1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * UNIX Domain (Local) Sockets 36 * 37 * This is an implementation of UNIX (local) domain sockets. Each socket has 38 * an associated struct unpcb (UNIX protocol control block). Stream sockets 39 * may be connected to 0 or 1 other socket. Datagram sockets may be 40 * connected to 0, 1, or many other sockets. Sockets may be created and 41 * connected in pairs (socketpair(2)), or bound/connected to using the file 42 * system name space. For most purposes, only the receive socket buffer is 43 * used, as sending on one socket delivers directly to the receive socket 44 * buffer of a second socket. 45 * 46 * The implementation is substantially complicated by the fact that 47 * "ancillary data", such as file descriptors or credentials, may be passed 48 * across UNIX domain sockets. The potential for passing UNIX domain sockets 49 * over other UNIX domain sockets requires the implementation of a simple 50 * garbage collector to find and tear down cycles of disconnected sockets. 51 * 52 * TODO: 53 * RDM 54 * rethink name space problems 55 * need a proper out-of-band 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #include "opt_ddb.h" 62 63 #include <sys/param.h> 64 #include <sys/capsicum.h> 65 #include <sys/domain.h> 66 #include <sys/fcntl.h> 67 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 68 #include <sys/eventhandler.h> 69 #include <sys/file.h> 70 #include <sys/filedesc.h> 71 #include <sys/kernel.h> 72 #include <sys/lock.h> 73 #include <sys/mbuf.h> 74 #include <sys/mount.h> 75 #include <sys/mutex.h> 76 #include <sys/namei.h> 77 #include <sys/proc.h> 78 #include <sys/protosw.h> 79 #include <sys/queue.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/signalvar.h> 85 #include <sys/stat.h> 86 #include <sys/sx.h> 87 #include <sys/sysctl.h> 88 #include <sys/systm.h> 89 #include <sys/taskqueue.h> 90 #include <sys/un.h> 91 #include <sys/unpcb.h> 92 #include <sys/vnode.h> 93 94 #include <net/vnet.h> 95 96 #ifdef DDB 97 #include <ddb/ddb.h> 98 #endif 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/uma.h> 103 104 MALLOC_DECLARE(M_FILECAPS); 105 106 /* 107 * Locking key: 108 * (l) Locked using list lock 109 * (g) Locked using linkage lock 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); 165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, 166 "SOCK_STREAM"); 167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); 168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0, 169 "SOCK_SEQPACKET"); 170 171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 172 &unpst_sendspace, 0, "Default stream send space."); 173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 174 &unpst_recvspace, 0, "Default stream receive space."); 175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 176 &unpdg_sendspace, 0, "Default datagram send space."); 177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 178 &unpdg_recvspace, 0, "Default datagram receive space."); 179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 180 &unpsp_sendspace, 0, "Default seqpacket send space."); 181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 182 &unpsp_recvspace, 0, "Default seqpacket receive space."); 183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 184 "File descriptors in flight."); 185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 186 &unp_defers_count, 0, 187 "File descriptors deferred to taskqueue for close."); 188 189 /* 190 * Locking and synchronization: 191 * 192 * Three types of locks exit in the local domain socket implementation: a 193 * global list mutex, a global linkage rwlock, and per-unpcb mutexes. Of the 194 * global locks, the list lock protects the socket count, global generation 195 * number, and stream/datagram global lists. The linkage lock protects the 196 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be 197 * held exclusively over the acquisition of multiple unpcb locks to prevent 198 * deadlock. 199 * 200 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 201 * allocated in pru_attach() and freed in pru_detach(). The validity of that 202 * pointer is an invariant, so no lock is required to dereference the so_pcb 203 * pointer if a valid socket reference is held by the caller. In practice, 204 * this is always true during operations performed on a socket. Each unpcb 205 * has a back-pointer to its socket, unp_socket, which will be stable under 206 * the same circumstances. 207 * 208 * This pointer may only be safely dereferenced as long as a valid reference 209 * to the unpcb is held. Typically, this reference will be from the socket, 210 * or from another unpcb when the referring unpcb's lock is held (in order 211 * that the reference not be invalidated during use). For example, to follow 212 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn, 213 * as unp_socket remains valid as long as the reference to unp_conn is valid. 214 * 215 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx. Individual 216 * atomic reads without the lock may be performed "lockless", but more 217 * complex reads and read-modify-writes require the mutex to be held. No 218 * lock order is defined between unpcb locks -- multiple unpcb locks may be 219 * acquired at the same time only when holding the linkage rwlock 220 * exclusively, which prevents deadlocks. 221 * 222 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 223 * protocols, bind() is a non-atomic operation, and connect() requires 224 * potential sleeping in the protocol, due to potentially waiting on local or 225 * distributed file systems. We try to separate "lookup" operations, which 226 * may sleep, and the IPC operations themselves, which typically can occur 227 * with relative atomicity as locks can be held over the entire operation. 228 * 229 * Another tricky issue is simultaneous multi-threaded or multi-process 230 * access to a single UNIX domain socket. These are handled by the flags 231 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 232 * binding, both of which involve dropping UNIX domain socket locks in order 233 * to perform namei() and other file system operations. 234 */ 235 static struct rwlock unp_link_rwlock; 236 static struct mtx unp_list_lock; 237 static struct mtx unp_defers_lock; 238 239 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 240 "unp_link_rwlock") 241 242 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 243 RA_LOCKED) 244 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 245 RA_UNLOCKED) 246 247 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 248 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 249 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 250 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 251 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 252 RA_WLOCKED) 253 254 #define UNP_LIST_LOCK_INIT() mtx_init(&unp_list_lock, \ 255 "unp_list_lock", NULL, MTX_DEF) 256 #define UNP_LIST_LOCK() mtx_lock(&unp_list_lock) 257 #define UNP_LIST_UNLOCK() mtx_unlock(&unp_list_lock) 258 259 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 260 "unp_defer", NULL, MTX_DEF) 261 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 262 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 263 264 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 265 "unp_mtx", "unp_mtx", \ 266 MTX_DUPOK|MTX_DEF|MTX_RECURSE) 267 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 268 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 269 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 270 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 271 272 static int uipc_connect2(struct socket *, struct socket *); 273 static int uipc_ctloutput(struct socket *, struct sockopt *); 274 static int unp_connect(struct socket *, struct sockaddr *, 275 struct thread *); 276 static int unp_connectat(int, struct socket *, struct sockaddr *, 277 struct thread *); 278 static int unp_connect2(struct socket *so, struct socket *so2, int); 279 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 280 static void unp_dispose(struct mbuf *); 281 static void unp_dispose_so(struct socket *so); 282 static void unp_shutdown(struct unpcb *); 283 static void unp_drop(struct unpcb *); 284 static void unp_gc(__unused void *, int); 285 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 286 static void unp_discard(struct file *); 287 static void unp_freerights(struct filedescent **, int); 288 static void unp_init(void); 289 static int unp_internalize(struct mbuf **, struct thread *); 290 static void unp_internalize_fp(struct file *); 291 static int unp_externalize(struct mbuf *, struct mbuf **, int); 292 static int unp_externalize_fp(struct file *); 293 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 294 static void unp_process_defers(void * __unused, int); 295 296 /* 297 * Definitions of protocols supported in the LOCAL domain. 298 */ 299 static struct domain localdomain; 300 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 301 static struct pr_usrreqs uipc_usrreqs_seqpacket; 302 static struct protosw localsw[] = { 303 { 304 .pr_type = SOCK_STREAM, 305 .pr_domain = &localdomain, 306 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 307 .pr_ctloutput = &uipc_ctloutput, 308 .pr_usrreqs = &uipc_usrreqs_stream 309 }, 310 { 311 .pr_type = SOCK_DGRAM, 312 .pr_domain = &localdomain, 313 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 314 .pr_ctloutput = &uipc_ctloutput, 315 .pr_usrreqs = &uipc_usrreqs_dgram 316 }, 317 { 318 .pr_type = SOCK_SEQPACKET, 319 .pr_domain = &localdomain, 320 321 /* 322 * XXXRW: For now, PR_ADDR because soreceive will bump into them 323 * due to our use of sbappendaddr. A new sbappend variants is needed 324 * that supports both atomic record writes and control data. 325 */ 326 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 327 PR_RIGHTS, 328 .pr_ctloutput = &uipc_ctloutput, 329 .pr_usrreqs = &uipc_usrreqs_seqpacket, 330 }, 331 }; 332 333 static struct domain localdomain = { 334 .dom_family = AF_LOCAL, 335 .dom_name = "local", 336 .dom_init = unp_init, 337 .dom_externalize = unp_externalize, 338 .dom_dispose = unp_dispose_so, 339 .dom_protosw = localsw, 340 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 341 }; 342 DOMAIN_SET(local); 343 344 static void 345 uipc_abort(struct socket *so) 346 { 347 struct unpcb *unp, *unp2; 348 349 unp = sotounpcb(so); 350 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 351 352 UNP_LINK_WLOCK(); 353 UNP_PCB_LOCK(unp); 354 unp2 = unp->unp_conn; 355 if (unp2 != NULL) { 356 UNP_PCB_LOCK(unp2); 357 unp_drop(unp2); 358 UNP_PCB_UNLOCK(unp2); 359 } 360 UNP_PCB_UNLOCK(unp); 361 UNP_LINK_WUNLOCK(); 362 } 363 364 static int 365 uipc_accept(struct socket *so, struct sockaddr **nam) 366 { 367 struct unpcb *unp, *unp2; 368 const struct sockaddr *sa; 369 370 /* 371 * Pass back name of connected socket, if it was bound and we are 372 * still connected (our peer may have closed already!). 373 */ 374 unp = sotounpcb(so); 375 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 376 377 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 378 UNP_LINK_RLOCK(); 379 unp2 = unp->unp_conn; 380 if (unp2 != NULL && unp2->unp_addr != NULL) { 381 UNP_PCB_LOCK(unp2); 382 sa = (struct sockaddr *) unp2->unp_addr; 383 bcopy(sa, *nam, sa->sa_len); 384 UNP_PCB_UNLOCK(unp2); 385 } else { 386 sa = &sun_noname; 387 bcopy(sa, *nam, sa->sa_len); 388 } 389 UNP_LINK_RUNLOCK(); 390 return (0); 391 } 392 393 static int 394 uipc_attach(struct socket *so, int proto, struct thread *td) 395 { 396 u_long sendspace, recvspace; 397 struct unpcb *unp; 398 int error; 399 400 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 401 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 402 switch (so->so_type) { 403 case SOCK_STREAM: 404 sendspace = unpst_sendspace; 405 recvspace = unpst_recvspace; 406 break; 407 408 case SOCK_DGRAM: 409 sendspace = unpdg_sendspace; 410 recvspace = unpdg_recvspace; 411 break; 412 413 case SOCK_SEQPACKET: 414 sendspace = unpsp_sendspace; 415 recvspace = unpsp_recvspace; 416 break; 417 418 default: 419 panic("uipc_attach"); 420 } 421 error = soreserve(so, sendspace, recvspace); 422 if (error) 423 return (error); 424 } 425 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 426 if (unp == NULL) 427 return (ENOBUFS); 428 LIST_INIT(&unp->unp_refs); 429 UNP_PCB_LOCK_INIT(unp); 430 unp->unp_socket = so; 431 so->so_pcb = unp; 432 unp->unp_refcount = 1; 433 434 UNP_LIST_LOCK(); 435 unp->unp_gencnt = ++unp_gencnt; 436 unp_count++; 437 switch (so->so_type) { 438 case SOCK_STREAM: 439 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 440 break; 441 442 case SOCK_DGRAM: 443 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 444 break; 445 446 case SOCK_SEQPACKET: 447 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 448 break; 449 450 default: 451 panic("uipc_attach"); 452 } 453 UNP_LIST_UNLOCK(); 454 455 return (0); 456 } 457 458 static int 459 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 460 { 461 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 462 struct vattr vattr; 463 int error, namelen; 464 struct nameidata nd; 465 struct unpcb *unp; 466 struct vnode *vp; 467 struct mount *mp; 468 cap_rights_t rights; 469 char *buf; 470 471 if (nam->sa_family != AF_UNIX) 472 return (EAFNOSUPPORT); 473 474 unp = sotounpcb(so); 475 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 476 477 if (soun->sun_len > sizeof(struct sockaddr_un)) 478 return (EINVAL); 479 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 480 if (namelen <= 0) 481 return (EINVAL); 482 483 /* 484 * We don't allow simultaneous bind() calls on a single UNIX domain 485 * socket, so flag in-progress operations, and return an error if an 486 * operation is already in progress. 487 * 488 * Historically, we have not allowed a socket to be rebound, so this 489 * also returns an error. Not allowing re-binding simplifies the 490 * implementation and avoids a great many possible failure modes. 491 */ 492 UNP_PCB_LOCK(unp); 493 if (unp->unp_vnode != NULL) { 494 UNP_PCB_UNLOCK(unp); 495 return (EINVAL); 496 } 497 if (unp->unp_flags & UNP_BINDING) { 498 UNP_PCB_UNLOCK(unp); 499 return (EALREADY); 500 } 501 unp->unp_flags |= UNP_BINDING; 502 UNP_PCB_UNLOCK(unp); 503 504 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 505 bcopy(soun->sun_path, buf, namelen); 506 buf[namelen] = 0; 507 508 restart: 509 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 510 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 511 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 512 error = namei(&nd); 513 if (error) 514 goto error; 515 vp = nd.ni_vp; 516 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 517 NDFREE(&nd, NDF_ONLY_PNBUF); 518 if (nd.ni_dvp == vp) 519 vrele(nd.ni_dvp); 520 else 521 vput(nd.ni_dvp); 522 if (vp != NULL) { 523 vrele(vp); 524 error = EADDRINUSE; 525 goto error; 526 } 527 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 528 if (error) 529 goto error; 530 goto restart; 531 } 532 VATTR_NULL(&vattr); 533 vattr.va_type = VSOCK; 534 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 535 #ifdef MAC 536 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 537 &vattr); 538 #endif 539 if (error == 0) 540 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 541 NDFREE(&nd, NDF_ONLY_PNBUF); 542 vput(nd.ni_dvp); 543 if (error) { 544 vn_finished_write(mp); 545 goto error; 546 } 547 vp = nd.ni_vp; 548 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 549 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 550 551 UNP_LINK_WLOCK(); 552 UNP_PCB_LOCK(unp); 553 VOP_UNP_BIND(vp, unp->unp_socket); 554 unp->unp_vnode = vp; 555 unp->unp_addr = soun; 556 unp->unp_flags &= ~UNP_BINDING; 557 UNP_PCB_UNLOCK(unp); 558 UNP_LINK_WUNLOCK(); 559 VOP_UNLOCK(vp, 0); 560 vn_finished_write(mp); 561 free(buf, M_TEMP); 562 return (0); 563 564 error: 565 UNP_PCB_LOCK(unp); 566 unp->unp_flags &= ~UNP_BINDING; 567 UNP_PCB_UNLOCK(unp); 568 free(buf, M_TEMP); 569 return (error); 570 } 571 572 static int 573 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 574 { 575 576 return (uipc_bindat(AT_FDCWD, so, nam, td)); 577 } 578 579 static int 580 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 581 { 582 int error; 583 584 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 585 UNP_LINK_WLOCK(); 586 error = unp_connect(so, nam, td); 587 UNP_LINK_WUNLOCK(); 588 return (error); 589 } 590 591 static int 592 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 593 struct thread *td) 594 { 595 int error; 596 597 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 598 UNP_LINK_WLOCK(); 599 error = unp_connectat(fd, so, nam, td); 600 UNP_LINK_WUNLOCK(); 601 return (error); 602 } 603 604 static void 605 uipc_close(struct socket *so) 606 { 607 struct unpcb *unp, *unp2; 608 609 unp = sotounpcb(so); 610 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 611 612 UNP_LINK_WLOCK(); 613 UNP_PCB_LOCK(unp); 614 unp2 = unp->unp_conn; 615 if (unp2 != NULL) { 616 UNP_PCB_LOCK(unp2); 617 unp_disconnect(unp, unp2); 618 UNP_PCB_UNLOCK(unp2); 619 } 620 UNP_PCB_UNLOCK(unp); 621 UNP_LINK_WUNLOCK(); 622 } 623 624 static int 625 uipc_connect2(struct socket *so1, struct socket *so2) 626 { 627 struct unpcb *unp, *unp2; 628 int error; 629 630 UNP_LINK_WLOCK(); 631 unp = so1->so_pcb; 632 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 633 UNP_PCB_LOCK(unp); 634 unp2 = so2->so_pcb; 635 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 636 UNP_PCB_LOCK(unp2); 637 error = unp_connect2(so1, so2, PRU_CONNECT2); 638 UNP_PCB_UNLOCK(unp2); 639 UNP_PCB_UNLOCK(unp); 640 UNP_LINK_WUNLOCK(); 641 return (error); 642 } 643 644 static void 645 uipc_detach(struct socket *so) 646 { 647 struct unpcb *unp, *unp2; 648 struct sockaddr_un *saved_unp_addr; 649 struct vnode *vp; 650 int freeunp, local_unp_rights; 651 652 unp = sotounpcb(so); 653 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 654 655 UNP_LINK_WLOCK(); 656 UNP_LIST_LOCK(); 657 UNP_PCB_LOCK(unp); 658 LIST_REMOVE(unp, unp_link); 659 unp->unp_gencnt = ++unp_gencnt; 660 --unp_count; 661 UNP_LIST_UNLOCK(); 662 663 /* 664 * XXXRW: Should assert vp->v_socket == so. 665 */ 666 if ((vp = unp->unp_vnode) != NULL) { 667 VOP_UNP_DETACH(vp); 668 unp->unp_vnode = NULL; 669 } 670 unp2 = unp->unp_conn; 671 if (unp2 != NULL) { 672 UNP_PCB_LOCK(unp2); 673 unp_disconnect(unp, unp2); 674 UNP_PCB_UNLOCK(unp2); 675 } 676 677 /* 678 * We hold the linkage lock exclusively, so it's OK to acquire 679 * multiple pcb locks at a time. 680 */ 681 while (!LIST_EMPTY(&unp->unp_refs)) { 682 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 683 684 UNP_PCB_LOCK(ref); 685 unp_drop(ref); 686 UNP_PCB_UNLOCK(ref); 687 } 688 local_unp_rights = unp_rights; 689 UNP_LINK_WUNLOCK(); 690 unp->unp_socket->so_pcb = NULL; 691 saved_unp_addr = unp->unp_addr; 692 unp->unp_addr = NULL; 693 unp->unp_refcount--; 694 freeunp = (unp->unp_refcount == 0); 695 if (saved_unp_addr != NULL) 696 free(saved_unp_addr, M_SONAME); 697 if (freeunp) { 698 UNP_PCB_LOCK_DESTROY(unp); 699 uma_zfree(unp_zone, unp); 700 } else 701 UNP_PCB_UNLOCK(unp); 702 if (vp) 703 vrele(vp); 704 if (local_unp_rights) 705 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 706 } 707 708 static int 709 uipc_disconnect(struct socket *so) 710 { 711 struct unpcb *unp, *unp2; 712 713 unp = sotounpcb(so); 714 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 715 716 UNP_LINK_WLOCK(); 717 UNP_PCB_LOCK(unp); 718 unp2 = unp->unp_conn; 719 if (unp2 != NULL) { 720 UNP_PCB_LOCK(unp2); 721 unp_disconnect(unp, unp2); 722 UNP_PCB_UNLOCK(unp2); 723 } 724 UNP_PCB_UNLOCK(unp); 725 UNP_LINK_WUNLOCK(); 726 return (0); 727 } 728 729 static int 730 uipc_listen(struct socket *so, int backlog, struct thread *td) 731 { 732 struct unpcb *unp; 733 int error; 734 735 unp = sotounpcb(so); 736 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 737 738 UNP_PCB_LOCK(unp); 739 if (unp->unp_vnode == NULL) { 740 /* Already connected or not bound to an address. */ 741 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 742 UNP_PCB_UNLOCK(unp); 743 return (error); 744 } 745 746 SOCK_LOCK(so); 747 error = solisten_proto_check(so); 748 if (error == 0) { 749 cru2x(td->td_ucred, &unp->unp_peercred); 750 unp->unp_flags |= UNP_HAVEPCCACHED; 751 solisten_proto(so, backlog); 752 } 753 SOCK_UNLOCK(so); 754 UNP_PCB_UNLOCK(unp); 755 return (error); 756 } 757 758 static int 759 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 760 { 761 struct unpcb *unp, *unp2; 762 const struct sockaddr *sa; 763 764 unp = sotounpcb(so); 765 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 766 767 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 768 UNP_LINK_RLOCK(); 769 /* 770 * XXX: It seems that this test always fails even when connection is 771 * established. So, this else clause is added as workaround to 772 * return PF_LOCAL sockaddr. 773 */ 774 unp2 = unp->unp_conn; 775 if (unp2 != NULL) { 776 UNP_PCB_LOCK(unp2); 777 if (unp2->unp_addr != NULL) 778 sa = (struct sockaddr *) unp2->unp_addr; 779 else 780 sa = &sun_noname; 781 bcopy(sa, *nam, sa->sa_len); 782 UNP_PCB_UNLOCK(unp2); 783 } else { 784 sa = &sun_noname; 785 bcopy(sa, *nam, sa->sa_len); 786 } 787 UNP_LINK_RUNLOCK(); 788 return (0); 789 } 790 791 static int 792 uipc_rcvd(struct socket *so, int flags) 793 { 794 struct unpcb *unp, *unp2; 795 struct socket *so2; 796 u_int mbcnt, sbcc; 797 798 unp = sotounpcb(so); 799 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 800 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 801 ("%s: socktype %d", __func__, so->so_type)); 802 803 /* 804 * Adjust backpressure on sender and wakeup any waiting to write. 805 * 806 * The unp lock is acquired to maintain the validity of the unp_conn 807 * pointer; no lock on unp2 is required as unp2->unp_socket will be 808 * static as long as we don't permit unp2 to disconnect from unp, 809 * which is prevented by the lock on unp. We cache values from 810 * so_rcv to avoid holding the so_rcv lock over the entire 811 * transaction on the remote so_snd. 812 */ 813 SOCKBUF_LOCK(&so->so_rcv); 814 mbcnt = so->so_rcv.sb_mbcnt; 815 sbcc = sbavail(&so->so_rcv); 816 SOCKBUF_UNLOCK(&so->so_rcv); 817 /* 818 * There is a benign race condition at this point. If we're planning to 819 * clear SB_STOP, but uipc_send is called on the connected socket at 820 * this instant, it might add data to the sockbuf and set SB_STOP. Then 821 * we would erroneously clear SB_STOP below, even though the sockbuf is 822 * full. The race is benign because the only ill effect is to allow the 823 * sockbuf to exceed its size limit, and the size limits are not 824 * strictly guaranteed anyway. 825 */ 826 UNP_PCB_LOCK(unp); 827 unp2 = unp->unp_conn; 828 if (unp2 == NULL) { 829 UNP_PCB_UNLOCK(unp); 830 return (0); 831 } 832 so2 = unp2->unp_socket; 833 SOCKBUF_LOCK(&so2->so_snd); 834 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 835 so2->so_snd.sb_flags &= ~SB_STOP; 836 sowwakeup_locked(so2); 837 UNP_PCB_UNLOCK(unp); 838 return (0); 839 } 840 841 static int 842 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 843 struct mbuf *control, struct thread *td) 844 { 845 struct unpcb *unp, *unp2; 846 struct socket *so2; 847 u_int mbcnt, sbcc; 848 int error = 0; 849 850 unp = sotounpcb(so); 851 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 852 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 853 so->so_type == SOCK_SEQPACKET, 854 ("%s: socktype %d", __func__, so->so_type)); 855 856 if (flags & PRUS_OOB) { 857 error = EOPNOTSUPP; 858 goto release; 859 } 860 if (control != NULL && (error = unp_internalize(&control, td))) 861 goto release; 862 if ((nam != NULL) || (flags & PRUS_EOF)) 863 UNP_LINK_WLOCK(); 864 else 865 UNP_LINK_RLOCK(); 866 switch (so->so_type) { 867 case SOCK_DGRAM: 868 { 869 const struct sockaddr *from; 870 871 unp2 = unp->unp_conn; 872 if (nam != NULL) { 873 UNP_LINK_WLOCK_ASSERT(); 874 if (unp2 != NULL) { 875 error = EISCONN; 876 break; 877 } 878 error = unp_connect(so, nam, td); 879 if (error) 880 break; 881 unp2 = unp->unp_conn; 882 } 883 884 /* 885 * Because connect() and send() are non-atomic in a sendto() 886 * with a target address, it's possible that the socket will 887 * have disconnected before the send() can run. In that case 888 * return the slightly counter-intuitive but otherwise 889 * correct error that the socket is not connected. 890 */ 891 if (unp2 == NULL) { 892 error = ENOTCONN; 893 break; 894 } 895 /* Lockless read. */ 896 if (unp2->unp_flags & UNP_WANTCRED) 897 control = unp_addsockcred(td, control); 898 UNP_PCB_LOCK(unp); 899 if (unp->unp_addr != NULL) 900 from = (struct sockaddr *)unp->unp_addr; 901 else 902 from = &sun_noname; 903 so2 = unp2->unp_socket; 904 SOCKBUF_LOCK(&so2->so_rcv); 905 if (sbappendaddr_locked(&so2->so_rcv, from, m, 906 control)) { 907 sorwakeup_locked(so2); 908 m = NULL; 909 control = NULL; 910 } else { 911 SOCKBUF_UNLOCK(&so2->so_rcv); 912 error = ENOBUFS; 913 } 914 if (nam != NULL) { 915 UNP_LINK_WLOCK_ASSERT(); 916 UNP_PCB_LOCK(unp2); 917 unp_disconnect(unp, unp2); 918 UNP_PCB_UNLOCK(unp2); 919 } 920 UNP_PCB_UNLOCK(unp); 921 break; 922 } 923 924 case SOCK_SEQPACKET: 925 case SOCK_STREAM: 926 if ((so->so_state & SS_ISCONNECTED) == 0) { 927 if (nam != NULL) { 928 UNP_LINK_WLOCK_ASSERT(); 929 error = unp_connect(so, nam, td); 930 if (error) 931 break; /* XXX */ 932 } else { 933 error = ENOTCONN; 934 break; 935 } 936 } 937 938 /* Lockless read. */ 939 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 940 error = EPIPE; 941 break; 942 } 943 944 /* 945 * Because connect() and send() are non-atomic in a sendto() 946 * with a target address, it's possible that the socket will 947 * have disconnected before the send() can run. In that case 948 * return the slightly counter-intuitive but otherwise 949 * correct error that the socket is not connected. 950 * 951 * Locking here must be done carefully: the linkage lock 952 * prevents interconnections between unpcbs from changing, so 953 * we can traverse from unp to unp2 without acquiring unp's 954 * lock. Socket buffer locks follow unpcb locks, so we can 955 * acquire both remote and lock socket buffer locks. 956 */ 957 unp2 = unp->unp_conn; 958 if (unp2 == NULL) { 959 error = ENOTCONN; 960 break; 961 } 962 so2 = unp2->unp_socket; 963 UNP_PCB_LOCK(unp2); 964 SOCKBUF_LOCK(&so2->so_rcv); 965 if (unp2->unp_flags & UNP_WANTCRED) { 966 /* 967 * Credentials are passed only once on SOCK_STREAM 968 * and SOCK_SEQPACKET. 969 */ 970 unp2->unp_flags &= ~UNP_WANTCRED; 971 control = unp_addsockcred(td, control); 972 } 973 /* 974 * Send to paired receive port, and then reduce send buffer 975 * hiwater marks to maintain backpressure. Wake up readers. 976 */ 977 switch (so->so_type) { 978 case SOCK_STREAM: 979 if (control != NULL) { 980 if (sbappendcontrol_locked(&so2->so_rcv, m, 981 control)) 982 control = NULL; 983 } else 984 sbappend_locked(&so2->so_rcv, m, flags); 985 break; 986 987 case SOCK_SEQPACKET: { 988 const struct sockaddr *from; 989 990 from = &sun_noname; 991 /* 992 * Don't check for space available in so2->so_rcv. 993 * Unix domain sockets only check for space in the 994 * sending sockbuf, and that check is performed one 995 * level up the stack. 996 */ 997 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 998 from, m, control)) 999 control = NULL; 1000 break; 1001 } 1002 } 1003 1004 mbcnt = so2->so_rcv.sb_mbcnt; 1005 sbcc = sbavail(&so2->so_rcv); 1006 if (sbcc) 1007 sorwakeup_locked(so2); 1008 else 1009 SOCKBUF_UNLOCK(&so2->so_rcv); 1010 1011 /* 1012 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1013 * it would be possible for uipc_rcvd to be called at this 1014 * point, drain the receiving sockbuf, clear SB_STOP, and then 1015 * we would set SB_STOP below. That could lead to an empty 1016 * sockbuf having SB_STOP set 1017 */ 1018 SOCKBUF_LOCK(&so->so_snd); 1019 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1020 so->so_snd.sb_flags |= SB_STOP; 1021 SOCKBUF_UNLOCK(&so->so_snd); 1022 UNP_PCB_UNLOCK(unp2); 1023 m = NULL; 1024 break; 1025 } 1026 1027 /* 1028 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1029 */ 1030 if (flags & PRUS_EOF) { 1031 UNP_PCB_LOCK(unp); 1032 socantsendmore(so); 1033 unp_shutdown(unp); 1034 UNP_PCB_UNLOCK(unp); 1035 } 1036 1037 if ((nam != NULL) || (flags & PRUS_EOF)) 1038 UNP_LINK_WUNLOCK(); 1039 else 1040 UNP_LINK_RUNLOCK(); 1041 1042 if (control != NULL && error != 0) 1043 unp_dispose(control); 1044 1045 release: 1046 if (control != NULL) 1047 m_freem(control); 1048 if (m != NULL) 1049 m_freem(m); 1050 return (error); 1051 } 1052 1053 static int 1054 uipc_ready(struct socket *so, struct mbuf *m, int count) 1055 { 1056 struct unpcb *unp, *unp2; 1057 struct socket *so2; 1058 int error; 1059 1060 unp = sotounpcb(so); 1061 1062 UNP_LINK_RLOCK(); 1063 unp2 = unp->unp_conn; 1064 UNP_PCB_LOCK(unp2); 1065 so2 = unp2->unp_socket; 1066 1067 SOCKBUF_LOCK(&so2->so_rcv); 1068 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1069 sorwakeup_locked(so2); 1070 else 1071 SOCKBUF_UNLOCK(&so2->so_rcv); 1072 1073 UNP_PCB_UNLOCK(unp2); 1074 UNP_LINK_RUNLOCK(); 1075 1076 return (error); 1077 } 1078 1079 static int 1080 uipc_sense(struct socket *so, struct stat *sb) 1081 { 1082 struct unpcb *unp; 1083 1084 unp = sotounpcb(so); 1085 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1086 1087 sb->st_blksize = so->so_snd.sb_hiwat; 1088 UNP_PCB_LOCK(unp); 1089 sb->st_dev = NODEV; 1090 if (unp->unp_ino == 0) 1091 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 1092 sb->st_ino = unp->unp_ino; 1093 UNP_PCB_UNLOCK(unp); 1094 return (0); 1095 } 1096 1097 static int 1098 uipc_shutdown(struct socket *so) 1099 { 1100 struct unpcb *unp; 1101 1102 unp = sotounpcb(so); 1103 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1104 1105 UNP_LINK_WLOCK(); 1106 UNP_PCB_LOCK(unp); 1107 socantsendmore(so); 1108 unp_shutdown(unp); 1109 UNP_PCB_UNLOCK(unp); 1110 UNP_LINK_WUNLOCK(); 1111 return (0); 1112 } 1113 1114 static int 1115 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1116 { 1117 struct unpcb *unp; 1118 const struct sockaddr *sa; 1119 1120 unp = sotounpcb(so); 1121 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1122 1123 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1124 UNP_PCB_LOCK(unp); 1125 if (unp->unp_addr != NULL) 1126 sa = (struct sockaddr *) unp->unp_addr; 1127 else 1128 sa = &sun_noname; 1129 bcopy(sa, *nam, sa->sa_len); 1130 UNP_PCB_UNLOCK(unp); 1131 return (0); 1132 } 1133 1134 static struct pr_usrreqs uipc_usrreqs_dgram = { 1135 .pru_abort = uipc_abort, 1136 .pru_accept = uipc_accept, 1137 .pru_attach = uipc_attach, 1138 .pru_bind = uipc_bind, 1139 .pru_bindat = uipc_bindat, 1140 .pru_connect = uipc_connect, 1141 .pru_connectat = uipc_connectat, 1142 .pru_connect2 = uipc_connect2, 1143 .pru_detach = uipc_detach, 1144 .pru_disconnect = uipc_disconnect, 1145 .pru_listen = uipc_listen, 1146 .pru_peeraddr = uipc_peeraddr, 1147 .pru_rcvd = uipc_rcvd, 1148 .pru_send = uipc_send, 1149 .pru_sense = uipc_sense, 1150 .pru_shutdown = uipc_shutdown, 1151 .pru_sockaddr = uipc_sockaddr, 1152 .pru_soreceive = soreceive_dgram, 1153 .pru_close = uipc_close, 1154 }; 1155 1156 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1157 .pru_abort = uipc_abort, 1158 .pru_accept = uipc_accept, 1159 .pru_attach = uipc_attach, 1160 .pru_bind = uipc_bind, 1161 .pru_bindat = uipc_bindat, 1162 .pru_connect = uipc_connect, 1163 .pru_connectat = uipc_connectat, 1164 .pru_connect2 = uipc_connect2, 1165 .pru_detach = uipc_detach, 1166 .pru_disconnect = uipc_disconnect, 1167 .pru_listen = uipc_listen, 1168 .pru_peeraddr = uipc_peeraddr, 1169 .pru_rcvd = uipc_rcvd, 1170 .pru_send = uipc_send, 1171 .pru_sense = uipc_sense, 1172 .pru_shutdown = uipc_shutdown, 1173 .pru_sockaddr = uipc_sockaddr, 1174 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1175 .pru_close = uipc_close, 1176 }; 1177 1178 static struct pr_usrreqs uipc_usrreqs_stream = { 1179 .pru_abort = uipc_abort, 1180 .pru_accept = uipc_accept, 1181 .pru_attach = uipc_attach, 1182 .pru_bind = uipc_bind, 1183 .pru_bindat = uipc_bindat, 1184 .pru_connect = uipc_connect, 1185 .pru_connectat = uipc_connectat, 1186 .pru_connect2 = uipc_connect2, 1187 .pru_detach = uipc_detach, 1188 .pru_disconnect = uipc_disconnect, 1189 .pru_listen = uipc_listen, 1190 .pru_peeraddr = uipc_peeraddr, 1191 .pru_rcvd = uipc_rcvd, 1192 .pru_send = uipc_send, 1193 .pru_ready = uipc_ready, 1194 .pru_sense = uipc_sense, 1195 .pru_shutdown = uipc_shutdown, 1196 .pru_sockaddr = uipc_sockaddr, 1197 .pru_soreceive = soreceive_generic, 1198 .pru_close = uipc_close, 1199 }; 1200 1201 static int 1202 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1203 { 1204 struct unpcb *unp; 1205 struct xucred xu; 1206 int error, optval; 1207 1208 if (sopt->sopt_level != 0) 1209 return (EINVAL); 1210 1211 unp = sotounpcb(so); 1212 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1213 error = 0; 1214 switch (sopt->sopt_dir) { 1215 case SOPT_GET: 1216 switch (sopt->sopt_name) { 1217 case LOCAL_PEERCRED: 1218 UNP_PCB_LOCK(unp); 1219 if (unp->unp_flags & UNP_HAVEPC) 1220 xu = unp->unp_peercred; 1221 else { 1222 if (so->so_type == SOCK_STREAM) 1223 error = ENOTCONN; 1224 else 1225 error = EINVAL; 1226 } 1227 UNP_PCB_UNLOCK(unp); 1228 if (error == 0) 1229 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1230 break; 1231 1232 case LOCAL_CREDS: 1233 /* Unlocked read. */ 1234 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1235 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1236 break; 1237 1238 case LOCAL_CONNWAIT: 1239 /* Unlocked read. */ 1240 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1241 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1242 break; 1243 1244 default: 1245 error = EOPNOTSUPP; 1246 break; 1247 } 1248 break; 1249 1250 case SOPT_SET: 1251 switch (sopt->sopt_name) { 1252 case LOCAL_CREDS: 1253 case LOCAL_CONNWAIT: 1254 error = sooptcopyin(sopt, &optval, sizeof(optval), 1255 sizeof(optval)); 1256 if (error) 1257 break; 1258 1259 #define OPTSET(bit) do { \ 1260 UNP_PCB_LOCK(unp); \ 1261 if (optval) \ 1262 unp->unp_flags |= bit; \ 1263 else \ 1264 unp->unp_flags &= ~bit; \ 1265 UNP_PCB_UNLOCK(unp); \ 1266 } while (0) 1267 1268 switch (sopt->sopt_name) { 1269 case LOCAL_CREDS: 1270 OPTSET(UNP_WANTCRED); 1271 break; 1272 1273 case LOCAL_CONNWAIT: 1274 OPTSET(UNP_CONNWAIT); 1275 break; 1276 1277 default: 1278 break; 1279 } 1280 break; 1281 #undef OPTSET 1282 default: 1283 error = ENOPROTOOPT; 1284 break; 1285 } 1286 break; 1287 1288 default: 1289 error = EOPNOTSUPP; 1290 break; 1291 } 1292 return (error); 1293 } 1294 1295 static int 1296 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1297 { 1298 1299 return (unp_connectat(AT_FDCWD, so, nam, td)); 1300 } 1301 1302 static int 1303 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1304 struct thread *td) 1305 { 1306 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1307 struct vnode *vp; 1308 struct socket *so2, *so3; 1309 struct unpcb *unp, *unp2, *unp3; 1310 struct nameidata nd; 1311 char buf[SOCK_MAXADDRLEN]; 1312 struct sockaddr *sa; 1313 cap_rights_t rights; 1314 int error, len; 1315 1316 if (nam->sa_family != AF_UNIX) 1317 return (EAFNOSUPPORT); 1318 1319 UNP_LINK_WLOCK_ASSERT(); 1320 1321 unp = sotounpcb(so); 1322 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1323 1324 if (nam->sa_len > sizeof(struct sockaddr_un)) 1325 return (EINVAL); 1326 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1327 if (len <= 0) 1328 return (EINVAL); 1329 bcopy(soun->sun_path, buf, len); 1330 buf[len] = 0; 1331 1332 UNP_PCB_LOCK(unp); 1333 if (unp->unp_flags & UNP_CONNECTING) { 1334 UNP_PCB_UNLOCK(unp); 1335 return (EALREADY); 1336 } 1337 UNP_LINK_WUNLOCK(); 1338 unp->unp_flags |= UNP_CONNECTING; 1339 UNP_PCB_UNLOCK(unp); 1340 1341 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1342 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1343 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1344 error = namei(&nd); 1345 if (error) 1346 vp = NULL; 1347 else 1348 vp = nd.ni_vp; 1349 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1350 NDFREE(&nd, NDF_ONLY_PNBUF); 1351 if (error) 1352 goto bad; 1353 1354 if (vp->v_type != VSOCK) { 1355 error = ENOTSOCK; 1356 goto bad; 1357 } 1358 #ifdef MAC 1359 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1360 if (error) 1361 goto bad; 1362 #endif 1363 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1364 if (error) 1365 goto bad; 1366 1367 unp = sotounpcb(so); 1368 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1369 1370 /* 1371 * Lock linkage lock for two reasons: make sure v_socket is stable, 1372 * and to protect simultaneous locking of multiple pcbs. 1373 */ 1374 UNP_LINK_WLOCK(); 1375 VOP_UNP_CONNECT(vp, &so2); 1376 if (so2 == NULL) { 1377 error = ECONNREFUSED; 1378 goto bad2; 1379 } 1380 if (so->so_type != so2->so_type) { 1381 error = EPROTOTYPE; 1382 goto bad2; 1383 } 1384 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1385 if (so2->so_options & SO_ACCEPTCONN) { 1386 CURVNET_SET(so2->so_vnet); 1387 so3 = sonewconn(so2, 0); 1388 CURVNET_RESTORE(); 1389 } else 1390 so3 = NULL; 1391 if (so3 == NULL) { 1392 error = ECONNREFUSED; 1393 goto bad2; 1394 } 1395 unp = sotounpcb(so); 1396 unp2 = sotounpcb(so2); 1397 unp3 = sotounpcb(so3); 1398 UNP_PCB_LOCK(unp); 1399 UNP_PCB_LOCK(unp2); 1400 UNP_PCB_LOCK(unp3); 1401 if (unp2->unp_addr != NULL) { 1402 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1403 unp3->unp_addr = (struct sockaddr_un *) sa; 1404 sa = NULL; 1405 } 1406 1407 /* 1408 * The connector's (client's) credentials are copied from its 1409 * process structure at the time of connect() (which is now). 1410 */ 1411 cru2x(td->td_ucred, &unp3->unp_peercred); 1412 unp3->unp_flags |= UNP_HAVEPC; 1413 1414 /* 1415 * The receiver's (server's) credentials are copied from the 1416 * unp_peercred member of socket on which the former called 1417 * listen(); uipc_listen() cached that process's credentials 1418 * at that time so we can use them now. 1419 */ 1420 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED, 1421 ("unp_connect: listener without cached peercred")); 1422 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 1423 sizeof(unp->unp_peercred)); 1424 unp->unp_flags |= UNP_HAVEPC; 1425 if (unp2->unp_flags & UNP_WANTCRED) 1426 unp3->unp_flags |= UNP_WANTCRED; 1427 UNP_PCB_UNLOCK(unp3); 1428 UNP_PCB_UNLOCK(unp2); 1429 UNP_PCB_UNLOCK(unp); 1430 #ifdef MAC 1431 mac_socketpeer_set_from_socket(so, so3); 1432 mac_socketpeer_set_from_socket(so3, so); 1433 #endif 1434 1435 so2 = so3; 1436 } 1437 unp = sotounpcb(so); 1438 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1439 unp2 = sotounpcb(so2); 1440 KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL")); 1441 UNP_PCB_LOCK(unp); 1442 UNP_PCB_LOCK(unp2); 1443 error = unp_connect2(so, so2, PRU_CONNECT); 1444 UNP_PCB_UNLOCK(unp2); 1445 UNP_PCB_UNLOCK(unp); 1446 bad2: 1447 UNP_LINK_WUNLOCK(); 1448 bad: 1449 if (vp != NULL) 1450 vput(vp); 1451 free(sa, M_SONAME); 1452 UNP_LINK_WLOCK(); 1453 UNP_PCB_LOCK(unp); 1454 unp->unp_flags &= ~UNP_CONNECTING; 1455 UNP_PCB_UNLOCK(unp); 1456 return (error); 1457 } 1458 1459 static int 1460 unp_connect2(struct socket *so, struct socket *so2, int req) 1461 { 1462 struct unpcb *unp; 1463 struct unpcb *unp2; 1464 1465 unp = sotounpcb(so); 1466 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1467 unp2 = sotounpcb(so2); 1468 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1469 1470 UNP_LINK_WLOCK_ASSERT(); 1471 UNP_PCB_LOCK_ASSERT(unp); 1472 UNP_PCB_LOCK_ASSERT(unp2); 1473 1474 if (so2->so_type != so->so_type) 1475 return (EPROTOTYPE); 1476 unp->unp_conn = unp2; 1477 1478 switch (so->so_type) { 1479 case SOCK_DGRAM: 1480 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1481 soisconnected(so); 1482 break; 1483 1484 case SOCK_STREAM: 1485 case SOCK_SEQPACKET: 1486 unp2->unp_conn = unp; 1487 if (req == PRU_CONNECT && 1488 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1489 soisconnecting(so); 1490 else 1491 soisconnected(so); 1492 soisconnected(so2); 1493 break; 1494 1495 default: 1496 panic("unp_connect2"); 1497 } 1498 return (0); 1499 } 1500 1501 static void 1502 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1503 { 1504 struct socket *so; 1505 1506 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1507 1508 UNP_LINK_WLOCK_ASSERT(); 1509 UNP_PCB_LOCK_ASSERT(unp); 1510 UNP_PCB_LOCK_ASSERT(unp2); 1511 1512 unp->unp_conn = NULL; 1513 switch (unp->unp_socket->so_type) { 1514 case SOCK_DGRAM: 1515 LIST_REMOVE(unp, unp_reflink); 1516 so = unp->unp_socket; 1517 SOCK_LOCK(so); 1518 so->so_state &= ~SS_ISCONNECTED; 1519 SOCK_UNLOCK(so); 1520 break; 1521 1522 case SOCK_STREAM: 1523 case SOCK_SEQPACKET: 1524 soisdisconnected(unp->unp_socket); 1525 unp2->unp_conn = NULL; 1526 soisdisconnected(unp2->unp_socket); 1527 break; 1528 } 1529 } 1530 1531 /* 1532 * unp_pcblist() walks the global list of struct unpcb's to generate a 1533 * pointer list, bumping the refcount on each unpcb. It then copies them out 1534 * sequentially, validating the generation number on each to see if it has 1535 * been detached. All of this is necessary because copyout() may sleep on 1536 * disk I/O. 1537 */ 1538 static int 1539 unp_pcblist(SYSCTL_HANDLER_ARGS) 1540 { 1541 int error, i, n; 1542 int freeunp; 1543 struct unpcb *unp, **unp_list; 1544 unp_gen_t gencnt; 1545 struct xunpgen *xug; 1546 struct unp_head *head; 1547 struct xunpcb *xu; 1548 1549 switch ((intptr_t)arg1) { 1550 case SOCK_STREAM: 1551 head = &unp_shead; 1552 break; 1553 1554 case SOCK_DGRAM: 1555 head = &unp_dhead; 1556 break; 1557 1558 case SOCK_SEQPACKET: 1559 head = &unp_sphead; 1560 break; 1561 1562 default: 1563 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1564 } 1565 1566 /* 1567 * The process of preparing the PCB list is too time-consuming and 1568 * resource-intensive to repeat twice on every request. 1569 */ 1570 if (req->oldptr == NULL) { 1571 n = unp_count; 1572 req->oldidx = 2 * (sizeof *xug) 1573 + (n + n/8) * sizeof(struct xunpcb); 1574 return (0); 1575 } 1576 1577 if (req->newptr != NULL) 1578 return (EPERM); 1579 1580 /* 1581 * OK, now we're committed to doing something. 1582 */ 1583 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); 1584 UNP_LIST_LOCK(); 1585 gencnt = unp_gencnt; 1586 n = unp_count; 1587 UNP_LIST_UNLOCK(); 1588 1589 xug->xug_len = sizeof *xug; 1590 xug->xug_count = n; 1591 xug->xug_gen = gencnt; 1592 xug->xug_sogen = so_gencnt; 1593 error = SYSCTL_OUT(req, xug, sizeof *xug); 1594 if (error) { 1595 free(xug, M_TEMP); 1596 return (error); 1597 } 1598 1599 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1600 1601 UNP_LIST_LOCK(); 1602 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1603 unp = LIST_NEXT(unp, unp_link)) { 1604 UNP_PCB_LOCK(unp); 1605 if (unp->unp_gencnt <= gencnt) { 1606 if (cr_cansee(req->td->td_ucred, 1607 unp->unp_socket->so_cred)) { 1608 UNP_PCB_UNLOCK(unp); 1609 continue; 1610 } 1611 unp_list[i++] = unp; 1612 unp->unp_refcount++; 1613 } 1614 UNP_PCB_UNLOCK(unp); 1615 } 1616 UNP_LIST_UNLOCK(); 1617 n = i; /* In case we lost some during malloc. */ 1618 1619 error = 0; 1620 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1621 for (i = 0; i < n; i++) { 1622 unp = unp_list[i]; 1623 UNP_PCB_LOCK(unp); 1624 unp->unp_refcount--; 1625 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) { 1626 xu->xu_len = sizeof *xu; 1627 xu->xu_unpp = unp; 1628 /* 1629 * XXX - need more locking here to protect against 1630 * connect/disconnect races for SMP. 1631 */ 1632 if (unp->unp_addr != NULL) 1633 bcopy(unp->unp_addr, &xu->xu_addr, 1634 unp->unp_addr->sun_len); 1635 if (unp->unp_conn != NULL && 1636 unp->unp_conn->unp_addr != NULL) 1637 bcopy(unp->unp_conn->unp_addr, 1638 &xu->xu_caddr, 1639 unp->unp_conn->unp_addr->sun_len); 1640 bcopy(unp, &xu->xu_unp, sizeof *unp); 1641 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1642 UNP_PCB_UNLOCK(unp); 1643 error = SYSCTL_OUT(req, xu, sizeof *xu); 1644 } else { 1645 freeunp = (unp->unp_refcount == 0); 1646 UNP_PCB_UNLOCK(unp); 1647 if (freeunp) { 1648 UNP_PCB_LOCK_DESTROY(unp); 1649 uma_zfree(unp_zone, unp); 1650 } 1651 } 1652 } 1653 free(xu, M_TEMP); 1654 if (!error) { 1655 /* 1656 * Give the user an updated idea of our state. If the 1657 * generation differs from what we told her before, she knows 1658 * that something happened while we were processing this 1659 * request, and it might be necessary to retry. 1660 */ 1661 xug->xug_gen = unp_gencnt; 1662 xug->xug_sogen = so_gencnt; 1663 xug->xug_count = unp_count; 1664 error = SYSCTL_OUT(req, xug, sizeof *xug); 1665 } 1666 free(unp_list, M_TEMP); 1667 free(xug, M_TEMP); 1668 return (error); 1669 } 1670 1671 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1672 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1673 "List of active local datagram sockets"); 1674 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1675 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1676 "List of active local stream sockets"); 1677 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1678 CTLTYPE_OPAQUE | CTLFLAG_RD, 1679 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1680 "List of active local seqpacket sockets"); 1681 1682 static void 1683 unp_shutdown(struct unpcb *unp) 1684 { 1685 struct unpcb *unp2; 1686 struct socket *so; 1687 1688 UNP_LINK_WLOCK_ASSERT(); 1689 UNP_PCB_LOCK_ASSERT(unp); 1690 1691 unp2 = unp->unp_conn; 1692 if ((unp->unp_socket->so_type == SOCK_STREAM || 1693 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1694 so = unp2->unp_socket; 1695 if (so != NULL) 1696 socantrcvmore(so); 1697 } 1698 } 1699 1700 static void 1701 unp_drop(struct unpcb *unp) 1702 { 1703 struct socket *so = unp->unp_socket; 1704 struct unpcb *unp2; 1705 1706 UNP_LINK_WLOCK_ASSERT(); 1707 UNP_PCB_LOCK_ASSERT(unp); 1708 1709 /* 1710 * Regardless of whether the socket's peer dropped the connection 1711 * with this socket by aborting or disconnecting, POSIX requires 1712 * that ECONNRESET is returned. 1713 */ 1714 so->so_error = ECONNRESET; 1715 unp2 = unp->unp_conn; 1716 if (unp2 == NULL) 1717 return; 1718 UNP_PCB_LOCK(unp2); 1719 unp_disconnect(unp, unp2); 1720 UNP_PCB_UNLOCK(unp2); 1721 } 1722 1723 static void 1724 unp_freerights(struct filedescent **fdep, int fdcount) 1725 { 1726 struct file *fp; 1727 int i; 1728 1729 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1730 1731 for (i = 0; i < fdcount; i++) { 1732 fp = fdep[i]->fde_file; 1733 filecaps_free(&fdep[i]->fde_caps); 1734 unp_discard(fp); 1735 } 1736 free(fdep[0], M_FILECAPS); 1737 } 1738 1739 static int 1740 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1741 { 1742 struct thread *td = curthread; /* XXX */ 1743 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1744 int i; 1745 int *fdp; 1746 struct filedesc *fdesc = td->td_proc->p_fd; 1747 struct filedescent **fdep; 1748 void *data; 1749 socklen_t clen = control->m_len, datalen; 1750 int error, newfds; 1751 u_int newlen; 1752 1753 UNP_LINK_UNLOCK_ASSERT(); 1754 1755 error = 0; 1756 if (controlp != NULL) /* controlp == NULL => free control messages */ 1757 *controlp = NULL; 1758 while (cm != NULL) { 1759 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 1760 error = EINVAL; 1761 break; 1762 } 1763 data = CMSG_DATA(cm); 1764 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1765 if (cm->cmsg_level == SOL_SOCKET 1766 && cm->cmsg_type == SCM_RIGHTS) { 1767 newfds = datalen / sizeof(*fdep); 1768 if (newfds == 0) 1769 goto next; 1770 fdep = data; 1771 1772 /* If we're not outputting the descriptors free them. */ 1773 if (error || controlp == NULL) { 1774 unp_freerights(fdep, newfds); 1775 goto next; 1776 } 1777 FILEDESC_XLOCK(fdesc); 1778 1779 /* 1780 * Now change each pointer to an fd in the global 1781 * table to an integer that is the index to the local 1782 * fd table entry that we set up to point to the 1783 * global one we are transferring. 1784 */ 1785 newlen = newfds * sizeof(int); 1786 *controlp = sbcreatecontrol(NULL, newlen, 1787 SCM_RIGHTS, SOL_SOCKET); 1788 if (*controlp == NULL) { 1789 FILEDESC_XUNLOCK(fdesc); 1790 error = E2BIG; 1791 unp_freerights(fdep, newfds); 1792 goto next; 1793 } 1794 1795 fdp = (int *) 1796 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1797 if (fdallocn(td, 0, fdp, newfds) != 0) { 1798 FILEDESC_XUNLOCK(fdesc); 1799 error = EMSGSIZE; 1800 unp_freerights(fdep, newfds); 1801 m_freem(*controlp); 1802 *controlp = NULL; 1803 goto next; 1804 } 1805 for (i = 0; i < newfds; i++, fdp++) { 1806 _finstall(fdesc, fdep[i]->fde_file, *fdp, 1807 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 1808 &fdep[i]->fde_caps); 1809 unp_externalize_fp(fdep[i]->fde_file); 1810 } 1811 FILEDESC_XUNLOCK(fdesc); 1812 free(fdep[0], M_FILECAPS); 1813 } else { 1814 /* We can just copy anything else across. */ 1815 if (error || controlp == NULL) 1816 goto next; 1817 *controlp = sbcreatecontrol(NULL, datalen, 1818 cm->cmsg_type, cm->cmsg_level); 1819 if (*controlp == NULL) { 1820 error = ENOBUFS; 1821 goto next; 1822 } 1823 bcopy(data, 1824 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 1825 datalen); 1826 } 1827 controlp = &(*controlp)->m_next; 1828 1829 next: 1830 if (CMSG_SPACE(datalen) < clen) { 1831 clen -= CMSG_SPACE(datalen); 1832 cm = (struct cmsghdr *) 1833 ((caddr_t)cm + CMSG_SPACE(datalen)); 1834 } else { 1835 clen = 0; 1836 cm = NULL; 1837 } 1838 } 1839 1840 m_freem(control); 1841 return (error); 1842 } 1843 1844 static void 1845 unp_zone_change(void *tag) 1846 { 1847 1848 uma_zone_set_max(unp_zone, maxsockets); 1849 } 1850 1851 static void 1852 unp_init(void) 1853 { 1854 1855 #ifdef VIMAGE 1856 if (!IS_DEFAULT_VNET(curvnet)) 1857 return; 1858 #endif 1859 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 1860 NULL, NULL, UMA_ALIGN_PTR, 0); 1861 if (unp_zone == NULL) 1862 panic("unp_init"); 1863 uma_zone_set_max(unp_zone, maxsockets); 1864 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 1865 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 1866 NULL, EVENTHANDLER_PRI_ANY); 1867 LIST_INIT(&unp_dhead); 1868 LIST_INIT(&unp_shead); 1869 LIST_INIT(&unp_sphead); 1870 SLIST_INIT(&unp_defers); 1871 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 1872 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 1873 UNP_LINK_LOCK_INIT(); 1874 UNP_LIST_LOCK_INIT(); 1875 UNP_DEFERRED_LOCK_INIT(); 1876 } 1877 1878 static int 1879 unp_internalize(struct mbuf **controlp, struct thread *td) 1880 { 1881 struct mbuf *control = *controlp; 1882 struct proc *p = td->td_proc; 1883 struct filedesc *fdesc = p->p_fd; 1884 struct bintime *bt; 1885 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1886 struct cmsgcred *cmcred; 1887 struct filedescent *fde, **fdep, *fdev; 1888 struct file *fp; 1889 struct timeval *tv; 1890 int i, *fdp; 1891 void *data; 1892 socklen_t clen = control->m_len, datalen; 1893 int error, oldfds; 1894 u_int newlen; 1895 1896 UNP_LINK_UNLOCK_ASSERT(); 1897 1898 error = 0; 1899 *controlp = NULL; 1900 while (cm != NULL) { 1901 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 1902 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 1903 error = EINVAL; 1904 goto out; 1905 } 1906 data = CMSG_DATA(cm); 1907 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1908 1909 switch (cm->cmsg_type) { 1910 /* 1911 * Fill in credential information. 1912 */ 1913 case SCM_CREDS: 1914 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 1915 SCM_CREDS, SOL_SOCKET); 1916 if (*controlp == NULL) { 1917 error = ENOBUFS; 1918 goto out; 1919 } 1920 cmcred = (struct cmsgcred *) 1921 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1922 cmcred->cmcred_pid = p->p_pid; 1923 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 1924 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 1925 cmcred->cmcred_euid = td->td_ucred->cr_uid; 1926 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 1927 CMGROUP_MAX); 1928 for (i = 0; i < cmcred->cmcred_ngroups; i++) 1929 cmcred->cmcred_groups[i] = 1930 td->td_ucred->cr_groups[i]; 1931 break; 1932 1933 case SCM_RIGHTS: 1934 oldfds = datalen / sizeof (int); 1935 if (oldfds == 0) 1936 break; 1937 /* 1938 * Check that all the FDs passed in refer to legal 1939 * files. If not, reject the entire operation. 1940 */ 1941 fdp = data; 1942 FILEDESC_SLOCK(fdesc); 1943 for (i = 0; i < oldfds; i++, fdp++) { 1944 fp = fget_locked(fdesc, *fdp); 1945 if (fp == NULL) { 1946 FILEDESC_SUNLOCK(fdesc); 1947 error = EBADF; 1948 goto out; 1949 } 1950 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 1951 FILEDESC_SUNLOCK(fdesc); 1952 error = EOPNOTSUPP; 1953 goto out; 1954 } 1955 1956 } 1957 1958 /* 1959 * Now replace the integer FDs with pointers to the 1960 * file structure and capability rights. 1961 */ 1962 newlen = oldfds * sizeof(fdep[0]); 1963 *controlp = sbcreatecontrol(NULL, newlen, 1964 SCM_RIGHTS, SOL_SOCKET); 1965 if (*controlp == NULL) { 1966 FILEDESC_SUNLOCK(fdesc); 1967 error = E2BIG; 1968 goto out; 1969 } 1970 fdp = data; 1971 fdep = (struct filedescent **) 1972 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1973 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 1974 M_WAITOK); 1975 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 1976 fde = &fdesc->fd_ofiles[*fdp]; 1977 fdep[i] = fdev; 1978 fdep[i]->fde_file = fde->fde_file; 1979 filecaps_copy(&fde->fde_caps, 1980 &fdep[i]->fde_caps, true); 1981 unp_internalize_fp(fdep[i]->fde_file); 1982 } 1983 FILEDESC_SUNLOCK(fdesc); 1984 break; 1985 1986 case SCM_TIMESTAMP: 1987 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 1988 SCM_TIMESTAMP, SOL_SOCKET); 1989 if (*controlp == NULL) { 1990 error = ENOBUFS; 1991 goto out; 1992 } 1993 tv = (struct timeval *) 1994 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1995 microtime(tv); 1996 break; 1997 1998 case SCM_BINTIME: 1999 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2000 SCM_BINTIME, SOL_SOCKET); 2001 if (*controlp == NULL) { 2002 error = ENOBUFS; 2003 goto out; 2004 } 2005 bt = (struct bintime *) 2006 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2007 bintime(bt); 2008 break; 2009 2010 default: 2011 error = EINVAL; 2012 goto out; 2013 } 2014 2015 controlp = &(*controlp)->m_next; 2016 if (CMSG_SPACE(datalen) < clen) { 2017 clen -= CMSG_SPACE(datalen); 2018 cm = (struct cmsghdr *) 2019 ((caddr_t)cm + CMSG_SPACE(datalen)); 2020 } else { 2021 clen = 0; 2022 cm = NULL; 2023 } 2024 } 2025 2026 out: 2027 m_freem(control); 2028 return (error); 2029 } 2030 2031 static struct mbuf * 2032 unp_addsockcred(struct thread *td, struct mbuf *control) 2033 { 2034 struct mbuf *m, *n, *n_prev; 2035 struct sockcred *sc; 2036 const struct cmsghdr *cm; 2037 int ngroups; 2038 int i; 2039 2040 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2041 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2042 if (m == NULL) 2043 return (control); 2044 2045 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2046 sc->sc_uid = td->td_ucred->cr_ruid; 2047 sc->sc_euid = td->td_ucred->cr_uid; 2048 sc->sc_gid = td->td_ucred->cr_rgid; 2049 sc->sc_egid = td->td_ucred->cr_gid; 2050 sc->sc_ngroups = ngroups; 2051 for (i = 0; i < sc->sc_ngroups; i++) 2052 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2053 2054 /* 2055 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2056 * created SCM_CREDS control message (struct sockcred) has another 2057 * format. 2058 */ 2059 if (control != NULL) 2060 for (n = control, n_prev = NULL; n != NULL;) { 2061 cm = mtod(n, struct cmsghdr *); 2062 if (cm->cmsg_level == SOL_SOCKET && 2063 cm->cmsg_type == SCM_CREDS) { 2064 if (n_prev == NULL) 2065 control = n->m_next; 2066 else 2067 n_prev->m_next = n->m_next; 2068 n = m_free(n); 2069 } else { 2070 n_prev = n; 2071 n = n->m_next; 2072 } 2073 } 2074 2075 /* Prepend it to the head. */ 2076 m->m_next = control; 2077 return (m); 2078 } 2079 2080 static struct unpcb * 2081 fptounp(struct file *fp) 2082 { 2083 struct socket *so; 2084 2085 if (fp->f_type != DTYPE_SOCKET) 2086 return (NULL); 2087 if ((so = fp->f_data) == NULL) 2088 return (NULL); 2089 if (so->so_proto->pr_domain != &localdomain) 2090 return (NULL); 2091 return sotounpcb(so); 2092 } 2093 2094 static void 2095 unp_discard(struct file *fp) 2096 { 2097 struct unp_defer *dr; 2098 2099 if (unp_externalize_fp(fp)) { 2100 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2101 dr->ud_fp = fp; 2102 UNP_DEFERRED_LOCK(); 2103 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2104 UNP_DEFERRED_UNLOCK(); 2105 atomic_add_int(&unp_defers_count, 1); 2106 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2107 } else 2108 (void) closef(fp, (struct thread *)NULL); 2109 } 2110 2111 static void 2112 unp_process_defers(void *arg __unused, int pending) 2113 { 2114 struct unp_defer *dr; 2115 SLIST_HEAD(, unp_defer) drl; 2116 int count; 2117 2118 SLIST_INIT(&drl); 2119 for (;;) { 2120 UNP_DEFERRED_LOCK(); 2121 if (SLIST_FIRST(&unp_defers) == NULL) { 2122 UNP_DEFERRED_UNLOCK(); 2123 break; 2124 } 2125 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2126 UNP_DEFERRED_UNLOCK(); 2127 count = 0; 2128 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2129 SLIST_REMOVE_HEAD(&drl, ud_link); 2130 closef(dr->ud_fp, NULL); 2131 free(dr, M_TEMP); 2132 count++; 2133 } 2134 atomic_add_int(&unp_defers_count, -count); 2135 } 2136 } 2137 2138 static void 2139 unp_internalize_fp(struct file *fp) 2140 { 2141 struct unpcb *unp; 2142 2143 UNP_LINK_WLOCK(); 2144 if ((unp = fptounp(fp)) != NULL) { 2145 unp->unp_file = fp; 2146 unp->unp_msgcount++; 2147 } 2148 fhold(fp); 2149 unp_rights++; 2150 UNP_LINK_WUNLOCK(); 2151 } 2152 2153 static int 2154 unp_externalize_fp(struct file *fp) 2155 { 2156 struct unpcb *unp; 2157 int ret; 2158 2159 UNP_LINK_WLOCK(); 2160 if ((unp = fptounp(fp)) != NULL) { 2161 unp->unp_msgcount--; 2162 ret = 1; 2163 } else 2164 ret = 0; 2165 unp_rights--; 2166 UNP_LINK_WUNLOCK(); 2167 return (ret); 2168 } 2169 2170 /* 2171 * unp_defer indicates whether additional work has been defered for a future 2172 * pass through unp_gc(). It is thread local and does not require explicit 2173 * synchronization. 2174 */ 2175 static int unp_marked; 2176 static int unp_unreachable; 2177 2178 static void 2179 unp_accessable(struct filedescent **fdep, int fdcount) 2180 { 2181 struct unpcb *unp; 2182 struct file *fp; 2183 int i; 2184 2185 for (i = 0; i < fdcount; i++) { 2186 fp = fdep[i]->fde_file; 2187 if ((unp = fptounp(fp)) == NULL) 2188 continue; 2189 if (unp->unp_gcflag & UNPGC_REF) 2190 continue; 2191 unp->unp_gcflag &= ~UNPGC_DEAD; 2192 unp->unp_gcflag |= UNPGC_REF; 2193 unp_marked++; 2194 } 2195 } 2196 2197 static void 2198 unp_gc_process(struct unpcb *unp) 2199 { 2200 struct socket *soa; 2201 struct socket *so; 2202 struct file *fp; 2203 2204 /* Already processed. */ 2205 if (unp->unp_gcflag & UNPGC_SCANNED) 2206 return; 2207 fp = unp->unp_file; 2208 2209 /* 2210 * Check for a socket potentially in a cycle. It must be in a 2211 * queue as indicated by msgcount, and this must equal the file 2212 * reference count. Note that when msgcount is 0 the file is NULL. 2213 */ 2214 if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp && 2215 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) { 2216 unp->unp_gcflag |= UNPGC_DEAD; 2217 unp_unreachable++; 2218 return; 2219 } 2220 2221 /* 2222 * Mark all sockets we reference with RIGHTS. 2223 */ 2224 so = unp->unp_socket; 2225 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2226 SOCKBUF_LOCK(&so->so_rcv); 2227 unp_scan(so->so_rcv.sb_mb, unp_accessable); 2228 SOCKBUF_UNLOCK(&so->so_rcv); 2229 } 2230 2231 /* 2232 * Mark all sockets in our accept queue. 2233 */ 2234 ACCEPT_LOCK(); 2235 TAILQ_FOREACH(soa, &so->so_comp, so_list) { 2236 if ((sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) != 0) 2237 continue; 2238 SOCKBUF_LOCK(&soa->so_rcv); 2239 unp_scan(soa->so_rcv.sb_mb, unp_accessable); 2240 SOCKBUF_UNLOCK(&soa->so_rcv); 2241 } 2242 ACCEPT_UNLOCK(); 2243 unp->unp_gcflag |= UNPGC_SCANNED; 2244 } 2245 2246 static int unp_recycled; 2247 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2248 "Number of unreachable sockets claimed by the garbage collector."); 2249 2250 static int unp_taskcount; 2251 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2252 "Number of times the garbage collector has run."); 2253 2254 static void 2255 unp_gc(__unused void *arg, int pending) 2256 { 2257 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2258 NULL }; 2259 struct unp_head **head; 2260 struct file *f, **unref; 2261 struct unpcb *unp; 2262 int i, total; 2263 2264 unp_taskcount++; 2265 UNP_LIST_LOCK(); 2266 /* 2267 * First clear all gc flags from previous runs, apart from 2268 * UNPGC_IGNORE_RIGHTS. 2269 */ 2270 for (head = heads; *head != NULL; head++) 2271 LIST_FOREACH(unp, *head, unp_link) 2272 unp->unp_gcflag = 2273 (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS); 2274 2275 /* 2276 * Scan marking all reachable sockets with UNPGC_REF. Once a socket 2277 * is reachable all of the sockets it references are reachable. 2278 * Stop the scan once we do a complete loop without discovering 2279 * a new reachable socket. 2280 */ 2281 do { 2282 unp_unreachable = 0; 2283 unp_marked = 0; 2284 for (head = heads; *head != NULL; head++) 2285 LIST_FOREACH(unp, *head, unp_link) 2286 unp_gc_process(unp); 2287 } while (unp_marked); 2288 UNP_LIST_UNLOCK(); 2289 if (unp_unreachable == 0) 2290 return; 2291 2292 /* 2293 * Allocate space for a local list of dead unpcbs. 2294 */ 2295 unref = malloc(unp_unreachable * sizeof(struct file *), 2296 M_TEMP, M_WAITOK); 2297 2298 /* 2299 * Iterate looking for sockets which have been specifically marked 2300 * as as unreachable and store them locally. 2301 */ 2302 UNP_LINK_RLOCK(); 2303 UNP_LIST_LOCK(); 2304 for (total = 0, head = heads; *head != NULL; head++) 2305 LIST_FOREACH(unp, *head, unp_link) 2306 if ((unp->unp_gcflag & UNPGC_DEAD) != 0) { 2307 f = unp->unp_file; 2308 if (unp->unp_msgcount == 0 || f == NULL || 2309 f->f_count != unp->unp_msgcount) 2310 continue; 2311 unref[total++] = f; 2312 fhold(f); 2313 KASSERT(total <= unp_unreachable, 2314 ("unp_gc: incorrect unreachable count.")); 2315 } 2316 UNP_LIST_UNLOCK(); 2317 UNP_LINK_RUNLOCK(); 2318 2319 /* 2320 * Now flush all sockets, free'ing rights. This will free the 2321 * struct files associated with these sockets but leave each socket 2322 * with one remaining ref. 2323 */ 2324 for (i = 0; i < total; i++) { 2325 struct socket *so; 2326 2327 so = unref[i]->f_data; 2328 CURVNET_SET(so->so_vnet); 2329 sorflush(so); 2330 CURVNET_RESTORE(); 2331 } 2332 2333 /* 2334 * And finally release the sockets so they can be reclaimed. 2335 */ 2336 for (i = 0; i < total; i++) 2337 fdrop(unref[i], NULL); 2338 unp_recycled += total; 2339 free(unref, M_TEMP); 2340 } 2341 2342 static void 2343 unp_dispose(struct mbuf *m) 2344 { 2345 2346 if (m) 2347 unp_scan(m, unp_freerights); 2348 } 2349 2350 /* 2351 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2352 */ 2353 static void 2354 unp_dispose_so(struct socket *so) 2355 { 2356 struct unpcb *unp; 2357 2358 unp = sotounpcb(so); 2359 UNP_LIST_LOCK(); 2360 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2361 UNP_LIST_UNLOCK(); 2362 unp_dispose(so->so_rcv.sb_mb); 2363 } 2364 2365 static void 2366 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2367 { 2368 struct mbuf *m; 2369 struct cmsghdr *cm; 2370 void *data; 2371 socklen_t clen, datalen; 2372 2373 while (m0 != NULL) { 2374 for (m = m0; m; m = m->m_next) { 2375 if (m->m_type != MT_CONTROL) 2376 continue; 2377 2378 cm = mtod(m, struct cmsghdr *); 2379 clen = m->m_len; 2380 2381 while (cm != NULL) { 2382 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2383 break; 2384 2385 data = CMSG_DATA(cm); 2386 datalen = (caddr_t)cm + cm->cmsg_len 2387 - (caddr_t)data; 2388 2389 if (cm->cmsg_level == SOL_SOCKET && 2390 cm->cmsg_type == SCM_RIGHTS) { 2391 (*op)(data, datalen / 2392 sizeof(struct filedescent *)); 2393 } 2394 2395 if (CMSG_SPACE(datalen) < clen) { 2396 clen -= CMSG_SPACE(datalen); 2397 cm = (struct cmsghdr *) 2398 ((caddr_t)cm + CMSG_SPACE(datalen)); 2399 } else { 2400 clen = 0; 2401 cm = NULL; 2402 } 2403 } 2404 } 2405 m0 = m0->m_nextpkt; 2406 } 2407 } 2408 2409 /* 2410 * A helper function called by VFS before socket-type vnode reclamation. 2411 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2412 * use count. 2413 */ 2414 void 2415 vfs_unp_reclaim(struct vnode *vp) 2416 { 2417 struct socket *so; 2418 struct unpcb *unp; 2419 int active; 2420 2421 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2422 KASSERT(vp->v_type == VSOCK, 2423 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2424 2425 active = 0; 2426 UNP_LINK_WLOCK(); 2427 VOP_UNP_CONNECT(vp, &so); 2428 if (so == NULL) 2429 goto done; 2430 unp = sotounpcb(so); 2431 if (unp == NULL) 2432 goto done; 2433 UNP_PCB_LOCK(unp); 2434 if (unp->unp_vnode == vp) { 2435 VOP_UNP_DETACH(vp); 2436 unp->unp_vnode = NULL; 2437 active = 1; 2438 } 2439 UNP_PCB_UNLOCK(unp); 2440 done: 2441 UNP_LINK_WUNLOCK(); 2442 if (active) 2443 vunref(vp); 2444 } 2445 2446 #ifdef DDB 2447 static void 2448 db_print_indent(int indent) 2449 { 2450 int i; 2451 2452 for (i = 0; i < indent; i++) 2453 db_printf(" "); 2454 } 2455 2456 static void 2457 db_print_unpflags(int unp_flags) 2458 { 2459 int comma; 2460 2461 comma = 0; 2462 if (unp_flags & UNP_HAVEPC) { 2463 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2464 comma = 1; 2465 } 2466 if (unp_flags & UNP_HAVEPCCACHED) { 2467 db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : ""); 2468 comma = 1; 2469 } 2470 if (unp_flags & UNP_WANTCRED) { 2471 db_printf("%sUNP_WANTCRED", comma ? ", " : ""); 2472 comma = 1; 2473 } 2474 if (unp_flags & UNP_CONNWAIT) { 2475 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2476 comma = 1; 2477 } 2478 if (unp_flags & UNP_CONNECTING) { 2479 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2480 comma = 1; 2481 } 2482 if (unp_flags & UNP_BINDING) { 2483 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2484 comma = 1; 2485 } 2486 } 2487 2488 static void 2489 db_print_xucred(int indent, struct xucred *xu) 2490 { 2491 int comma, i; 2492 2493 db_print_indent(indent); 2494 db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n", 2495 xu->cr_version, xu->cr_uid, xu->cr_ngroups); 2496 db_print_indent(indent); 2497 db_printf("cr_groups: "); 2498 comma = 0; 2499 for (i = 0; i < xu->cr_ngroups; i++) { 2500 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2501 comma = 1; 2502 } 2503 db_printf("\n"); 2504 } 2505 2506 static void 2507 db_print_unprefs(int indent, struct unp_head *uh) 2508 { 2509 struct unpcb *unp; 2510 int counter; 2511 2512 counter = 0; 2513 LIST_FOREACH(unp, uh, unp_reflink) { 2514 if (counter % 4 == 0) 2515 db_print_indent(indent); 2516 db_printf("%p ", unp); 2517 if (counter % 4 == 3) 2518 db_printf("\n"); 2519 counter++; 2520 } 2521 if (counter != 0 && counter % 4 != 0) 2522 db_printf("\n"); 2523 } 2524 2525 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2526 { 2527 struct unpcb *unp; 2528 2529 if (!have_addr) { 2530 db_printf("usage: show unpcb <addr>\n"); 2531 return; 2532 } 2533 unp = (struct unpcb *)addr; 2534 2535 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2536 unp->unp_vnode); 2537 2538 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2539 unp->unp_conn); 2540 2541 db_printf("unp_refs:\n"); 2542 db_print_unprefs(2, &unp->unp_refs); 2543 2544 /* XXXRW: Would be nice to print the full address, if any. */ 2545 db_printf("unp_addr: %p\n", unp->unp_addr); 2546 2547 db_printf("unp_gencnt: %llu\n", 2548 (unsigned long long)unp->unp_gencnt); 2549 2550 db_printf("unp_flags: %x (", unp->unp_flags); 2551 db_print_unpflags(unp->unp_flags); 2552 db_printf(")\n"); 2553 2554 db_printf("unp_peercred:\n"); 2555 db_print_xucred(2, &unp->unp_peercred); 2556 2557 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2558 } 2559 #endif 2560