1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/fcntl.h> 69 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 70 #include <sys/eventhandler.h> 71 #include <sys/file.h> 72 #include <sys/filedesc.h> 73 #include <sys/kernel.h> 74 #include <sys/lock.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * Locking key: 110 * (l) Locked using list lock 111 * (g) Locked using linkage lock 112 */ 113 114 static uma_zone_t unp_zone; 115 static unp_gen_t unp_gencnt; /* (l) */ 116 static u_int unp_count; /* (l) Count of local sockets. */ 117 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 118 static int unp_rights; /* (g) File descriptors in flight. */ 119 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 120 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 121 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 122 123 struct unp_defer { 124 SLIST_ENTRY(unp_defer) ud_link; 125 struct file *ud_fp; 126 }; 127 static SLIST_HEAD(, unp_defer) unp_defers; 128 static int unp_defers_count; 129 130 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 131 132 /* 133 * Garbage collection of cyclic file descriptor/socket references occurs 134 * asynchronously in a taskqueue context in order to avoid recursion and 135 * reentrance in the UNIX domain socket, file descriptor, and socket layer 136 * code. See unp_gc() for a full description. 137 */ 138 static struct timeout_task unp_gc_task; 139 140 /* 141 * The close of unix domain sockets attached as SCM_RIGHTS is 142 * postponed to the taskqueue, to avoid arbitrary recursion depth. 143 * The attached sockets might have another sockets attached. 144 */ 145 static struct task unp_defer_task; 146 147 /* 148 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 149 * stream sockets, although the total for sender and receiver is actually 150 * only PIPSIZ. 151 * 152 * Datagram sockets really use the sendspace as the maximum datagram size, 153 * and don't really want to reserve the sendspace. Their recvspace should be 154 * large enough for at least one max-size datagram plus address. 155 */ 156 #ifndef PIPSIZ 157 #define PIPSIZ 8192 158 #endif 159 static u_long unpst_sendspace = PIPSIZ; 160 static u_long unpst_recvspace = PIPSIZ; 161 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 162 static u_long unpdg_recvspace = 4*1024; 163 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 164 static u_long unpsp_recvspace = PIPSIZ; 165 166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); 167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); 170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0, 171 "SOCK_SEQPACKET"); 172 173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 174 &unpst_sendspace, 0, "Default stream send space."); 175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 176 &unpst_recvspace, 0, "Default stream receive space."); 177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 178 &unpdg_sendspace, 0, "Default datagram send space."); 179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 180 &unpdg_recvspace, 0, "Default datagram receive space."); 181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 182 &unpsp_sendspace, 0, "Default seqpacket send space."); 183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 184 &unpsp_recvspace, 0, "Default seqpacket receive space."); 185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 186 "File descriptors in flight."); 187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 188 &unp_defers_count, 0, 189 "File descriptors deferred to taskqueue for close."); 190 191 /* 192 * Locking and synchronization: 193 * 194 * Three types of locks exist in the local domain socket implementation: a 195 * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes. 196 * The linkage lock protects the socket count, global generation number, 197 * and stream/datagram global lists. 198 * 199 * The mtxpool lock protects the vnode from being modified while referenced. 200 * Lock ordering requires that it be acquired before any unpcb locks. 201 * 202 * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular 203 * note is that this includes the unp_conn field. So long as the unpcb lock 204 * is held the reference to the unpcb pointed to by unp_conn is valid. If we 205 * require that the unpcb pointed to by unp_conn remain live in cases where 206 * we need to drop the unp_mtx as when we need to acquire the lock for a 207 * second unpcb the caller must first acquire an additional reference on the 208 * second unpcb and then revalidate any state (typically check that unp_conn 209 * is non-NULL) upon requiring the initial unpcb lock. The lock ordering 210 * between unpcbs is the conventional ascending address order. Two helper 211 * routines exist for this: 212 * 213 * - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the 214 * safe ordering. 215 * 216 * - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held 217 * when called. If unp is unlocked and unp2 is subsequently freed 218 * freed will be set to 1. 219 * 220 * The helper routines for references are: 221 * 222 * - unp_pcb_hold(unp): Can be called any time we currently hold a valid 223 * reference to unp. 224 * 225 * - unp_pcb_rele(unp): The caller must hold the unp lock. If we are 226 * releasing the last reference, detach must have been called thus 227 * unp->unp_socket be NULL. 228 * 229 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 230 * allocated in pru_attach() and freed in pru_detach(). The validity of that 231 * pointer is an invariant, so no lock is required to dereference the so_pcb 232 * pointer if a valid socket reference is held by the caller. In practice, 233 * this is always true during operations performed on a socket. Each unpcb 234 * has a back-pointer to its socket, unp_socket, which will be stable under 235 * the same circumstances. 236 * 237 * This pointer may only be safely dereferenced as long as a valid reference 238 * to the unpcb is held. Typically, this reference will be from the socket, 239 * or from another unpcb when the referring unpcb's lock is held (in order 240 * that the reference not be invalidated during use). For example, to follow 241 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 242 * that detach is not run clearing unp_socket. 243 * 244 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 245 * protocols, bind() is a non-atomic operation, and connect() requires 246 * potential sleeping in the protocol, due to potentially waiting on local or 247 * distributed file systems. We try to separate "lookup" operations, which 248 * may sleep, and the IPC operations themselves, which typically can occur 249 * with relative atomicity as locks can be held over the entire operation. 250 * 251 * Another tricky issue is simultaneous multi-threaded or multi-process 252 * access to a single UNIX domain socket. These are handled by the flags 253 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 254 * binding, both of which involve dropping UNIX domain socket locks in order 255 * to perform namei() and other file system operations. 256 */ 257 static struct rwlock unp_link_rwlock; 258 static struct mtx unp_defers_lock; 259 260 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 261 "unp_link_rwlock") 262 263 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 264 RA_LOCKED) 265 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 266 RA_UNLOCKED) 267 268 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 269 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 270 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 271 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 272 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 273 RA_WLOCKED) 274 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 275 276 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 277 "unp_defer", NULL, MTX_DEF) 278 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 279 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 280 281 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 282 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 283 284 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 285 "unp", "unp", \ 286 MTX_DUPOK|MTX_DEF) 287 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 288 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 289 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 290 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 291 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 292 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 293 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 294 295 static int uipc_connect2(struct socket *, struct socket *); 296 static int uipc_ctloutput(struct socket *, struct sockopt *); 297 static int unp_connect(struct socket *, struct sockaddr *, 298 struct thread *); 299 static int unp_connectat(int, struct socket *, struct sockaddr *, 300 struct thread *); 301 static int unp_connect2(struct socket *so, struct socket *so2, int); 302 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 303 static void unp_dispose(struct socket *so); 304 static void unp_dispose_mbuf(struct mbuf *); 305 static void unp_shutdown(struct unpcb *); 306 static void unp_drop(struct unpcb *); 307 static void unp_gc(__unused void *, int); 308 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 309 static void unp_discard(struct file *); 310 static void unp_freerights(struct filedescent **, int); 311 static void unp_init(void); 312 static int unp_internalize(struct mbuf **, struct thread *); 313 static void unp_internalize_fp(struct file *); 314 static int unp_externalize(struct mbuf *, struct mbuf **, int); 315 static int unp_externalize_fp(struct file *); 316 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 317 static void unp_process_defers(void * __unused, int); 318 319 320 static void 321 unp_pcb_hold(struct unpcb *unp) 322 { 323 MPASS(unp->unp_refcount); 324 refcount_acquire(&unp->unp_refcount); 325 } 326 327 static int 328 unp_pcb_rele(struct unpcb *unp) 329 { 330 int freed; 331 332 UNP_PCB_LOCK_ASSERT(unp); 333 MPASS(unp->unp_refcount); 334 if ((freed = refcount_release(&unp->unp_refcount))) { 335 /* we got here with having detached? */ 336 MPASS(unp->unp_socket == NULL); 337 UNP_PCB_UNLOCK(unp); 338 UNP_PCB_LOCK_DESTROY(unp); 339 uma_zfree(unp_zone, unp); 340 } 341 return (freed); 342 } 343 344 static void 345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2) 346 { 347 UNP_PCB_UNLOCK_ASSERT(unp); 348 UNP_PCB_UNLOCK_ASSERT(unp2); 349 if ((uintptr_t)unp2 > (uintptr_t)unp) { 350 UNP_PCB_LOCK(unp); 351 UNP_PCB_LOCK(unp2); 352 } else { 353 UNP_PCB_LOCK(unp2); 354 UNP_PCB_LOCK(unp); 355 } 356 } 357 358 static __noinline void 359 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, int *freed) 360 361 { 362 struct unpcb *unp2; 363 364 unp2 = *unp2p; 365 unp_pcb_hold((unp2)); 366 UNP_PCB_UNLOCK((unp)); 367 UNP_PCB_LOCK((unp2)); 368 UNP_PCB_LOCK((unp)); 369 *freed = unp_pcb_rele((unp2)); 370 if (*freed) 371 *unp2p = NULL; 372 } 373 374 #define unp_pcb_owned_lock2(unp, unp2, freed) do { \ 375 freed = 0; \ 376 UNP_PCB_LOCK_ASSERT((unp)); \ 377 UNP_PCB_UNLOCK_ASSERT((unp2)); \ 378 if (__predict_true(UNP_PCB_TRYLOCK((unp2)))) \ 379 break; \ 380 else if ((uintptr_t)(unp2) > (uintptr_t)(unp)) \ 381 UNP_PCB_LOCK((unp2)); \ 382 else { \ 383 unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed); \ 384 } \ 385 } while (0) 386 387 388 /* 389 * Definitions of protocols supported in the LOCAL domain. 390 */ 391 static struct domain localdomain; 392 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 393 static struct pr_usrreqs uipc_usrreqs_seqpacket; 394 static struct protosw localsw[] = { 395 { 396 .pr_type = SOCK_STREAM, 397 .pr_domain = &localdomain, 398 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 399 .pr_ctloutput = &uipc_ctloutput, 400 .pr_usrreqs = &uipc_usrreqs_stream 401 }, 402 { 403 .pr_type = SOCK_DGRAM, 404 .pr_domain = &localdomain, 405 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 406 .pr_ctloutput = &uipc_ctloutput, 407 .pr_usrreqs = &uipc_usrreqs_dgram 408 }, 409 { 410 .pr_type = SOCK_SEQPACKET, 411 .pr_domain = &localdomain, 412 413 /* 414 * XXXRW: For now, PR_ADDR because soreceive will bump into them 415 * due to our use of sbappendaddr. A new sbappend variants is needed 416 * that supports both atomic record writes and control data. 417 */ 418 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 419 PR_RIGHTS, 420 .pr_ctloutput = &uipc_ctloutput, 421 .pr_usrreqs = &uipc_usrreqs_seqpacket, 422 }, 423 }; 424 425 static struct domain localdomain = { 426 .dom_family = AF_LOCAL, 427 .dom_name = "local", 428 .dom_init = unp_init, 429 .dom_externalize = unp_externalize, 430 .dom_dispose = unp_dispose, 431 .dom_protosw = localsw, 432 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 433 }; 434 DOMAIN_SET(local); 435 436 static void 437 uipc_abort(struct socket *so) 438 { 439 struct unpcb *unp, *unp2; 440 441 unp = sotounpcb(so); 442 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 443 UNP_PCB_UNLOCK_ASSERT(unp); 444 445 UNP_PCB_LOCK(unp); 446 unp2 = unp->unp_conn; 447 if (unp2 != NULL) { 448 unp_pcb_hold(unp2); 449 UNP_PCB_UNLOCK(unp); 450 unp_drop(unp2); 451 } else 452 UNP_PCB_UNLOCK(unp); 453 } 454 455 static int 456 uipc_accept(struct socket *so, struct sockaddr **nam) 457 { 458 struct unpcb *unp, *unp2; 459 const struct sockaddr *sa; 460 461 /* 462 * Pass back name of connected socket, if it was bound and we are 463 * still connected (our peer may have closed already!). 464 */ 465 unp = sotounpcb(so); 466 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 467 468 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 469 UNP_LINK_RLOCK(); 470 unp2 = unp->unp_conn; 471 if (unp2 != NULL && unp2->unp_addr != NULL) { 472 UNP_PCB_LOCK(unp2); 473 sa = (struct sockaddr *) unp2->unp_addr; 474 bcopy(sa, *nam, sa->sa_len); 475 UNP_PCB_UNLOCK(unp2); 476 } else { 477 sa = &sun_noname; 478 bcopy(sa, *nam, sa->sa_len); 479 } 480 UNP_LINK_RUNLOCK(); 481 return (0); 482 } 483 484 static int 485 uipc_attach(struct socket *so, int proto, struct thread *td) 486 { 487 u_long sendspace, recvspace; 488 struct unpcb *unp; 489 int error; 490 bool locked; 491 492 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 493 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 494 switch (so->so_type) { 495 case SOCK_STREAM: 496 sendspace = unpst_sendspace; 497 recvspace = unpst_recvspace; 498 break; 499 500 case SOCK_DGRAM: 501 sendspace = unpdg_sendspace; 502 recvspace = unpdg_recvspace; 503 break; 504 505 case SOCK_SEQPACKET: 506 sendspace = unpsp_sendspace; 507 recvspace = unpsp_recvspace; 508 break; 509 510 default: 511 panic("uipc_attach"); 512 } 513 error = soreserve(so, sendspace, recvspace); 514 if (error) 515 return (error); 516 } 517 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 518 if (unp == NULL) 519 return (ENOBUFS); 520 LIST_INIT(&unp->unp_refs); 521 UNP_PCB_LOCK_INIT(unp); 522 unp->unp_socket = so; 523 so->so_pcb = unp; 524 unp->unp_refcount = 1; 525 if (so->so_listen != NULL) 526 unp->unp_flags |= UNP_NASCENT; 527 528 if ((locked = UNP_LINK_WOWNED()) == false) 529 UNP_LINK_WLOCK(); 530 531 unp->unp_gencnt = ++unp_gencnt; 532 unp_count++; 533 switch (so->so_type) { 534 case SOCK_STREAM: 535 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 536 break; 537 538 case SOCK_DGRAM: 539 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 540 break; 541 542 case SOCK_SEQPACKET: 543 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 544 break; 545 546 default: 547 panic("uipc_attach"); 548 } 549 550 if (locked == false) 551 UNP_LINK_WUNLOCK(); 552 553 return (0); 554 } 555 556 static int 557 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 558 { 559 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 560 struct vattr vattr; 561 int error, namelen; 562 struct nameidata nd; 563 struct unpcb *unp; 564 struct vnode *vp; 565 struct mount *mp; 566 cap_rights_t rights; 567 char *buf; 568 569 if (nam->sa_family != AF_UNIX) 570 return (EAFNOSUPPORT); 571 572 unp = sotounpcb(so); 573 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 574 575 if (soun->sun_len > sizeof(struct sockaddr_un)) 576 return (EINVAL); 577 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 578 if (namelen <= 0) 579 return (EINVAL); 580 581 /* 582 * We don't allow simultaneous bind() calls on a single UNIX domain 583 * socket, so flag in-progress operations, and return an error if an 584 * operation is already in progress. 585 * 586 * Historically, we have not allowed a socket to be rebound, so this 587 * also returns an error. Not allowing re-binding simplifies the 588 * implementation and avoids a great many possible failure modes. 589 */ 590 UNP_PCB_LOCK(unp); 591 if (unp->unp_vnode != NULL) { 592 UNP_PCB_UNLOCK(unp); 593 return (EINVAL); 594 } 595 if (unp->unp_flags & UNP_BINDING) { 596 UNP_PCB_UNLOCK(unp); 597 return (EALREADY); 598 } 599 unp->unp_flags |= UNP_BINDING; 600 UNP_PCB_UNLOCK(unp); 601 602 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 603 bcopy(soun->sun_path, buf, namelen); 604 buf[namelen] = 0; 605 606 restart: 607 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 608 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 609 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 610 error = namei(&nd); 611 if (error) 612 goto error; 613 vp = nd.ni_vp; 614 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 615 NDFREE(&nd, NDF_ONLY_PNBUF); 616 if (nd.ni_dvp == vp) 617 vrele(nd.ni_dvp); 618 else 619 vput(nd.ni_dvp); 620 if (vp != NULL) { 621 vrele(vp); 622 error = EADDRINUSE; 623 goto error; 624 } 625 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 626 if (error) 627 goto error; 628 goto restart; 629 } 630 VATTR_NULL(&vattr); 631 vattr.va_type = VSOCK; 632 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 633 #ifdef MAC 634 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 635 &vattr); 636 #endif 637 if (error == 0) 638 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 639 NDFREE(&nd, NDF_ONLY_PNBUF); 640 vput(nd.ni_dvp); 641 if (error) { 642 vn_finished_write(mp); 643 goto error; 644 } 645 vp = nd.ni_vp; 646 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 647 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 648 649 UNP_PCB_LOCK(unp); 650 VOP_UNP_BIND(vp, unp); 651 unp->unp_vnode = vp; 652 unp->unp_addr = soun; 653 unp->unp_flags &= ~UNP_BINDING; 654 UNP_PCB_UNLOCK(unp); 655 VOP_UNLOCK(vp, 0); 656 vn_finished_write(mp); 657 free(buf, M_TEMP); 658 return (0); 659 660 error: 661 UNP_PCB_LOCK(unp); 662 unp->unp_flags &= ~UNP_BINDING; 663 UNP_PCB_UNLOCK(unp); 664 free(buf, M_TEMP); 665 return (error); 666 } 667 668 static int 669 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 670 { 671 672 return (uipc_bindat(AT_FDCWD, so, nam, td)); 673 } 674 675 static int 676 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 677 { 678 int error; 679 680 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 681 error = unp_connect(so, nam, td); 682 return (error); 683 } 684 685 static int 686 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 687 struct thread *td) 688 { 689 int error; 690 691 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 692 error = unp_connectat(fd, so, nam, td); 693 return (error); 694 } 695 696 static void 697 uipc_close(struct socket *so) 698 { 699 struct unpcb *unp, *unp2; 700 struct vnode *vp = NULL; 701 struct mtx *vplock; 702 int freed; 703 unp = sotounpcb(so); 704 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 705 706 707 vplock = NULL; 708 if ((vp = unp->unp_vnode) != NULL) { 709 vplock = mtx_pool_find(mtxpool_sleep, vp); 710 mtx_lock(vplock); 711 } 712 UNP_PCB_LOCK(unp); 713 if (vp && unp->unp_vnode == NULL) { 714 mtx_unlock(vplock); 715 vp = NULL; 716 } 717 if (vp != NULL) { 718 VOP_UNP_DETACH(vp); 719 unp->unp_vnode = NULL; 720 } 721 unp2 = unp->unp_conn; 722 unp_pcb_hold(unp); 723 if (unp2 != NULL) { 724 unp_pcb_hold(unp2); 725 unp_pcb_owned_lock2(unp, unp2, freed); 726 unp_disconnect(unp, unp2); 727 if (unp_pcb_rele(unp2) == 0) 728 UNP_PCB_UNLOCK(unp2); 729 } 730 if (unp_pcb_rele(unp) == 0) 731 UNP_PCB_UNLOCK(unp); 732 if (vp) { 733 mtx_unlock(vplock); 734 vrele(vp); 735 } 736 } 737 738 static int 739 uipc_connect2(struct socket *so1, struct socket *so2) 740 { 741 struct unpcb *unp, *unp2; 742 int error; 743 744 unp = so1->so_pcb; 745 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 746 unp2 = so2->so_pcb; 747 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 748 unp_pcb_lock2(unp, unp2); 749 error = unp_connect2(so1, so2, PRU_CONNECT2); 750 UNP_PCB_UNLOCK(unp2); 751 UNP_PCB_UNLOCK(unp); 752 return (error); 753 } 754 755 static void 756 uipc_detach(struct socket *so) 757 { 758 struct unpcb *unp, *unp2; 759 struct mtx *vplock; 760 struct sockaddr_un *saved_unp_addr; 761 struct vnode *vp; 762 int freeunp, local_unp_rights; 763 764 unp = sotounpcb(so); 765 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 766 767 vp = NULL; 768 vplock = NULL; 769 local_unp_rights = 0; 770 771 UNP_LINK_WLOCK(); 772 LIST_REMOVE(unp, unp_link); 773 unp->unp_gencnt = ++unp_gencnt; 774 --unp_count; 775 UNP_LINK_WUNLOCK(); 776 777 UNP_PCB_UNLOCK_ASSERT(unp); 778 restart: 779 if ((vp = unp->unp_vnode) != NULL) { 780 vplock = mtx_pool_find(mtxpool_sleep, vp); 781 mtx_lock(vplock); 782 } 783 UNP_PCB_LOCK(unp); 784 if ((unp2 = unp->unp_conn) != NULL) { 785 unp_pcb_owned_lock2(unp, unp2, freeunp); 786 if (freeunp) 787 unp2 = NULL; 788 } 789 if (unp->unp_vnode != vp && 790 unp->unp_vnode != NULL) { 791 if (vplock) 792 mtx_unlock(vplock); 793 UNP_PCB_UNLOCK(unp); 794 if (unp2) 795 UNP_PCB_UNLOCK(unp2); 796 goto restart; 797 } 798 if ((unp->unp_flags & UNP_NASCENT) != 0) { 799 if (unp2) 800 UNP_PCB_UNLOCK(unp2); 801 goto teardown; 802 } 803 if ((vp = unp->unp_vnode) != NULL) { 804 VOP_UNP_DETACH(vp); 805 unp->unp_vnode = NULL; 806 } 807 unp_pcb_hold(unp); 808 if (unp2 != NULL) { 809 unp_pcb_hold(unp2); 810 unp_disconnect(unp, unp2); 811 if (unp_pcb_rele(unp2) == 0) 812 UNP_PCB_UNLOCK(unp2); 813 } 814 UNP_PCB_UNLOCK(unp); 815 UNP_REF_LIST_LOCK(); 816 while (!LIST_EMPTY(&unp->unp_refs)) { 817 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 818 819 unp_pcb_hold(ref); 820 UNP_REF_LIST_UNLOCK(); 821 822 MPASS(ref != unp); 823 UNP_PCB_UNLOCK_ASSERT(ref); 824 unp_drop(ref); 825 UNP_REF_LIST_LOCK(); 826 } 827 828 UNP_REF_LIST_UNLOCK(); 829 UNP_PCB_LOCK(unp); 830 freeunp = unp_pcb_rele(unp); 831 MPASS(freeunp == 0); 832 local_unp_rights = unp_rights; 833 teardown: 834 unp->unp_socket->so_pcb = NULL; 835 saved_unp_addr = unp->unp_addr; 836 unp->unp_addr = NULL; 837 unp->unp_socket = NULL; 838 freeunp = unp_pcb_rele(unp); 839 if (saved_unp_addr != NULL) 840 free(saved_unp_addr, M_SONAME); 841 if (!freeunp) 842 UNP_PCB_UNLOCK(unp); 843 if (vp) { 844 mtx_unlock(vplock); 845 vrele(vp); 846 } 847 if (local_unp_rights) 848 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 849 } 850 851 static int 852 uipc_disconnect(struct socket *so) 853 { 854 struct unpcb *unp, *unp2; 855 int freed; 856 857 unp = sotounpcb(so); 858 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 859 860 UNP_PCB_LOCK(unp); 861 if ((unp2 = unp->unp_conn) == NULL) { 862 UNP_PCB_UNLOCK(unp); 863 return (0); 864 } 865 unp_pcb_owned_lock2(unp, unp2, freed); 866 if (__predict_false(freed)) { 867 UNP_PCB_UNLOCK(unp); 868 return (0); 869 } 870 unp_pcb_hold(unp2); 871 unp_pcb_hold(unp); 872 unp_disconnect(unp, unp2); 873 if (unp_pcb_rele(unp) == 0) 874 UNP_PCB_UNLOCK(unp); 875 if (unp_pcb_rele(unp2) == 0) 876 UNP_PCB_UNLOCK(unp2); 877 return (0); 878 } 879 880 static int 881 uipc_listen(struct socket *so, int backlog, struct thread *td) 882 { 883 struct unpcb *unp; 884 int error; 885 886 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 887 return (EOPNOTSUPP); 888 889 unp = sotounpcb(so); 890 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 891 892 UNP_PCB_LOCK(unp); 893 if (unp->unp_vnode == NULL) { 894 /* Already connected or not bound to an address. */ 895 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 896 UNP_PCB_UNLOCK(unp); 897 return (error); 898 } 899 900 SOCK_LOCK(so); 901 error = solisten_proto_check(so); 902 if (error == 0) { 903 cru2x(td->td_ucred, &unp->unp_peercred); 904 solisten_proto(so, backlog); 905 } 906 SOCK_UNLOCK(so); 907 UNP_PCB_UNLOCK(unp); 908 return (error); 909 } 910 911 static int 912 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 913 { 914 struct unpcb *unp, *unp2; 915 const struct sockaddr *sa; 916 917 unp = sotounpcb(so); 918 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 919 920 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 921 UNP_LINK_RLOCK(); 922 /* 923 * XXX: It seems that this test always fails even when connection is 924 * established. So, this else clause is added as workaround to 925 * return PF_LOCAL sockaddr. 926 */ 927 unp2 = unp->unp_conn; 928 if (unp2 != NULL) { 929 UNP_PCB_LOCK(unp2); 930 if (unp2->unp_addr != NULL) 931 sa = (struct sockaddr *) unp2->unp_addr; 932 else 933 sa = &sun_noname; 934 bcopy(sa, *nam, sa->sa_len); 935 UNP_PCB_UNLOCK(unp2); 936 } else { 937 sa = &sun_noname; 938 bcopy(sa, *nam, sa->sa_len); 939 } 940 UNP_LINK_RUNLOCK(); 941 return (0); 942 } 943 944 static int 945 uipc_rcvd(struct socket *so, int flags) 946 { 947 struct unpcb *unp, *unp2; 948 struct socket *so2; 949 u_int mbcnt, sbcc; 950 951 unp = sotounpcb(so); 952 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 953 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 954 ("%s: socktype %d", __func__, so->so_type)); 955 956 /* 957 * Adjust backpressure on sender and wakeup any waiting to write. 958 * 959 * The unp lock is acquired to maintain the validity of the unp_conn 960 * pointer; no lock on unp2 is required as unp2->unp_socket will be 961 * static as long as we don't permit unp2 to disconnect from unp, 962 * which is prevented by the lock on unp. We cache values from 963 * so_rcv to avoid holding the so_rcv lock over the entire 964 * transaction on the remote so_snd. 965 */ 966 SOCKBUF_LOCK(&so->so_rcv); 967 mbcnt = so->so_rcv.sb_mbcnt; 968 sbcc = sbavail(&so->so_rcv); 969 SOCKBUF_UNLOCK(&so->so_rcv); 970 /* 971 * There is a benign race condition at this point. If we're planning to 972 * clear SB_STOP, but uipc_send is called on the connected socket at 973 * this instant, it might add data to the sockbuf and set SB_STOP. Then 974 * we would erroneously clear SB_STOP below, even though the sockbuf is 975 * full. The race is benign because the only ill effect is to allow the 976 * sockbuf to exceed its size limit, and the size limits are not 977 * strictly guaranteed anyway. 978 */ 979 UNP_PCB_LOCK(unp); 980 unp2 = unp->unp_conn; 981 if (unp2 == NULL) { 982 UNP_PCB_UNLOCK(unp); 983 return (0); 984 } 985 so2 = unp2->unp_socket; 986 SOCKBUF_LOCK(&so2->so_snd); 987 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 988 so2->so_snd.sb_flags &= ~SB_STOP; 989 sowwakeup_locked(so2); 990 UNP_PCB_UNLOCK(unp); 991 return (0); 992 } 993 994 static int 995 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td) 996 { 997 int error; 998 struct unpcb *unp; 999 1000 unp = so->so_pcb; 1001 if (unp->unp_conn != NULL) 1002 return (EISCONN); 1003 error = unp_connect(so, nam, td); 1004 if (error) 1005 return (error); 1006 UNP_PCB_LOCK(unp); 1007 if (unp->unp_conn == NULL) { 1008 UNP_PCB_UNLOCK(unp); 1009 if (error == 0) 1010 error = ENOTCONN; 1011 } 1012 return (error); 1013 } 1014 1015 1016 static int 1017 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 1018 struct mbuf *control, struct thread *td) 1019 { 1020 struct unpcb *unp, *unp2; 1021 struct socket *so2; 1022 u_int mbcnt, sbcc; 1023 int freed, error; 1024 1025 unp = sotounpcb(so); 1026 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1027 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1028 so->so_type == SOCK_SEQPACKET, 1029 ("%s: socktype %d", __func__, so->so_type)); 1030 1031 freed = error = 0; 1032 if (flags & PRUS_OOB) { 1033 error = EOPNOTSUPP; 1034 goto release; 1035 } 1036 if (control != NULL && (error = unp_internalize(&control, td))) 1037 goto release; 1038 1039 unp2 = NULL; 1040 switch (so->so_type) { 1041 case SOCK_DGRAM: 1042 { 1043 const struct sockaddr *from; 1044 1045 if (nam != NULL) { 1046 /* 1047 * We return with UNP_PCB_LOCK_HELD so we know that 1048 * the reference is live if the pointer is valid. 1049 */ 1050 if ((error = connect_internal(so, nam, td))) 1051 break; 1052 MPASS(unp->unp_conn != NULL); 1053 unp2 = unp->unp_conn; 1054 } else { 1055 UNP_PCB_LOCK(unp); 1056 1057 /* 1058 * Because connect() and send() are non-atomic in a sendto() 1059 * with a target address, it's possible that the socket will 1060 * have disconnected before the send() can run. In that case 1061 * return the slightly counter-intuitive but otherwise 1062 * correct error that the socket is not connected. 1063 */ 1064 if ((unp2 = unp->unp_conn) == NULL) { 1065 UNP_PCB_UNLOCK(unp); 1066 error = ENOTCONN; 1067 break; 1068 } 1069 } 1070 unp_pcb_owned_lock2(unp, unp2, freed); 1071 if (__predict_false(freed)) { 1072 UNP_PCB_UNLOCK(unp); 1073 error = ENOTCONN; 1074 break; 1075 } 1076 /* 1077 * The socket referencing unp2 may have been closed 1078 * or unp may have been disconnected if the unp lock 1079 * was dropped to acquire unp2. 1080 */ 1081 if (__predict_false(unp->unp_conn == NULL) || 1082 unp2->unp_socket == NULL) { 1083 UNP_PCB_UNLOCK(unp); 1084 if (unp_pcb_rele(unp2) == 0) 1085 UNP_PCB_UNLOCK(unp2); 1086 error = ENOTCONN; 1087 break; 1088 } 1089 if (unp2->unp_flags & UNP_WANTCRED) 1090 control = unp_addsockcred(td, control); 1091 if (unp->unp_addr != NULL) 1092 from = (struct sockaddr *)unp->unp_addr; 1093 else 1094 from = &sun_noname; 1095 so2 = unp2->unp_socket; 1096 SOCKBUF_LOCK(&so2->so_rcv); 1097 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1098 control)) { 1099 sorwakeup_locked(so2); 1100 m = NULL; 1101 control = NULL; 1102 } else { 1103 SOCKBUF_UNLOCK(&so2->so_rcv); 1104 error = ENOBUFS; 1105 } 1106 if (nam != NULL) 1107 unp_disconnect(unp, unp2); 1108 UNP_PCB_UNLOCK(unp2); 1109 UNP_PCB_UNLOCK(unp); 1110 break; 1111 } 1112 1113 case SOCK_SEQPACKET: 1114 case SOCK_STREAM: 1115 if ((so->so_state & SS_ISCONNECTED) == 0) { 1116 if (nam != NULL) { 1117 if ((error = connect_internal(so, nam, td))) 1118 break; 1119 } else { 1120 error = ENOTCONN; 1121 break; 1122 } 1123 } else if ((unp2 = unp->unp_conn) == NULL) { 1124 error = ENOTCONN; 1125 break; 1126 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1127 error = EPIPE; 1128 break; 1129 } else { 1130 UNP_PCB_LOCK(unp); 1131 if ((unp2 = unp->unp_conn) == NULL) { 1132 UNP_PCB_UNLOCK(unp); 1133 error = ENOTCONN; 1134 break; 1135 } 1136 } 1137 unp_pcb_owned_lock2(unp, unp2, freed); 1138 UNP_PCB_UNLOCK(unp); 1139 if (__predict_false(freed)) { 1140 error = ENOTCONN; 1141 break; 1142 } 1143 if ((so2 = unp2->unp_socket) == NULL) { 1144 UNP_PCB_UNLOCK(unp2); 1145 error = ENOTCONN; 1146 break; 1147 } 1148 SOCKBUF_LOCK(&so2->so_rcv); 1149 if (unp2->unp_flags & UNP_WANTCRED) { 1150 /* 1151 * Credentials are passed only once on SOCK_STREAM 1152 * and SOCK_SEQPACKET. 1153 */ 1154 unp2->unp_flags &= ~UNP_WANTCRED; 1155 control = unp_addsockcred(td, control); 1156 } 1157 /* 1158 * Send to paired receive port, and then reduce send buffer 1159 * hiwater marks to maintain backpressure. Wake up readers. 1160 */ 1161 switch (so->so_type) { 1162 case SOCK_STREAM: 1163 if (control != NULL) { 1164 if (sbappendcontrol_locked(&so2->so_rcv, m, 1165 control)) 1166 control = NULL; 1167 } else 1168 sbappend_locked(&so2->so_rcv, m, flags); 1169 break; 1170 1171 case SOCK_SEQPACKET: { 1172 const struct sockaddr *from; 1173 1174 from = &sun_noname; 1175 /* 1176 * Don't check for space available in so2->so_rcv. 1177 * Unix domain sockets only check for space in the 1178 * sending sockbuf, and that check is performed one 1179 * level up the stack. 1180 */ 1181 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1182 from, m, control)) 1183 control = NULL; 1184 break; 1185 } 1186 } 1187 1188 mbcnt = so2->so_rcv.sb_mbcnt; 1189 sbcc = sbavail(&so2->so_rcv); 1190 if (sbcc) 1191 sorwakeup_locked(so2); 1192 else 1193 SOCKBUF_UNLOCK(&so2->so_rcv); 1194 1195 /* 1196 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1197 * it would be possible for uipc_rcvd to be called at this 1198 * point, drain the receiving sockbuf, clear SB_STOP, and then 1199 * we would set SB_STOP below. That could lead to an empty 1200 * sockbuf having SB_STOP set 1201 */ 1202 SOCKBUF_LOCK(&so->so_snd); 1203 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1204 so->so_snd.sb_flags |= SB_STOP; 1205 SOCKBUF_UNLOCK(&so->so_snd); 1206 UNP_PCB_UNLOCK(unp2); 1207 m = NULL; 1208 break; 1209 } 1210 1211 /* 1212 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1213 */ 1214 if (flags & PRUS_EOF) { 1215 UNP_PCB_LOCK(unp); 1216 socantsendmore(so); 1217 unp_shutdown(unp); 1218 UNP_PCB_UNLOCK(unp); 1219 } 1220 if (control != NULL && error != 0) 1221 unp_dispose_mbuf(control); 1222 1223 release: 1224 if (control != NULL) 1225 m_freem(control); 1226 /* 1227 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1228 * for freeing memory. 1229 */ 1230 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1231 m_freem(m); 1232 return (error); 1233 } 1234 1235 static int 1236 uipc_ready(struct socket *so, struct mbuf *m, int count) 1237 { 1238 struct unpcb *unp, *unp2; 1239 struct socket *so2; 1240 int error; 1241 1242 unp = sotounpcb(so); 1243 1244 UNP_LINK_RLOCK(); 1245 if ((unp2 = unp->unp_conn) == NULL) { 1246 UNP_LINK_RUNLOCK(); 1247 for (int i = 0; i < count; i++) 1248 m = m_free(m); 1249 return (ECONNRESET); 1250 } 1251 UNP_PCB_LOCK(unp2); 1252 so2 = unp2->unp_socket; 1253 1254 SOCKBUF_LOCK(&so2->so_rcv); 1255 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1256 sorwakeup_locked(so2); 1257 else 1258 SOCKBUF_UNLOCK(&so2->so_rcv); 1259 1260 UNP_PCB_UNLOCK(unp2); 1261 UNP_LINK_RUNLOCK(); 1262 1263 return (error); 1264 } 1265 1266 static int 1267 uipc_sense(struct socket *so, struct stat *sb) 1268 { 1269 struct unpcb *unp; 1270 1271 unp = sotounpcb(so); 1272 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1273 1274 sb->st_blksize = so->so_snd.sb_hiwat; 1275 UNP_PCB_LOCK(unp); 1276 sb->st_dev = NODEV; 1277 if (unp->unp_ino == 0) 1278 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 1279 sb->st_ino = unp->unp_ino; 1280 UNP_PCB_UNLOCK(unp); 1281 return (0); 1282 } 1283 1284 static int 1285 uipc_shutdown(struct socket *so) 1286 { 1287 struct unpcb *unp; 1288 1289 unp = sotounpcb(so); 1290 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1291 1292 UNP_PCB_LOCK(unp); 1293 socantsendmore(so); 1294 unp_shutdown(unp); 1295 UNP_PCB_UNLOCK(unp); 1296 return (0); 1297 } 1298 1299 static int 1300 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1301 { 1302 struct unpcb *unp; 1303 const struct sockaddr *sa; 1304 1305 unp = sotounpcb(so); 1306 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1307 1308 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1309 UNP_PCB_LOCK(unp); 1310 if (unp->unp_addr != NULL) 1311 sa = (struct sockaddr *) unp->unp_addr; 1312 else 1313 sa = &sun_noname; 1314 bcopy(sa, *nam, sa->sa_len); 1315 UNP_PCB_UNLOCK(unp); 1316 return (0); 1317 } 1318 1319 static struct pr_usrreqs uipc_usrreqs_dgram = { 1320 .pru_abort = uipc_abort, 1321 .pru_accept = uipc_accept, 1322 .pru_attach = uipc_attach, 1323 .pru_bind = uipc_bind, 1324 .pru_bindat = uipc_bindat, 1325 .pru_connect = uipc_connect, 1326 .pru_connectat = uipc_connectat, 1327 .pru_connect2 = uipc_connect2, 1328 .pru_detach = uipc_detach, 1329 .pru_disconnect = uipc_disconnect, 1330 .pru_listen = uipc_listen, 1331 .pru_peeraddr = uipc_peeraddr, 1332 .pru_rcvd = uipc_rcvd, 1333 .pru_send = uipc_send, 1334 .pru_sense = uipc_sense, 1335 .pru_shutdown = uipc_shutdown, 1336 .pru_sockaddr = uipc_sockaddr, 1337 .pru_soreceive = soreceive_dgram, 1338 .pru_close = uipc_close, 1339 }; 1340 1341 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1342 .pru_abort = uipc_abort, 1343 .pru_accept = uipc_accept, 1344 .pru_attach = uipc_attach, 1345 .pru_bind = uipc_bind, 1346 .pru_bindat = uipc_bindat, 1347 .pru_connect = uipc_connect, 1348 .pru_connectat = uipc_connectat, 1349 .pru_connect2 = uipc_connect2, 1350 .pru_detach = uipc_detach, 1351 .pru_disconnect = uipc_disconnect, 1352 .pru_listen = uipc_listen, 1353 .pru_peeraddr = uipc_peeraddr, 1354 .pru_rcvd = uipc_rcvd, 1355 .pru_send = uipc_send, 1356 .pru_sense = uipc_sense, 1357 .pru_shutdown = uipc_shutdown, 1358 .pru_sockaddr = uipc_sockaddr, 1359 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1360 .pru_close = uipc_close, 1361 }; 1362 1363 static struct pr_usrreqs uipc_usrreqs_stream = { 1364 .pru_abort = uipc_abort, 1365 .pru_accept = uipc_accept, 1366 .pru_attach = uipc_attach, 1367 .pru_bind = uipc_bind, 1368 .pru_bindat = uipc_bindat, 1369 .pru_connect = uipc_connect, 1370 .pru_connectat = uipc_connectat, 1371 .pru_connect2 = uipc_connect2, 1372 .pru_detach = uipc_detach, 1373 .pru_disconnect = uipc_disconnect, 1374 .pru_listen = uipc_listen, 1375 .pru_peeraddr = uipc_peeraddr, 1376 .pru_rcvd = uipc_rcvd, 1377 .pru_send = uipc_send, 1378 .pru_ready = uipc_ready, 1379 .pru_sense = uipc_sense, 1380 .pru_shutdown = uipc_shutdown, 1381 .pru_sockaddr = uipc_sockaddr, 1382 .pru_soreceive = soreceive_generic, 1383 .pru_close = uipc_close, 1384 }; 1385 1386 static int 1387 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1388 { 1389 struct unpcb *unp; 1390 struct xucred xu; 1391 int error, optval; 1392 1393 if (sopt->sopt_level != 0) 1394 return (EINVAL); 1395 1396 unp = sotounpcb(so); 1397 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1398 error = 0; 1399 switch (sopt->sopt_dir) { 1400 case SOPT_GET: 1401 switch (sopt->sopt_name) { 1402 case LOCAL_PEERCRED: 1403 UNP_PCB_LOCK(unp); 1404 if (unp->unp_flags & UNP_HAVEPC) 1405 xu = unp->unp_peercred; 1406 else { 1407 if (so->so_type == SOCK_STREAM) 1408 error = ENOTCONN; 1409 else 1410 error = EINVAL; 1411 } 1412 UNP_PCB_UNLOCK(unp); 1413 if (error == 0) 1414 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1415 break; 1416 1417 case LOCAL_CREDS: 1418 /* Unlocked read. */ 1419 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1420 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1421 break; 1422 1423 case LOCAL_CONNWAIT: 1424 /* Unlocked read. */ 1425 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1426 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1427 break; 1428 1429 default: 1430 error = EOPNOTSUPP; 1431 break; 1432 } 1433 break; 1434 1435 case SOPT_SET: 1436 switch (sopt->sopt_name) { 1437 case LOCAL_CREDS: 1438 case LOCAL_CONNWAIT: 1439 error = sooptcopyin(sopt, &optval, sizeof(optval), 1440 sizeof(optval)); 1441 if (error) 1442 break; 1443 1444 #define OPTSET(bit) do { \ 1445 UNP_PCB_LOCK(unp); \ 1446 if (optval) \ 1447 unp->unp_flags |= bit; \ 1448 else \ 1449 unp->unp_flags &= ~bit; \ 1450 UNP_PCB_UNLOCK(unp); \ 1451 } while (0) 1452 1453 switch (sopt->sopt_name) { 1454 case LOCAL_CREDS: 1455 OPTSET(UNP_WANTCRED); 1456 break; 1457 1458 case LOCAL_CONNWAIT: 1459 OPTSET(UNP_CONNWAIT); 1460 break; 1461 1462 default: 1463 break; 1464 } 1465 break; 1466 #undef OPTSET 1467 default: 1468 error = ENOPROTOOPT; 1469 break; 1470 } 1471 break; 1472 1473 default: 1474 error = EOPNOTSUPP; 1475 break; 1476 } 1477 return (error); 1478 } 1479 1480 static int 1481 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1482 { 1483 1484 return (unp_connectat(AT_FDCWD, so, nam, td)); 1485 } 1486 1487 static int 1488 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1489 struct thread *td) 1490 { 1491 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1492 struct vnode *vp; 1493 struct socket *so2; 1494 struct unpcb *unp, *unp2, *unp3; 1495 struct nameidata nd; 1496 char buf[SOCK_MAXADDRLEN]; 1497 struct sockaddr *sa; 1498 cap_rights_t rights; 1499 int error, len, freed; 1500 struct mtx *vplock; 1501 1502 if (nam->sa_family != AF_UNIX) 1503 return (EAFNOSUPPORT); 1504 if (nam->sa_len > sizeof(struct sockaddr_un)) 1505 return (EINVAL); 1506 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1507 if (len <= 0) 1508 return (EINVAL); 1509 bcopy(soun->sun_path, buf, len); 1510 buf[len] = 0; 1511 1512 unp = sotounpcb(so); 1513 UNP_PCB_LOCK(unp); 1514 if (unp->unp_flags & UNP_CONNECTING) { 1515 UNP_PCB_UNLOCK(unp); 1516 return (EALREADY); 1517 } 1518 unp->unp_flags |= UNP_CONNECTING; 1519 UNP_PCB_UNLOCK(unp); 1520 1521 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1522 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1523 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1524 error = namei(&nd); 1525 if (error) 1526 vp = NULL; 1527 else 1528 vp = nd.ni_vp; 1529 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1530 NDFREE(&nd, NDF_ONLY_PNBUF); 1531 if (error) 1532 goto bad; 1533 1534 if (vp->v_type != VSOCK) { 1535 error = ENOTSOCK; 1536 goto bad; 1537 } 1538 #ifdef MAC 1539 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1540 if (error) 1541 goto bad; 1542 #endif 1543 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1544 if (error) 1545 goto bad; 1546 1547 unp = sotounpcb(so); 1548 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1549 1550 vplock = mtx_pool_find(mtxpool_sleep, vp); 1551 mtx_lock(vplock); 1552 VOP_UNP_CONNECT(vp, &unp2); 1553 if (unp2 == NULL) { 1554 error = ECONNREFUSED; 1555 goto bad2; 1556 } 1557 so2 = unp2->unp_socket; 1558 if (so->so_type != so2->so_type) { 1559 error = EPROTOTYPE; 1560 goto bad2; 1561 } 1562 unp_pcb_lock2(unp, unp2); 1563 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1564 if (so2->so_options & SO_ACCEPTCONN) { 1565 CURVNET_SET(so2->so_vnet); 1566 so2 = sonewconn(so2, 0); 1567 CURVNET_RESTORE(); 1568 } else 1569 so2 = NULL; 1570 if (so2 == NULL) { 1571 error = ECONNREFUSED; 1572 goto bad3; 1573 } 1574 unp3 = sotounpcb(so2); 1575 UNP_PCB_UNLOCK(unp); 1576 unp_pcb_owned_lock2(unp2, unp3, freed); 1577 MPASS(!freed); 1578 if (unp2->unp_addr != NULL) { 1579 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1580 unp3->unp_addr = (struct sockaddr_un *) sa; 1581 sa = NULL; 1582 } 1583 1584 /* 1585 * The connector's (client's) credentials are copied from its 1586 * process structure at the time of connect() (which is now). 1587 */ 1588 cru2x(td->td_ucred, &unp3->unp_peercred); 1589 unp3->unp_flags |= UNP_HAVEPC; 1590 1591 /* 1592 * The receiver's (server's) credentials are copied from the 1593 * unp_peercred member of socket on which the former called 1594 * listen(); uipc_listen() cached that process's credentials 1595 * at that time so we can use them now. 1596 */ 1597 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 1598 sizeof(unp->unp_peercred)); 1599 unp->unp_flags |= UNP_HAVEPC; 1600 if (unp2->unp_flags & UNP_WANTCRED) 1601 unp3->unp_flags |= UNP_WANTCRED; 1602 UNP_PCB_UNLOCK(unp2); 1603 unp2 = unp3; 1604 unp_pcb_owned_lock2(unp2, unp, freed); 1605 MPASS(!freed); 1606 #ifdef MAC 1607 mac_socketpeer_set_from_socket(so, so2); 1608 mac_socketpeer_set_from_socket(so2, so); 1609 #endif 1610 } 1611 1612 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1613 sotounpcb(so2) == unp2, 1614 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1615 error = unp_connect2(so, so2, PRU_CONNECT); 1616 bad3: 1617 UNP_PCB_UNLOCK(unp2); 1618 UNP_PCB_UNLOCK(unp); 1619 bad2: 1620 mtx_unlock(vplock); 1621 bad: 1622 if (vp != NULL) { 1623 vput(vp); 1624 } 1625 free(sa, M_SONAME); 1626 UNP_PCB_LOCK(unp); 1627 unp->unp_flags &= ~UNP_CONNECTING; 1628 UNP_PCB_UNLOCK(unp); 1629 return (error); 1630 } 1631 1632 static int 1633 unp_connect2(struct socket *so, struct socket *so2, int req) 1634 { 1635 struct unpcb *unp; 1636 struct unpcb *unp2; 1637 1638 unp = sotounpcb(so); 1639 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1640 unp2 = sotounpcb(so2); 1641 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1642 1643 UNP_PCB_LOCK_ASSERT(unp); 1644 UNP_PCB_LOCK_ASSERT(unp2); 1645 1646 if (so2->so_type != so->so_type) 1647 return (EPROTOTYPE); 1648 unp2->unp_flags &= ~UNP_NASCENT; 1649 unp->unp_conn = unp2; 1650 unp_pcb_hold(unp2); 1651 unp_pcb_hold(unp); 1652 switch (so->so_type) { 1653 case SOCK_DGRAM: 1654 UNP_REF_LIST_LOCK(); 1655 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1656 UNP_REF_LIST_UNLOCK(); 1657 soisconnected(so); 1658 break; 1659 1660 case SOCK_STREAM: 1661 case SOCK_SEQPACKET: 1662 unp2->unp_conn = unp; 1663 if (req == PRU_CONNECT && 1664 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1665 soisconnecting(so); 1666 else 1667 soisconnected(so); 1668 soisconnected(so2); 1669 break; 1670 1671 default: 1672 panic("unp_connect2"); 1673 } 1674 return (0); 1675 } 1676 1677 static void 1678 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1679 { 1680 struct socket *so, *so2; 1681 int freed __unused; 1682 1683 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1684 1685 UNP_PCB_LOCK_ASSERT(unp); 1686 UNP_PCB_LOCK_ASSERT(unp2); 1687 1688 if (unp->unp_conn == NULL && unp2->unp_conn == NULL) 1689 return; 1690 1691 MPASS(unp->unp_conn == unp2); 1692 unp->unp_conn = NULL; 1693 so = unp->unp_socket; 1694 so2 = unp2->unp_socket; 1695 switch (unp->unp_socket->so_type) { 1696 case SOCK_DGRAM: 1697 UNP_REF_LIST_LOCK(); 1698 LIST_REMOVE(unp, unp_reflink); 1699 UNP_REF_LIST_UNLOCK(); 1700 if (so) { 1701 SOCK_LOCK(so); 1702 so->so_state &= ~SS_ISCONNECTED; 1703 SOCK_UNLOCK(so); 1704 } 1705 break; 1706 1707 case SOCK_STREAM: 1708 case SOCK_SEQPACKET: 1709 if (so) 1710 soisdisconnected(so); 1711 MPASS(unp2->unp_conn == unp); 1712 unp2->unp_conn = NULL; 1713 if (so2) 1714 soisdisconnected(so2); 1715 break; 1716 } 1717 freed = unp_pcb_rele(unp); 1718 MPASS(freed == 0); 1719 freed = unp_pcb_rele(unp2); 1720 MPASS(freed == 0); 1721 } 1722 1723 /* 1724 * unp_pcblist() walks the global list of struct unpcb's to generate a 1725 * pointer list, bumping the refcount on each unpcb. It then copies them out 1726 * sequentially, validating the generation number on each to see if it has 1727 * been detached. All of this is necessary because copyout() may sleep on 1728 * disk I/O. 1729 */ 1730 static int 1731 unp_pcblist(SYSCTL_HANDLER_ARGS) 1732 { 1733 struct unpcb *unp, **unp_list; 1734 unp_gen_t gencnt; 1735 struct xunpgen *xug; 1736 struct unp_head *head; 1737 struct xunpcb *xu; 1738 u_int i; 1739 int error, freeunp, n; 1740 1741 switch ((intptr_t)arg1) { 1742 case SOCK_STREAM: 1743 head = &unp_shead; 1744 break; 1745 1746 case SOCK_DGRAM: 1747 head = &unp_dhead; 1748 break; 1749 1750 case SOCK_SEQPACKET: 1751 head = &unp_sphead; 1752 break; 1753 1754 default: 1755 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1756 } 1757 1758 /* 1759 * The process of preparing the PCB list is too time-consuming and 1760 * resource-intensive to repeat twice on every request. 1761 */ 1762 if (req->oldptr == NULL) { 1763 n = unp_count; 1764 req->oldidx = 2 * (sizeof *xug) 1765 + (n + n/8) * sizeof(struct xunpcb); 1766 return (0); 1767 } 1768 1769 if (req->newptr != NULL) 1770 return (EPERM); 1771 1772 /* 1773 * OK, now we're committed to doing something. 1774 */ 1775 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); 1776 UNP_LINK_RLOCK(); 1777 gencnt = unp_gencnt; 1778 n = unp_count; 1779 UNP_LINK_RUNLOCK(); 1780 1781 xug->xug_len = sizeof *xug; 1782 xug->xug_count = n; 1783 xug->xug_gen = gencnt; 1784 xug->xug_sogen = so_gencnt; 1785 error = SYSCTL_OUT(req, xug, sizeof *xug); 1786 if (error) { 1787 free(xug, M_TEMP); 1788 return (error); 1789 } 1790 1791 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1792 1793 UNP_LINK_RLOCK(); 1794 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1795 unp = LIST_NEXT(unp, unp_link)) { 1796 UNP_PCB_LOCK(unp); 1797 if (unp->unp_gencnt <= gencnt) { 1798 if (cr_cansee(req->td->td_ucred, 1799 unp->unp_socket->so_cred)) { 1800 UNP_PCB_UNLOCK(unp); 1801 continue; 1802 } 1803 unp_list[i++] = unp; 1804 unp_pcb_hold(unp); 1805 } 1806 UNP_PCB_UNLOCK(unp); 1807 } 1808 UNP_LINK_RUNLOCK(); 1809 n = i; /* In case we lost some during malloc. */ 1810 1811 error = 0; 1812 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1813 for (i = 0; i < n; i++) { 1814 unp = unp_list[i]; 1815 UNP_PCB_LOCK(unp); 1816 freeunp = unp_pcb_rele(unp); 1817 1818 if (freeunp == 0 && unp->unp_gencnt <= gencnt) { 1819 xu->xu_len = sizeof *xu; 1820 xu->xu_unpp = unp; 1821 /* 1822 * XXX - need more locking here to protect against 1823 * connect/disconnect races for SMP. 1824 */ 1825 if (unp->unp_addr != NULL) 1826 bcopy(unp->unp_addr, &xu->xu_addr, 1827 unp->unp_addr->sun_len); 1828 else 1829 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1830 if (unp->unp_conn != NULL && 1831 unp->unp_conn->unp_addr != NULL) 1832 bcopy(unp->unp_conn->unp_addr, 1833 &xu->xu_caddr, 1834 unp->unp_conn->unp_addr->sun_len); 1835 else 1836 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1837 xu->unp_vnode = unp->unp_vnode; 1838 xu->unp_conn = unp->unp_conn; 1839 xu->xu_firstref = LIST_FIRST(&unp->unp_refs); 1840 xu->xu_nextref = LIST_NEXT(unp, unp_reflink); 1841 xu->unp_gencnt = unp->unp_gencnt; 1842 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1843 UNP_PCB_UNLOCK(unp); 1844 error = SYSCTL_OUT(req, xu, sizeof *xu); 1845 } else if (freeunp == 0) 1846 UNP_PCB_UNLOCK(unp); 1847 } 1848 free(xu, M_TEMP); 1849 if (!error) { 1850 /* 1851 * Give the user an updated idea of our state. If the 1852 * generation differs from what we told her before, she knows 1853 * that something happened while we were processing this 1854 * request, and it might be necessary to retry. 1855 */ 1856 xug->xug_gen = unp_gencnt; 1857 xug->xug_sogen = so_gencnt; 1858 xug->xug_count = unp_count; 1859 error = SYSCTL_OUT(req, xug, sizeof *xug); 1860 } 1861 free(unp_list, M_TEMP); 1862 free(xug, M_TEMP); 1863 return (error); 1864 } 1865 1866 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1867 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1868 "List of active local datagram sockets"); 1869 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1870 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1871 "List of active local stream sockets"); 1872 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1873 CTLTYPE_OPAQUE | CTLFLAG_RD, 1874 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1875 "List of active local seqpacket sockets"); 1876 1877 static void 1878 unp_shutdown(struct unpcb *unp) 1879 { 1880 struct unpcb *unp2; 1881 struct socket *so; 1882 1883 UNP_PCB_LOCK_ASSERT(unp); 1884 1885 unp2 = unp->unp_conn; 1886 if ((unp->unp_socket->so_type == SOCK_STREAM || 1887 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1888 so = unp2->unp_socket; 1889 if (so != NULL) 1890 socantrcvmore(so); 1891 } 1892 } 1893 1894 static void 1895 unp_drop(struct unpcb *unp) 1896 { 1897 struct socket *so = unp->unp_socket; 1898 struct unpcb *unp2; 1899 int freed; 1900 1901 /* 1902 * Regardless of whether the socket's peer dropped the connection 1903 * with this socket by aborting or disconnecting, POSIX requires 1904 * that ECONNRESET is returned. 1905 */ 1906 /* acquire a reference so that unp isn't freed from underneath us */ 1907 1908 UNP_PCB_LOCK(unp); 1909 if (so) 1910 so->so_error = ECONNRESET; 1911 unp2 = unp->unp_conn; 1912 if (unp2 != NULL) { 1913 unp_pcb_hold(unp2); 1914 unp_pcb_owned_lock2(unp, unp2, freed); 1915 unp_disconnect(unp, unp2); 1916 if (unp_pcb_rele(unp2) == 0) 1917 UNP_PCB_UNLOCK(unp2); 1918 } 1919 if (unp_pcb_rele(unp) == 0) 1920 UNP_PCB_UNLOCK(unp); 1921 } 1922 1923 static void 1924 unp_freerights(struct filedescent **fdep, int fdcount) 1925 { 1926 struct file *fp; 1927 int i; 1928 1929 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1930 1931 for (i = 0; i < fdcount; i++) { 1932 fp = fdep[i]->fde_file; 1933 filecaps_free(&fdep[i]->fde_caps); 1934 unp_discard(fp); 1935 } 1936 free(fdep[0], M_FILECAPS); 1937 } 1938 1939 static int 1940 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1941 { 1942 struct thread *td = curthread; /* XXX */ 1943 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1944 int i; 1945 int *fdp; 1946 struct filedesc *fdesc = td->td_proc->p_fd; 1947 struct filedescent **fdep; 1948 void *data; 1949 socklen_t clen = control->m_len, datalen; 1950 int error, newfds; 1951 u_int newlen; 1952 1953 UNP_LINK_UNLOCK_ASSERT(); 1954 1955 error = 0; 1956 if (controlp != NULL) /* controlp == NULL => free control messages */ 1957 *controlp = NULL; 1958 while (cm != NULL) { 1959 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 1960 error = EINVAL; 1961 break; 1962 } 1963 data = CMSG_DATA(cm); 1964 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1965 if (cm->cmsg_level == SOL_SOCKET 1966 && cm->cmsg_type == SCM_RIGHTS) { 1967 newfds = datalen / sizeof(*fdep); 1968 if (newfds == 0) 1969 goto next; 1970 fdep = data; 1971 1972 /* If we're not outputting the descriptors free them. */ 1973 if (error || controlp == NULL) { 1974 unp_freerights(fdep, newfds); 1975 goto next; 1976 } 1977 FILEDESC_XLOCK(fdesc); 1978 1979 /* 1980 * Now change each pointer to an fd in the global 1981 * table to an integer that is the index to the local 1982 * fd table entry that we set up to point to the 1983 * global one we are transferring. 1984 */ 1985 newlen = newfds * sizeof(int); 1986 *controlp = sbcreatecontrol(NULL, newlen, 1987 SCM_RIGHTS, SOL_SOCKET); 1988 if (*controlp == NULL) { 1989 FILEDESC_XUNLOCK(fdesc); 1990 error = E2BIG; 1991 unp_freerights(fdep, newfds); 1992 goto next; 1993 } 1994 1995 fdp = (int *) 1996 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1997 if (fdallocn(td, 0, fdp, newfds) != 0) { 1998 FILEDESC_XUNLOCK(fdesc); 1999 error = EMSGSIZE; 2000 unp_freerights(fdep, newfds); 2001 m_freem(*controlp); 2002 *controlp = NULL; 2003 goto next; 2004 } 2005 for (i = 0; i < newfds; i++, fdp++) { 2006 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2007 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 2008 &fdep[i]->fde_caps); 2009 unp_externalize_fp(fdep[i]->fde_file); 2010 } 2011 FILEDESC_XUNLOCK(fdesc); 2012 free(fdep[0], M_FILECAPS); 2013 } else { 2014 /* We can just copy anything else across. */ 2015 if (error || controlp == NULL) 2016 goto next; 2017 *controlp = sbcreatecontrol(NULL, datalen, 2018 cm->cmsg_type, cm->cmsg_level); 2019 if (*controlp == NULL) { 2020 error = ENOBUFS; 2021 goto next; 2022 } 2023 bcopy(data, 2024 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2025 datalen); 2026 } 2027 controlp = &(*controlp)->m_next; 2028 2029 next: 2030 if (CMSG_SPACE(datalen) < clen) { 2031 clen -= CMSG_SPACE(datalen); 2032 cm = (struct cmsghdr *) 2033 ((caddr_t)cm + CMSG_SPACE(datalen)); 2034 } else { 2035 clen = 0; 2036 cm = NULL; 2037 } 2038 } 2039 2040 m_freem(control); 2041 return (error); 2042 } 2043 2044 static void 2045 unp_zone_change(void *tag) 2046 { 2047 2048 uma_zone_set_max(unp_zone, maxsockets); 2049 } 2050 2051 static void 2052 unp_init(void) 2053 { 2054 2055 #ifdef VIMAGE 2056 if (!IS_DEFAULT_VNET(curvnet)) 2057 return; 2058 #endif 2059 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 2060 NULL, NULL, UMA_ALIGN_CACHE, 0); 2061 if (unp_zone == NULL) 2062 panic("unp_init"); 2063 uma_zone_set_max(unp_zone, maxsockets); 2064 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2065 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2066 NULL, EVENTHANDLER_PRI_ANY); 2067 LIST_INIT(&unp_dhead); 2068 LIST_INIT(&unp_shead); 2069 LIST_INIT(&unp_sphead); 2070 SLIST_INIT(&unp_defers); 2071 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2072 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2073 UNP_LINK_LOCK_INIT(); 2074 UNP_DEFERRED_LOCK_INIT(); 2075 } 2076 2077 static int 2078 unp_internalize(struct mbuf **controlp, struct thread *td) 2079 { 2080 struct mbuf *control = *controlp; 2081 struct proc *p = td->td_proc; 2082 struct filedesc *fdesc = p->p_fd; 2083 struct bintime *bt; 2084 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2085 struct cmsgcred *cmcred; 2086 struct filedescent *fde, **fdep, *fdev; 2087 struct file *fp; 2088 struct timeval *tv; 2089 struct timespec *ts; 2090 int i, *fdp; 2091 void *data; 2092 socklen_t clen = control->m_len, datalen; 2093 int error, oldfds; 2094 u_int newlen; 2095 2096 UNP_LINK_UNLOCK_ASSERT(); 2097 2098 error = 0; 2099 *controlp = NULL; 2100 while (cm != NULL) { 2101 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2102 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2103 error = EINVAL; 2104 goto out; 2105 } 2106 data = CMSG_DATA(cm); 2107 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2108 2109 switch (cm->cmsg_type) { 2110 /* 2111 * Fill in credential information. 2112 */ 2113 case SCM_CREDS: 2114 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2115 SCM_CREDS, SOL_SOCKET); 2116 if (*controlp == NULL) { 2117 error = ENOBUFS; 2118 goto out; 2119 } 2120 cmcred = (struct cmsgcred *) 2121 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2122 cmcred->cmcred_pid = p->p_pid; 2123 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2124 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2125 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2126 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2127 CMGROUP_MAX); 2128 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2129 cmcred->cmcred_groups[i] = 2130 td->td_ucred->cr_groups[i]; 2131 break; 2132 2133 case SCM_RIGHTS: 2134 oldfds = datalen / sizeof (int); 2135 if (oldfds == 0) 2136 break; 2137 /* 2138 * Check that all the FDs passed in refer to legal 2139 * files. If not, reject the entire operation. 2140 */ 2141 fdp = data; 2142 FILEDESC_SLOCK(fdesc); 2143 for (i = 0; i < oldfds; i++, fdp++) { 2144 fp = fget_locked(fdesc, *fdp); 2145 if (fp == NULL) { 2146 FILEDESC_SUNLOCK(fdesc); 2147 error = EBADF; 2148 goto out; 2149 } 2150 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2151 FILEDESC_SUNLOCK(fdesc); 2152 error = EOPNOTSUPP; 2153 goto out; 2154 } 2155 2156 } 2157 2158 /* 2159 * Now replace the integer FDs with pointers to the 2160 * file structure and capability rights. 2161 */ 2162 newlen = oldfds * sizeof(fdep[0]); 2163 *controlp = sbcreatecontrol(NULL, newlen, 2164 SCM_RIGHTS, SOL_SOCKET); 2165 if (*controlp == NULL) { 2166 FILEDESC_SUNLOCK(fdesc); 2167 error = E2BIG; 2168 goto out; 2169 } 2170 fdp = data; 2171 fdep = (struct filedescent **) 2172 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2173 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2174 M_WAITOK); 2175 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2176 fde = &fdesc->fd_ofiles[*fdp]; 2177 fdep[i] = fdev; 2178 fdep[i]->fde_file = fde->fde_file; 2179 filecaps_copy(&fde->fde_caps, 2180 &fdep[i]->fde_caps, true); 2181 unp_internalize_fp(fdep[i]->fde_file); 2182 } 2183 FILEDESC_SUNLOCK(fdesc); 2184 break; 2185 2186 case SCM_TIMESTAMP: 2187 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2188 SCM_TIMESTAMP, SOL_SOCKET); 2189 if (*controlp == NULL) { 2190 error = ENOBUFS; 2191 goto out; 2192 } 2193 tv = (struct timeval *) 2194 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2195 microtime(tv); 2196 break; 2197 2198 case SCM_BINTIME: 2199 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2200 SCM_BINTIME, SOL_SOCKET); 2201 if (*controlp == NULL) { 2202 error = ENOBUFS; 2203 goto out; 2204 } 2205 bt = (struct bintime *) 2206 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2207 bintime(bt); 2208 break; 2209 2210 case SCM_REALTIME: 2211 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2212 SCM_REALTIME, SOL_SOCKET); 2213 if (*controlp == NULL) { 2214 error = ENOBUFS; 2215 goto out; 2216 } 2217 ts = (struct timespec *) 2218 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2219 nanotime(ts); 2220 break; 2221 2222 case SCM_MONOTONIC: 2223 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2224 SCM_MONOTONIC, SOL_SOCKET); 2225 if (*controlp == NULL) { 2226 error = ENOBUFS; 2227 goto out; 2228 } 2229 ts = (struct timespec *) 2230 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2231 nanouptime(ts); 2232 break; 2233 2234 default: 2235 error = EINVAL; 2236 goto out; 2237 } 2238 2239 controlp = &(*controlp)->m_next; 2240 if (CMSG_SPACE(datalen) < clen) { 2241 clen -= CMSG_SPACE(datalen); 2242 cm = (struct cmsghdr *) 2243 ((caddr_t)cm + CMSG_SPACE(datalen)); 2244 } else { 2245 clen = 0; 2246 cm = NULL; 2247 } 2248 } 2249 2250 out: 2251 m_freem(control); 2252 return (error); 2253 } 2254 2255 static struct mbuf * 2256 unp_addsockcred(struct thread *td, struct mbuf *control) 2257 { 2258 struct mbuf *m, *n, *n_prev; 2259 struct sockcred *sc; 2260 const struct cmsghdr *cm; 2261 int ngroups; 2262 int i; 2263 2264 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2265 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2266 if (m == NULL) 2267 return (control); 2268 2269 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2270 sc->sc_uid = td->td_ucred->cr_ruid; 2271 sc->sc_euid = td->td_ucred->cr_uid; 2272 sc->sc_gid = td->td_ucred->cr_rgid; 2273 sc->sc_egid = td->td_ucred->cr_gid; 2274 sc->sc_ngroups = ngroups; 2275 for (i = 0; i < sc->sc_ngroups; i++) 2276 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2277 2278 /* 2279 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2280 * created SCM_CREDS control message (struct sockcred) has another 2281 * format. 2282 */ 2283 if (control != NULL) 2284 for (n = control, n_prev = NULL; n != NULL;) { 2285 cm = mtod(n, struct cmsghdr *); 2286 if (cm->cmsg_level == SOL_SOCKET && 2287 cm->cmsg_type == SCM_CREDS) { 2288 if (n_prev == NULL) 2289 control = n->m_next; 2290 else 2291 n_prev->m_next = n->m_next; 2292 n = m_free(n); 2293 } else { 2294 n_prev = n; 2295 n = n->m_next; 2296 } 2297 } 2298 2299 /* Prepend it to the head. */ 2300 m->m_next = control; 2301 return (m); 2302 } 2303 2304 static struct unpcb * 2305 fptounp(struct file *fp) 2306 { 2307 struct socket *so; 2308 2309 if (fp->f_type != DTYPE_SOCKET) 2310 return (NULL); 2311 if ((so = fp->f_data) == NULL) 2312 return (NULL); 2313 if (so->so_proto->pr_domain != &localdomain) 2314 return (NULL); 2315 return sotounpcb(so); 2316 } 2317 2318 static void 2319 unp_discard(struct file *fp) 2320 { 2321 struct unp_defer *dr; 2322 2323 if (unp_externalize_fp(fp)) { 2324 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2325 dr->ud_fp = fp; 2326 UNP_DEFERRED_LOCK(); 2327 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2328 UNP_DEFERRED_UNLOCK(); 2329 atomic_add_int(&unp_defers_count, 1); 2330 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2331 } else 2332 (void) closef(fp, (struct thread *)NULL); 2333 } 2334 2335 static void 2336 unp_process_defers(void *arg __unused, int pending) 2337 { 2338 struct unp_defer *dr; 2339 SLIST_HEAD(, unp_defer) drl; 2340 int count; 2341 2342 SLIST_INIT(&drl); 2343 for (;;) { 2344 UNP_DEFERRED_LOCK(); 2345 if (SLIST_FIRST(&unp_defers) == NULL) { 2346 UNP_DEFERRED_UNLOCK(); 2347 break; 2348 } 2349 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2350 UNP_DEFERRED_UNLOCK(); 2351 count = 0; 2352 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2353 SLIST_REMOVE_HEAD(&drl, ud_link); 2354 closef(dr->ud_fp, NULL); 2355 free(dr, M_TEMP); 2356 count++; 2357 } 2358 atomic_add_int(&unp_defers_count, -count); 2359 } 2360 } 2361 2362 static void 2363 unp_internalize_fp(struct file *fp) 2364 { 2365 struct unpcb *unp; 2366 2367 UNP_LINK_WLOCK(); 2368 if ((unp = fptounp(fp)) != NULL) { 2369 unp->unp_file = fp; 2370 unp->unp_msgcount++; 2371 } 2372 fhold(fp); 2373 unp_rights++; 2374 UNP_LINK_WUNLOCK(); 2375 } 2376 2377 static int 2378 unp_externalize_fp(struct file *fp) 2379 { 2380 struct unpcb *unp; 2381 int ret; 2382 2383 UNP_LINK_WLOCK(); 2384 if ((unp = fptounp(fp)) != NULL) { 2385 unp->unp_msgcount--; 2386 ret = 1; 2387 } else 2388 ret = 0; 2389 unp_rights--; 2390 UNP_LINK_WUNLOCK(); 2391 return (ret); 2392 } 2393 2394 /* 2395 * unp_defer indicates whether additional work has been defered for a future 2396 * pass through unp_gc(). It is thread local and does not require explicit 2397 * synchronization. 2398 */ 2399 static int unp_marked; 2400 static int unp_unreachable; 2401 2402 static void 2403 unp_accessable(struct filedescent **fdep, int fdcount) 2404 { 2405 struct unpcb *unp; 2406 struct file *fp; 2407 int i; 2408 2409 for (i = 0; i < fdcount; i++) { 2410 fp = fdep[i]->fde_file; 2411 if ((unp = fptounp(fp)) == NULL) 2412 continue; 2413 if (unp->unp_gcflag & UNPGC_REF) 2414 continue; 2415 unp->unp_gcflag &= ~UNPGC_DEAD; 2416 unp->unp_gcflag |= UNPGC_REF; 2417 unp_marked++; 2418 } 2419 } 2420 2421 static void 2422 unp_gc_process(struct unpcb *unp) 2423 { 2424 struct socket *so, *soa; 2425 struct file *fp; 2426 2427 /* Already processed. */ 2428 if (unp->unp_gcflag & UNPGC_SCANNED) 2429 return; 2430 fp = unp->unp_file; 2431 2432 /* 2433 * Check for a socket potentially in a cycle. It must be in a 2434 * queue as indicated by msgcount, and this must equal the file 2435 * reference count. Note that when msgcount is 0 the file is NULL. 2436 */ 2437 if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp && 2438 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) { 2439 unp->unp_gcflag |= UNPGC_DEAD; 2440 unp_unreachable++; 2441 return; 2442 } 2443 2444 so = unp->unp_socket; 2445 SOCK_LOCK(so); 2446 if (SOLISTENING(so)) { 2447 /* 2448 * Mark all sockets in our accept queue. 2449 */ 2450 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2451 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2452 continue; 2453 SOCKBUF_LOCK(&soa->so_rcv); 2454 unp_scan(soa->so_rcv.sb_mb, unp_accessable); 2455 SOCKBUF_UNLOCK(&soa->so_rcv); 2456 } 2457 } else { 2458 /* 2459 * Mark all sockets we reference with RIGHTS. 2460 */ 2461 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2462 SOCKBUF_LOCK(&so->so_rcv); 2463 unp_scan(so->so_rcv.sb_mb, unp_accessable); 2464 SOCKBUF_UNLOCK(&so->so_rcv); 2465 } 2466 } 2467 SOCK_UNLOCK(so); 2468 unp->unp_gcflag |= UNPGC_SCANNED; 2469 } 2470 2471 static int unp_recycled; 2472 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2473 "Number of unreachable sockets claimed by the garbage collector."); 2474 2475 static int unp_taskcount; 2476 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2477 "Number of times the garbage collector has run."); 2478 2479 static void 2480 unp_gc(__unused void *arg, int pending) 2481 { 2482 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2483 NULL }; 2484 struct unp_head **head; 2485 struct file *f, **unref; 2486 struct unpcb *unp; 2487 int i, total; 2488 2489 unp_taskcount++; 2490 UNP_LINK_RLOCK(); 2491 /* 2492 * First clear all gc flags from previous runs, apart from 2493 * UNPGC_IGNORE_RIGHTS. 2494 */ 2495 for (head = heads; *head != NULL; head++) 2496 LIST_FOREACH(unp, *head, unp_link) 2497 unp->unp_gcflag = 2498 (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS); 2499 2500 /* 2501 * Scan marking all reachable sockets with UNPGC_REF. Once a socket 2502 * is reachable all of the sockets it references are reachable. 2503 * Stop the scan once we do a complete loop without discovering 2504 * a new reachable socket. 2505 */ 2506 do { 2507 unp_unreachable = 0; 2508 unp_marked = 0; 2509 for (head = heads; *head != NULL; head++) 2510 LIST_FOREACH(unp, *head, unp_link) 2511 unp_gc_process(unp); 2512 } while (unp_marked); 2513 UNP_LINK_RUNLOCK(); 2514 if (unp_unreachable == 0) 2515 return; 2516 2517 /* 2518 * Allocate space for a local list of dead unpcbs. 2519 */ 2520 unref = malloc(unp_unreachable * sizeof(struct file *), 2521 M_TEMP, M_WAITOK); 2522 2523 /* 2524 * Iterate looking for sockets which have been specifically marked 2525 * as as unreachable and store them locally. 2526 */ 2527 UNP_LINK_RLOCK(); 2528 for (total = 0, head = heads; *head != NULL; head++) 2529 LIST_FOREACH(unp, *head, unp_link) 2530 if ((unp->unp_gcflag & UNPGC_DEAD) != 0) { 2531 f = unp->unp_file; 2532 if (unp->unp_msgcount == 0 || f == NULL || 2533 f->f_count != unp->unp_msgcount) 2534 continue; 2535 unref[total++] = f; 2536 fhold(f); 2537 KASSERT(total <= unp_unreachable, 2538 ("unp_gc: incorrect unreachable count.")); 2539 } 2540 UNP_LINK_RUNLOCK(); 2541 2542 /* 2543 * Now flush all sockets, free'ing rights. This will free the 2544 * struct files associated with these sockets but leave each socket 2545 * with one remaining ref. 2546 */ 2547 for (i = 0; i < total; i++) { 2548 struct socket *so; 2549 2550 so = unref[i]->f_data; 2551 CURVNET_SET(so->so_vnet); 2552 sorflush(so); 2553 CURVNET_RESTORE(); 2554 } 2555 2556 /* 2557 * And finally release the sockets so they can be reclaimed. 2558 */ 2559 for (i = 0; i < total; i++) 2560 fdrop(unref[i], NULL); 2561 unp_recycled += total; 2562 free(unref, M_TEMP); 2563 } 2564 2565 static void 2566 unp_dispose_mbuf(struct mbuf *m) 2567 { 2568 2569 if (m) 2570 unp_scan(m, unp_freerights); 2571 } 2572 2573 /* 2574 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2575 */ 2576 static void 2577 unp_dispose(struct socket *so) 2578 { 2579 struct unpcb *unp; 2580 2581 unp = sotounpcb(so); 2582 UNP_LINK_WLOCK(); 2583 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2584 UNP_LINK_WUNLOCK(); 2585 if (!SOLISTENING(so)) 2586 unp_dispose_mbuf(so->so_rcv.sb_mb); 2587 } 2588 2589 static void 2590 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2591 { 2592 struct mbuf *m; 2593 struct cmsghdr *cm; 2594 void *data; 2595 socklen_t clen, datalen; 2596 2597 while (m0 != NULL) { 2598 for (m = m0; m; m = m->m_next) { 2599 if (m->m_type != MT_CONTROL) 2600 continue; 2601 2602 cm = mtod(m, struct cmsghdr *); 2603 clen = m->m_len; 2604 2605 while (cm != NULL) { 2606 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2607 break; 2608 2609 data = CMSG_DATA(cm); 2610 datalen = (caddr_t)cm + cm->cmsg_len 2611 - (caddr_t)data; 2612 2613 if (cm->cmsg_level == SOL_SOCKET && 2614 cm->cmsg_type == SCM_RIGHTS) { 2615 (*op)(data, datalen / 2616 sizeof(struct filedescent *)); 2617 } 2618 2619 if (CMSG_SPACE(datalen) < clen) { 2620 clen -= CMSG_SPACE(datalen); 2621 cm = (struct cmsghdr *) 2622 ((caddr_t)cm + CMSG_SPACE(datalen)); 2623 } else { 2624 clen = 0; 2625 cm = NULL; 2626 } 2627 } 2628 } 2629 m0 = m0->m_nextpkt; 2630 } 2631 } 2632 2633 /* 2634 * A helper function called by VFS before socket-type vnode reclamation. 2635 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2636 * use count. 2637 */ 2638 void 2639 vfs_unp_reclaim(struct vnode *vp) 2640 { 2641 struct unpcb *unp; 2642 int active; 2643 struct mtx *vplock; 2644 2645 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2646 KASSERT(vp->v_type == VSOCK, 2647 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2648 2649 active = 0; 2650 vplock = mtx_pool_find(mtxpool_sleep, vp); 2651 mtx_lock(vplock); 2652 VOP_UNP_CONNECT(vp, &unp); 2653 if (unp == NULL) 2654 goto done; 2655 UNP_PCB_LOCK(unp); 2656 if (unp->unp_vnode == vp) { 2657 VOP_UNP_DETACH(vp); 2658 unp->unp_vnode = NULL; 2659 active = 1; 2660 } 2661 UNP_PCB_UNLOCK(unp); 2662 done: 2663 mtx_unlock(vplock); 2664 if (active) 2665 vunref(vp); 2666 } 2667 2668 #ifdef DDB 2669 static void 2670 db_print_indent(int indent) 2671 { 2672 int i; 2673 2674 for (i = 0; i < indent; i++) 2675 db_printf(" "); 2676 } 2677 2678 static void 2679 db_print_unpflags(int unp_flags) 2680 { 2681 int comma; 2682 2683 comma = 0; 2684 if (unp_flags & UNP_HAVEPC) { 2685 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2686 comma = 1; 2687 } 2688 if (unp_flags & UNP_WANTCRED) { 2689 db_printf("%sUNP_WANTCRED", comma ? ", " : ""); 2690 comma = 1; 2691 } 2692 if (unp_flags & UNP_CONNWAIT) { 2693 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2694 comma = 1; 2695 } 2696 if (unp_flags & UNP_CONNECTING) { 2697 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2698 comma = 1; 2699 } 2700 if (unp_flags & UNP_BINDING) { 2701 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2702 comma = 1; 2703 } 2704 } 2705 2706 static void 2707 db_print_xucred(int indent, struct xucred *xu) 2708 { 2709 int comma, i; 2710 2711 db_print_indent(indent); 2712 db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n", 2713 xu->cr_version, xu->cr_uid, xu->cr_ngroups); 2714 db_print_indent(indent); 2715 db_printf("cr_groups: "); 2716 comma = 0; 2717 for (i = 0; i < xu->cr_ngroups; i++) { 2718 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2719 comma = 1; 2720 } 2721 db_printf("\n"); 2722 } 2723 2724 static void 2725 db_print_unprefs(int indent, struct unp_head *uh) 2726 { 2727 struct unpcb *unp; 2728 int counter; 2729 2730 counter = 0; 2731 LIST_FOREACH(unp, uh, unp_reflink) { 2732 if (counter % 4 == 0) 2733 db_print_indent(indent); 2734 db_printf("%p ", unp); 2735 if (counter % 4 == 3) 2736 db_printf("\n"); 2737 counter++; 2738 } 2739 if (counter != 0 && counter % 4 != 0) 2740 db_printf("\n"); 2741 } 2742 2743 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2744 { 2745 struct unpcb *unp; 2746 2747 if (!have_addr) { 2748 db_printf("usage: show unpcb <addr>\n"); 2749 return; 2750 } 2751 unp = (struct unpcb *)addr; 2752 2753 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2754 unp->unp_vnode); 2755 2756 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2757 unp->unp_conn); 2758 2759 db_printf("unp_refs:\n"); 2760 db_print_unprefs(2, &unp->unp_refs); 2761 2762 /* XXXRW: Would be nice to print the full address, if any. */ 2763 db_printf("unp_addr: %p\n", unp->unp_addr); 2764 2765 db_printf("unp_gencnt: %llu\n", 2766 (unsigned long long)unp->unp_gencnt); 2767 2768 db_printf("unp_flags: %x (", unp->unp_flags); 2769 db_print_unpflags(unp->unp_flags); 2770 db_printf(")\n"); 2771 2772 db_printf("unp_peercred:\n"); 2773 db_print_xucred(2, &unp->unp_peercred); 2774 2775 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2776 } 2777 #endif 2778