1806 		UNP_PCB_UNLOCK(unp);
1807 	}
1808 	UNP_LINK_RUNLOCK();
1809 	n = i;			/* In case we lost some during malloc. */
1810 
1811 	error = 0;
1812 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1813 	for (i = 0; i < n; i++) {
1814 		unp = unp_list[i];
1815 		UNP_PCB_LOCK(unp);
1816 		freeunp = unp_pcb_rele(unp);
1817 
1818 		if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1819 			xu->xu_len = sizeof *xu;
1820 			xu->xu_unpp = unp;
1821 			/*
1822 			 * XXX - need more locking here to protect against
1823 			 * connect/disconnect races for SMP.
1824 			 */
1825 			if (unp->unp_addr != NULL)
1826 				bcopy(unp->unp_addr, &xu->xu_addr,
1827 				      unp->unp_addr->sun_len);
1828 			else
1829 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1830 			if (unp->unp_conn != NULL &&
1831 			    unp->unp_conn->unp_addr != NULL)
1832 				bcopy(unp->unp_conn->unp_addr,
1833 				      &xu->xu_caddr,
1834 				      unp->unp_conn->unp_addr->sun_len);
1835 			else
1836 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1837 			xu->unp_vnode = unp->unp_vnode;
1838 			xu->unp_conn = unp->unp_conn;
1839 			xu->xu_firstref = LIST_FIRST(&unp->unp_refs);
1840 			xu->xu_nextref = LIST_NEXT(unp, unp_reflink);
1841 			xu->unp_gencnt = unp->unp_gencnt;
1842 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1843 			UNP_PCB_UNLOCK(unp);
1844 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1845 		} else  if (freeunp == 0)
1846 			UNP_PCB_UNLOCK(unp);
1847 	}
1848 	free(xu, M_TEMP);
1849 	if (!error) {
1850 		/*
1851 		 * Give the user an updated idea of our state.  If the
1852 		 * generation differs from what we told her before, she knows
1853 		 * that something happened while we were processing this
1854 		 * request, and it might be necessary to retry.
1855 		 */
1856 		xug->xug_gen = unp_gencnt;
1857 		xug->xug_sogen = so_gencnt;
1858 		xug->xug_count = unp_count;
1859 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1860 	}
1861 	free(unp_list, M_TEMP);
1862 	free(xug, M_TEMP);
1863 	return (error);
1864 }
1865 
1866 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1867     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1868     "List of active local datagram sockets");
1869 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1870     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1871     "List of active local stream sockets");
1872 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1873     CTLTYPE_OPAQUE | CTLFLAG_RD,
1874     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1875     "List of active local seqpacket sockets");
1876 
1877 static void
1878 unp_shutdown(struct unpcb *unp)
1879 {
1880 	struct unpcb *unp2;
1881 	struct socket *so;
1882 
1883 	UNP_PCB_LOCK_ASSERT(unp);
1884 
1885 	unp2 = unp->unp_conn;
1886 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1887 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1888 		so = unp2->unp_socket;
1889 		if (so != NULL)
1890 			socantrcvmore(so);
1891 	}
1892 }
1893 
1894 static void
1895 unp_drop(struct unpcb *unp)
1896 {
1897 	struct socket *so = unp->unp_socket;
1898 	struct unpcb *unp2;
1899 	int freed;
1900 
1901 	/*
1902 	 * Regardless of whether the socket's peer dropped the connection
1903 	 * with this socket by aborting or disconnecting, POSIX requires
1904 	 * that ECONNRESET is returned.
1905 	 */
1906 	/* acquire a reference so that unp isn't freed from underneath us */
1907 
1908 	UNP_PCB_LOCK(unp);
1909 	if (so)
1910 		so->so_error = ECONNRESET;
1911 	unp2 = unp->unp_conn;
1912 	if (unp2 != NULL) {
1913 		unp_pcb_hold(unp2);
1914 		unp_pcb_owned_lock2(unp, unp2, freed);
1915 		unp_disconnect(unp, unp2);
1916 		if (unp_pcb_rele(unp2) == 0)
1917 			UNP_PCB_UNLOCK(unp2);
1918 	}
1919 	if (unp_pcb_rele(unp) == 0)
1920 		UNP_PCB_UNLOCK(unp);
1921 }
1922 
1923 static void
1924 unp_freerights(struct filedescent **fdep, int fdcount)
1925 {
1926 	struct file *fp;
1927 	int i;
1928 
1929 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1930 
1931 	for (i = 0; i < fdcount; i++) {
1932 		fp = fdep[i]->fde_file;
1933 		filecaps_free(&fdep[i]->fde_caps);
1934 		unp_discard(fp);
1935 	}
1936 	free(fdep[0], M_FILECAPS);
1937 }
1938 
1939 static int
1940 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1941 {
1942 	struct thread *td = curthread;		/* XXX */
1943 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1944 	int i;
1945 	int *fdp;
1946 	struct filedesc *fdesc = td->td_proc->p_fd;
1947 	struct filedescent **fdep;
1948 	void *data;
1949 	socklen_t clen = control->m_len, datalen;
1950 	int error, newfds;
1951 	u_int newlen;
1952 
1953 	UNP_LINK_UNLOCK_ASSERT();
1954 
1955 	error = 0;
1956 	if (controlp != NULL) /* controlp == NULL => free control messages */
1957 		*controlp = NULL;
1958 	while (cm != NULL) {
1959 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1960 			error = EINVAL;
1961 			break;
1962 		}
1963 		data = CMSG_DATA(cm);
1964 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1965 		if (cm->cmsg_level == SOL_SOCKET
1966 		    && cm->cmsg_type == SCM_RIGHTS) {
1967 			newfds = datalen / sizeof(*fdep);
1968 			if (newfds == 0)
1969 				goto next;
1970 			fdep = data;
1971 
1972 			/* If we're not outputting the descriptors free them. */
1973 			if (error || controlp == NULL) {
1974 				unp_freerights(fdep, newfds);
1975 				goto next;
1976 			}
1977 			FILEDESC_XLOCK(fdesc);
1978 
1979 			/*
1980 			 * Now change each pointer to an fd in the global
1981 			 * table to an integer that is the index to the local
1982 			 * fd table entry that we set up to point to the
1983 			 * global one we are transferring.
1984 			 */
1985 			newlen = newfds * sizeof(int);
1986 			*controlp = sbcreatecontrol(NULL, newlen,
1987 			    SCM_RIGHTS, SOL_SOCKET);
1988 			if (*controlp == NULL) {
1989 				FILEDESC_XUNLOCK(fdesc);
1990 				error = E2BIG;
1991 				unp_freerights(fdep, newfds);
1992 				goto next;
1993 			}
1994 
1995 			fdp = (int *)
1996 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1997 			if (fdallocn(td, 0, fdp, newfds) != 0) {
1998 				FILEDESC_XUNLOCK(fdesc);
1999 				error = EMSGSIZE;
2000 				unp_freerights(fdep, newfds);
2001 				m_freem(*controlp);
2002 				*controlp = NULL;
2003 				goto next;
2004 			}
2005 			for (i = 0; i < newfds; i++, fdp++) {
2006 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2007 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2008 				    &fdep[i]->fde_caps);
2009 				unp_externalize_fp(fdep[i]->fde_file);
2010 			}
2011 			FILEDESC_XUNLOCK(fdesc);
2012 			free(fdep[0], M_FILECAPS);
2013 		} else {
2014 			/* We can just copy anything else across. */
2015 			if (error || controlp == NULL)
2016 				goto next;
2017 			*controlp = sbcreatecontrol(NULL, datalen,
2018 			    cm->cmsg_type, cm->cmsg_level);
2019 			if (*controlp == NULL) {
2020 				error = ENOBUFS;
2021 				goto next;
2022 			}
2023 			bcopy(data,
2024 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2025 			    datalen);
2026 		}
2027 		controlp = &(*controlp)->m_next;
2028 
2029 next:
2030 		if (CMSG_SPACE(datalen) < clen) {
2031 			clen -= CMSG_SPACE(datalen);
2032 			cm = (struct cmsghdr *)
2033 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2034 		} else {
2035 			clen = 0;
2036 			cm = NULL;
2037 		}
2038 	}
2039 
2040 	m_freem(control);
2041 	return (error);
2042 }
2043 
2044 static void
2045 unp_zone_change(void *tag)
2046 {
2047 
2048 	uma_zone_set_max(unp_zone, maxsockets);
2049 }
2050 
2051 static void
2052 unp_init(void)
2053 {
2054 
2055 #ifdef VIMAGE
2056 	if (!IS_DEFAULT_VNET(curvnet))
2057 		return;
2058 #endif
2059 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2060 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2061 	if (unp_zone == NULL)
2062 		panic("unp_init");
2063 	uma_zone_set_max(unp_zone, maxsockets);
2064 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2065 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2066 	    NULL, EVENTHANDLER_PRI_ANY);
2067 	LIST_INIT(&unp_dhead);
2068 	LIST_INIT(&unp_shead);
2069 	LIST_INIT(&unp_sphead);
2070 	SLIST_INIT(&unp_defers);
2071 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2072 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2073 	UNP_LINK_LOCK_INIT();
2074 	UNP_DEFERRED_LOCK_INIT();
2075 }
2076 
2077 static int
2078 unp_internalize(struct mbuf **controlp, struct thread *td)
2079 {
2080 	struct mbuf *control = *controlp;
2081 	struct proc *p = td->td_proc;
2082 	struct filedesc *fdesc = p->p_fd;
2083 	struct bintime *bt;
2084 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2085 	struct cmsgcred *cmcred;
2086 	struct filedescent *fde, **fdep, *fdev;
2087 	struct file *fp;
2088 	struct timeval *tv;
2089 	struct timespec *ts;
2090 	int i, *fdp;
2091 	void *data;
2092 	socklen_t clen = control->m_len, datalen;
2093 	int error, oldfds;
2094 	u_int newlen;
2095 
2096 	UNP_LINK_UNLOCK_ASSERT();
2097 
2098 	error = 0;
2099 	*controlp = NULL;
2100 	while (cm != NULL) {
2101 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2102 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2103 			error = EINVAL;
2104 			goto out;
2105 		}
2106 		data = CMSG_DATA(cm);
2107 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2108 
2109 		switch (cm->cmsg_type) {
2110 		/*
2111 		 * Fill in credential information.
2112 		 */
2113 		case SCM_CREDS:
2114 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2115 			    SCM_CREDS, SOL_SOCKET);
2116 			if (*controlp == NULL) {
2117 				error = ENOBUFS;
2118 				goto out;
2119 			}
2120 			cmcred = (struct cmsgcred *)
2121 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2122 			cmcred->cmcred_pid = p->p_pid;
2123 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2124 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2125 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2126 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2127 			    CMGROUP_MAX);
2128 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2129 				cmcred->cmcred_groups[i] =
2130 				    td->td_ucred->cr_groups[i];
2131 			break;
2132 
2133 		case SCM_RIGHTS:
2134 			oldfds = datalen / sizeof (int);
2135 			if (oldfds == 0)
2136 				break;
2137 			/*
2138 			 * Check that all the FDs passed in refer to legal
2139 			 * files.  If not, reject the entire operation.
2140 			 */
2141 			fdp = data;
2142 			FILEDESC_SLOCK(fdesc);
2143 			for (i = 0; i < oldfds; i++, fdp++) {
2144 				fp = fget_locked(fdesc, *fdp);
2145 				if (fp == NULL) {
2146 					FILEDESC_SUNLOCK(fdesc);
2147 					error = EBADF;
2148 					goto out;
2149 				}
2150 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2151 					FILEDESC_SUNLOCK(fdesc);
2152 					error = EOPNOTSUPP;
2153 					goto out;
2154 				}
2155 
2156 			}
2157 
2158 			/*
2159 			 * Now replace the integer FDs with pointers to the
2160 			 * file structure and capability rights.
2161 			 */
2162 			newlen = oldfds * sizeof(fdep[0]);
2163 			*controlp = sbcreatecontrol(NULL, newlen,
2164 			    SCM_RIGHTS, SOL_SOCKET);
2165 			if (*controlp == NULL) {
2166 				FILEDESC_SUNLOCK(fdesc);
2167 				error = E2BIG;
2168 				goto out;
2169 			}
2170 			fdp = data;
2171 			fdep = (struct filedescent **)
2172 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2173 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2174 			    M_WAITOK);
2175 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2176 				fde = &fdesc->fd_ofiles[*fdp];
2177 				fdep[i] = fdev;
2178 				fdep[i]->fde_file = fde->fde_file;
2179 				filecaps_copy(&fde->fde_caps,
2180 				    &fdep[i]->fde_caps, true);
2181 				unp_internalize_fp(fdep[i]->fde_file);
2182 			}
2183 			FILEDESC_SUNLOCK(fdesc);
2184 			break;
2185 
2186 		case SCM_TIMESTAMP:
2187 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2188 			    SCM_TIMESTAMP, SOL_SOCKET);
2189 			if (*controlp == NULL) {
2190 				error = ENOBUFS;
2191 				goto out;
2192 			}
2193 			tv = (struct timeval *)
2194 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2195 			microtime(tv);
2196 			break;
2197 
2198 		case SCM_BINTIME:
2199 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2200 			    SCM_BINTIME, SOL_SOCKET);
2201 			if (*controlp == NULL) {
2202 				error = ENOBUFS;
2203 				goto out;
2204 			}
2205 			bt = (struct bintime *)
2206 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2207 			bintime(bt);
2208 			break;
2209 
2210 		case SCM_REALTIME:
2211 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2212 			    SCM_REALTIME, SOL_SOCKET);
2213 			if (*controlp == NULL) {
2214 				error = ENOBUFS;
2215 				goto out;
2216 			}
2217 			ts = (struct timespec *)
2218 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2219 			nanotime(ts);
2220 			break;
2221 
2222 		case SCM_MONOTONIC:
2223 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2224 			    SCM_MONOTONIC, SOL_SOCKET);
2225 			if (*controlp == NULL) {
2226 				error = ENOBUFS;
2227 				goto out;
2228 			}
2229 			ts = (struct timespec *)
2230 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2231 			nanouptime(ts);
2232 			break;
2233 
2234 		default:
2235 			error = EINVAL;
2236 			goto out;
2237 		}
2238 
2239 		controlp = &(*controlp)->m_next;
2240 		if (CMSG_SPACE(datalen) < clen) {
2241 			clen -= CMSG_SPACE(datalen);
2242 			cm = (struct cmsghdr *)
2243 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2244 		} else {
2245 			clen = 0;
2246 			cm = NULL;
2247 		}
2248 	}
2249 
2250 out:
2251 	m_freem(control);
2252 	return (error);
2253 }
2254 
2255 static struct mbuf *
2256 unp_addsockcred(struct thread *td, struct mbuf *control)
2257 {
2258 	struct mbuf *m, *n, *n_prev;
2259 	struct sockcred *sc;
2260 	const struct cmsghdr *cm;
2261 	int ngroups;
2262 	int i;
2263 
2264 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2265 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2266 	if (m == NULL)
2267 		return (control);
2268 
2269 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2270 	sc->sc_uid = td->td_ucred->cr_ruid;
2271 	sc->sc_euid = td->td_ucred->cr_uid;
2272 	sc->sc_gid = td->td_ucred->cr_rgid;
2273 	sc->sc_egid = td->td_ucred->cr_gid;
2274 	sc->sc_ngroups = ngroups;
2275 	for (i = 0; i < sc->sc_ngroups; i++)
2276 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2277 
2278 	/*
2279 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2280 	 * created SCM_CREDS control message (struct sockcred) has another
2281 	 * format.
2282 	 */
2283 	if (control != NULL)
2284 		for (n = control, n_prev = NULL; n != NULL;) {
2285 			cm = mtod(n, struct cmsghdr *);
2286     			if (cm->cmsg_level == SOL_SOCKET &&
2287 			    cm->cmsg_type == SCM_CREDS) {
2288     				if (n_prev == NULL)
2289 					control = n->m_next;
2290 				else
2291 					n_prev->m_next = n->m_next;
2292 				n = m_free(n);
2293 			} else {
2294 				n_prev = n;
2295 				n = n->m_next;
2296 			}
2297 		}
2298 
2299 	/* Prepend it to the head. */
2300 	m->m_next = control;
2301 	return (m);
2302 }
2303 
2304 static struct unpcb *
2305 fptounp(struct file *fp)
2306 {
2307 	struct socket *so;
2308 
2309 	if (fp->f_type != DTYPE_SOCKET)
2310 		return (NULL);
2311 	if ((so = fp->f_data) == NULL)
2312 		return (NULL);
2313 	if (so->so_proto->pr_domain != &localdomain)
2314 		return (NULL);
2315 	return sotounpcb(so);
2316 }
2317 
2318 static void
2319 unp_discard(struct file *fp)
2320 {
2321 	struct unp_defer *dr;
2322 
2323 	if (unp_externalize_fp(fp)) {
2324 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2325 		dr->ud_fp = fp;
2326 		UNP_DEFERRED_LOCK();
2327 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2328 		UNP_DEFERRED_UNLOCK();
2329 		atomic_add_int(&unp_defers_count, 1);
2330 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2331 	} else
2332 		(void) closef(fp, (struct thread *)NULL);
2333 }
2334 
2335 static void
2336 unp_process_defers(void *arg __unused, int pending)
2337 {
2338 	struct unp_defer *dr;
2339 	SLIST_HEAD(, unp_defer) drl;
2340 	int count;
2341 
2342 	SLIST_INIT(&drl);
2343 	for (;;) {
2344 		UNP_DEFERRED_LOCK();
2345 		if (SLIST_FIRST(&unp_defers) == NULL) {
2346 			UNP_DEFERRED_UNLOCK();
2347 			break;
2348 		}
2349 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2350 		UNP_DEFERRED_UNLOCK();
2351 		count = 0;
2352 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2353 			SLIST_REMOVE_HEAD(&drl, ud_link);
2354 			closef(dr->ud_fp, NULL);
2355 			free(dr, M_TEMP);
2356 			count++;
2357 		}
2358 		atomic_add_int(&unp_defers_count, -count);
2359 	}
2360 }
2361 
2362 static void
2363 unp_internalize_fp(struct file *fp)
2364 {
2365 	struct unpcb *unp;
2366 
2367 	UNP_LINK_WLOCK();
2368 	if ((unp = fptounp(fp)) != NULL) {
2369 		unp->unp_file = fp;
2370 		unp->unp_msgcount++;
2371 	}
2372 	fhold(fp);
2373 	unp_rights++;
2374 	UNP_LINK_WUNLOCK();
2375 }
2376 
2377 static int
2378 unp_externalize_fp(struct file *fp)
2379 {
2380 	struct unpcb *unp;
2381 	int ret;
2382 
2383 	UNP_LINK_WLOCK();
2384 	if ((unp = fptounp(fp)) != NULL) {
2385 		unp->unp_msgcount--;
2386 		ret = 1;
2387 	} else
2388 		ret = 0;
2389 	unp_rights--;
2390 	UNP_LINK_WUNLOCK();
2391 	return (ret);
2392 }
2393 
2394 /*
2395  * unp_defer indicates whether additional work has been defered for a future
2396  * pass through unp_gc().  It is thread local and does not require explicit
2397  * synchronization.
2398  */
2399 static int	unp_marked;
2400 static int	unp_unreachable;
2401 
2402 static void
2403 unp_accessable(struct filedescent **fdep, int fdcount)
2404 {
2405 	struct unpcb *unp;
2406 	struct file *fp;
2407 	int i;
2408 
2409 	for (i = 0; i < fdcount; i++) {
2410 		fp = fdep[i]->fde_file;
2411 		if ((unp = fptounp(fp)) == NULL)
2412 			continue;
2413 		if (unp->unp_gcflag & UNPGC_REF)
2414 			continue;
2415 		unp->unp_gcflag &= ~UNPGC_DEAD;
2416 		unp->unp_gcflag |= UNPGC_REF;
2417 		unp_marked++;
2418 	}
2419 }
2420 
2421 static void
2422 unp_gc_process(struct unpcb *unp)
2423 {
2424 	struct socket *so, *soa;
2425 	struct file *fp;
2426 
2427 	/* Already processed. */
2428 	if (unp->unp_gcflag & UNPGC_SCANNED)
2429 		return;
2430 	fp = unp->unp_file;
2431 
2432 	/*
2433 	 * Check for a socket potentially in a cycle.  It must be in a
2434 	 * queue as indicated by msgcount, and this must equal the file
2435 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2436 	 */
2437 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2438 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2439 		unp->unp_gcflag |= UNPGC_DEAD;
2440 		unp_unreachable++;
2441 		return;
2442 	}
2443 
2444 	so = unp->unp_socket;
2445 	SOCK_LOCK(so);
2446 	if (SOLISTENING(so)) {
2447 		/*
2448 		 * Mark all sockets in our accept queue.
2449 		 */
2450 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2451 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2452 				continue;
2453 			SOCKBUF_LOCK(&soa->so_rcv);
2454 			unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2455 			SOCKBUF_UNLOCK(&soa->so_rcv);
2456 		}
2457 	} else {
2458 		/*
2459 		 * Mark all sockets we reference with RIGHTS.
2460 		 */
2461 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2462 			SOCKBUF_LOCK(&so->so_rcv);
2463 			unp_scan(so->so_rcv.sb_mb, unp_accessable);
2464 			SOCKBUF_UNLOCK(&so->so_rcv);
2465 		}
2466 	}
2467 	SOCK_UNLOCK(so);
2468 	unp->unp_gcflag |= UNPGC_SCANNED;
2469 }
2470 
2471 static int unp_recycled;
2472 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2473     "Number of unreachable sockets claimed by the garbage collector.");
2474 
2475 static int unp_taskcount;
2476 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2477     "Number of times the garbage collector has run.");
2478 
2479 static void
2480 unp_gc(__unused void *arg, int pending)
2481 {
2482 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2483 				    NULL };
2484 	struct unp_head **head;
2485 	struct file *f, **unref;
2486 	struct unpcb *unp;
2487 	int i, total;
2488 
2489 	unp_taskcount++;
2490 	UNP_LINK_RLOCK();
2491 	/*
2492 	 * First clear all gc flags from previous runs, apart from
2493 	 * UNPGC_IGNORE_RIGHTS.
2494 	 */
2495 	for (head = heads; *head != NULL; head++)
2496 		LIST_FOREACH(unp, *head, unp_link)
2497 			unp->unp_gcflag =
2498 			    (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2499 
2500 	/*
2501 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2502 	 * is reachable all of the sockets it references are reachable.
2503 	 * Stop the scan once we do a complete loop without discovering
2504 	 * a new reachable socket.
2505 	 */
2506 	do {
2507 		unp_unreachable = 0;
2508 		unp_marked = 0;
2509 		for (head = heads; *head != NULL; head++)
2510 			LIST_FOREACH(unp, *head, unp_link)
2511 				unp_gc_process(unp);
2512 	} while (unp_marked);
2513 	UNP_LINK_RUNLOCK();
2514 	if (unp_unreachable == 0)
2515 		return;
2516 
2517 	/*
2518 	 * Allocate space for a local list of dead unpcbs.
2519 	 */
2520 	unref = malloc(unp_unreachable * sizeof(struct file *),
2521 	    M_TEMP, M_WAITOK);
2522 
2523 	/*
2524 	 * Iterate looking for sockets which have been specifically marked
2525 	 * as as unreachable and store them locally.
2526 	 */
2527 	UNP_LINK_RLOCK();
2528 	for (total = 0, head = heads; *head != NULL; head++)
2529 		LIST_FOREACH(unp, *head, unp_link)
2530 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2531 				f = unp->unp_file;
2532 				if (unp->unp_msgcount == 0 || f == NULL ||
2533 				    f->f_count != unp->unp_msgcount)
2534 					continue;
2535 				unref[total++] = f;
2536 				fhold(f);
2537 				KASSERT(total <= unp_unreachable,
2538 				    ("unp_gc: incorrect unreachable count."));
2539 			}
2540 	UNP_LINK_RUNLOCK();
2541 
2542 	/*
2543 	 * Now flush all sockets, free'ing rights.  This will free the
2544 	 * struct files associated with these sockets but leave each socket
2545 	 * with one remaining ref.
2546 	 */
2547 	for (i = 0; i < total; i++) {
2548 		struct socket *so;
2549 
2550 		so = unref[i]->f_data;
2551 		CURVNET_SET(so->so_vnet);
2552 		sorflush(so);
2553 		CURVNET_RESTORE();
2554 	}
2555 
2556 	/*
2557 	 * And finally release the sockets so they can be reclaimed.
2558 	 */
2559 	for (i = 0; i < total; i++)
2560 		fdrop(unref[i], NULL);
2561 	unp_recycled += total;
2562 	free(unref, M_TEMP);
2563 }
2564 
2565 static void
2566 unp_dispose_mbuf(struct mbuf *m)
2567 {
2568 
2569 	if (m)
2570 		unp_scan(m, unp_freerights);
2571 }
2572 
2573 /*
2574  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2575  */
2576 static void
2577 unp_dispose(struct socket *so)
2578 {
2579 	struct unpcb *unp;
2580 
2581 	unp = sotounpcb(so);
2582 	UNP_LINK_WLOCK();
2583 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2584 	UNP_LINK_WUNLOCK();
2585 	if (!SOLISTENING(so))
2586 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2587 }
2588 
2589 static void
2590 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2591 {
2592 	struct mbuf *m;
2593 	struct cmsghdr *cm;
2594 	void *data;
2595 	socklen_t clen, datalen;
2596 
2597 	while (m0 != NULL) {
2598 		for (m = m0; m; m = m->m_next) {
2599 			if (m->m_type != MT_CONTROL)
2600 				continue;
2601 
2602 			cm = mtod(m, struct cmsghdr *);
2603 			clen = m->m_len;
2604 
2605 			while (cm != NULL) {
2606 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2607 					break;
2608 
2609 				data = CMSG_DATA(cm);
2610 				datalen = (caddr_t)cm + cm->cmsg_len
2611 				    - (caddr_t)data;
2612 
2613 				if (cm->cmsg_level == SOL_SOCKET &&
2614 				    cm->cmsg_type == SCM_RIGHTS) {
2615 					(*op)(data, datalen /
2616 					    sizeof(struct filedescent *));
2617 				}
2618 
2619 				if (CMSG_SPACE(datalen) < clen) {
2620 					clen -= CMSG_SPACE(datalen);
2621 					cm = (struct cmsghdr *)
2622 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2623 				} else {
2624 					clen = 0;
2625 					cm = NULL;
2626 				}
2627 			}
2628 		}
2629 		m0 = m0->m_nextpkt;
2630 	}
2631 }
2632 
2633 /*
2634  * A helper function called by VFS before socket-type vnode reclamation.
2635  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2636  * use count.
2637  */
2638 void
2639 vfs_unp_reclaim(struct vnode *vp)
2640 {
2641 	struct unpcb *unp;
2642 	int active;
2643 	struct mtx *vplock;
2644 
2645 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2646 	KASSERT(vp->v_type == VSOCK,
2647 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2648 
2649 	active = 0;
2650 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2651 	mtx_lock(vplock);
2652 	VOP_UNP_CONNECT(vp, &unp);
2653 	if (unp == NULL)
2654 		goto done;
2655 	UNP_PCB_LOCK(unp);
2656 	if (unp->unp_vnode == vp) {
2657 		VOP_UNP_DETACH(vp);
2658 		unp->unp_vnode = NULL;
2659 		active = 1;
2660 	}
2661 	UNP_PCB_UNLOCK(unp);
2662  done:
2663 	mtx_unlock(vplock);
2664 	if (active)
2665 		vunref(vp);
2666 }
2667 
2668 #ifdef DDB
2669 static void
2670 db_print_indent(int indent)
2671 {
2672 	int i;
2673 
2674 	for (i = 0; i < indent; i++)
2675 		db_printf(" ");
2676 }
2677 
2678 static void
2679 db_print_unpflags(int unp_flags)
2680 {
2681 	int comma;
2682 
2683 	comma = 0;
2684 	if (unp_flags & UNP_HAVEPC) {
2685 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2686 		comma = 1;
2687 	}
2688 	if (unp_flags & UNP_WANTCRED) {
2689 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2690 		comma = 1;
2691 	}
2692 	if (unp_flags & UNP_CONNWAIT) {
2693 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2694 		comma = 1;
2695 	}
2696 	if (unp_flags & UNP_CONNECTING) {
2697 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2698 		comma = 1;
2699 	}
2700 	if (unp_flags & UNP_BINDING) {
2701 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2702 		comma = 1;
2703 	}
2704 }
2705 
2706 static void
2707 db_print_xucred(int indent, struct xucred *xu)
2708 {
2709 	int comma, i;
2710 
2711 	db_print_indent(indent);
2712 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2713 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2714 	db_print_indent(indent);
2715 	db_printf("cr_groups: ");
2716 	comma = 0;
2717 	for (i = 0; i < xu->cr_ngroups; i++) {
2718 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2719 		comma = 1;
2720 	}
2721 	db_printf("\n");
2722 }
2723 
2724 static void
2725 db_print_unprefs(int indent, struct unp_head *uh)
2726 {
2727 	struct unpcb *unp;
2728 	int counter;
2729 
2730 	counter = 0;
2731 	LIST_FOREACH(unp, uh, unp_reflink) {
2732 		if (counter % 4 == 0)
2733 			db_print_indent(indent);
2734 		db_printf("%p  ", unp);
2735 		if (counter % 4 == 3)
2736 			db_printf("\n");
2737 		counter++;
2738 	}
2739 	if (counter != 0 && counter % 4 != 0)
2740 		db_printf("\n");
2741 }
2742 
2743 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2744 {
2745 	struct unpcb *unp;
2746 
2747         if (!have_addr) {
2748                 db_printf("usage: show unpcb <addr>\n");
2749                 return;
2750         }
2751         unp = (struct unpcb *)addr;
2752 
2753 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2754 	    unp->unp_vnode);
2755 
2756 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2757 	    unp->unp_conn);
2758 
2759 	db_printf("unp_refs:\n");
2760 	db_print_unprefs(2, &unp->unp_refs);
2761 
2762 	/* XXXRW: Would be nice to print the full address, if any. */
2763 	db_printf("unp_addr: %p\n", unp->unp_addr);
2764 
2765 	db_printf("unp_gencnt: %llu\n",
2766 	    (unsigned long long)unp->unp_gencnt);
2767 
2768 	db_printf("unp_flags: %x (", unp->unp_flags);
2769 	db_print_unpflags(unp->unp_flags);
2770 	db_printf(")\n");
2771 
2772 	db_printf("unp_peercred:\n");
2773 	db_print_xucred(2, &unp->unp_peercred);
2774 
2775 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2776 }
2777 #endif
2778