xref: /freebsd/sys/kern/uipc_usrreq.c (revision 2e3f49888ec8851bafb22011533217487764fdb0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 #include "opt_ddb.h"
61 
62 #include <sys/param.h>
63 #include <sys/capsicum.h>
64 #include <sys/domain.h>
65 #include <sys/eventhandler.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/filedesc.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/proc.h>
77 #include <sys/protosw.h>
78 #include <sys/queue.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/stat.h>
85 #include <sys/sx.h>
86 #include <sys/sysctl.h>
87 #include <sys/systm.h>
88 #include <sys/taskqueue.h>
89 #include <sys/un.h>
90 #include <sys/unpcb.h>
91 #include <sys/vnode.h>
92 
93 #include <net/vnet.h>
94 
95 #ifdef DDB
96 #include <ddb/ddb.h>
97 #endif
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/uma.h>
102 
103 MALLOC_DECLARE(M_FILECAPS);
104 
105 static struct domain localdomain;
106 
107 static uma_zone_t	unp_zone;
108 static unp_gen_t	unp_gencnt;	/* (l) */
109 static u_int		unp_count;	/* (l) Count of local sockets. */
110 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
111 static int		unp_rights;	/* (g) File descriptors in flight. */
112 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
113 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
114 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
115 
116 struct unp_defer {
117 	SLIST_ENTRY(unp_defer) ud_link;
118 	struct file *ud_fp;
119 };
120 static SLIST_HEAD(, unp_defer) unp_defers;
121 static int unp_defers_count;
122 
123 static const struct sockaddr	sun_noname = {
124 	.sa_len = sizeof(sun_noname),
125 	.sa_family = AF_LOCAL,
126 };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct timeout_task unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
158 static u_long	unpdg_recvspace = 16*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
163     "Local domain");
164 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
165     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "SOCK_SEQPACKET");
173 
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
175 	   &unpst_sendspace, 0, "Default stream send space.");
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
177 	   &unpst_recvspace, 0, "Default stream receive space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
179 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpdg_recvspace, 0, "Default datagram receive space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
183 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
186 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
187     "File descriptors in flight.");
188 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
189     &unp_defers_count, 0,
190     "File descriptors deferred to taskqueue for close.");
191 
192 /*
193  * Locking and synchronization:
194  *
195  * Several types of locks exist in the local domain socket implementation:
196  * - a global linkage lock
197  * - a global connection list lock
198  * - the mtxpool lock
199  * - per-unpcb mutexes
200  *
201  * The linkage lock protects the global socket lists, the generation number
202  * counter and garbage collector state.
203  *
204  * The connection list lock protects the list of referring sockets in a datagram
205  * socket PCB.  This lock is also overloaded to protect a global list of
206  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
207  * messages.  To avoid recursion, such references are released by a dedicated
208  * thread.
209  *
210  * The mtxpool lock protects the vnode from being modified while referenced.
211  * Lock ordering rules require that it be acquired before any PCB locks.
212  *
213  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
214  * unpcb.  This includes the unp_conn field, which either links two connected
215  * PCBs together (for connected socket types) or points at the destination
216  * socket (for connectionless socket types).  The operations of creating or
217  * destroying a connection therefore involve locking multiple PCBs.  To avoid
218  * lock order reversals, in some cases this involves dropping a PCB lock and
219  * using a reference counter to maintain liveness.
220  *
221  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
222  * allocated in pr_attach() and freed in pr_detach().  The validity of that
223  * pointer is an invariant, so no lock is required to dereference the so_pcb
224  * pointer if a valid socket reference is held by the caller.  In practice,
225  * this is always true during operations performed on a socket.  Each unpcb
226  * has a back-pointer to its socket, unp_socket, which will be stable under
227  * the same circumstances.
228  *
229  * This pointer may only be safely dereferenced as long as a valid reference
230  * to the unpcb is held.  Typically, this reference will be from the socket,
231  * or from another unpcb when the referring unpcb's lock is held (in order
232  * that the reference not be invalidated during use).  For example, to follow
233  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
234  * that detach is not run clearing unp_socket.
235  *
236  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
237  * protocols, bind() is a non-atomic operation, and connect() requires
238  * potential sleeping in the protocol, due to potentially waiting on local or
239  * distributed file systems.  We try to separate "lookup" operations, which
240  * may sleep, and the IPC operations themselves, which typically can occur
241  * with relative atomicity as locks can be held over the entire operation.
242  *
243  * Another tricky issue is simultaneous multi-threaded or multi-process
244  * access to a single UNIX domain socket.  These are handled by the flags
245  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
246  * binding, both of which involve dropping UNIX domain socket locks in order
247  * to perform namei() and other file system operations.
248  */
249 static struct rwlock	unp_link_rwlock;
250 static struct mtx	unp_defers_lock;
251 
252 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
253 					    "unp_link_rwlock")
254 
255 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
256 					    RA_LOCKED)
257 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
258 					    RA_UNLOCKED)
259 
260 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
261 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
262 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
263 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
265 					    RA_WLOCKED)
266 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
267 
268 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
269 					    "unp_defer", NULL, MTX_DEF)
270 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
271 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
272 
273 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
274 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
275 
276 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
277 					    "unp", "unp",	\
278 					    MTX_DUPOK|MTX_DEF)
279 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
280 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
281 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
282 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
283 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
284 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
285 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
286 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
287 
288 static int	uipc_connect2(struct socket *, struct socket *);
289 static int	uipc_ctloutput(struct socket *, struct sockopt *);
290 static int	unp_connect(struct socket *, struct sockaddr *,
291 		    struct thread *);
292 static int	unp_connectat(int, struct socket *, struct sockaddr *,
293 		    struct thread *, bool);
294 typedef enum { PRU_CONNECT, PRU_CONNECT2 } conn2_how;
295 static void	unp_connect2(struct socket *so, struct socket *so2, conn2_how);
296 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
297 static void	unp_dispose(struct socket *so);
298 static void	unp_shutdown(struct unpcb *);
299 static void	unp_drop(struct unpcb *);
300 static void	unp_gc(__unused void *, int);
301 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void	unp_discard(struct file *);
303 static void	unp_freerights(struct filedescent **, int);
304 static int	unp_internalize(struct mbuf **, struct thread *,
305 		    struct mbuf **, u_int *, u_int *);
306 static void	unp_internalize_fp(struct file *);
307 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int	unp_externalize_fp(struct file *);
309 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *,
310 		    int, struct mbuf **, u_int *, u_int *);
311 static void	unp_process_defers(void * __unused, int);
312 
313 static void
314 unp_pcb_hold(struct unpcb *unp)
315 {
316 	u_int old __unused;
317 
318 	old = refcount_acquire(&unp->unp_refcount);
319 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
320 }
321 
322 static __result_use_check bool
323 unp_pcb_rele(struct unpcb *unp)
324 {
325 	bool ret;
326 
327 	UNP_PCB_LOCK_ASSERT(unp);
328 
329 	if ((ret = refcount_release(&unp->unp_refcount))) {
330 		UNP_PCB_UNLOCK(unp);
331 		UNP_PCB_LOCK_DESTROY(unp);
332 		uma_zfree(unp_zone, unp);
333 	}
334 	return (ret);
335 }
336 
337 static void
338 unp_pcb_rele_notlast(struct unpcb *unp)
339 {
340 	bool ret __unused;
341 
342 	ret = refcount_release(&unp->unp_refcount);
343 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
344 }
345 
346 static void
347 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
348 {
349 	UNP_PCB_UNLOCK_ASSERT(unp);
350 	UNP_PCB_UNLOCK_ASSERT(unp2);
351 
352 	if (unp == unp2) {
353 		UNP_PCB_LOCK(unp);
354 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static void
364 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
365 {
366 	UNP_PCB_UNLOCK(unp);
367 	if (unp != unp2)
368 		UNP_PCB_UNLOCK(unp2);
369 }
370 
371 /*
372  * Try to lock the connected peer of an already locked socket.  In some cases
373  * this requires that we unlock the current socket.  The pairbusy counter is
374  * used to block concurrent connection attempts while the lock is dropped.  The
375  * caller must be careful to revalidate PCB state.
376  */
377 static struct unpcb *
378 unp_pcb_lock_peer(struct unpcb *unp)
379 {
380 	struct unpcb *unp2;
381 
382 	UNP_PCB_LOCK_ASSERT(unp);
383 	unp2 = unp->unp_conn;
384 	if (unp2 == NULL)
385 		return (NULL);
386 	if (__predict_false(unp == unp2))
387 		return (unp);
388 
389 	UNP_PCB_UNLOCK_ASSERT(unp2);
390 
391 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
392 		return (unp2);
393 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
394 		UNP_PCB_LOCK(unp2);
395 		return (unp2);
396 	}
397 	unp->unp_pairbusy++;
398 	unp_pcb_hold(unp2);
399 	UNP_PCB_UNLOCK(unp);
400 
401 	UNP_PCB_LOCK(unp2);
402 	UNP_PCB_LOCK(unp);
403 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
404 	    ("%s: socket %p was reconnected", __func__, unp));
405 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
406 		unp->unp_flags &= ~UNP_WAITING;
407 		wakeup(unp);
408 	}
409 	if (unp_pcb_rele(unp2)) {
410 		/* unp2 is unlocked. */
411 		return (NULL);
412 	}
413 	if (unp->unp_conn == NULL) {
414 		UNP_PCB_UNLOCK(unp2);
415 		return (NULL);
416 	}
417 	return (unp2);
418 }
419 
420 static void
421 uipc_abort(struct socket *so)
422 {
423 	struct unpcb *unp, *unp2;
424 
425 	unp = sotounpcb(so);
426 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
427 	UNP_PCB_UNLOCK_ASSERT(unp);
428 
429 	UNP_PCB_LOCK(unp);
430 	unp2 = unp->unp_conn;
431 	if (unp2 != NULL) {
432 		unp_pcb_hold(unp2);
433 		UNP_PCB_UNLOCK(unp);
434 		unp_drop(unp2);
435 	} else
436 		UNP_PCB_UNLOCK(unp);
437 }
438 
439 static int
440 uipc_attach(struct socket *so, int proto, struct thread *td)
441 {
442 	u_long sendspace, recvspace;
443 	struct unpcb *unp;
444 	int error;
445 	bool locked;
446 
447 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
448 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
449 		switch (so->so_type) {
450 		case SOCK_STREAM:
451 			sendspace = unpst_sendspace;
452 			recvspace = unpst_recvspace;
453 			break;
454 
455 		case SOCK_DGRAM:
456 			STAILQ_INIT(&so->so_rcv.uxdg_mb);
457 			STAILQ_INIT(&so->so_snd.uxdg_mb);
458 			TAILQ_INIT(&so->so_rcv.uxdg_conns);
459 			/*
460 			 * Since send buffer is either bypassed or is a part
461 			 * of one-to-many receive buffer, we assign both space
462 			 * limits to unpdg_recvspace.
463 			 */
464 			sendspace = recvspace = unpdg_recvspace;
465 			break;
466 
467 		case SOCK_SEQPACKET:
468 			sendspace = unpsp_sendspace;
469 			recvspace = unpsp_recvspace;
470 			break;
471 
472 		default:
473 			panic("uipc_attach");
474 		}
475 		error = soreserve(so, sendspace, recvspace);
476 		if (error)
477 			return (error);
478 	}
479 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
480 	if (unp == NULL)
481 		return (ENOBUFS);
482 	LIST_INIT(&unp->unp_refs);
483 	UNP_PCB_LOCK_INIT(unp);
484 	unp->unp_socket = so;
485 	so->so_pcb = unp;
486 	refcount_init(&unp->unp_refcount, 1);
487 
488 	if ((locked = UNP_LINK_WOWNED()) == false)
489 		UNP_LINK_WLOCK();
490 
491 	unp->unp_gencnt = ++unp_gencnt;
492 	unp->unp_ino = ++unp_ino;
493 	unp_count++;
494 	switch (so->so_type) {
495 	case SOCK_STREAM:
496 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
497 		break;
498 
499 	case SOCK_DGRAM:
500 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
501 		break;
502 
503 	case SOCK_SEQPACKET:
504 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
505 		break;
506 
507 	default:
508 		panic("uipc_attach");
509 	}
510 
511 	if (locked == false)
512 		UNP_LINK_WUNLOCK();
513 
514 	return (0);
515 }
516 
517 static int
518 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
519 {
520 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
521 	struct vattr vattr;
522 	int error, namelen;
523 	struct nameidata nd;
524 	struct unpcb *unp;
525 	struct vnode *vp;
526 	struct mount *mp;
527 	cap_rights_t rights;
528 	char *buf;
529 
530 	if (nam->sa_family != AF_UNIX)
531 		return (EAFNOSUPPORT);
532 
533 	unp = sotounpcb(so);
534 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
535 
536 	if (soun->sun_len > sizeof(struct sockaddr_un))
537 		return (EINVAL);
538 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
539 	if (namelen <= 0)
540 		return (EINVAL);
541 
542 	/*
543 	 * We don't allow simultaneous bind() calls on a single UNIX domain
544 	 * socket, so flag in-progress operations, and return an error if an
545 	 * operation is already in progress.
546 	 *
547 	 * Historically, we have not allowed a socket to be rebound, so this
548 	 * also returns an error.  Not allowing re-binding simplifies the
549 	 * implementation and avoids a great many possible failure modes.
550 	 */
551 	UNP_PCB_LOCK(unp);
552 	if (unp->unp_vnode != NULL) {
553 		UNP_PCB_UNLOCK(unp);
554 		return (EINVAL);
555 	}
556 	if (unp->unp_flags & UNP_BINDING) {
557 		UNP_PCB_UNLOCK(unp);
558 		return (EALREADY);
559 	}
560 	unp->unp_flags |= UNP_BINDING;
561 	UNP_PCB_UNLOCK(unp);
562 
563 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
564 	bcopy(soun->sun_path, buf, namelen);
565 	buf[namelen] = 0;
566 
567 restart:
568 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
569 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
570 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
571 	error = namei(&nd);
572 	if (error)
573 		goto error;
574 	vp = nd.ni_vp;
575 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
576 		NDFREE_PNBUF(&nd);
577 		if (nd.ni_dvp == vp)
578 			vrele(nd.ni_dvp);
579 		else
580 			vput(nd.ni_dvp);
581 		if (vp != NULL) {
582 			vrele(vp);
583 			error = EADDRINUSE;
584 			goto error;
585 		}
586 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
587 		if (error)
588 			goto error;
589 		goto restart;
590 	}
591 	VATTR_NULL(&vattr);
592 	vattr.va_type = VSOCK;
593 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
594 #ifdef MAC
595 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
596 	    &vattr);
597 #endif
598 	if (error == 0)
599 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
600 	NDFREE_PNBUF(&nd);
601 	if (error) {
602 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
603 		vn_finished_write(mp);
604 		if (error == ERELOOKUP)
605 			goto restart;
606 		goto error;
607 	}
608 	vp = nd.ni_vp;
609 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
610 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
611 
612 	UNP_PCB_LOCK(unp);
613 	VOP_UNP_BIND(vp, unp);
614 	unp->unp_vnode = vp;
615 	unp->unp_addr = soun;
616 	unp->unp_flags &= ~UNP_BINDING;
617 	UNP_PCB_UNLOCK(unp);
618 	vref(vp);
619 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
620 	vn_finished_write(mp);
621 	free(buf, M_TEMP);
622 	return (0);
623 
624 error:
625 	UNP_PCB_LOCK(unp);
626 	unp->unp_flags &= ~UNP_BINDING;
627 	UNP_PCB_UNLOCK(unp);
628 	free(buf, M_TEMP);
629 	return (error);
630 }
631 
632 static int
633 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
634 {
635 
636 	return (uipc_bindat(AT_FDCWD, so, nam, td));
637 }
638 
639 static int
640 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
641 {
642 	int error;
643 
644 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
645 	error = unp_connect(so, nam, td);
646 	return (error);
647 }
648 
649 static int
650 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
651     struct thread *td)
652 {
653 	int error;
654 
655 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
656 	error = unp_connectat(fd, so, nam, td, false);
657 	return (error);
658 }
659 
660 static void
661 uipc_close(struct socket *so)
662 {
663 	struct unpcb *unp, *unp2;
664 	struct vnode *vp = NULL;
665 	struct mtx *vplock;
666 
667 	unp = sotounpcb(so);
668 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
669 
670 	vplock = NULL;
671 	if ((vp = unp->unp_vnode) != NULL) {
672 		vplock = mtx_pool_find(mtxpool_sleep, vp);
673 		mtx_lock(vplock);
674 	}
675 	UNP_PCB_LOCK(unp);
676 	if (vp && unp->unp_vnode == NULL) {
677 		mtx_unlock(vplock);
678 		vp = NULL;
679 	}
680 	if (vp != NULL) {
681 		VOP_UNP_DETACH(vp);
682 		unp->unp_vnode = NULL;
683 	}
684 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
685 		unp_disconnect(unp, unp2);
686 	else
687 		UNP_PCB_UNLOCK(unp);
688 	if (vp) {
689 		mtx_unlock(vplock);
690 		vrele(vp);
691 	}
692 }
693 
694 static int
695 uipc_connect2(struct socket *so1, struct socket *so2)
696 {
697 	struct unpcb *unp, *unp2;
698 
699 	if (so1->so_type != so2->so_type)
700 		return (EPROTOTYPE);
701 
702 	unp = so1->so_pcb;
703 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
704 	unp2 = so2->so_pcb;
705 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
706 	unp_pcb_lock_pair(unp, unp2);
707 	unp_connect2(so1, so2, PRU_CONNECT2);
708 	unp_pcb_unlock_pair(unp, unp2);
709 
710 	return (0);
711 }
712 
713 static void
714 uipc_detach(struct socket *so)
715 {
716 	struct unpcb *unp, *unp2;
717 	struct mtx *vplock;
718 	struct vnode *vp;
719 	int local_unp_rights;
720 
721 	unp = sotounpcb(so);
722 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
723 
724 	vp = NULL;
725 	vplock = NULL;
726 
727 	if (!SOLISTENING(so))
728 		unp_dispose(so);
729 
730 	UNP_LINK_WLOCK();
731 	LIST_REMOVE(unp, unp_link);
732 	if (unp->unp_gcflag & UNPGC_DEAD)
733 		LIST_REMOVE(unp, unp_dead);
734 	unp->unp_gencnt = ++unp_gencnt;
735 	--unp_count;
736 	UNP_LINK_WUNLOCK();
737 
738 	UNP_PCB_UNLOCK_ASSERT(unp);
739  restart:
740 	if ((vp = unp->unp_vnode) != NULL) {
741 		vplock = mtx_pool_find(mtxpool_sleep, vp);
742 		mtx_lock(vplock);
743 	}
744 	UNP_PCB_LOCK(unp);
745 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
746 		if (vplock)
747 			mtx_unlock(vplock);
748 		UNP_PCB_UNLOCK(unp);
749 		goto restart;
750 	}
751 	if ((vp = unp->unp_vnode) != NULL) {
752 		VOP_UNP_DETACH(vp);
753 		unp->unp_vnode = NULL;
754 	}
755 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
756 		unp_disconnect(unp, unp2);
757 	else
758 		UNP_PCB_UNLOCK(unp);
759 
760 	UNP_REF_LIST_LOCK();
761 	while (!LIST_EMPTY(&unp->unp_refs)) {
762 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
763 
764 		unp_pcb_hold(ref);
765 		UNP_REF_LIST_UNLOCK();
766 
767 		MPASS(ref != unp);
768 		UNP_PCB_UNLOCK_ASSERT(ref);
769 		unp_drop(ref);
770 		UNP_REF_LIST_LOCK();
771 	}
772 	UNP_REF_LIST_UNLOCK();
773 
774 	UNP_PCB_LOCK(unp);
775 	local_unp_rights = unp_rights;
776 	unp->unp_socket->so_pcb = NULL;
777 	unp->unp_socket = NULL;
778 	free(unp->unp_addr, M_SONAME);
779 	unp->unp_addr = NULL;
780 	if (!unp_pcb_rele(unp))
781 		UNP_PCB_UNLOCK(unp);
782 	if (vp) {
783 		mtx_unlock(vplock);
784 		vrele(vp);
785 	}
786 	if (local_unp_rights)
787 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
788 
789 	switch (so->so_type) {
790 	case SOCK_DGRAM:
791 		/*
792 		 * Everything should have been unlinked/freed by unp_dispose()
793 		 * and/or unp_disconnect().
794 		 */
795 		MPASS(so->so_rcv.uxdg_peeked == NULL);
796 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
797 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
798 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
799 	}
800 }
801 
802 static int
803 uipc_disconnect(struct socket *so)
804 {
805 	struct unpcb *unp, *unp2;
806 
807 	unp = sotounpcb(so);
808 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
809 
810 	UNP_PCB_LOCK(unp);
811 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
812 		unp_disconnect(unp, unp2);
813 	else
814 		UNP_PCB_UNLOCK(unp);
815 	return (0);
816 }
817 
818 static int
819 uipc_listen(struct socket *so, int backlog, struct thread *td)
820 {
821 	struct unpcb *unp;
822 	int error;
823 
824 	MPASS(so->so_type != SOCK_DGRAM);
825 
826 	/*
827 	 * Synchronize with concurrent connection attempts.
828 	 */
829 	error = 0;
830 	unp = sotounpcb(so);
831 	UNP_PCB_LOCK(unp);
832 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
833 		error = EINVAL;
834 	else if (unp->unp_vnode == NULL)
835 		error = EDESTADDRREQ;
836 	if (error != 0) {
837 		UNP_PCB_UNLOCK(unp);
838 		return (error);
839 	}
840 
841 	SOCK_LOCK(so);
842 	error = solisten_proto_check(so);
843 	if (error == 0) {
844 		cru2xt(td, &unp->unp_peercred);
845 		solisten_proto(so, backlog);
846 	}
847 	SOCK_UNLOCK(so);
848 	UNP_PCB_UNLOCK(unp);
849 	return (error);
850 }
851 
852 static int
853 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
854 {
855 	struct unpcb *unp, *unp2;
856 	const struct sockaddr *sa;
857 
858 	unp = sotounpcb(so);
859 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
860 
861 	UNP_PCB_LOCK(unp);
862 	unp2 = unp_pcb_lock_peer(unp);
863 	if (unp2 != NULL) {
864 		if (unp2->unp_addr != NULL)
865 			sa = (struct sockaddr *)unp2->unp_addr;
866 		else
867 			sa = &sun_noname;
868 		bcopy(sa, ret, sa->sa_len);
869 		unp_pcb_unlock_pair(unp, unp2);
870 	} else {
871 		UNP_PCB_UNLOCK(unp);
872 		sa = &sun_noname;
873 		bcopy(sa, ret, sa->sa_len);
874 	}
875 	return (0);
876 }
877 
878 static int
879 uipc_rcvd(struct socket *so, int flags)
880 {
881 	struct unpcb *unp, *unp2;
882 	struct socket *so2;
883 	u_int mbcnt, sbcc;
884 
885 	unp = sotounpcb(so);
886 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
887 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
888 	    ("%s: socktype %d", __func__, so->so_type));
889 
890 	/*
891 	 * Adjust backpressure on sender and wakeup any waiting to write.
892 	 *
893 	 * The unp lock is acquired to maintain the validity of the unp_conn
894 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
895 	 * static as long as we don't permit unp2 to disconnect from unp,
896 	 * which is prevented by the lock on unp.  We cache values from
897 	 * so_rcv to avoid holding the so_rcv lock over the entire
898 	 * transaction on the remote so_snd.
899 	 */
900 	SOCKBUF_LOCK(&so->so_rcv);
901 	mbcnt = so->so_rcv.sb_mbcnt;
902 	sbcc = sbavail(&so->so_rcv);
903 	SOCKBUF_UNLOCK(&so->so_rcv);
904 	/*
905 	 * There is a benign race condition at this point.  If we're planning to
906 	 * clear SB_STOP, but uipc_send is called on the connected socket at
907 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
908 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
909 	 * full.  The race is benign because the only ill effect is to allow the
910 	 * sockbuf to exceed its size limit, and the size limits are not
911 	 * strictly guaranteed anyway.
912 	 */
913 	UNP_PCB_LOCK(unp);
914 	unp2 = unp->unp_conn;
915 	if (unp2 == NULL) {
916 		UNP_PCB_UNLOCK(unp);
917 		return (0);
918 	}
919 	so2 = unp2->unp_socket;
920 	SOCKBUF_LOCK(&so2->so_snd);
921 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
922 		so2->so_snd.sb_flags &= ~SB_STOP;
923 	sowwakeup_locked(so2);
924 	UNP_PCB_UNLOCK(unp);
925 	return (0);
926 }
927 
928 static int
929 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
930     struct mbuf *control, struct thread *td)
931 {
932 	struct unpcb *unp, *unp2;
933 	struct socket *so2;
934 	u_int mbcnt, sbcc;
935 	int error;
936 
937 	unp = sotounpcb(so);
938 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
939 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
940 	    ("%s: socktype %d", __func__, so->so_type));
941 
942 	error = 0;
943 	if (flags & PRUS_OOB) {
944 		error = EOPNOTSUPP;
945 		goto release;
946 	}
947 	if (control != NULL &&
948 	    (error = unp_internalize(&control, td, NULL, NULL, NULL)))
949 		goto release;
950 
951 	unp2 = NULL;
952 	if ((so->so_state & SS_ISCONNECTED) == 0) {
953 		if (nam != NULL) {
954 			if ((error = unp_connect(so, nam, td)) != 0)
955 				goto out;
956 		} else {
957 			error = ENOTCONN;
958 			goto out;
959 		}
960 	}
961 
962 	UNP_PCB_LOCK(unp);
963 	if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
964 		UNP_PCB_UNLOCK(unp);
965 		error = ENOTCONN;
966 		goto out;
967 	} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
968 		unp_pcb_unlock_pair(unp, unp2);
969 		error = EPIPE;
970 		goto out;
971 	}
972 	UNP_PCB_UNLOCK(unp);
973 	if ((so2 = unp2->unp_socket) == NULL) {
974 		UNP_PCB_UNLOCK(unp2);
975 		error = ENOTCONN;
976 		goto out;
977 	}
978 	SOCKBUF_LOCK(&so2->so_rcv);
979 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
980 		/*
981 		 * Credentials are passed only once on SOCK_STREAM and
982 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
983 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
984 		 */
985 		control = unp_addsockcred(td, control, unp2->unp_flags, NULL,
986 		    NULL, NULL);
987 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
988 	}
989 
990 	/*
991 	 * Send to paired receive port and wake up readers.  Don't
992 	 * check for space available in the receive buffer if we're
993 	 * attaching ancillary data; Unix domain sockets only check
994 	 * for space in the sending sockbuf, and that check is
995 	 * performed one level up the stack.  At that level we cannot
996 	 * precisely account for the amount of buffer space used
997 	 * (e.g., because control messages are not yet internalized).
998 	 */
999 	switch (so->so_type) {
1000 	case SOCK_STREAM:
1001 		if (control != NULL) {
1002 			sbappendcontrol_locked(&so2->so_rcv, m,
1003 			    control, flags);
1004 			control = NULL;
1005 		} else
1006 			sbappend_locked(&so2->so_rcv, m, flags);
1007 		break;
1008 
1009 	case SOCK_SEQPACKET:
1010 		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1011 		    &sun_noname, m, control))
1012 			control = NULL;
1013 		break;
1014 	}
1015 
1016 	mbcnt = so2->so_rcv.sb_mbcnt;
1017 	sbcc = sbavail(&so2->so_rcv);
1018 	if (sbcc)
1019 		sorwakeup_locked(so2);
1020 	else
1021 		SOCKBUF_UNLOCK(&so2->so_rcv);
1022 
1023 	/*
1024 	 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1025 	 * it would be possible for uipc_rcvd to be called at this
1026 	 * point, drain the receiving sockbuf, clear SB_STOP, and then
1027 	 * we would set SB_STOP below.  That could lead to an empty
1028 	 * sockbuf having SB_STOP set
1029 	 */
1030 	SOCKBUF_LOCK(&so->so_snd);
1031 	if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1032 		so->so_snd.sb_flags |= SB_STOP;
1033 	SOCKBUF_UNLOCK(&so->so_snd);
1034 	UNP_PCB_UNLOCK(unp2);
1035 	m = NULL;
1036 out:
1037 	/*
1038 	 * PRUS_EOF is equivalent to pr_send followed by pr_shutdown.
1039 	 */
1040 	if (flags & PRUS_EOF) {
1041 		UNP_PCB_LOCK(unp);
1042 		socantsendmore(so);
1043 		unp_shutdown(unp);
1044 		UNP_PCB_UNLOCK(unp);
1045 	}
1046 	if (control != NULL && error != 0)
1047 		unp_scan(control, unp_freerights);
1048 
1049 release:
1050 	if (control != NULL)
1051 		m_freem(control);
1052 	/*
1053 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1054 	 * for freeing memory.
1055 	 */
1056 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1057 		m_freem(m);
1058 	return (error);
1059 }
1060 
1061 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1062 static inline bool
1063 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1064 {
1065 	u_int bleft, mleft;
1066 
1067 	/*
1068 	 * Negative space may happen if send(2) is followed by
1069 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1070 	 */
1071 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1072 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1073 		return (false);
1074 
1075 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1076 		return (false);
1077 
1078 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1079 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1080 
1081 	return (bleft >= cc && mleft >= mbcnt);
1082 }
1083 
1084 /*
1085  * PF_UNIX/SOCK_DGRAM send
1086  *
1087  * Allocate a record consisting of 3 mbufs in the sequence of
1088  * from -> control -> data and append it to the socket buffer.
1089  *
1090  * The first mbuf carries sender's name and is a pkthdr that stores
1091  * overall length of datagram, its memory consumption and control length.
1092  */
1093 #define	ctllen	PH_loc.thirtytwo[1]
1094 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1095     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1096 static int
1097 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1098     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1099 {
1100 	struct unpcb *unp, *unp2;
1101 	const struct sockaddr *from;
1102 	struct socket *so2;
1103 	struct sockbuf *sb;
1104 	struct mbuf *f, *clast;
1105 	u_int cc, ctl, mbcnt;
1106 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1107 	int error;
1108 
1109 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1110 
1111 	error = 0;
1112 	f = NULL;
1113 	ctl = 0;
1114 
1115 	if (__predict_false(flags & MSG_OOB)) {
1116 		error = EOPNOTSUPP;
1117 		goto out;
1118 	}
1119 	if (m == NULL) {
1120 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1121 			error = EMSGSIZE;
1122 			goto out;
1123 		}
1124 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1125 		if (__predict_false(m == NULL)) {
1126 			error = EFAULT;
1127 			goto out;
1128 		}
1129 		f = m_gethdr(M_WAITOK, MT_SONAME);
1130 		cc = m->m_pkthdr.len;
1131 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1132 		if (c != NULL &&
1133 		    (error = unp_internalize(&c, td, &clast, &ctl, &mbcnt)))
1134 			goto out;
1135 	} else {
1136 		/* pr_sosend() with mbuf usually is a kernel thread. */
1137 
1138 		M_ASSERTPKTHDR(m);
1139 		if (__predict_false(c != NULL))
1140 			panic("%s: control from a kernel thread", __func__);
1141 
1142 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1143 			error = EMSGSIZE;
1144 			goto out;
1145 		}
1146 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1147 			error = ENOBUFS;
1148 			goto out;
1149 		}
1150 		/* Condition the foreign mbuf to our standards. */
1151 		m_clrprotoflags(m);
1152 		m_tag_delete_chain(m, NULL);
1153 		m->m_pkthdr.rcvif = NULL;
1154 		m->m_pkthdr.flowid = 0;
1155 		m->m_pkthdr.csum_flags = 0;
1156 		m->m_pkthdr.fibnum = 0;
1157 		m->m_pkthdr.rsstype = 0;
1158 
1159 		cc = m->m_pkthdr.len;
1160 		mbcnt = MSIZE;
1161 		for (struct mbuf *mb = m; mb != NULL; mb = mb->m_next) {
1162 			mbcnt += MSIZE;
1163 			if (mb->m_flags & M_EXT)
1164 				mbcnt += mb->m_ext.ext_size;
1165 		}
1166 	}
1167 
1168 	unp = sotounpcb(so);
1169 	MPASS(unp);
1170 
1171 	/*
1172 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1173 	 * and avoid this lock, which is not only extraneous, but also being
1174 	 * released, thus still leaving possibility for a race.  We can easily
1175 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1176 	 * is more difficult to invent something to handle so_error.
1177 	 */
1178 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1179 	if (error)
1180 		goto out2;
1181 	SOCK_SENDBUF_LOCK(so);
1182 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1183 		SOCK_SENDBUF_UNLOCK(so);
1184 		error = EPIPE;
1185 		goto out3;
1186 	}
1187 	if (so->so_error != 0) {
1188 		error = so->so_error;
1189 		so->so_error = 0;
1190 		SOCK_SENDBUF_UNLOCK(so);
1191 		goto out3;
1192 	}
1193 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
1194 		SOCK_SENDBUF_UNLOCK(so);
1195 		error = EDESTADDRREQ;
1196 		goto out3;
1197 	}
1198 	SOCK_SENDBUF_UNLOCK(so);
1199 
1200 	if (addr != NULL) {
1201 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
1202 			goto out3;
1203 		UNP_PCB_LOCK_ASSERT(unp);
1204 		unp2 = unp->unp_conn;
1205 		UNP_PCB_LOCK_ASSERT(unp2);
1206 	} else {
1207 		UNP_PCB_LOCK(unp);
1208 		unp2 = unp_pcb_lock_peer(unp);
1209 		if (unp2 == NULL) {
1210 			UNP_PCB_UNLOCK(unp);
1211 			error = ENOTCONN;
1212 			goto out3;
1213 		}
1214 	}
1215 
1216 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
1217 		c = unp_addsockcred(td, c, unp2->unp_flags, &clast, &ctl,
1218 		    &mbcnt);
1219 	if (unp->unp_addr != NULL)
1220 		from = (struct sockaddr *)unp->unp_addr;
1221 	else
1222 		from = &sun_noname;
1223 	f->m_len = from->sa_len;
1224 	MPASS(from->sa_len <= MLEN);
1225 	bcopy(from, mtod(f, void *), from->sa_len);
1226 	ctl += f->m_len;
1227 
1228 	/*
1229 	 * Concatenate mbufs: from -> control -> data.
1230 	 * Save overall cc and mbcnt in "from" mbuf.
1231 	 */
1232 	if (c != NULL) {
1233 #ifdef INVARIANTS
1234 		struct mbuf *mc;
1235 
1236 		for (mc = c; mc->m_next != NULL; mc = mc->m_next);
1237 		MPASS(mc == clast);
1238 #endif
1239 		f->m_next = c;
1240 		clast->m_next = m;
1241 		c = NULL;
1242 	} else
1243 		f->m_next = m;
1244 	m = NULL;
1245 #ifdef INVARIANTS
1246 	dcc = dctl = dmbcnt = 0;
1247 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
1248 		if (mb->m_type == MT_DATA)
1249 			dcc += mb->m_len;
1250 		else
1251 			dctl += mb->m_len;
1252 		dmbcnt += MSIZE;
1253 		if (mb->m_flags & M_EXT)
1254 			dmbcnt += mb->m_ext.ext_size;
1255 	}
1256 	MPASS(dcc == cc);
1257 	MPASS(dctl == ctl);
1258 	MPASS(dmbcnt == mbcnt);
1259 #endif
1260 	f->m_pkthdr.len = cc + ctl;
1261 	f->m_pkthdr.memlen = mbcnt;
1262 	f->m_pkthdr.ctllen = ctl;
1263 
1264 	/*
1265 	 * Destination socket buffer selection.
1266 	 *
1267 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
1268 	 * destination address is supplied, create a temporary connection for
1269 	 * the run time of the function (see call to unp_connectat() above and
1270 	 * to unp_disconnect() below).  We distinguish them by condition of
1271 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
1272 	 * that condition, since, again, through the run time of this code we
1273 	 * are always connected.  For such "unconnected" sends, the destination
1274 	 * buffer would be the receive buffer of destination socket so2.
1275 	 *
1276 	 * For connected sends, data lands on the send buffer of the sender's
1277 	 * socket "so".  Then, if we just added the very first datagram
1278 	 * on this send buffer, we need to add the send buffer on to the
1279 	 * receiving socket's buffer list.  We put ourselves on top of the
1280 	 * list.  Such logic gives infrequent senders priority over frequent
1281 	 * senders.
1282 	 *
1283 	 * Note on byte count management. As long as event methods kevent(2),
1284 	 * select(2) are not protocol specific (yet), we need to maintain
1285 	 * meaningful values on the receive buffer.  So, the receive buffer
1286 	 * would accumulate counters from all connected buffers potentially
1287 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
1288 	 */
1289 	so2 = unp2->unp_socket;
1290 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
1291 	SOCK_RECVBUF_LOCK(so2);
1292 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
1293 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
1294 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
1295 			    uxdg_clist);
1296 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
1297 		sb->uxdg_cc += cc + ctl;
1298 		sb->uxdg_ctl += ctl;
1299 		sb->uxdg_mbcnt += mbcnt;
1300 		so2->so_rcv.sb_acc += cc + ctl;
1301 		so2->so_rcv.sb_ccc += cc + ctl;
1302 		so2->so_rcv.sb_ctl += ctl;
1303 		so2->so_rcv.sb_mbcnt += mbcnt;
1304 		sorwakeup_locked(so2);
1305 		f = NULL;
1306 	} else {
1307 		soroverflow_locked(so2);
1308 		error = ENOBUFS;
1309 		if (f->m_next->m_type == MT_CONTROL) {
1310 			c = f->m_next;
1311 			f->m_next = NULL;
1312 		}
1313 	}
1314 
1315 	if (addr != NULL)
1316 		unp_disconnect(unp, unp2);
1317 	else
1318 		unp_pcb_unlock_pair(unp, unp2);
1319 
1320 	td->td_ru.ru_msgsnd++;
1321 
1322 out3:
1323 	SOCK_IO_SEND_UNLOCK(so);
1324 out2:
1325 	if (c)
1326 		unp_scan(c, unp_freerights);
1327 out:
1328 	if (f)
1329 		m_freem(f);
1330 	if (c)
1331 		m_freem(c);
1332 	if (m)
1333 		m_freem(m);
1334 
1335 	return (error);
1336 }
1337 
1338 /*
1339  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
1340  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
1341  * and needs to be linked onto uxdg_peeked of receive socket buffer.
1342  */
1343 static int
1344 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
1345     struct uio *uio, struct mbuf **controlp, int *flagsp)
1346 {
1347 	ssize_t len = 0;
1348 	int error;
1349 
1350 	so->so_rcv.uxdg_peeked = m;
1351 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
1352 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
1353 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
1354 	SOCK_RECVBUF_UNLOCK(so);
1355 
1356 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1357 	if (psa != NULL)
1358 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1359 
1360 	m = m->m_next;
1361 	KASSERT(m, ("%s: no data or control after soname", __func__));
1362 
1363 	/*
1364 	 * With MSG_PEEK the control isn't executed, just copied.
1365 	 */
1366 	while (m != NULL && m->m_type == MT_CONTROL) {
1367 		if (controlp != NULL) {
1368 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
1369 			controlp = &(*controlp)->m_next;
1370 		}
1371 		m = m->m_next;
1372 	}
1373 	KASSERT(m == NULL || m->m_type == MT_DATA,
1374 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1375 	while (m != NULL && uio->uio_resid > 0) {
1376 		len = uio->uio_resid;
1377 		if (len > m->m_len)
1378 			len = m->m_len;
1379 		error = uiomove(mtod(m, char *), (int)len, uio);
1380 		if (error) {
1381 			SOCK_IO_RECV_UNLOCK(so);
1382 			return (error);
1383 		}
1384 		if (len == m->m_len)
1385 			m = m->m_next;
1386 	}
1387 	SOCK_IO_RECV_UNLOCK(so);
1388 
1389 	if (flagsp != NULL) {
1390 		if (m != NULL) {
1391 			if (*flagsp & MSG_TRUNC) {
1392 				/* Report real length of the packet */
1393 				uio->uio_resid -= m_length(m, NULL) - len;
1394 			}
1395 			*flagsp |= MSG_TRUNC;
1396 		} else
1397 			*flagsp &= ~MSG_TRUNC;
1398 	}
1399 
1400 	return (0);
1401 }
1402 
1403 /*
1404  * PF_UNIX/SOCK_DGRAM receive
1405  */
1406 static int
1407 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1408     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1409 {
1410 	struct sockbuf *sb = NULL;
1411 	struct mbuf *m;
1412 	int flags, error;
1413 	ssize_t len = 0;
1414 	bool nonblock;
1415 
1416 	MPASS(mp0 == NULL);
1417 
1418 	if (psa != NULL)
1419 		*psa = NULL;
1420 	if (controlp != NULL)
1421 		*controlp = NULL;
1422 
1423 	flags = flagsp != NULL ? *flagsp : 0;
1424 	nonblock = (so->so_state & SS_NBIO) ||
1425 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1426 
1427 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1428 	if (__predict_false(error))
1429 		return (error);
1430 
1431 	/*
1432 	 * Loop blocking while waiting for a datagram.  Prioritize connected
1433 	 * peers over unconnected sends.  Set sb to selected socket buffer
1434 	 * containing an mbuf on exit from the wait loop.  A datagram that
1435 	 * had already been peeked at has top priority.
1436 	 */
1437 	SOCK_RECVBUF_LOCK(so);
1438 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
1439 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
1440 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
1441 		if (so->so_error) {
1442 			error = so->so_error;
1443 			so->so_error = 0;
1444 			SOCK_RECVBUF_UNLOCK(so);
1445 			SOCK_IO_RECV_UNLOCK(so);
1446 			return (error);
1447 		}
1448 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1449 		    uio->uio_resid == 0) {
1450 			SOCK_RECVBUF_UNLOCK(so);
1451 			SOCK_IO_RECV_UNLOCK(so);
1452 			return (0);
1453 		}
1454 		if (nonblock) {
1455 			SOCK_RECVBUF_UNLOCK(so);
1456 			SOCK_IO_RECV_UNLOCK(so);
1457 			return (EWOULDBLOCK);
1458 		}
1459 		error = sbwait(so, SO_RCV);
1460 		if (error) {
1461 			SOCK_RECVBUF_UNLOCK(so);
1462 			SOCK_IO_RECV_UNLOCK(so);
1463 			return (error);
1464 		}
1465 	}
1466 
1467 	if (sb == NULL)
1468 		sb = &so->so_rcv;
1469 	else if (m == NULL)
1470 		m = STAILQ_FIRST(&sb->uxdg_mb);
1471 	else
1472 		MPASS(m == so->so_rcv.uxdg_peeked);
1473 
1474 	MPASS(sb->uxdg_cc > 0);
1475 	M_ASSERTPKTHDR(m);
1476 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1477 
1478 	if (uio->uio_td)
1479 		uio->uio_td->td_ru.ru_msgrcv++;
1480 
1481 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
1482 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
1483 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
1484 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
1485 	} else
1486 		so->so_rcv.uxdg_peeked = NULL;
1487 
1488 	sb->uxdg_cc -= m->m_pkthdr.len;
1489 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
1490 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
1491 
1492 	if (__predict_false(flags & MSG_PEEK))
1493 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
1494 
1495 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
1496 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
1497 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
1498 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
1499 	SOCK_RECVBUF_UNLOCK(so);
1500 
1501 	if (psa != NULL)
1502 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1503 	m = m_free(m);
1504 	KASSERT(m, ("%s: no data or control after soname", __func__));
1505 
1506 	/*
1507 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1508 	 * queue.
1509 	 *
1510 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1511 	 * in the first mbuf chain on the socket buffer.  We call into the
1512 	 * unp_externalize() to perform externalization (or freeing if
1513 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
1514 	 * without MT_DATA mbufs.
1515 	 */
1516 	while (m != NULL && m->m_type == MT_CONTROL) {
1517 		struct mbuf *cm;
1518 
1519 		/* XXXGL: unp_externalize() is also dom_externalize() KBI and
1520 		 * it frees whole chain, so we must disconnect the mbuf.
1521 		 */
1522 		cm = m; m = m->m_next; cm->m_next = NULL;
1523 		error = unp_externalize(cm, controlp, flags);
1524 		if (error != 0) {
1525 			SOCK_IO_RECV_UNLOCK(so);
1526 			unp_scan(m, unp_freerights);
1527 			m_freem(m);
1528 			return (error);
1529 		}
1530 		if (controlp != NULL) {
1531 			while (*controlp != NULL)
1532 				controlp = &(*controlp)->m_next;
1533 		}
1534 	}
1535 	KASSERT(m == NULL || m->m_type == MT_DATA,
1536 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1537 	while (m != NULL && uio->uio_resid > 0) {
1538 		len = uio->uio_resid;
1539 		if (len > m->m_len)
1540 			len = m->m_len;
1541 		error = uiomove(mtod(m, char *), (int)len, uio);
1542 		if (error) {
1543 			SOCK_IO_RECV_UNLOCK(so);
1544 			m_freem(m);
1545 			return (error);
1546 		}
1547 		if (len == m->m_len)
1548 			m = m_free(m);
1549 		else {
1550 			m->m_data += len;
1551 			m->m_len -= len;
1552 		}
1553 	}
1554 	SOCK_IO_RECV_UNLOCK(so);
1555 
1556 	if (m != NULL) {
1557 		if (flagsp != NULL) {
1558 			if (flags & MSG_TRUNC) {
1559 				/* Report real length of the packet */
1560 				uio->uio_resid -= m_length(m, NULL);
1561 			}
1562 			*flagsp |= MSG_TRUNC;
1563 		}
1564 		m_freem(m);
1565 	} else if (flagsp != NULL)
1566 		*flagsp &= ~MSG_TRUNC;
1567 
1568 	return (0);
1569 }
1570 
1571 static bool
1572 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1573 {
1574 	struct mbuf *mb, *n;
1575 	struct sockbuf *sb;
1576 
1577 	SOCK_LOCK(so);
1578 	if (SOLISTENING(so)) {
1579 		SOCK_UNLOCK(so);
1580 		return (false);
1581 	}
1582 	mb = NULL;
1583 	sb = &so->so_rcv;
1584 	SOCKBUF_LOCK(sb);
1585 	if (sb->sb_fnrdy != NULL) {
1586 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1587 			if (mb == m) {
1588 				*errorp = sbready(sb, m, count);
1589 				break;
1590 			}
1591 			mb = mb->m_next;
1592 			if (mb == NULL) {
1593 				mb = n;
1594 				if (mb != NULL)
1595 					n = mb->m_nextpkt;
1596 			}
1597 		}
1598 	}
1599 	SOCKBUF_UNLOCK(sb);
1600 	SOCK_UNLOCK(so);
1601 	return (mb != NULL);
1602 }
1603 
1604 static int
1605 uipc_ready(struct socket *so, struct mbuf *m, int count)
1606 {
1607 	struct unpcb *unp, *unp2;
1608 	struct socket *so2;
1609 	int error, i;
1610 
1611 	unp = sotounpcb(so);
1612 
1613 	KASSERT(so->so_type == SOCK_STREAM,
1614 	    ("%s: unexpected socket type for %p", __func__, so));
1615 
1616 	UNP_PCB_LOCK(unp);
1617 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1618 		UNP_PCB_UNLOCK(unp);
1619 		so2 = unp2->unp_socket;
1620 		SOCKBUF_LOCK(&so2->so_rcv);
1621 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1622 			sorwakeup_locked(so2);
1623 		else
1624 			SOCKBUF_UNLOCK(&so2->so_rcv);
1625 		UNP_PCB_UNLOCK(unp2);
1626 		return (error);
1627 	}
1628 	UNP_PCB_UNLOCK(unp);
1629 
1630 	/*
1631 	 * The receiving socket has been disconnected, but may still be valid.
1632 	 * In this case, the now-ready mbufs are still present in its socket
1633 	 * buffer, so perform an exhaustive search before giving up and freeing
1634 	 * the mbufs.
1635 	 */
1636 	UNP_LINK_RLOCK();
1637 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1638 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1639 			break;
1640 	}
1641 	UNP_LINK_RUNLOCK();
1642 
1643 	if (unp == NULL) {
1644 		for (i = 0; i < count; i++)
1645 			m = m_free(m);
1646 		error = ECONNRESET;
1647 	}
1648 	return (error);
1649 }
1650 
1651 static int
1652 uipc_sense(struct socket *so, struct stat *sb)
1653 {
1654 	struct unpcb *unp;
1655 
1656 	unp = sotounpcb(so);
1657 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1658 
1659 	sb->st_blksize = so->so_snd.sb_hiwat;
1660 	sb->st_dev = NODEV;
1661 	sb->st_ino = unp->unp_ino;
1662 	return (0);
1663 }
1664 
1665 static int
1666 uipc_shutdown(struct socket *so, enum shutdown_how how)
1667 {
1668 	struct unpcb *unp = sotounpcb(so);
1669 	int error;
1670 
1671 	SOCK_LOCK(so);
1672 	if ((so->so_state &
1673 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
1674 		/*
1675 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
1676 		 * invoked on a datagram sockets, however historically we would
1677 		 * actually tear socket down.  This is known to be leveraged by
1678 		 * some applications to unblock process waiting in recv(2) by
1679 		 * other process that it shares that socket with.  Try to meet
1680 		 * both backward-compatibility and POSIX requirements by forcing
1681 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
1682 		 *
1683 		 * XXXGL: it remains unknown what applications expect this
1684 		 * behavior and is this isolated to unix/dgram or inet/dgram or
1685 		 * both.  See: D10351, D3039.
1686 		 */
1687 		error = ENOTCONN;
1688 		if (so->so_type != SOCK_DGRAM) {
1689 			SOCK_UNLOCK(so);
1690 			return (error);
1691 		}
1692 	} else
1693 		error = 0;
1694 	if (SOLISTENING(so)) {
1695 		if (how != SHUT_WR) {
1696 			so->so_error = ECONNABORTED;
1697 			solisten_wakeup(so);    /* unlocks so */
1698 		} else
1699 			SOCK_UNLOCK(so);
1700 		return (0);
1701 	}
1702 	SOCK_UNLOCK(so);
1703 
1704 	switch (how) {
1705 	case SHUT_RD:
1706 		socantrcvmore(so);
1707 		unp_dispose(so);
1708 		break;
1709 	case SHUT_RDWR:
1710 		socantrcvmore(so);
1711 		unp_dispose(so);
1712 		/* FALLTHROUGH */
1713 	case SHUT_WR:
1714 		UNP_PCB_LOCK(unp);
1715 		socantsendmore(so);
1716 		unp_shutdown(unp);
1717 		UNP_PCB_UNLOCK(unp);
1718 	}
1719 	wakeup(&so->so_timeo);
1720 
1721 	return (error);
1722 }
1723 
1724 static int
1725 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
1726 {
1727 	struct unpcb *unp;
1728 	const struct sockaddr *sa;
1729 
1730 	unp = sotounpcb(so);
1731 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1732 
1733 	UNP_PCB_LOCK(unp);
1734 	if (unp->unp_addr != NULL)
1735 		sa = (struct sockaddr *) unp->unp_addr;
1736 	else
1737 		sa = &sun_noname;
1738 	bcopy(sa, ret, sa->sa_len);
1739 	UNP_PCB_UNLOCK(unp);
1740 	return (0);
1741 }
1742 
1743 static int
1744 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1745 {
1746 	struct unpcb *unp;
1747 	struct xucred xu;
1748 	int error, optval;
1749 
1750 	if (sopt->sopt_level != SOL_LOCAL)
1751 		return (EINVAL);
1752 
1753 	unp = sotounpcb(so);
1754 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1755 	error = 0;
1756 	switch (sopt->sopt_dir) {
1757 	case SOPT_GET:
1758 		switch (sopt->sopt_name) {
1759 		case LOCAL_PEERCRED:
1760 			UNP_PCB_LOCK(unp);
1761 			if (unp->unp_flags & UNP_HAVEPC)
1762 				xu = unp->unp_peercred;
1763 			else {
1764 				if (so->so_type == SOCK_STREAM)
1765 					error = ENOTCONN;
1766 				else
1767 					error = EINVAL;
1768 			}
1769 			UNP_PCB_UNLOCK(unp);
1770 			if (error == 0)
1771 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1772 			break;
1773 
1774 		case LOCAL_CREDS:
1775 			/* Unlocked read. */
1776 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1777 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1778 			break;
1779 
1780 		case LOCAL_CREDS_PERSISTENT:
1781 			/* Unlocked read. */
1782 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1783 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1784 			break;
1785 
1786 		case LOCAL_CONNWAIT:
1787 			/* Unlocked read. */
1788 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1789 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1790 			break;
1791 
1792 		default:
1793 			error = EOPNOTSUPP;
1794 			break;
1795 		}
1796 		break;
1797 
1798 	case SOPT_SET:
1799 		switch (sopt->sopt_name) {
1800 		case LOCAL_CREDS:
1801 		case LOCAL_CREDS_PERSISTENT:
1802 		case LOCAL_CONNWAIT:
1803 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1804 					    sizeof(optval));
1805 			if (error)
1806 				break;
1807 
1808 #define	OPTSET(bit, exclusive) do {					\
1809 	UNP_PCB_LOCK(unp);						\
1810 	if (optval) {							\
1811 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1812 			UNP_PCB_UNLOCK(unp);				\
1813 			error = EINVAL;					\
1814 			break;						\
1815 		}							\
1816 		unp->unp_flags |= (bit);				\
1817 	} else								\
1818 		unp->unp_flags &= ~(bit);				\
1819 	UNP_PCB_UNLOCK(unp);						\
1820 } while (0)
1821 
1822 			switch (sopt->sopt_name) {
1823 			case LOCAL_CREDS:
1824 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1825 				break;
1826 
1827 			case LOCAL_CREDS_PERSISTENT:
1828 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1829 				break;
1830 
1831 			case LOCAL_CONNWAIT:
1832 				OPTSET(UNP_CONNWAIT, 0);
1833 				break;
1834 
1835 			default:
1836 				break;
1837 			}
1838 			break;
1839 #undef	OPTSET
1840 		default:
1841 			error = ENOPROTOOPT;
1842 			break;
1843 		}
1844 		break;
1845 
1846 	default:
1847 		error = EOPNOTSUPP;
1848 		break;
1849 	}
1850 	return (error);
1851 }
1852 
1853 static int
1854 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1855 {
1856 
1857 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
1858 }
1859 
1860 static int
1861 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1862     struct thread *td, bool return_locked)
1863 {
1864 	struct mtx *vplock;
1865 	struct sockaddr_un *soun;
1866 	struct vnode *vp;
1867 	struct socket *so2;
1868 	struct unpcb *unp, *unp2, *unp3;
1869 	struct nameidata nd;
1870 	char buf[SOCK_MAXADDRLEN];
1871 	struct sockaddr *sa;
1872 	cap_rights_t rights;
1873 	int error, len;
1874 	bool connreq;
1875 
1876 	if (nam->sa_family != AF_UNIX)
1877 		return (EAFNOSUPPORT);
1878 	if (nam->sa_len > sizeof(struct sockaddr_un))
1879 		return (EINVAL);
1880 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1881 	if (len <= 0)
1882 		return (EINVAL);
1883 	soun = (struct sockaddr_un *)nam;
1884 	bcopy(soun->sun_path, buf, len);
1885 	buf[len] = 0;
1886 
1887 	error = 0;
1888 	unp = sotounpcb(so);
1889 	UNP_PCB_LOCK(unp);
1890 	for (;;) {
1891 		/*
1892 		 * Wait for connection state to stabilize.  If a connection
1893 		 * already exists, give up.  For datagram sockets, which permit
1894 		 * multiple consecutive connect(2) calls, upper layers are
1895 		 * responsible for disconnecting in advance of a subsequent
1896 		 * connect(2), but this is not synchronized with PCB connection
1897 		 * state.
1898 		 *
1899 		 * Also make sure that no threads are currently attempting to
1900 		 * lock the peer socket, to ensure that unp_conn cannot
1901 		 * transition between two valid sockets while locks are dropped.
1902 		 */
1903 		if (SOLISTENING(so))
1904 			error = EOPNOTSUPP;
1905 		else if (unp->unp_conn != NULL)
1906 			error = EISCONN;
1907 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1908 			error = EALREADY;
1909 		}
1910 		if (error != 0) {
1911 			UNP_PCB_UNLOCK(unp);
1912 			return (error);
1913 		}
1914 		if (unp->unp_pairbusy > 0) {
1915 			unp->unp_flags |= UNP_WAITING;
1916 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1917 			continue;
1918 		}
1919 		break;
1920 	}
1921 	unp->unp_flags |= UNP_CONNECTING;
1922 	UNP_PCB_UNLOCK(unp);
1923 
1924 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1925 	if (connreq)
1926 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1927 	else
1928 		sa = NULL;
1929 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1930 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1931 	error = namei(&nd);
1932 	if (error)
1933 		vp = NULL;
1934 	else
1935 		vp = nd.ni_vp;
1936 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1937 	if (error)
1938 		goto bad;
1939 	NDFREE_PNBUF(&nd);
1940 
1941 	if (vp->v_type != VSOCK) {
1942 		error = ENOTSOCK;
1943 		goto bad;
1944 	}
1945 #ifdef MAC
1946 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1947 	if (error)
1948 		goto bad;
1949 #endif
1950 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1951 	if (error)
1952 		goto bad;
1953 
1954 	unp = sotounpcb(so);
1955 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1956 
1957 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1958 	mtx_lock(vplock);
1959 	VOP_UNP_CONNECT(vp, &unp2);
1960 	if (unp2 == NULL) {
1961 		error = ECONNREFUSED;
1962 		goto bad2;
1963 	}
1964 	so2 = unp2->unp_socket;
1965 	if (so->so_type != so2->so_type) {
1966 		error = EPROTOTYPE;
1967 		goto bad2;
1968 	}
1969 	if (connreq) {
1970 		if (SOLISTENING(so2)) {
1971 			CURVNET_SET(so2->so_vnet);
1972 			so2 = sonewconn(so2, 0);
1973 			CURVNET_RESTORE();
1974 		} else
1975 			so2 = NULL;
1976 		if (so2 == NULL) {
1977 			error = ECONNREFUSED;
1978 			goto bad2;
1979 		}
1980 		unp3 = sotounpcb(so2);
1981 		unp_pcb_lock_pair(unp2, unp3);
1982 		if (unp2->unp_addr != NULL) {
1983 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1984 			unp3->unp_addr = (struct sockaddr_un *) sa;
1985 			sa = NULL;
1986 		}
1987 
1988 		unp_copy_peercred(td, unp3, unp, unp2);
1989 
1990 		UNP_PCB_UNLOCK(unp2);
1991 		unp2 = unp3;
1992 
1993 		/*
1994 		 * It is safe to block on the PCB lock here since unp2 is
1995 		 * nascent and cannot be connected to any other sockets.
1996 		 */
1997 		UNP_PCB_LOCK(unp);
1998 #ifdef MAC
1999 		mac_socketpeer_set_from_socket(so, so2);
2000 		mac_socketpeer_set_from_socket(so2, so);
2001 #endif
2002 	} else {
2003 		unp_pcb_lock_pair(unp, unp2);
2004 	}
2005 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2006 	    sotounpcb(so2) == unp2,
2007 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2008 	unp_connect2(so, so2, PRU_CONNECT);
2009 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2010 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2011 	unp->unp_flags &= ~UNP_CONNECTING;
2012 	if (!return_locked)
2013 		unp_pcb_unlock_pair(unp, unp2);
2014 bad2:
2015 	mtx_unlock(vplock);
2016 bad:
2017 	if (vp != NULL) {
2018 		/*
2019 		 * If we are returning locked (called via uipc_sosend_dgram()),
2020 		 * we need to be sure that vput() won't sleep.  This is
2021 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2022 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2023 		 */
2024 		MPASS(!(return_locked && connreq));
2025 		vput(vp);
2026 	}
2027 	free(sa, M_SONAME);
2028 	if (__predict_false(error)) {
2029 		UNP_PCB_LOCK(unp);
2030 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2031 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2032 		unp->unp_flags &= ~UNP_CONNECTING;
2033 		UNP_PCB_UNLOCK(unp);
2034 	}
2035 	return (error);
2036 }
2037 
2038 /*
2039  * Set socket peer credentials at connection time.
2040  *
2041  * The client's PCB credentials are copied from its process structure.  The
2042  * server's PCB credentials are copied from the socket on which it called
2043  * listen(2).  uipc_listen cached that process's credentials at the time.
2044  */
2045 void
2046 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2047     struct unpcb *server_unp, struct unpcb *listen_unp)
2048 {
2049 	cru2xt(td, &client_unp->unp_peercred);
2050 	client_unp->unp_flags |= UNP_HAVEPC;
2051 
2052 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
2053 	    sizeof(server_unp->unp_peercred));
2054 	server_unp->unp_flags |= UNP_HAVEPC;
2055 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
2056 }
2057 
2058 static void
2059 unp_connect2(struct socket *so, struct socket *so2, conn2_how req)
2060 {
2061 	struct unpcb *unp;
2062 	struct unpcb *unp2;
2063 
2064 	MPASS(so2->so_type == so->so_type);
2065 	unp = sotounpcb(so);
2066 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
2067 	unp2 = sotounpcb(so2);
2068 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
2069 
2070 	UNP_PCB_LOCK_ASSERT(unp);
2071 	UNP_PCB_LOCK_ASSERT(unp2);
2072 	KASSERT(unp->unp_conn == NULL,
2073 	    ("%s: socket %p is already connected", __func__, unp));
2074 
2075 	unp->unp_conn = unp2;
2076 	unp_pcb_hold(unp2);
2077 	unp_pcb_hold(unp);
2078 	switch (so->so_type) {
2079 	case SOCK_DGRAM:
2080 		UNP_REF_LIST_LOCK();
2081 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2082 		UNP_REF_LIST_UNLOCK();
2083 		soisconnected(so);
2084 		break;
2085 
2086 	case SOCK_STREAM:
2087 	case SOCK_SEQPACKET:
2088 		KASSERT(unp2->unp_conn == NULL,
2089 		    ("%s: socket %p is already connected", __func__, unp2));
2090 		unp2->unp_conn = unp;
2091 		if (req == PRU_CONNECT &&
2092 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
2093 			soisconnecting(so);
2094 		else
2095 			soisconnected(so);
2096 		soisconnected(so2);
2097 		break;
2098 
2099 	default:
2100 		panic("unp_connect2");
2101 	}
2102 }
2103 
2104 static void
2105 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
2106 {
2107 	struct socket *so, *so2;
2108 	struct mbuf *m = NULL;
2109 #ifdef INVARIANTS
2110 	struct unpcb *unptmp;
2111 #endif
2112 
2113 	UNP_PCB_LOCK_ASSERT(unp);
2114 	UNP_PCB_LOCK_ASSERT(unp2);
2115 	KASSERT(unp->unp_conn == unp2,
2116 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
2117 
2118 	unp->unp_conn = NULL;
2119 	so = unp->unp_socket;
2120 	so2 = unp2->unp_socket;
2121 	switch (unp->unp_socket->so_type) {
2122 	case SOCK_DGRAM:
2123 		/*
2124 		 * Remove our send socket buffer from the peer's receive buffer.
2125 		 * Move the data to the receive buffer only if it is empty.
2126 		 * This is a protection against a scenario where a peer
2127 		 * connects, floods and disconnects, effectively blocking
2128 		 * sendto() from unconnected sockets.
2129 		 */
2130 		SOCK_RECVBUF_LOCK(so2);
2131 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
2132 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
2133 			    uxdg_clist);
2134 			if (__predict_true((so2->so_rcv.sb_state &
2135 			    SBS_CANTRCVMORE) == 0) &&
2136 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
2137 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
2138 				    &so->so_snd.uxdg_mb);
2139 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
2140 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
2141 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
2142 			} else {
2143 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
2144 				STAILQ_INIT(&so->so_snd.uxdg_mb);
2145 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
2146 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
2147 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
2148 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
2149 			}
2150 			/* Note: so may reconnect. */
2151 			so->so_snd.uxdg_cc = 0;
2152 			so->so_snd.uxdg_ctl = 0;
2153 			so->so_snd.uxdg_mbcnt = 0;
2154 		}
2155 		SOCK_RECVBUF_UNLOCK(so2);
2156 		UNP_REF_LIST_LOCK();
2157 #ifdef INVARIANTS
2158 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
2159 			if (unptmp == unp)
2160 				break;
2161 		}
2162 		KASSERT(unptmp != NULL,
2163 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
2164 #endif
2165 		LIST_REMOVE(unp, unp_reflink);
2166 		UNP_REF_LIST_UNLOCK();
2167 		if (so) {
2168 			SOCK_LOCK(so);
2169 			so->so_state &= ~SS_ISCONNECTED;
2170 			SOCK_UNLOCK(so);
2171 		}
2172 		break;
2173 
2174 	case SOCK_STREAM:
2175 	case SOCK_SEQPACKET:
2176 		if (so)
2177 			soisdisconnected(so);
2178 		MPASS(unp2->unp_conn == unp);
2179 		unp2->unp_conn = NULL;
2180 		if (so2)
2181 			soisdisconnected(so2);
2182 		break;
2183 	}
2184 
2185 	if (unp == unp2) {
2186 		unp_pcb_rele_notlast(unp);
2187 		if (!unp_pcb_rele(unp))
2188 			UNP_PCB_UNLOCK(unp);
2189 	} else {
2190 		if (!unp_pcb_rele(unp))
2191 			UNP_PCB_UNLOCK(unp);
2192 		if (!unp_pcb_rele(unp2))
2193 			UNP_PCB_UNLOCK(unp2);
2194 	}
2195 
2196 	if (m != NULL) {
2197 		unp_scan(m, unp_freerights);
2198 		m_freem(m);
2199 	}
2200 }
2201 
2202 /*
2203  * unp_pcblist() walks the global list of struct unpcb's to generate a
2204  * pointer list, bumping the refcount on each unpcb.  It then copies them out
2205  * sequentially, validating the generation number on each to see if it has
2206  * been detached.  All of this is necessary because copyout() may sleep on
2207  * disk I/O.
2208  */
2209 static int
2210 unp_pcblist(SYSCTL_HANDLER_ARGS)
2211 {
2212 	struct unpcb *unp, **unp_list;
2213 	unp_gen_t gencnt;
2214 	struct xunpgen *xug;
2215 	struct unp_head *head;
2216 	struct xunpcb *xu;
2217 	u_int i;
2218 	int error, n;
2219 
2220 	switch ((intptr_t)arg1) {
2221 	case SOCK_STREAM:
2222 		head = &unp_shead;
2223 		break;
2224 
2225 	case SOCK_DGRAM:
2226 		head = &unp_dhead;
2227 		break;
2228 
2229 	case SOCK_SEQPACKET:
2230 		head = &unp_sphead;
2231 		break;
2232 
2233 	default:
2234 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
2235 	}
2236 
2237 	/*
2238 	 * The process of preparing the PCB list is too time-consuming and
2239 	 * resource-intensive to repeat twice on every request.
2240 	 */
2241 	if (req->oldptr == NULL) {
2242 		n = unp_count;
2243 		req->oldidx = 2 * (sizeof *xug)
2244 			+ (n + n/8) * sizeof(struct xunpcb);
2245 		return (0);
2246 	}
2247 
2248 	if (req->newptr != NULL)
2249 		return (EPERM);
2250 
2251 	/*
2252 	 * OK, now we're committed to doing something.
2253 	 */
2254 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
2255 	UNP_LINK_RLOCK();
2256 	gencnt = unp_gencnt;
2257 	n = unp_count;
2258 	UNP_LINK_RUNLOCK();
2259 
2260 	xug->xug_len = sizeof *xug;
2261 	xug->xug_count = n;
2262 	xug->xug_gen = gencnt;
2263 	xug->xug_sogen = so_gencnt;
2264 	error = SYSCTL_OUT(req, xug, sizeof *xug);
2265 	if (error) {
2266 		free(xug, M_TEMP);
2267 		return (error);
2268 	}
2269 
2270 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
2271 
2272 	UNP_LINK_RLOCK();
2273 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
2274 	     unp = LIST_NEXT(unp, unp_link)) {
2275 		UNP_PCB_LOCK(unp);
2276 		if (unp->unp_gencnt <= gencnt) {
2277 			if (cr_cansee(req->td->td_ucred,
2278 			    unp->unp_socket->so_cred)) {
2279 				UNP_PCB_UNLOCK(unp);
2280 				continue;
2281 			}
2282 			unp_list[i++] = unp;
2283 			unp_pcb_hold(unp);
2284 		}
2285 		UNP_PCB_UNLOCK(unp);
2286 	}
2287 	UNP_LINK_RUNLOCK();
2288 	n = i;			/* In case we lost some during malloc. */
2289 
2290 	error = 0;
2291 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
2292 	for (i = 0; i < n; i++) {
2293 		unp = unp_list[i];
2294 		UNP_PCB_LOCK(unp);
2295 		if (unp_pcb_rele(unp))
2296 			continue;
2297 
2298 		if (unp->unp_gencnt <= gencnt) {
2299 			xu->xu_len = sizeof *xu;
2300 			xu->xu_unpp = (uintptr_t)unp;
2301 			/*
2302 			 * XXX - need more locking here to protect against
2303 			 * connect/disconnect races for SMP.
2304 			 */
2305 			if (unp->unp_addr != NULL)
2306 				bcopy(unp->unp_addr, &xu->xu_addr,
2307 				      unp->unp_addr->sun_len);
2308 			else
2309 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
2310 			if (unp->unp_conn != NULL &&
2311 			    unp->unp_conn->unp_addr != NULL)
2312 				bcopy(unp->unp_conn->unp_addr,
2313 				      &xu->xu_caddr,
2314 				      unp->unp_conn->unp_addr->sun_len);
2315 			else
2316 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
2317 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
2318 			xu->unp_conn = (uintptr_t)unp->unp_conn;
2319 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
2320 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
2321 			xu->unp_gencnt = unp->unp_gencnt;
2322 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
2323 			UNP_PCB_UNLOCK(unp);
2324 			error = SYSCTL_OUT(req, xu, sizeof *xu);
2325 		} else {
2326 			UNP_PCB_UNLOCK(unp);
2327 		}
2328 	}
2329 	free(xu, M_TEMP);
2330 	if (!error) {
2331 		/*
2332 		 * Give the user an updated idea of our state.  If the
2333 		 * generation differs from what we told her before, she knows
2334 		 * that something happened while we were processing this
2335 		 * request, and it might be necessary to retry.
2336 		 */
2337 		xug->xug_gen = unp_gencnt;
2338 		xug->xug_sogen = so_gencnt;
2339 		xug->xug_count = unp_count;
2340 		error = SYSCTL_OUT(req, xug, sizeof *xug);
2341 	}
2342 	free(unp_list, M_TEMP);
2343 	free(xug, M_TEMP);
2344 	return (error);
2345 }
2346 
2347 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
2348     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2349     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
2350     "List of active local datagram sockets");
2351 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
2352     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2353     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
2354     "List of active local stream sockets");
2355 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
2356     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2357     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
2358     "List of active local seqpacket sockets");
2359 
2360 static void
2361 unp_shutdown(struct unpcb *unp)
2362 {
2363 	struct unpcb *unp2;
2364 	struct socket *so;
2365 
2366 	UNP_PCB_LOCK_ASSERT(unp);
2367 
2368 	unp2 = unp->unp_conn;
2369 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
2370 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
2371 		so = unp2->unp_socket;
2372 		if (so != NULL)
2373 			socantrcvmore(so);
2374 	}
2375 }
2376 
2377 static void
2378 unp_drop(struct unpcb *unp)
2379 {
2380 	struct socket *so;
2381 	struct unpcb *unp2;
2382 
2383 	/*
2384 	 * Regardless of whether the socket's peer dropped the connection
2385 	 * with this socket by aborting or disconnecting, POSIX requires
2386 	 * that ECONNRESET is returned.
2387 	 */
2388 
2389 	UNP_PCB_LOCK(unp);
2390 	so = unp->unp_socket;
2391 	if (so)
2392 		so->so_error = ECONNRESET;
2393 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
2394 		/* Last reference dropped in unp_disconnect(). */
2395 		unp_pcb_rele_notlast(unp);
2396 		unp_disconnect(unp, unp2);
2397 	} else if (!unp_pcb_rele(unp)) {
2398 		UNP_PCB_UNLOCK(unp);
2399 	}
2400 }
2401 
2402 static void
2403 unp_freerights(struct filedescent **fdep, int fdcount)
2404 {
2405 	struct file *fp;
2406 	int i;
2407 
2408 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2409 
2410 	for (i = 0; i < fdcount; i++) {
2411 		fp = fdep[i]->fde_file;
2412 		filecaps_free(&fdep[i]->fde_caps);
2413 		unp_discard(fp);
2414 	}
2415 	free(fdep[0], M_FILECAPS);
2416 }
2417 
2418 static int
2419 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2420 {
2421 	struct thread *td = curthread;		/* XXX */
2422 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2423 	int i;
2424 	int *fdp;
2425 	struct filedesc *fdesc = td->td_proc->p_fd;
2426 	struct filedescent **fdep;
2427 	void *data;
2428 	socklen_t clen = control->m_len, datalen;
2429 	int error, newfds;
2430 	u_int newlen;
2431 
2432 	UNP_LINK_UNLOCK_ASSERT();
2433 
2434 	error = 0;
2435 	if (controlp != NULL) /* controlp == NULL => free control messages */
2436 		*controlp = NULL;
2437 	while (cm != NULL) {
2438 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
2439 
2440 		data = CMSG_DATA(cm);
2441 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2442 		if (cm->cmsg_level == SOL_SOCKET
2443 		    && cm->cmsg_type == SCM_RIGHTS) {
2444 			newfds = datalen / sizeof(*fdep);
2445 			if (newfds == 0)
2446 				goto next;
2447 			fdep = data;
2448 
2449 			/* If we're not outputting the descriptors free them. */
2450 			if (error || controlp == NULL) {
2451 				unp_freerights(fdep, newfds);
2452 				goto next;
2453 			}
2454 			FILEDESC_XLOCK(fdesc);
2455 
2456 			/*
2457 			 * Now change each pointer to an fd in the global
2458 			 * table to an integer that is the index to the local
2459 			 * fd table entry that we set up to point to the
2460 			 * global one we are transferring.
2461 			 */
2462 			newlen = newfds * sizeof(int);
2463 			*controlp = sbcreatecontrol(NULL, newlen,
2464 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2465 
2466 			fdp = (int *)
2467 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2468 			if ((error = fdallocn(td, 0, fdp, newfds))) {
2469 				FILEDESC_XUNLOCK(fdesc);
2470 				unp_freerights(fdep, newfds);
2471 				m_freem(*controlp);
2472 				*controlp = NULL;
2473 				goto next;
2474 			}
2475 			for (i = 0; i < newfds; i++, fdp++) {
2476 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2477 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2478 				    &fdep[i]->fde_caps);
2479 				unp_externalize_fp(fdep[i]->fde_file);
2480 			}
2481 
2482 			/*
2483 			 * The new type indicates that the mbuf data refers to
2484 			 * kernel resources that may need to be released before
2485 			 * the mbuf is freed.
2486 			 */
2487 			m_chtype(*controlp, MT_EXTCONTROL);
2488 			FILEDESC_XUNLOCK(fdesc);
2489 			free(fdep[0], M_FILECAPS);
2490 		} else {
2491 			/* We can just copy anything else across. */
2492 			if (error || controlp == NULL)
2493 				goto next;
2494 			*controlp = sbcreatecontrol(NULL, datalen,
2495 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
2496 			bcopy(data,
2497 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2498 			    datalen);
2499 		}
2500 		controlp = &(*controlp)->m_next;
2501 
2502 next:
2503 		if (CMSG_SPACE(datalen) < clen) {
2504 			clen -= CMSG_SPACE(datalen);
2505 			cm = (struct cmsghdr *)
2506 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2507 		} else {
2508 			clen = 0;
2509 			cm = NULL;
2510 		}
2511 	}
2512 
2513 	m_freem(control);
2514 	return (error);
2515 }
2516 
2517 static void
2518 unp_zone_change(void *tag)
2519 {
2520 
2521 	uma_zone_set_max(unp_zone, maxsockets);
2522 }
2523 
2524 #ifdef INVARIANTS
2525 static void
2526 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2527 {
2528 	struct unpcb *unp;
2529 
2530 	unp = mem;
2531 
2532 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2533 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2534 	KASSERT(unp->unp_socket == NULL,
2535 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2536 	KASSERT(unp->unp_vnode == NULL,
2537 	    ("%s: unpcb %p has vnode references", __func__, unp));
2538 	KASSERT(unp->unp_conn == NULL,
2539 	    ("%s: unpcb %p is still connected", __func__, unp));
2540 	KASSERT(unp->unp_addr == NULL,
2541 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2542 }
2543 #endif
2544 
2545 static void
2546 unp_init(void *arg __unused)
2547 {
2548 	uma_dtor dtor;
2549 
2550 #ifdef INVARIANTS
2551 	dtor = unp_zdtor;
2552 #else
2553 	dtor = NULL;
2554 #endif
2555 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2556 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2557 	uma_zone_set_max(unp_zone, maxsockets);
2558 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2559 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2560 	    NULL, EVENTHANDLER_PRI_ANY);
2561 	LIST_INIT(&unp_dhead);
2562 	LIST_INIT(&unp_shead);
2563 	LIST_INIT(&unp_sphead);
2564 	SLIST_INIT(&unp_defers);
2565 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2566 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2567 	UNP_LINK_LOCK_INIT();
2568 	UNP_DEFERRED_LOCK_INIT();
2569 }
2570 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2571 
2572 static void
2573 unp_internalize_cleanup_rights(struct mbuf *control)
2574 {
2575 	struct cmsghdr *cp;
2576 	struct mbuf *m;
2577 	void *data;
2578 	socklen_t datalen;
2579 
2580 	for (m = control; m != NULL; m = m->m_next) {
2581 		cp = mtod(m, struct cmsghdr *);
2582 		if (cp->cmsg_level != SOL_SOCKET ||
2583 		    cp->cmsg_type != SCM_RIGHTS)
2584 			continue;
2585 		data = CMSG_DATA(cp);
2586 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2587 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2588 	}
2589 }
2590 
2591 static int
2592 unp_internalize(struct mbuf **controlp, struct thread *td,
2593     struct mbuf **clast, u_int *space, u_int *mbcnt)
2594 {
2595 	struct mbuf *control, **initial_controlp;
2596 	struct proc *p;
2597 	struct filedesc *fdesc;
2598 	struct bintime *bt;
2599 	struct cmsghdr *cm;
2600 	struct cmsgcred *cmcred;
2601 	struct filedescent *fde, **fdep, *fdev;
2602 	struct file *fp;
2603 	struct timeval *tv;
2604 	struct timespec *ts;
2605 	void *data;
2606 	socklen_t clen, datalen;
2607 	int i, j, error, *fdp, oldfds;
2608 	u_int newlen;
2609 
2610 	MPASS((*controlp)->m_next == NULL); /* COMPAT_OLDSOCK may violate */
2611 	UNP_LINK_UNLOCK_ASSERT();
2612 
2613 	p = td->td_proc;
2614 	fdesc = p->p_fd;
2615 	error = 0;
2616 	control = *controlp;
2617 	*controlp = NULL;
2618 	initial_controlp = controlp;
2619 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
2620 	    data = CMSG_DATA(cm);
2621 
2622 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
2623 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
2624 	    (char *)cm + cm->cmsg_len >= (char *)data;
2625 
2626 	    clen -= min(CMSG_SPACE(datalen), clen),
2627 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
2628 	    data = CMSG_DATA(cm)) {
2629 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
2630 		switch (cm->cmsg_type) {
2631 		case SCM_CREDS:
2632 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2633 			    SCM_CREDS, SOL_SOCKET, M_WAITOK);
2634 			cmcred = (struct cmsgcred *)
2635 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2636 			cmcred->cmcred_pid = p->p_pid;
2637 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2638 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2639 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2640 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2641 			    CMGROUP_MAX);
2642 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2643 				cmcred->cmcred_groups[i] =
2644 				    td->td_ucred->cr_groups[i];
2645 			break;
2646 
2647 		case SCM_RIGHTS:
2648 			oldfds = datalen / sizeof (int);
2649 			if (oldfds == 0)
2650 				continue;
2651 			/* On some machines sizeof pointer is bigger than
2652 			 * sizeof int, so we need to check if data fits into
2653 			 * single mbuf.  We could allocate several mbufs, and
2654 			 * unp_externalize() should even properly handle that.
2655 			 * But it is not worth to complicate the code for an
2656 			 * insane scenario of passing over 200 file descriptors
2657 			 * at once.
2658 			 */
2659 			newlen = oldfds * sizeof(fdep[0]);
2660 			if (CMSG_SPACE(newlen) > MCLBYTES) {
2661 				error = EMSGSIZE;
2662 				goto out;
2663 			}
2664 			/*
2665 			 * Check that all the FDs passed in refer to legal
2666 			 * files.  If not, reject the entire operation.
2667 			 */
2668 			fdp = data;
2669 			FILEDESC_SLOCK(fdesc);
2670 			for (i = 0; i < oldfds; i++, fdp++) {
2671 				fp = fget_noref(fdesc, *fdp);
2672 				if (fp == NULL) {
2673 					FILEDESC_SUNLOCK(fdesc);
2674 					error = EBADF;
2675 					goto out;
2676 				}
2677 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2678 					FILEDESC_SUNLOCK(fdesc);
2679 					error = EOPNOTSUPP;
2680 					goto out;
2681 				}
2682 			}
2683 
2684 			/*
2685 			 * Now replace the integer FDs with pointers to the
2686 			 * file structure and capability rights.
2687 			 */
2688 			*controlp = sbcreatecontrol(NULL, newlen,
2689 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2690 			fdp = data;
2691 			for (i = 0; i < oldfds; i++, fdp++) {
2692 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2693 					fdp = data;
2694 					for (j = 0; j < i; j++, fdp++) {
2695 						fdrop(fdesc->fd_ofiles[*fdp].
2696 						    fde_file, td);
2697 					}
2698 					FILEDESC_SUNLOCK(fdesc);
2699 					error = EBADF;
2700 					goto out;
2701 				}
2702 			}
2703 			fdp = data;
2704 			fdep = (struct filedescent **)
2705 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2706 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2707 			    M_WAITOK);
2708 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2709 				fde = &fdesc->fd_ofiles[*fdp];
2710 				fdep[i] = fdev;
2711 				fdep[i]->fde_file = fde->fde_file;
2712 				filecaps_copy(&fde->fde_caps,
2713 				    &fdep[i]->fde_caps, true);
2714 				unp_internalize_fp(fdep[i]->fde_file);
2715 			}
2716 			FILEDESC_SUNLOCK(fdesc);
2717 			break;
2718 
2719 		case SCM_TIMESTAMP:
2720 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2721 			    SCM_TIMESTAMP, SOL_SOCKET, M_WAITOK);
2722 			tv = (struct timeval *)
2723 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2724 			microtime(tv);
2725 			break;
2726 
2727 		case SCM_BINTIME:
2728 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2729 			    SCM_BINTIME, SOL_SOCKET, M_WAITOK);
2730 			bt = (struct bintime *)
2731 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2732 			bintime(bt);
2733 			break;
2734 
2735 		case SCM_REALTIME:
2736 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2737 			    SCM_REALTIME, SOL_SOCKET, M_WAITOK);
2738 			ts = (struct timespec *)
2739 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2740 			nanotime(ts);
2741 			break;
2742 
2743 		case SCM_MONOTONIC:
2744 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2745 			    SCM_MONOTONIC, SOL_SOCKET, M_WAITOK);
2746 			ts = (struct timespec *)
2747 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2748 			nanouptime(ts);
2749 			break;
2750 
2751 		default:
2752 			error = EINVAL;
2753 			goto out;
2754 		}
2755 
2756 		if (space != NULL) {
2757 			*space += (*controlp)->m_len;
2758 			*mbcnt += MSIZE;
2759 			if ((*controlp)->m_flags & M_EXT)
2760 				*mbcnt += (*controlp)->m_ext.ext_size;
2761 			*clast = *controlp;
2762 		}
2763 		controlp = &(*controlp)->m_next;
2764 	}
2765 	if (clen > 0)
2766 		error = EINVAL;
2767 
2768 out:
2769 	if (error != 0 && initial_controlp != NULL)
2770 		unp_internalize_cleanup_rights(*initial_controlp);
2771 	m_freem(control);
2772 	return (error);
2773 }
2774 
2775 static struct mbuf *
2776 unp_addsockcred(struct thread *td, struct mbuf *control, int mode,
2777     struct mbuf **clast, u_int *space, u_int *mbcnt)
2778 {
2779 	struct mbuf *m, *n, *n_prev;
2780 	const struct cmsghdr *cm;
2781 	int ngroups, i, cmsgtype;
2782 	size_t ctrlsz;
2783 
2784 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2785 	if (mode & UNP_WANTCRED_ALWAYS) {
2786 		ctrlsz = SOCKCRED2SIZE(ngroups);
2787 		cmsgtype = SCM_CREDS2;
2788 	} else {
2789 		ctrlsz = SOCKCREDSIZE(ngroups);
2790 		cmsgtype = SCM_CREDS;
2791 	}
2792 
2793 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
2794 	if (m == NULL)
2795 		return (control);
2796 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
2797 
2798 	if (mode & UNP_WANTCRED_ALWAYS) {
2799 		struct sockcred2 *sc;
2800 
2801 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2802 		sc->sc_version = 0;
2803 		sc->sc_pid = td->td_proc->p_pid;
2804 		sc->sc_uid = td->td_ucred->cr_ruid;
2805 		sc->sc_euid = td->td_ucred->cr_uid;
2806 		sc->sc_gid = td->td_ucred->cr_rgid;
2807 		sc->sc_egid = td->td_ucred->cr_gid;
2808 		sc->sc_ngroups = ngroups;
2809 		for (i = 0; i < sc->sc_ngroups; i++)
2810 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2811 	} else {
2812 		struct sockcred *sc;
2813 
2814 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2815 		sc->sc_uid = td->td_ucred->cr_ruid;
2816 		sc->sc_euid = td->td_ucred->cr_uid;
2817 		sc->sc_gid = td->td_ucred->cr_rgid;
2818 		sc->sc_egid = td->td_ucred->cr_gid;
2819 		sc->sc_ngroups = ngroups;
2820 		for (i = 0; i < sc->sc_ngroups; i++)
2821 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2822 	}
2823 
2824 	/*
2825 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2826 	 * created SCM_CREDS control message (struct sockcred) has another
2827 	 * format.
2828 	 */
2829 	if (control != NULL && cmsgtype == SCM_CREDS)
2830 		for (n = control, n_prev = NULL; n != NULL;) {
2831 			cm = mtod(n, struct cmsghdr *);
2832     			if (cm->cmsg_level == SOL_SOCKET &&
2833 			    cm->cmsg_type == SCM_CREDS) {
2834     				if (n_prev == NULL)
2835 					control = n->m_next;
2836 				else
2837 					n_prev->m_next = n->m_next;
2838 				if (space != NULL) {
2839 					MPASS(*space >= n->m_len);
2840 					*space -= n->m_len;
2841 					MPASS(*mbcnt >= MSIZE);
2842 					*mbcnt -= MSIZE;
2843 					if (n->m_flags & M_EXT) {
2844 						MPASS(*mbcnt >=
2845 						    n->m_ext.ext_size);
2846 						*mbcnt -= n->m_ext.ext_size;
2847 					}
2848 					MPASS(clast);
2849 					if (*clast == n) {
2850 						MPASS(n->m_next == NULL);
2851 						if (n_prev == NULL)
2852 							*clast = m;
2853 						else
2854 							*clast = n_prev;
2855 					}
2856 				}
2857 				n = m_free(n);
2858 			} else {
2859 				n_prev = n;
2860 				n = n->m_next;
2861 			}
2862 		}
2863 
2864 	/* Prepend it to the head. */
2865 	m->m_next = control;
2866 	if (space != NULL) {
2867 		*space += m->m_len;
2868 		*mbcnt += MSIZE;
2869 		if (control == NULL)
2870 			*clast = m;
2871 	}
2872 	return (m);
2873 }
2874 
2875 static struct unpcb *
2876 fptounp(struct file *fp)
2877 {
2878 	struct socket *so;
2879 
2880 	if (fp->f_type != DTYPE_SOCKET)
2881 		return (NULL);
2882 	if ((so = fp->f_data) == NULL)
2883 		return (NULL);
2884 	if (so->so_proto->pr_domain != &localdomain)
2885 		return (NULL);
2886 	return sotounpcb(so);
2887 }
2888 
2889 static void
2890 unp_discard(struct file *fp)
2891 {
2892 	struct unp_defer *dr;
2893 
2894 	if (unp_externalize_fp(fp)) {
2895 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2896 		dr->ud_fp = fp;
2897 		UNP_DEFERRED_LOCK();
2898 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2899 		UNP_DEFERRED_UNLOCK();
2900 		atomic_add_int(&unp_defers_count, 1);
2901 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2902 	} else
2903 		closef_nothread(fp);
2904 }
2905 
2906 static void
2907 unp_process_defers(void *arg __unused, int pending)
2908 {
2909 	struct unp_defer *dr;
2910 	SLIST_HEAD(, unp_defer) drl;
2911 	int count;
2912 
2913 	SLIST_INIT(&drl);
2914 	for (;;) {
2915 		UNP_DEFERRED_LOCK();
2916 		if (SLIST_FIRST(&unp_defers) == NULL) {
2917 			UNP_DEFERRED_UNLOCK();
2918 			break;
2919 		}
2920 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2921 		UNP_DEFERRED_UNLOCK();
2922 		count = 0;
2923 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2924 			SLIST_REMOVE_HEAD(&drl, ud_link);
2925 			closef_nothread(dr->ud_fp);
2926 			free(dr, M_TEMP);
2927 			count++;
2928 		}
2929 		atomic_add_int(&unp_defers_count, -count);
2930 	}
2931 }
2932 
2933 static void
2934 unp_internalize_fp(struct file *fp)
2935 {
2936 	struct unpcb *unp;
2937 
2938 	UNP_LINK_WLOCK();
2939 	if ((unp = fptounp(fp)) != NULL) {
2940 		unp->unp_file = fp;
2941 		unp->unp_msgcount++;
2942 	}
2943 	unp_rights++;
2944 	UNP_LINK_WUNLOCK();
2945 }
2946 
2947 static int
2948 unp_externalize_fp(struct file *fp)
2949 {
2950 	struct unpcb *unp;
2951 	int ret;
2952 
2953 	UNP_LINK_WLOCK();
2954 	if ((unp = fptounp(fp)) != NULL) {
2955 		unp->unp_msgcount--;
2956 		ret = 1;
2957 	} else
2958 		ret = 0;
2959 	unp_rights--;
2960 	UNP_LINK_WUNLOCK();
2961 	return (ret);
2962 }
2963 
2964 /*
2965  * unp_defer indicates whether additional work has been defered for a future
2966  * pass through unp_gc().  It is thread local and does not require explicit
2967  * synchronization.
2968  */
2969 static int	unp_marked;
2970 
2971 static void
2972 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2973 {
2974 	struct unpcb *unp;
2975 	struct file *fp;
2976 	int i;
2977 
2978 	/*
2979 	 * This function can only be called from the gc task.
2980 	 */
2981 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2982 	    ("%s: not on gc callout", __func__));
2983 	UNP_LINK_LOCK_ASSERT();
2984 
2985 	for (i = 0; i < fdcount; i++) {
2986 		fp = fdep[i]->fde_file;
2987 		if ((unp = fptounp(fp)) == NULL)
2988 			continue;
2989 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2990 			continue;
2991 		unp->unp_gcrefs--;
2992 	}
2993 }
2994 
2995 static void
2996 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2997 {
2998 	struct unpcb *unp;
2999 	struct file *fp;
3000 	int i;
3001 
3002 	/*
3003 	 * This function can only be called from the gc task.
3004 	 */
3005 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
3006 	    ("%s: not on gc callout", __func__));
3007 	UNP_LINK_LOCK_ASSERT();
3008 
3009 	for (i = 0; i < fdcount; i++) {
3010 		fp = fdep[i]->fde_file;
3011 		if ((unp = fptounp(fp)) == NULL)
3012 			continue;
3013 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
3014 			continue;
3015 		unp->unp_gcrefs++;
3016 		unp_marked++;
3017 	}
3018 }
3019 
3020 static void
3021 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
3022 {
3023 	struct sockbuf *sb;
3024 
3025 	SOCK_LOCK_ASSERT(so);
3026 
3027 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
3028 		return;
3029 
3030 	SOCK_RECVBUF_LOCK(so);
3031 	switch (so->so_type) {
3032 	case SOCK_DGRAM:
3033 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
3034 		unp_scan(so->so_rcv.uxdg_peeked, op);
3035 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
3036 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
3037 		break;
3038 	case SOCK_STREAM:
3039 	case SOCK_SEQPACKET:
3040 		unp_scan(so->so_rcv.sb_mb, op);
3041 		break;
3042 	}
3043 	SOCK_RECVBUF_UNLOCK(so);
3044 }
3045 
3046 static void
3047 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
3048 {
3049 	struct socket *so, *soa;
3050 
3051 	so = unp->unp_socket;
3052 	SOCK_LOCK(so);
3053 	if (SOLISTENING(so)) {
3054 		/*
3055 		 * Mark all sockets in our accept queue.
3056 		 */
3057 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
3058 			unp_scan_socket(soa, op);
3059 	} else {
3060 		/*
3061 		 * Mark all sockets we reference with RIGHTS.
3062 		 */
3063 		unp_scan_socket(so, op);
3064 	}
3065 	SOCK_UNLOCK(so);
3066 }
3067 
3068 static int unp_recycled;
3069 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
3070     "Number of unreachable sockets claimed by the garbage collector.");
3071 
3072 static int unp_taskcount;
3073 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
3074     "Number of times the garbage collector has run.");
3075 
3076 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
3077     "Number of active local sockets.");
3078 
3079 static void
3080 unp_gc(__unused void *arg, int pending)
3081 {
3082 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
3083 				    NULL };
3084 	struct unp_head **head;
3085 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
3086 	struct file *f, **unref;
3087 	struct unpcb *unp, *unptmp;
3088 	int i, total, unp_unreachable;
3089 
3090 	LIST_INIT(&unp_deadhead);
3091 	unp_taskcount++;
3092 	UNP_LINK_RLOCK();
3093 	/*
3094 	 * First determine which sockets may be in cycles.
3095 	 */
3096 	unp_unreachable = 0;
3097 
3098 	for (head = heads; *head != NULL; head++)
3099 		LIST_FOREACH(unp, *head, unp_link) {
3100 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
3101 			    ("%s: unp %p has unexpected gc flags 0x%x",
3102 			    __func__, unp, (unsigned int)unp->unp_gcflag));
3103 
3104 			f = unp->unp_file;
3105 
3106 			/*
3107 			 * Check for an unreachable socket potentially in a
3108 			 * cycle.  It must be in a queue as indicated by
3109 			 * msgcount, and this must equal the file reference
3110 			 * count.  Note that when msgcount is 0 the file is
3111 			 * NULL.
3112 			 */
3113 			if (f != NULL && unp->unp_msgcount != 0 &&
3114 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
3115 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
3116 				unp->unp_gcflag |= UNPGC_DEAD;
3117 				unp->unp_gcrefs = unp->unp_msgcount;
3118 				unp_unreachable++;
3119 			}
3120 		}
3121 
3122 	/*
3123 	 * Scan all sockets previously marked as potentially being in a cycle
3124 	 * and remove the references each socket holds on any UNPGC_DEAD
3125 	 * sockets in its queue.  After this step, all remaining references on
3126 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
3127 	 */
3128 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
3129 		unp_gc_scan(unp, unp_remove_dead_ref);
3130 
3131 	/*
3132 	 * If a socket still has a non-negative refcount, it cannot be in a
3133 	 * cycle.  In this case increment refcount of all children iteratively.
3134 	 * Stop the scan once we do a complete loop without discovering
3135 	 * a new reachable socket.
3136 	 */
3137 	do {
3138 		unp_marked = 0;
3139 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
3140 			if (unp->unp_gcrefs > 0) {
3141 				unp->unp_gcflag &= ~UNPGC_DEAD;
3142 				LIST_REMOVE(unp, unp_dead);
3143 				KASSERT(unp_unreachable > 0,
3144 				    ("%s: unp_unreachable underflow.",
3145 				    __func__));
3146 				unp_unreachable--;
3147 				unp_gc_scan(unp, unp_restore_undead_ref);
3148 			}
3149 	} while (unp_marked);
3150 
3151 	UNP_LINK_RUNLOCK();
3152 
3153 	if (unp_unreachable == 0)
3154 		return;
3155 
3156 	/*
3157 	 * Allocate space for a local array of dead unpcbs.
3158 	 * TODO: can this path be simplified by instead using the local
3159 	 * dead list at unp_deadhead, after taking out references
3160 	 * on the file object and/or unpcb and dropping the link lock?
3161 	 */
3162 	unref = malloc(unp_unreachable * sizeof(struct file *),
3163 	    M_TEMP, M_WAITOK);
3164 
3165 	/*
3166 	 * Iterate looking for sockets which have been specifically marked
3167 	 * as unreachable and store them locally.
3168 	 */
3169 	UNP_LINK_RLOCK();
3170 	total = 0;
3171 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
3172 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
3173 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
3174 		unp->unp_gcflag &= ~UNPGC_DEAD;
3175 		f = unp->unp_file;
3176 		if (unp->unp_msgcount == 0 || f == NULL ||
3177 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
3178 		    !fhold(f))
3179 			continue;
3180 		unref[total++] = f;
3181 		KASSERT(total <= unp_unreachable,
3182 		    ("%s: incorrect unreachable count.", __func__));
3183 	}
3184 	UNP_LINK_RUNLOCK();
3185 
3186 	/*
3187 	 * Now flush all sockets, free'ing rights.  This will free the
3188 	 * struct files associated with these sockets but leave each socket
3189 	 * with one remaining ref.
3190 	 */
3191 	for (i = 0; i < total; i++) {
3192 		struct socket *so;
3193 
3194 		so = unref[i]->f_data;
3195 		CURVNET_SET(so->so_vnet);
3196 		socantrcvmore(so);
3197 		unp_dispose(so);
3198 		CURVNET_RESTORE();
3199 	}
3200 
3201 	/*
3202 	 * And finally release the sockets so they can be reclaimed.
3203 	 */
3204 	for (i = 0; i < total; i++)
3205 		fdrop(unref[i], NULL);
3206 	unp_recycled += total;
3207 	free(unref, M_TEMP);
3208 }
3209 
3210 /*
3211  * Synchronize against unp_gc, which can trip over data as we are freeing it.
3212  */
3213 static void
3214 unp_dispose(struct socket *so)
3215 {
3216 	struct sockbuf *sb;
3217 	struct unpcb *unp;
3218 	struct mbuf *m;
3219 
3220 	MPASS(!SOLISTENING(so));
3221 
3222 	unp = sotounpcb(so);
3223 	UNP_LINK_WLOCK();
3224 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
3225 	UNP_LINK_WUNLOCK();
3226 
3227 	/*
3228 	 * Grab our special mbufs before calling sbrelease().
3229 	 */
3230 	SOCK_RECVBUF_LOCK(so);
3231 	switch (so->so_type) {
3232 	case SOCK_DGRAM:
3233 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
3234 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
3235 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
3236 			/* Note: socket of sb may reconnect. */
3237 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
3238 		}
3239 		sb = &so->so_rcv;
3240 		if (sb->uxdg_peeked != NULL) {
3241 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
3242 			    m_stailqpkt);
3243 			sb->uxdg_peeked = NULL;
3244 		}
3245 		m = STAILQ_FIRST(&sb->uxdg_mb);
3246 		STAILQ_INIT(&sb->uxdg_mb);
3247 		/* XXX: our shortened sbrelease() */
3248 		(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
3249 		    RLIM_INFINITY);
3250 		/*
3251 		 * XXXGL Mark sb with SBS_CANTRCVMORE.  This is needed to
3252 		 * prevent uipc_sosend_dgram() or unp_disconnect() adding more
3253 		 * data to the socket.
3254 		 * We came here either through shutdown(2) or from the final
3255 		 * sofree().  The sofree() case is simple as it guarantees
3256 		 * that no more sends will happen, however we can race with
3257 		 * unp_disconnect() from our peer.  The shutdown(2) case is
3258 		 * more exotic.  It would call into unp_dispose() only if
3259 		 * socket is SS_ISCONNECTED.  This is possible if we did
3260 		 * connect(2) on this socket and we also had it bound with
3261 		 * bind(2) and receive connections from other sockets.
3262 		 * Because uipc_shutdown() violates POSIX (see comment
3263 		 * there) we will end up here shutting down our receive side.
3264 		 * Of course this will have affect not only on the peer we
3265 		 * connect(2)ed to, but also on all of the peers who had
3266 		 * connect(2)ed to us.  Their sends would end up with ENOBUFS.
3267 		 */
3268 		sb->sb_state |= SBS_CANTRCVMORE;
3269 		break;
3270 	case SOCK_STREAM:
3271 	case SOCK_SEQPACKET:
3272 		sb = &so->so_rcv;
3273 		m = sbcut_locked(sb, sb->sb_ccc);
3274 		KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
3275 		    ("%s: ccc %u mb %p mbcnt %u", __func__,
3276 		    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
3277 		sbrelease_locked(so, SO_RCV);
3278 		break;
3279 	}
3280 	SOCK_RECVBUF_UNLOCK(so);
3281 	if (SOCK_IO_RECV_OWNED(so))
3282 		SOCK_IO_RECV_UNLOCK(so);
3283 
3284 	if (m != NULL) {
3285 		unp_scan(m, unp_freerights);
3286 		m_freem(m);
3287 	}
3288 }
3289 
3290 static void
3291 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
3292 {
3293 	struct mbuf *m;
3294 	struct cmsghdr *cm;
3295 	void *data;
3296 	socklen_t clen, datalen;
3297 
3298 	while (m0 != NULL) {
3299 		for (m = m0; m; m = m->m_next) {
3300 			if (m->m_type != MT_CONTROL)
3301 				continue;
3302 
3303 			cm = mtod(m, struct cmsghdr *);
3304 			clen = m->m_len;
3305 
3306 			while (cm != NULL) {
3307 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
3308 					break;
3309 
3310 				data = CMSG_DATA(cm);
3311 				datalen = (caddr_t)cm + cm->cmsg_len
3312 				    - (caddr_t)data;
3313 
3314 				if (cm->cmsg_level == SOL_SOCKET &&
3315 				    cm->cmsg_type == SCM_RIGHTS) {
3316 					(*op)(data, datalen /
3317 					    sizeof(struct filedescent *));
3318 				}
3319 
3320 				if (CMSG_SPACE(datalen) < clen) {
3321 					clen -= CMSG_SPACE(datalen);
3322 					cm = (struct cmsghdr *)
3323 					    ((caddr_t)cm + CMSG_SPACE(datalen));
3324 				} else {
3325 					clen = 0;
3326 					cm = NULL;
3327 				}
3328 			}
3329 		}
3330 		m0 = m0->m_nextpkt;
3331 	}
3332 }
3333 
3334 /*
3335  * Definitions of protocols supported in the LOCAL domain.
3336  */
3337 static struct protosw streamproto = {
3338 	.pr_type =		SOCK_STREAM,
3339 	.pr_flags =		PR_CONNREQUIRED | PR_WANTRCVD | PR_CAPATTACH,
3340 	.pr_ctloutput =		&uipc_ctloutput,
3341 	.pr_abort = 		uipc_abort,
3342 	.pr_accept =		uipc_peeraddr,
3343 	.pr_attach =		uipc_attach,
3344 	.pr_bind =		uipc_bind,
3345 	.pr_bindat =		uipc_bindat,
3346 	.pr_connect =		uipc_connect,
3347 	.pr_connectat =		uipc_connectat,
3348 	.pr_connect2 =		uipc_connect2,
3349 	.pr_detach =		uipc_detach,
3350 	.pr_disconnect =	uipc_disconnect,
3351 	.pr_listen =		uipc_listen,
3352 	.pr_peeraddr =		uipc_peeraddr,
3353 	.pr_rcvd =		uipc_rcvd,
3354 	.pr_send =		uipc_send,
3355 	.pr_ready =		uipc_ready,
3356 	.pr_sense =		uipc_sense,
3357 	.pr_shutdown =		uipc_shutdown,
3358 	.pr_sockaddr =		uipc_sockaddr,
3359 	.pr_soreceive =		soreceive_generic,
3360 	.pr_close =		uipc_close,
3361 };
3362 
3363 static struct protosw dgramproto = {
3364 	.pr_type =		SOCK_DGRAM,
3365 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
3366 	.pr_ctloutput =		&uipc_ctloutput,
3367 	.pr_abort = 		uipc_abort,
3368 	.pr_accept =		uipc_peeraddr,
3369 	.pr_attach =		uipc_attach,
3370 	.pr_bind =		uipc_bind,
3371 	.pr_bindat =		uipc_bindat,
3372 	.pr_connect =		uipc_connect,
3373 	.pr_connectat =		uipc_connectat,
3374 	.pr_connect2 =		uipc_connect2,
3375 	.pr_detach =		uipc_detach,
3376 	.pr_disconnect =	uipc_disconnect,
3377 	.pr_peeraddr =		uipc_peeraddr,
3378 	.pr_sosend =		uipc_sosend_dgram,
3379 	.pr_sense =		uipc_sense,
3380 	.pr_shutdown =		uipc_shutdown,
3381 	.pr_sockaddr =		uipc_sockaddr,
3382 	.pr_soreceive =		uipc_soreceive_dgram,
3383 	.pr_close =		uipc_close,
3384 };
3385 
3386 static struct protosw seqpacketproto = {
3387 	.pr_type =		SOCK_SEQPACKET,
3388 	/*
3389 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
3390 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
3391 	 * that supports both atomic record writes and control data.
3392 	 */
3393 	.pr_flags =		PR_ADDR | PR_ATOMIC | PR_CONNREQUIRED |
3394 				PR_WANTRCVD | PR_CAPATTACH,
3395 	.pr_ctloutput =		&uipc_ctloutput,
3396 	.pr_abort =		uipc_abort,
3397 	.pr_accept =		uipc_peeraddr,
3398 	.pr_attach =		uipc_attach,
3399 	.pr_bind =		uipc_bind,
3400 	.pr_bindat =		uipc_bindat,
3401 	.pr_connect =		uipc_connect,
3402 	.pr_connectat =		uipc_connectat,
3403 	.pr_connect2 =		uipc_connect2,
3404 	.pr_detach =		uipc_detach,
3405 	.pr_disconnect =	uipc_disconnect,
3406 	.pr_listen =		uipc_listen,
3407 	.pr_peeraddr =		uipc_peeraddr,
3408 	.pr_rcvd =		uipc_rcvd,
3409 	.pr_send =		uipc_send,
3410 	.pr_sense =		uipc_sense,
3411 	.pr_shutdown =		uipc_shutdown,
3412 	.pr_sockaddr =		uipc_sockaddr,
3413 	.pr_soreceive =		soreceive_generic,	/* XXX: or...? */
3414 	.pr_close =		uipc_close,
3415 };
3416 
3417 static struct domain localdomain = {
3418 	.dom_family =		AF_LOCAL,
3419 	.dom_name =		"local",
3420 	.dom_externalize =	unp_externalize,
3421 	.dom_nprotosw =		3,
3422 	.dom_protosw =		{
3423 		&streamproto,
3424 		&dgramproto,
3425 		&seqpacketproto,
3426 	}
3427 };
3428 DOMAIN_SET(local);
3429 
3430 /*
3431  * A helper function called by VFS before socket-type vnode reclamation.
3432  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
3433  * use count.
3434  */
3435 void
3436 vfs_unp_reclaim(struct vnode *vp)
3437 {
3438 	struct unpcb *unp;
3439 	int active;
3440 	struct mtx *vplock;
3441 
3442 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
3443 	KASSERT(vp->v_type == VSOCK,
3444 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
3445 
3446 	active = 0;
3447 	vplock = mtx_pool_find(mtxpool_sleep, vp);
3448 	mtx_lock(vplock);
3449 	VOP_UNP_CONNECT(vp, &unp);
3450 	if (unp == NULL)
3451 		goto done;
3452 	UNP_PCB_LOCK(unp);
3453 	if (unp->unp_vnode == vp) {
3454 		VOP_UNP_DETACH(vp);
3455 		unp->unp_vnode = NULL;
3456 		active = 1;
3457 	}
3458 	UNP_PCB_UNLOCK(unp);
3459  done:
3460 	mtx_unlock(vplock);
3461 	if (active)
3462 		vunref(vp);
3463 }
3464 
3465 #ifdef DDB
3466 static void
3467 db_print_indent(int indent)
3468 {
3469 	int i;
3470 
3471 	for (i = 0; i < indent; i++)
3472 		db_printf(" ");
3473 }
3474 
3475 static void
3476 db_print_unpflags(int unp_flags)
3477 {
3478 	int comma;
3479 
3480 	comma = 0;
3481 	if (unp_flags & UNP_HAVEPC) {
3482 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
3483 		comma = 1;
3484 	}
3485 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
3486 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
3487 		comma = 1;
3488 	}
3489 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
3490 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
3491 		comma = 1;
3492 	}
3493 	if (unp_flags & UNP_CONNWAIT) {
3494 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
3495 		comma = 1;
3496 	}
3497 	if (unp_flags & UNP_CONNECTING) {
3498 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
3499 		comma = 1;
3500 	}
3501 	if (unp_flags & UNP_BINDING) {
3502 		db_printf("%sUNP_BINDING", comma ? ", " : "");
3503 		comma = 1;
3504 	}
3505 }
3506 
3507 static void
3508 db_print_xucred(int indent, struct xucred *xu)
3509 {
3510 	int comma, i;
3511 
3512 	db_print_indent(indent);
3513 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
3514 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
3515 	db_print_indent(indent);
3516 	db_printf("cr_groups: ");
3517 	comma = 0;
3518 	for (i = 0; i < xu->cr_ngroups; i++) {
3519 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
3520 		comma = 1;
3521 	}
3522 	db_printf("\n");
3523 }
3524 
3525 static void
3526 db_print_unprefs(int indent, struct unp_head *uh)
3527 {
3528 	struct unpcb *unp;
3529 	int counter;
3530 
3531 	counter = 0;
3532 	LIST_FOREACH(unp, uh, unp_reflink) {
3533 		if (counter % 4 == 0)
3534 			db_print_indent(indent);
3535 		db_printf("%p  ", unp);
3536 		if (counter % 4 == 3)
3537 			db_printf("\n");
3538 		counter++;
3539 	}
3540 	if (counter != 0 && counter % 4 != 0)
3541 		db_printf("\n");
3542 }
3543 
3544 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
3545 {
3546 	struct unpcb *unp;
3547 
3548         if (!have_addr) {
3549                 db_printf("usage: show unpcb <addr>\n");
3550                 return;
3551         }
3552         unp = (struct unpcb *)addr;
3553 
3554 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
3555 	    unp->unp_vnode);
3556 
3557 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
3558 	    unp->unp_conn);
3559 
3560 	db_printf("unp_refs:\n");
3561 	db_print_unprefs(2, &unp->unp_refs);
3562 
3563 	/* XXXRW: Would be nice to print the full address, if any. */
3564 	db_printf("unp_addr: %p\n", unp->unp_addr);
3565 
3566 	db_printf("unp_gencnt: %llu\n",
3567 	    (unsigned long long)unp->unp_gencnt);
3568 
3569 	db_printf("unp_flags: %x (", unp->unp_flags);
3570 	db_print_unpflags(unp->unp_flags);
3571 	db_printf(")\n");
3572 
3573 	db_printf("unp_peercred:\n");
3574 	db_print_xucred(2, &unp->unp_peercred);
3575 
3576 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3577 }
3578 #endif
3579