1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/eventhandler.h> 69 #include <sys/fcntl.h> 70 #include <sys/file.h> 71 #include <sys/filedesc.h> 72 #include <sys/kernel.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * See unpcb.h for the locking key. 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 165 "Local domain"); 166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "SOCK_DGRAM"); 172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 174 "SOCK_SEQPACKET"); 175 176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 177 &unpst_sendspace, 0, "Default stream send space."); 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 179 &unpst_recvspace, 0, "Default stream receive space."); 180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 181 &unpdg_sendspace, 0, "Default datagram send space."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 183 &unpdg_recvspace, 0, "Default datagram receive space."); 184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 185 &unpsp_sendspace, 0, "Default seqpacket send space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 187 &unpsp_recvspace, 0, "Default seqpacket receive space."); 188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 189 "File descriptors in flight."); 190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 191 &unp_defers_count, 0, 192 "File descriptors deferred to taskqueue for close."); 193 194 /* 195 * Locking and synchronization: 196 * 197 * Several types of locks exist in the local domain socket implementation: 198 * - a global linkage lock 199 * - a global connection list lock 200 * - the mtxpool lock 201 * - per-unpcb mutexes 202 * 203 * The linkage lock protects the global socket lists, the generation number 204 * counter and garbage collector state. 205 * 206 * The connection list lock protects the list of referring sockets in a datagram 207 * socket PCB. This lock is also overloaded to protect a global list of 208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS 209 * messages. To avoid recursion, such references are released by a dedicated 210 * thread. 211 * 212 * The mtxpool lock protects the vnode from being modified while referenced. 213 * Lock ordering rules require that it be acquired before any PCB locks. 214 * 215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the 216 * unpcb. This includes the unp_conn field, which either links two connected 217 * PCBs together (for connected socket types) or points at the destination 218 * socket (for connectionless socket types). The operations of creating or 219 * destroying a connection therefore involve locking multiple PCBs. To avoid 220 * lock order reversals, in some cases this involves dropping a PCB lock and 221 * using a reference counter to maintain liveness. 222 * 223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 224 * allocated in pru_attach() and freed in pru_detach(). The validity of that 225 * pointer is an invariant, so no lock is required to dereference the so_pcb 226 * pointer if a valid socket reference is held by the caller. In practice, 227 * this is always true during operations performed on a socket. Each unpcb 228 * has a back-pointer to its socket, unp_socket, which will be stable under 229 * the same circumstances. 230 * 231 * This pointer may only be safely dereferenced as long as a valid reference 232 * to the unpcb is held. Typically, this reference will be from the socket, 233 * or from another unpcb when the referring unpcb's lock is held (in order 234 * that the reference not be invalidated during use). For example, to follow 235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 236 * that detach is not run clearing unp_socket. 237 * 238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 239 * protocols, bind() is a non-atomic operation, and connect() requires 240 * potential sleeping in the protocol, due to potentially waiting on local or 241 * distributed file systems. We try to separate "lookup" operations, which 242 * may sleep, and the IPC operations themselves, which typically can occur 243 * with relative atomicity as locks can be held over the entire operation. 244 * 245 * Another tricky issue is simultaneous multi-threaded or multi-process 246 * access to a single UNIX domain socket. These are handled by the flags 247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 248 * binding, both of which involve dropping UNIX domain socket locks in order 249 * to perform namei() and other file system operations. 250 */ 251 static struct rwlock unp_link_rwlock; 252 static struct mtx unp_defers_lock; 253 254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 255 "unp_link_rwlock") 256 257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 258 RA_LOCKED) 259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 260 RA_UNLOCKED) 261 262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 267 RA_WLOCKED) 268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 269 270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 271 "unp_defer", NULL, MTX_DEF) 272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 274 275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 277 278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 279 "unp", "unp", \ 280 MTX_DUPOK|MTX_DEF) 281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx) 283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 289 290 static int uipc_connect2(struct socket *, struct socket *); 291 static int uipc_ctloutput(struct socket *, struct sockopt *); 292 static int unp_connect(struct socket *, struct sockaddr *, 293 struct thread *); 294 static int unp_connectat(int, struct socket *, struct sockaddr *, 295 struct thread *); 296 static int unp_connect2(struct socket *so, struct socket *so2, int); 297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 298 static void unp_dispose(struct socket *so); 299 static void unp_dispose_mbuf(struct mbuf *); 300 static void unp_shutdown(struct unpcb *); 301 static void unp_drop(struct unpcb *); 302 static void unp_gc(__unused void *, int); 303 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 304 static void unp_discard(struct file *); 305 static void unp_freerights(struct filedescent **, int); 306 static void unp_init(void); 307 static int unp_internalize(struct mbuf **, struct thread *); 308 static void unp_internalize_fp(struct file *); 309 static int unp_externalize(struct mbuf *, struct mbuf **, int); 310 static int unp_externalize_fp(struct file *); 311 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 312 static void unp_process_defers(void * __unused, int); 313 314 static void 315 unp_pcb_hold(struct unpcb *unp) 316 { 317 u_int old __unused; 318 319 old = refcount_acquire(&unp->unp_refcount); 320 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp)); 321 } 322 323 static __result_use_check bool 324 unp_pcb_rele(struct unpcb *unp) 325 { 326 bool ret; 327 328 UNP_PCB_LOCK_ASSERT(unp); 329 330 if ((ret = refcount_release(&unp->unp_refcount))) { 331 UNP_PCB_UNLOCK(unp); 332 UNP_PCB_LOCK_DESTROY(unp); 333 uma_zfree(unp_zone, unp); 334 } 335 return (ret); 336 } 337 338 static void 339 unp_pcb_rele_notlast(struct unpcb *unp) 340 { 341 bool ret __unused; 342 343 ret = refcount_release(&unp->unp_refcount); 344 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp)); 345 } 346 347 static void 348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2) 349 { 350 UNP_PCB_UNLOCK_ASSERT(unp); 351 UNP_PCB_UNLOCK_ASSERT(unp2); 352 353 if (unp == unp2) { 354 UNP_PCB_LOCK(unp); 355 } else if ((uintptr_t)unp2 > (uintptr_t)unp) { 356 UNP_PCB_LOCK(unp); 357 UNP_PCB_LOCK(unp2); 358 } else { 359 UNP_PCB_LOCK(unp2); 360 UNP_PCB_LOCK(unp); 361 } 362 } 363 364 static void 365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2) 366 { 367 UNP_PCB_UNLOCK(unp); 368 if (unp != unp2) 369 UNP_PCB_UNLOCK(unp2); 370 } 371 372 /* 373 * Try to lock the connected peer of an already locked socket. In some cases 374 * this requires that we unlock the current socket. The pairbusy counter is 375 * used to block concurrent connection attempts while the lock is dropped. The 376 * caller must be careful to revalidate PCB state. 377 */ 378 static struct unpcb * 379 unp_pcb_lock_peer(struct unpcb *unp) 380 { 381 struct unpcb *unp2; 382 383 UNP_PCB_LOCK_ASSERT(unp); 384 unp2 = unp->unp_conn; 385 if (__predict_false(unp2 == NULL)) 386 return (NULL); 387 if (__predict_false(unp == unp2)) 388 return (unp); 389 390 UNP_PCB_UNLOCK_ASSERT(unp2); 391 392 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) 393 return (unp2); 394 if ((uintptr_t)unp2 > (uintptr_t)unp) { 395 UNP_PCB_LOCK(unp2); 396 return (unp2); 397 } 398 unp->unp_pairbusy++; 399 unp_pcb_hold(unp2); 400 UNP_PCB_UNLOCK(unp); 401 402 UNP_PCB_LOCK(unp2); 403 UNP_PCB_LOCK(unp); 404 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL, 405 ("%s: socket %p was reconnected", __func__, unp)); 406 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) { 407 unp->unp_flags &= ~UNP_WAITING; 408 wakeup(unp); 409 } 410 if (unp_pcb_rele(unp2)) { 411 /* unp2 is unlocked. */ 412 return (NULL); 413 } 414 if (unp->unp_conn == NULL) { 415 UNP_PCB_UNLOCK(unp2); 416 return (NULL); 417 } 418 return (unp2); 419 } 420 421 /* 422 * Definitions of protocols supported in the LOCAL domain. 423 */ 424 static struct domain localdomain; 425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 426 static struct pr_usrreqs uipc_usrreqs_seqpacket; 427 static struct protosw localsw[] = { 428 { 429 .pr_type = SOCK_STREAM, 430 .pr_domain = &localdomain, 431 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 432 .pr_ctloutput = &uipc_ctloutput, 433 .pr_usrreqs = &uipc_usrreqs_stream 434 }, 435 { 436 .pr_type = SOCK_DGRAM, 437 .pr_domain = &localdomain, 438 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 439 .pr_ctloutput = &uipc_ctloutput, 440 .pr_usrreqs = &uipc_usrreqs_dgram 441 }, 442 { 443 .pr_type = SOCK_SEQPACKET, 444 .pr_domain = &localdomain, 445 446 /* 447 * XXXRW: For now, PR_ADDR because soreceive will bump into them 448 * due to our use of sbappendaddr. A new sbappend variants is needed 449 * that supports both atomic record writes and control data. 450 */ 451 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 452 PR_RIGHTS, 453 .pr_ctloutput = &uipc_ctloutput, 454 .pr_usrreqs = &uipc_usrreqs_seqpacket, 455 }, 456 }; 457 458 static struct domain localdomain = { 459 .dom_family = AF_LOCAL, 460 .dom_name = "local", 461 .dom_init = unp_init, 462 .dom_externalize = unp_externalize, 463 .dom_dispose = unp_dispose, 464 .dom_protosw = localsw, 465 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 466 }; 467 DOMAIN_SET(local); 468 469 static void 470 uipc_abort(struct socket *so) 471 { 472 struct unpcb *unp, *unp2; 473 474 unp = sotounpcb(so); 475 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 476 UNP_PCB_UNLOCK_ASSERT(unp); 477 478 UNP_PCB_LOCK(unp); 479 unp2 = unp->unp_conn; 480 if (unp2 != NULL) { 481 unp_pcb_hold(unp2); 482 UNP_PCB_UNLOCK(unp); 483 unp_drop(unp2); 484 } else 485 UNP_PCB_UNLOCK(unp); 486 } 487 488 static int 489 uipc_accept(struct socket *so, struct sockaddr **nam) 490 { 491 struct unpcb *unp, *unp2; 492 const struct sockaddr *sa; 493 494 /* 495 * Pass back name of connected socket, if it was bound and we are 496 * still connected (our peer may have closed already!). 497 */ 498 unp = sotounpcb(so); 499 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 500 501 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 502 UNP_PCB_LOCK(unp); 503 unp2 = unp_pcb_lock_peer(unp); 504 if (unp2 != NULL && unp2->unp_addr != NULL) 505 sa = (struct sockaddr *)unp2->unp_addr; 506 else 507 sa = &sun_noname; 508 bcopy(sa, *nam, sa->sa_len); 509 if (unp2 != NULL) 510 unp_pcb_unlock_pair(unp, unp2); 511 else 512 UNP_PCB_UNLOCK(unp); 513 return (0); 514 } 515 516 static int 517 uipc_attach(struct socket *so, int proto, struct thread *td) 518 { 519 u_long sendspace, recvspace; 520 struct unpcb *unp; 521 int error; 522 bool locked; 523 524 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 525 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 526 switch (so->so_type) { 527 case SOCK_STREAM: 528 sendspace = unpst_sendspace; 529 recvspace = unpst_recvspace; 530 break; 531 532 case SOCK_DGRAM: 533 sendspace = unpdg_sendspace; 534 recvspace = unpdg_recvspace; 535 break; 536 537 case SOCK_SEQPACKET: 538 sendspace = unpsp_sendspace; 539 recvspace = unpsp_recvspace; 540 break; 541 542 default: 543 panic("uipc_attach"); 544 } 545 error = soreserve(so, sendspace, recvspace); 546 if (error) 547 return (error); 548 } 549 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 550 if (unp == NULL) 551 return (ENOBUFS); 552 LIST_INIT(&unp->unp_refs); 553 UNP_PCB_LOCK_INIT(unp); 554 unp->unp_socket = so; 555 so->so_pcb = unp; 556 refcount_init(&unp->unp_refcount, 1); 557 558 if ((locked = UNP_LINK_WOWNED()) == false) 559 UNP_LINK_WLOCK(); 560 561 unp->unp_gencnt = ++unp_gencnt; 562 unp->unp_ino = ++unp_ino; 563 unp_count++; 564 switch (so->so_type) { 565 case SOCK_STREAM: 566 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 567 break; 568 569 case SOCK_DGRAM: 570 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 571 break; 572 573 case SOCK_SEQPACKET: 574 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 575 break; 576 577 default: 578 panic("uipc_attach"); 579 } 580 581 if (locked == false) 582 UNP_LINK_WUNLOCK(); 583 584 return (0); 585 } 586 587 static int 588 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 589 { 590 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 591 struct vattr vattr; 592 int error, namelen; 593 struct nameidata nd; 594 struct unpcb *unp; 595 struct vnode *vp; 596 struct mount *mp; 597 cap_rights_t rights; 598 char *buf; 599 600 if (nam->sa_family != AF_UNIX) 601 return (EAFNOSUPPORT); 602 603 unp = sotounpcb(so); 604 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 605 606 if (soun->sun_len > sizeof(struct sockaddr_un)) 607 return (EINVAL); 608 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 609 if (namelen <= 0) 610 return (EINVAL); 611 612 /* 613 * We don't allow simultaneous bind() calls on a single UNIX domain 614 * socket, so flag in-progress operations, and return an error if an 615 * operation is already in progress. 616 * 617 * Historically, we have not allowed a socket to be rebound, so this 618 * also returns an error. Not allowing re-binding simplifies the 619 * implementation and avoids a great many possible failure modes. 620 */ 621 UNP_PCB_LOCK(unp); 622 if (unp->unp_vnode != NULL) { 623 UNP_PCB_UNLOCK(unp); 624 return (EINVAL); 625 } 626 if (unp->unp_flags & UNP_BINDING) { 627 UNP_PCB_UNLOCK(unp); 628 return (EALREADY); 629 } 630 unp->unp_flags |= UNP_BINDING; 631 UNP_PCB_UNLOCK(unp); 632 633 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 634 bcopy(soun->sun_path, buf, namelen); 635 buf[namelen] = 0; 636 637 restart: 638 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 639 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 640 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 641 error = namei(&nd); 642 if (error) 643 goto error; 644 vp = nd.ni_vp; 645 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 646 NDFREE(&nd, NDF_ONLY_PNBUF); 647 if (nd.ni_dvp == vp) 648 vrele(nd.ni_dvp); 649 else 650 vput(nd.ni_dvp); 651 if (vp != NULL) { 652 vrele(vp); 653 error = EADDRINUSE; 654 goto error; 655 } 656 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 657 if (error) 658 goto error; 659 goto restart; 660 } 661 VATTR_NULL(&vattr); 662 vattr.va_type = VSOCK; 663 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 664 #ifdef MAC 665 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 666 &vattr); 667 #endif 668 if (error == 0) 669 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 670 NDFREE(&nd, NDF_ONLY_PNBUF); 671 vput(nd.ni_dvp); 672 if (error) { 673 vn_finished_write(mp); 674 if (error == ERELOOKUP) 675 goto restart; 676 goto error; 677 } 678 vp = nd.ni_vp; 679 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 680 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 681 682 UNP_PCB_LOCK(unp); 683 VOP_UNP_BIND(vp, unp); 684 unp->unp_vnode = vp; 685 unp->unp_addr = soun; 686 unp->unp_flags &= ~UNP_BINDING; 687 UNP_PCB_UNLOCK(unp); 688 VOP_UNLOCK(vp); 689 vn_finished_write(mp); 690 free(buf, M_TEMP); 691 return (0); 692 693 error: 694 UNP_PCB_LOCK(unp); 695 unp->unp_flags &= ~UNP_BINDING; 696 UNP_PCB_UNLOCK(unp); 697 free(buf, M_TEMP); 698 return (error); 699 } 700 701 static int 702 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 703 { 704 705 return (uipc_bindat(AT_FDCWD, so, nam, td)); 706 } 707 708 static int 709 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 710 { 711 int error; 712 713 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 714 error = unp_connect(so, nam, td); 715 return (error); 716 } 717 718 static int 719 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 720 struct thread *td) 721 { 722 int error; 723 724 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 725 error = unp_connectat(fd, so, nam, td); 726 return (error); 727 } 728 729 static void 730 uipc_close(struct socket *so) 731 { 732 struct unpcb *unp, *unp2; 733 struct vnode *vp = NULL; 734 struct mtx *vplock; 735 736 unp = sotounpcb(so); 737 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 738 739 vplock = NULL; 740 if ((vp = unp->unp_vnode) != NULL) { 741 vplock = mtx_pool_find(mtxpool_sleep, vp); 742 mtx_lock(vplock); 743 } 744 UNP_PCB_LOCK(unp); 745 if (vp && unp->unp_vnode == NULL) { 746 mtx_unlock(vplock); 747 vp = NULL; 748 } 749 if (vp != NULL) { 750 VOP_UNP_DETACH(vp); 751 unp->unp_vnode = NULL; 752 } 753 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 754 unp_disconnect(unp, unp2); 755 else 756 UNP_PCB_UNLOCK(unp); 757 if (vp) { 758 mtx_unlock(vplock); 759 vrele(vp); 760 } 761 } 762 763 static int 764 uipc_connect2(struct socket *so1, struct socket *so2) 765 { 766 struct unpcb *unp, *unp2; 767 int error; 768 769 unp = so1->so_pcb; 770 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 771 unp2 = so2->so_pcb; 772 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 773 unp_pcb_lock_pair(unp, unp2); 774 error = unp_connect2(so1, so2, PRU_CONNECT2); 775 unp_pcb_unlock_pair(unp, unp2); 776 return (error); 777 } 778 779 static void 780 uipc_detach(struct socket *so) 781 { 782 struct unpcb *unp, *unp2; 783 struct mtx *vplock; 784 struct vnode *vp; 785 int local_unp_rights; 786 787 unp = sotounpcb(so); 788 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 789 790 vp = NULL; 791 vplock = NULL; 792 793 SOCK_LOCK(so); 794 if (!SOLISTENING(so)) { 795 /* 796 * Once the socket is removed from the global lists, 797 * uipc_ready() will not be able to locate its socket buffer, so 798 * clear the buffer now. At this point internalized rights have 799 * already been disposed of. 800 */ 801 sbrelease(&so->so_rcv, so); 802 } 803 SOCK_UNLOCK(so); 804 805 UNP_LINK_WLOCK(); 806 LIST_REMOVE(unp, unp_link); 807 if (unp->unp_gcflag & UNPGC_DEAD) 808 LIST_REMOVE(unp, unp_dead); 809 unp->unp_gencnt = ++unp_gencnt; 810 --unp_count; 811 UNP_LINK_WUNLOCK(); 812 813 UNP_PCB_UNLOCK_ASSERT(unp); 814 restart: 815 if ((vp = unp->unp_vnode) != NULL) { 816 vplock = mtx_pool_find(mtxpool_sleep, vp); 817 mtx_lock(vplock); 818 } 819 UNP_PCB_LOCK(unp); 820 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { 821 if (vplock) 822 mtx_unlock(vplock); 823 UNP_PCB_UNLOCK(unp); 824 goto restart; 825 } 826 if ((vp = unp->unp_vnode) != NULL) { 827 VOP_UNP_DETACH(vp); 828 unp->unp_vnode = NULL; 829 } 830 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 831 unp_disconnect(unp, unp2); 832 else 833 UNP_PCB_UNLOCK(unp); 834 835 UNP_REF_LIST_LOCK(); 836 while (!LIST_EMPTY(&unp->unp_refs)) { 837 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 838 839 unp_pcb_hold(ref); 840 UNP_REF_LIST_UNLOCK(); 841 842 MPASS(ref != unp); 843 UNP_PCB_UNLOCK_ASSERT(ref); 844 unp_drop(ref); 845 UNP_REF_LIST_LOCK(); 846 } 847 UNP_REF_LIST_UNLOCK(); 848 849 UNP_PCB_LOCK(unp); 850 local_unp_rights = unp_rights; 851 unp->unp_socket->so_pcb = NULL; 852 unp->unp_socket = NULL; 853 free(unp->unp_addr, M_SONAME); 854 unp->unp_addr = NULL; 855 if (!unp_pcb_rele(unp)) 856 UNP_PCB_UNLOCK(unp); 857 if (vp) { 858 mtx_unlock(vplock); 859 vrele(vp); 860 } 861 if (local_unp_rights) 862 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 863 } 864 865 static int 866 uipc_disconnect(struct socket *so) 867 { 868 struct unpcb *unp, *unp2; 869 870 unp = sotounpcb(so); 871 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 872 873 UNP_PCB_LOCK(unp); 874 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 875 unp_disconnect(unp, unp2); 876 else 877 UNP_PCB_UNLOCK(unp); 878 return (0); 879 } 880 881 static int 882 uipc_listen(struct socket *so, int backlog, struct thread *td) 883 { 884 struct unpcb *unp; 885 int error; 886 887 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 888 return (EOPNOTSUPP); 889 890 unp = sotounpcb(so); 891 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 892 893 UNP_PCB_LOCK(unp); 894 if (unp->unp_vnode == NULL) { 895 /* Already connected or not bound to an address. */ 896 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 897 UNP_PCB_UNLOCK(unp); 898 return (error); 899 } 900 901 SOCK_LOCK(so); 902 error = solisten_proto_check(so); 903 if (error == 0) { 904 cru2xt(td, &unp->unp_peercred); 905 solisten_proto(so, backlog); 906 } 907 SOCK_UNLOCK(so); 908 UNP_PCB_UNLOCK(unp); 909 return (error); 910 } 911 912 static int 913 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 914 { 915 struct unpcb *unp, *unp2; 916 const struct sockaddr *sa; 917 918 unp = sotounpcb(so); 919 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 920 921 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 922 UNP_LINK_RLOCK(); 923 /* 924 * XXX: It seems that this test always fails even when connection is 925 * established. So, this else clause is added as workaround to 926 * return PF_LOCAL sockaddr. 927 */ 928 unp2 = unp->unp_conn; 929 if (unp2 != NULL) { 930 UNP_PCB_LOCK(unp2); 931 if (unp2->unp_addr != NULL) 932 sa = (struct sockaddr *) unp2->unp_addr; 933 else 934 sa = &sun_noname; 935 bcopy(sa, *nam, sa->sa_len); 936 UNP_PCB_UNLOCK(unp2); 937 } else { 938 sa = &sun_noname; 939 bcopy(sa, *nam, sa->sa_len); 940 } 941 UNP_LINK_RUNLOCK(); 942 return (0); 943 } 944 945 static int 946 uipc_rcvd(struct socket *so, int flags) 947 { 948 struct unpcb *unp, *unp2; 949 struct socket *so2; 950 u_int mbcnt, sbcc; 951 952 unp = sotounpcb(so); 953 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 954 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 955 ("%s: socktype %d", __func__, so->so_type)); 956 957 /* 958 * Adjust backpressure on sender and wakeup any waiting to write. 959 * 960 * The unp lock is acquired to maintain the validity of the unp_conn 961 * pointer; no lock on unp2 is required as unp2->unp_socket will be 962 * static as long as we don't permit unp2 to disconnect from unp, 963 * which is prevented by the lock on unp. We cache values from 964 * so_rcv to avoid holding the so_rcv lock over the entire 965 * transaction on the remote so_snd. 966 */ 967 SOCKBUF_LOCK(&so->so_rcv); 968 mbcnt = so->so_rcv.sb_mbcnt; 969 sbcc = sbavail(&so->so_rcv); 970 SOCKBUF_UNLOCK(&so->so_rcv); 971 /* 972 * There is a benign race condition at this point. If we're planning to 973 * clear SB_STOP, but uipc_send is called on the connected socket at 974 * this instant, it might add data to the sockbuf and set SB_STOP. Then 975 * we would erroneously clear SB_STOP below, even though the sockbuf is 976 * full. The race is benign because the only ill effect is to allow the 977 * sockbuf to exceed its size limit, and the size limits are not 978 * strictly guaranteed anyway. 979 */ 980 UNP_PCB_LOCK(unp); 981 unp2 = unp->unp_conn; 982 if (unp2 == NULL) { 983 UNP_PCB_UNLOCK(unp); 984 return (0); 985 } 986 so2 = unp2->unp_socket; 987 SOCKBUF_LOCK(&so2->so_snd); 988 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 989 so2->so_snd.sb_flags &= ~SB_STOP; 990 sowwakeup_locked(so2); 991 UNP_PCB_UNLOCK(unp); 992 return (0); 993 } 994 995 static int 996 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 997 struct mbuf *control, struct thread *td) 998 { 999 struct unpcb *unp, *unp2; 1000 struct socket *so2; 1001 u_int mbcnt, sbcc; 1002 int freed, error; 1003 1004 unp = sotounpcb(so); 1005 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1006 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1007 so->so_type == SOCK_SEQPACKET, 1008 ("%s: socktype %d", __func__, so->so_type)); 1009 1010 freed = error = 0; 1011 if (flags & PRUS_OOB) { 1012 error = EOPNOTSUPP; 1013 goto release; 1014 } 1015 if (control != NULL && (error = unp_internalize(&control, td))) 1016 goto release; 1017 1018 unp2 = NULL; 1019 switch (so->so_type) { 1020 case SOCK_DGRAM: 1021 { 1022 const struct sockaddr *from; 1023 1024 if (nam != NULL) { 1025 error = unp_connect(so, nam, td); 1026 if (error != 0) 1027 break; 1028 } 1029 UNP_PCB_LOCK(unp); 1030 1031 /* 1032 * Because connect() and send() are non-atomic in a sendto() 1033 * with a target address, it's possible that the socket will 1034 * have disconnected before the send() can run. In that case 1035 * return the slightly counter-intuitive but otherwise 1036 * correct error that the socket is not connected. 1037 */ 1038 unp2 = unp_pcb_lock_peer(unp); 1039 if (unp2 == NULL) { 1040 UNP_PCB_UNLOCK(unp); 1041 error = ENOTCONN; 1042 break; 1043 } 1044 1045 if (unp2->unp_flags & UNP_WANTCRED_MASK) 1046 control = unp_addsockcred(td, control); 1047 if (unp->unp_addr != NULL) 1048 from = (struct sockaddr *)unp->unp_addr; 1049 else 1050 from = &sun_noname; 1051 so2 = unp2->unp_socket; 1052 SOCKBUF_LOCK(&so2->so_rcv); 1053 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1054 control)) { 1055 sorwakeup_locked(so2); 1056 m = NULL; 1057 control = NULL; 1058 } else { 1059 SOCKBUF_UNLOCK(&so2->so_rcv); 1060 error = ENOBUFS; 1061 } 1062 if (nam != NULL) 1063 unp_disconnect(unp, unp2); 1064 else 1065 unp_pcb_unlock_pair(unp, unp2); 1066 break; 1067 } 1068 1069 case SOCK_SEQPACKET: 1070 case SOCK_STREAM: 1071 if ((so->so_state & SS_ISCONNECTED) == 0) { 1072 if (nam != NULL) { 1073 error = unp_connect(so, nam, td); 1074 if (error != 0) 1075 break; 1076 } else { 1077 error = ENOTCONN; 1078 break; 1079 } 1080 } 1081 1082 UNP_PCB_LOCK(unp); 1083 if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) { 1084 UNP_PCB_UNLOCK(unp); 1085 error = ENOTCONN; 1086 break; 1087 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1088 unp_pcb_unlock_pair(unp, unp2); 1089 error = EPIPE; 1090 break; 1091 } 1092 UNP_PCB_UNLOCK(unp); 1093 if ((so2 = unp2->unp_socket) == NULL) { 1094 UNP_PCB_UNLOCK(unp2); 1095 error = ENOTCONN; 1096 break; 1097 } 1098 SOCKBUF_LOCK(&so2->so_rcv); 1099 if (unp2->unp_flags & UNP_WANTCRED_MASK) { 1100 /* 1101 * Credentials are passed only once on SOCK_STREAM and 1102 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or 1103 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS). 1104 */ 1105 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT; 1106 control = unp_addsockcred(td, control); 1107 } 1108 1109 /* 1110 * Send to paired receive port and wake up readers. Don't 1111 * check for space available in the receive buffer if we're 1112 * attaching ancillary data; Unix domain sockets only check 1113 * for space in the sending sockbuf, and that check is 1114 * performed one level up the stack. At that level we cannot 1115 * precisely account for the amount of buffer space used 1116 * (e.g., because control messages are not yet internalized). 1117 */ 1118 switch (so->so_type) { 1119 case SOCK_STREAM: 1120 if (control != NULL) { 1121 sbappendcontrol_locked(&so2->so_rcv, m, 1122 control, flags); 1123 control = NULL; 1124 } else 1125 sbappend_locked(&so2->so_rcv, m, flags); 1126 break; 1127 1128 case SOCK_SEQPACKET: 1129 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1130 &sun_noname, m, control)) 1131 control = NULL; 1132 break; 1133 } 1134 1135 mbcnt = so2->so_rcv.sb_mbcnt; 1136 sbcc = sbavail(&so2->so_rcv); 1137 if (sbcc) 1138 sorwakeup_locked(so2); 1139 else 1140 SOCKBUF_UNLOCK(&so2->so_rcv); 1141 1142 /* 1143 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1144 * it would be possible for uipc_rcvd to be called at this 1145 * point, drain the receiving sockbuf, clear SB_STOP, and then 1146 * we would set SB_STOP below. That could lead to an empty 1147 * sockbuf having SB_STOP set 1148 */ 1149 SOCKBUF_LOCK(&so->so_snd); 1150 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1151 so->so_snd.sb_flags |= SB_STOP; 1152 SOCKBUF_UNLOCK(&so->so_snd); 1153 UNP_PCB_UNLOCK(unp2); 1154 m = NULL; 1155 break; 1156 } 1157 1158 /* 1159 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1160 */ 1161 if (flags & PRUS_EOF) { 1162 UNP_PCB_LOCK(unp); 1163 socantsendmore(so); 1164 unp_shutdown(unp); 1165 UNP_PCB_UNLOCK(unp); 1166 } 1167 if (control != NULL && error != 0) 1168 unp_dispose_mbuf(control); 1169 1170 release: 1171 if (control != NULL) 1172 m_freem(control); 1173 /* 1174 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1175 * for freeing memory. 1176 */ 1177 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1178 m_freem(m); 1179 return (error); 1180 } 1181 1182 static bool 1183 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp) 1184 { 1185 struct mbuf *mb, *n; 1186 struct sockbuf *sb; 1187 1188 SOCK_LOCK(so); 1189 if (SOLISTENING(so)) { 1190 SOCK_UNLOCK(so); 1191 return (false); 1192 } 1193 mb = NULL; 1194 sb = &so->so_rcv; 1195 SOCKBUF_LOCK(sb); 1196 if (sb->sb_fnrdy != NULL) { 1197 for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) { 1198 if (mb == m) { 1199 *errorp = sbready(sb, m, count); 1200 break; 1201 } 1202 mb = mb->m_next; 1203 if (mb == NULL) { 1204 mb = n; 1205 if (mb != NULL) 1206 n = mb->m_nextpkt; 1207 } 1208 } 1209 } 1210 SOCKBUF_UNLOCK(sb); 1211 SOCK_UNLOCK(so); 1212 return (mb != NULL); 1213 } 1214 1215 static int 1216 uipc_ready(struct socket *so, struct mbuf *m, int count) 1217 { 1218 struct unpcb *unp, *unp2; 1219 struct socket *so2; 1220 int error, i; 1221 1222 unp = sotounpcb(so); 1223 1224 KASSERT(so->so_type == SOCK_STREAM, 1225 ("%s: unexpected socket type for %p", __func__, so)); 1226 1227 UNP_PCB_LOCK(unp); 1228 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1229 UNP_PCB_UNLOCK(unp); 1230 so2 = unp2->unp_socket; 1231 SOCKBUF_LOCK(&so2->so_rcv); 1232 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1233 sorwakeup_locked(so2); 1234 else 1235 SOCKBUF_UNLOCK(&so2->so_rcv); 1236 UNP_PCB_UNLOCK(unp2); 1237 return (error); 1238 } 1239 UNP_PCB_UNLOCK(unp); 1240 1241 /* 1242 * The receiving socket has been disconnected, but may still be valid. 1243 * In this case, the now-ready mbufs are still present in its socket 1244 * buffer, so perform an exhaustive search before giving up and freeing 1245 * the mbufs. 1246 */ 1247 UNP_LINK_RLOCK(); 1248 LIST_FOREACH(unp, &unp_shead, unp_link) { 1249 if (uipc_ready_scan(unp->unp_socket, m, count, &error)) 1250 break; 1251 } 1252 UNP_LINK_RUNLOCK(); 1253 1254 if (unp == NULL) { 1255 for (i = 0; i < count; i++) 1256 m = m_free(m); 1257 error = ECONNRESET; 1258 } 1259 return (error); 1260 } 1261 1262 static int 1263 uipc_sense(struct socket *so, struct stat *sb) 1264 { 1265 struct unpcb *unp; 1266 1267 unp = sotounpcb(so); 1268 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1269 1270 sb->st_blksize = so->so_snd.sb_hiwat; 1271 sb->st_dev = NODEV; 1272 sb->st_ino = unp->unp_ino; 1273 return (0); 1274 } 1275 1276 static int 1277 uipc_shutdown(struct socket *so) 1278 { 1279 struct unpcb *unp; 1280 1281 unp = sotounpcb(so); 1282 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1283 1284 UNP_PCB_LOCK(unp); 1285 socantsendmore(so); 1286 unp_shutdown(unp); 1287 UNP_PCB_UNLOCK(unp); 1288 return (0); 1289 } 1290 1291 static int 1292 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1293 { 1294 struct unpcb *unp; 1295 const struct sockaddr *sa; 1296 1297 unp = sotounpcb(so); 1298 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1299 1300 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1301 UNP_PCB_LOCK(unp); 1302 if (unp->unp_addr != NULL) 1303 sa = (struct sockaddr *) unp->unp_addr; 1304 else 1305 sa = &sun_noname; 1306 bcopy(sa, *nam, sa->sa_len); 1307 UNP_PCB_UNLOCK(unp); 1308 return (0); 1309 } 1310 1311 static struct pr_usrreqs uipc_usrreqs_dgram = { 1312 .pru_abort = uipc_abort, 1313 .pru_accept = uipc_accept, 1314 .pru_attach = uipc_attach, 1315 .pru_bind = uipc_bind, 1316 .pru_bindat = uipc_bindat, 1317 .pru_connect = uipc_connect, 1318 .pru_connectat = uipc_connectat, 1319 .pru_connect2 = uipc_connect2, 1320 .pru_detach = uipc_detach, 1321 .pru_disconnect = uipc_disconnect, 1322 .pru_listen = uipc_listen, 1323 .pru_peeraddr = uipc_peeraddr, 1324 .pru_rcvd = uipc_rcvd, 1325 .pru_send = uipc_send, 1326 .pru_sense = uipc_sense, 1327 .pru_shutdown = uipc_shutdown, 1328 .pru_sockaddr = uipc_sockaddr, 1329 .pru_soreceive = soreceive_dgram, 1330 .pru_close = uipc_close, 1331 }; 1332 1333 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1334 .pru_abort = uipc_abort, 1335 .pru_accept = uipc_accept, 1336 .pru_attach = uipc_attach, 1337 .pru_bind = uipc_bind, 1338 .pru_bindat = uipc_bindat, 1339 .pru_connect = uipc_connect, 1340 .pru_connectat = uipc_connectat, 1341 .pru_connect2 = uipc_connect2, 1342 .pru_detach = uipc_detach, 1343 .pru_disconnect = uipc_disconnect, 1344 .pru_listen = uipc_listen, 1345 .pru_peeraddr = uipc_peeraddr, 1346 .pru_rcvd = uipc_rcvd, 1347 .pru_send = uipc_send, 1348 .pru_sense = uipc_sense, 1349 .pru_shutdown = uipc_shutdown, 1350 .pru_sockaddr = uipc_sockaddr, 1351 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1352 .pru_close = uipc_close, 1353 }; 1354 1355 static struct pr_usrreqs uipc_usrreqs_stream = { 1356 .pru_abort = uipc_abort, 1357 .pru_accept = uipc_accept, 1358 .pru_attach = uipc_attach, 1359 .pru_bind = uipc_bind, 1360 .pru_bindat = uipc_bindat, 1361 .pru_connect = uipc_connect, 1362 .pru_connectat = uipc_connectat, 1363 .pru_connect2 = uipc_connect2, 1364 .pru_detach = uipc_detach, 1365 .pru_disconnect = uipc_disconnect, 1366 .pru_listen = uipc_listen, 1367 .pru_peeraddr = uipc_peeraddr, 1368 .pru_rcvd = uipc_rcvd, 1369 .pru_send = uipc_send, 1370 .pru_ready = uipc_ready, 1371 .pru_sense = uipc_sense, 1372 .pru_shutdown = uipc_shutdown, 1373 .pru_sockaddr = uipc_sockaddr, 1374 .pru_soreceive = soreceive_generic, 1375 .pru_close = uipc_close, 1376 }; 1377 1378 static int 1379 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1380 { 1381 struct unpcb *unp; 1382 struct xucred xu; 1383 int error, optval; 1384 1385 if (sopt->sopt_level != SOL_LOCAL) 1386 return (EINVAL); 1387 1388 unp = sotounpcb(so); 1389 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1390 error = 0; 1391 switch (sopt->sopt_dir) { 1392 case SOPT_GET: 1393 switch (sopt->sopt_name) { 1394 case LOCAL_PEERCRED: 1395 UNP_PCB_LOCK(unp); 1396 if (unp->unp_flags & UNP_HAVEPC) 1397 xu = unp->unp_peercred; 1398 else { 1399 if (so->so_type == SOCK_STREAM) 1400 error = ENOTCONN; 1401 else 1402 error = EINVAL; 1403 } 1404 UNP_PCB_UNLOCK(unp); 1405 if (error == 0) 1406 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1407 break; 1408 1409 case LOCAL_CREDS: 1410 /* Unlocked read. */ 1411 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0; 1412 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1413 break; 1414 1415 case LOCAL_CREDS_PERSISTENT: 1416 /* Unlocked read. */ 1417 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0; 1418 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1419 break; 1420 1421 case LOCAL_CONNWAIT: 1422 /* Unlocked read. */ 1423 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1424 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1425 break; 1426 1427 default: 1428 error = EOPNOTSUPP; 1429 break; 1430 } 1431 break; 1432 1433 case SOPT_SET: 1434 switch (sopt->sopt_name) { 1435 case LOCAL_CREDS: 1436 case LOCAL_CREDS_PERSISTENT: 1437 case LOCAL_CONNWAIT: 1438 error = sooptcopyin(sopt, &optval, sizeof(optval), 1439 sizeof(optval)); 1440 if (error) 1441 break; 1442 1443 #define OPTSET(bit, exclusive) do { \ 1444 UNP_PCB_LOCK(unp); \ 1445 if (optval) { \ 1446 if ((unp->unp_flags & (exclusive)) != 0) { \ 1447 UNP_PCB_UNLOCK(unp); \ 1448 error = EINVAL; \ 1449 break; \ 1450 } \ 1451 unp->unp_flags |= (bit); \ 1452 } else \ 1453 unp->unp_flags &= ~(bit); \ 1454 UNP_PCB_UNLOCK(unp); \ 1455 } while (0) 1456 1457 switch (sopt->sopt_name) { 1458 case LOCAL_CREDS: 1459 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS); 1460 break; 1461 1462 case LOCAL_CREDS_PERSISTENT: 1463 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT); 1464 break; 1465 1466 case LOCAL_CONNWAIT: 1467 OPTSET(UNP_CONNWAIT, 0); 1468 break; 1469 1470 default: 1471 break; 1472 } 1473 break; 1474 #undef OPTSET 1475 default: 1476 error = ENOPROTOOPT; 1477 break; 1478 } 1479 break; 1480 1481 default: 1482 error = EOPNOTSUPP; 1483 break; 1484 } 1485 return (error); 1486 } 1487 1488 static int 1489 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1490 { 1491 1492 return (unp_connectat(AT_FDCWD, so, nam, td)); 1493 } 1494 1495 static int 1496 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1497 struct thread *td) 1498 { 1499 struct mtx *vplock; 1500 struct sockaddr_un *soun; 1501 struct vnode *vp; 1502 struct socket *so2; 1503 struct unpcb *unp, *unp2, *unp3; 1504 struct nameidata nd; 1505 char buf[SOCK_MAXADDRLEN]; 1506 struct sockaddr *sa; 1507 cap_rights_t rights; 1508 int error, len; 1509 bool connreq; 1510 1511 if (nam->sa_family != AF_UNIX) 1512 return (EAFNOSUPPORT); 1513 if (nam->sa_len > sizeof(struct sockaddr_un)) 1514 return (EINVAL); 1515 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1516 if (len <= 0) 1517 return (EINVAL); 1518 soun = (struct sockaddr_un *)nam; 1519 bcopy(soun->sun_path, buf, len); 1520 buf[len] = 0; 1521 1522 unp = sotounpcb(so); 1523 UNP_PCB_LOCK(unp); 1524 for (;;) { 1525 /* 1526 * Wait for connection state to stabilize. If a connection 1527 * already exists, give up. For datagram sockets, which permit 1528 * multiple consecutive connect(2) calls, upper layers are 1529 * responsible for disconnecting in advance of a subsequent 1530 * connect(2), but this is not synchronized with PCB connection 1531 * state. 1532 * 1533 * Also make sure that no threads are currently attempting to 1534 * lock the peer socket, to ensure that unp_conn cannot 1535 * transition between two valid sockets while locks are dropped. 1536 */ 1537 if (unp->unp_conn != NULL) { 1538 UNP_PCB_UNLOCK(unp); 1539 return (EISCONN); 1540 } 1541 if ((unp->unp_flags & UNP_CONNECTING) != 0) { 1542 UNP_PCB_UNLOCK(unp); 1543 return (EALREADY); 1544 } 1545 if (unp->unp_pairbusy > 0) { 1546 unp->unp_flags |= UNP_WAITING; 1547 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0); 1548 continue; 1549 } 1550 break; 1551 } 1552 unp->unp_flags |= UNP_CONNECTING; 1553 UNP_PCB_UNLOCK(unp); 1554 1555 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0; 1556 if (connreq) 1557 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1558 else 1559 sa = NULL; 1560 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1561 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1562 error = namei(&nd); 1563 if (error) 1564 vp = NULL; 1565 else 1566 vp = nd.ni_vp; 1567 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1568 NDFREE(&nd, NDF_ONLY_PNBUF); 1569 if (error) 1570 goto bad; 1571 1572 if (vp->v_type != VSOCK) { 1573 error = ENOTSOCK; 1574 goto bad; 1575 } 1576 #ifdef MAC 1577 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1578 if (error) 1579 goto bad; 1580 #endif 1581 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1582 if (error) 1583 goto bad; 1584 1585 unp = sotounpcb(so); 1586 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1587 1588 vplock = mtx_pool_find(mtxpool_sleep, vp); 1589 mtx_lock(vplock); 1590 VOP_UNP_CONNECT(vp, &unp2); 1591 if (unp2 == NULL) { 1592 error = ECONNREFUSED; 1593 goto bad2; 1594 } 1595 so2 = unp2->unp_socket; 1596 if (so->so_type != so2->so_type) { 1597 error = EPROTOTYPE; 1598 goto bad2; 1599 } 1600 if (connreq) { 1601 if (so2->so_options & SO_ACCEPTCONN) { 1602 CURVNET_SET(so2->so_vnet); 1603 so2 = sonewconn(so2, 0); 1604 CURVNET_RESTORE(); 1605 } else 1606 so2 = NULL; 1607 if (so2 == NULL) { 1608 error = ECONNREFUSED; 1609 goto bad2; 1610 } 1611 unp3 = sotounpcb(so2); 1612 unp_pcb_lock_pair(unp2, unp3); 1613 if (unp2->unp_addr != NULL) { 1614 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1615 unp3->unp_addr = (struct sockaddr_un *) sa; 1616 sa = NULL; 1617 } 1618 1619 unp_copy_peercred(td, unp3, unp, unp2); 1620 1621 UNP_PCB_UNLOCK(unp2); 1622 unp2 = unp3; 1623 1624 /* 1625 * It is safe to block on the PCB lock here since unp2 is 1626 * nascent and cannot be connected to any other sockets. 1627 */ 1628 UNP_PCB_LOCK(unp); 1629 #ifdef MAC 1630 mac_socketpeer_set_from_socket(so, so2); 1631 mac_socketpeer_set_from_socket(so2, so); 1632 #endif 1633 } else { 1634 unp_pcb_lock_pair(unp, unp2); 1635 } 1636 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1637 sotounpcb(so2) == unp2, 1638 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1639 error = unp_connect2(so, so2, PRU_CONNECT); 1640 unp_pcb_unlock_pair(unp, unp2); 1641 bad2: 1642 mtx_unlock(vplock); 1643 bad: 1644 if (vp != NULL) { 1645 vput(vp); 1646 } 1647 free(sa, M_SONAME); 1648 UNP_PCB_LOCK(unp); 1649 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 1650 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 1651 unp->unp_flags &= ~UNP_CONNECTING; 1652 UNP_PCB_UNLOCK(unp); 1653 return (error); 1654 } 1655 1656 /* 1657 * Set socket peer credentials at connection time. 1658 * 1659 * The client's PCB credentials are copied from its process structure. The 1660 * server's PCB credentials are copied from the socket on which it called 1661 * listen(2). uipc_listen cached that process's credentials at the time. 1662 */ 1663 void 1664 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 1665 struct unpcb *server_unp, struct unpcb *listen_unp) 1666 { 1667 cru2xt(td, &client_unp->unp_peercred); 1668 client_unp->unp_flags |= UNP_HAVEPC; 1669 1670 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 1671 sizeof(server_unp->unp_peercred)); 1672 server_unp->unp_flags |= UNP_HAVEPC; 1673 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK); 1674 } 1675 1676 static int 1677 unp_connect2(struct socket *so, struct socket *so2, int req) 1678 { 1679 struct unpcb *unp; 1680 struct unpcb *unp2; 1681 1682 unp = sotounpcb(so); 1683 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1684 unp2 = sotounpcb(so2); 1685 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1686 1687 UNP_PCB_LOCK_ASSERT(unp); 1688 UNP_PCB_LOCK_ASSERT(unp2); 1689 KASSERT(unp->unp_conn == NULL, 1690 ("%s: socket %p is already connected", __func__, unp)); 1691 1692 if (so2->so_type != so->so_type) 1693 return (EPROTOTYPE); 1694 unp->unp_conn = unp2; 1695 unp_pcb_hold(unp2); 1696 unp_pcb_hold(unp); 1697 switch (so->so_type) { 1698 case SOCK_DGRAM: 1699 UNP_REF_LIST_LOCK(); 1700 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1701 UNP_REF_LIST_UNLOCK(); 1702 soisconnected(so); 1703 break; 1704 1705 case SOCK_STREAM: 1706 case SOCK_SEQPACKET: 1707 KASSERT(unp2->unp_conn == NULL, 1708 ("%s: socket %p is already connected", __func__, unp2)); 1709 unp2->unp_conn = unp; 1710 if (req == PRU_CONNECT && 1711 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1712 soisconnecting(so); 1713 else 1714 soisconnected(so); 1715 soisconnected(so2); 1716 break; 1717 1718 default: 1719 panic("unp_connect2"); 1720 } 1721 return (0); 1722 } 1723 1724 static void 1725 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1726 { 1727 struct socket *so, *so2; 1728 #ifdef INVARIANTS 1729 struct unpcb *unptmp; 1730 #endif 1731 1732 UNP_PCB_LOCK_ASSERT(unp); 1733 UNP_PCB_LOCK_ASSERT(unp2); 1734 KASSERT(unp->unp_conn == unp2, 1735 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2)); 1736 1737 unp->unp_conn = NULL; 1738 so = unp->unp_socket; 1739 so2 = unp2->unp_socket; 1740 switch (unp->unp_socket->so_type) { 1741 case SOCK_DGRAM: 1742 UNP_REF_LIST_LOCK(); 1743 #ifdef INVARIANTS 1744 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) { 1745 if (unptmp == unp) 1746 break; 1747 } 1748 KASSERT(unptmp != NULL, 1749 ("%s: %p not found in reflist of %p", __func__, unp, unp2)); 1750 #endif 1751 LIST_REMOVE(unp, unp_reflink); 1752 UNP_REF_LIST_UNLOCK(); 1753 if (so) { 1754 SOCK_LOCK(so); 1755 so->so_state &= ~SS_ISCONNECTED; 1756 SOCK_UNLOCK(so); 1757 } 1758 break; 1759 1760 case SOCK_STREAM: 1761 case SOCK_SEQPACKET: 1762 if (so) 1763 soisdisconnected(so); 1764 MPASS(unp2->unp_conn == unp); 1765 unp2->unp_conn = NULL; 1766 if (so2) 1767 soisdisconnected(so2); 1768 break; 1769 } 1770 1771 if (unp == unp2) { 1772 unp_pcb_rele_notlast(unp); 1773 if (!unp_pcb_rele(unp)) 1774 UNP_PCB_UNLOCK(unp); 1775 } else { 1776 if (!unp_pcb_rele(unp)) 1777 UNP_PCB_UNLOCK(unp); 1778 if (!unp_pcb_rele(unp2)) 1779 UNP_PCB_UNLOCK(unp2); 1780 } 1781 } 1782 1783 /* 1784 * unp_pcblist() walks the global list of struct unpcb's to generate a 1785 * pointer list, bumping the refcount on each unpcb. It then copies them out 1786 * sequentially, validating the generation number on each to see if it has 1787 * been detached. All of this is necessary because copyout() may sleep on 1788 * disk I/O. 1789 */ 1790 static int 1791 unp_pcblist(SYSCTL_HANDLER_ARGS) 1792 { 1793 struct unpcb *unp, **unp_list; 1794 unp_gen_t gencnt; 1795 struct xunpgen *xug; 1796 struct unp_head *head; 1797 struct xunpcb *xu; 1798 u_int i; 1799 int error, n; 1800 1801 switch ((intptr_t)arg1) { 1802 case SOCK_STREAM: 1803 head = &unp_shead; 1804 break; 1805 1806 case SOCK_DGRAM: 1807 head = &unp_dhead; 1808 break; 1809 1810 case SOCK_SEQPACKET: 1811 head = &unp_sphead; 1812 break; 1813 1814 default: 1815 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1816 } 1817 1818 /* 1819 * The process of preparing the PCB list is too time-consuming and 1820 * resource-intensive to repeat twice on every request. 1821 */ 1822 if (req->oldptr == NULL) { 1823 n = unp_count; 1824 req->oldidx = 2 * (sizeof *xug) 1825 + (n + n/8) * sizeof(struct xunpcb); 1826 return (0); 1827 } 1828 1829 if (req->newptr != NULL) 1830 return (EPERM); 1831 1832 /* 1833 * OK, now we're committed to doing something. 1834 */ 1835 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 1836 UNP_LINK_RLOCK(); 1837 gencnt = unp_gencnt; 1838 n = unp_count; 1839 UNP_LINK_RUNLOCK(); 1840 1841 xug->xug_len = sizeof *xug; 1842 xug->xug_count = n; 1843 xug->xug_gen = gencnt; 1844 xug->xug_sogen = so_gencnt; 1845 error = SYSCTL_OUT(req, xug, sizeof *xug); 1846 if (error) { 1847 free(xug, M_TEMP); 1848 return (error); 1849 } 1850 1851 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1852 1853 UNP_LINK_RLOCK(); 1854 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1855 unp = LIST_NEXT(unp, unp_link)) { 1856 UNP_PCB_LOCK(unp); 1857 if (unp->unp_gencnt <= gencnt) { 1858 if (cr_cansee(req->td->td_ucred, 1859 unp->unp_socket->so_cred)) { 1860 UNP_PCB_UNLOCK(unp); 1861 continue; 1862 } 1863 unp_list[i++] = unp; 1864 unp_pcb_hold(unp); 1865 } 1866 UNP_PCB_UNLOCK(unp); 1867 } 1868 UNP_LINK_RUNLOCK(); 1869 n = i; /* In case we lost some during malloc. */ 1870 1871 error = 0; 1872 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1873 for (i = 0; i < n; i++) { 1874 unp = unp_list[i]; 1875 UNP_PCB_LOCK(unp); 1876 if (unp_pcb_rele(unp)) 1877 continue; 1878 1879 if (unp->unp_gencnt <= gencnt) { 1880 xu->xu_len = sizeof *xu; 1881 xu->xu_unpp = (uintptr_t)unp; 1882 /* 1883 * XXX - need more locking here to protect against 1884 * connect/disconnect races for SMP. 1885 */ 1886 if (unp->unp_addr != NULL) 1887 bcopy(unp->unp_addr, &xu->xu_addr, 1888 unp->unp_addr->sun_len); 1889 else 1890 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1891 if (unp->unp_conn != NULL && 1892 unp->unp_conn->unp_addr != NULL) 1893 bcopy(unp->unp_conn->unp_addr, 1894 &xu->xu_caddr, 1895 unp->unp_conn->unp_addr->sun_len); 1896 else 1897 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1898 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 1899 xu->unp_conn = (uintptr_t)unp->unp_conn; 1900 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 1901 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 1902 xu->unp_gencnt = unp->unp_gencnt; 1903 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1904 UNP_PCB_UNLOCK(unp); 1905 error = SYSCTL_OUT(req, xu, sizeof *xu); 1906 } else { 1907 UNP_PCB_UNLOCK(unp); 1908 } 1909 } 1910 free(xu, M_TEMP); 1911 if (!error) { 1912 /* 1913 * Give the user an updated idea of our state. If the 1914 * generation differs from what we told her before, she knows 1915 * that something happened while we were processing this 1916 * request, and it might be necessary to retry. 1917 */ 1918 xug->xug_gen = unp_gencnt; 1919 xug->xug_sogen = so_gencnt; 1920 xug->xug_count = unp_count; 1921 error = SYSCTL_OUT(req, xug, sizeof *xug); 1922 } 1923 free(unp_list, M_TEMP); 1924 free(xug, M_TEMP); 1925 return (error); 1926 } 1927 1928 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 1929 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1930 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1931 "List of active local datagram sockets"); 1932 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 1933 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1934 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1935 "List of active local stream sockets"); 1936 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1937 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1938 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1939 "List of active local seqpacket sockets"); 1940 1941 static void 1942 unp_shutdown(struct unpcb *unp) 1943 { 1944 struct unpcb *unp2; 1945 struct socket *so; 1946 1947 UNP_PCB_LOCK_ASSERT(unp); 1948 1949 unp2 = unp->unp_conn; 1950 if ((unp->unp_socket->so_type == SOCK_STREAM || 1951 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1952 so = unp2->unp_socket; 1953 if (so != NULL) 1954 socantrcvmore(so); 1955 } 1956 } 1957 1958 static void 1959 unp_drop(struct unpcb *unp) 1960 { 1961 struct socket *so = unp->unp_socket; 1962 struct unpcb *unp2; 1963 1964 /* 1965 * Regardless of whether the socket's peer dropped the connection 1966 * with this socket by aborting or disconnecting, POSIX requires 1967 * that ECONNRESET is returned. 1968 */ 1969 1970 UNP_PCB_LOCK(unp); 1971 if (so) 1972 so->so_error = ECONNRESET; 1973 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1974 /* Last reference dropped in unp_disconnect(). */ 1975 unp_pcb_rele_notlast(unp); 1976 unp_disconnect(unp, unp2); 1977 } else if (!unp_pcb_rele(unp)) { 1978 UNP_PCB_UNLOCK(unp); 1979 } 1980 } 1981 1982 static void 1983 unp_freerights(struct filedescent **fdep, int fdcount) 1984 { 1985 struct file *fp; 1986 int i; 1987 1988 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1989 1990 for (i = 0; i < fdcount; i++) { 1991 fp = fdep[i]->fde_file; 1992 filecaps_free(&fdep[i]->fde_caps); 1993 unp_discard(fp); 1994 } 1995 free(fdep[0], M_FILECAPS); 1996 } 1997 1998 static int 1999 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 2000 { 2001 struct thread *td = curthread; /* XXX */ 2002 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2003 int i; 2004 int *fdp; 2005 struct filedesc *fdesc = td->td_proc->p_fd; 2006 struct filedescent **fdep; 2007 void *data; 2008 socklen_t clen = control->m_len, datalen; 2009 int error, newfds; 2010 u_int newlen; 2011 2012 UNP_LINK_UNLOCK_ASSERT(); 2013 2014 error = 0; 2015 if (controlp != NULL) /* controlp == NULL => free control messages */ 2016 *controlp = NULL; 2017 while (cm != NULL) { 2018 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 2019 error = EINVAL; 2020 break; 2021 } 2022 data = CMSG_DATA(cm); 2023 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2024 if (cm->cmsg_level == SOL_SOCKET 2025 && cm->cmsg_type == SCM_RIGHTS) { 2026 newfds = datalen / sizeof(*fdep); 2027 if (newfds == 0) 2028 goto next; 2029 fdep = data; 2030 2031 /* If we're not outputting the descriptors free them. */ 2032 if (error || controlp == NULL) { 2033 unp_freerights(fdep, newfds); 2034 goto next; 2035 } 2036 FILEDESC_XLOCK(fdesc); 2037 2038 /* 2039 * Now change each pointer to an fd in the global 2040 * table to an integer that is the index to the local 2041 * fd table entry that we set up to point to the 2042 * global one we are transferring. 2043 */ 2044 newlen = newfds * sizeof(int); 2045 *controlp = sbcreatecontrol(NULL, newlen, 2046 SCM_RIGHTS, SOL_SOCKET); 2047 if (*controlp == NULL) { 2048 FILEDESC_XUNLOCK(fdesc); 2049 error = E2BIG; 2050 unp_freerights(fdep, newfds); 2051 goto next; 2052 } 2053 2054 fdp = (int *) 2055 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2056 if (fdallocn(td, 0, fdp, newfds) != 0) { 2057 FILEDESC_XUNLOCK(fdesc); 2058 error = EMSGSIZE; 2059 unp_freerights(fdep, newfds); 2060 m_freem(*controlp); 2061 *controlp = NULL; 2062 goto next; 2063 } 2064 for (i = 0; i < newfds; i++, fdp++) { 2065 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2066 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 2067 &fdep[i]->fde_caps); 2068 unp_externalize_fp(fdep[i]->fde_file); 2069 } 2070 2071 /* 2072 * The new type indicates that the mbuf data refers to 2073 * kernel resources that may need to be released before 2074 * the mbuf is freed. 2075 */ 2076 m_chtype(*controlp, MT_EXTCONTROL); 2077 FILEDESC_XUNLOCK(fdesc); 2078 free(fdep[0], M_FILECAPS); 2079 } else { 2080 /* We can just copy anything else across. */ 2081 if (error || controlp == NULL) 2082 goto next; 2083 *controlp = sbcreatecontrol(NULL, datalen, 2084 cm->cmsg_type, cm->cmsg_level); 2085 if (*controlp == NULL) { 2086 error = ENOBUFS; 2087 goto next; 2088 } 2089 bcopy(data, 2090 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2091 datalen); 2092 } 2093 controlp = &(*controlp)->m_next; 2094 2095 next: 2096 if (CMSG_SPACE(datalen) < clen) { 2097 clen -= CMSG_SPACE(datalen); 2098 cm = (struct cmsghdr *) 2099 ((caddr_t)cm + CMSG_SPACE(datalen)); 2100 } else { 2101 clen = 0; 2102 cm = NULL; 2103 } 2104 } 2105 2106 m_freem(control); 2107 return (error); 2108 } 2109 2110 static void 2111 unp_zone_change(void *tag) 2112 { 2113 2114 uma_zone_set_max(unp_zone, maxsockets); 2115 } 2116 2117 #ifdef INVARIANTS 2118 static void 2119 unp_zdtor(void *mem, int size __unused, void *arg __unused) 2120 { 2121 struct unpcb *unp; 2122 2123 unp = mem; 2124 2125 KASSERT(LIST_EMPTY(&unp->unp_refs), 2126 ("%s: unpcb %p has lingering refs", __func__, unp)); 2127 KASSERT(unp->unp_socket == NULL, 2128 ("%s: unpcb %p has socket backpointer", __func__, unp)); 2129 KASSERT(unp->unp_vnode == NULL, 2130 ("%s: unpcb %p has vnode references", __func__, unp)); 2131 KASSERT(unp->unp_conn == NULL, 2132 ("%s: unpcb %p is still connected", __func__, unp)); 2133 KASSERT(unp->unp_addr == NULL, 2134 ("%s: unpcb %p has leaked addr", __func__, unp)); 2135 } 2136 #endif 2137 2138 static void 2139 unp_init(void) 2140 { 2141 uma_dtor dtor; 2142 2143 #ifdef VIMAGE 2144 if (!IS_DEFAULT_VNET(curvnet)) 2145 return; 2146 #endif 2147 2148 #ifdef INVARIANTS 2149 dtor = unp_zdtor; 2150 #else 2151 dtor = NULL; 2152 #endif 2153 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor, 2154 NULL, NULL, UMA_ALIGN_CACHE, 0); 2155 uma_zone_set_max(unp_zone, maxsockets); 2156 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2157 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2158 NULL, EVENTHANDLER_PRI_ANY); 2159 LIST_INIT(&unp_dhead); 2160 LIST_INIT(&unp_shead); 2161 LIST_INIT(&unp_sphead); 2162 SLIST_INIT(&unp_defers); 2163 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2164 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2165 UNP_LINK_LOCK_INIT(); 2166 UNP_DEFERRED_LOCK_INIT(); 2167 } 2168 2169 static void 2170 unp_internalize_cleanup_rights(struct mbuf *control) 2171 { 2172 struct cmsghdr *cp; 2173 struct mbuf *m; 2174 void *data; 2175 socklen_t datalen; 2176 2177 for (m = control; m != NULL; m = m->m_next) { 2178 cp = mtod(m, struct cmsghdr *); 2179 if (cp->cmsg_level != SOL_SOCKET || 2180 cp->cmsg_type != SCM_RIGHTS) 2181 continue; 2182 data = CMSG_DATA(cp); 2183 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 2184 unp_freerights(data, datalen / sizeof(struct filedesc *)); 2185 } 2186 } 2187 2188 static int 2189 unp_internalize(struct mbuf **controlp, struct thread *td) 2190 { 2191 struct mbuf *control, **initial_controlp; 2192 struct proc *p; 2193 struct filedesc *fdesc; 2194 struct bintime *bt; 2195 struct cmsghdr *cm; 2196 struct cmsgcred *cmcred; 2197 struct filedescent *fde, **fdep, *fdev; 2198 struct file *fp; 2199 struct timeval *tv; 2200 struct timespec *ts; 2201 void *data; 2202 socklen_t clen, datalen; 2203 int i, j, error, *fdp, oldfds; 2204 u_int newlen; 2205 2206 UNP_LINK_UNLOCK_ASSERT(); 2207 2208 p = td->td_proc; 2209 fdesc = p->p_fd; 2210 error = 0; 2211 control = *controlp; 2212 clen = control->m_len; 2213 *controlp = NULL; 2214 initial_controlp = controlp; 2215 for (cm = mtod(control, struct cmsghdr *); cm != NULL;) { 2216 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2217 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2218 error = EINVAL; 2219 goto out; 2220 } 2221 data = CMSG_DATA(cm); 2222 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2223 2224 switch (cm->cmsg_type) { 2225 /* 2226 * Fill in credential information. 2227 */ 2228 case SCM_CREDS: 2229 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2230 SCM_CREDS, SOL_SOCKET); 2231 if (*controlp == NULL) { 2232 error = ENOBUFS; 2233 goto out; 2234 } 2235 cmcred = (struct cmsgcred *) 2236 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2237 cmcred->cmcred_pid = p->p_pid; 2238 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2239 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2240 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2241 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2242 CMGROUP_MAX); 2243 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2244 cmcred->cmcred_groups[i] = 2245 td->td_ucred->cr_groups[i]; 2246 break; 2247 2248 case SCM_RIGHTS: 2249 oldfds = datalen / sizeof (int); 2250 if (oldfds == 0) 2251 break; 2252 /* 2253 * Check that all the FDs passed in refer to legal 2254 * files. If not, reject the entire operation. 2255 */ 2256 fdp = data; 2257 FILEDESC_SLOCK(fdesc); 2258 for (i = 0; i < oldfds; i++, fdp++) { 2259 fp = fget_locked(fdesc, *fdp); 2260 if (fp == NULL) { 2261 FILEDESC_SUNLOCK(fdesc); 2262 error = EBADF; 2263 goto out; 2264 } 2265 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2266 FILEDESC_SUNLOCK(fdesc); 2267 error = EOPNOTSUPP; 2268 goto out; 2269 } 2270 } 2271 2272 /* 2273 * Now replace the integer FDs with pointers to the 2274 * file structure and capability rights. 2275 */ 2276 newlen = oldfds * sizeof(fdep[0]); 2277 *controlp = sbcreatecontrol(NULL, newlen, 2278 SCM_RIGHTS, SOL_SOCKET); 2279 if (*controlp == NULL) { 2280 FILEDESC_SUNLOCK(fdesc); 2281 error = E2BIG; 2282 goto out; 2283 } 2284 fdp = data; 2285 for (i = 0; i < oldfds; i++, fdp++) { 2286 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 2287 fdp = data; 2288 for (j = 0; j < i; j++, fdp++) { 2289 fdrop(fdesc->fd_ofiles[*fdp]. 2290 fde_file, td); 2291 } 2292 FILEDESC_SUNLOCK(fdesc); 2293 error = EBADF; 2294 goto out; 2295 } 2296 } 2297 fdp = data; 2298 fdep = (struct filedescent **) 2299 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2300 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2301 M_WAITOK); 2302 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2303 fde = &fdesc->fd_ofiles[*fdp]; 2304 fdep[i] = fdev; 2305 fdep[i]->fde_file = fde->fde_file; 2306 filecaps_copy(&fde->fde_caps, 2307 &fdep[i]->fde_caps, true); 2308 unp_internalize_fp(fdep[i]->fde_file); 2309 } 2310 FILEDESC_SUNLOCK(fdesc); 2311 break; 2312 2313 case SCM_TIMESTAMP: 2314 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2315 SCM_TIMESTAMP, SOL_SOCKET); 2316 if (*controlp == NULL) { 2317 error = ENOBUFS; 2318 goto out; 2319 } 2320 tv = (struct timeval *) 2321 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2322 microtime(tv); 2323 break; 2324 2325 case SCM_BINTIME: 2326 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2327 SCM_BINTIME, SOL_SOCKET); 2328 if (*controlp == NULL) { 2329 error = ENOBUFS; 2330 goto out; 2331 } 2332 bt = (struct bintime *) 2333 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2334 bintime(bt); 2335 break; 2336 2337 case SCM_REALTIME: 2338 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2339 SCM_REALTIME, SOL_SOCKET); 2340 if (*controlp == NULL) { 2341 error = ENOBUFS; 2342 goto out; 2343 } 2344 ts = (struct timespec *) 2345 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2346 nanotime(ts); 2347 break; 2348 2349 case SCM_MONOTONIC: 2350 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2351 SCM_MONOTONIC, SOL_SOCKET); 2352 if (*controlp == NULL) { 2353 error = ENOBUFS; 2354 goto out; 2355 } 2356 ts = (struct timespec *) 2357 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2358 nanouptime(ts); 2359 break; 2360 2361 default: 2362 error = EINVAL; 2363 goto out; 2364 } 2365 2366 if (*controlp != NULL) 2367 controlp = &(*controlp)->m_next; 2368 if (CMSG_SPACE(datalen) < clen) { 2369 clen -= CMSG_SPACE(datalen); 2370 cm = (struct cmsghdr *) 2371 ((caddr_t)cm + CMSG_SPACE(datalen)); 2372 } else { 2373 clen = 0; 2374 cm = NULL; 2375 } 2376 } 2377 2378 out: 2379 if (error != 0 && initial_controlp != NULL) 2380 unp_internalize_cleanup_rights(*initial_controlp); 2381 m_freem(control); 2382 return (error); 2383 } 2384 2385 static struct mbuf * 2386 unp_addsockcred(struct thread *td, struct mbuf *control) 2387 { 2388 struct mbuf *m, *n, *n_prev; 2389 struct sockcred *sc; 2390 const struct cmsghdr *cm; 2391 int ngroups; 2392 int i; 2393 2394 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2395 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2396 if (m == NULL) 2397 return (control); 2398 2399 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2400 sc->sc_uid = td->td_ucred->cr_ruid; 2401 sc->sc_euid = td->td_ucred->cr_uid; 2402 sc->sc_gid = td->td_ucred->cr_rgid; 2403 sc->sc_egid = td->td_ucred->cr_gid; 2404 sc->sc_ngroups = ngroups; 2405 for (i = 0; i < sc->sc_ngroups; i++) 2406 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2407 2408 /* 2409 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2410 * created SCM_CREDS control message (struct sockcred) has another 2411 * format. 2412 */ 2413 if (control != NULL) 2414 for (n = control, n_prev = NULL; n != NULL;) { 2415 cm = mtod(n, struct cmsghdr *); 2416 if (cm->cmsg_level == SOL_SOCKET && 2417 cm->cmsg_type == SCM_CREDS) { 2418 if (n_prev == NULL) 2419 control = n->m_next; 2420 else 2421 n_prev->m_next = n->m_next; 2422 n = m_free(n); 2423 } else { 2424 n_prev = n; 2425 n = n->m_next; 2426 } 2427 } 2428 2429 /* Prepend it to the head. */ 2430 m->m_next = control; 2431 return (m); 2432 } 2433 2434 static struct unpcb * 2435 fptounp(struct file *fp) 2436 { 2437 struct socket *so; 2438 2439 if (fp->f_type != DTYPE_SOCKET) 2440 return (NULL); 2441 if ((so = fp->f_data) == NULL) 2442 return (NULL); 2443 if (so->so_proto->pr_domain != &localdomain) 2444 return (NULL); 2445 return sotounpcb(so); 2446 } 2447 2448 static void 2449 unp_discard(struct file *fp) 2450 { 2451 struct unp_defer *dr; 2452 2453 if (unp_externalize_fp(fp)) { 2454 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2455 dr->ud_fp = fp; 2456 UNP_DEFERRED_LOCK(); 2457 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2458 UNP_DEFERRED_UNLOCK(); 2459 atomic_add_int(&unp_defers_count, 1); 2460 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2461 } else 2462 (void) closef(fp, (struct thread *)NULL); 2463 } 2464 2465 static void 2466 unp_process_defers(void *arg __unused, int pending) 2467 { 2468 struct unp_defer *dr; 2469 SLIST_HEAD(, unp_defer) drl; 2470 int count; 2471 2472 SLIST_INIT(&drl); 2473 for (;;) { 2474 UNP_DEFERRED_LOCK(); 2475 if (SLIST_FIRST(&unp_defers) == NULL) { 2476 UNP_DEFERRED_UNLOCK(); 2477 break; 2478 } 2479 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2480 UNP_DEFERRED_UNLOCK(); 2481 count = 0; 2482 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2483 SLIST_REMOVE_HEAD(&drl, ud_link); 2484 closef(dr->ud_fp, NULL); 2485 free(dr, M_TEMP); 2486 count++; 2487 } 2488 atomic_add_int(&unp_defers_count, -count); 2489 } 2490 } 2491 2492 static void 2493 unp_internalize_fp(struct file *fp) 2494 { 2495 struct unpcb *unp; 2496 2497 UNP_LINK_WLOCK(); 2498 if ((unp = fptounp(fp)) != NULL) { 2499 unp->unp_file = fp; 2500 unp->unp_msgcount++; 2501 } 2502 unp_rights++; 2503 UNP_LINK_WUNLOCK(); 2504 } 2505 2506 static int 2507 unp_externalize_fp(struct file *fp) 2508 { 2509 struct unpcb *unp; 2510 int ret; 2511 2512 UNP_LINK_WLOCK(); 2513 if ((unp = fptounp(fp)) != NULL) { 2514 unp->unp_msgcount--; 2515 ret = 1; 2516 } else 2517 ret = 0; 2518 unp_rights--; 2519 UNP_LINK_WUNLOCK(); 2520 return (ret); 2521 } 2522 2523 /* 2524 * unp_defer indicates whether additional work has been defered for a future 2525 * pass through unp_gc(). It is thread local and does not require explicit 2526 * synchronization. 2527 */ 2528 static int unp_marked; 2529 2530 static void 2531 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 2532 { 2533 struct unpcb *unp; 2534 struct file *fp; 2535 int i; 2536 2537 /* 2538 * This function can only be called from the gc task. 2539 */ 2540 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2541 ("%s: not on gc callout", __func__)); 2542 UNP_LINK_LOCK_ASSERT(); 2543 2544 for (i = 0; i < fdcount; i++) { 2545 fp = fdep[i]->fde_file; 2546 if ((unp = fptounp(fp)) == NULL) 2547 continue; 2548 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2549 continue; 2550 unp->unp_gcrefs--; 2551 } 2552 } 2553 2554 static void 2555 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 2556 { 2557 struct unpcb *unp; 2558 struct file *fp; 2559 int i; 2560 2561 /* 2562 * This function can only be called from the gc task. 2563 */ 2564 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2565 ("%s: not on gc callout", __func__)); 2566 UNP_LINK_LOCK_ASSERT(); 2567 2568 for (i = 0; i < fdcount; i++) { 2569 fp = fdep[i]->fde_file; 2570 if ((unp = fptounp(fp)) == NULL) 2571 continue; 2572 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2573 continue; 2574 unp->unp_gcrefs++; 2575 unp_marked++; 2576 } 2577 } 2578 2579 static void 2580 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 2581 { 2582 struct socket *so, *soa; 2583 2584 so = unp->unp_socket; 2585 SOCK_LOCK(so); 2586 if (SOLISTENING(so)) { 2587 /* 2588 * Mark all sockets in our accept queue. 2589 */ 2590 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2591 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2592 continue; 2593 SOCKBUF_LOCK(&soa->so_rcv); 2594 unp_scan(soa->so_rcv.sb_mb, op); 2595 SOCKBUF_UNLOCK(&soa->so_rcv); 2596 } 2597 } else { 2598 /* 2599 * Mark all sockets we reference with RIGHTS. 2600 */ 2601 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2602 SOCKBUF_LOCK(&so->so_rcv); 2603 unp_scan(so->so_rcv.sb_mb, op); 2604 SOCKBUF_UNLOCK(&so->so_rcv); 2605 } 2606 } 2607 SOCK_UNLOCK(so); 2608 } 2609 2610 static int unp_recycled; 2611 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2612 "Number of unreachable sockets claimed by the garbage collector."); 2613 2614 static int unp_taskcount; 2615 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2616 "Number of times the garbage collector has run."); 2617 2618 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 2619 "Number of active local sockets."); 2620 2621 static void 2622 unp_gc(__unused void *arg, int pending) 2623 { 2624 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2625 NULL }; 2626 struct unp_head **head; 2627 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 2628 struct file *f, **unref; 2629 struct unpcb *unp, *unptmp; 2630 int i, total, unp_unreachable; 2631 2632 LIST_INIT(&unp_deadhead); 2633 unp_taskcount++; 2634 UNP_LINK_RLOCK(); 2635 /* 2636 * First determine which sockets may be in cycles. 2637 */ 2638 unp_unreachable = 0; 2639 2640 for (head = heads; *head != NULL; head++) 2641 LIST_FOREACH(unp, *head, unp_link) { 2642 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 2643 ("%s: unp %p has unexpected gc flags 0x%x", 2644 __func__, unp, (unsigned int)unp->unp_gcflag)); 2645 2646 f = unp->unp_file; 2647 2648 /* 2649 * Check for an unreachable socket potentially in a 2650 * cycle. It must be in a queue as indicated by 2651 * msgcount, and this must equal the file reference 2652 * count. Note that when msgcount is 0 the file is 2653 * NULL. 2654 */ 2655 if (f != NULL && unp->unp_msgcount != 0 && 2656 refcount_load(&f->f_count) == unp->unp_msgcount) { 2657 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 2658 unp->unp_gcflag |= UNPGC_DEAD; 2659 unp->unp_gcrefs = unp->unp_msgcount; 2660 unp_unreachable++; 2661 } 2662 } 2663 2664 /* 2665 * Scan all sockets previously marked as potentially being in a cycle 2666 * and remove the references each socket holds on any UNPGC_DEAD 2667 * sockets in its queue. After this step, all remaining references on 2668 * sockets marked UNPGC_DEAD should not be part of any cycle. 2669 */ 2670 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 2671 unp_gc_scan(unp, unp_remove_dead_ref); 2672 2673 /* 2674 * If a socket still has a non-negative refcount, it cannot be in a 2675 * cycle. In this case increment refcount of all children iteratively. 2676 * Stop the scan once we do a complete loop without discovering 2677 * a new reachable socket. 2678 */ 2679 do { 2680 unp_marked = 0; 2681 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 2682 if (unp->unp_gcrefs > 0) { 2683 unp->unp_gcflag &= ~UNPGC_DEAD; 2684 LIST_REMOVE(unp, unp_dead); 2685 KASSERT(unp_unreachable > 0, 2686 ("%s: unp_unreachable underflow.", 2687 __func__)); 2688 unp_unreachable--; 2689 unp_gc_scan(unp, unp_restore_undead_ref); 2690 } 2691 } while (unp_marked); 2692 2693 UNP_LINK_RUNLOCK(); 2694 2695 if (unp_unreachable == 0) 2696 return; 2697 2698 /* 2699 * Allocate space for a local array of dead unpcbs. 2700 * TODO: can this path be simplified by instead using the local 2701 * dead list at unp_deadhead, after taking out references 2702 * on the file object and/or unpcb and dropping the link lock? 2703 */ 2704 unref = malloc(unp_unreachable * sizeof(struct file *), 2705 M_TEMP, M_WAITOK); 2706 2707 /* 2708 * Iterate looking for sockets which have been specifically marked 2709 * as unreachable and store them locally. 2710 */ 2711 UNP_LINK_RLOCK(); 2712 total = 0; 2713 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 2714 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 2715 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 2716 unp->unp_gcflag &= ~UNPGC_DEAD; 2717 f = unp->unp_file; 2718 if (unp->unp_msgcount == 0 || f == NULL || 2719 refcount_load(&f->f_count) != unp->unp_msgcount || 2720 !fhold(f)) 2721 continue; 2722 unref[total++] = f; 2723 KASSERT(total <= unp_unreachable, 2724 ("%s: incorrect unreachable count.", __func__)); 2725 } 2726 UNP_LINK_RUNLOCK(); 2727 2728 /* 2729 * Now flush all sockets, free'ing rights. This will free the 2730 * struct files associated with these sockets but leave each socket 2731 * with one remaining ref. 2732 */ 2733 for (i = 0; i < total; i++) { 2734 struct socket *so; 2735 2736 so = unref[i]->f_data; 2737 CURVNET_SET(so->so_vnet); 2738 sorflush(so); 2739 CURVNET_RESTORE(); 2740 } 2741 2742 /* 2743 * And finally release the sockets so they can be reclaimed. 2744 */ 2745 for (i = 0; i < total; i++) 2746 fdrop(unref[i], NULL); 2747 unp_recycled += total; 2748 free(unref, M_TEMP); 2749 } 2750 2751 static void 2752 unp_dispose_mbuf(struct mbuf *m) 2753 { 2754 2755 if (m) 2756 unp_scan(m, unp_freerights); 2757 } 2758 2759 /* 2760 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2761 */ 2762 static void 2763 unp_dispose(struct socket *so) 2764 { 2765 struct unpcb *unp; 2766 2767 unp = sotounpcb(so); 2768 UNP_LINK_WLOCK(); 2769 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2770 UNP_LINK_WUNLOCK(); 2771 if (!SOLISTENING(so)) 2772 unp_dispose_mbuf(so->so_rcv.sb_mb); 2773 } 2774 2775 static void 2776 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2777 { 2778 struct mbuf *m; 2779 struct cmsghdr *cm; 2780 void *data; 2781 socklen_t clen, datalen; 2782 2783 while (m0 != NULL) { 2784 for (m = m0; m; m = m->m_next) { 2785 if (m->m_type != MT_CONTROL) 2786 continue; 2787 2788 cm = mtod(m, struct cmsghdr *); 2789 clen = m->m_len; 2790 2791 while (cm != NULL) { 2792 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2793 break; 2794 2795 data = CMSG_DATA(cm); 2796 datalen = (caddr_t)cm + cm->cmsg_len 2797 - (caddr_t)data; 2798 2799 if (cm->cmsg_level == SOL_SOCKET && 2800 cm->cmsg_type == SCM_RIGHTS) { 2801 (*op)(data, datalen / 2802 sizeof(struct filedescent *)); 2803 } 2804 2805 if (CMSG_SPACE(datalen) < clen) { 2806 clen -= CMSG_SPACE(datalen); 2807 cm = (struct cmsghdr *) 2808 ((caddr_t)cm + CMSG_SPACE(datalen)); 2809 } else { 2810 clen = 0; 2811 cm = NULL; 2812 } 2813 } 2814 } 2815 m0 = m0->m_nextpkt; 2816 } 2817 } 2818 2819 /* 2820 * A helper function called by VFS before socket-type vnode reclamation. 2821 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2822 * use count. 2823 */ 2824 void 2825 vfs_unp_reclaim(struct vnode *vp) 2826 { 2827 struct unpcb *unp; 2828 int active; 2829 struct mtx *vplock; 2830 2831 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2832 KASSERT(vp->v_type == VSOCK, 2833 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2834 2835 active = 0; 2836 vplock = mtx_pool_find(mtxpool_sleep, vp); 2837 mtx_lock(vplock); 2838 VOP_UNP_CONNECT(vp, &unp); 2839 if (unp == NULL) 2840 goto done; 2841 UNP_PCB_LOCK(unp); 2842 if (unp->unp_vnode == vp) { 2843 VOP_UNP_DETACH(vp); 2844 unp->unp_vnode = NULL; 2845 active = 1; 2846 } 2847 UNP_PCB_UNLOCK(unp); 2848 done: 2849 mtx_unlock(vplock); 2850 if (active) 2851 vunref(vp); 2852 } 2853 2854 #ifdef DDB 2855 static void 2856 db_print_indent(int indent) 2857 { 2858 int i; 2859 2860 for (i = 0; i < indent; i++) 2861 db_printf(" "); 2862 } 2863 2864 static void 2865 db_print_unpflags(int unp_flags) 2866 { 2867 int comma; 2868 2869 comma = 0; 2870 if (unp_flags & UNP_HAVEPC) { 2871 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2872 comma = 1; 2873 } 2874 if (unp_flags & UNP_WANTCRED_ALWAYS) { 2875 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : ""); 2876 comma = 1; 2877 } 2878 if (unp_flags & UNP_WANTCRED_ONESHOT) { 2879 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : ""); 2880 comma = 1; 2881 } 2882 if (unp_flags & UNP_CONNWAIT) { 2883 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2884 comma = 1; 2885 } 2886 if (unp_flags & UNP_CONNECTING) { 2887 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2888 comma = 1; 2889 } 2890 if (unp_flags & UNP_BINDING) { 2891 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2892 comma = 1; 2893 } 2894 } 2895 2896 static void 2897 db_print_xucred(int indent, struct xucred *xu) 2898 { 2899 int comma, i; 2900 2901 db_print_indent(indent); 2902 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 2903 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 2904 db_print_indent(indent); 2905 db_printf("cr_groups: "); 2906 comma = 0; 2907 for (i = 0; i < xu->cr_ngroups; i++) { 2908 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2909 comma = 1; 2910 } 2911 db_printf("\n"); 2912 } 2913 2914 static void 2915 db_print_unprefs(int indent, struct unp_head *uh) 2916 { 2917 struct unpcb *unp; 2918 int counter; 2919 2920 counter = 0; 2921 LIST_FOREACH(unp, uh, unp_reflink) { 2922 if (counter % 4 == 0) 2923 db_print_indent(indent); 2924 db_printf("%p ", unp); 2925 if (counter % 4 == 3) 2926 db_printf("\n"); 2927 counter++; 2928 } 2929 if (counter != 0 && counter % 4 != 0) 2930 db_printf("\n"); 2931 } 2932 2933 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2934 { 2935 struct unpcb *unp; 2936 2937 if (!have_addr) { 2938 db_printf("usage: show unpcb <addr>\n"); 2939 return; 2940 } 2941 unp = (struct unpcb *)addr; 2942 2943 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2944 unp->unp_vnode); 2945 2946 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2947 unp->unp_conn); 2948 2949 db_printf("unp_refs:\n"); 2950 db_print_unprefs(2, &unp->unp_refs); 2951 2952 /* XXXRW: Would be nice to print the full address, if any. */ 2953 db_printf("unp_addr: %p\n", unp->unp_addr); 2954 2955 db_printf("unp_gencnt: %llu\n", 2956 (unsigned long long)unp->unp_gencnt); 2957 2958 db_printf("unp_flags: %x (", unp->unp_flags); 2959 db_print_unpflags(unp->unp_flags); 2960 db_printf(")\n"); 2961 2962 db_printf("unp_peercred:\n"); 2963 db_print_xucred(2, &unp->unp_peercred); 2964 2965 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2966 } 2967 #endif 2968