xref: /freebsd/sys/kern/uipc_usrreq.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	distinguish datagram size limits from flow control limits in SEQPACKET
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/capability.h>
66 #include <sys/domain.h>
67 #include <sys/fcntl.h>
68 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
69 #include <sys/eventhandler.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/mbuf.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/namei.h>
78 #include <sys/proc.h>
79 #include <sys/protosw.h>
80 #include <sys/queue.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/signalvar.h>
86 #include <sys/stat.h>
87 #include <sys/sx.h>
88 #include <sys/sysctl.h>
89 #include <sys/systm.h>
90 #include <sys/taskqueue.h>
91 #include <sys/un.h>
92 #include <sys/unpcb.h>
93 #include <sys/vnode.h>
94 
95 #include <net/vnet.h>
96 
97 #ifdef DDB
98 #include <ddb/ddb.h>
99 #endif
100 
101 #include <security/mac/mac_framework.h>
102 
103 #include <vm/uma.h>
104 
105 MALLOC_DECLARE(M_FILECAPS);
106 
107 /*
108  * Locking key:
109  * (l)	Locked using list lock
110  * (g)	Locked using linkage lock
111  */
112 
113 static uma_zone_t	unp_zone;
114 static unp_gen_t	unp_gencnt;	/* (l) */
115 static u_int		unp_count;	/* (l) Count of local sockets. */
116 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
117 static int		unp_rights;	/* (g) File descriptors in flight. */
118 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
119 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
120 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
121 
122 struct unp_defer {
123 	SLIST_ENTRY(unp_defer) ud_link;
124 	struct file *ud_fp;
125 };
126 static SLIST_HEAD(, unp_defer) unp_defers;
127 static int unp_defers_count;
128 
129 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
130 
131 /*
132  * Garbage collection of cyclic file descriptor/socket references occurs
133  * asynchronously in a taskqueue context in order to avoid recursion and
134  * reentrance in the UNIX domain socket, file descriptor, and socket layer
135  * code.  See unp_gc() for a full description.
136  */
137 static struct timeout_task unp_gc_task;
138 
139 /*
140  * The close of unix domain sockets attached as SCM_RIGHTS is
141  * postponed to the taskqueue, to avoid arbitrary recursion depth.
142  * The attached sockets might have another sockets attached.
143  */
144 static struct task	unp_defer_task;
145 
146 /*
147  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
148  * stream sockets, although the total for sender and receiver is actually
149  * only PIPSIZ.
150  *
151  * Datagram sockets really use the sendspace as the maximum datagram size,
152  * and don't really want to reserve the sendspace.  Their recvspace should be
153  * large enough for at least one max-size datagram plus address.
154  */
155 #ifndef PIPSIZ
156 #define	PIPSIZ	8192
157 #endif
158 static u_long	unpst_sendspace = PIPSIZ;
159 static u_long	unpst_recvspace = PIPSIZ;
160 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
161 static u_long	unpdg_recvspace = 4*1024;
162 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
163 static u_long	unpsp_recvspace = PIPSIZ;
164 
165 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
167     "SOCK_STREAM");
168 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
169 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
170     "SOCK_SEQPACKET");
171 
172 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
173 	   &unpst_sendspace, 0, "Default stream send space.");
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
175 	   &unpst_recvspace, 0, "Default stream receive space.");
176 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
177 	   &unpdg_sendspace, 0, "Default datagram send space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpdg_recvspace, 0, "Default datagram receive space.");
180 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
181 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
184 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
185     "File descriptors in flight.");
186 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
187     &unp_defers_count, 0,
188     "File descriptors deferred to taskqueue for close.");
189 
190 /*
191  * Locking and synchronization:
192  *
193  * Three types of locks exit in the local domain socket implementation: a
194  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
195  * global locks, the list lock protects the socket count, global generation
196  * number, and stream/datagram global lists.  The linkage lock protects the
197  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
198  * held exclusively over the acquisition of multiple unpcb locks to prevent
199  * deadlock.
200  *
201  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
202  * allocated in pru_attach() and freed in pru_detach().  The validity of that
203  * pointer is an invariant, so no lock is required to dereference the so_pcb
204  * pointer if a valid socket reference is held by the caller.  In practice,
205  * this is always true during operations performed on a socket.  Each unpcb
206  * has a back-pointer to its socket, unp_socket, which will be stable under
207  * the same circumstances.
208  *
209  * This pointer may only be safely dereferenced as long as a valid reference
210  * to the unpcb is held.  Typically, this reference will be from the socket,
211  * or from another unpcb when the referring unpcb's lock is held (in order
212  * that the reference not be invalidated during use).  For example, to follow
213  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
214  * as unp_socket remains valid as long as the reference to unp_conn is valid.
215  *
216  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
217  * atomic reads without the lock may be performed "lockless", but more
218  * complex reads and read-modify-writes require the mutex to be held.  No
219  * lock order is defined between unpcb locks -- multiple unpcb locks may be
220  * acquired at the same time only when holding the linkage rwlock
221  * exclusively, which prevents deadlocks.
222  *
223  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
224  * protocols, bind() is a non-atomic operation, and connect() requires
225  * potential sleeping in the protocol, due to potentially waiting on local or
226  * distributed file systems.  We try to separate "lookup" operations, which
227  * may sleep, and the IPC operations themselves, which typically can occur
228  * with relative atomicity as locks can be held over the entire operation.
229  *
230  * Another tricky issue is simultaneous multi-threaded or multi-process
231  * access to a single UNIX domain socket.  These are handled by the flags
232  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
233  * binding, both of which involve dropping UNIX domain socket locks in order
234  * to perform namei() and other file system operations.
235  */
236 static struct rwlock	unp_link_rwlock;
237 static struct mtx	unp_list_lock;
238 static struct mtx	unp_defers_lock;
239 
240 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
241 					    "unp_link_rwlock")
242 
243 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
244 					    RA_LOCKED)
245 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
246 					    RA_UNLOCKED)
247 
248 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
249 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
250 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
251 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
252 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
253 					    RA_WLOCKED)
254 
255 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
256 					    "unp_list_lock", NULL, MTX_DEF)
257 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
258 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
259 
260 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
261 					    "unp_defer", NULL, MTX_DEF)
262 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
263 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
264 
265 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
266 					    "unp_mtx", "unp_mtx",	\
267 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
268 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
269 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
270 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
271 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
272 
273 static int	uipc_connect2(struct socket *, struct socket *);
274 static int	uipc_ctloutput(struct socket *, struct sockopt *);
275 static int	unp_connect(struct socket *, struct sockaddr *,
276 		    struct thread *);
277 static int	unp_connectat(int, struct socket *, struct sockaddr *,
278 		    struct thread *);
279 static int	unp_connect2(struct socket *so, struct socket *so2, int);
280 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
281 static void	unp_dispose(struct mbuf *);
282 static void	unp_shutdown(struct unpcb *);
283 static void	unp_drop(struct unpcb *, int);
284 static void	unp_gc(__unused void *, int);
285 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
286 static void	unp_discard(struct file *);
287 static void	unp_freerights(struct filedescent **, int);
288 static void	unp_init(void);
289 static int	unp_internalize(struct mbuf **, struct thread *);
290 static void	unp_internalize_fp(struct file *);
291 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
292 static int	unp_externalize_fp(struct file *);
293 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
294 static void	unp_process_defers(void * __unused, int);
295 
296 /*
297  * Definitions of protocols supported in the LOCAL domain.
298  */
299 static struct domain localdomain;
300 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
301 static struct pr_usrreqs uipc_usrreqs_seqpacket;
302 static struct protosw localsw[] = {
303 {
304 	.pr_type =		SOCK_STREAM,
305 	.pr_domain =		&localdomain,
306 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
307 	.pr_ctloutput =		&uipc_ctloutput,
308 	.pr_usrreqs =		&uipc_usrreqs_stream
309 },
310 {
311 	.pr_type =		SOCK_DGRAM,
312 	.pr_domain =		&localdomain,
313 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
314 	.pr_ctloutput =		&uipc_ctloutput,
315 	.pr_usrreqs =		&uipc_usrreqs_dgram
316 },
317 {
318 	.pr_type =		SOCK_SEQPACKET,
319 	.pr_domain =		&localdomain,
320 
321 	/*
322 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
323 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
324 	 * that supports both atomic record writes and control data.
325 	 */
326 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
327 				    PR_RIGHTS,
328 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
329 },
330 };
331 
332 static struct domain localdomain = {
333 	.dom_family =		AF_LOCAL,
334 	.dom_name =		"local",
335 	.dom_init =		unp_init,
336 	.dom_externalize =	unp_externalize,
337 	.dom_dispose =		unp_dispose,
338 	.dom_protosw =		localsw,
339 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
340 };
341 DOMAIN_SET(local);
342 
343 static void
344 uipc_abort(struct socket *so)
345 {
346 	struct unpcb *unp, *unp2;
347 
348 	unp = sotounpcb(so);
349 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
350 
351 	UNP_LINK_WLOCK();
352 	UNP_PCB_LOCK(unp);
353 	unp2 = unp->unp_conn;
354 	if (unp2 != NULL) {
355 		UNP_PCB_LOCK(unp2);
356 		unp_drop(unp2, ECONNABORTED);
357 		UNP_PCB_UNLOCK(unp2);
358 	}
359 	UNP_PCB_UNLOCK(unp);
360 	UNP_LINK_WUNLOCK();
361 }
362 
363 static int
364 uipc_accept(struct socket *so, struct sockaddr **nam)
365 {
366 	struct unpcb *unp, *unp2;
367 	const struct sockaddr *sa;
368 
369 	/*
370 	 * Pass back name of connected socket, if it was bound and we are
371 	 * still connected (our peer may have closed already!).
372 	 */
373 	unp = sotounpcb(so);
374 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
375 
376 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
377 	UNP_LINK_RLOCK();
378 	unp2 = unp->unp_conn;
379 	if (unp2 != NULL && unp2->unp_addr != NULL) {
380 		UNP_PCB_LOCK(unp2);
381 		sa = (struct sockaddr *) unp2->unp_addr;
382 		bcopy(sa, *nam, sa->sa_len);
383 		UNP_PCB_UNLOCK(unp2);
384 	} else {
385 		sa = &sun_noname;
386 		bcopy(sa, *nam, sa->sa_len);
387 	}
388 	UNP_LINK_RUNLOCK();
389 	return (0);
390 }
391 
392 static int
393 uipc_attach(struct socket *so, int proto, struct thread *td)
394 {
395 	u_long sendspace, recvspace;
396 	struct unpcb *unp;
397 	int error;
398 
399 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
400 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
401 		switch (so->so_type) {
402 		case SOCK_STREAM:
403 			sendspace = unpst_sendspace;
404 			recvspace = unpst_recvspace;
405 			break;
406 
407 		case SOCK_DGRAM:
408 			sendspace = unpdg_sendspace;
409 			recvspace = unpdg_recvspace;
410 			break;
411 
412 		case SOCK_SEQPACKET:
413 			sendspace = unpsp_sendspace;
414 			recvspace = unpsp_recvspace;
415 			break;
416 
417 		default:
418 			panic("uipc_attach");
419 		}
420 		error = soreserve(so, sendspace, recvspace);
421 		if (error)
422 			return (error);
423 	}
424 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
425 	if (unp == NULL)
426 		return (ENOBUFS);
427 	LIST_INIT(&unp->unp_refs);
428 	UNP_PCB_LOCK_INIT(unp);
429 	unp->unp_socket = so;
430 	so->so_pcb = unp;
431 	unp->unp_refcount = 1;
432 
433 	UNP_LIST_LOCK();
434 	unp->unp_gencnt = ++unp_gencnt;
435 	unp_count++;
436 	switch (so->so_type) {
437 	case SOCK_STREAM:
438 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
439 		break;
440 
441 	case SOCK_DGRAM:
442 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
443 		break;
444 
445 	case SOCK_SEQPACKET:
446 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
447 		break;
448 
449 	default:
450 		panic("uipc_attach");
451 	}
452 	UNP_LIST_UNLOCK();
453 
454 	return (0);
455 }
456 
457 static int
458 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
459 {
460 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
461 	struct vattr vattr;
462 	int error, namelen;
463 	struct nameidata nd;
464 	struct unpcb *unp;
465 	struct vnode *vp;
466 	struct mount *mp;
467 	cap_rights_t rights;
468 	char *buf;
469 
470 	unp = sotounpcb(so);
471 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
472 
473 	if (soun->sun_len > sizeof(struct sockaddr_un))
474 		return (EINVAL);
475 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
476 	if (namelen <= 0)
477 		return (EINVAL);
478 
479 	/*
480 	 * We don't allow simultaneous bind() calls on a single UNIX domain
481 	 * socket, so flag in-progress operations, and return an error if an
482 	 * operation is already in progress.
483 	 *
484 	 * Historically, we have not allowed a socket to be rebound, so this
485 	 * also returns an error.  Not allowing re-binding simplifies the
486 	 * implementation and avoids a great many possible failure modes.
487 	 */
488 	UNP_PCB_LOCK(unp);
489 	if (unp->unp_vnode != NULL) {
490 		UNP_PCB_UNLOCK(unp);
491 		return (EINVAL);
492 	}
493 	if (unp->unp_flags & UNP_BINDING) {
494 		UNP_PCB_UNLOCK(unp);
495 		return (EALREADY);
496 	}
497 	unp->unp_flags |= UNP_BINDING;
498 	UNP_PCB_UNLOCK(unp);
499 
500 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
501 	bcopy(soun->sun_path, buf, namelen);
502 	buf[namelen] = 0;
503 
504 restart:
505 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
506 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
507 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
508 	error = namei(&nd);
509 	if (error)
510 		goto error;
511 	vp = nd.ni_vp;
512 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
513 		NDFREE(&nd, NDF_ONLY_PNBUF);
514 		if (nd.ni_dvp == vp)
515 			vrele(nd.ni_dvp);
516 		else
517 			vput(nd.ni_dvp);
518 		if (vp != NULL) {
519 			vrele(vp);
520 			error = EADDRINUSE;
521 			goto error;
522 		}
523 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
524 		if (error)
525 			goto error;
526 		goto restart;
527 	}
528 	VATTR_NULL(&vattr);
529 	vattr.va_type = VSOCK;
530 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
531 #ifdef MAC
532 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
533 	    &vattr);
534 #endif
535 	if (error == 0)
536 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
537 	NDFREE(&nd, NDF_ONLY_PNBUF);
538 	vput(nd.ni_dvp);
539 	if (error) {
540 		vn_finished_write(mp);
541 		goto error;
542 	}
543 	vp = nd.ni_vp;
544 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
545 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
546 
547 	UNP_LINK_WLOCK();
548 	UNP_PCB_LOCK(unp);
549 	VOP_UNP_BIND(vp, unp->unp_socket);
550 	unp->unp_vnode = vp;
551 	unp->unp_addr = soun;
552 	unp->unp_flags &= ~UNP_BINDING;
553 	UNP_PCB_UNLOCK(unp);
554 	UNP_LINK_WUNLOCK();
555 	VOP_UNLOCK(vp, 0);
556 	vn_finished_write(mp);
557 	free(buf, M_TEMP);
558 	return (0);
559 
560 error:
561 	UNP_PCB_LOCK(unp);
562 	unp->unp_flags &= ~UNP_BINDING;
563 	UNP_PCB_UNLOCK(unp);
564 	free(buf, M_TEMP);
565 	return (error);
566 }
567 
568 static int
569 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
570 {
571 
572 	return (uipc_bindat(AT_FDCWD, so, nam, td));
573 }
574 
575 static int
576 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
577 {
578 	int error;
579 
580 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
581 	UNP_LINK_WLOCK();
582 	error = unp_connect(so, nam, td);
583 	UNP_LINK_WUNLOCK();
584 	return (error);
585 }
586 
587 static int
588 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
589     struct thread *td)
590 {
591 	int error;
592 
593 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
594 	UNP_LINK_WLOCK();
595 	error = unp_connectat(fd, so, nam, td);
596 	UNP_LINK_WUNLOCK();
597 	return (error);
598 }
599 
600 static void
601 uipc_close(struct socket *so)
602 {
603 	struct unpcb *unp, *unp2;
604 
605 	unp = sotounpcb(so);
606 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
607 
608 	UNP_LINK_WLOCK();
609 	UNP_PCB_LOCK(unp);
610 	unp2 = unp->unp_conn;
611 	if (unp2 != NULL) {
612 		UNP_PCB_LOCK(unp2);
613 		unp_disconnect(unp, unp2);
614 		UNP_PCB_UNLOCK(unp2);
615 	}
616 	UNP_PCB_UNLOCK(unp);
617 	UNP_LINK_WUNLOCK();
618 }
619 
620 static int
621 uipc_connect2(struct socket *so1, struct socket *so2)
622 {
623 	struct unpcb *unp, *unp2;
624 	int error;
625 
626 	UNP_LINK_WLOCK();
627 	unp = so1->so_pcb;
628 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
629 	UNP_PCB_LOCK(unp);
630 	unp2 = so2->so_pcb;
631 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
632 	UNP_PCB_LOCK(unp2);
633 	error = unp_connect2(so1, so2, PRU_CONNECT2);
634 	UNP_PCB_UNLOCK(unp2);
635 	UNP_PCB_UNLOCK(unp);
636 	UNP_LINK_WUNLOCK();
637 	return (error);
638 }
639 
640 static void
641 uipc_detach(struct socket *so)
642 {
643 	struct unpcb *unp, *unp2;
644 	struct sockaddr_un *saved_unp_addr;
645 	struct vnode *vp;
646 	int freeunp, local_unp_rights;
647 
648 	unp = sotounpcb(so);
649 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
650 
651 	UNP_LINK_WLOCK();
652 	UNP_LIST_LOCK();
653 	UNP_PCB_LOCK(unp);
654 	LIST_REMOVE(unp, unp_link);
655 	unp->unp_gencnt = ++unp_gencnt;
656 	--unp_count;
657 	UNP_LIST_UNLOCK();
658 
659 	/*
660 	 * XXXRW: Should assert vp->v_socket == so.
661 	 */
662 	if ((vp = unp->unp_vnode) != NULL) {
663 		VOP_UNP_DETACH(vp);
664 		unp->unp_vnode = NULL;
665 	}
666 	unp2 = unp->unp_conn;
667 	if (unp2 != NULL) {
668 		UNP_PCB_LOCK(unp2);
669 		unp_disconnect(unp, unp2);
670 		UNP_PCB_UNLOCK(unp2);
671 	}
672 
673 	/*
674 	 * We hold the linkage lock exclusively, so it's OK to acquire
675 	 * multiple pcb locks at a time.
676 	 */
677 	while (!LIST_EMPTY(&unp->unp_refs)) {
678 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
679 
680 		UNP_PCB_LOCK(ref);
681 		unp_drop(ref, ECONNRESET);
682 		UNP_PCB_UNLOCK(ref);
683 	}
684 	local_unp_rights = unp_rights;
685 	UNP_LINK_WUNLOCK();
686 	unp->unp_socket->so_pcb = NULL;
687 	saved_unp_addr = unp->unp_addr;
688 	unp->unp_addr = NULL;
689 	unp->unp_refcount--;
690 	freeunp = (unp->unp_refcount == 0);
691 	if (saved_unp_addr != NULL)
692 		free(saved_unp_addr, M_SONAME);
693 	if (freeunp) {
694 		UNP_PCB_LOCK_DESTROY(unp);
695 		uma_zfree(unp_zone, unp);
696 	} else
697 		UNP_PCB_UNLOCK(unp);
698 	if (vp)
699 		vrele(vp);
700 	if (local_unp_rights)
701 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
702 }
703 
704 static int
705 uipc_disconnect(struct socket *so)
706 {
707 	struct unpcb *unp, *unp2;
708 
709 	unp = sotounpcb(so);
710 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
711 
712 	UNP_LINK_WLOCK();
713 	UNP_PCB_LOCK(unp);
714 	unp2 = unp->unp_conn;
715 	if (unp2 != NULL) {
716 		UNP_PCB_LOCK(unp2);
717 		unp_disconnect(unp, unp2);
718 		UNP_PCB_UNLOCK(unp2);
719 	}
720 	UNP_PCB_UNLOCK(unp);
721 	UNP_LINK_WUNLOCK();
722 	return (0);
723 }
724 
725 static int
726 uipc_listen(struct socket *so, int backlog, struct thread *td)
727 {
728 	struct unpcb *unp;
729 	int error;
730 
731 	unp = sotounpcb(so);
732 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
733 
734 	UNP_PCB_LOCK(unp);
735 	if (unp->unp_vnode == NULL) {
736 		UNP_PCB_UNLOCK(unp);
737 		return (EINVAL);
738 	}
739 
740 	SOCK_LOCK(so);
741 	error = solisten_proto_check(so);
742 	if (error == 0) {
743 		cru2x(td->td_ucred, &unp->unp_peercred);
744 		unp->unp_flags |= UNP_HAVEPCCACHED;
745 		solisten_proto(so, backlog);
746 	}
747 	SOCK_UNLOCK(so);
748 	UNP_PCB_UNLOCK(unp);
749 	return (error);
750 }
751 
752 static int
753 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
754 {
755 	struct unpcb *unp, *unp2;
756 	const struct sockaddr *sa;
757 
758 	unp = sotounpcb(so);
759 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
760 
761 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
762 	UNP_LINK_RLOCK();
763 	/*
764 	 * XXX: It seems that this test always fails even when connection is
765 	 * established.  So, this else clause is added as workaround to
766 	 * return PF_LOCAL sockaddr.
767 	 */
768 	unp2 = unp->unp_conn;
769 	if (unp2 != NULL) {
770 		UNP_PCB_LOCK(unp2);
771 		if (unp2->unp_addr != NULL)
772 			sa = (struct sockaddr *) unp2->unp_addr;
773 		else
774 			sa = &sun_noname;
775 		bcopy(sa, *nam, sa->sa_len);
776 		UNP_PCB_UNLOCK(unp2);
777 	} else {
778 		sa = &sun_noname;
779 		bcopy(sa, *nam, sa->sa_len);
780 	}
781 	UNP_LINK_RUNLOCK();
782 	return (0);
783 }
784 
785 static int
786 uipc_rcvd(struct socket *so, int flags)
787 {
788 	struct unpcb *unp, *unp2;
789 	struct socket *so2;
790 	u_int mbcnt, sbcc;
791 	u_long newhiwat;
792 
793 	unp = sotounpcb(so);
794 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
795 
796 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
797 		panic("uipc_rcvd socktype %d", so->so_type);
798 
799 	/*
800 	 * Adjust backpressure on sender and wakeup any waiting to write.
801 	 *
802 	 * The unp lock is acquired to maintain the validity of the unp_conn
803 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
804 	 * static as long as we don't permit unp2 to disconnect from unp,
805 	 * which is prevented by the lock on unp.  We cache values from
806 	 * so_rcv to avoid holding the so_rcv lock over the entire
807 	 * transaction on the remote so_snd.
808 	 */
809 	SOCKBUF_LOCK(&so->so_rcv);
810 	mbcnt = so->so_rcv.sb_mbcnt;
811 	sbcc = so->so_rcv.sb_cc;
812 	SOCKBUF_UNLOCK(&so->so_rcv);
813 	UNP_PCB_LOCK(unp);
814 	unp2 = unp->unp_conn;
815 	if (unp2 == NULL) {
816 		UNP_PCB_UNLOCK(unp);
817 		return (0);
818 	}
819 	so2 = unp2->unp_socket;
820 	SOCKBUF_LOCK(&so2->so_snd);
821 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
822 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
823 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
824 	    newhiwat, RLIM_INFINITY);
825 	sowwakeup_locked(so2);
826 	unp->unp_mbcnt = mbcnt;
827 	unp->unp_cc = sbcc;
828 	UNP_PCB_UNLOCK(unp);
829 	return (0);
830 }
831 
832 static int
833 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
834     struct mbuf *control, struct thread *td)
835 {
836 	struct unpcb *unp, *unp2;
837 	struct socket *so2;
838 	u_int mbcnt_delta, sbcc;
839 	u_int newhiwat;
840 	int error = 0;
841 
842 	unp = sotounpcb(so);
843 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
844 
845 	if (flags & PRUS_OOB) {
846 		error = EOPNOTSUPP;
847 		goto release;
848 	}
849 	if (control != NULL && (error = unp_internalize(&control, td)))
850 		goto release;
851 	if ((nam != NULL) || (flags & PRUS_EOF))
852 		UNP_LINK_WLOCK();
853 	else
854 		UNP_LINK_RLOCK();
855 	switch (so->so_type) {
856 	case SOCK_DGRAM:
857 	{
858 		const struct sockaddr *from;
859 
860 		unp2 = unp->unp_conn;
861 		if (nam != NULL) {
862 			UNP_LINK_WLOCK_ASSERT();
863 			if (unp2 != NULL) {
864 				error = EISCONN;
865 				break;
866 			}
867 			error = unp_connect(so, nam, td);
868 			if (error)
869 				break;
870 			unp2 = unp->unp_conn;
871 		}
872 
873 		/*
874 		 * Because connect() and send() are non-atomic in a sendto()
875 		 * with a target address, it's possible that the socket will
876 		 * have disconnected before the send() can run.  In that case
877 		 * return the slightly counter-intuitive but otherwise
878 		 * correct error that the socket is not connected.
879 		 */
880 		if (unp2 == NULL) {
881 			error = ENOTCONN;
882 			break;
883 		}
884 		/* Lockless read. */
885 		if (unp2->unp_flags & UNP_WANTCRED)
886 			control = unp_addsockcred(td, control);
887 		UNP_PCB_LOCK(unp);
888 		if (unp->unp_addr != NULL)
889 			from = (struct sockaddr *)unp->unp_addr;
890 		else
891 			from = &sun_noname;
892 		so2 = unp2->unp_socket;
893 		SOCKBUF_LOCK(&so2->so_rcv);
894 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
895 			sorwakeup_locked(so2);
896 			m = NULL;
897 			control = NULL;
898 		} else {
899 			SOCKBUF_UNLOCK(&so2->so_rcv);
900 			error = ENOBUFS;
901 		}
902 		if (nam != NULL) {
903 			UNP_LINK_WLOCK_ASSERT();
904 			UNP_PCB_LOCK(unp2);
905 			unp_disconnect(unp, unp2);
906 			UNP_PCB_UNLOCK(unp2);
907 		}
908 		UNP_PCB_UNLOCK(unp);
909 		break;
910 	}
911 
912 	case SOCK_SEQPACKET:
913 	case SOCK_STREAM:
914 		if ((so->so_state & SS_ISCONNECTED) == 0) {
915 			if (nam != NULL) {
916 				UNP_LINK_WLOCK_ASSERT();
917 				error = unp_connect(so, nam, td);
918 				if (error)
919 					break;	/* XXX */
920 			} else {
921 				error = ENOTCONN;
922 				break;
923 			}
924 		}
925 
926 		/* Lockless read. */
927 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
928 			error = EPIPE;
929 			break;
930 		}
931 
932 		/*
933 		 * Because connect() and send() are non-atomic in a sendto()
934 		 * with a target address, it's possible that the socket will
935 		 * have disconnected before the send() can run.  In that case
936 		 * return the slightly counter-intuitive but otherwise
937 		 * correct error that the socket is not connected.
938 		 *
939 		 * Locking here must be done carefully: the linkage lock
940 		 * prevents interconnections between unpcbs from changing, so
941 		 * we can traverse from unp to unp2 without acquiring unp's
942 		 * lock.  Socket buffer locks follow unpcb locks, so we can
943 		 * acquire both remote and lock socket buffer locks.
944 		 */
945 		unp2 = unp->unp_conn;
946 		if (unp2 == NULL) {
947 			error = ENOTCONN;
948 			break;
949 		}
950 		so2 = unp2->unp_socket;
951 		UNP_PCB_LOCK(unp2);
952 		SOCKBUF_LOCK(&so2->so_rcv);
953 		if (unp2->unp_flags & UNP_WANTCRED) {
954 			/*
955 			 * Credentials are passed only once on SOCK_STREAM
956 			 * and SOCK_SEQPACKET.
957 			 */
958 			unp2->unp_flags &= ~UNP_WANTCRED;
959 			control = unp_addsockcred(td, control);
960 		}
961 		/*
962 		 * Send to paired receive port, and then reduce send buffer
963 		 * hiwater marks to maintain backpressure.  Wake up readers.
964 		 */
965 		switch (so->so_type) {
966 		case SOCK_STREAM:
967 			if (control != NULL) {
968 				if (sbappendcontrol_locked(&so2->so_rcv, m,
969 				    control))
970 					control = NULL;
971 			} else
972 				sbappend_locked(&so2->so_rcv, m);
973 			break;
974 
975 		case SOCK_SEQPACKET: {
976 			const struct sockaddr *from;
977 
978 			from = &sun_noname;
979 			if (sbappendaddr_locked(&so2->so_rcv, from, m,
980 			    control))
981 				control = NULL;
982 			break;
983 			}
984 		}
985 
986 		/*
987 		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
988 		 * datagram size and back-pressure for SOCK_SEQPACKET, which
989 		 * can lead to undesired return of EMSGSIZE on send instead
990 		 * of more desirable blocking.
991 		 */
992 		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
993 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
994 		sbcc = so2->so_rcv.sb_cc;
995 		sorwakeup_locked(so2);
996 
997 		SOCKBUF_LOCK(&so->so_snd);
998 		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
999 			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
1000 		else
1001 			newhiwat = 0;
1002 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
1003 		    newhiwat, RLIM_INFINITY);
1004 		so->so_snd.sb_mbmax -= mbcnt_delta;
1005 		SOCKBUF_UNLOCK(&so->so_snd);
1006 		unp2->unp_cc = sbcc;
1007 		UNP_PCB_UNLOCK(unp2);
1008 		m = NULL;
1009 		break;
1010 
1011 	default:
1012 		panic("uipc_send unknown socktype");
1013 	}
1014 
1015 	/*
1016 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1017 	 */
1018 	if (flags & PRUS_EOF) {
1019 		UNP_PCB_LOCK(unp);
1020 		socantsendmore(so);
1021 		unp_shutdown(unp);
1022 		UNP_PCB_UNLOCK(unp);
1023 	}
1024 
1025 	if ((nam != NULL) || (flags & PRUS_EOF))
1026 		UNP_LINK_WUNLOCK();
1027 	else
1028 		UNP_LINK_RUNLOCK();
1029 
1030 	if (control != NULL && error != 0)
1031 		unp_dispose(control);
1032 
1033 release:
1034 	if (control != NULL)
1035 		m_freem(control);
1036 	if (m != NULL)
1037 		m_freem(m);
1038 	return (error);
1039 }
1040 
1041 static int
1042 uipc_sense(struct socket *so, struct stat *sb)
1043 {
1044 	struct unpcb *unp, *unp2;
1045 	struct socket *so2;
1046 
1047 	unp = sotounpcb(so);
1048 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1049 
1050 	sb->st_blksize = so->so_snd.sb_hiwat;
1051 	UNP_LINK_RLOCK();
1052 	UNP_PCB_LOCK(unp);
1053 	unp2 = unp->unp_conn;
1054 	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1055 	    unp2 != NULL) {
1056 		so2 = unp2->unp_socket;
1057 		sb->st_blksize += so2->so_rcv.sb_cc;
1058 	}
1059 	sb->st_dev = NODEV;
1060 	if (unp->unp_ino == 0)
1061 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1062 	sb->st_ino = unp->unp_ino;
1063 	UNP_PCB_UNLOCK(unp);
1064 	UNP_LINK_RUNLOCK();
1065 	return (0);
1066 }
1067 
1068 static int
1069 uipc_shutdown(struct socket *so)
1070 {
1071 	struct unpcb *unp;
1072 
1073 	unp = sotounpcb(so);
1074 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1075 
1076 	UNP_LINK_WLOCK();
1077 	UNP_PCB_LOCK(unp);
1078 	socantsendmore(so);
1079 	unp_shutdown(unp);
1080 	UNP_PCB_UNLOCK(unp);
1081 	UNP_LINK_WUNLOCK();
1082 	return (0);
1083 }
1084 
1085 static int
1086 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1087 {
1088 	struct unpcb *unp;
1089 	const struct sockaddr *sa;
1090 
1091 	unp = sotounpcb(so);
1092 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1093 
1094 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1095 	UNP_PCB_LOCK(unp);
1096 	if (unp->unp_addr != NULL)
1097 		sa = (struct sockaddr *) unp->unp_addr;
1098 	else
1099 		sa = &sun_noname;
1100 	bcopy(sa, *nam, sa->sa_len);
1101 	UNP_PCB_UNLOCK(unp);
1102 	return (0);
1103 }
1104 
1105 static struct pr_usrreqs uipc_usrreqs_dgram = {
1106 	.pru_abort = 		uipc_abort,
1107 	.pru_accept =		uipc_accept,
1108 	.pru_attach =		uipc_attach,
1109 	.pru_bind =		uipc_bind,
1110 	.pru_bindat =		uipc_bindat,
1111 	.pru_connect =		uipc_connect,
1112 	.pru_connectat =	uipc_connectat,
1113 	.pru_connect2 =		uipc_connect2,
1114 	.pru_detach =		uipc_detach,
1115 	.pru_disconnect =	uipc_disconnect,
1116 	.pru_listen =		uipc_listen,
1117 	.pru_peeraddr =		uipc_peeraddr,
1118 	.pru_rcvd =		uipc_rcvd,
1119 	.pru_send =		uipc_send,
1120 	.pru_sense =		uipc_sense,
1121 	.pru_shutdown =		uipc_shutdown,
1122 	.pru_sockaddr =		uipc_sockaddr,
1123 	.pru_soreceive =	soreceive_dgram,
1124 	.pru_close =		uipc_close,
1125 };
1126 
1127 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1128 	.pru_abort =		uipc_abort,
1129 	.pru_accept =		uipc_accept,
1130 	.pru_attach =		uipc_attach,
1131 	.pru_bind =		uipc_bind,
1132 	.pru_bindat =		uipc_bindat,
1133 	.pru_connect =		uipc_connect,
1134 	.pru_connectat =	uipc_connectat,
1135 	.pru_connect2 =		uipc_connect2,
1136 	.pru_detach =		uipc_detach,
1137 	.pru_disconnect =	uipc_disconnect,
1138 	.pru_listen =		uipc_listen,
1139 	.pru_peeraddr =		uipc_peeraddr,
1140 	.pru_rcvd =		uipc_rcvd,
1141 	.pru_send =		uipc_send,
1142 	.pru_sense =		uipc_sense,
1143 	.pru_shutdown =		uipc_shutdown,
1144 	.pru_sockaddr =		uipc_sockaddr,
1145 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1146 	.pru_close =		uipc_close,
1147 };
1148 
1149 static struct pr_usrreqs uipc_usrreqs_stream = {
1150 	.pru_abort = 		uipc_abort,
1151 	.pru_accept =		uipc_accept,
1152 	.pru_attach =		uipc_attach,
1153 	.pru_bind =		uipc_bind,
1154 	.pru_bindat =		uipc_bindat,
1155 	.pru_connect =		uipc_connect,
1156 	.pru_connectat =	uipc_connectat,
1157 	.pru_connect2 =		uipc_connect2,
1158 	.pru_detach =		uipc_detach,
1159 	.pru_disconnect =	uipc_disconnect,
1160 	.pru_listen =		uipc_listen,
1161 	.pru_peeraddr =		uipc_peeraddr,
1162 	.pru_rcvd =		uipc_rcvd,
1163 	.pru_send =		uipc_send,
1164 	.pru_sense =		uipc_sense,
1165 	.pru_shutdown =		uipc_shutdown,
1166 	.pru_sockaddr =		uipc_sockaddr,
1167 	.pru_soreceive =	soreceive_generic,
1168 	.pru_close =		uipc_close,
1169 };
1170 
1171 static int
1172 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1173 {
1174 	struct unpcb *unp;
1175 	struct xucred xu;
1176 	int error, optval;
1177 
1178 	if (sopt->sopt_level != 0)
1179 		return (EINVAL);
1180 
1181 	unp = sotounpcb(so);
1182 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1183 	error = 0;
1184 	switch (sopt->sopt_dir) {
1185 	case SOPT_GET:
1186 		switch (sopt->sopt_name) {
1187 		case LOCAL_PEERCRED:
1188 			UNP_PCB_LOCK(unp);
1189 			if (unp->unp_flags & UNP_HAVEPC)
1190 				xu = unp->unp_peercred;
1191 			else {
1192 				if (so->so_type == SOCK_STREAM)
1193 					error = ENOTCONN;
1194 				else
1195 					error = EINVAL;
1196 			}
1197 			UNP_PCB_UNLOCK(unp);
1198 			if (error == 0)
1199 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1200 			break;
1201 
1202 		case LOCAL_CREDS:
1203 			/* Unlocked read. */
1204 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1205 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1206 			break;
1207 
1208 		case LOCAL_CONNWAIT:
1209 			/* Unlocked read. */
1210 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1211 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1212 			break;
1213 
1214 		default:
1215 			error = EOPNOTSUPP;
1216 			break;
1217 		}
1218 		break;
1219 
1220 	case SOPT_SET:
1221 		switch (sopt->sopt_name) {
1222 		case LOCAL_CREDS:
1223 		case LOCAL_CONNWAIT:
1224 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1225 					    sizeof(optval));
1226 			if (error)
1227 				break;
1228 
1229 #define	OPTSET(bit) do {						\
1230 	UNP_PCB_LOCK(unp);						\
1231 	if (optval)							\
1232 		unp->unp_flags |= bit;					\
1233 	else								\
1234 		unp->unp_flags &= ~bit;					\
1235 	UNP_PCB_UNLOCK(unp);						\
1236 } while (0)
1237 
1238 			switch (sopt->sopt_name) {
1239 			case LOCAL_CREDS:
1240 				OPTSET(UNP_WANTCRED);
1241 				break;
1242 
1243 			case LOCAL_CONNWAIT:
1244 				OPTSET(UNP_CONNWAIT);
1245 				break;
1246 
1247 			default:
1248 				break;
1249 			}
1250 			break;
1251 #undef	OPTSET
1252 		default:
1253 			error = ENOPROTOOPT;
1254 			break;
1255 		}
1256 		break;
1257 
1258 	default:
1259 		error = EOPNOTSUPP;
1260 		break;
1261 	}
1262 	return (error);
1263 }
1264 
1265 static int
1266 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1267 {
1268 
1269 	return (unp_connectat(AT_FDCWD, so, nam, td));
1270 }
1271 
1272 static int
1273 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1274     struct thread *td)
1275 {
1276 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1277 	struct vnode *vp;
1278 	struct socket *so2, *so3;
1279 	struct unpcb *unp, *unp2, *unp3;
1280 	struct nameidata nd;
1281 	char buf[SOCK_MAXADDRLEN];
1282 	struct sockaddr *sa;
1283 	cap_rights_t rights;
1284 	int error, len;
1285 
1286 	UNP_LINK_WLOCK_ASSERT();
1287 
1288 	unp = sotounpcb(so);
1289 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1290 
1291 	if (nam->sa_len > sizeof(struct sockaddr_un))
1292 		return (EINVAL);
1293 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1294 	if (len <= 0)
1295 		return (EINVAL);
1296 	bcopy(soun->sun_path, buf, len);
1297 	buf[len] = 0;
1298 
1299 	UNP_PCB_LOCK(unp);
1300 	if (unp->unp_flags & UNP_CONNECTING) {
1301 		UNP_PCB_UNLOCK(unp);
1302 		return (EALREADY);
1303 	}
1304 	UNP_LINK_WUNLOCK();
1305 	unp->unp_flags |= UNP_CONNECTING;
1306 	UNP_PCB_UNLOCK(unp);
1307 
1308 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1309 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1310 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1311 	error = namei(&nd);
1312 	if (error)
1313 		vp = NULL;
1314 	else
1315 		vp = nd.ni_vp;
1316 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1317 	NDFREE(&nd, NDF_ONLY_PNBUF);
1318 	if (error)
1319 		goto bad;
1320 
1321 	if (vp->v_type != VSOCK) {
1322 		error = ENOTSOCK;
1323 		goto bad;
1324 	}
1325 #ifdef MAC
1326 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1327 	if (error)
1328 		goto bad;
1329 #endif
1330 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1331 	if (error)
1332 		goto bad;
1333 
1334 	unp = sotounpcb(so);
1335 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1336 
1337 	/*
1338 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1339 	 * and to protect simultaneous locking of multiple pcbs.
1340 	 */
1341 	UNP_LINK_WLOCK();
1342 	VOP_UNP_CONNECT(vp, &so2);
1343 	if (so2 == NULL) {
1344 		error = ECONNREFUSED;
1345 		goto bad2;
1346 	}
1347 	if (so->so_type != so2->so_type) {
1348 		error = EPROTOTYPE;
1349 		goto bad2;
1350 	}
1351 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1352 		if (so2->so_options & SO_ACCEPTCONN) {
1353 			CURVNET_SET(so2->so_vnet);
1354 			so3 = sonewconn(so2, 0);
1355 			CURVNET_RESTORE();
1356 		} else
1357 			so3 = NULL;
1358 		if (so3 == NULL) {
1359 			error = ECONNREFUSED;
1360 			goto bad2;
1361 		}
1362 		unp = sotounpcb(so);
1363 		unp2 = sotounpcb(so2);
1364 		unp3 = sotounpcb(so3);
1365 		UNP_PCB_LOCK(unp);
1366 		UNP_PCB_LOCK(unp2);
1367 		UNP_PCB_LOCK(unp3);
1368 		if (unp2->unp_addr != NULL) {
1369 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1370 			unp3->unp_addr = (struct sockaddr_un *) sa;
1371 			sa = NULL;
1372 		}
1373 
1374 		/*
1375 		 * The connector's (client's) credentials are copied from its
1376 		 * process structure at the time of connect() (which is now).
1377 		 */
1378 		cru2x(td->td_ucred, &unp3->unp_peercred);
1379 		unp3->unp_flags |= UNP_HAVEPC;
1380 
1381 		/*
1382 		 * The receiver's (server's) credentials are copied from the
1383 		 * unp_peercred member of socket on which the former called
1384 		 * listen(); uipc_listen() cached that process's credentials
1385 		 * at that time so we can use them now.
1386 		 */
1387 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1388 		    ("unp_connect: listener without cached peercred"));
1389 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1390 		    sizeof(unp->unp_peercred));
1391 		unp->unp_flags |= UNP_HAVEPC;
1392 		if (unp2->unp_flags & UNP_WANTCRED)
1393 			unp3->unp_flags |= UNP_WANTCRED;
1394 		UNP_PCB_UNLOCK(unp3);
1395 		UNP_PCB_UNLOCK(unp2);
1396 		UNP_PCB_UNLOCK(unp);
1397 #ifdef MAC
1398 		mac_socketpeer_set_from_socket(so, so3);
1399 		mac_socketpeer_set_from_socket(so3, so);
1400 #endif
1401 
1402 		so2 = so3;
1403 	}
1404 	unp = sotounpcb(so);
1405 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1406 	unp2 = sotounpcb(so2);
1407 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1408 	UNP_PCB_LOCK(unp);
1409 	UNP_PCB_LOCK(unp2);
1410 	error = unp_connect2(so, so2, PRU_CONNECT);
1411 	UNP_PCB_UNLOCK(unp2);
1412 	UNP_PCB_UNLOCK(unp);
1413 bad2:
1414 	UNP_LINK_WUNLOCK();
1415 bad:
1416 	if (vp != NULL)
1417 		vput(vp);
1418 	free(sa, M_SONAME);
1419 	UNP_LINK_WLOCK();
1420 	UNP_PCB_LOCK(unp);
1421 	unp->unp_flags &= ~UNP_CONNECTING;
1422 	UNP_PCB_UNLOCK(unp);
1423 	return (error);
1424 }
1425 
1426 static int
1427 unp_connect2(struct socket *so, struct socket *so2, int req)
1428 {
1429 	struct unpcb *unp;
1430 	struct unpcb *unp2;
1431 
1432 	unp = sotounpcb(so);
1433 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1434 	unp2 = sotounpcb(so2);
1435 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1436 
1437 	UNP_LINK_WLOCK_ASSERT();
1438 	UNP_PCB_LOCK_ASSERT(unp);
1439 	UNP_PCB_LOCK_ASSERT(unp2);
1440 
1441 	if (so2->so_type != so->so_type)
1442 		return (EPROTOTYPE);
1443 	unp->unp_conn = unp2;
1444 
1445 	switch (so->so_type) {
1446 	case SOCK_DGRAM:
1447 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1448 		soisconnected(so);
1449 		break;
1450 
1451 	case SOCK_STREAM:
1452 	case SOCK_SEQPACKET:
1453 		unp2->unp_conn = unp;
1454 		if (req == PRU_CONNECT &&
1455 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1456 			soisconnecting(so);
1457 		else
1458 			soisconnected(so);
1459 		soisconnected(so2);
1460 		break;
1461 
1462 	default:
1463 		panic("unp_connect2");
1464 	}
1465 	return (0);
1466 }
1467 
1468 static void
1469 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1470 {
1471 	struct socket *so;
1472 
1473 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1474 
1475 	UNP_LINK_WLOCK_ASSERT();
1476 	UNP_PCB_LOCK_ASSERT(unp);
1477 	UNP_PCB_LOCK_ASSERT(unp2);
1478 
1479 	unp->unp_conn = NULL;
1480 	switch (unp->unp_socket->so_type) {
1481 	case SOCK_DGRAM:
1482 		LIST_REMOVE(unp, unp_reflink);
1483 		so = unp->unp_socket;
1484 		SOCK_LOCK(so);
1485 		so->so_state &= ~SS_ISCONNECTED;
1486 		SOCK_UNLOCK(so);
1487 		break;
1488 
1489 	case SOCK_STREAM:
1490 	case SOCK_SEQPACKET:
1491 		soisdisconnected(unp->unp_socket);
1492 		unp2->unp_conn = NULL;
1493 		soisdisconnected(unp2->unp_socket);
1494 		break;
1495 	}
1496 }
1497 
1498 /*
1499  * unp_pcblist() walks the global list of struct unpcb's to generate a
1500  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1501  * sequentially, validating the generation number on each to see if it has
1502  * been detached.  All of this is necessary because copyout() may sleep on
1503  * disk I/O.
1504  */
1505 static int
1506 unp_pcblist(SYSCTL_HANDLER_ARGS)
1507 {
1508 	int error, i, n;
1509 	int freeunp;
1510 	struct unpcb *unp, **unp_list;
1511 	unp_gen_t gencnt;
1512 	struct xunpgen *xug;
1513 	struct unp_head *head;
1514 	struct xunpcb *xu;
1515 
1516 	switch ((intptr_t)arg1) {
1517 	case SOCK_STREAM:
1518 		head = &unp_shead;
1519 		break;
1520 
1521 	case SOCK_DGRAM:
1522 		head = &unp_dhead;
1523 		break;
1524 
1525 	case SOCK_SEQPACKET:
1526 		head = &unp_sphead;
1527 		break;
1528 
1529 	default:
1530 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1531 	}
1532 
1533 	/*
1534 	 * The process of preparing the PCB list is too time-consuming and
1535 	 * resource-intensive to repeat twice on every request.
1536 	 */
1537 	if (req->oldptr == NULL) {
1538 		n = unp_count;
1539 		req->oldidx = 2 * (sizeof *xug)
1540 			+ (n + n/8) * sizeof(struct xunpcb);
1541 		return (0);
1542 	}
1543 
1544 	if (req->newptr != NULL)
1545 		return (EPERM);
1546 
1547 	/*
1548 	 * OK, now we're committed to doing something.
1549 	 */
1550 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1551 	UNP_LIST_LOCK();
1552 	gencnt = unp_gencnt;
1553 	n = unp_count;
1554 	UNP_LIST_UNLOCK();
1555 
1556 	xug->xug_len = sizeof *xug;
1557 	xug->xug_count = n;
1558 	xug->xug_gen = gencnt;
1559 	xug->xug_sogen = so_gencnt;
1560 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1561 	if (error) {
1562 		free(xug, M_TEMP);
1563 		return (error);
1564 	}
1565 
1566 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1567 
1568 	UNP_LIST_LOCK();
1569 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1570 	     unp = LIST_NEXT(unp, unp_link)) {
1571 		UNP_PCB_LOCK(unp);
1572 		if (unp->unp_gencnt <= gencnt) {
1573 			if (cr_cansee(req->td->td_ucred,
1574 			    unp->unp_socket->so_cred)) {
1575 				UNP_PCB_UNLOCK(unp);
1576 				continue;
1577 			}
1578 			unp_list[i++] = unp;
1579 			unp->unp_refcount++;
1580 		}
1581 		UNP_PCB_UNLOCK(unp);
1582 	}
1583 	UNP_LIST_UNLOCK();
1584 	n = i;			/* In case we lost some during malloc. */
1585 
1586 	error = 0;
1587 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1588 	for (i = 0; i < n; i++) {
1589 		unp = unp_list[i];
1590 		UNP_PCB_LOCK(unp);
1591 		unp->unp_refcount--;
1592 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1593 			xu->xu_len = sizeof *xu;
1594 			xu->xu_unpp = unp;
1595 			/*
1596 			 * XXX - need more locking here to protect against
1597 			 * connect/disconnect races for SMP.
1598 			 */
1599 			if (unp->unp_addr != NULL)
1600 				bcopy(unp->unp_addr, &xu->xu_addr,
1601 				      unp->unp_addr->sun_len);
1602 			if (unp->unp_conn != NULL &&
1603 			    unp->unp_conn->unp_addr != NULL)
1604 				bcopy(unp->unp_conn->unp_addr,
1605 				      &xu->xu_caddr,
1606 				      unp->unp_conn->unp_addr->sun_len);
1607 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1608 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1609 			UNP_PCB_UNLOCK(unp);
1610 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1611 		} else {
1612 			freeunp = (unp->unp_refcount == 0);
1613 			UNP_PCB_UNLOCK(unp);
1614 			if (freeunp) {
1615 				UNP_PCB_LOCK_DESTROY(unp);
1616 				uma_zfree(unp_zone, unp);
1617 			}
1618 		}
1619 	}
1620 	free(xu, M_TEMP);
1621 	if (!error) {
1622 		/*
1623 		 * Give the user an updated idea of our state.  If the
1624 		 * generation differs from what we told her before, she knows
1625 		 * that something happened while we were processing this
1626 		 * request, and it might be necessary to retry.
1627 		 */
1628 		xug->xug_gen = unp_gencnt;
1629 		xug->xug_sogen = so_gencnt;
1630 		xug->xug_count = unp_count;
1631 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1632 	}
1633 	free(unp_list, M_TEMP);
1634 	free(xug, M_TEMP);
1635 	return (error);
1636 }
1637 
1638 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1639     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1640     "List of active local datagram sockets");
1641 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1642     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1643     "List of active local stream sockets");
1644 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1645     CTLTYPE_OPAQUE | CTLFLAG_RD,
1646     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1647     "List of active local seqpacket sockets");
1648 
1649 static void
1650 unp_shutdown(struct unpcb *unp)
1651 {
1652 	struct unpcb *unp2;
1653 	struct socket *so;
1654 
1655 	UNP_LINK_WLOCK_ASSERT();
1656 	UNP_PCB_LOCK_ASSERT(unp);
1657 
1658 	unp2 = unp->unp_conn;
1659 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1660 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1661 		so = unp2->unp_socket;
1662 		if (so != NULL)
1663 			socantrcvmore(so);
1664 	}
1665 }
1666 
1667 static void
1668 unp_drop(struct unpcb *unp, int errno)
1669 {
1670 	struct socket *so = unp->unp_socket;
1671 	struct unpcb *unp2;
1672 
1673 	UNP_LINK_WLOCK_ASSERT();
1674 	UNP_PCB_LOCK_ASSERT(unp);
1675 
1676 	so->so_error = errno;
1677 	unp2 = unp->unp_conn;
1678 	if (unp2 == NULL)
1679 		return;
1680 	UNP_PCB_LOCK(unp2);
1681 	unp_disconnect(unp, unp2);
1682 	UNP_PCB_UNLOCK(unp2);
1683 }
1684 
1685 static void
1686 unp_freerights(struct filedescent **fdep, int fdcount)
1687 {
1688 	struct file *fp;
1689 	int i;
1690 
1691 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1692 
1693 	for (i = 0; i < fdcount; i++) {
1694 		fp = fdep[i]->fde_file;
1695 		filecaps_free(&fdep[i]->fde_caps);
1696 		unp_discard(fp);
1697 	}
1698 	free(fdep[0], M_FILECAPS);
1699 }
1700 
1701 static int
1702 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1703 {
1704 	struct thread *td = curthread;		/* XXX */
1705 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1706 	int i;
1707 	int *fdp;
1708 	struct filedesc *fdesc = td->td_proc->p_fd;
1709 	struct filedescent *fde, **fdep;
1710 	void *data;
1711 	socklen_t clen = control->m_len, datalen;
1712 	int error, newfds;
1713 	u_int newlen;
1714 
1715 	UNP_LINK_UNLOCK_ASSERT();
1716 
1717 	error = 0;
1718 	if (controlp != NULL) /* controlp == NULL => free control messages */
1719 		*controlp = NULL;
1720 	while (cm != NULL) {
1721 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1722 			error = EINVAL;
1723 			break;
1724 		}
1725 		data = CMSG_DATA(cm);
1726 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1727 		if (cm->cmsg_level == SOL_SOCKET
1728 		    && cm->cmsg_type == SCM_RIGHTS) {
1729 			newfds = datalen / sizeof(*fdep);
1730 			if (newfds == 0)
1731 				goto next;
1732 			fdep = data;
1733 
1734 			/* If we're not outputting the descriptors free them. */
1735 			if (error || controlp == NULL) {
1736 				unp_freerights(fdep, newfds);
1737 				goto next;
1738 			}
1739 			FILEDESC_XLOCK(fdesc);
1740 
1741 			/*
1742 			 * Now change each pointer to an fd in the global
1743 			 * table to an integer that is the index to the local
1744 			 * fd table entry that we set up to point to the
1745 			 * global one we are transferring.
1746 			 */
1747 			newlen = newfds * sizeof(int);
1748 			*controlp = sbcreatecontrol(NULL, newlen,
1749 			    SCM_RIGHTS, SOL_SOCKET);
1750 			if (*controlp == NULL) {
1751 				FILEDESC_XUNLOCK(fdesc);
1752 				error = E2BIG;
1753 				unp_freerights(fdep, newfds);
1754 				goto next;
1755 			}
1756 
1757 			fdp = (int *)
1758 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1759 			if (fdallocn(td, 0, fdp, newfds) != 0) {
1760 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1761 				error = EMSGSIZE;
1762 				unp_freerights(fdep, newfds);
1763 				m_freem(*controlp);
1764 				*controlp = NULL;
1765 				goto next;
1766 			}
1767 			for (i = 0; i < newfds; i++, fdp++) {
1768 				fde = &fdesc->fd_ofiles[*fdp];
1769 				fde->fde_file = fdep[i]->fde_file;
1770 				filecaps_move(&fdep[i]->fde_caps,
1771 				    &fde->fde_caps);
1772 				if ((flags & MSG_CMSG_CLOEXEC) != 0)
1773 					fde->fde_flags |= UF_EXCLOSE;
1774 				unp_externalize_fp(fde->fde_file);
1775 			}
1776 			FILEDESC_XUNLOCK(fdesc);
1777 			free(fdep[0], M_FILECAPS);
1778 		} else {
1779 			/* We can just copy anything else across. */
1780 			if (error || controlp == NULL)
1781 				goto next;
1782 			*controlp = sbcreatecontrol(NULL, datalen,
1783 			    cm->cmsg_type, cm->cmsg_level);
1784 			if (*controlp == NULL) {
1785 				error = ENOBUFS;
1786 				goto next;
1787 			}
1788 			bcopy(data,
1789 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1790 			    datalen);
1791 		}
1792 		controlp = &(*controlp)->m_next;
1793 
1794 next:
1795 		if (CMSG_SPACE(datalen) < clen) {
1796 			clen -= CMSG_SPACE(datalen);
1797 			cm = (struct cmsghdr *)
1798 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1799 		} else {
1800 			clen = 0;
1801 			cm = NULL;
1802 		}
1803 	}
1804 
1805 	m_freem(control);
1806 	return (error);
1807 }
1808 
1809 static void
1810 unp_zone_change(void *tag)
1811 {
1812 
1813 	uma_zone_set_max(unp_zone, maxsockets);
1814 }
1815 
1816 static void
1817 unp_init(void)
1818 {
1819 
1820 #ifdef VIMAGE
1821 	if (!IS_DEFAULT_VNET(curvnet))
1822 		return;
1823 #endif
1824 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1825 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1826 	if (unp_zone == NULL)
1827 		panic("unp_init");
1828 	uma_zone_set_max(unp_zone, maxsockets);
1829 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1830 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1831 	    NULL, EVENTHANDLER_PRI_ANY);
1832 	LIST_INIT(&unp_dhead);
1833 	LIST_INIT(&unp_shead);
1834 	LIST_INIT(&unp_sphead);
1835 	SLIST_INIT(&unp_defers);
1836 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1837 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1838 	UNP_LINK_LOCK_INIT();
1839 	UNP_LIST_LOCK_INIT();
1840 	UNP_DEFERRED_LOCK_INIT();
1841 }
1842 
1843 static int
1844 unp_internalize(struct mbuf **controlp, struct thread *td)
1845 {
1846 	struct mbuf *control = *controlp;
1847 	struct proc *p = td->td_proc;
1848 	struct filedesc *fdesc = p->p_fd;
1849 	struct bintime *bt;
1850 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1851 	struct cmsgcred *cmcred;
1852 	struct filedescent *fde, **fdep, *fdev;
1853 	struct file *fp;
1854 	struct timeval *tv;
1855 	int i, fd, *fdp;
1856 	void *data;
1857 	socklen_t clen = control->m_len, datalen;
1858 	int error, oldfds;
1859 	u_int newlen;
1860 
1861 	UNP_LINK_UNLOCK_ASSERT();
1862 
1863 	error = 0;
1864 	*controlp = NULL;
1865 	while (cm != NULL) {
1866 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1867 		    || cm->cmsg_len > clen) {
1868 			error = EINVAL;
1869 			goto out;
1870 		}
1871 		data = CMSG_DATA(cm);
1872 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1873 
1874 		switch (cm->cmsg_type) {
1875 		/*
1876 		 * Fill in credential information.
1877 		 */
1878 		case SCM_CREDS:
1879 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1880 			    SCM_CREDS, SOL_SOCKET);
1881 			if (*controlp == NULL) {
1882 				error = ENOBUFS;
1883 				goto out;
1884 			}
1885 			cmcred = (struct cmsgcred *)
1886 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1887 			cmcred->cmcred_pid = p->p_pid;
1888 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1889 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1890 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1891 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1892 			    CMGROUP_MAX);
1893 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1894 				cmcred->cmcred_groups[i] =
1895 				    td->td_ucred->cr_groups[i];
1896 			break;
1897 
1898 		case SCM_RIGHTS:
1899 			oldfds = datalen / sizeof (int);
1900 			if (oldfds == 0)
1901 				break;
1902 			/*
1903 			 * Check that all the FDs passed in refer to legal
1904 			 * files.  If not, reject the entire operation.
1905 			 */
1906 			fdp = data;
1907 			FILEDESC_SLOCK(fdesc);
1908 			for (i = 0; i < oldfds; i++) {
1909 				fd = *fdp++;
1910 				if (fget_locked(fdesc, fd) == NULL) {
1911 					FILEDESC_SUNLOCK(fdesc);
1912 					error = EBADF;
1913 					goto out;
1914 				}
1915 				fp = fdesc->fd_ofiles[fd].fde_file;
1916 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1917 					FILEDESC_SUNLOCK(fdesc);
1918 					error = EOPNOTSUPP;
1919 					goto out;
1920 				}
1921 
1922 			}
1923 
1924 			/*
1925 			 * Now replace the integer FDs with pointers to the
1926 			 * file structure and capability rights.
1927 			 */
1928 			newlen = oldfds * sizeof(fdep[0]);
1929 			*controlp = sbcreatecontrol(NULL, newlen,
1930 			    SCM_RIGHTS, SOL_SOCKET);
1931 			if (*controlp == NULL) {
1932 				FILEDESC_SUNLOCK(fdesc);
1933 				error = E2BIG;
1934 				goto out;
1935 			}
1936 			fdp = data;
1937 			fdep = (struct filedescent **)
1938 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1939 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1940 			    M_WAITOK);
1941 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1942 				fde = &fdesc->fd_ofiles[*fdp];
1943 				fdep[i] = fdev;
1944 				fdep[i]->fde_file = fde->fde_file;
1945 				filecaps_copy(&fde->fde_caps,
1946 				    &fdep[i]->fde_caps);
1947 				unp_internalize_fp(fdep[i]->fde_file);
1948 			}
1949 			FILEDESC_SUNLOCK(fdesc);
1950 			break;
1951 
1952 		case SCM_TIMESTAMP:
1953 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1954 			    SCM_TIMESTAMP, SOL_SOCKET);
1955 			if (*controlp == NULL) {
1956 				error = ENOBUFS;
1957 				goto out;
1958 			}
1959 			tv = (struct timeval *)
1960 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1961 			microtime(tv);
1962 			break;
1963 
1964 		case SCM_BINTIME:
1965 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1966 			    SCM_BINTIME, SOL_SOCKET);
1967 			if (*controlp == NULL) {
1968 				error = ENOBUFS;
1969 				goto out;
1970 			}
1971 			bt = (struct bintime *)
1972 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1973 			bintime(bt);
1974 			break;
1975 
1976 		default:
1977 			error = EINVAL;
1978 			goto out;
1979 		}
1980 
1981 		controlp = &(*controlp)->m_next;
1982 		if (CMSG_SPACE(datalen) < clen) {
1983 			clen -= CMSG_SPACE(datalen);
1984 			cm = (struct cmsghdr *)
1985 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1986 		} else {
1987 			clen = 0;
1988 			cm = NULL;
1989 		}
1990 	}
1991 
1992 out:
1993 	m_freem(control);
1994 	return (error);
1995 }
1996 
1997 static struct mbuf *
1998 unp_addsockcred(struct thread *td, struct mbuf *control)
1999 {
2000 	struct mbuf *m, *n, *n_prev;
2001 	struct sockcred *sc;
2002 	const struct cmsghdr *cm;
2003 	int ngroups;
2004 	int i;
2005 
2006 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2007 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2008 	if (m == NULL)
2009 		return (control);
2010 
2011 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2012 	sc->sc_uid = td->td_ucred->cr_ruid;
2013 	sc->sc_euid = td->td_ucred->cr_uid;
2014 	sc->sc_gid = td->td_ucred->cr_rgid;
2015 	sc->sc_egid = td->td_ucred->cr_gid;
2016 	sc->sc_ngroups = ngroups;
2017 	for (i = 0; i < sc->sc_ngroups; i++)
2018 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2019 
2020 	/*
2021 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2022 	 * created SCM_CREDS control message (struct sockcred) has another
2023 	 * format.
2024 	 */
2025 	if (control != NULL)
2026 		for (n = control, n_prev = NULL; n != NULL;) {
2027 			cm = mtod(n, struct cmsghdr *);
2028     			if (cm->cmsg_level == SOL_SOCKET &&
2029 			    cm->cmsg_type == SCM_CREDS) {
2030     				if (n_prev == NULL)
2031 					control = n->m_next;
2032 				else
2033 					n_prev->m_next = n->m_next;
2034 				n = m_free(n);
2035 			} else {
2036 				n_prev = n;
2037 				n = n->m_next;
2038 			}
2039 		}
2040 
2041 	/* Prepend it to the head. */
2042 	m->m_next = control;
2043 	return (m);
2044 }
2045 
2046 static struct unpcb *
2047 fptounp(struct file *fp)
2048 {
2049 	struct socket *so;
2050 
2051 	if (fp->f_type != DTYPE_SOCKET)
2052 		return (NULL);
2053 	if ((so = fp->f_data) == NULL)
2054 		return (NULL);
2055 	if (so->so_proto->pr_domain != &localdomain)
2056 		return (NULL);
2057 	return sotounpcb(so);
2058 }
2059 
2060 static void
2061 unp_discard(struct file *fp)
2062 {
2063 	struct unp_defer *dr;
2064 
2065 	if (unp_externalize_fp(fp)) {
2066 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2067 		dr->ud_fp = fp;
2068 		UNP_DEFERRED_LOCK();
2069 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2070 		UNP_DEFERRED_UNLOCK();
2071 		atomic_add_int(&unp_defers_count, 1);
2072 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2073 	} else
2074 		(void) closef(fp, (struct thread *)NULL);
2075 }
2076 
2077 static void
2078 unp_process_defers(void *arg __unused, int pending)
2079 {
2080 	struct unp_defer *dr;
2081 	SLIST_HEAD(, unp_defer) drl;
2082 	int count;
2083 
2084 	SLIST_INIT(&drl);
2085 	for (;;) {
2086 		UNP_DEFERRED_LOCK();
2087 		if (SLIST_FIRST(&unp_defers) == NULL) {
2088 			UNP_DEFERRED_UNLOCK();
2089 			break;
2090 		}
2091 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2092 		UNP_DEFERRED_UNLOCK();
2093 		count = 0;
2094 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2095 			SLIST_REMOVE_HEAD(&drl, ud_link);
2096 			closef(dr->ud_fp, NULL);
2097 			free(dr, M_TEMP);
2098 			count++;
2099 		}
2100 		atomic_add_int(&unp_defers_count, -count);
2101 	}
2102 }
2103 
2104 static void
2105 unp_internalize_fp(struct file *fp)
2106 {
2107 	struct unpcb *unp;
2108 
2109 	UNP_LINK_WLOCK();
2110 	if ((unp = fptounp(fp)) != NULL) {
2111 		unp->unp_file = fp;
2112 		unp->unp_msgcount++;
2113 	}
2114 	fhold(fp);
2115 	unp_rights++;
2116 	UNP_LINK_WUNLOCK();
2117 }
2118 
2119 static int
2120 unp_externalize_fp(struct file *fp)
2121 {
2122 	struct unpcb *unp;
2123 	int ret;
2124 
2125 	UNP_LINK_WLOCK();
2126 	if ((unp = fptounp(fp)) != NULL) {
2127 		unp->unp_msgcount--;
2128 		ret = 1;
2129 	} else
2130 		ret = 0;
2131 	unp_rights--;
2132 	UNP_LINK_WUNLOCK();
2133 	return (ret);
2134 }
2135 
2136 /*
2137  * unp_defer indicates whether additional work has been defered for a future
2138  * pass through unp_gc().  It is thread local and does not require explicit
2139  * synchronization.
2140  */
2141 static int	unp_marked;
2142 static int	unp_unreachable;
2143 
2144 static void
2145 unp_accessable(struct filedescent **fdep, int fdcount)
2146 {
2147 	struct unpcb *unp;
2148 	struct file *fp;
2149 	int i;
2150 
2151 	for (i = 0; i < fdcount; i++) {
2152 		fp = fdep[i]->fde_file;
2153 		if ((unp = fptounp(fp)) == NULL)
2154 			continue;
2155 		if (unp->unp_gcflag & UNPGC_REF)
2156 			continue;
2157 		unp->unp_gcflag &= ~UNPGC_DEAD;
2158 		unp->unp_gcflag |= UNPGC_REF;
2159 		unp_marked++;
2160 	}
2161 }
2162 
2163 static void
2164 unp_gc_process(struct unpcb *unp)
2165 {
2166 	struct socket *soa;
2167 	struct socket *so;
2168 	struct file *fp;
2169 
2170 	/* Already processed. */
2171 	if (unp->unp_gcflag & UNPGC_SCANNED)
2172 		return;
2173 	fp = unp->unp_file;
2174 
2175 	/*
2176 	 * Check for a socket potentially in a cycle.  It must be in a
2177 	 * queue as indicated by msgcount, and this must equal the file
2178 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2179 	 */
2180 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2181 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2182 		unp->unp_gcflag |= UNPGC_DEAD;
2183 		unp_unreachable++;
2184 		return;
2185 	}
2186 
2187 	/*
2188 	 * Mark all sockets we reference with RIGHTS.
2189 	 */
2190 	so = unp->unp_socket;
2191 	SOCKBUF_LOCK(&so->so_rcv);
2192 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2193 	SOCKBUF_UNLOCK(&so->so_rcv);
2194 
2195 	/*
2196 	 * Mark all sockets in our accept queue.
2197 	 */
2198 	ACCEPT_LOCK();
2199 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2200 		SOCKBUF_LOCK(&soa->so_rcv);
2201 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2202 		SOCKBUF_UNLOCK(&soa->so_rcv);
2203 	}
2204 	ACCEPT_UNLOCK();
2205 	unp->unp_gcflag |= UNPGC_SCANNED;
2206 }
2207 
2208 static int unp_recycled;
2209 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2210     "Number of unreachable sockets claimed by the garbage collector.");
2211 
2212 static int unp_taskcount;
2213 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2214     "Number of times the garbage collector has run.");
2215 
2216 static void
2217 unp_gc(__unused void *arg, int pending)
2218 {
2219 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2220 				    NULL };
2221 	struct unp_head **head;
2222 	struct file *f, **unref;
2223 	struct unpcb *unp;
2224 	int i, total;
2225 
2226 	unp_taskcount++;
2227 	UNP_LIST_LOCK();
2228 	/*
2229 	 * First clear all gc flags from previous runs.
2230 	 */
2231 	for (head = heads; *head != NULL; head++)
2232 		LIST_FOREACH(unp, *head, unp_link)
2233 			unp->unp_gcflag = 0;
2234 
2235 	/*
2236 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2237 	 * is reachable all of the sockets it references are reachable.
2238 	 * Stop the scan once we do a complete loop without discovering
2239 	 * a new reachable socket.
2240 	 */
2241 	do {
2242 		unp_unreachable = 0;
2243 		unp_marked = 0;
2244 		for (head = heads; *head != NULL; head++)
2245 			LIST_FOREACH(unp, *head, unp_link)
2246 				unp_gc_process(unp);
2247 	} while (unp_marked);
2248 	UNP_LIST_UNLOCK();
2249 	if (unp_unreachable == 0)
2250 		return;
2251 
2252 	/*
2253 	 * Allocate space for a local list of dead unpcbs.
2254 	 */
2255 	unref = malloc(unp_unreachable * sizeof(struct file *),
2256 	    M_TEMP, M_WAITOK);
2257 
2258 	/*
2259 	 * Iterate looking for sockets which have been specifically marked
2260 	 * as as unreachable and store them locally.
2261 	 */
2262 	UNP_LINK_RLOCK();
2263 	UNP_LIST_LOCK();
2264 	for (total = 0, head = heads; *head != NULL; head++)
2265 		LIST_FOREACH(unp, *head, unp_link)
2266 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2267 				f = unp->unp_file;
2268 				if (unp->unp_msgcount == 0 || f == NULL ||
2269 				    f->f_count != unp->unp_msgcount)
2270 					continue;
2271 				unref[total++] = f;
2272 				fhold(f);
2273 				KASSERT(total <= unp_unreachable,
2274 				    ("unp_gc: incorrect unreachable count."));
2275 			}
2276 	UNP_LIST_UNLOCK();
2277 	UNP_LINK_RUNLOCK();
2278 
2279 	/*
2280 	 * Now flush all sockets, free'ing rights.  This will free the
2281 	 * struct files associated with these sockets but leave each socket
2282 	 * with one remaining ref.
2283 	 */
2284 	for (i = 0; i < total; i++) {
2285 		struct socket *so;
2286 
2287 		so = unref[i]->f_data;
2288 		CURVNET_SET(so->so_vnet);
2289 		sorflush(so);
2290 		CURVNET_RESTORE();
2291 	}
2292 
2293 	/*
2294 	 * And finally release the sockets so they can be reclaimed.
2295 	 */
2296 	for (i = 0; i < total; i++)
2297 		fdrop(unref[i], NULL);
2298 	unp_recycled += total;
2299 	free(unref, M_TEMP);
2300 }
2301 
2302 static void
2303 unp_dispose(struct mbuf *m)
2304 {
2305 
2306 	if (m)
2307 		unp_scan(m, unp_freerights);
2308 }
2309 
2310 static void
2311 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2312 {
2313 	struct mbuf *m;
2314 	struct cmsghdr *cm;
2315 	void *data;
2316 	socklen_t clen, datalen;
2317 
2318 	while (m0 != NULL) {
2319 		for (m = m0; m; m = m->m_next) {
2320 			if (m->m_type != MT_CONTROL)
2321 				continue;
2322 
2323 			cm = mtod(m, struct cmsghdr *);
2324 			clen = m->m_len;
2325 
2326 			while (cm != NULL) {
2327 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2328 					break;
2329 
2330 				data = CMSG_DATA(cm);
2331 				datalen = (caddr_t)cm + cm->cmsg_len
2332 				    - (caddr_t)data;
2333 
2334 				if (cm->cmsg_level == SOL_SOCKET &&
2335 				    cm->cmsg_type == SCM_RIGHTS) {
2336 					(*op)(data, datalen /
2337 					    sizeof(struct filedescent *));
2338 				}
2339 
2340 				if (CMSG_SPACE(datalen) < clen) {
2341 					clen -= CMSG_SPACE(datalen);
2342 					cm = (struct cmsghdr *)
2343 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2344 				} else {
2345 					clen = 0;
2346 					cm = NULL;
2347 				}
2348 			}
2349 		}
2350 		m0 = m0->m_act;
2351 	}
2352 }
2353 
2354 /*
2355  * A helper function called by VFS before socket-type vnode reclamation.
2356  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2357  * use count.
2358  */
2359 void
2360 vfs_unp_reclaim(struct vnode *vp)
2361 {
2362 	struct socket *so;
2363 	struct unpcb *unp;
2364 	int active;
2365 
2366 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2367 	KASSERT(vp->v_type == VSOCK,
2368 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2369 
2370 	active = 0;
2371 	UNP_LINK_WLOCK();
2372 	VOP_UNP_CONNECT(vp, &so);
2373 	if (so == NULL)
2374 		goto done;
2375 	unp = sotounpcb(so);
2376 	if (unp == NULL)
2377 		goto done;
2378 	UNP_PCB_LOCK(unp);
2379 	if (unp->unp_vnode == vp) {
2380 		VOP_UNP_DETACH(vp);
2381 		unp->unp_vnode = NULL;
2382 		active = 1;
2383 	}
2384 	UNP_PCB_UNLOCK(unp);
2385 done:
2386 	UNP_LINK_WUNLOCK();
2387 	if (active)
2388 		vunref(vp);
2389 }
2390 
2391 #ifdef DDB
2392 static void
2393 db_print_indent(int indent)
2394 {
2395 	int i;
2396 
2397 	for (i = 0; i < indent; i++)
2398 		db_printf(" ");
2399 }
2400 
2401 static void
2402 db_print_unpflags(int unp_flags)
2403 {
2404 	int comma;
2405 
2406 	comma = 0;
2407 	if (unp_flags & UNP_HAVEPC) {
2408 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2409 		comma = 1;
2410 	}
2411 	if (unp_flags & UNP_HAVEPCCACHED) {
2412 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2413 		comma = 1;
2414 	}
2415 	if (unp_flags & UNP_WANTCRED) {
2416 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2417 		comma = 1;
2418 	}
2419 	if (unp_flags & UNP_CONNWAIT) {
2420 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2421 		comma = 1;
2422 	}
2423 	if (unp_flags & UNP_CONNECTING) {
2424 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2425 		comma = 1;
2426 	}
2427 	if (unp_flags & UNP_BINDING) {
2428 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2429 		comma = 1;
2430 	}
2431 }
2432 
2433 static void
2434 db_print_xucred(int indent, struct xucred *xu)
2435 {
2436 	int comma, i;
2437 
2438 	db_print_indent(indent);
2439 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2440 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2441 	db_print_indent(indent);
2442 	db_printf("cr_groups: ");
2443 	comma = 0;
2444 	for (i = 0; i < xu->cr_ngroups; i++) {
2445 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2446 		comma = 1;
2447 	}
2448 	db_printf("\n");
2449 }
2450 
2451 static void
2452 db_print_unprefs(int indent, struct unp_head *uh)
2453 {
2454 	struct unpcb *unp;
2455 	int counter;
2456 
2457 	counter = 0;
2458 	LIST_FOREACH(unp, uh, unp_reflink) {
2459 		if (counter % 4 == 0)
2460 			db_print_indent(indent);
2461 		db_printf("%p  ", unp);
2462 		if (counter % 4 == 3)
2463 			db_printf("\n");
2464 		counter++;
2465 	}
2466 	if (counter != 0 && counter % 4 != 0)
2467 		db_printf("\n");
2468 }
2469 
2470 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2471 {
2472 	struct unpcb *unp;
2473 
2474         if (!have_addr) {
2475                 db_printf("usage: show unpcb <addr>\n");
2476                 return;
2477         }
2478         unp = (struct unpcb *)addr;
2479 
2480 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2481 	    unp->unp_vnode);
2482 
2483 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2484 	    unp->unp_conn);
2485 
2486 	db_printf("unp_refs:\n");
2487 	db_print_unprefs(2, &unp->unp_refs);
2488 
2489 	/* XXXRW: Would be nice to print the full address, if any. */
2490 	db_printf("unp_addr: %p\n", unp->unp_addr);
2491 
2492 	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2493 	    unp->unp_cc, unp->unp_mbcnt,
2494 	    (unsigned long long)unp->unp_gencnt);
2495 
2496 	db_printf("unp_flags: %x (", unp->unp_flags);
2497 	db_print_unpflags(unp->unp_flags);
2498 	db_printf(")\n");
2499 
2500 	db_printf("unp_peercred:\n");
2501 	db_print_xucred(2, &unp->unp_peercred);
2502 
2503 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2504 }
2505 #endif
2506