1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/eventhandler.h> 69 #include <sys/fcntl.h> 70 #include <sys/file.h> 71 #include <sys/filedesc.h> 72 #include <sys/kernel.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * See unpcb.h for the locking key. 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 165 "Local domain"); 166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "SOCK_DGRAM"); 172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 174 "SOCK_SEQPACKET"); 175 176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 177 &unpst_sendspace, 0, "Default stream send space."); 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 179 &unpst_recvspace, 0, "Default stream receive space."); 180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 181 &unpdg_sendspace, 0, "Default datagram send space."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 183 &unpdg_recvspace, 0, "Default datagram receive space."); 184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 185 &unpsp_sendspace, 0, "Default seqpacket send space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 187 &unpsp_recvspace, 0, "Default seqpacket receive space."); 188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 189 "File descriptors in flight."); 190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 191 &unp_defers_count, 0, 192 "File descriptors deferred to taskqueue for close."); 193 194 /* 195 * Locking and synchronization: 196 * 197 * Several types of locks exist in the local domain socket implementation: 198 * - a global linkage lock 199 * - a global connection list lock 200 * - the mtxpool lock 201 * - per-unpcb mutexes 202 * 203 * The linkage lock protects the global socket lists, the generation number 204 * counter and garbage collector state. 205 * 206 * The connection list lock protects the list of referring sockets in a datagram 207 * socket PCB. This lock is also overloaded to protect a global list of 208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS 209 * messages. To avoid recursion, such references are released by a dedicated 210 * thread. 211 * 212 * The mtxpool lock protects the vnode from being modified while referenced. 213 * Lock ordering rules require that it be acquired before any PCB locks. 214 * 215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the 216 * unpcb. This includes the unp_conn field, which either links two connected 217 * PCBs together (for connected socket types) or points at the destination 218 * socket (for connectionless socket types). The operations of creating or 219 * destroying a connection therefore involve locking multiple PCBs. To avoid 220 * lock order reversals, in some cases this involves dropping a PCB lock and 221 * using a reference counter to maintain liveness. 222 * 223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 224 * allocated in pru_attach() and freed in pru_detach(). The validity of that 225 * pointer is an invariant, so no lock is required to dereference the so_pcb 226 * pointer if a valid socket reference is held by the caller. In practice, 227 * this is always true during operations performed on a socket. Each unpcb 228 * has a back-pointer to its socket, unp_socket, which will be stable under 229 * the same circumstances. 230 * 231 * This pointer may only be safely dereferenced as long as a valid reference 232 * to the unpcb is held. Typically, this reference will be from the socket, 233 * or from another unpcb when the referring unpcb's lock is held (in order 234 * that the reference not be invalidated during use). For example, to follow 235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 236 * that detach is not run clearing unp_socket. 237 * 238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 239 * protocols, bind() is a non-atomic operation, and connect() requires 240 * potential sleeping in the protocol, due to potentially waiting on local or 241 * distributed file systems. We try to separate "lookup" operations, which 242 * may sleep, and the IPC operations themselves, which typically can occur 243 * with relative atomicity as locks can be held over the entire operation. 244 * 245 * Another tricky issue is simultaneous multi-threaded or multi-process 246 * access to a single UNIX domain socket. These are handled by the flags 247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 248 * binding, both of which involve dropping UNIX domain socket locks in order 249 * to perform namei() and other file system operations. 250 */ 251 static struct rwlock unp_link_rwlock; 252 static struct mtx unp_defers_lock; 253 254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 255 "unp_link_rwlock") 256 257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 258 RA_LOCKED) 259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 260 RA_UNLOCKED) 261 262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 267 RA_WLOCKED) 268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 269 270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 271 "unp_defer", NULL, MTX_DEF) 272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 274 275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 277 278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 279 "unp", "unp", \ 280 MTX_DUPOK|MTX_DEF) 281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx) 283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 289 290 static int uipc_connect2(struct socket *, struct socket *); 291 static int uipc_ctloutput(struct socket *, struct sockopt *); 292 static int unp_connect(struct socket *, struct sockaddr *, 293 struct thread *); 294 static int unp_connectat(int, struct socket *, struct sockaddr *, 295 struct thread *); 296 static int unp_connect2(struct socket *so, struct socket *so2, int); 297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 298 static void unp_dispose(struct socket *so); 299 static void unp_dispose_mbuf(struct mbuf *); 300 static void unp_shutdown(struct unpcb *); 301 static void unp_drop(struct unpcb *); 302 static void unp_gc(__unused void *, int); 303 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 304 static void unp_discard(struct file *); 305 static void unp_freerights(struct filedescent **, int); 306 static void unp_init(void); 307 static int unp_internalize(struct mbuf **, struct thread *); 308 static void unp_internalize_fp(struct file *); 309 static int unp_externalize(struct mbuf *, struct mbuf **, int); 310 static int unp_externalize_fp(struct file *); 311 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *, int); 312 static void unp_process_defers(void * __unused, int); 313 314 static void 315 unp_pcb_hold(struct unpcb *unp) 316 { 317 u_int old __unused; 318 319 old = refcount_acquire(&unp->unp_refcount); 320 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp)); 321 } 322 323 static __result_use_check bool 324 unp_pcb_rele(struct unpcb *unp) 325 { 326 bool ret; 327 328 UNP_PCB_LOCK_ASSERT(unp); 329 330 if ((ret = refcount_release(&unp->unp_refcount))) { 331 UNP_PCB_UNLOCK(unp); 332 UNP_PCB_LOCK_DESTROY(unp); 333 uma_zfree(unp_zone, unp); 334 } 335 return (ret); 336 } 337 338 static void 339 unp_pcb_rele_notlast(struct unpcb *unp) 340 { 341 bool ret __unused; 342 343 ret = refcount_release(&unp->unp_refcount); 344 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp)); 345 } 346 347 static void 348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2) 349 { 350 UNP_PCB_UNLOCK_ASSERT(unp); 351 UNP_PCB_UNLOCK_ASSERT(unp2); 352 353 if (unp == unp2) { 354 UNP_PCB_LOCK(unp); 355 } else if ((uintptr_t)unp2 > (uintptr_t)unp) { 356 UNP_PCB_LOCK(unp); 357 UNP_PCB_LOCK(unp2); 358 } else { 359 UNP_PCB_LOCK(unp2); 360 UNP_PCB_LOCK(unp); 361 } 362 } 363 364 static void 365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2) 366 { 367 UNP_PCB_UNLOCK(unp); 368 if (unp != unp2) 369 UNP_PCB_UNLOCK(unp2); 370 } 371 372 /* 373 * Try to lock the connected peer of an already locked socket. In some cases 374 * this requires that we unlock the current socket. The pairbusy counter is 375 * used to block concurrent connection attempts while the lock is dropped. The 376 * caller must be careful to revalidate PCB state. 377 */ 378 static struct unpcb * 379 unp_pcb_lock_peer(struct unpcb *unp) 380 { 381 struct unpcb *unp2; 382 383 UNP_PCB_LOCK_ASSERT(unp); 384 unp2 = unp->unp_conn; 385 if (unp2 == NULL) 386 return (NULL); 387 if (__predict_false(unp == unp2)) 388 return (unp); 389 390 UNP_PCB_UNLOCK_ASSERT(unp2); 391 392 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) 393 return (unp2); 394 if ((uintptr_t)unp2 > (uintptr_t)unp) { 395 UNP_PCB_LOCK(unp2); 396 return (unp2); 397 } 398 unp->unp_pairbusy++; 399 unp_pcb_hold(unp2); 400 UNP_PCB_UNLOCK(unp); 401 402 UNP_PCB_LOCK(unp2); 403 UNP_PCB_LOCK(unp); 404 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL, 405 ("%s: socket %p was reconnected", __func__, unp)); 406 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) { 407 unp->unp_flags &= ~UNP_WAITING; 408 wakeup(unp); 409 } 410 if (unp_pcb_rele(unp2)) { 411 /* unp2 is unlocked. */ 412 return (NULL); 413 } 414 if (unp->unp_conn == NULL) { 415 UNP_PCB_UNLOCK(unp2); 416 return (NULL); 417 } 418 return (unp2); 419 } 420 421 /* 422 * Definitions of protocols supported in the LOCAL domain. 423 */ 424 static struct domain localdomain; 425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 426 static struct pr_usrreqs uipc_usrreqs_seqpacket; 427 static struct protosw localsw[] = { 428 { 429 .pr_type = SOCK_STREAM, 430 .pr_domain = &localdomain, 431 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 432 .pr_ctloutput = &uipc_ctloutput, 433 .pr_usrreqs = &uipc_usrreqs_stream 434 }, 435 { 436 .pr_type = SOCK_DGRAM, 437 .pr_domain = &localdomain, 438 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 439 .pr_ctloutput = &uipc_ctloutput, 440 .pr_usrreqs = &uipc_usrreqs_dgram 441 }, 442 { 443 .pr_type = SOCK_SEQPACKET, 444 .pr_domain = &localdomain, 445 446 /* 447 * XXXRW: For now, PR_ADDR because soreceive will bump into them 448 * due to our use of sbappendaddr. A new sbappend variants is needed 449 * that supports both atomic record writes and control data. 450 */ 451 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 452 PR_RIGHTS, 453 .pr_ctloutput = &uipc_ctloutput, 454 .pr_usrreqs = &uipc_usrreqs_seqpacket, 455 }, 456 }; 457 458 static struct domain localdomain = { 459 .dom_family = AF_LOCAL, 460 .dom_name = "local", 461 .dom_init = unp_init, 462 .dom_externalize = unp_externalize, 463 .dom_dispose = unp_dispose, 464 .dom_protosw = localsw, 465 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 466 }; 467 DOMAIN_SET(local); 468 469 static void 470 uipc_abort(struct socket *so) 471 { 472 struct unpcb *unp, *unp2; 473 474 unp = sotounpcb(so); 475 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 476 UNP_PCB_UNLOCK_ASSERT(unp); 477 478 UNP_PCB_LOCK(unp); 479 unp2 = unp->unp_conn; 480 if (unp2 != NULL) { 481 unp_pcb_hold(unp2); 482 UNP_PCB_UNLOCK(unp); 483 unp_drop(unp2); 484 } else 485 UNP_PCB_UNLOCK(unp); 486 } 487 488 static int 489 uipc_accept(struct socket *so, struct sockaddr **nam) 490 { 491 struct unpcb *unp, *unp2; 492 const struct sockaddr *sa; 493 494 /* 495 * Pass back name of connected socket, if it was bound and we are 496 * still connected (our peer may have closed already!). 497 */ 498 unp = sotounpcb(so); 499 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 500 501 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 502 UNP_PCB_LOCK(unp); 503 unp2 = unp_pcb_lock_peer(unp); 504 if (unp2 != NULL && unp2->unp_addr != NULL) 505 sa = (struct sockaddr *)unp2->unp_addr; 506 else 507 sa = &sun_noname; 508 bcopy(sa, *nam, sa->sa_len); 509 if (unp2 != NULL) 510 unp_pcb_unlock_pair(unp, unp2); 511 else 512 UNP_PCB_UNLOCK(unp); 513 return (0); 514 } 515 516 static int 517 uipc_attach(struct socket *so, int proto, struct thread *td) 518 { 519 u_long sendspace, recvspace; 520 struct unpcb *unp; 521 int error; 522 bool locked; 523 524 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 525 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 526 switch (so->so_type) { 527 case SOCK_STREAM: 528 sendspace = unpst_sendspace; 529 recvspace = unpst_recvspace; 530 break; 531 532 case SOCK_DGRAM: 533 sendspace = unpdg_sendspace; 534 recvspace = unpdg_recvspace; 535 break; 536 537 case SOCK_SEQPACKET: 538 sendspace = unpsp_sendspace; 539 recvspace = unpsp_recvspace; 540 break; 541 542 default: 543 panic("uipc_attach"); 544 } 545 error = soreserve(so, sendspace, recvspace); 546 if (error) 547 return (error); 548 } 549 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 550 if (unp == NULL) 551 return (ENOBUFS); 552 LIST_INIT(&unp->unp_refs); 553 UNP_PCB_LOCK_INIT(unp); 554 unp->unp_socket = so; 555 so->so_pcb = unp; 556 refcount_init(&unp->unp_refcount, 1); 557 558 if ((locked = UNP_LINK_WOWNED()) == false) 559 UNP_LINK_WLOCK(); 560 561 unp->unp_gencnt = ++unp_gencnt; 562 unp->unp_ino = ++unp_ino; 563 unp_count++; 564 switch (so->so_type) { 565 case SOCK_STREAM: 566 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 567 break; 568 569 case SOCK_DGRAM: 570 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 571 break; 572 573 case SOCK_SEQPACKET: 574 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 575 break; 576 577 default: 578 panic("uipc_attach"); 579 } 580 581 if (locked == false) 582 UNP_LINK_WUNLOCK(); 583 584 return (0); 585 } 586 587 static int 588 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 589 { 590 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 591 struct vattr vattr; 592 int error, namelen; 593 struct nameidata nd; 594 struct unpcb *unp; 595 struct vnode *vp; 596 struct mount *mp; 597 cap_rights_t rights; 598 char *buf; 599 600 if (nam->sa_family != AF_UNIX) 601 return (EAFNOSUPPORT); 602 603 unp = sotounpcb(so); 604 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 605 606 if (soun->sun_len > sizeof(struct sockaddr_un)) 607 return (EINVAL); 608 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 609 if (namelen <= 0) 610 return (EINVAL); 611 612 /* 613 * We don't allow simultaneous bind() calls on a single UNIX domain 614 * socket, so flag in-progress operations, and return an error if an 615 * operation is already in progress. 616 * 617 * Historically, we have not allowed a socket to be rebound, so this 618 * also returns an error. Not allowing re-binding simplifies the 619 * implementation and avoids a great many possible failure modes. 620 */ 621 UNP_PCB_LOCK(unp); 622 if (unp->unp_vnode != NULL) { 623 UNP_PCB_UNLOCK(unp); 624 return (EINVAL); 625 } 626 if (unp->unp_flags & UNP_BINDING) { 627 UNP_PCB_UNLOCK(unp); 628 return (EALREADY); 629 } 630 unp->unp_flags |= UNP_BINDING; 631 UNP_PCB_UNLOCK(unp); 632 633 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 634 bcopy(soun->sun_path, buf, namelen); 635 buf[namelen] = 0; 636 637 restart: 638 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 639 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT), 640 td); 641 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 642 error = namei(&nd); 643 if (error) 644 goto error; 645 vp = nd.ni_vp; 646 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 647 NDFREE(&nd, NDF_ONLY_PNBUF); 648 if (nd.ni_dvp == vp) 649 vrele(nd.ni_dvp); 650 else 651 vput(nd.ni_dvp); 652 if (vp != NULL) { 653 vrele(vp); 654 error = EADDRINUSE; 655 goto error; 656 } 657 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 658 if (error) 659 goto error; 660 goto restart; 661 } 662 VATTR_NULL(&vattr); 663 vattr.va_type = VSOCK; 664 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask); 665 #ifdef MAC 666 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 667 &vattr); 668 #endif 669 if (error == 0) 670 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 671 NDFREE(&nd, NDF_ONLY_PNBUF); 672 if (error) { 673 VOP_VPUT_PAIR(nd.ni_dvp, NULL, true); 674 vn_finished_write(mp); 675 if (error == ERELOOKUP) 676 goto restart; 677 goto error; 678 } 679 vp = nd.ni_vp; 680 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 681 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 682 683 UNP_PCB_LOCK(unp); 684 VOP_UNP_BIND(vp, unp); 685 unp->unp_vnode = vp; 686 unp->unp_addr = soun; 687 unp->unp_flags &= ~UNP_BINDING; 688 UNP_PCB_UNLOCK(unp); 689 vref(vp); 690 VOP_VPUT_PAIR(nd.ni_dvp, &vp, true); 691 vn_finished_write(mp); 692 free(buf, M_TEMP); 693 return (0); 694 695 error: 696 UNP_PCB_LOCK(unp); 697 unp->unp_flags &= ~UNP_BINDING; 698 UNP_PCB_UNLOCK(unp); 699 free(buf, M_TEMP); 700 return (error); 701 } 702 703 static int 704 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 705 { 706 707 return (uipc_bindat(AT_FDCWD, so, nam, td)); 708 } 709 710 static int 711 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 712 { 713 int error; 714 715 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 716 error = unp_connect(so, nam, td); 717 return (error); 718 } 719 720 static int 721 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 722 struct thread *td) 723 { 724 int error; 725 726 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 727 error = unp_connectat(fd, so, nam, td); 728 return (error); 729 } 730 731 static void 732 uipc_close(struct socket *so) 733 { 734 struct unpcb *unp, *unp2; 735 struct vnode *vp = NULL; 736 struct mtx *vplock; 737 738 unp = sotounpcb(so); 739 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 740 741 vplock = NULL; 742 if ((vp = unp->unp_vnode) != NULL) { 743 vplock = mtx_pool_find(mtxpool_sleep, vp); 744 mtx_lock(vplock); 745 } 746 UNP_PCB_LOCK(unp); 747 if (vp && unp->unp_vnode == NULL) { 748 mtx_unlock(vplock); 749 vp = NULL; 750 } 751 if (vp != NULL) { 752 VOP_UNP_DETACH(vp); 753 unp->unp_vnode = NULL; 754 } 755 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 756 unp_disconnect(unp, unp2); 757 else 758 UNP_PCB_UNLOCK(unp); 759 if (vp) { 760 mtx_unlock(vplock); 761 vrele(vp); 762 } 763 } 764 765 static int 766 uipc_connect2(struct socket *so1, struct socket *so2) 767 { 768 struct unpcb *unp, *unp2; 769 int error; 770 771 unp = so1->so_pcb; 772 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 773 unp2 = so2->so_pcb; 774 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 775 unp_pcb_lock_pair(unp, unp2); 776 error = unp_connect2(so1, so2, PRU_CONNECT2); 777 unp_pcb_unlock_pair(unp, unp2); 778 return (error); 779 } 780 781 static void 782 uipc_detach(struct socket *so) 783 { 784 struct unpcb *unp, *unp2; 785 struct mtx *vplock; 786 struct vnode *vp; 787 int local_unp_rights; 788 789 unp = sotounpcb(so); 790 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 791 792 vp = NULL; 793 vplock = NULL; 794 795 SOCK_LOCK(so); 796 if (!SOLISTENING(so)) { 797 /* 798 * Once the socket is removed from the global lists, 799 * uipc_ready() will not be able to locate its socket buffer, so 800 * clear the buffer now. At this point internalized rights have 801 * already been disposed of. 802 */ 803 sbrelease(&so->so_rcv, so); 804 } 805 SOCK_UNLOCK(so); 806 807 UNP_LINK_WLOCK(); 808 LIST_REMOVE(unp, unp_link); 809 if (unp->unp_gcflag & UNPGC_DEAD) 810 LIST_REMOVE(unp, unp_dead); 811 unp->unp_gencnt = ++unp_gencnt; 812 --unp_count; 813 UNP_LINK_WUNLOCK(); 814 815 UNP_PCB_UNLOCK_ASSERT(unp); 816 restart: 817 if ((vp = unp->unp_vnode) != NULL) { 818 vplock = mtx_pool_find(mtxpool_sleep, vp); 819 mtx_lock(vplock); 820 } 821 UNP_PCB_LOCK(unp); 822 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { 823 if (vplock) 824 mtx_unlock(vplock); 825 UNP_PCB_UNLOCK(unp); 826 goto restart; 827 } 828 if ((vp = unp->unp_vnode) != NULL) { 829 VOP_UNP_DETACH(vp); 830 unp->unp_vnode = NULL; 831 } 832 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 833 unp_disconnect(unp, unp2); 834 else 835 UNP_PCB_UNLOCK(unp); 836 837 UNP_REF_LIST_LOCK(); 838 while (!LIST_EMPTY(&unp->unp_refs)) { 839 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 840 841 unp_pcb_hold(ref); 842 UNP_REF_LIST_UNLOCK(); 843 844 MPASS(ref != unp); 845 UNP_PCB_UNLOCK_ASSERT(ref); 846 unp_drop(ref); 847 UNP_REF_LIST_LOCK(); 848 } 849 UNP_REF_LIST_UNLOCK(); 850 851 UNP_PCB_LOCK(unp); 852 local_unp_rights = unp_rights; 853 unp->unp_socket->so_pcb = NULL; 854 unp->unp_socket = NULL; 855 free(unp->unp_addr, M_SONAME); 856 unp->unp_addr = NULL; 857 if (!unp_pcb_rele(unp)) 858 UNP_PCB_UNLOCK(unp); 859 if (vp) { 860 mtx_unlock(vplock); 861 vrele(vp); 862 } 863 if (local_unp_rights) 864 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 865 } 866 867 static int 868 uipc_disconnect(struct socket *so) 869 { 870 struct unpcb *unp, *unp2; 871 872 unp = sotounpcb(so); 873 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 874 875 UNP_PCB_LOCK(unp); 876 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 877 unp_disconnect(unp, unp2); 878 else 879 UNP_PCB_UNLOCK(unp); 880 return (0); 881 } 882 883 static int 884 uipc_listen(struct socket *so, int backlog, struct thread *td) 885 { 886 struct unpcb *unp; 887 int error; 888 889 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 890 return (EOPNOTSUPP); 891 892 unp = sotounpcb(so); 893 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 894 895 UNP_PCB_LOCK(unp); 896 if (unp->unp_vnode == NULL) { 897 /* Already connected or not bound to an address. */ 898 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 899 UNP_PCB_UNLOCK(unp); 900 return (error); 901 } 902 903 SOCK_LOCK(so); 904 error = solisten_proto_check(so); 905 if (error == 0) { 906 cru2xt(td, &unp->unp_peercred); 907 solisten_proto(so, backlog); 908 } 909 SOCK_UNLOCK(so); 910 UNP_PCB_UNLOCK(unp); 911 return (error); 912 } 913 914 static int 915 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 916 { 917 struct unpcb *unp, *unp2; 918 const struct sockaddr *sa; 919 920 unp = sotounpcb(so); 921 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 922 923 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 924 UNP_LINK_RLOCK(); 925 /* 926 * XXX: It seems that this test always fails even when connection is 927 * established. So, this else clause is added as workaround to 928 * return PF_LOCAL sockaddr. 929 */ 930 unp2 = unp->unp_conn; 931 if (unp2 != NULL) { 932 UNP_PCB_LOCK(unp2); 933 if (unp2->unp_addr != NULL) 934 sa = (struct sockaddr *) unp2->unp_addr; 935 else 936 sa = &sun_noname; 937 bcopy(sa, *nam, sa->sa_len); 938 UNP_PCB_UNLOCK(unp2); 939 } else { 940 sa = &sun_noname; 941 bcopy(sa, *nam, sa->sa_len); 942 } 943 UNP_LINK_RUNLOCK(); 944 return (0); 945 } 946 947 static int 948 uipc_rcvd(struct socket *so, int flags) 949 { 950 struct unpcb *unp, *unp2; 951 struct socket *so2; 952 u_int mbcnt, sbcc; 953 954 unp = sotounpcb(so); 955 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 956 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 957 ("%s: socktype %d", __func__, so->so_type)); 958 959 /* 960 * Adjust backpressure on sender and wakeup any waiting to write. 961 * 962 * The unp lock is acquired to maintain the validity of the unp_conn 963 * pointer; no lock on unp2 is required as unp2->unp_socket will be 964 * static as long as we don't permit unp2 to disconnect from unp, 965 * which is prevented by the lock on unp. We cache values from 966 * so_rcv to avoid holding the so_rcv lock over the entire 967 * transaction on the remote so_snd. 968 */ 969 SOCKBUF_LOCK(&so->so_rcv); 970 mbcnt = so->so_rcv.sb_mbcnt; 971 sbcc = sbavail(&so->so_rcv); 972 SOCKBUF_UNLOCK(&so->so_rcv); 973 /* 974 * There is a benign race condition at this point. If we're planning to 975 * clear SB_STOP, but uipc_send is called on the connected socket at 976 * this instant, it might add data to the sockbuf and set SB_STOP. Then 977 * we would erroneously clear SB_STOP below, even though the sockbuf is 978 * full. The race is benign because the only ill effect is to allow the 979 * sockbuf to exceed its size limit, and the size limits are not 980 * strictly guaranteed anyway. 981 */ 982 UNP_PCB_LOCK(unp); 983 unp2 = unp->unp_conn; 984 if (unp2 == NULL) { 985 UNP_PCB_UNLOCK(unp); 986 return (0); 987 } 988 so2 = unp2->unp_socket; 989 SOCKBUF_LOCK(&so2->so_snd); 990 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 991 so2->so_snd.sb_flags &= ~SB_STOP; 992 sowwakeup_locked(so2); 993 UNP_PCB_UNLOCK(unp); 994 return (0); 995 } 996 997 static int 998 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 999 struct mbuf *control, struct thread *td) 1000 { 1001 struct unpcb *unp, *unp2; 1002 struct socket *so2; 1003 u_int mbcnt, sbcc; 1004 int freed, error; 1005 1006 unp = sotounpcb(so); 1007 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1008 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1009 so->so_type == SOCK_SEQPACKET, 1010 ("%s: socktype %d", __func__, so->so_type)); 1011 1012 freed = error = 0; 1013 if (flags & PRUS_OOB) { 1014 error = EOPNOTSUPP; 1015 goto release; 1016 } 1017 if (control != NULL && (error = unp_internalize(&control, td))) 1018 goto release; 1019 1020 unp2 = NULL; 1021 switch (so->so_type) { 1022 case SOCK_DGRAM: 1023 { 1024 const struct sockaddr *from; 1025 1026 if (nam != NULL) { 1027 error = unp_connect(so, nam, td); 1028 if (error != 0) 1029 break; 1030 } 1031 UNP_PCB_LOCK(unp); 1032 1033 /* 1034 * Because connect() and send() are non-atomic in a sendto() 1035 * with a target address, it's possible that the socket will 1036 * have disconnected before the send() can run. In that case 1037 * return the slightly counter-intuitive but otherwise 1038 * correct error that the socket is not connected. 1039 */ 1040 unp2 = unp_pcb_lock_peer(unp); 1041 if (unp2 == NULL) { 1042 UNP_PCB_UNLOCK(unp); 1043 error = ENOTCONN; 1044 break; 1045 } 1046 1047 if (unp2->unp_flags & UNP_WANTCRED_MASK) 1048 control = unp_addsockcred(td, control, 1049 unp2->unp_flags); 1050 if (unp->unp_addr != NULL) 1051 from = (struct sockaddr *)unp->unp_addr; 1052 else 1053 from = &sun_noname; 1054 so2 = unp2->unp_socket; 1055 SOCKBUF_LOCK(&so2->so_rcv); 1056 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1057 control)) { 1058 sorwakeup_locked(so2); 1059 m = NULL; 1060 control = NULL; 1061 } else { 1062 SOCKBUF_UNLOCK(&so2->so_rcv); 1063 error = ENOBUFS; 1064 } 1065 if (nam != NULL) 1066 unp_disconnect(unp, unp2); 1067 else 1068 unp_pcb_unlock_pair(unp, unp2); 1069 break; 1070 } 1071 1072 case SOCK_SEQPACKET: 1073 case SOCK_STREAM: 1074 if ((so->so_state & SS_ISCONNECTED) == 0) { 1075 if (nam != NULL) { 1076 error = unp_connect(so, nam, td); 1077 if (error != 0) 1078 break; 1079 } else { 1080 error = ENOTCONN; 1081 break; 1082 } 1083 } 1084 1085 UNP_PCB_LOCK(unp); 1086 if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) { 1087 UNP_PCB_UNLOCK(unp); 1088 error = ENOTCONN; 1089 break; 1090 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1091 unp_pcb_unlock_pair(unp, unp2); 1092 error = EPIPE; 1093 break; 1094 } 1095 UNP_PCB_UNLOCK(unp); 1096 if ((so2 = unp2->unp_socket) == NULL) { 1097 UNP_PCB_UNLOCK(unp2); 1098 error = ENOTCONN; 1099 break; 1100 } 1101 SOCKBUF_LOCK(&so2->so_rcv); 1102 if (unp2->unp_flags & UNP_WANTCRED_MASK) { 1103 /* 1104 * Credentials are passed only once on SOCK_STREAM and 1105 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or 1106 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS). 1107 */ 1108 control = unp_addsockcred(td, control, unp2->unp_flags); 1109 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT; 1110 } 1111 1112 /* 1113 * Send to paired receive port and wake up readers. Don't 1114 * check for space available in the receive buffer if we're 1115 * attaching ancillary data; Unix domain sockets only check 1116 * for space in the sending sockbuf, and that check is 1117 * performed one level up the stack. At that level we cannot 1118 * precisely account for the amount of buffer space used 1119 * (e.g., because control messages are not yet internalized). 1120 */ 1121 switch (so->so_type) { 1122 case SOCK_STREAM: 1123 if (control != NULL) { 1124 sbappendcontrol_locked(&so2->so_rcv, m, 1125 control, flags); 1126 control = NULL; 1127 } else 1128 sbappend_locked(&so2->so_rcv, m, flags); 1129 break; 1130 1131 case SOCK_SEQPACKET: 1132 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1133 &sun_noname, m, control)) 1134 control = NULL; 1135 break; 1136 } 1137 1138 mbcnt = so2->so_rcv.sb_mbcnt; 1139 sbcc = sbavail(&so2->so_rcv); 1140 if (sbcc) 1141 sorwakeup_locked(so2); 1142 else 1143 SOCKBUF_UNLOCK(&so2->so_rcv); 1144 1145 /* 1146 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1147 * it would be possible for uipc_rcvd to be called at this 1148 * point, drain the receiving sockbuf, clear SB_STOP, and then 1149 * we would set SB_STOP below. That could lead to an empty 1150 * sockbuf having SB_STOP set 1151 */ 1152 SOCKBUF_LOCK(&so->so_snd); 1153 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1154 so->so_snd.sb_flags |= SB_STOP; 1155 SOCKBUF_UNLOCK(&so->so_snd); 1156 UNP_PCB_UNLOCK(unp2); 1157 m = NULL; 1158 break; 1159 } 1160 1161 /* 1162 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1163 */ 1164 if (flags & PRUS_EOF) { 1165 UNP_PCB_LOCK(unp); 1166 socantsendmore(so); 1167 unp_shutdown(unp); 1168 UNP_PCB_UNLOCK(unp); 1169 } 1170 if (control != NULL && error != 0) 1171 unp_dispose_mbuf(control); 1172 1173 release: 1174 if (control != NULL) 1175 m_freem(control); 1176 /* 1177 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1178 * for freeing memory. 1179 */ 1180 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1181 m_freem(m); 1182 return (error); 1183 } 1184 1185 static bool 1186 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp) 1187 { 1188 struct mbuf *mb, *n; 1189 struct sockbuf *sb; 1190 1191 SOCK_LOCK(so); 1192 if (SOLISTENING(so)) { 1193 SOCK_UNLOCK(so); 1194 return (false); 1195 } 1196 mb = NULL; 1197 sb = &so->so_rcv; 1198 SOCKBUF_LOCK(sb); 1199 if (sb->sb_fnrdy != NULL) { 1200 for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) { 1201 if (mb == m) { 1202 *errorp = sbready(sb, m, count); 1203 break; 1204 } 1205 mb = mb->m_next; 1206 if (mb == NULL) { 1207 mb = n; 1208 if (mb != NULL) 1209 n = mb->m_nextpkt; 1210 } 1211 } 1212 } 1213 SOCKBUF_UNLOCK(sb); 1214 SOCK_UNLOCK(so); 1215 return (mb != NULL); 1216 } 1217 1218 static int 1219 uipc_ready(struct socket *so, struct mbuf *m, int count) 1220 { 1221 struct unpcb *unp, *unp2; 1222 struct socket *so2; 1223 int error, i; 1224 1225 unp = sotounpcb(so); 1226 1227 KASSERT(so->so_type == SOCK_STREAM, 1228 ("%s: unexpected socket type for %p", __func__, so)); 1229 1230 UNP_PCB_LOCK(unp); 1231 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1232 UNP_PCB_UNLOCK(unp); 1233 so2 = unp2->unp_socket; 1234 SOCKBUF_LOCK(&so2->so_rcv); 1235 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1236 sorwakeup_locked(so2); 1237 else 1238 SOCKBUF_UNLOCK(&so2->so_rcv); 1239 UNP_PCB_UNLOCK(unp2); 1240 return (error); 1241 } 1242 UNP_PCB_UNLOCK(unp); 1243 1244 /* 1245 * The receiving socket has been disconnected, but may still be valid. 1246 * In this case, the now-ready mbufs are still present in its socket 1247 * buffer, so perform an exhaustive search before giving up and freeing 1248 * the mbufs. 1249 */ 1250 UNP_LINK_RLOCK(); 1251 LIST_FOREACH(unp, &unp_shead, unp_link) { 1252 if (uipc_ready_scan(unp->unp_socket, m, count, &error)) 1253 break; 1254 } 1255 UNP_LINK_RUNLOCK(); 1256 1257 if (unp == NULL) { 1258 for (i = 0; i < count; i++) 1259 m = m_free(m); 1260 error = ECONNRESET; 1261 } 1262 return (error); 1263 } 1264 1265 static int 1266 uipc_sense(struct socket *so, struct stat *sb) 1267 { 1268 struct unpcb *unp; 1269 1270 unp = sotounpcb(so); 1271 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1272 1273 sb->st_blksize = so->so_snd.sb_hiwat; 1274 sb->st_dev = NODEV; 1275 sb->st_ino = unp->unp_ino; 1276 return (0); 1277 } 1278 1279 static int 1280 uipc_shutdown(struct socket *so) 1281 { 1282 struct unpcb *unp; 1283 1284 unp = sotounpcb(so); 1285 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1286 1287 UNP_PCB_LOCK(unp); 1288 socantsendmore(so); 1289 unp_shutdown(unp); 1290 UNP_PCB_UNLOCK(unp); 1291 return (0); 1292 } 1293 1294 static int 1295 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1296 { 1297 struct unpcb *unp; 1298 const struct sockaddr *sa; 1299 1300 unp = sotounpcb(so); 1301 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1302 1303 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1304 UNP_PCB_LOCK(unp); 1305 if (unp->unp_addr != NULL) 1306 sa = (struct sockaddr *) unp->unp_addr; 1307 else 1308 sa = &sun_noname; 1309 bcopy(sa, *nam, sa->sa_len); 1310 UNP_PCB_UNLOCK(unp); 1311 return (0); 1312 } 1313 1314 static struct pr_usrreqs uipc_usrreqs_dgram = { 1315 .pru_abort = uipc_abort, 1316 .pru_accept = uipc_accept, 1317 .pru_attach = uipc_attach, 1318 .pru_bind = uipc_bind, 1319 .pru_bindat = uipc_bindat, 1320 .pru_connect = uipc_connect, 1321 .pru_connectat = uipc_connectat, 1322 .pru_connect2 = uipc_connect2, 1323 .pru_detach = uipc_detach, 1324 .pru_disconnect = uipc_disconnect, 1325 .pru_listen = uipc_listen, 1326 .pru_peeraddr = uipc_peeraddr, 1327 .pru_rcvd = uipc_rcvd, 1328 .pru_send = uipc_send, 1329 .pru_sense = uipc_sense, 1330 .pru_shutdown = uipc_shutdown, 1331 .pru_sockaddr = uipc_sockaddr, 1332 .pru_soreceive = soreceive_dgram, 1333 .pru_close = uipc_close, 1334 }; 1335 1336 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1337 .pru_abort = uipc_abort, 1338 .pru_accept = uipc_accept, 1339 .pru_attach = uipc_attach, 1340 .pru_bind = uipc_bind, 1341 .pru_bindat = uipc_bindat, 1342 .pru_connect = uipc_connect, 1343 .pru_connectat = uipc_connectat, 1344 .pru_connect2 = uipc_connect2, 1345 .pru_detach = uipc_detach, 1346 .pru_disconnect = uipc_disconnect, 1347 .pru_listen = uipc_listen, 1348 .pru_peeraddr = uipc_peeraddr, 1349 .pru_rcvd = uipc_rcvd, 1350 .pru_send = uipc_send, 1351 .pru_sense = uipc_sense, 1352 .pru_shutdown = uipc_shutdown, 1353 .pru_sockaddr = uipc_sockaddr, 1354 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1355 .pru_close = uipc_close, 1356 }; 1357 1358 static struct pr_usrreqs uipc_usrreqs_stream = { 1359 .pru_abort = uipc_abort, 1360 .pru_accept = uipc_accept, 1361 .pru_attach = uipc_attach, 1362 .pru_bind = uipc_bind, 1363 .pru_bindat = uipc_bindat, 1364 .pru_connect = uipc_connect, 1365 .pru_connectat = uipc_connectat, 1366 .pru_connect2 = uipc_connect2, 1367 .pru_detach = uipc_detach, 1368 .pru_disconnect = uipc_disconnect, 1369 .pru_listen = uipc_listen, 1370 .pru_peeraddr = uipc_peeraddr, 1371 .pru_rcvd = uipc_rcvd, 1372 .pru_send = uipc_send, 1373 .pru_ready = uipc_ready, 1374 .pru_sense = uipc_sense, 1375 .pru_shutdown = uipc_shutdown, 1376 .pru_sockaddr = uipc_sockaddr, 1377 .pru_soreceive = soreceive_generic, 1378 .pru_close = uipc_close, 1379 }; 1380 1381 static int 1382 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1383 { 1384 struct unpcb *unp; 1385 struct xucred xu; 1386 int error, optval; 1387 1388 if (sopt->sopt_level != SOL_LOCAL) 1389 return (EINVAL); 1390 1391 unp = sotounpcb(so); 1392 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1393 error = 0; 1394 switch (sopt->sopt_dir) { 1395 case SOPT_GET: 1396 switch (sopt->sopt_name) { 1397 case LOCAL_PEERCRED: 1398 UNP_PCB_LOCK(unp); 1399 if (unp->unp_flags & UNP_HAVEPC) 1400 xu = unp->unp_peercred; 1401 else { 1402 if (so->so_type == SOCK_STREAM) 1403 error = ENOTCONN; 1404 else 1405 error = EINVAL; 1406 } 1407 UNP_PCB_UNLOCK(unp); 1408 if (error == 0) 1409 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1410 break; 1411 1412 case LOCAL_CREDS: 1413 /* Unlocked read. */ 1414 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0; 1415 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1416 break; 1417 1418 case LOCAL_CREDS_PERSISTENT: 1419 /* Unlocked read. */ 1420 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0; 1421 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1422 break; 1423 1424 case LOCAL_CONNWAIT: 1425 /* Unlocked read. */ 1426 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1427 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1428 break; 1429 1430 default: 1431 error = EOPNOTSUPP; 1432 break; 1433 } 1434 break; 1435 1436 case SOPT_SET: 1437 switch (sopt->sopt_name) { 1438 case LOCAL_CREDS: 1439 case LOCAL_CREDS_PERSISTENT: 1440 case LOCAL_CONNWAIT: 1441 error = sooptcopyin(sopt, &optval, sizeof(optval), 1442 sizeof(optval)); 1443 if (error) 1444 break; 1445 1446 #define OPTSET(bit, exclusive) do { \ 1447 UNP_PCB_LOCK(unp); \ 1448 if (optval) { \ 1449 if ((unp->unp_flags & (exclusive)) != 0) { \ 1450 UNP_PCB_UNLOCK(unp); \ 1451 error = EINVAL; \ 1452 break; \ 1453 } \ 1454 unp->unp_flags |= (bit); \ 1455 } else \ 1456 unp->unp_flags &= ~(bit); \ 1457 UNP_PCB_UNLOCK(unp); \ 1458 } while (0) 1459 1460 switch (sopt->sopt_name) { 1461 case LOCAL_CREDS: 1462 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS); 1463 break; 1464 1465 case LOCAL_CREDS_PERSISTENT: 1466 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT); 1467 break; 1468 1469 case LOCAL_CONNWAIT: 1470 OPTSET(UNP_CONNWAIT, 0); 1471 break; 1472 1473 default: 1474 break; 1475 } 1476 break; 1477 #undef OPTSET 1478 default: 1479 error = ENOPROTOOPT; 1480 break; 1481 } 1482 break; 1483 1484 default: 1485 error = EOPNOTSUPP; 1486 break; 1487 } 1488 return (error); 1489 } 1490 1491 static int 1492 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1493 { 1494 1495 return (unp_connectat(AT_FDCWD, so, nam, td)); 1496 } 1497 1498 static int 1499 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1500 struct thread *td) 1501 { 1502 struct mtx *vplock; 1503 struct sockaddr_un *soun; 1504 struct vnode *vp; 1505 struct socket *so2; 1506 struct unpcb *unp, *unp2, *unp3; 1507 struct nameidata nd; 1508 char buf[SOCK_MAXADDRLEN]; 1509 struct sockaddr *sa; 1510 cap_rights_t rights; 1511 int error, len; 1512 bool connreq; 1513 1514 if (nam->sa_family != AF_UNIX) 1515 return (EAFNOSUPPORT); 1516 if (nam->sa_len > sizeof(struct sockaddr_un)) 1517 return (EINVAL); 1518 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1519 if (len <= 0) 1520 return (EINVAL); 1521 soun = (struct sockaddr_un *)nam; 1522 bcopy(soun->sun_path, buf, len); 1523 buf[len] = 0; 1524 1525 unp = sotounpcb(so); 1526 UNP_PCB_LOCK(unp); 1527 for (;;) { 1528 /* 1529 * Wait for connection state to stabilize. If a connection 1530 * already exists, give up. For datagram sockets, which permit 1531 * multiple consecutive connect(2) calls, upper layers are 1532 * responsible for disconnecting in advance of a subsequent 1533 * connect(2), but this is not synchronized with PCB connection 1534 * state. 1535 * 1536 * Also make sure that no threads are currently attempting to 1537 * lock the peer socket, to ensure that unp_conn cannot 1538 * transition between two valid sockets while locks are dropped. 1539 */ 1540 if (unp->unp_conn != NULL) { 1541 UNP_PCB_UNLOCK(unp); 1542 return (EISCONN); 1543 } 1544 if ((unp->unp_flags & UNP_CONNECTING) != 0) { 1545 UNP_PCB_UNLOCK(unp); 1546 return (EALREADY); 1547 } 1548 if (unp->unp_pairbusy > 0) { 1549 unp->unp_flags |= UNP_WAITING; 1550 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0); 1551 continue; 1552 } 1553 break; 1554 } 1555 unp->unp_flags |= UNP_CONNECTING; 1556 UNP_PCB_UNLOCK(unp); 1557 1558 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0; 1559 if (connreq) 1560 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1561 else 1562 sa = NULL; 1563 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1564 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT), 1565 td); 1566 error = namei(&nd); 1567 if (error) 1568 vp = NULL; 1569 else 1570 vp = nd.ni_vp; 1571 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1572 NDFREE_NOTHING(&nd); 1573 if (error) 1574 goto bad; 1575 1576 if (vp->v_type != VSOCK) { 1577 error = ENOTSOCK; 1578 goto bad; 1579 } 1580 #ifdef MAC 1581 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1582 if (error) 1583 goto bad; 1584 #endif 1585 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1586 if (error) 1587 goto bad; 1588 1589 unp = sotounpcb(so); 1590 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1591 1592 vplock = mtx_pool_find(mtxpool_sleep, vp); 1593 mtx_lock(vplock); 1594 VOP_UNP_CONNECT(vp, &unp2); 1595 if (unp2 == NULL) { 1596 error = ECONNREFUSED; 1597 goto bad2; 1598 } 1599 so2 = unp2->unp_socket; 1600 if (so->so_type != so2->so_type) { 1601 error = EPROTOTYPE; 1602 goto bad2; 1603 } 1604 if (connreq) { 1605 if (so2->so_options & SO_ACCEPTCONN) { 1606 CURVNET_SET(so2->so_vnet); 1607 so2 = sonewconn(so2, 0); 1608 CURVNET_RESTORE(); 1609 } else 1610 so2 = NULL; 1611 if (so2 == NULL) { 1612 error = ECONNREFUSED; 1613 goto bad2; 1614 } 1615 unp3 = sotounpcb(so2); 1616 unp_pcb_lock_pair(unp2, unp3); 1617 if (unp2->unp_addr != NULL) { 1618 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1619 unp3->unp_addr = (struct sockaddr_un *) sa; 1620 sa = NULL; 1621 } 1622 1623 unp_copy_peercred(td, unp3, unp, unp2); 1624 1625 UNP_PCB_UNLOCK(unp2); 1626 unp2 = unp3; 1627 1628 /* 1629 * It is safe to block on the PCB lock here since unp2 is 1630 * nascent and cannot be connected to any other sockets. 1631 */ 1632 UNP_PCB_LOCK(unp); 1633 #ifdef MAC 1634 mac_socketpeer_set_from_socket(so, so2); 1635 mac_socketpeer_set_from_socket(so2, so); 1636 #endif 1637 } else { 1638 unp_pcb_lock_pair(unp, unp2); 1639 } 1640 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1641 sotounpcb(so2) == unp2, 1642 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1643 error = unp_connect2(so, so2, PRU_CONNECT); 1644 unp_pcb_unlock_pair(unp, unp2); 1645 bad2: 1646 mtx_unlock(vplock); 1647 bad: 1648 if (vp != NULL) { 1649 vput(vp); 1650 } 1651 free(sa, M_SONAME); 1652 UNP_PCB_LOCK(unp); 1653 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 1654 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 1655 unp->unp_flags &= ~UNP_CONNECTING; 1656 UNP_PCB_UNLOCK(unp); 1657 return (error); 1658 } 1659 1660 /* 1661 * Set socket peer credentials at connection time. 1662 * 1663 * The client's PCB credentials are copied from its process structure. The 1664 * server's PCB credentials are copied from the socket on which it called 1665 * listen(2). uipc_listen cached that process's credentials at the time. 1666 */ 1667 void 1668 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 1669 struct unpcb *server_unp, struct unpcb *listen_unp) 1670 { 1671 cru2xt(td, &client_unp->unp_peercred); 1672 client_unp->unp_flags |= UNP_HAVEPC; 1673 1674 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 1675 sizeof(server_unp->unp_peercred)); 1676 server_unp->unp_flags |= UNP_HAVEPC; 1677 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK); 1678 } 1679 1680 static int 1681 unp_connect2(struct socket *so, struct socket *so2, int req) 1682 { 1683 struct unpcb *unp; 1684 struct unpcb *unp2; 1685 1686 unp = sotounpcb(so); 1687 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1688 unp2 = sotounpcb(so2); 1689 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1690 1691 UNP_PCB_LOCK_ASSERT(unp); 1692 UNP_PCB_LOCK_ASSERT(unp2); 1693 KASSERT(unp->unp_conn == NULL, 1694 ("%s: socket %p is already connected", __func__, unp)); 1695 1696 if (so2->so_type != so->so_type) 1697 return (EPROTOTYPE); 1698 unp->unp_conn = unp2; 1699 unp_pcb_hold(unp2); 1700 unp_pcb_hold(unp); 1701 switch (so->so_type) { 1702 case SOCK_DGRAM: 1703 UNP_REF_LIST_LOCK(); 1704 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1705 UNP_REF_LIST_UNLOCK(); 1706 soisconnected(so); 1707 break; 1708 1709 case SOCK_STREAM: 1710 case SOCK_SEQPACKET: 1711 KASSERT(unp2->unp_conn == NULL, 1712 ("%s: socket %p is already connected", __func__, unp2)); 1713 unp2->unp_conn = unp; 1714 if (req == PRU_CONNECT && 1715 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1716 soisconnecting(so); 1717 else 1718 soisconnected(so); 1719 soisconnected(so2); 1720 break; 1721 1722 default: 1723 panic("unp_connect2"); 1724 } 1725 return (0); 1726 } 1727 1728 static void 1729 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1730 { 1731 struct socket *so, *so2; 1732 #ifdef INVARIANTS 1733 struct unpcb *unptmp; 1734 #endif 1735 1736 UNP_PCB_LOCK_ASSERT(unp); 1737 UNP_PCB_LOCK_ASSERT(unp2); 1738 KASSERT(unp->unp_conn == unp2, 1739 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2)); 1740 1741 unp->unp_conn = NULL; 1742 so = unp->unp_socket; 1743 so2 = unp2->unp_socket; 1744 switch (unp->unp_socket->so_type) { 1745 case SOCK_DGRAM: 1746 UNP_REF_LIST_LOCK(); 1747 #ifdef INVARIANTS 1748 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) { 1749 if (unptmp == unp) 1750 break; 1751 } 1752 KASSERT(unptmp != NULL, 1753 ("%s: %p not found in reflist of %p", __func__, unp, unp2)); 1754 #endif 1755 LIST_REMOVE(unp, unp_reflink); 1756 UNP_REF_LIST_UNLOCK(); 1757 if (so) { 1758 SOCK_LOCK(so); 1759 so->so_state &= ~SS_ISCONNECTED; 1760 SOCK_UNLOCK(so); 1761 } 1762 break; 1763 1764 case SOCK_STREAM: 1765 case SOCK_SEQPACKET: 1766 if (so) 1767 soisdisconnected(so); 1768 MPASS(unp2->unp_conn == unp); 1769 unp2->unp_conn = NULL; 1770 if (so2) 1771 soisdisconnected(so2); 1772 break; 1773 } 1774 1775 if (unp == unp2) { 1776 unp_pcb_rele_notlast(unp); 1777 if (!unp_pcb_rele(unp)) 1778 UNP_PCB_UNLOCK(unp); 1779 } else { 1780 if (!unp_pcb_rele(unp)) 1781 UNP_PCB_UNLOCK(unp); 1782 if (!unp_pcb_rele(unp2)) 1783 UNP_PCB_UNLOCK(unp2); 1784 } 1785 } 1786 1787 /* 1788 * unp_pcblist() walks the global list of struct unpcb's to generate a 1789 * pointer list, bumping the refcount on each unpcb. It then copies them out 1790 * sequentially, validating the generation number on each to see if it has 1791 * been detached. All of this is necessary because copyout() may sleep on 1792 * disk I/O. 1793 */ 1794 static int 1795 unp_pcblist(SYSCTL_HANDLER_ARGS) 1796 { 1797 struct unpcb *unp, **unp_list; 1798 unp_gen_t gencnt; 1799 struct xunpgen *xug; 1800 struct unp_head *head; 1801 struct xunpcb *xu; 1802 u_int i; 1803 int error, n; 1804 1805 switch ((intptr_t)arg1) { 1806 case SOCK_STREAM: 1807 head = &unp_shead; 1808 break; 1809 1810 case SOCK_DGRAM: 1811 head = &unp_dhead; 1812 break; 1813 1814 case SOCK_SEQPACKET: 1815 head = &unp_sphead; 1816 break; 1817 1818 default: 1819 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1820 } 1821 1822 /* 1823 * The process of preparing the PCB list is too time-consuming and 1824 * resource-intensive to repeat twice on every request. 1825 */ 1826 if (req->oldptr == NULL) { 1827 n = unp_count; 1828 req->oldidx = 2 * (sizeof *xug) 1829 + (n + n/8) * sizeof(struct xunpcb); 1830 return (0); 1831 } 1832 1833 if (req->newptr != NULL) 1834 return (EPERM); 1835 1836 /* 1837 * OK, now we're committed to doing something. 1838 */ 1839 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 1840 UNP_LINK_RLOCK(); 1841 gencnt = unp_gencnt; 1842 n = unp_count; 1843 UNP_LINK_RUNLOCK(); 1844 1845 xug->xug_len = sizeof *xug; 1846 xug->xug_count = n; 1847 xug->xug_gen = gencnt; 1848 xug->xug_sogen = so_gencnt; 1849 error = SYSCTL_OUT(req, xug, sizeof *xug); 1850 if (error) { 1851 free(xug, M_TEMP); 1852 return (error); 1853 } 1854 1855 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1856 1857 UNP_LINK_RLOCK(); 1858 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1859 unp = LIST_NEXT(unp, unp_link)) { 1860 UNP_PCB_LOCK(unp); 1861 if (unp->unp_gencnt <= gencnt) { 1862 if (cr_cansee(req->td->td_ucred, 1863 unp->unp_socket->so_cred)) { 1864 UNP_PCB_UNLOCK(unp); 1865 continue; 1866 } 1867 unp_list[i++] = unp; 1868 unp_pcb_hold(unp); 1869 } 1870 UNP_PCB_UNLOCK(unp); 1871 } 1872 UNP_LINK_RUNLOCK(); 1873 n = i; /* In case we lost some during malloc. */ 1874 1875 error = 0; 1876 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1877 for (i = 0; i < n; i++) { 1878 unp = unp_list[i]; 1879 UNP_PCB_LOCK(unp); 1880 if (unp_pcb_rele(unp)) 1881 continue; 1882 1883 if (unp->unp_gencnt <= gencnt) { 1884 xu->xu_len = sizeof *xu; 1885 xu->xu_unpp = (uintptr_t)unp; 1886 /* 1887 * XXX - need more locking here to protect against 1888 * connect/disconnect races for SMP. 1889 */ 1890 if (unp->unp_addr != NULL) 1891 bcopy(unp->unp_addr, &xu->xu_addr, 1892 unp->unp_addr->sun_len); 1893 else 1894 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1895 if (unp->unp_conn != NULL && 1896 unp->unp_conn->unp_addr != NULL) 1897 bcopy(unp->unp_conn->unp_addr, 1898 &xu->xu_caddr, 1899 unp->unp_conn->unp_addr->sun_len); 1900 else 1901 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1902 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 1903 xu->unp_conn = (uintptr_t)unp->unp_conn; 1904 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 1905 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 1906 xu->unp_gencnt = unp->unp_gencnt; 1907 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1908 UNP_PCB_UNLOCK(unp); 1909 error = SYSCTL_OUT(req, xu, sizeof *xu); 1910 } else { 1911 UNP_PCB_UNLOCK(unp); 1912 } 1913 } 1914 free(xu, M_TEMP); 1915 if (!error) { 1916 /* 1917 * Give the user an updated idea of our state. If the 1918 * generation differs from what we told her before, she knows 1919 * that something happened while we were processing this 1920 * request, and it might be necessary to retry. 1921 */ 1922 xug->xug_gen = unp_gencnt; 1923 xug->xug_sogen = so_gencnt; 1924 xug->xug_count = unp_count; 1925 error = SYSCTL_OUT(req, xug, sizeof *xug); 1926 } 1927 free(unp_list, M_TEMP); 1928 free(xug, M_TEMP); 1929 return (error); 1930 } 1931 1932 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 1933 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1934 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1935 "List of active local datagram sockets"); 1936 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 1937 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1938 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1939 "List of active local stream sockets"); 1940 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1941 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1942 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1943 "List of active local seqpacket sockets"); 1944 1945 static void 1946 unp_shutdown(struct unpcb *unp) 1947 { 1948 struct unpcb *unp2; 1949 struct socket *so; 1950 1951 UNP_PCB_LOCK_ASSERT(unp); 1952 1953 unp2 = unp->unp_conn; 1954 if ((unp->unp_socket->so_type == SOCK_STREAM || 1955 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1956 so = unp2->unp_socket; 1957 if (so != NULL) 1958 socantrcvmore(so); 1959 } 1960 } 1961 1962 static void 1963 unp_drop(struct unpcb *unp) 1964 { 1965 struct socket *so = unp->unp_socket; 1966 struct unpcb *unp2; 1967 1968 /* 1969 * Regardless of whether the socket's peer dropped the connection 1970 * with this socket by aborting or disconnecting, POSIX requires 1971 * that ECONNRESET is returned. 1972 */ 1973 1974 UNP_PCB_LOCK(unp); 1975 if (so) 1976 so->so_error = ECONNRESET; 1977 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1978 /* Last reference dropped in unp_disconnect(). */ 1979 unp_pcb_rele_notlast(unp); 1980 unp_disconnect(unp, unp2); 1981 } else if (!unp_pcb_rele(unp)) { 1982 UNP_PCB_UNLOCK(unp); 1983 } 1984 } 1985 1986 static void 1987 unp_freerights(struct filedescent **fdep, int fdcount) 1988 { 1989 struct file *fp; 1990 int i; 1991 1992 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1993 1994 for (i = 0; i < fdcount; i++) { 1995 fp = fdep[i]->fde_file; 1996 filecaps_free(&fdep[i]->fde_caps); 1997 unp_discard(fp); 1998 } 1999 free(fdep[0], M_FILECAPS); 2000 } 2001 2002 static int 2003 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 2004 { 2005 struct thread *td = curthread; /* XXX */ 2006 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2007 int i; 2008 int *fdp; 2009 struct filedesc *fdesc = td->td_proc->p_fd; 2010 struct filedescent **fdep; 2011 void *data; 2012 socklen_t clen = control->m_len, datalen; 2013 int error, newfds; 2014 u_int newlen; 2015 2016 UNP_LINK_UNLOCK_ASSERT(); 2017 2018 error = 0; 2019 if (controlp != NULL) /* controlp == NULL => free control messages */ 2020 *controlp = NULL; 2021 while (cm != NULL) { 2022 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 2023 error = EINVAL; 2024 break; 2025 } 2026 data = CMSG_DATA(cm); 2027 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2028 if (cm->cmsg_level == SOL_SOCKET 2029 && cm->cmsg_type == SCM_RIGHTS) { 2030 newfds = datalen / sizeof(*fdep); 2031 if (newfds == 0) 2032 goto next; 2033 fdep = data; 2034 2035 /* If we're not outputting the descriptors free them. */ 2036 if (error || controlp == NULL) { 2037 unp_freerights(fdep, newfds); 2038 goto next; 2039 } 2040 FILEDESC_XLOCK(fdesc); 2041 2042 /* 2043 * Now change each pointer to an fd in the global 2044 * table to an integer that is the index to the local 2045 * fd table entry that we set up to point to the 2046 * global one we are transferring. 2047 */ 2048 newlen = newfds * sizeof(int); 2049 *controlp = sbcreatecontrol(NULL, newlen, 2050 SCM_RIGHTS, SOL_SOCKET); 2051 if (*controlp == NULL) { 2052 FILEDESC_XUNLOCK(fdesc); 2053 error = E2BIG; 2054 unp_freerights(fdep, newfds); 2055 goto next; 2056 } 2057 2058 fdp = (int *) 2059 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2060 if (fdallocn(td, 0, fdp, newfds) != 0) { 2061 FILEDESC_XUNLOCK(fdesc); 2062 error = EMSGSIZE; 2063 unp_freerights(fdep, newfds); 2064 m_freem(*controlp); 2065 *controlp = NULL; 2066 goto next; 2067 } 2068 for (i = 0; i < newfds; i++, fdp++) { 2069 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2070 (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0, 2071 &fdep[i]->fde_caps); 2072 unp_externalize_fp(fdep[i]->fde_file); 2073 } 2074 2075 /* 2076 * The new type indicates that the mbuf data refers to 2077 * kernel resources that may need to be released before 2078 * the mbuf is freed. 2079 */ 2080 m_chtype(*controlp, MT_EXTCONTROL); 2081 FILEDESC_XUNLOCK(fdesc); 2082 free(fdep[0], M_FILECAPS); 2083 } else { 2084 /* We can just copy anything else across. */ 2085 if (error || controlp == NULL) 2086 goto next; 2087 *controlp = sbcreatecontrol(NULL, datalen, 2088 cm->cmsg_type, cm->cmsg_level); 2089 if (*controlp == NULL) { 2090 error = ENOBUFS; 2091 goto next; 2092 } 2093 bcopy(data, 2094 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2095 datalen); 2096 } 2097 controlp = &(*controlp)->m_next; 2098 2099 next: 2100 if (CMSG_SPACE(datalen) < clen) { 2101 clen -= CMSG_SPACE(datalen); 2102 cm = (struct cmsghdr *) 2103 ((caddr_t)cm + CMSG_SPACE(datalen)); 2104 } else { 2105 clen = 0; 2106 cm = NULL; 2107 } 2108 } 2109 2110 m_freem(control); 2111 return (error); 2112 } 2113 2114 static void 2115 unp_zone_change(void *tag) 2116 { 2117 2118 uma_zone_set_max(unp_zone, maxsockets); 2119 } 2120 2121 #ifdef INVARIANTS 2122 static void 2123 unp_zdtor(void *mem, int size __unused, void *arg __unused) 2124 { 2125 struct unpcb *unp; 2126 2127 unp = mem; 2128 2129 KASSERT(LIST_EMPTY(&unp->unp_refs), 2130 ("%s: unpcb %p has lingering refs", __func__, unp)); 2131 KASSERT(unp->unp_socket == NULL, 2132 ("%s: unpcb %p has socket backpointer", __func__, unp)); 2133 KASSERT(unp->unp_vnode == NULL, 2134 ("%s: unpcb %p has vnode references", __func__, unp)); 2135 KASSERT(unp->unp_conn == NULL, 2136 ("%s: unpcb %p is still connected", __func__, unp)); 2137 KASSERT(unp->unp_addr == NULL, 2138 ("%s: unpcb %p has leaked addr", __func__, unp)); 2139 } 2140 #endif 2141 2142 static void 2143 unp_init(void) 2144 { 2145 uma_dtor dtor; 2146 2147 #ifdef VIMAGE 2148 if (!IS_DEFAULT_VNET(curvnet)) 2149 return; 2150 #endif 2151 2152 #ifdef INVARIANTS 2153 dtor = unp_zdtor; 2154 #else 2155 dtor = NULL; 2156 #endif 2157 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor, 2158 NULL, NULL, UMA_ALIGN_CACHE, 0); 2159 uma_zone_set_max(unp_zone, maxsockets); 2160 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2161 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2162 NULL, EVENTHANDLER_PRI_ANY); 2163 LIST_INIT(&unp_dhead); 2164 LIST_INIT(&unp_shead); 2165 LIST_INIT(&unp_sphead); 2166 SLIST_INIT(&unp_defers); 2167 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2168 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2169 UNP_LINK_LOCK_INIT(); 2170 UNP_DEFERRED_LOCK_INIT(); 2171 } 2172 2173 static void 2174 unp_internalize_cleanup_rights(struct mbuf *control) 2175 { 2176 struct cmsghdr *cp; 2177 struct mbuf *m; 2178 void *data; 2179 socklen_t datalen; 2180 2181 for (m = control; m != NULL; m = m->m_next) { 2182 cp = mtod(m, struct cmsghdr *); 2183 if (cp->cmsg_level != SOL_SOCKET || 2184 cp->cmsg_type != SCM_RIGHTS) 2185 continue; 2186 data = CMSG_DATA(cp); 2187 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 2188 unp_freerights(data, datalen / sizeof(struct filedesc *)); 2189 } 2190 } 2191 2192 static int 2193 unp_internalize(struct mbuf **controlp, struct thread *td) 2194 { 2195 struct mbuf *control, **initial_controlp; 2196 struct proc *p; 2197 struct filedesc *fdesc; 2198 struct bintime *bt; 2199 struct cmsghdr *cm; 2200 struct cmsgcred *cmcred; 2201 struct filedescent *fde, **fdep, *fdev; 2202 struct file *fp; 2203 struct timeval *tv; 2204 struct timespec *ts; 2205 void *data; 2206 socklen_t clen, datalen; 2207 int i, j, error, *fdp, oldfds; 2208 u_int newlen; 2209 2210 UNP_LINK_UNLOCK_ASSERT(); 2211 2212 p = td->td_proc; 2213 fdesc = p->p_fd; 2214 error = 0; 2215 control = *controlp; 2216 clen = control->m_len; 2217 *controlp = NULL; 2218 initial_controlp = controlp; 2219 for (cm = mtod(control, struct cmsghdr *); cm != NULL;) { 2220 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2221 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2222 error = EINVAL; 2223 goto out; 2224 } 2225 data = CMSG_DATA(cm); 2226 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2227 2228 switch (cm->cmsg_type) { 2229 /* 2230 * Fill in credential information. 2231 */ 2232 case SCM_CREDS: 2233 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2234 SCM_CREDS, SOL_SOCKET); 2235 if (*controlp == NULL) { 2236 error = ENOBUFS; 2237 goto out; 2238 } 2239 cmcred = (struct cmsgcred *) 2240 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2241 cmcred->cmcred_pid = p->p_pid; 2242 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2243 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2244 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2245 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2246 CMGROUP_MAX); 2247 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2248 cmcred->cmcred_groups[i] = 2249 td->td_ucred->cr_groups[i]; 2250 break; 2251 2252 case SCM_RIGHTS: 2253 oldfds = datalen / sizeof (int); 2254 if (oldfds == 0) 2255 break; 2256 /* 2257 * Check that all the FDs passed in refer to legal 2258 * files. If not, reject the entire operation. 2259 */ 2260 fdp = data; 2261 FILEDESC_SLOCK(fdesc); 2262 for (i = 0; i < oldfds; i++, fdp++) { 2263 fp = fget_locked(fdesc, *fdp); 2264 if (fp == NULL) { 2265 FILEDESC_SUNLOCK(fdesc); 2266 error = EBADF; 2267 goto out; 2268 } 2269 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2270 FILEDESC_SUNLOCK(fdesc); 2271 error = EOPNOTSUPP; 2272 goto out; 2273 } 2274 } 2275 2276 /* 2277 * Now replace the integer FDs with pointers to the 2278 * file structure and capability rights. 2279 */ 2280 newlen = oldfds * sizeof(fdep[0]); 2281 *controlp = sbcreatecontrol(NULL, newlen, 2282 SCM_RIGHTS, SOL_SOCKET); 2283 if (*controlp == NULL) { 2284 FILEDESC_SUNLOCK(fdesc); 2285 error = E2BIG; 2286 goto out; 2287 } 2288 fdp = data; 2289 for (i = 0; i < oldfds; i++, fdp++) { 2290 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 2291 fdp = data; 2292 for (j = 0; j < i; j++, fdp++) { 2293 fdrop(fdesc->fd_ofiles[*fdp]. 2294 fde_file, td); 2295 } 2296 FILEDESC_SUNLOCK(fdesc); 2297 error = EBADF; 2298 goto out; 2299 } 2300 } 2301 fdp = data; 2302 fdep = (struct filedescent **) 2303 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2304 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2305 M_WAITOK); 2306 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2307 fde = &fdesc->fd_ofiles[*fdp]; 2308 fdep[i] = fdev; 2309 fdep[i]->fde_file = fde->fde_file; 2310 filecaps_copy(&fde->fde_caps, 2311 &fdep[i]->fde_caps, true); 2312 unp_internalize_fp(fdep[i]->fde_file); 2313 } 2314 FILEDESC_SUNLOCK(fdesc); 2315 break; 2316 2317 case SCM_TIMESTAMP: 2318 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2319 SCM_TIMESTAMP, SOL_SOCKET); 2320 if (*controlp == NULL) { 2321 error = ENOBUFS; 2322 goto out; 2323 } 2324 tv = (struct timeval *) 2325 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2326 microtime(tv); 2327 break; 2328 2329 case SCM_BINTIME: 2330 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2331 SCM_BINTIME, SOL_SOCKET); 2332 if (*controlp == NULL) { 2333 error = ENOBUFS; 2334 goto out; 2335 } 2336 bt = (struct bintime *) 2337 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2338 bintime(bt); 2339 break; 2340 2341 case SCM_REALTIME: 2342 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2343 SCM_REALTIME, SOL_SOCKET); 2344 if (*controlp == NULL) { 2345 error = ENOBUFS; 2346 goto out; 2347 } 2348 ts = (struct timespec *) 2349 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2350 nanotime(ts); 2351 break; 2352 2353 case SCM_MONOTONIC: 2354 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2355 SCM_MONOTONIC, SOL_SOCKET); 2356 if (*controlp == NULL) { 2357 error = ENOBUFS; 2358 goto out; 2359 } 2360 ts = (struct timespec *) 2361 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2362 nanouptime(ts); 2363 break; 2364 2365 default: 2366 error = EINVAL; 2367 goto out; 2368 } 2369 2370 if (*controlp != NULL) 2371 controlp = &(*controlp)->m_next; 2372 if (CMSG_SPACE(datalen) < clen) { 2373 clen -= CMSG_SPACE(datalen); 2374 cm = (struct cmsghdr *) 2375 ((caddr_t)cm + CMSG_SPACE(datalen)); 2376 } else { 2377 clen = 0; 2378 cm = NULL; 2379 } 2380 } 2381 2382 out: 2383 if (error != 0 && initial_controlp != NULL) 2384 unp_internalize_cleanup_rights(*initial_controlp); 2385 m_freem(control); 2386 return (error); 2387 } 2388 2389 static struct mbuf * 2390 unp_addsockcred(struct thread *td, struct mbuf *control, int mode) 2391 { 2392 struct mbuf *m, *n, *n_prev; 2393 const struct cmsghdr *cm; 2394 int ngroups, i, cmsgtype; 2395 size_t ctrlsz; 2396 2397 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2398 if (mode & UNP_WANTCRED_ALWAYS) { 2399 ctrlsz = SOCKCRED2SIZE(ngroups); 2400 cmsgtype = SCM_CREDS2; 2401 } else { 2402 ctrlsz = SOCKCREDSIZE(ngroups); 2403 cmsgtype = SCM_CREDS; 2404 } 2405 2406 m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET); 2407 if (m == NULL) 2408 return (control); 2409 2410 if (mode & UNP_WANTCRED_ALWAYS) { 2411 struct sockcred2 *sc; 2412 2413 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2414 sc->sc_version = 0; 2415 sc->sc_pid = td->td_proc->p_pid; 2416 sc->sc_uid = td->td_ucred->cr_ruid; 2417 sc->sc_euid = td->td_ucred->cr_uid; 2418 sc->sc_gid = td->td_ucred->cr_rgid; 2419 sc->sc_egid = td->td_ucred->cr_gid; 2420 sc->sc_ngroups = ngroups; 2421 for (i = 0; i < sc->sc_ngroups; i++) 2422 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2423 } else { 2424 struct sockcred *sc; 2425 2426 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2427 sc->sc_uid = td->td_ucred->cr_ruid; 2428 sc->sc_euid = td->td_ucred->cr_uid; 2429 sc->sc_gid = td->td_ucred->cr_rgid; 2430 sc->sc_egid = td->td_ucred->cr_gid; 2431 sc->sc_ngroups = ngroups; 2432 for (i = 0; i < sc->sc_ngroups; i++) 2433 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2434 } 2435 2436 /* 2437 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2438 * created SCM_CREDS control message (struct sockcred) has another 2439 * format. 2440 */ 2441 if (control != NULL && cmsgtype == SCM_CREDS) 2442 for (n = control, n_prev = NULL; n != NULL;) { 2443 cm = mtod(n, struct cmsghdr *); 2444 if (cm->cmsg_level == SOL_SOCKET && 2445 cm->cmsg_type == SCM_CREDS) { 2446 if (n_prev == NULL) 2447 control = n->m_next; 2448 else 2449 n_prev->m_next = n->m_next; 2450 n = m_free(n); 2451 } else { 2452 n_prev = n; 2453 n = n->m_next; 2454 } 2455 } 2456 2457 /* Prepend it to the head. */ 2458 m->m_next = control; 2459 return (m); 2460 } 2461 2462 static struct unpcb * 2463 fptounp(struct file *fp) 2464 { 2465 struct socket *so; 2466 2467 if (fp->f_type != DTYPE_SOCKET) 2468 return (NULL); 2469 if ((so = fp->f_data) == NULL) 2470 return (NULL); 2471 if (so->so_proto->pr_domain != &localdomain) 2472 return (NULL); 2473 return sotounpcb(so); 2474 } 2475 2476 static void 2477 unp_discard(struct file *fp) 2478 { 2479 struct unp_defer *dr; 2480 2481 if (unp_externalize_fp(fp)) { 2482 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2483 dr->ud_fp = fp; 2484 UNP_DEFERRED_LOCK(); 2485 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2486 UNP_DEFERRED_UNLOCK(); 2487 atomic_add_int(&unp_defers_count, 1); 2488 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2489 } else 2490 closef_nothread(fp); 2491 } 2492 2493 static void 2494 unp_process_defers(void *arg __unused, int pending) 2495 { 2496 struct unp_defer *dr; 2497 SLIST_HEAD(, unp_defer) drl; 2498 int count; 2499 2500 SLIST_INIT(&drl); 2501 for (;;) { 2502 UNP_DEFERRED_LOCK(); 2503 if (SLIST_FIRST(&unp_defers) == NULL) { 2504 UNP_DEFERRED_UNLOCK(); 2505 break; 2506 } 2507 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2508 UNP_DEFERRED_UNLOCK(); 2509 count = 0; 2510 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2511 SLIST_REMOVE_HEAD(&drl, ud_link); 2512 closef_nothread(dr->ud_fp); 2513 free(dr, M_TEMP); 2514 count++; 2515 } 2516 atomic_add_int(&unp_defers_count, -count); 2517 } 2518 } 2519 2520 static void 2521 unp_internalize_fp(struct file *fp) 2522 { 2523 struct unpcb *unp; 2524 2525 UNP_LINK_WLOCK(); 2526 if ((unp = fptounp(fp)) != NULL) { 2527 unp->unp_file = fp; 2528 unp->unp_msgcount++; 2529 } 2530 unp_rights++; 2531 UNP_LINK_WUNLOCK(); 2532 } 2533 2534 static int 2535 unp_externalize_fp(struct file *fp) 2536 { 2537 struct unpcb *unp; 2538 int ret; 2539 2540 UNP_LINK_WLOCK(); 2541 if ((unp = fptounp(fp)) != NULL) { 2542 unp->unp_msgcount--; 2543 ret = 1; 2544 } else 2545 ret = 0; 2546 unp_rights--; 2547 UNP_LINK_WUNLOCK(); 2548 return (ret); 2549 } 2550 2551 /* 2552 * unp_defer indicates whether additional work has been defered for a future 2553 * pass through unp_gc(). It is thread local and does not require explicit 2554 * synchronization. 2555 */ 2556 static int unp_marked; 2557 2558 static void 2559 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 2560 { 2561 struct unpcb *unp; 2562 struct file *fp; 2563 int i; 2564 2565 /* 2566 * This function can only be called from the gc task. 2567 */ 2568 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2569 ("%s: not on gc callout", __func__)); 2570 UNP_LINK_LOCK_ASSERT(); 2571 2572 for (i = 0; i < fdcount; i++) { 2573 fp = fdep[i]->fde_file; 2574 if ((unp = fptounp(fp)) == NULL) 2575 continue; 2576 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2577 continue; 2578 unp->unp_gcrefs--; 2579 } 2580 } 2581 2582 static void 2583 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 2584 { 2585 struct unpcb *unp; 2586 struct file *fp; 2587 int i; 2588 2589 /* 2590 * This function can only be called from the gc task. 2591 */ 2592 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2593 ("%s: not on gc callout", __func__)); 2594 UNP_LINK_LOCK_ASSERT(); 2595 2596 for (i = 0; i < fdcount; i++) { 2597 fp = fdep[i]->fde_file; 2598 if ((unp = fptounp(fp)) == NULL) 2599 continue; 2600 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2601 continue; 2602 unp->unp_gcrefs++; 2603 unp_marked++; 2604 } 2605 } 2606 2607 static void 2608 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 2609 { 2610 struct socket *so, *soa; 2611 2612 so = unp->unp_socket; 2613 SOCK_LOCK(so); 2614 if (SOLISTENING(so)) { 2615 /* 2616 * Mark all sockets in our accept queue. 2617 */ 2618 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2619 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2620 continue; 2621 SOCKBUF_LOCK(&soa->so_rcv); 2622 unp_scan(soa->so_rcv.sb_mb, op); 2623 SOCKBUF_UNLOCK(&soa->so_rcv); 2624 } 2625 } else { 2626 /* 2627 * Mark all sockets we reference with RIGHTS. 2628 */ 2629 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2630 SOCKBUF_LOCK(&so->so_rcv); 2631 unp_scan(so->so_rcv.sb_mb, op); 2632 SOCKBUF_UNLOCK(&so->so_rcv); 2633 } 2634 } 2635 SOCK_UNLOCK(so); 2636 } 2637 2638 static int unp_recycled; 2639 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2640 "Number of unreachable sockets claimed by the garbage collector."); 2641 2642 static int unp_taskcount; 2643 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2644 "Number of times the garbage collector has run."); 2645 2646 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 2647 "Number of active local sockets."); 2648 2649 static void 2650 unp_gc(__unused void *arg, int pending) 2651 { 2652 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2653 NULL }; 2654 struct unp_head **head; 2655 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 2656 struct file *f, **unref; 2657 struct unpcb *unp, *unptmp; 2658 int i, total, unp_unreachable; 2659 2660 LIST_INIT(&unp_deadhead); 2661 unp_taskcount++; 2662 UNP_LINK_RLOCK(); 2663 /* 2664 * First determine which sockets may be in cycles. 2665 */ 2666 unp_unreachable = 0; 2667 2668 for (head = heads; *head != NULL; head++) 2669 LIST_FOREACH(unp, *head, unp_link) { 2670 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 2671 ("%s: unp %p has unexpected gc flags 0x%x", 2672 __func__, unp, (unsigned int)unp->unp_gcflag)); 2673 2674 f = unp->unp_file; 2675 2676 /* 2677 * Check for an unreachable socket potentially in a 2678 * cycle. It must be in a queue as indicated by 2679 * msgcount, and this must equal the file reference 2680 * count. Note that when msgcount is 0 the file is 2681 * NULL. 2682 */ 2683 if (f != NULL && unp->unp_msgcount != 0 && 2684 refcount_load(&f->f_count) == unp->unp_msgcount) { 2685 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 2686 unp->unp_gcflag |= UNPGC_DEAD; 2687 unp->unp_gcrefs = unp->unp_msgcount; 2688 unp_unreachable++; 2689 } 2690 } 2691 2692 /* 2693 * Scan all sockets previously marked as potentially being in a cycle 2694 * and remove the references each socket holds on any UNPGC_DEAD 2695 * sockets in its queue. After this step, all remaining references on 2696 * sockets marked UNPGC_DEAD should not be part of any cycle. 2697 */ 2698 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 2699 unp_gc_scan(unp, unp_remove_dead_ref); 2700 2701 /* 2702 * If a socket still has a non-negative refcount, it cannot be in a 2703 * cycle. In this case increment refcount of all children iteratively. 2704 * Stop the scan once we do a complete loop without discovering 2705 * a new reachable socket. 2706 */ 2707 do { 2708 unp_marked = 0; 2709 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 2710 if (unp->unp_gcrefs > 0) { 2711 unp->unp_gcflag &= ~UNPGC_DEAD; 2712 LIST_REMOVE(unp, unp_dead); 2713 KASSERT(unp_unreachable > 0, 2714 ("%s: unp_unreachable underflow.", 2715 __func__)); 2716 unp_unreachable--; 2717 unp_gc_scan(unp, unp_restore_undead_ref); 2718 } 2719 } while (unp_marked); 2720 2721 UNP_LINK_RUNLOCK(); 2722 2723 if (unp_unreachable == 0) 2724 return; 2725 2726 /* 2727 * Allocate space for a local array of dead unpcbs. 2728 * TODO: can this path be simplified by instead using the local 2729 * dead list at unp_deadhead, after taking out references 2730 * on the file object and/or unpcb and dropping the link lock? 2731 */ 2732 unref = malloc(unp_unreachable * sizeof(struct file *), 2733 M_TEMP, M_WAITOK); 2734 2735 /* 2736 * Iterate looking for sockets which have been specifically marked 2737 * as unreachable and store them locally. 2738 */ 2739 UNP_LINK_RLOCK(); 2740 total = 0; 2741 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 2742 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 2743 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 2744 unp->unp_gcflag &= ~UNPGC_DEAD; 2745 f = unp->unp_file; 2746 if (unp->unp_msgcount == 0 || f == NULL || 2747 refcount_load(&f->f_count) != unp->unp_msgcount || 2748 !fhold(f)) 2749 continue; 2750 unref[total++] = f; 2751 KASSERT(total <= unp_unreachable, 2752 ("%s: incorrect unreachable count.", __func__)); 2753 } 2754 UNP_LINK_RUNLOCK(); 2755 2756 /* 2757 * Now flush all sockets, free'ing rights. This will free the 2758 * struct files associated with these sockets but leave each socket 2759 * with one remaining ref. 2760 */ 2761 for (i = 0; i < total; i++) { 2762 struct socket *so; 2763 2764 so = unref[i]->f_data; 2765 CURVNET_SET(so->so_vnet); 2766 sorflush(so); 2767 CURVNET_RESTORE(); 2768 } 2769 2770 /* 2771 * And finally release the sockets so they can be reclaimed. 2772 */ 2773 for (i = 0; i < total; i++) 2774 fdrop(unref[i], NULL); 2775 unp_recycled += total; 2776 free(unref, M_TEMP); 2777 } 2778 2779 static void 2780 unp_dispose_mbuf(struct mbuf *m) 2781 { 2782 2783 if (m) 2784 unp_scan(m, unp_freerights); 2785 } 2786 2787 /* 2788 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2789 */ 2790 static void 2791 unp_dispose(struct socket *so) 2792 { 2793 struct unpcb *unp; 2794 2795 unp = sotounpcb(so); 2796 UNP_LINK_WLOCK(); 2797 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2798 UNP_LINK_WUNLOCK(); 2799 if (!SOLISTENING(so)) 2800 unp_dispose_mbuf(so->so_rcv.sb_mb); 2801 } 2802 2803 static void 2804 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2805 { 2806 struct mbuf *m; 2807 struct cmsghdr *cm; 2808 void *data; 2809 socklen_t clen, datalen; 2810 2811 while (m0 != NULL) { 2812 for (m = m0; m; m = m->m_next) { 2813 if (m->m_type != MT_CONTROL) 2814 continue; 2815 2816 cm = mtod(m, struct cmsghdr *); 2817 clen = m->m_len; 2818 2819 while (cm != NULL) { 2820 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2821 break; 2822 2823 data = CMSG_DATA(cm); 2824 datalen = (caddr_t)cm + cm->cmsg_len 2825 - (caddr_t)data; 2826 2827 if (cm->cmsg_level == SOL_SOCKET && 2828 cm->cmsg_type == SCM_RIGHTS) { 2829 (*op)(data, datalen / 2830 sizeof(struct filedescent *)); 2831 } 2832 2833 if (CMSG_SPACE(datalen) < clen) { 2834 clen -= CMSG_SPACE(datalen); 2835 cm = (struct cmsghdr *) 2836 ((caddr_t)cm + CMSG_SPACE(datalen)); 2837 } else { 2838 clen = 0; 2839 cm = NULL; 2840 } 2841 } 2842 } 2843 m0 = m0->m_nextpkt; 2844 } 2845 } 2846 2847 /* 2848 * A helper function called by VFS before socket-type vnode reclamation. 2849 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2850 * use count. 2851 */ 2852 void 2853 vfs_unp_reclaim(struct vnode *vp) 2854 { 2855 struct unpcb *unp; 2856 int active; 2857 struct mtx *vplock; 2858 2859 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2860 KASSERT(vp->v_type == VSOCK, 2861 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2862 2863 active = 0; 2864 vplock = mtx_pool_find(mtxpool_sleep, vp); 2865 mtx_lock(vplock); 2866 VOP_UNP_CONNECT(vp, &unp); 2867 if (unp == NULL) 2868 goto done; 2869 UNP_PCB_LOCK(unp); 2870 if (unp->unp_vnode == vp) { 2871 VOP_UNP_DETACH(vp); 2872 unp->unp_vnode = NULL; 2873 active = 1; 2874 } 2875 UNP_PCB_UNLOCK(unp); 2876 done: 2877 mtx_unlock(vplock); 2878 if (active) 2879 vunref(vp); 2880 } 2881 2882 #ifdef DDB 2883 static void 2884 db_print_indent(int indent) 2885 { 2886 int i; 2887 2888 for (i = 0; i < indent; i++) 2889 db_printf(" "); 2890 } 2891 2892 static void 2893 db_print_unpflags(int unp_flags) 2894 { 2895 int comma; 2896 2897 comma = 0; 2898 if (unp_flags & UNP_HAVEPC) { 2899 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2900 comma = 1; 2901 } 2902 if (unp_flags & UNP_WANTCRED_ALWAYS) { 2903 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : ""); 2904 comma = 1; 2905 } 2906 if (unp_flags & UNP_WANTCRED_ONESHOT) { 2907 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : ""); 2908 comma = 1; 2909 } 2910 if (unp_flags & UNP_CONNWAIT) { 2911 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2912 comma = 1; 2913 } 2914 if (unp_flags & UNP_CONNECTING) { 2915 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2916 comma = 1; 2917 } 2918 if (unp_flags & UNP_BINDING) { 2919 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2920 comma = 1; 2921 } 2922 } 2923 2924 static void 2925 db_print_xucred(int indent, struct xucred *xu) 2926 { 2927 int comma, i; 2928 2929 db_print_indent(indent); 2930 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 2931 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 2932 db_print_indent(indent); 2933 db_printf("cr_groups: "); 2934 comma = 0; 2935 for (i = 0; i < xu->cr_ngroups; i++) { 2936 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2937 comma = 1; 2938 } 2939 db_printf("\n"); 2940 } 2941 2942 static void 2943 db_print_unprefs(int indent, struct unp_head *uh) 2944 { 2945 struct unpcb *unp; 2946 int counter; 2947 2948 counter = 0; 2949 LIST_FOREACH(unp, uh, unp_reflink) { 2950 if (counter % 4 == 0) 2951 db_print_indent(indent); 2952 db_printf("%p ", unp); 2953 if (counter % 4 == 3) 2954 db_printf("\n"); 2955 counter++; 2956 } 2957 if (counter != 0 && counter % 4 != 0) 2958 db_printf("\n"); 2959 } 2960 2961 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2962 { 2963 struct unpcb *unp; 2964 2965 if (!have_addr) { 2966 db_printf("usage: show unpcb <addr>\n"); 2967 return; 2968 } 2969 unp = (struct unpcb *)addr; 2970 2971 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2972 unp->unp_vnode); 2973 2974 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2975 unp->unp_conn); 2976 2977 db_printf("unp_refs:\n"); 2978 db_print_unprefs(2, &unp->unp_refs); 2979 2980 /* XXXRW: Would be nice to print the full address, if any. */ 2981 db_printf("unp_addr: %p\n", unp->unp_addr); 2982 2983 db_printf("unp_gencnt: %llu\n", 2984 (unsigned long long)unp->unp_gencnt); 2985 2986 db_printf("unp_flags: %x (", unp->unp_flags); 2987 db_print_unpflags(unp->unp_flags); 2988 db_printf(")\n"); 2989 2990 db_printf("unp_peercred:\n"); 2991 db_print_xucred(2, &unp->unp_peercred); 2992 2993 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2994 } 2995 #endif 2996