xref: /freebsd/sys/kern/uipc_usrreq.c (revision 5596f836e7e04a272113e57b3a80f1f67c0fec7f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/eventhandler.h>
69 #include <sys/fcntl.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * See unpcb.h for the locking key.
110  */
111 
112 static uma_zone_t	unp_zone;
113 static unp_gen_t	unp_gencnt;	/* (l) */
114 static u_int		unp_count;	/* (l) Count of local sockets. */
115 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116 static int		unp_rights;	/* (g) File descriptors in flight. */
117 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120 
121 struct unp_defer {
122 	SLIST_ENTRY(unp_defer) ud_link;
123 	struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127 
128 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define	PIPSIZ	8192
156 #endif
157 static u_long	unpst_sendspace = PIPSIZ;
158 static u_long	unpst_recvspace = PIPSIZ;
159 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160 static u_long	unpdg_recvspace = 4*1024;
161 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162 static u_long	unpsp_recvspace = PIPSIZ;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_sendspace, 0, "Default datagram send space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pru_attach() and freed in pru_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *);
296 static int	unp_connect2(struct socket *so, struct socket *so2, int);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_dispose_mbuf(struct mbuf *);
300 static void	unp_shutdown(struct unpcb *);
301 static void	unp_drop(struct unpcb *);
302 static void	unp_gc(__unused void *, int);
303 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
304 static void	unp_discard(struct file *);
305 static void	unp_freerights(struct filedescent **, int);
306 static void	unp_init(void);
307 static int	unp_internalize(struct mbuf **, struct thread *);
308 static void	unp_internalize_fp(struct file *);
309 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
310 static int	unp_externalize_fp(struct file *);
311 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
312 static void	unp_process_defers(void * __unused, int);
313 
314 static void
315 unp_pcb_hold(struct unpcb *unp)
316 {
317 	u_int old __unused;
318 
319 	old = refcount_acquire(&unp->unp_refcount);
320 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
321 }
322 
323 static __result_use_check bool
324 unp_pcb_rele(struct unpcb *unp)
325 {
326 	bool ret;
327 
328 	UNP_PCB_LOCK_ASSERT(unp);
329 
330 	if ((ret = refcount_release(&unp->unp_refcount))) {
331 		UNP_PCB_UNLOCK(unp);
332 		UNP_PCB_LOCK_DESTROY(unp);
333 		uma_zfree(unp_zone, unp);
334 	}
335 	return (ret);
336 }
337 
338 static void
339 unp_pcb_rele_notlast(struct unpcb *unp)
340 {
341 	bool ret __unused;
342 
343 	ret = refcount_release(&unp->unp_refcount);
344 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
345 }
346 
347 static void
348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
349 {
350 	UNP_PCB_UNLOCK_ASSERT(unp);
351 	UNP_PCB_UNLOCK_ASSERT(unp2);
352 
353 	if (unp == unp2) {
354 		UNP_PCB_LOCK(unp);
355 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
356 		UNP_PCB_LOCK(unp);
357 		UNP_PCB_LOCK(unp2);
358 	} else {
359 		UNP_PCB_LOCK(unp2);
360 		UNP_PCB_LOCK(unp);
361 	}
362 }
363 
364 static void
365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
366 {
367 	UNP_PCB_UNLOCK(unp);
368 	if (unp != unp2)
369 		UNP_PCB_UNLOCK(unp2);
370 }
371 
372 /*
373  * Try to lock the connected peer of an already locked socket.  In some cases
374  * this requires that we unlock the current socket.  The pairbusy counter is
375  * used to block concurrent connection attempts while the lock is dropped.  The
376  * caller must be careful to revalidate PCB state.
377  */
378 static struct unpcb *
379 unp_pcb_lock_peer(struct unpcb *unp)
380 {
381 	struct unpcb *unp2;
382 
383 	UNP_PCB_LOCK_ASSERT(unp);
384 	unp2 = unp->unp_conn;
385 	if (__predict_false(unp2 == NULL))
386 		return (NULL);
387 	if (__predict_false(unp == unp2))
388 		return (unp);
389 
390 	UNP_PCB_UNLOCK_ASSERT(unp2);
391 
392 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
393 		return (unp2);
394 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
395 		UNP_PCB_LOCK(unp2);
396 		return (unp2);
397 	}
398 	unp->unp_pairbusy++;
399 	unp_pcb_hold(unp2);
400 	UNP_PCB_UNLOCK(unp);
401 
402 	UNP_PCB_LOCK(unp2);
403 	UNP_PCB_LOCK(unp);
404 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
405 	    ("%s: socket %p was reconnected", __func__, unp));
406 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
407 		unp->unp_flags &= ~UNP_WAITING;
408 		wakeup(unp);
409 	}
410 	if (unp_pcb_rele(unp2)) {
411 		/* unp2 is unlocked. */
412 		return (NULL);
413 	}
414 	if (unp->unp_conn == NULL) {
415 		UNP_PCB_UNLOCK(unp2);
416 		return (NULL);
417 	}
418 	return (unp2);
419 }
420 
421 /*
422  * Definitions of protocols supported in the LOCAL domain.
423  */
424 static struct domain localdomain;
425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
426 static struct pr_usrreqs uipc_usrreqs_seqpacket;
427 static struct protosw localsw[] = {
428 {
429 	.pr_type =		SOCK_STREAM,
430 	.pr_domain =		&localdomain,
431 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
432 	.pr_ctloutput =		&uipc_ctloutput,
433 	.pr_usrreqs =		&uipc_usrreqs_stream
434 },
435 {
436 	.pr_type =		SOCK_DGRAM,
437 	.pr_domain =		&localdomain,
438 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
439 	.pr_ctloutput =		&uipc_ctloutput,
440 	.pr_usrreqs =		&uipc_usrreqs_dgram
441 },
442 {
443 	.pr_type =		SOCK_SEQPACKET,
444 	.pr_domain =		&localdomain,
445 
446 	/*
447 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
448 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
449 	 * that supports both atomic record writes and control data.
450 	 */
451 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
452 				    PR_RIGHTS,
453 	.pr_ctloutput =		&uipc_ctloutput,
454 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
455 },
456 };
457 
458 static struct domain localdomain = {
459 	.dom_family =		AF_LOCAL,
460 	.dom_name =		"local",
461 	.dom_init =		unp_init,
462 	.dom_externalize =	unp_externalize,
463 	.dom_dispose =		unp_dispose,
464 	.dom_protosw =		localsw,
465 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
466 };
467 DOMAIN_SET(local);
468 
469 static void
470 uipc_abort(struct socket *so)
471 {
472 	struct unpcb *unp, *unp2;
473 
474 	unp = sotounpcb(so);
475 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
476 	UNP_PCB_UNLOCK_ASSERT(unp);
477 
478 	UNP_PCB_LOCK(unp);
479 	unp2 = unp->unp_conn;
480 	if (unp2 != NULL) {
481 		unp_pcb_hold(unp2);
482 		UNP_PCB_UNLOCK(unp);
483 		unp_drop(unp2);
484 	} else
485 		UNP_PCB_UNLOCK(unp);
486 }
487 
488 static int
489 uipc_accept(struct socket *so, struct sockaddr **nam)
490 {
491 	struct unpcb *unp, *unp2;
492 	const struct sockaddr *sa;
493 
494 	/*
495 	 * Pass back name of connected socket, if it was bound and we are
496 	 * still connected (our peer may have closed already!).
497 	 */
498 	unp = sotounpcb(so);
499 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
500 
501 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
502 	UNP_PCB_LOCK(unp);
503 	unp2 = unp_pcb_lock_peer(unp);
504 	if (unp2 != NULL && unp2->unp_addr != NULL)
505 		sa = (struct sockaddr *)unp2->unp_addr;
506 	else
507 		sa = &sun_noname;
508 	bcopy(sa, *nam, sa->sa_len);
509 	if (unp2 != NULL)
510 		unp_pcb_unlock_pair(unp, unp2);
511 	else
512 		UNP_PCB_UNLOCK(unp);
513 	return (0);
514 }
515 
516 static int
517 uipc_attach(struct socket *so, int proto, struct thread *td)
518 {
519 	u_long sendspace, recvspace;
520 	struct unpcb *unp;
521 	int error;
522 	bool locked;
523 
524 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
525 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
526 		switch (so->so_type) {
527 		case SOCK_STREAM:
528 			sendspace = unpst_sendspace;
529 			recvspace = unpst_recvspace;
530 			break;
531 
532 		case SOCK_DGRAM:
533 			sendspace = unpdg_sendspace;
534 			recvspace = unpdg_recvspace;
535 			break;
536 
537 		case SOCK_SEQPACKET:
538 			sendspace = unpsp_sendspace;
539 			recvspace = unpsp_recvspace;
540 			break;
541 
542 		default:
543 			panic("uipc_attach");
544 		}
545 		error = soreserve(so, sendspace, recvspace);
546 		if (error)
547 			return (error);
548 	}
549 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
550 	if (unp == NULL)
551 		return (ENOBUFS);
552 	LIST_INIT(&unp->unp_refs);
553 	UNP_PCB_LOCK_INIT(unp);
554 	unp->unp_socket = so;
555 	so->so_pcb = unp;
556 	refcount_init(&unp->unp_refcount, 1);
557 
558 	if ((locked = UNP_LINK_WOWNED()) == false)
559 		UNP_LINK_WLOCK();
560 
561 	unp->unp_gencnt = ++unp_gencnt;
562 	unp->unp_ino = ++unp_ino;
563 	unp_count++;
564 	switch (so->so_type) {
565 	case SOCK_STREAM:
566 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
567 		break;
568 
569 	case SOCK_DGRAM:
570 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
571 		break;
572 
573 	case SOCK_SEQPACKET:
574 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
575 		break;
576 
577 	default:
578 		panic("uipc_attach");
579 	}
580 
581 	if (locked == false)
582 		UNP_LINK_WUNLOCK();
583 
584 	return (0);
585 }
586 
587 static int
588 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
589 {
590 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
591 	struct vattr vattr;
592 	int error, namelen;
593 	struct nameidata nd;
594 	struct unpcb *unp;
595 	struct vnode *vp;
596 	struct mount *mp;
597 	cap_rights_t rights;
598 	char *buf;
599 
600 	if (nam->sa_family != AF_UNIX)
601 		return (EAFNOSUPPORT);
602 
603 	unp = sotounpcb(so);
604 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
605 
606 	if (soun->sun_len > sizeof(struct sockaddr_un))
607 		return (EINVAL);
608 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
609 	if (namelen <= 0)
610 		return (EINVAL);
611 
612 	/*
613 	 * We don't allow simultaneous bind() calls on a single UNIX domain
614 	 * socket, so flag in-progress operations, and return an error if an
615 	 * operation is already in progress.
616 	 *
617 	 * Historically, we have not allowed a socket to be rebound, so this
618 	 * also returns an error.  Not allowing re-binding simplifies the
619 	 * implementation and avoids a great many possible failure modes.
620 	 */
621 	UNP_PCB_LOCK(unp);
622 	if (unp->unp_vnode != NULL) {
623 		UNP_PCB_UNLOCK(unp);
624 		return (EINVAL);
625 	}
626 	if (unp->unp_flags & UNP_BINDING) {
627 		UNP_PCB_UNLOCK(unp);
628 		return (EALREADY);
629 	}
630 	unp->unp_flags |= UNP_BINDING;
631 	UNP_PCB_UNLOCK(unp);
632 
633 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
634 	bcopy(soun->sun_path, buf, namelen);
635 	buf[namelen] = 0;
636 
637 restart:
638 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
639 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
640 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
641 	error = namei(&nd);
642 	if (error)
643 		goto error;
644 	vp = nd.ni_vp;
645 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
646 		NDFREE(&nd, NDF_ONLY_PNBUF);
647 		if (nd.ni_dvp == vp)
648 			vrele(nd.ni_dvp);
649 		else
650 			vput(nd.ni_dvp);
651 		if (vp != NULL) {
652 			vrele(vp);
653 			error = EADDRINUSE;
654 			goto error;
655 		}
656 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
657 		if (error)
658 			goto error;
659 		goto restart;
660 	}
661 	VATTR_NULL(&vattr);
662 	vattr.va_type = VSOCK;
663 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
664 #ifdef MAC
665 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
666 	    &vattr);
667 #endif
668 	if (error == 0)
669 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
670 	NDFREE(&nd, NDF_ONLY_PNBUF);
671 	vput(nd.ni_dvp);
672 	if (error) {
673 		vn_finished_write(mp);
674 		if (error == ERELOOKUP)
675 			goto restart;
676 		goto error;
677 	}
678 	vp = nd.ni_vp;
679 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
680 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
681 
682 	UNP_PCB_LOCK(unp);
683 	VOP_UNP_BIND(vp, unp);
684 	unp->unp_vnode = vp;
685 	unp->unp_addr = soun;
686 	unp->unp_flags &= ~UNP_BINDING;
687 	UNP_PCB_UNLOCK(unp);
688 	VOP_UNLOCK(vp);
689 	vn_finished_write(mp);
690 	free(buf, M_TEMP);
691 	return (0);
692 
693 error:
694 	UNP_PCB_LOCK(unp);
695 	unp->unp_flags &= ~UNP_BINDING;
696 	UNP_PCB_UNLOCK(unp);
697 	free(buf, M_TEMP);
698 	return (error);
699 }
700 
701 static int
702 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
703 {
704 
705 	return (uipc_bindat(AT_FDCWD, so, nam, td));
706 }
707 
708 static int
709 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
710 {
711 	int error;
712 
713 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
714 	error = unp_connect(so, nam, td);
715 	return (error);
716 }
717 
718 static int
719 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
720     struct thread *td)
721 {
722 	int error;
723 
724 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
725 	error = unp_connectat(fd, so, nam, td);
726 	return (error);
727 }
728 
729 static void
730 uipc_close(struct socket *so)
731 {
732 	struct unpcb *unp, *unp2;
733 	struct vnode *vp = NULL;
734 	struct mtx *vplock;
735 
736 	unp = sotounpcb(so);
737 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
738 
739 	vplock = NULL;
740 	if ((vp = unp->unp_vnode) != NULL) {
741 		vplock = mtx_pool_find(mtxpool_sleep, vp);
742 		mtx_lock(vplock);
743 	}
744 	UNP_PCB_LOCK(unp);
745 	if (vp && unp->unp_vnode == NULL) {
746 		mtx_unlock(vplock);
747 		vp = NULL;
748 	}
749 	if (vp != NULL) {
750 		VOP_UNP_DETACH(vp);
751 		unp->unp_vnode = NULL;
752 	}
753 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
754 		unp_disconnect(unp, unp2);
755 	else
756 		UNP_PCB_UNLOCK(unp);
757 	if (vp) {
758 		mtx_unlock(vplock);
759 		vrele(vp);
760 	}
761 }
762 
763 static int
764 uipc_connect2(struct socket *so1, struct socket *so2)
765 {
766 	struct unpcb *unp, *unp2;
767 	int error;
768 
769 	unp = so1->so_pcb;
770 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
771 	unp2 = so2->so_pcb;
772 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
773 	unp_pcb_lock_pair(unp, unp2);
774 	error = unp_connect2(so1, so2, PRU_CONNECT2);
775 	unp_pcb_unlock_pair(unp, unp2);
776 	return (error);
777 }
778 
779 static void
780 uipc_detach(struct socket *so)
781 {
782 	struct unpcb *unp, *unp2;
783 	struct mtx *vplock;
784 	struct vnode *vp;
785 	int local_unp_rights;
786 
787 	unp = sotounpcb(so);
788 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
789 
790 	vp = NULL;
791 	vplock = NULL;
792 
793 	SOCK_LOCK(so);
794 	if (!SOLISTENING(so)) {
795 		/*
796 		 * Once the socket is removed from the global lists,
797 		 * uipc_ready() will not be able to locate its socket buffer, so
798 		 * clear the buffer now.  At this point internalized rights have
799 		 * already been disposed of.
800 		 */
801 		sbrelease(&so->so_rcv, so);
802 	}
803 	SOCK_UNLOCK(so);
804 
805 	UNP_LINK_WLOCK();
806 	LIST_REMOVE(unp, unp_link);
807 	if (unp->unp_gcflag & UNPGC_DEAD)
808 		LIST_REMOVE(unp, unp_dead);
809 	unp->unp_gencnt = ++unp_gencnt;
810 	--unp_count;
811 	UNP_LINK_WUNLOCK();
812 
813 	UNP_PCB_UNLOCK_ASSERT(unp);
814  restart:
815 	if ((vp = unp->unp_vnode) != NULL) {
816 		vplock = mtx_pool_find(mtxpool_sleep, vp);
817 		mtx_lock(vplock);
818 	}
819 	UNP_PCB_LOCK(unp);
820 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
821 		if (vplock)
822 			mtx_unlock(vplock);
823 		UNP_PCB_UNLOCK(unp);
824 		goto restart;
825 	}
826 	if ((vp = unp->unp_vnode) != NULL) {
827 		VOP_UNP_DETACH(vp);
828 		unp->unp_vnode = NULL;
829 	}
830 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
831 		unp_disconnect(unp, unp2);
832 	else
833 		UNP_PCB_UNLOCK(unp);
834 
835 	UNP_REF_LIST_LOCK();
836 	while (!LIST_EMPTY(&unp->unp_refs)) {
837 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
838 
839 		unp_pcb_hold(ref);
840 		UNP_REF_LIST_UNLOCK();
841 
842 		MPASS(ref != unp);
843 		UNP_PCB_UNLOCK_ASSERT(ref);
844 		unp_drop(ref);
845 		UNP_REF_LIST_LOCK();
846 	}
847 	UNP_REF_LIST_UNLOCK();
848 
849 	UNP_PCB_LOCK(unp);
850 	local_unp_rights = unp_rights;
851 	unp->unp_socket->so_pcb = NULL;
852 	unp->unp_socket = NULL;
853 	free(unp->unp_addr, M_SONAME);
854 	unp->unp_addr = NULL;
855 	if (!unp_pcb_rele(unp))
856 		UNP_PCB_UNLOCK(unp);
857 	if (vp) {
858 		mtx_unlock(vplock);
859 		vrele(vp);
860 	}
861 	if (local_unp_rights)
862 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
863 }
864 
865 static int
866 uipc_disconnect(struct socket *so)
867 {
868 	struct unpcb *unp, *unp2;
869 
870 	unp = sotounpcb(so);
871 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
872 
873 	UNP_PCB_LOCK(unp);
874 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
875 		unp_disconnect(unp, unp2);
876 	else
877 		UNP_PCB_UNLOCK(unp);
878 	return (0);
879 }
880 
881 static int
882 uipc_listen(struct socket *so, int backlog, struct thread *td)
883 {
884 	struct unpcb *unp;
885 	int error;
886 
887 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
888 		return (EOPNOTSUPP);
889 
890 	unp = sotounpcb(so);
891 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
892 
893 	UNP_PCB_LOCK(unp);
894 	if (unp->unp_vnode == NULL) {
895 		/* Already connected or not bound to an address. */
896 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
897 		UNP_PCB_UNLOCK(unp);
898 		return (error);
899 	}
900 
901 	SOCK_LOCK(so);
902 	error = solisten_proto_check(so);
903 	if (error == 0) {
904 		cru2xt(td, &unp->unp_peercred);
905 		solisten_proto(so, backlog);
906 	}
907 	SOCK_UNLOCK(so);
908 	UNP_PCB_UNLOCK(unp);
909 	return (error);
910 }
911 
912 static int
913 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
914 {
915 	struct unpcb *unp, *unp2;
916 	const struct sockaddr *sa;
917 
918 	unp = sotounpcb(so);
919 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
920 
921 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
922 	UNP_LINK_RLOCK();
923 	/*
924 	 * XXX: It seems that this test always fails even when connection is
925 	 * established.  So, this else clause is added as workaround to
926 	 * return PF_LOCAL sockaddr.
927 	 */
928 	unp2 = unp->unp_conn;
929 	if (unp2 != NULL) {
930 		UNP_PCB_LOCK(unp2);
931 		if (unp2->unp_addr != NULL)
932 			sa = (struct sockaddr *) unp2->unp_addr;
933 		else
934 			sa = &sun_noname;
935 		bcopy(sa, *nam, sa->sa_len);
936 		UNP_PCB_UNLOCK(unp2);
937 	} else {
938 		sa = &sun_noname;
939 		bcopy(sa, *nam, sa->sa_len);
940 	}
941 	UNP_LINK_RUNLOCK();
942 	return (0);
943 }
944 
945 static int
946 uipc_rcvd(struct socket *so, int flags)
947 {
948 	struct unpcb *unp, *unp2;
949 	struct socket *so2;
950 	u_int mbcnt, sbcc;
951 
952 	unp = sotounpcb(so);
953 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
954 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
955 	    ("%s: socktype %d", __func__, so->so_type));
956 
957 	/*
958 	 * Adjust backpressure on sender and wakeup any waiting to write.
959 	 *
960 	 * The unp lock is acquired to maintain the validity of the unp_conn
961 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
962 	 * static as long as we don't permit unp2 to disconnect from unp,
963 	 * which is prevented by the lock on unp.  We cache values from
964 	 * so_rcv to avoid holding the so_rcv lock over the entire
965 	 * transaction on the remote so_snd.
966 	 */
967 	SOCKBUF_LOCK(&so->so_rcv);
968 	mbcnt = so->so_rcv.sb_mbcnt;
969 	sbcc = sbavail(&so->so_rcv);
970 	SOCKBUF_UNLOCK(&so->so_rcv);
971 	/*
972 	 * There is a benign race condition at this point.  If we're planning to
973 	 * clear SB_STOP, but uipc_send is called on the connected socket at
974 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
975 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
976 	 * full.  The race is benign because the only ill effect is to allow the
977 	 * sockbuf to exceed its size limit, and the size limits are not
978 	 * strictly guaranteed anyway.
979 	 */
980 	UNP_PCB_LOCK(unp);
981 	unp2 = unp->unp_conn;
982 	if (unp2 == NULL) {
983 		UNP_PCB_UNLOCK(unp);
984 		return (0);
985 	}
986 	so2 = unp2->unp_socket;
987 	SOCKBUF_LOCK(&so2->so_snd);
988 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
989 		so2->so_snd.sb_flags &= ~SB_STOP;
990 	sowwakeup_locked(so2);
991 	UNP_PCB_UNLOCK(unp);
992 	return (0);
993 }
994 
995 static int
996 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
997     struct mbuf *control, struct thread *td)
998 {
999 	struct unpcb *unp, *unp2;
1000 	struct socket *so2;
1001 	u_int mbcnt, sbcc;
1002 	int freed, error;
1003 
1004 	unp = sotounpcb(so);
1005 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1006 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1007 	    so->so_type == SOCK_SEQPACKET,
1008 	    ("%s: socktype %d", __func__, so->so_type));
1009 
1010 	freed = error = 0;
1011 	if (flags & PRUS_OOB) {
1012 		error = EOPNOTSUPP;
1013 		goto release;
1014 	}
1015 	if (control != NULL && (error = unp_internalize(&control, td)))
1016 		goto release;
1017 
1018 	unp2 = NULL;
1019 	switch (so->so_type) {
1020 	case SOCK_DGRAM:
1021 	{
1022 		const struct sockaddr *from;
1023 
1024 		if (nam != NULL) {
1025 			error = unp_connect(so, nam, td);
1026 			if (error != 0)
1027 				break;
1028 		}
1029 		UNP_PCB_LOCK(unp);
1030 
1031 		/*
1032 		 * Because connect() and send() are non-atomic in a sendto()
1033 		 * with a target address, it's possible that the socket will
1034 		 * have disconnected before the send() can run.  In that case
1035 		 * return the slightly counter-intuitive but otherwise
1036 		 * correct error that the socket is not connected.
1037 		 */
1038 		unp2 = unp_pcb_lock_peer(unp);
1039 		if (unp2 == NULL) {
1040 			UNP_PCB_UNLOCK(unp);
1041 			error = ENOTCONN;
1042 			break;
1043 		}
1044 
1045 		if (unp2->unp_flags & UNP_WANTCRED_MASK)
1046 			control = unp_addsockcred(td, control);
1047 		if (unp->unp_addr != NULL)
1048 			from = (struct sockaddr *)unp->unp_addr;
1049 		else
1050 			from = &sun_noname;
1051 		so2 = unp2->unp_socket;
1052 		SOCKBUF_LOCK(&so2->so_rcv);
1053 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1054 		    control)) {
1055 			sorwakeup_locked(so2);
1056 			m = NULL;
1057 			control = NULL;
1058 		} else {
1059 			SOCKBUF_UNLOCK(&so2->so_rcv);
1060 			error = ENOBUFS;
1061 		}
1062 		if (nam != NULL)
1063 			unp_disconnect(unp, unp2);
1064 		else
1065 			unp_pcb_unlock_pair(unp, unp2);
1066 		break;
1067 	}
1068 
1069 	case SOCK_SEQPACKET:
1070 	case SOCK_STREAM:
1071 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1072 			if (nam != NULL) {
1073 				error = unp_connect(so, nam, td);
1074 				if (error != 0)
1075 					break;
1076 			} else {
1077 				error = ENOTCONN;
1078 				break;
1079 			}
1080 		}
1081 
1082 		UNP_PCB_LOCK(unp);
1083 		if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
1084 			UNP_PCB_UNLOCK(unp);
1085 			error = ENOTCONN;
1086 			break;
1087 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1088 			unp_pcb_unlock_pair(unp, unp2);
1089 			error = EPIPE;
1090 			break;
1091 		}
1092 		UNP_PCB_UNLOCK(unp);
1093 		if ((so2 = unp2->unp_socket) == NULL) {
1094 			UNP_PCB_UNLOCK(unp2);
1095 			error = ENOTCONN;
1096 			break;
1097 		}
1098 		SOCKBUF_LOCK(&so2->so_rcv);
1099 		if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1100 			/*
1101 			 * Credentials are passed only once on SOCK_STREAM and
1102 			 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1103 			 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1104 			 */
1105 			unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1106 			control = unp_addsockcred(td, control);
1107 		}
1108 
1109 		/*
1110 		 * Send to paired receive port and wake up readers.  Don't
1111 		 * check for space available in the receive buffer if we're
1112 		 * attaching ancillary data; Unix domain sockets only check
1113 		 * for space in the sending sockbuf, and that check is
1114 		 * performed one level up the stack.  At that level we cannot
1115 		 * precisely account for the amount of buffer space used
1116 		 * (e.g., because control messages are not yet internalized).
1117 		 */
1118 		switch (so->so_type) {
1119 		case SOCK_STREAM:
1120 			if (control != NULL) {
1121 				sbappendcontrol_locked(&so2->so_rcv, m,
1122 				    control, flags);
1123 				control = NULL;
1124 			} else
1125 				sbappend_locked(&so2->so_rcv, m, flags);
1126 			break;
1127 
1128 		case SOCK_SEQPACKET:
1129 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1130 			    &sun_noname, m, control))
1131 				control = NULL;
1132 			break;
1133 		}
1134 
1135 		mbcnt = so2->so_rcv.sb_mbcnt;
1136 		sbcc = sbavail(&so2->so_rcv);
1137 		if (sbcc)
1138 			sorwakeup_locked(so2);
1139 		else
1140 			SOCKBUF_UNLOCK(&so2->so_rcv);
1141 
1142 		/*
1143 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1144 		 * it would be possible for uipc_rcvd to be called at this
1145 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1146 		 * we would set SB_STOP below.  That could lead to an empty
1147 		 * sockbuf having SB_STOP set
1148 		 */
1149 		SOCKBUF_LOCK(&so->so_snd);
1150 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1151 			so->so_snd.sb_flags |= SB_STOP;
1152 		SOCKBUF_UNLOCK(&so->so_snd);
1153 		UNP_PCB_UNLOCK(unp2);
1154 		m = NULL;
1155 		break;
1156 	}
1157 
1158 	/*
1159 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1160 	 */
1161 	if (flags & PRUS_EOF) {
1162 		UNP_PCB_LOCK(unp);
1163 		socantsendmore(so);
1164 		unp_shutdown(unp);
1165 		UNP_PCB_UNLOCK(unp);
1166 	}
1167 	if (control != NULL && error != 0)
1168 		unp_dispose_mbuf(control);
1169 
1170 release:
1171 	if (control != NULL)
1172 		m_freem(control);
1173 	/*
1174 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1175 	 * for freeing memory.
1176 	 */
1177 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1178 		m_freem(m);
1179 	return (error);
1180 }
1181 
1182 static bool
1183 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1184 {
1185 	struct mbuf *mb, *n;
1186 	struct sockbuf *sb;
1187 
1188 	SOCK_LOCK(so);
1189 	if (SOLISTENING(so)) {
1190 		SOCK_UNLOCK(so);
1191 		return (false);
1192 	}
1193 	mb = NULL;
1194 	sb = &so->so_rcv;
1195 	SOCKBUF_LOCK(sb);
1196 	if (sb->sb_fnrdy != NULL) {
1197 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1198 			if (mb == m) {
1199 				*errorp = sbready(sb, m, count);
1200 				break;
1201 			}
1202 			mb = mb->m_next;
1203 			if (mb == NULL) {
1204 				mb = n;
1205 				if (mb != NULL)
1206 					n = mb->m_nextpkt;
1207 			}
1208 		}
1209 	}
1210 	SOCKBUF_UNLOCK(sb);
1211 	SOCK_UNLOCK(so);
1212 	return (mb != NULL);
1213 }
1214 
1215 static int
1216 uipc_ready(struct socket *so, struct mbuf *m, int count)
1217 {
1218 	struct unpcb *unp, *unp2;
1219 	struct socket *so2;
1220 	int error, i;
1221 
1222 	unp = sotounpcb(so);
1223 
1224 	KASSERT(so->so_type == SOCK_STREAM,
1225 	    ("%s: unexpected socket type for %p", __func__, so));
1226 
1227 	UNP_PCB_LOCK(unp);
1228 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1229 		UNP_PCB_UNLOCK(unp);
1230 		so2 = unp2->unp_socket;
1231 		SOCKBUF_LOCK(&so2->so_rcv);
1232 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1233 			sorwakeup_locked(so2);
1234 		else
1235 			SOCKBUF_UNLOCK(&so2->so_rcv);
1236 		UNP_PCB_UNLOCK(unp2);
1237 		return (error);
1238 	}
1239 	UNP_PCB_UNLOCK(unp);
1240 
1241 	/*
1242 	 * The receiving socket has been disconnected, but may still be valid.
1243 	 * In this case, the now-ready mbufs are still present in its socket
1244 	 * buffer, so perform an exhaustive search before giving up and freeing
1245 	 * the mbufs.
1246 	 */
1247 	UNP_LINK_RLOCK();
1248 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1249 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1250 			break;
1251 	}
1252 	UNP_LINK_RUNLOCK();
1253 
1254 	if (unp == NULL) {
1255 		for (i = 0; i < count; i++)
1256 			m = m_free(m);
1257 		error = ECONNRESET;
1258 	}
1259 	return (error);
1260 }
1261 
1262 static int
1263 uipc_sense(struct socket *so, struct stat *sb)
1264 {
1265 	struct unpcb *unp;
1266 
1267 	unp = sotounpcb(so);
1268 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1269 
1270 	sb->st_blksize = so->so_snd.sb_hiwat;
1271 	sb->st_dev = NODEV;
1272 	sb->st_ino = unp->unp_ino;
1273 	return (0);
1274 }
1275 
1276 static int
1277 uipc_shutdown(struct socket *so)
1278 {
1279 	struct unpcb *unp;
1280 
1281 	unp = sotounpcb(so);
1282 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1283 
1284 	UNP_PCB_LOCK(unp);
1285 	socantsendmore(so);
1286 	unp_shutdown(unp);
1287 	UNP_PCB_UNLOCK(unp);
1288 	return (0);
1289 }
1290 
1291 static int
1292 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1293 {
1294 	struct unpcb *unp;
1295 	const struct sockaddr *sa;
1296 
1297 	unp = sotounpcb(so);
1298 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1299 
1300 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1301 	UNP_PCB_LOCK(unp);
1302 	if (unp->unp_addr != NULL)
1303 		sa = (struct sockaddr *) unp->unp_addr;
1304 	else
1305 		sa = &sun_noname;
1306 	bcopy(sa, *nam, sa->sa_len);
1307 	UNP_PCB_UNLOCK(unp);
1308 	return (0);
1309 }
1310 
1311 static struct pr_usrreqs uipc_usrreqs_dgram = {
1312 	.pru_abort = 		uipc_abort,
1313 	.pru_accept =		uipc_accept,
1314 	.pru_attach =		uipc_attach,
1315 	.pru_bind =		uipc_bind,
1316 	.pru_bindat =		uipc_bindat,
1317 	.pru_connect =		uipc_connect,
1318 	.pru_connectat =	uipc_connectat,
1319 	.pru_connect2 =		uipc_connect2,
1320 	.pru_detach =		uipc_detach,
1321 	.pru_disconnect =	uipc_disconnect,
1322 	.pru_listen =		uipc_listen,
1323 	.pru_peeraddr =		uipc_peeraddr,
1324 	.pru_rcvd =		uipc_rcvd,
1325 	.pru_send =		uipc_send,
1326 	.pru_sense =		uipc_sense,
1327 	.pru_shutdown =		uipc_shutdown,
1328 	.pru_sockaddr =		uipc_sockaddr,
1329 	.pru_soreceive =	soreceive_dgram,
1330 	.pru_close =		uipc_close,
1331 };
1332 
1333 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1334 	.pru_abort =		uipc_abort,
1335 	.pru_accept =		uipc_accept,
1336 	.pru_attach =		uipc_attach,
1337 	.pru_bind =		uipc_bind,
1338 	.pru_bindat =		uipc_bindat,
1339 	.pru_connect =		uipc_connect,
1340 	.pru_connectat =	uipc_connectat,
1341 	.pru_connect2 =		uipc_connect2,
1342 	.pru_detach =		uipc_detach,
1343 	.pru_disconnect =	uipc_disconnect,
1344 	.pru_listen =		uipc_listen,
1345 	.pru_peeraddr =		uipc_peeraddr,
1346 	.pru_rcvd =		uipc_rcvd,
1347 	.pru_send =		uipc_send,
1348 	.pru_sense =		uipc_sense,
1349 	.pru_shutdown =		uipc_shutdown,
1350 	.pru_sockaddr =		uipc_sockaddr,
1351 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1352 	.pru_close =		uipc_close,
1353 };
1354 
1355 static struct pr_usrreqs uipc_usrreqs_stream = {
1356 	.pru_abort = 		uipc_abort,
1357 	.pru_accept =		uipc_accept,
1358 	.pru_attach =		uipc_attach,
1359 	.pru_bind =		uipc_bind,
1360 	.pru_bindat =		uipc_bindat,
1361 	.pru_connect =		uipc_connect,
1362 	.pru_connectat =	uipc_connectat,
1363 	.pru_connect2 =		uipc_connect2,
1364 	.pru_detach =		uipc_detach,
1365 	.pru_disconnect =	uipc_disconnect,
1366 	.pru_listen =		uipc_listen,
1367 	.pru_peeraddr =		uipc_peeraddr,
1368 	.pru_rcvd =		uipc_rcvd,
1369 	.pru_send =		uipc_send,
1370 	.pru_ready =		uipc_ready,
1371 	.pru_sense =		uipc_sense,
1372 	.pru_shutdown =		uipc_shutdown,
1373 	.pru_sockaddr =		uipc_sockaddr,
1374 	.pru_soreceive =	soreceive_generic,
1375 	.pru_close =		uipc_close,
1376 };
1377 
1378 static int
1379 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1380 {
1381 	struct unpcb *unp;
1382 	struct xucred xu;
1383 	int error, optval;
1384 
1385 	if (sopt->sopt_level != SOL_LOCAL)
1386 		return (EINVAL);
1387 
1388 	unp = sotounpcb(so);
1389 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1390 	error = 0;
1391 	switch (sopt->sopt_dir) {
1392 	case SOPT_GET:
1393 		switch (sopt->sopt_name) {
1394 		case LOCAL_PEERCRED:
1395 			UNP_PCB_LOCK(unp);
1396 			if (unp->unp_flags & UNP_HAVEPC)
1397 				xu = unp->unp_peercred;
1398 			else {
1399 				if (so->so_type == SOCK_STREAM)
1400 					error = ENOTCONN;
1401 				else
1402 					error = EINVAL;
1403 			}
1404 			UNP_PCB_UNLOCK(unp);
1405 			if (error == 0)
1406 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1407 			break;
1408 
1409 		case LOCAL_CREDS:
1410 			/* Unlocked read. */
1411 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1412 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1413 			break;
1414 
1415 		case LOCAL_CREDS_PERSISTENT:
1416 			/* Unlocked read. */
1417 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1418 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1419 			break;
1420 
1421 		case LOCAL_CONNWAIT:
1422 			/* Unlocked read. */
1423 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1424 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1425 			break;
1426 
1427 		default:
1428 			error = EOPNOTSUPP;
1429 			break;
1430 		}
1431 		break;
1432 
1433 	case SOPT_SET:
1434 		switch (sopt->sopt_name) {
1435 		case LOCAL_CREDS:
1436 		case LOCAL_CREDS_PERSISTENT:
1437 		case LOCAL_CONNWAIT:
1438 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1439 					    sizeof(optval));
1440 			if (error)
1441 				break;
1442 
1443 #define	OPTSET(bit, exclusive) do {					\
1444 	UNP_PCB_LOCK(unp);						\
1445 	if (optval) {							\
1446 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1447 			UNP_PCB_UNLOCK(unp);				\
1448 			error = EINVAL;					\
1449 			break;						\
1450 		}							\
1451 		unp->unp_flags |= (bit);				\
1452 	} else								\
1453 		unp->unp_flags &= ~(bit);				\
1454 	UNP_PCB_UNLOCK(unp);						\
1455 } while (0)
1456 
1457 			switch (sopt->sopt_name) {
1458 			case LOCAL_CREDS:
1459 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1460 				break;
1461 
1462 			case LOCAL_CREDS_PERSISTENT:
1463 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1464 				break;
1465 
1466 			case LOCAL_CONNWAIT:
1467 				OPTSET(UNP_CONNWAIT, 0);
1468 				break;
1469 
1470 			default:
1471 				break;
1472 			}
1473 			break;
1474 #undef	OPTSET
1475 		default:
1476 			error = ENOPROTOOPT;
1477 			break;
1478 		}
1479 		break;
1480 
1481 	default:
1482 		error = EOPNOTSUPP;
1483 		break;
1484 	}
1485 	return (error);
1486 }
1487 
1488 static int
1489 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1490 {
1491 
1492 	return (unp_connectat(AT_FDCWD, so, nam, td));
1493 }
1494 
1495 static int
1496 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1497     struct thread *td)
1498 {
1499 	struct mtx *vplock;
1500 	struct sockaddr_un *soun;
1501 	struct vnode *vp;
1502 	struct socket *so2;
1503 	struct unpcb *unp, *unp2, *unp3;
1504 	struct nameidata nd;
1505 	char buf[SOCK_MAXADDRLEN];
1506 	struct sockaddr *sa;
1507 	cap_rights_t rights;
1508 	int error, len;
1509 	bool connreq;
1510 
1511 	if (nam->sa_family != AF_UNIX)
1512 		return (EAFNOSUPPORT);
1513 	if (nam->sa_len > sizeof(struct sockaddr_un))
1514 		return (EINVAL);
1515 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1516 	if (len <= 0)
1517 		return (EINVAL);
1518 	soun = (struct sockaddr_un *)nam;
1519 	bcopy(soun->sun_path, buf, len);
1520 	buf[len] = 0;
1521 
1522 	unp = sotounpcb(so);
1523 	UNP_PCB_LOCK(unp);
1524 	for (;;) {
1525 		/*
1526 		 * Wait for connection state to stabilize.  If a connection
1527 		 * already exists, give up.  For datagram sockets, which permit
1528 		 * multiple consecutive connect(2) calls, upper layers are
1529 		 * responsible for disconnecting in advance of a subsequent
1530 		 * connect(2), but this is not synchronized with PCB connection
1531 		 * state.
1532 		 *
1533 		 * Also make sure that no threads are currently attempting to
1534 		 * lock the peer socket, to ensure that unp_conn cannot
1535 		 * transition between two valid sockets while locks are dropped.
1536 		 */
1537 		if (unp->unp_conn != NULL) {
1538 			UNP_PCB_UNLOCK(unp);
1539 			return (EISCONN);
1540 		}
1541 		if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1542 			UNP_PCB_UNLOCK(unp);
1543 			return (EALREADY);
1544 		}
1545 		if (unp->unp_pairbusy > 0) {
1546 			unp->unp_flags |= UNP_WAITING;
1547 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1548 			continue;
1549 		}
1550 		break;
1551 	}
1552 	unp->unp_flags |= UNP_CONNECTING;
1553 	UNP_PCB_UNLOCK(unp);
1554 
1555 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1556 	if (connreq)
1557 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1558 	else
1559 		sa = NULL;
1560 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1561 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1562 	error = namei(&nd);
1563 	if (error)
1564 		vp = NULL;
1565 	else
1566 		vp = nd.ni_vp;
1567 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1568 	NDFREE(&nd, NDF_ONLY_PNBUF);
1569 	if (error)
1570 		goto bad;
1571 
1572 	if (vp->v_type != VSOCK) {
1573 		error = ENOTSOCK;
1574 		goto bad;
1575 	}
1576 #ifdef MAC
1577 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1578 	if (error)
1579 		goto bad;
1580 #endif
1581 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1582 	if (error)
1583 		goto bad;
1584 
1585 	unp = sotounpcb(so);
1586 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1587 
1588 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1589 	mtx_lock(vplock);
1590 	VOP_UNP_CONNECT(vp, &unp2);
1591 	if (unp2 == NULL) {
1592 		error = ECONNREFUSED;
1593 		goto bad2;
1594 	}
1595 	so2 = unp2->unp_socket;
1596 	if (so->so_type != so2->so_type) {
1597 		error = EPROTOTYPE;
1598 		goto bad2;
1599 	}
1600 	if (connreq) {
1601 		if (so2->so_options & SO_ACCEPTCONN) {
1602 			CURVNET_SET(so2->so_vnet);
1603 			so2 = sonewconn(so2, 0);
1604 			CURVNET_RESTORE();
1605 		} else
1606 			so2 = NULL;
1607 		if (so2 == NULL) {
1608 			error = ECONNREFUSED;
1609 			goto bad2;
1610 		}
1611 		unp3 = sotounpcb(so2);
1612 		unp_pcb_lock_pair(unp2, unp3);
1613 		if (unp2->unp_addr != NULL) {
1614 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1615 			unp3->unp_addr = (struct sockaddr_un *) sa;
1616 			sa = NULL;
1617 		}
1618 
1619 		unp_copy_peercred(td, unp3, unp, unp2);
1620 
1621 		UNP_PCB_UNLOCK(unp2);
1622 		unp2 = unp3;
1623 
1624 		/*
1625 		 * It is safe to block on the PCB lock here since unp2 is
1626 		 * nascent and cannot be connected to any other sockets.
1627 		 */
1628 		UNP_PCB_LOCK(unp);
1629 #ifdef MAC
1630 		mac_socketpeer_set_from_socket(so, so2);
1631 		mac_socketpeer_set_from_socket(so2, so);
1632 #endif
1633 	} else {
1634 		unp_pcb_lock_pair(unp, unp2);
1635 	}
1636 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1637 	    sotounpcb(so2) == unp2,
1638 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1639 	error = unp_connect2(so, so2, PRU_CONNECT);
1640 	unp_pcb_unlock_pair(unp, unp2);
1641 bad2:
1642 	mtx_unlock(vplock);
1643 bad:
1644 	if (vp != NULL) {
1645 		vput(vp);
1646 	}
1647 	free(sa, M_SONAME);
1648 	UNP_PCB_LOCK(unp);
1649 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1650 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1651 	unp->unp_flags &= ~UNP_CONNECTING;
1652 	UNP_PCB_UNLOCK(unp);
1653 	return (error);
1654 }
1655 
1656 /*
1657  * Set socket peer credentials at connection time.
1658  *
1659  * The client's PCB credentials are copied from its process structure.  The
1660  * server's PCB credentials are copied from the socket on which it called
1661  * listen(2).  uipc_listen cached that process's credentials at the time.
1662  */
1663 void
1664 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1665     struct unpcb *server_unp, struct unpcb *listen_unp)
1666 {
1667 	cru2xt(td, &client_unp->unp_peercred);
1668 	client_unp->unp_flags |= UNP_HAVEPC;
1669 
1670 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1671 	    sizeof(server_unp->unp_peercred));
1672 	server_unp->unp_flags |= UNP_HAVEPC;
1673 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
1674 }
1675 
1676 static int
1677 unp_connect2(struct socket *so, struct socket *so2, int req)
1678 {
1679 	struct unpcb *unp;
1680 	struct unpcb *unp2;
1681 
1682 	unp = sotounpcb(so);
1683 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1684 	unp2 = sotounpcb(so2);
1685 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1686 
1687 	UNP_PCB_LOCK_ASSERT(unp);
1688 	UNP_PCB_LOCK_ASSERT(unp2);
1689 	KASSERT(unp->unp_conn == NULL,
1690 	    ("%s: socket %p is already connected", __func__, unp));
1691 
1692 	if (so2->so_type != so->so_type)
1693 		return (EPROTOTYPE);
1694 	unp->unp_conn = unp2;
1695 	unp_pcb_hold(unp2);
1696 	unp_pcb_hold(unp);
1697 	switch (so->so_type) {
1698 	case SOCK_DGRAM:
1699 		UNP_REF_LIST_LOCK();
1700 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1701 		UNP_REF_LIST_UNLOCK();
1702 		soisconnected(so);
1703 		break;
1704 
1705 	case SOCK_STREAM:
1706 	case SOCK_SEQPACKET:
1707 		KASSERT(unp2->unp_conn == NULL,
1708 		    ("%s: socket %p is already connected", __func__, unp2));
1709 		unp2->unp_conn = unp;
1710 		if (req == PRU_CONNECT &&
1711 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1712 			soisconnecting(so);
1713 		else
1714 			soisconnected(so);
1715 		soisconnected(so2);
1716 		break;
1717 
1718 	default:
1719 		panic("unp_connect2");
1720 	}
1721 	return (0);
1722 }
1723 
1724 static void
1725 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1726 {
1727 	struct socket *so, *so2;
1728 #ifdef INVARIANTS
1729 	struct unpcb *unptmp;
1730 #endif
1731 
1732 	UNP_PCB_LOCK_ASSERT(unp);
1733 	UNP_PCB_LOCK_ASSERT(unp2);
1734 	KASSERT(unp->unp_conn == unp2,
1735 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
1736 
1737 	unp->unp_conn = NULL;
1738 	so = unp->unp_socket;
1739 	so2 = unp2->unp_socket;
1740 	switch (unp->unp_socket->so_type) {
1741 	case SOCK_DGRAM:
1742 		UNP_REF_LIST_LOCK();
1743 #ifdef INVARIANTS
1744 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
1745 			if (unptmp == unp)
1746 				break;
1747 		}
1748 		KASSERT(unptmp != NULL,
1749 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
1750 #endif
1751 		LIST_REMOVE(unp, unp_reflink);
1752 		UNP_REF_LIST_UNLOCK();
1753 		if (so) {
1754 			SOCK_LOCK(so);
1755 			so->so_state &= ~SS_ISCONNECTED;
1756 			SOCK_UNLOCK(so);
1757 		}
1758 		break;
1759 
1760 	case SOCK_STREAM:
1761 	case SOCK_SEQPACKET:
1762 		if (so)
1763 			soisdisconnected(so);
1764 		MPASS(unp2->unp_conn == unp);
1765 		unp2->unp_conn = NULL;
1766 		if (so2)
1767 			soisdisconnected(so2);
1768 		break;
1769 	}
1770 
1771 	if (unp == unp2) {
1772 		unp_pcb_rele_notlast(unp);
1773 		if (!unp_pcb_rele(unp))
1774 			UNP_PCB_UNLOCK(unp);
1775 	} else {
1776 		if (!unp_pcb_rele(unp))
1777 			UNP_PCB_UNLOCK(unp);
1778 		if (!unp_pcb_rele(unp2))
1779 			UNP_PCB_UNLOCK(unp2);
1780 	}
1781 }
1782 
1783 /*
1784  * unp_pcblist() walks the global list of struct unpcb's to generate a
1785  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1786  * sequentially, validating the generation number on each to see if it has
1787  * been detached.  All of this is necessary because copyout() may sleep on
1788  * disk I/O.
1789  */
1790 static int
1791 unp_pcblist(SYSCTL_HANDLER_ARGS)
1792 {
1793 	struct unpcb *unp, **unp_list;
1794 	unp_gen_t gencnt;
1795 	struct xunpgen *xug;
1796 	struct unp_head *head;
1797 	struct xunpcb *xu;
1798 	u_int i;
1799 	int error, n;
1800 
1801 	switch ((intptr_t)arg1) {
1802 	case SOCK_STREAM:
1803 		head = &unp_shead;
1804 		break;
1805 
1806 	case SOCK_DGRAM:
1807 		head = &unp_dhead;
1808 		break;
1809 
1810 	case SOCK_SEQPACKET:
1811 		head = &unp_sphead;
1812 		break;
1813 
1814 	default:
1815 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1816 	}
1817 
1818 	/*
1819 	 * The process of preparing the PCB list is too time-consuming and
1820 	 * resource-intensive to repeat twice on every request.
1821 	 */
1822 	if (req->oldptr == NULL) {
1823 		n = unp_count;
1824 		req->oldidx = 2 * (sizeof *xug)
1825 			+ (n + n/8) * sizeof(struct xunpcb);
1826 		return (0);
1827 	}
1828 
1829 	if (req->newptr != NULL)
1830 		return (EPERM);
1831 
1832 	/*
1833 	 * OK, now we're committed to doing something.
1834 	 */
1835 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1836 	UNP_LINK_RLOCK();
1837 	gencnt = unp_gencnt;
1838 	n = unp_count;
1839 	UNP_LINK_RUNLOCK();
1840 
1841 	xug->xug_len = sizeof *xug;
1842 	xug->xug_count = n;
1843 	xug->xug_gen = gencnt;
1844 	xug->xug_sogen = so_gencnt;
1845 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1846 	if (error) {
1847 		free(xug, M_TEMP);
1848 		return (error);
1849 	}
1850 
1851 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1852 
1853 	UNP_LINK_RLOCK();
1854 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1855 	     unp = LIST_NEXT(unp, unp_link)) {
1856 		UNP_PCB_LOCK(unp);
1857 		if (unp->unp_gencnt <= gencnt) {
1858 			if (cr_cansee(req->td->td_ucred,
1859 			    unp->unp_socket->so_cred)) {
1860 				UNP_PCB_UNLOCK(unp);
1861 				continue;
1862 			}
1863 			unp_list[i++] = unp;
1864 			unp_pcb_hold(unp);
1865 		}
1866 		UNP_PCB_UNLOCK(unp);
1867 	}
1868 	UNP_LINK_RUNLOCK();
1869 	n = i;			/* In case we lost some during malloc. */
1870 
1871 	error = 0;
1872 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1873 	for (i = 0; i < n; i++) {
1874 		unp = unp_list[i];
1875 		UNP_PCB_LOCK(unp);
1876 		if (unp_pcb_rele(unp))
1877 			continue;
1878 
1879 		if (unp->unp_gencnt <= gencnt) {
1880 			xu->xu_len = sizeof *xu;
1881 			xu->xu_unpp = (uintptr_t)unp;
1882 			/*
1883 			 * XXX - need more locking here to protect against
1884 			 * connect/disconnect races for SMP.
1885 			 */
1886 			if (unp->unp_addr != NULL)
1887 				bcopy(unp->unp_addr, &xu->xu_addr,
1888 				      unp->unp_addr->sun_len);
1889 			else
1890 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1891 			if (unp->unp_conn != NULL &&
1892 			    unp->unp_conn->unp_addr != NULL)
1893 				bcopy(unp->unp_conn->unp_addr,
1894 				      &xu->xu_caddr,
1895 				      unp->unp_conn->unp_addr->sun_len);
1896 			else
1897 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1898 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1899 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1900 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1901 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1902 			xu->unp_gencnt = unp->unp_gencnt;
1903 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1904 			UNP_PCB_UNLOCK(unp);
1905 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1906 		} else {
1907 			UNP_PCB_UNLOCK(unp);
1908 		}
1909 	}
1910 	free(xu, M_TEMP);
1911 	if (!error) {
1912 		/*
1913 		 * Give the user an updated idea of our state.  If the
1914 		 * generation differs from what we told her before, she knows
1915 		 * that something happened while we were processing this
1916 		 * request, and it might be necessary to retry.
1917 		 */
1918 		xug->xug_gen = unp_gencnt;
1919 		xug->xug_sogen = so_gencnt;
1920 		xug->xug_count = unp_count;
1921 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1922 	}
1923 	free(unp_list, M_TEMP);
1924 	free(xug, M_TEMP);
1925 	return (error);
1926 }
1927 
1928 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1929     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1930     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1931     "List of active local datagram sockets");
1932 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1933     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1934     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1935     "List of active local stream sockets");
1936 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1937     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1938     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1939     "List of active local seqpacket sockets");
1940 
1941 static void
1942 unp_shutdown(struct unpcb *unp)
1943 {
1944 	struct unpcb *unp2;
1945 	struct socket *so;
1946 
1947 	UNP_PCB_LOCK_ASSERT(unp);
1948 
1949 	unp2 = unp->unp_conn;
1950 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1951 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1952 		so = unp2->unp_socket;
1953 		if (so != NULL)
1954 			socantrcvmore(so);
1955 	}
1956 }
1957 
1958 static void
1959 unp_drop(struct unpcb *unp)
1960 {
1961 	struct socket *so = unp->unp_socket;
1962 	struct unpcb *unp2;
1963 
1964 	/*
1965 	 * Regardless of whether the socket's peer dropped the connection
1966 	 * with this socket by aborting or disconnecting, POSIX requires
1967 	 * that ECONNRESET is returned.
1968 	 */
1969 
1970 	UNP_PCB_LOCK(unp);
1971 	if (so)
1972 		so->so_error = ECONNRESET;
1973 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1974 		/* Last reference dropped in unp_disconnect(). */
1975 		unp_pcb_rele_notlast(unp);
1976 		unp_disconnect(unp, unp2);
1977 	} else if (!unp_pcb_rele(unp)) {
1978 		UNP_PCB_UNLOCK(unp);
1979 	}
1980 }
1981 
1982 static void
1983 unp_freerights(struct filedescent **fdep, int fdcount)
1984 {
1985 	struct file *fp;
1986 	int i;
1987 
1988 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1989 
1990 	for (i = 0; i < fdcount; i++) {
1991 		fp = fdep[i]->fde_file;
1992 		filecaps_free(&fdep[i]->fde_caps);
1993 		unp_discard(fp);
1994 	}
1995 	free(fdep[0], M_FILECAPS);
1996 }
1997 
1998 static int
1999 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2000 {
2001 	struct thread *td = curthread;		/* XXX */
2002 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2003 	int i;
2004 	int *fdp;
2005 	struct filedesc *fdesc = td->td_proc->p_fd;
2006 	struct filedescent **fdep;
2007 	void *data;
2008 	socklen_t clen = control->m_len, datalen;
2009 	int error, newfds;
2010 	u_int newlen;
2011 
2012 	UNP_LINK_UNLOCK_ASSERT();
2013 
2014 	error = 0;
2015 	if (controlp != NULL) /* controlp == NULL => free control messages */
2016 		*controlp = NULL;
2017 	while (cm != NULL) {
2018 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2019 			error = EINVAL;
2020 			break;
2021 		}
2022 		data = CMSG_DATA(cm);
2023 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2024 		if (cm->cmsg_level == SOL_SOCKET
2025 		    && cm->cmsg_type == SCM_RIGHTS) {
2026 			newfds = datalen / sizeof(*fdep);
2027 			if (newfds == 0)
2028 				goto next;
2029 			fdep = data;
2030 
2031 			/* If we're not outputting the descriptors free them. */
2032 			if (error || controlp == NULL) {
2033 				unp_freerights(fdep, newfds);
2034 				goto next;
2035 			}
2036 			FILEDESC_XLOCK(fdesc);
2037 
2038 			/*
2039 			 * Now change each pointer to an fd in the global
2040 			 * table to an integer that is the index to the local
2041 			 * fd table entry that we set up to point to the
2042 			 * global one we are transferring.
2043 			 */
2044 			newlen = newfds * sizeof(int);
2045 			*controlp = sbcreatecontrol(NULL, newlen,
2046 			    SCM_RIGHTS, SOL_SOCKET);
2047 			if (*controlp == NULL) {
2048 				FILEDESC_XUNLOCK(fdesc);
2049 				error = E2BIG;
2050 				unp_freerights(fdep, newfds);
2051 				goto next;
2052 			}
2053 
2054 			fdp = (int *)
2055 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2056 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2057 				FILEDESC_XUNLOCK(fdesc);
2058 				error = EMSGSIZE;
2059 				unp_freerights(fdep, newfds);
2060 				m_freem(*controlp);
2061 				*controlp = NULL;
2062 				goto next;
2063 			}
2064 			for (i = 0; i < newfds; i++, fdp++) {
2065 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2066 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2067 				    &fdep[i]->fde_caps);
2068 				unp_externalize_fp(fdep[i]->fde_file);
2069 			}
2070 
2071 			/*
2072 			 * The new type indicates that the mbuf data refers to
2073 			 * kernel resources that may need to be released before
2074 			 * the mbuf is freed.
2075 			 */
2076 			m_chtype(*controlp, MT_EXTCONTROL);
2077 			FILEDESC_XUNLOCK(fdesc);
2078 			free(fdep[0], M_FILECAPS);
2079 		} else {
2080 			/* We can just copy anything else across. */
2081 			if (error || controlp == NULL)
2082 				goto next;
2083 			*controlp = sbcreatecontrol(NULL, datalen,
2084 			    cm->cmsg_type, cm->cmsg_level);
2085 			if (*controlp == NULL) {
2086 				error = ENOBUFS;
2087 				goto next;
2088 			}
2089 			bcopy(data,
2090 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2091 			    datalen);
2092 		}
2093 		controlp = &(*controlp)->m_next;
2094 
2095 next:
2096 		if (CMSG_SPACE(datalen) < clen) {
2097 			clen -= CMSG_SPACE(datalen);
2098 			cm = (struct cmsghdr *)
2099 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2100 		} else {
2101 			clen = 0;
2102 			cm = NULL;
2103 		}
2104 	}
2105 
2106 	m_freem(control);
2107 	return (error);
2108 }
2109 
2110 static void
2111 unp_zone_change(void *tag)
2112 {
2113 
2114 	uma_zone_set_max(unp_zone, maxsockets);
2115 }
2116 
2117 #ifdef INVARIANTS
2118 static void
2119 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2120 {
2121 	struct unpcb *unp;
2122 
2123 	unp = mem;
2124 
2125 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2126 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2127 	KASSERT(unp->unp_socket == NULL,
2128 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2129 	KASSERT(unp->unp_vnode == NULL,
2130 	    ("%s: unpcb %p has vnode references", __func__, unp));
2131 	KASSERT(unp->unp_conn == NULL,
2132 	    ("%s: unpcb %p is still connected", __func__, unp));
2133 	KASSERT(unp->unp_addr == NULL,
2134 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2135 }
2136 #endif
2137 
2138 static void
2139 unp_init(void)
2140 {
2141 	uma_dtor dtor;
2142 
2143 #ifdef VIMAGE
2144 	if (!IS_DEFAULT_VNET(curvnet))
2145 		return;
2146 #endif
2147 
2148 #ifdef INVARIANTS
2149 	dtor = unp_zdtor;
2150 #else
2151 	dtor = NULL;
2152 #endif
2153 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2154 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2155 	uma_zone_set_max(unp_zone, maxsockets);
2156 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2157 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2158 	    NULL, EVENTHANDLER_PRI_ANY);
2159 	LIST_INIT(&unp_dhead);
2160 	LIST_INIT(&unp_shead);
2161 	LIST_INIT(&unp_sphead);
2162 	SLIST_INIT(&unp_defers);
2163 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2164 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2165 	UNP_LINK_LOCK_INIT();
2166 	UNP_DEFERRED_LOCK_INIT();
2167 }
2168 
2169 static void
2170 unp_internalize_cleanup_rights(struct mbuf *control)
2171 {
2172 	struct cmsghdr *cp;
2173 	struct mbuf *m;
2174 	void *data;
2175 	socklen_t datalen;
2176 
2177 	for (m = control; m != NULL; m = m->m_next) {
2178 		cp = mtod(m, struct cmsghdr *);
2179 		if (cp->cmsg_level != SOL_SOCKET ||
2180 		    cp->cmsg_type != SCM_RIGHTS)
2181 			continue;
2182 		data = CMSG_DATA(cp);
2183 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2184 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2185 	}
2186 }
2187 
2188 static int
2189 unp_internalize(struct mbuf **controlp, struct thread *td)
2190 {
2191 	struct mbuf *control, **initial_controlp;
2192 	struct proc *p;
2193 	struct filedesc *fdesc;
2194 	struct bintime *bt;
2195 	struct cmsghdr *cm;
2196 	struct cmsgcred *cmcred;
2197 	struct filedescent *fde, **fdep, *fdev;
2198 	struct file *fp;
2199 	struct timeval *tv;
2200 	struct timespec *ts;
2201 	void *data;
2202 	socklen_t clen, datalen;
2203 	int i, j, error, *fdp, oldfds;
2204 	u_int newlen;
2205 
2206 	UNP_LINK_UNLOCK_ASSERT();
2207 
2208 	p = td->td_proc;
2209 	fdesc = p->p_fd;
2210 	error = 0;
2211 	control = *controlp;
2212 	clen = control->m_len;
2213 	*controlp = NULL;
2214 	initial_controlp = controlp;
2215 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2216 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2217 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2218 			error = EINVAL;
2219 			goto out;
2220 		}
2221 		data = CMSG_DATA(cm);
2222 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2223 
2224 		switch (cm->cmsg_type) {
2225 		/*
2226 		 * Fill in credential information.
2227 		 */
2228 		case SCM_CREDS:
2229 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2230 			    SCM_CREDS, SOL_SOCKET);
2231 			if (*controlp == NULL) {
2232 				error = ENOBUFS;
2233 				goto out;
2234 			}
2235 			cmcred = (struct cmsgcred *)
2236 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2237 			cmcred->cmcred_pid = p->p_pid;
2238 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2239 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2240 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2241 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2242 			    CMGROUP_MAX);
2243 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2244 				cmcred->cmcred_groups[i] =
2245 				    td->td_ucred->cr_groups[i];
2246 			break;
2247 
2248 		case SCM_RIGHTS:
2249 			oldfds = datalen / sizeof (int);
2250 			if (oldfds == 0)
2251 				break;
2252 			/*
2253 			 * Check that all the FDs passed in refer to legal
2254 			 * files.  If not, reject the entire operation.
2255 			 */
2256 			fdp = data;
2257 			FILEDESC_SLOCK(fdesc);
2258 			for (i = 0; i < oldfds; i++, fdp++) {
2259 				fp = fget_locked(fdesc, *fdp);
2260 				if (fp == NULL) {
2261 					FILEDESC_SUNLOCK(fdesc);
2262 					error = EBADF;
2263 					goto out;
2264 				}
2265 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2266 					FILEDESC_SUNLOCK(fdesc);
2267 					error = EOPNOTSUPP;
2268 					goto out;
2269 				}
2270 			}
2271 
2272 			/*
2273 			 * Now replace the integer FDs with pointers to the
2274 			 * file structure and capability rights.
2275 			 */
2276 			newlen = oldfds * sizeof(fdep[0]);
2277 			*controlp = sbcreatecontrol(NULL, newlen,
2278 			    SCM_RIGHTS, SOL_SOCKET);
2279 			if (*controlp == NULL) {
2280 				FILEDESC_SUNLOCK(fdesc);
2281 				error = E2BIG;
2282 				goto out;
2283 			}
2284 			fdp = data;
2285 			for (i = 0; i < oldfds; i++, fdp++) {
2286 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2287 					fdp = data;
2288 					for (j = 0; j < i; j++, fdp++) {
2289 						fdrop(fdesc->fd_ofiles[*fdp].
2290 						    fde_file, td);
2291 					}
2292 					FILEDESC_SUNLOCK(fdesc);
2293 					error = EBADF;
2294 					goto out;
2295 				}
2296 			}
2297 			fdp = data;
2298 			fdep = (struct filedescent **)
2299 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2300 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2301 			    M_WAITOK);
2302 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2303 				fde = &fdesc->fd_ofiles[*fdp];
2304 				fdep[i] = fdev;
2305 				fdep[i]->fde_file = fde->fde_file;
2306 				filecaps_copy(&fde->fde_caps,
2307 				    &fdep[i]->fde_caps, true);
2308 				unp_internalize_fp(fdep[i]->fde_file);
2309 			}
2310 			FILEDESC_SUNLOCK(fdesc);
2311 			break;
2312 
2313 		case SCM_TIMESTAMP:
2314 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2315 			    SCM_TIMESTAMP, SOL_SOCKET);
2316 			if (*controlp == NULL) {
2317 				error = ENOBUFS;
2318 				goto out;
2319 			}
2320 			tv = (struct timeval *)
2321 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2322 			microtime(tv);
2323 			break;
2324 
2325 		case SCM_BINTIME:
2326 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2327 			    SCM_BINTIME, SOL_SOCKET);
2328 			if (*controlp == NULL) {
2329 				error = ENOBUFS;
2330 				goto out;
2331 			}
2332 			bt = (struct bintime *)
2333 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2334 			bintime(bt);
2335 			break;
2336 
2337 		case SCM_REALTIME:
2338 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2339 			    SCM_REALTIME, SOL_SOCKET);
2340 			if (*controlp == NULL) {
2341 				error = ENOBUFS;
2342 				goto out;
2343 			}
2344 			ts = (struct timespec *)
2345 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2346 			nanotime(ts);
2347 			break;
2348 
2349 		case SCM_MONOTONIC:
2350 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2351 			    SCM_MONOTONIC, SOL_SOCKET);
2352 			if (*controlp == NULL) {
2353 				error = ENOBUFS;
2354 				goto out;
2355 			}
2356 			ts = (struct timespec *)
2357 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2358 			nanouptime(ts);
2359 			break;
2360 
2361 		default:
2362 			error = EINVAL;
2363 			goto out;
2364 		}
2365 
2366 		if (*controlp != NULL)
2367 			controlp = &(*controlp)->m_next;
2368 		if (CMSG_SPACE(datalen) < clen) {
2369 			clen -= CMSG_SPACE(datalen);
2370 			cm = (struct cmsghdr *)
2371 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2372 		} else {
2373 			clen = 0;
2374 			cm = NULL;
2375 		}
2376 	}
2377 
2378 out:
2379 	if (error != 0 && initial_controlp != NULL)
2380 		unp_internalize_cleanup_rights(*initial_controlp);
2381 	m_freem(control);
2382 	return (error);
2383 }
2384 
2385 static struct mbuf *
2386 unp_addsockcred(struct thread *td, struct mbuf *control)
2387 {
2388 	struct mbuf *m, *n, *n_prev;
2389 	struct sockcred *sc;
2390 	const struct cmsghdr *cm;
2391 	int ngroups;
2392 	int i;
2393 
2394 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2395 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2396 	if (m == NULL)
2397 		return (control);
2398 
2399 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2400 	sc->sc_uid = td->td_ucred->cr_ruid;
2401 	sc->sc_euid = td->td_ucred->cr_uid;
2402 	sc->sc_gid = td->td_ucred->cr_rgid;
2403 	sc->sc_egid = td->td_ucred->cr_gid;
2404 	sc->sc_ngroups = ngroups;
2405 	for (i = 0; i < sc->sc_ngroups; i++)
2406 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2407 
2408 	/*
2409 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2410 	 * created SCM_CREDS control message (struct sockcred) has another
2411 	 * format.
2412 	 */
2413 	if (control != NULL)
2414 		for (n = control, n_prev = NULL; n != NULL;) {
2415 			cm = mtod(n, struct cmsghdr *);
2416     			if (cm->cmsg_level == SOL_SOCKET &&
2417 			    cm->cmsg_type == SCM_CREDS) {
2418     				if (n_prev == NULL)
2419 					control = n->m_next;
2420 				else
2421 					n_prev->m_next = n->m_next;
2422 				n = m_free(n);
2423 			} else {
2424 				n_prev = n;
2425 				n = n->m_next;
2426 			}
2427 		}
2428 
2429 	/* Prepend it to the head. */
2430 	m->m_next = control;
2431 	return (m);
2432 }
2433 
2434 static struct unpcb *
2435 fptounp(struct file *fp)
2436 {
2437 	struct socket *so;
2438 
2439 	if (fp->f_type != DTYPE_SOCKET)
2440 		return (NULL);
2441 	if ((so = fp->f_data) == NULL)
2442 		return (NULL);
2443 	if (so->so_proto->pr_domain != &localdomain)
2444 		return (NULL);
2445 	return sotounpcb(so);
2446 }
2447 
2448 static void
2449 unp_discard(struct file *fp)
2450 {
2451 	struct unp_defer *dr;
2452 
2453 	if (unp_externalize_fp(fp)) {
2454 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2455 		dr->ud_fp = fp;
2456 		UNP_DEFERRED_LOCK();
2457 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2458 		UNP_DEFERRED_UNLOCK();
2459 		atomic_add_int(&unp_defers_count, 1);
2460 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2461 	} else
2462 		(void) closef(fp, (struct thread *)NULL);
2463 }
2464 
2465 static void
2466 unp_process_defers(void *arg __unused, int pending)
2467 {
2468 	struct unp_defer *dr;
2469 	SLIST_HEAD(, unp_defer) drl;
2470 	int count;
2471 
2472 	SLIST_INIT(&drl);
2473 	for (;;) {
2474 		UNP_DEFERRED_LOCK();
2475 		if (SLIST_FIRST(&unp_defers) == NULL) {
2476 			UNP_DEFERRED_UNLOCK();
2477 			break;
2478 		}
2479 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2480 		UNP_DEFERRED_UNLOCK();
2481 		count = 0;
2482 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2483 			SLIST_REMOVE_HEAD(&drl, ud_link);
2484 			closef(dr->ud_fp, NULL);
2485 			free(dr, M_TEMP);
2486 			count++;
2487 		}
2488 		atomic_add_int(&unp_defers_count, -count);
2489 	}
2490 }
2491 
2492 static void
2493 unp_internalize_fp(struct file *fp)
2494 {
2495 	struct unpcb *unp;
2496 
2497 	UNP_LINK_WLOCK();
2498 	if ((unp = fptounp(fp)) != NULL) {
2499 		unp->unp_file = fp;
2500 		unp->unp_msgcount++;
2501 	}
2502 	unp_rights++;
2503 	UNP_LINK_WUNLOCK();
2504 }
2505 
2506 static int
2507 unp_externalize_fp(struct file *fp)
2508 {
2509 	struct unpcb *unp;
2510 	int ret;
2511 
2512 	UNP_LINK_WLOCK();
2513 	if ((unp = fptounp(fp)) != NULL) {
2514 		unp->unp_msgcount--;
2515 		ret = 1;
2516 	} else
2517 		ret = 0;
2518 	unp_rights--;
2519 	UNP_LINK_WUNLOCK();
2520 	return (ret);
2521 }
2522 
2523 /*
2524  * unp_defer indicates whether additional work has been defered for a future
2525  * pass through unp_gc().  It is thread local and does not require explicit
2526  * synchronization.
2527  */
2528 static int	unp_marked;
2529 
2530 static void
2531 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2532 {
2533 	struct unpcb *unp;
2534 	struct file *fp;
2535 	int i;
2536 
2537 	/*
2538 	 * This function can only be called from the gc task.
2539 	 */
2540 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2541 	    ("%s: not on gc callout", __func__));
2542 	UNP_LINK_LOCK_ASSERT();
2543 
2544 	for (i = 0; i < fdcount; i++) {
2545 		fp = fdep[i]->fde_file;
2546 		if ((unp = fptounp(fp)) == NULL)
2547 			continue;
2548 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2549 			continue;
2550 		unp->unp_gcrefs--;
2551 	}
2552 }
2553 
2554 static void
2555 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2556 {
2557 	struct unpcb *unp;
2558 	struct file *fp;
2559 	int i;
2560 
2561 	/*
2562 	 * This function can only be called from the gc task.
2563 	 */
2564 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2565 	    ("%s: not on gc callout", __func__));
2566 	UNP_LINK_LOCK_ASSERT();
2567 
2568 	for (i = 0; i < fdcount; i++) {
2569 		fp = fdep[i]->fde_file;
2570 		if ((unp = fptounp(fp)) == NULL)
2571 			continue;
2572 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2573 			continue;
2574 		unp->unp_gcrefs++;
2575 		unp_marked++;
2576 	}
2577 }
2578 
2579 static void
2580 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2581 {
2582 	struct socket *so, *soa;
2583 
2584 	so = unp->unp_socket;
2585 	SOCK_LOCK(so);
2586 	if (SOLISTENING(so)) {
2587 		/*
2588 		 * Mark all sockets in our accept queue.
2589 		 */
2590 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2591 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2592 				continue;
2593 			SOCKBUF_LOCK(&soa->so_rcv);
2594 			unp_scan(soa->so_rcv.sb_mb, op);
2595 			SOCKBUF_UNLOCK(&soa->so_rcv);
2596 		}
2597 	} else {
2598 		/*
2599 		 * Mark all sockets we reference with RIGHTS.
2600 		 */
2601 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2602 			SOCKBUF_LOCK(&so->so_rcv);
2603 			unp_scan(so->so_rcv.sb_mb, op);
2604 			SOCKBUF_UNLOCK(&so->so_rcv);
2605 		}
2606 	}
2607 	SOCK_UNLOCK(so);
2608 }
2609 
2610 static int unp_recycled;
2611 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2612     "Number of unreachable sockets claimed by the garbage collector.");
2613 
2614 static int unp_taskcount;
2615 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2616     "Number of times the garbage collector has run.");
2617 
2618 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2619     "Number of active local sockets.");
2620 
2621 static void
2622 unp_gc(__unused void *arg, int pending)
2623 {
2624 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2625 				    NULL };
2626 	struct unp_head **head;
2627 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2628 	struct file *f, **unref;
2629 	struct unpcb *unp, *unptmp;
2630 	int i, total, unp_unreachable;
2631 
2632 	LIST_INIT(&unp_deadhead);
2633 	unp_taskcount++;
2634 	UNP_LINK_RLOCK();
2635 	/*
2636 	 * First determine which sockets may be in cycles.
2637 	 */
2638 	unp_unreachable = 0;
2639 
2640 	for (head = heads; *head != NULL; head++)
2641 		LIST_FOREACH(unp, *head, unp_link) {
2642 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2643 			    ("%s: unp %p has unexpected gc flags 0x%x",
2644 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2645 
2646 			f = unp->unp_file;
2647 
2648 			/*
2649 			 * Check for an unreachable socket potentially in a
2650 			 * cycle.  It must be in a queue as indicated by
2651 			 * msgcount, and this must equal the file reference
2652 			 * count.  Note that when msgcount is 0 the file is
2653 			 * NULL.
2654 			 */
2655 			if (f != NULL && unp->unp_msgcount != 0 &&
2656 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
2657 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2658 				unp->unp_gcflag |= UNPGC_DEAD;
2659 				unp->unp_gcrefs = unp->unp_msgcount;
2660 				unp_unreachable++;
2661 			}
2662 		}
2663 
2664 	/*
2665 	 * Scan all sockets previously marked as potentially being in a cycle
2666 	 * and remove the references each socket holds on any UNPGC_DEAD
2667 	 * sockets in its queue.  After this step, all remaining references on
2668 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2669 	 */
2670 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2671 		unp_gc_scan(unp, unp_remove_dead_ref);
2672 
2673 	/*
2674 	 * If a socket still has a non-negative refcount, it cannot be in a
2675 	 * cycle.  In this case increment refcount of all children iteratively.
2676 	 * Stop the scan once we do a complete loop without discovering
2677 	 * a new reachable socket.
2678 	 */
2679 	do {
2680 		unp_marked = 0;
2681 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2682 			if (unp->unp_gcrefs > 0) {
2683 				unp->unp_gcflag &= ~UNPGC_DEAD;
2684 				LIST_REMOVE(unp, unp_dead);
2685 				KASSERT(unp_unreachable > 0,
2686 				    ("%s: unp_unreachable underflow.",
2687 				    __func__));
2688 				unp_unreachable--;
2689 				unp_gc_scan(unp, unp_restore_undead_ref);
2690 			}
2691 	} while (unp_marked);
2692 
2693 	UNP_LINK_RUNLOCK();
2694 
2695 	if (unp_unreachable == 0)
2696 		return;
2697 
2698 	/*
2699 	 * Allocate space for a local array of dead unpcbs.
2700 	 * TODO: can this path be simplified by instead using the local
2701 	 * dead list at unp_deadhead, after taking out references
2702 	 * on the file object and/or unpcb and dropping the link lock?
2703 	 */
2704 	unref = malloc(unp_unreachable * sizeof(struct file *),
2705 	    M_TEMP, M_WAITOK);
2706 
2707 	/*
2708 	 * Iterate looking for sockets which have been specifically marked
2709 	 * as unreachable and store them locally.
2710 	 */
2711 	UNP_LINK_RLOCK();
2712 	total = 0;
2713 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2714 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2715 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2716 		unp->unp_gcflag &= ~UNPGC_DEAD;
2717 		f = unp->unp_file;
2718 		if (unp->unp_msgcount == 0 || f == NULL ||
2719 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
2720 		    !fhold(f))
2721 			continue;
2722 		unref[total++] = f;
2723 		KASSERT(total <= unp_unreachable,
2724 		    ("%s: incorrect unreachable count.", __func__));
2725 	}
2726 	UNP_LINK_RUNLOCK();
2727 
2728 	/*
2729 	 * Now flush all sockets, free'ing rights.  This will free the
2730 	 * struct files associated with these sockets but leave each socket
2731 	 * with one remaining ref.
2732 	 */
2733 	for (i = 0; i < total; i++) {
2734 		struct socket *so;
2735 
2736 		so = unref[i]->f_data;
2737 		CURVNET_SET(so->so_vnet);
2738 		sorflush(so);
2739 		CURVNET_RESTORE();
2740 	}
2741 
2742 	/*
2743 	 * And finally release the sockets so they can be reclaimed.
2744 	 */
2745 	for (i = 0; i < total; i++)
2746 		fdrop(unref[i], NULL);
2747 	unp_recycled += total;
2748 	free(unref, M_TEMP);
2749 }
2750 
2751 static void
2752 unp_dispose_mbuf(struct mbuf *m)
2753 {
2754 
2755 	if (m)
2756 		unp_scan(m, unp_freerights);
2757 }
2758 
2759 /*
2760  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2761  */
2762 static void
2763 unp_dispose(struct socket *so)
2764 {
2765 	struct unpcb *unp;
2766 
2767 	unp = sotounpcb(so);
2768 	UNP_LINK_WLOCK();
2769 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2770 	UNP_LINK_WUNLOCK();
2771 	if (!SOLISTENING(so))
2772 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2773 }
2774 
2775 static void
2776 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2777 {
2778 	struct mbuf *m;
2779 	struct cmsghdr *cm;
2780 	void *data;
2781 	socklen_t clen, datalen;
2782 
2783 	while (m0 != NULL) {
2784 		for (m = m0; m; m = m->m_next) {
2785 			if (m->m_type != MT_CONTROL)
2786 				continue;
2787 
2788 			cm = mtod(m, struct cmsghdr *);
2789 			clen = m->m_len;
2790 
2791 			while (cm != NULL) {
2792 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2793 					break;
2794 
2795 				data = CMSG_DATA(cm);
2796 				datalen = (caddr_t)cm + cm->cmsg_len
2797 				    - (caddr_t)data;
2798 
2799 				if (cm->cmsg_level == SOL_SOCKET &&
2800 				    cm->cmsg_type == SCM_RIGHTS) {
2801 					(*op)(data, datalen /
2802 					    sizeof(struct filedescent *));
2803 				}
2804 
2805 				if (CMSG_SPACE(datalen) < clen) {
2806 					clen -= CMSG_SPACE(datalen);
2807 					cm = (struct cmsghdr *)
2808 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2809 				} else {
2810 					clen = 0;
2811 					cm = NULL;
2812 				}
2813 			}
2814 		}
2815 		m0 = m0->m_nextpkt;
2816 	}
2817 }
2818 
2819 /*
2820  * A helper function called by VFS before socket-type vnode reclamation.
2821  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2822  * use count.
2823  */
2824 void
2825 vfs_unp_reclaim(struct vnode *vp)
2826 {
2827 	struct unpcb *unp;
2828 	int active;
2829 	struct mtx *vplock;
2830 
2831 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2832 	KASSERT(vp->v_type == VSOCK,
2833 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2834 
2835 	active = 0;
2836 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2837 	mtx_lock(vplock);
2838 	VOP_UNP_CONNECT(vp, &unp);
2839 	if (unp == NULL)
2840 		goto done;
2841 	UNP_PCB_LOCK(unp);
2842 	if (unp->unp_vnode == vp) {
2843 		VOP_UNP_DETACH(vp);
2844 		unp->unp_vnode = NULL;
2845 		active = 1;
2846 	}
2847 	UNP_PCB_UNLOCK(unp);
2848  done:
2849 	mtx_unlock(vplock);
2850 	if (active)
2851 		vunref(vp);
2852 }
2853 
2854 #ifdef DDB
2855 static void
2856 db_print_indent(int indent)
2857 {
2858 	int i;
2859 
2860 	for (i = 0; i < indent; i++)
2861 		db_printf(" ");
2862 }
2863 
2864 static void
2865 db_print_unpflags(int unp_flags)
2866 {
2867 	int comma;
2868 
2869 	comma = 0;
2870 	if (unp_flags & UNP_HAVEPC) {
2871 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2872 		comma = 1;
2873 	}
2874 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
2875 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
2876 		comma = 1;
2877 	}
2878 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
2879 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
2880 		comma = 1;
2881 	}
2882 	if (unp_flags & UNP_CONNWAIT) {
2883 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2884 		comma = 1;
2885 	}
2886 	if (unp_flags & UNP_CONNECTING) {
2887 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2888 		comma = 1;
2889 	}
2890 	if (unp_flags & UNP_BINDING) {
2891 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2892 		comma = 1;
2893 	}
2894 }
2895 
2896 static void
2897 db_print_xucred(int indent, struct xucred *xu)
2898 {
2899 	int comma, i;
2900 
2901 	db_print_indent(indent);
2902 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2903 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2904 	db_print_indent(indent);
2905 	db_printf("cr_groups: ");
2906 	comma = 0;
2907 	for (i = 0; i < xu->cr_ngroups; i++) {
2908 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2909 		comma = 1;
2910 	}
2911 	db_printf("\n");
2912 }
2913 
2914 static void
2915 db_print_unprefs(int indent, struct unp_head *uh)
2916 {
2917 	struct unpcb *unp;
2918 	int counter;
2919 
2920 	counter = 0;
2921 	LIST_FOREACH(unp, uh, unp_reflink) {
2922 		if (counter % 4 == 0)
2923 			db_print_indent(indent);
2924 		db_printf("%p  ", unp);
2925 		if (counter % 4 == 3)
2926 			db_printf("\n");
2927 		counter++;
2928 	}
2929 	if (counter != 0 && counter % 4 != 0)
2930 		db_printf("\n");
2931 }
2932 
2933 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2934 {
2935 	struct unpcb *unp;
2936 
2937         if (!have_addr) {
2938                 db_printf("usage: show unpcb <addr>\n");
2939                 return;
2940         }
2941         unp = (struct unpcb *)addr;
2942 
2943 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2944 	    unp->unp_vnode);
2945 
2946 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2947 	    unp->unp_conn);
2948 
2949 	db_printf("unp_refs:\n");
2950 	db_print_unprefs(2, &unp->unp_refs);
2951 
2952 	/* XXXRW: Would be nice to print the full address, if any. */
2953 	db_printf("unp_addr: %p\n", unp->unp_addr);
2954 
2955 	db_printf("unp_gencnt: %llu\n",
2956 	    (unsigned long long)unp->unp_gencnt);
2957 
2958 	db_printf("unp_flags: %x (", unp->unp_flags);
2959 	db_print_unpflags(unp->unp_flags);
2960 	db_printf(")\n");
2961 
2962 	db_printf("unp_peercred:\n");
2963 	db_print_xucred(2, &unp->unp_peercred);
2964 
2965 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2966 }
2967 #endif
2968