1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/fcntl.h> 69 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 70 #include <sys/eventhandler.h> 71 #include <sys/file.h> 72 #include <sys/filedesc.h> 73 #include <sys/kernel.h> 74 #include <sys/lock.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * Locking key: 110 * (l) Locked using list lock 111 * (g) Locked using linkage lock 112 */ 113 114 static uma_zone_t unp_zone; 115 static unp_gen_t unp_gencnt; /* (l) */ 116 static u_int unp_count; /* (l) Count of local sockets. */ 117 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 118 static int unp_rights; /* (g) File descriptors in flight. */ 119 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 120 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 121 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 122 123 struct unp_defer { 124 SLIST_ENTRY(unp_defer) ud_link; 125 struct file *ud_fp; 126 }; 127 static SLIST_HEAD(, unp_defer) unp_defers; 128 static int unp_defers_count; 129 130 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 131 132 /* 133 * Garbage collection of cyclic file descriptor/socket references occurs 134 * asynchronously in a taskqueue context in order to avoid recursion and 135 * reentrance in the UNIX domain socket, file descriptor, and socket layer 136 * code. See unp_gc() for a full description. 137 */ 138 static struct timeout_task unp_gc_task; 139 140 /* 141 * The close of unix domain sockets attached as SCM_RIGHTS is 142 * postponed to the taskqueue, to avoid arbitrary recursion depth. 143 * The attached sockets might have another sockets attached. 144 */ 145 static struct task unp_defer_task; 146 147 /* 148 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 149 * stream sockets, although the total for sender and receiver is actually 150 * only PIPSIZ. 151 * 152 * Datagram sockets really use the sendspace as the maximum datagram size, 153 * and don't really want to reserve the sendspace. Their recvspace should be 154 * large enough for at least one max-size datagram plus address. 155 */ 156 #ifndef PIPSIZ 157 #define PIPSIZ 8192 158 #endif 159 static u_long unpst_sendspace = PIPSIZ; 160 static u_long unpst_recvspace = PIPSIZ; 161 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 162 static u_long unpdg_recvspace = 4*1024; 163 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 164 static u_long unpsp_recvspace = PIPSIZ; 165 166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 167 "Local domain"); 168 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 "SOCK_STREAM"); 171 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 172 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 173 "SOCK_DGRAM"); 174 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 175 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 176 "SOCK_SEQPACKET"); 177 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 179 &unpst_sendspace, 0, "Default stream send space."); 180 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 181 &unpst_recvspace, 0, "Default stream receive space."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 183 &unpdg_sendspace, 0, "Default datagram send space."); 184 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 185 &unpdg_recvspace, 0, "Default datagram receive space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 187 &unpsp_sendspace, 0, "Default seqpacket send space."); 188 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 189 &unpsp_recvspace, 0, "Default seqpacket receive space."); 190 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 191 "File descriptors in flight."); 192 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 193 &unp_defers_count, 0, 194 "File descriptors deferred to taskqueue for close."); 195 196 /* 197 * Locking and synchronization: 198 * 199 * Three types of locks exist in the local domain socket implementation: a 200 * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes. 201 * The linkage lock protects the socket count, global generation number, 202 * and stream/datagram global lists. 203 * 204 * The mtxpool lock protects the vnode from being modified while referenced. 205 * Lock ordering requires that it be acquired before any unpcb locks. 206 * 207 * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular 208 * note is that this includes the unp_conn field. So long as the unpcb lock 209 * is held the reference to the unpcb pointed to by unp_conn is valid. If we 210 * require that the unpcb pointed to by unp_conn remain live in cases where 211 * we need to drop the unp_mtx as when we need to acquire the lock for a 212 * second unpcb the caller must first acquire an additional reference on the 213 * second unpcb and then revalidate any state (typically check that unp_conn 214 * is non-NULL) upon requiring the initial unpcb lock. The lock ordering 215 * between unpcbs is the conventional ascending address order. Two helper 216 * routines exist for this: 217 * 218 * - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the 219 * safe ordering. 220 * 221 * - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held 222 * when called. If unp is unlocked and unp2 is subsequently freed 223 * freed will be set to 1. 224 * 225 * The helper routines for references are: 226 * 227 * - unp_pcb_hold(unp): Can be called any time we currently hold a valid 228 * reference to unp. 229 * 230 * - unp_pcb_rele(unp): The caller must hold the unp lock. If we are 231 * releasing the last reference, detach must have been called thus 232 * unp->unp_socket be NULL. 233 * 234 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 235 * allocated in pru_attach() and freed in pru_detach(). The validity of that 236 * pointer is an invariant, so no lock is required to dereference the so_pcb 237 * pointer if a valid socket reference is held by the caller. In practice, 238 * this is always true during operations performed on a socket. Each unpcb 239 * has a back-pointer to its socket, unp_socket, which will be stable under 240 * the same circumstances. 241 * 242 * This pointer may only be safely dereferenced as long as a valid reference 243 * to the unpcb is held. Typically, this reference will be from the socket, 244 * or from another unpcb when the referring unpcb's lock is held (in order 245 * that the reference not be invalidated during use). For example, to follow 246 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 247 * that detach is not run clearing unp_socket. 248 * 249 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 250 * protocols, bind() is a non-atomic operation, and connect() requires 251 * potential sleeping in the protocol, due to potentially waiting on local or 252 * distributed file systems. We try to separate "lookup" operations, which 253 * may sleep, and the IPC operations themselves, which typically can occur 254 * with relative atomicity as locks can be held over the entire operation. 255 * 256 * Another tricky issue is simultaneous multi-threaded or multi-process 257 * access to a single UNIX domain socket. These are handled by the flags 258 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 259 * binding, both of which involve dropping UNIX domain socket locks in order 260 * to perform namei() and other file system operations. 261 */ 262 static struct rwlock unp_link_rwlock; 263 static struct mtx unp_defers_lock; 264 265 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 266 "unp_link_rwlock") 267 268 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 269 RA_LOCKED) 270 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 271 RA_UNLOCKED) 272 273 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 274 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 275 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 276 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 277 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 278 RA_WLOCKED) 279 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 280 281 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 282 "unp_defer", NULL, MTX_DEF) 283 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 284 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 285 286 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 287 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 288 289 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 290 "unp", "unp", \ 291 MTX_DUPOK|MTX_DEF) 292 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 293 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 294 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 295 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 296 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 297 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 298 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 299 300 static int uipc_connect2(struct socket *, struct socket *); 301 static int uipc_ctloutput(struct socket *, struct sockopt *); 302 static int unp_connect(struct socket *, struct sockaddr *, 303 struct thread *); 304 static int unp_connectat(int, struct socket *, struct sockaddr *, 305 struct thread *); 306 static int unp_connect2(struct socket *so, struct socket *so2, int); 307 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 308 static void unp_dispose(struct socket *so); 309 static void unp_dispose_mbuf(struct mbuf *); 310 static void unp_shutdown(struct unpcb *); 311 static void unp_drop(struct unpcb *); 312 static void unp_gc(__unused void *, int); 313 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 314 static void unp_discard(struct file *); 315 static void unp_freerights(struct filedescent **, int); 316 static void unp_init(void); 317 static int unp_internalize(struct mbuf **, struct thread *); 318 static void unp_internalize_fp(struct file *); 319 static int unp_externalize(struct mbuf *, struct mbuf **, int); 320 static int unp_externalize_fp(struct file *); 321 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 322 static void unp_process_defers(void * __unused, int); 323 324 static void 325 unp_pcb_hold(struct unpcb *unp) 326 { 327 MPASS(unp->unp_refcount); 328 refcount_acquire(&unp->unp_refcount); 329 } 330 331 static int 332 unp_pcb_rele(struct unpcb *unp) 333 { 334 int freed; 335 336 UNP_PCB_LOCK_ASSERT(unp); 337 MPASS(unp->unp_refcount); 338 if ((freed = refcount_release(&unp->unp_refcount))) { 339 /* we got here with having detached? */ 340 MPASS(unp->unp_socket == NULL); 341 UNP_PCB_UNLOCK(unp); 342 UNP_PCB_LOCK_DESTROY(unp); 343 uma_zfree(unp_zone, unp); 344 } 345 return (freed); 346 } 347 348 static void 349 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2) 350 { 351 MPASS(unp != unp2); 352 UNP_PCB_UNLOCK_ASSERT(unp); 353 UNP_PCB_UNLOCK_ASSERT(unp2); 354 if ((uintptr_t)unp2 > (uintptr_t)unp) { 355 UNP_PCB_LOCK(unp); 356 UNP_PCB_LOCK(unp2); 357 } else { 358 UNP_PCB_LOCK(unp2); 359 UNP_PCB_LOCK(unp); 360 } 361 } 362 363 static __noinline void 364 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, 365 int *freed) 366 { 367 struct unpcb *unp2; 368 369 unp2 = *unp2p; 370 unp_pcb_hold(unp2); 371 UNP_PCB_UNLOCK(unp); 372 UNP_PCB_LOCK(unp2); 373 UNP_PCB_LOCK(unp); 374 *freed = unp_pcb_rele(unp2); 375 if (*freed) 376 *unp2p = NULL; 377 } 378 379 #define unp_pcb_owned_lock2(unp, unp2, freed) do { \ 380 freed = 0; \ 381 UNP_PCB_LOCK_ASSERT(unp); \ 382 UNP_PCB_UNLOCK_ASSERT(unp2); \ 383 MPASS((unp) != (unp2)); \ 384 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) \ 385 break; \ 386 else if ((uintptr_t)(unp2) > (uintptr_t)(unp)) \ 387 UNP_PCB_LOCK(unp2); \ 388 else \ 389 unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed); \ 390 } while (0) 391 392 /* 393 * Definitions of protocols supported in the LOCAL domain. 394 */ 395 static struct domain localdomain; 396 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 397 static struct pr_usrreqs uipc_usrreqs_seqpacket; 398 static struct protosw localsw[] = { 399 { 400 .pr_type = SOCK_STREAM, 401 .pr_domain = &localdomain, 402 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 403 .pr_ctloutput = &uipc_ctloutput, 404 .pr_usrreqs = &uipc_usrreqs_stream 405 }, 406 { 407 .pr_type = SOCK_DGRAM, 408 .pr_domain = &localdomain, 409 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 410 .pr_ctloutput = &uipc_ctloutput, 411 .pr_usrreqs = &uipc_usrreqs_dgram 412 }, 413 { 414 .pr_type = SOCK_SEQPACKET, 415 .pr_domain = &localdomain, 416 417 /* 418 * XXXRW: For now, PR_ADDR because soreceive will bump into them 419 * due to our use of sbappendaddr. A new sbappend variants is needed 420 * that supports both atomic record writes and control data. 421 */ 422 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 423 PR_RIGHTS, 424 .pr_ctloutput = &uipc_ctloutput, 425 .pr_usrreqs = &uipc_usrreqs_seqpacket, 426 }, 427 }; 428 429 static struct domain localdomain = { 430 .dom_family = AF_LOCAL, 431 .dom_name = "local", 432 .dom_init = unp_init, 433 .dom_externalize = unp_externalize, 434 .dom_dispose = unp_dispose, 435 .dom_protosw = localsw, 436 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 437 }; 438 DOMAIN_SET(local); 439 440 static void 441 uipc_abort(struct socket *so) 442 { 443 struct unpcb *unp, *unp2; 444 445 unp = sotounpcb(so); 446 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 447 UNP_PCB_UNLOCK_ASSERT(unp); 448 449 UNP_PCB_LOCK(unp); 450 unp2 = unp->unp_conn; 451 if (unp2 != NULL) { 452 unp_pcb_hold(unp2); 453 UNP_PCB_UNLOCK(unp); 454 unp_drop(unp2); 455 } else 456 UNP_PCB_UNLOCK(unp); 457 } 458 459 static int 460 uipc_accept(struct socket *so, struct sockaddr **nam) 461 { 462 struct unpcb *unp, *unp2; 463 const struct sockaddr *sa; 464 465 /* 466 * Pass back name of connected socket, if it was bound and we are 467 * still connected (our peer may have closed already!). 468 */ 469 unp = sotounpcb(so); 470 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 471 472 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 473 UNP_LINK_RLOCK(); 474 unp2 = unp->unp_conn; 475 if (unp2 != NULL && unp2->unp_addr != NULL) { 476 UNP_PCB_LOCK(unp2); 477 sa = (struct sockaddr *) unp2->unp_addr; 478 bcopy(sa, *nam, sa->sa_len); 479 UNP_PCB_UNLOCK(unp2); 480 } else { 481 sa = &sun_noname; 482 bcopy(sa, *nam, sa->sa_len); 483 } 484 UNP_LINK_RUNLOCK(); 485 return (0); 486 } 487 488 static int 489 uipc_attach(struct socket *so, int proto, struct thread *td) 490 { 491 u_long sendspace, recvspace; 492 struct unpcb *unp; 493 int error; 494 bool locked; 495 496 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 497 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 498 switch (so->so_type) { 499 case SOCK_STREAM: 500 sendspace = unpst_sendspace; 501 recvspace = unpst_recvspace; 502 break; 503 504 case SOCK_DGRAM: 505 sendspace = unpdg_sendspace; 506 recvspace = unpdg_recvspace; 507 break; 508 509 case SOCK_SEQPACKET: 510 sendspace = unpsp_sendspace; 511 recvspace = unpsp_recvspace; 512 break; 513 514 default: 515 panic("uipc_attach"); 516 } 517 error = soreserve(so, sendspace, recvspace); 518 if (error) 519 return (error); 520 } 521 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 522 if (unp == NULL) 523 return (ENOBUFS); 524 LIST_INIT(&unp->unp_refs); 525 UNP_PCB_LOCK_INIT(unp); 526 unp->unp_socket = so; 527 so->so_pcb = unp; 528 unp->unp_refcount = 1; 529 if (so->so_listen != NULL) 530 unp->unp_flags |= UNP_NASCENT; 531 532 if ((locked = UNP_LINK_WOWNED()) == false) 533 UNP_LINK_WLOCK(); 534 535 unp->unp_gencnt = ++unp_gencnt; 536 unp->unp_ino = ++unp_ino; 537 unp_count++; 538 switch (so->so_type) { 539 case SOCK_STREAM: 540 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 541 break; 542 543 case SOCK_DGRAM: 544 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 545 break; 546 547 case SOCK_SEQPACKET: 548 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 549 break; 550 551 default: 552 panic("uipc_attach"); 553 } 554 555 if (locked == false) 556 UNP_LINK_WUNLOCK(); 557 558 return (0); 559 } 560 561 static int 562 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 563 { 564 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 565 struct vattr vattr; 566 int error, namelen; 567 struct nameidata nd; 568 struct unpcb *unp; 569 struct vnode *vp; 570 struct mount *mp; 571 cap_rights_t rights; 572 char *buf; 573 574 if (nam->sa_family != AF_UNIX) 575 return (EAFNOSUPPORT); 576 577 unp = sotounpcb(so); 578 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 579 580 if (soun->sun_len > sizeof(struct sockaddr_un)) 581 return (EINVAL); 582 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 583 if (namelen <= 0) 584 return (EINVAL); 585 586 /* 587 * We don't allow simultaneous bind() calls on a single UNIX domain 588 * socket, so flag in-progress operations, and return an error if an 589 * operation is already in progress. 590 * 591 * Historically, we have not allowed a socket to be rebound, so this 592 * also returns an error. Not allowing re-binding simplifies the 593 * implementation and avoids a great many possible failure modes. 594 */ 595 UNP_PCB_LOCK(unp); 596 if (unp->unp_vnode != NULL) { 597 UNP_PCB_UNLOCK(unp); 598 return (EINVAL); 599 } 600 if (unp->unp_flags & UNP_BINDING) { 601 UNP_PCB_UNLOCK(unp); 602 return (EALREADY); 603 } 604 unp->unp_flags |= UNP_BINDING; 605 UNP_PCB_UNLOCK(unp); 606 607 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 608 bcopy(soun->sun_path, buf, namelen); 609 buf[namelen] = 0; 610 611 restart: 612 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 613 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 614 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 615 error = namei(&nd); 616 if (error) 617 goto error; 618 vp = nd.ni_vp; 619 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 620 NDFREE(&nd, NDF_ONLY_PNBUF); 621 if (nd.ni_dvp == vp) 622 vrele(nd.ni_dvp); 623 else 624 vput(nd.ni_dvp); 625 if (vp != NULL) { 626 vrele(vp); 627 error = EADDRINUSE; 628 goto error; 629 } 630 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 631 if (error) 632 goto error; 633 goto restart; 634 } 635 VATTR_NULL(&vattr); 636 vattr.va_type = VSOCK; 637 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 638 #ifdef MAC 639 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 640 &vattr); 641 #endif 642 if (error == 0) 643 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 644 NDFREE(&nd, NDF_ONLY_PNBUF); 645 vput(nd.ni_dvp); 646 if (error) { 647 vn_finished_write(mp); 648 goto error; 649 } 650 vp = nd.ni_vp; 651 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 652 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 653 654 UNP_PCB_LOCK(unp); 655 VOP_UNP_BIND(vp, unp); 656 unp->unp_vnode = vp; 657 unp->unp_addr = soun; 658 unp->unp_flags &= ~UNP_BINDING; 659 UNP_PCB_UNLOCK(unp); 660 VOP_UNLOCK(vp); 661 vn_finished_write(mp); 662 free(buf, M_TEMP); 663 return (0); 664 665 error: 666 UNP_PCB_LOCK(unp); 667 unp->unp_flags &= ~UNP_BINDING; 668 UNP_PCB_UNLOCK(unp); 669 free(buf, M_TEMP); 670 return (error); 671 } 672 673 static int 674 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 675 { 676 677 return (uipc_bindat(AT_FDCWD, so, nam, td)); 678 } 679 680 static int 681 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 682 { 683 int error; 684 685 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 686 error = unp_connect(so, nam, td); 687 return (error); 688 } 689 690 static int 691 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 692 struct thread *td) 693 { 694 int error; 695 696 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 697 error = unp_connectat(fd, so, nam, td); 698 return (error); 699 } 700 701 static void 702 uipc_close(struct socket *so) 703 { 704 struct unpcb *unp, *unp2; 705 struct vnode *vp = NULL; 706 struct mtx *vplock; 707 int freed; 708 unp = sotounpcb(so); 709 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 710 711 vplock = NULL; 712 if ((vp = unp->unp_vnode) != NULL) { 713 vplock = mtx_pool_find(mtxpool_sleep, vp); 714 mtx_lock(vplock); 715 } 716 UNP_PCB_LOCK(unp); 717 if (vp && unp->unp_vnode == NULL) { 718 mtx_unlock(vplock); 719 vp = NULL; 720 } 721 if (vp != NULL) { 722 VOP_UNP_DETACH(vp); 723 unp->unp_vnode = NULL; 724 } 725 unp2 = unp->unp_conn; 726 unp_pcb_hold(unp); 727 if (__predict_false(unp == unp2)) { 728 unp_disconnect(unp, unp2); 729 } else if (unp2 != NULL) { 730 unp_pcb_hold(unp2); 731 unp_pcb_owned_lock2(unp, unp2, freed); 732 unp_disconnect(unp, unp2); 733 if (unp_pcb_rele(unp2) == 0) 734 UNP_PCB_UNLOCK(unp2); 735 } 736 if (unp_pcb_rele(unp) == 0) 737 UNP_PCB_UNLOCK(unp); 738 if (vp) { 739 mtx_unlock(vplock); 740 vrele(vp); 741 } 742 } 743 744 static int 745 uipc_connect2(struct socket *so1, struct socket *so2) 746 { 747 struct unpcb *unp, *unp2; 748 int error; 749 750 unp = so1->so_pcb; 751 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 752 unp2 = so2->so_pcb; 753 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 754 if (unp != unp2) 755 unp_pcb_lock2(unp, unp2); 756 else 757 UNP_PCB_LOCK(unp); 758 error = unp_connect2(so1, so2, PRU_CONNECT2); 759 if (unp != unp2) 760 UNP_PCB_UNLOCK(unp2); 761 UNP_PCB_UNLOCK(unp); 762 return (error); 763 } 764 765 static void 766 uipc_detach(struct socket *so) 767 { 768 struct unpcb *unp, *unp2; 769 struct mtx *vplock; 770 struct sockaddr_un *saved_unp_addr; 771 struct vnode *vp; 772 int freeunp, local_unp_rights; 773 774 unp = sotounpcb(so); 775 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 776 777 vp = NULL; 778 vplock = NULL; 779 local_unp_rights = 0; 780 781 UNP_LINK_WLOCK(); 782 LIST_REMOVE(unp, unp_link); 783 if (unp->unp_gcflag & UNPGC_DEAD) 784 LIST_REMOVE(unp, unp_dead); 785 unp->unp_gencnt = ++unp_gencnt; 786 --unp_count; 787 UNP_LINK_WUNLOCK(); 788 789 UNP_PCB_UNLOCK_ASSERT(unp); 790 restart: 791 if ((vp = unp->unp_vnode) != NULL) { 792 vplock = mtx_pool_find(mtxpool_sleep, vp); 793 mtx_lock(vplock); 794 } 795 UNP_PCB_LOCK(unp); 796 if (unp->unp_vnode != vp && 797 unp->unp_vnode != NULL) { 798 if (vplock) 799 mtx_unlock(vplock); 800 UNP_PCB_UNLOCK(unp); 801 goto restart; 802 } 803 if ((unp->unp_flags & UNP_NASCENT) != 0) { 804 goto teardown; 805 } 806 if ((vp = unp->unp_vnode) != NULL) { 807 VOP_UNP_DETACH(vp); 808 unp->unp_vnode = NULL; 809 } 810 if (__predict_false(unp == unp->unp_conn)) { 811 unp_disconnect(unp, unp); 812 unp2 = NULL; 813 goto connect_self; 814 } 815 if ((unp2 = unp->unp_conn) != NULL) { 816 unp_pcb_owned_lock2(unp, unp2, freeunp); 817 if (freeunp) 818 unp2 = NULL; 819 } 820 unp_pcb_hold(unp); 821 if (unp2 != NULL) { 822 unp_pcb_hold(unp2); 823 unp_disconnect(unp, unp2); 824 if (unp_pcb_rele(unp2) == 0) 825 UNP_PCB_UNLOCK(unp2); 826 } 827 connect_self: 828 UNP_PCB_UNLOCK(unp); 829 UNP_REF_LIST_LOCK(); 830 while (!LIST_EMPTY(&unp->unp_refs)) { 831 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 832 833 unp_pcb_hold(ref); 834 UNP_REF_LIST_UNLOCK(); 835 836 MPASS(ref != unp); 837 UNP_PCB_UNLOCK_ASSERT(ref); 838 unp_drop(ref); 839 UNP_REF_LIST_LOCK(); 840 } 841 842 UNP_REF_LIST_UNLOCK(); 843 UNP_PCB_LOCK(unp); 844 freeunp = unp_pcb_rele(unp); 845 MPASS(freeunp == 0); 846 local_unp_rights = unp_rights; 847 teardown: 848 unp->unp_socket->so_pcb = NULL; 849 saved_unp_addr = unp->unp_addr; 850 unp->unp_addr = NULL; 851 unp->unp_socket = NULL; 852 freeunp = unp_pcb_rele(unp); 853 if (saved_unp_addr != NULL) 854 free(saved_unp_addr, M_SONAME); 855 if (!freeunp) 856 UNP_PCB_UNLOCK(unp); 857 if (vp) { 858 mtx_unlock(vplock); 859 vrele(vp); 860 } 861 if (local_unp_rights) 862 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 863 } 864 865 static int 866 uipc_disconnect(struct socket *so) 867 { 868 struct unpcb *unp, *unp2; 869 int freed; 870 871 unp = sotounpcb(so); 872 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 873 874 UNP_PCB_LOCK(unp); 875 if ((unp2 = unp->unp_conn) == NULL) { 876 UNP_PCB_UNLOCK(unp); 877 return (0); 878 } 879 if (__predict_true(unp != unp2)) { 880 unp_pcb_owned_lock2(unp, unp2, freed); 881 if (__predict_false(freed)) { 882 UNP_PCB_UNLOCK(unp); 883 return (0); 884 } 885 unp_pcb_hold(unp2); 886 } 887 unp_pcb_hold(unp); 888 unp_disconnect(unp, unp2); 889 if (unp_pcb_rele(unp) == 0) 890 UNP_PCB_UNLOCK(unp); 891 if ((unp != unp2) && unp_pcb_rele(unp2) == 0) 892 UNP_PCB_UNLOCK(unp2); 893 return (0); 894 } 895 896 static int 897 uipc_listen(struct socket *so, int backlog, struct thread *td) 898 { 899 struct unpcb *unp; 900 int error; 901 902 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 903 return (EOPNOTSUPP); 904 905 unp = sotounpcb(so); 906 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 907 908 UNP_PCB_LOCK(unp); 909 if (unp->unp_vnode == NULL) { 910 /* Already connected or not bound to an address. */ 911 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 912 UNP_PCB_UNLOCK(unp); 913 return (error); 914 } 915 916 SOCK_LOCK(so); 917 error = solisten_proto_check(so); 918 if (error == 0) { 919 cru2xt(td, &unp->unp_peercred); 920 solisten_proto(so, backlog); 921 } 922 SOCK_UNLOCK(so); 923 UNP_PCB_UNLOCK(unp); 924 return (error); 925 } 926 927 static int 928 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 929 { 930 struct unpcb *unp, *unp2; 931 const struct sockaddr *sa; 932 933 unp = sotounpcb(so); 934 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 935 936 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 937 UNP_LINK_RLOCK(); 938 /* 939 * XXX: It seems that this test always fails even when connection is 940 * established. So, this else clause is added as workaround to 941 * return PF_LOCAL sockaddr. 942 */ 943 unp2 = unp->unp_conn; 944 if (unp2 != NULL) { 945 UNP_PCB_LOCK(unp2); 946 if (unp2->unp_addr != NULL) 947 sa = (struct sockaddr *) unp2->unp_addr; 948 else 949 sa = &sun_noname; 950 bcopy(sa, *nam, sa->sa_len); 951 UNP_PCB_UNLOCK(unp2); 952 } else { 953 sa = &sun_noname; 954 bcopy(sa, *nam, sa->sa_len); 955 } 956 UNP_LINK_RUNLOCK(); 957 return (0); 958 } 959 960 static int 961 uipc_rcvd(struct socket *so, int flags) 962 { 963 struct unpcb *unp, *unp2; 964 struct socket *so2; 965 u_int mbcnt, sbcc; 966 967 unp = sotounpcb(so); 968 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 969 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 970 ("%s: socktype %d", __func__, so->so_type)); 971 972 /* 973 * Adjust backpressure on sender and wakeup any waiting to write. 974 * 975 * The unp lock is acquired to maintain the validity of the unp_conn 976 * pointer; no lock on unp2 is required as unp2->unp_socket will be 977 * static as long as we don't permit unp2 to disconnect from unp, 978 * which is prevented by the lock on unp. We cache values from 979 * so_rcv to avoid holding the so_rcv lock over the entire 980 * transaction on the remote so_snd. 981 */ 982 SOCKBUF_LOCK(&so->so_rcv); 983 mbcnt = so->so_rcv.sb_mbcnt; 984 sbcc = sbavail(&so->so_rcv); 985 SOCKBUF_UNLOCK(&so->so_rcv); 986 /* 987 * There is a benign race condition at this point. If we're planning to 988 * clear SB_STOP, but uipc_send is called on the connected socket at 989 * this instant, it might add data to the sockbuf and set SB_STOP. Then 990 * we would erroneously clear SB_STOP below, even though the sockbuf is 991 * full. The race is benign because the only ill effect is to allow the 992 * sockbuf to exceed its size limit, and the size limits are not 993 * strictly guaranteed anyway. 994 */ 995 UNP_PCB_LOCK(unp); 996 unp2 = unp->unp_conn; 997 if (unp2 == NULL) { 998 UNP_PCB_UNLOCK(unp); 999 return (0); 1000 } 1001 so2 = unp2->unp_socket; 1002 SOCKBUF_LOCK(&so2->so_snd); 1003 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 1004 so2->so_snd.sb_flags &= ~SB_STOP; 1005 sowwakeup_locked(so2); 1006 UNP_PCB_UNLOCK(unp); 1007 return (0); 1008 } 1009 1010 static int 1011 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td) 1012 { 1013 int error; 1014 struct unpcb *unp; 1015 1016 unp = so->so_pcb; 1017 if (unp->unp_conn != NULL) 1018 return (EISCONN); 1019 error = unp_connect(so, nam, td); 1020 if (error) 1021 return (error); 1022 UNP_PCB_LOCK(unp); 1023 if (unp->unp_conn == NULL) { 1024 UNP_PCB_UNLOCK(unp); 1025 if (error == 0) 1026 error = ENOTCONN; 1027 } 1028 return (error); 1029 } 1030 1031 static int 1032 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 1033 struct mbuf *control, struct thread *td) 1034 { 1035 struct unpcb *unp, *unp2; 1036 struct socket *so2; 1037 u_int mbcnt, sbcc; 1038 int freed, error; 1039 1040 unp = sotounpcb(so); 1041 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1042 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1043 so->so_type == SOCK_SEQPACKET, 1044 ("%s: socktype %d", __func__, so->so_type)); 1045 1046 freed = error = 0; 1047 if (flags & PRUS_OOB) { 1048 error = EOPNOTSUPP; 1049 goto release; 1050 } 1051 if (control != NULL && (error = unp_internalize(&control, td))) 1052 goto release; 1053 1054 unp2 = NULL; 1055 switch (so->so_type) { 1056 case SOCK_DGRAM: 1057 { 1058 const struct sockaddr *from; 1059 1060 if (nam != NULL) { 1061 /* 1062 * We return with UNP_PCB_LOCK_HELD so we know that 1063 * the reference is live if the pointer is valid. 1064 */ 1065 if ((error = connect_internal(so, nam, td))) 1066 break; 1067 MPASS(unp->unp_conn != NULL); 1068 unp2 = unp->unp_conn; 1069 } else { 1070 UNP_PCB_LOCK(unp); 1071 1072 /* 1073 * Because connect() and send() are non-atomic in a sendto() 1074 * with a target address, it's possible that the socket will 1075 * have disconnected before the send() can run. In that case 1076 * return the slightly counter-intuitive but otherwise 1077 * correct error that the socket is not connected. 1078 */ 1079 if ((unp2 = unp->unp_conn) == NULL) { 1080 UNP_PCB_UNLOCK(unp); 1081 error = ENOTCONN; 1082 break; 1083 } 1084 } 1085 if (__predict_false(unp == unp2)) { 1086 if (unp->unp_socket == NULL) { 1087 error = ENOTCONN; 1088 break; 1089 } 1090 goto connect_self; 1091 } 1092 unp_pcb_owned_lock2(unp, unp2, freed); 1093 if (__predict_false(freed)) { 1094 UNP_PCB_UNLOCK(unp); 1095 error = ENOTCONN; 1096 break; 1097 } 1098 /* 1099 * The socket referencing unp2 may have been closed 1100 * or unp may have been disconnected if the unp lock 1101 * was dropped to acquire unp2. 1102 */ 1103 if (__predict_false(unp->unp_conn == NULL) || 1104 unp2->unp_socket == NULL) { 1105 UNP_PCB_UNLOCK(unp); 1106 if (unp_pcb_rele(unp2) == 0) 1107 UNP_PCB_UNLOCK(unp2); 1108 error = ENOTCONN; 1109 break; 1110 } 1111 connect_self: 1112 if (unp2->unp_flags & UNP_WANTCRED) 1113 control = unp_addsockcred(td, control); 1114 if (unp->unp_addr != NULL) 1115 from = (struct sockaddr *)unp->unp_addr; 1116 else 1117 from = &sun_noname; 1118 so2 = unp2->unp_socket; 1119 SOCKBUF_LOCK(&so2->so_rcv); 1120 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1121 control)) { 1122 sorwakeup_locked(so2); 1123 m = NULL; 1124 control = NULL; 1125 } else { 1126 SOCKBUF_UNLOCK(&so2->so_rcv); 1127 error = ENOBUFS; 1128 } 1129 if (nam != NULL) 1130 unp_disconnect(unp, unp2); 1131 if (__predict_true(unp != unp2)) 1132 UNP_PCB_UNLOCK(unp2); 1133 UNP_PCB_UNLOCK(unp); 1134 break; 1135 } 1136 1137 case SOCK_SEQPACKET: 1138 case SOCK_STREAM: 1139 if ((so->so_state & SS_ISCONNECTED) == 0) { 1140 if (nam != NULL) { 1141 if ((error = connect_internal(so, nam, td))) 1142 break; 1143 } else { 1144 error = ENOTCONN; 1145 break; 1146 } 1147 } else if ((unp2 = unp->unp_conn) == NULL) { 1148 error = ENOTCONN; 1149 break; 1150 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1151 error = EPIPE; 1152 break; 1153 } else { 1154 UNP_PCB_LOCK(unp); 1155 if ((unp2 = unp->unp_conn) == NULL) { 1156 UNP_PCB_UNLOCK(unp); 1157 error = ENOTCONN; 1158 break; 1159 } 1160 } 1161 unp_pcb_owned_lock2(unp, unp2, freed); 1162 UNP_PCB_UNLOCK(unp); 1163 if (__predict_false(freed)) { 1164 error = ENOTCONN; 1165 break; 1166 } 1167 if ((so2 = unp2->unp_socket) == NULL) { 1168 UNP_PCB_UNLOCK(unp2); 1169 error = ENOTCONN; 1170 break; 1171 } 1172 SOCKBUF_LOCK(&so2->so_rcv); 1173 if (unp2->unp_flags & UNP_WANTCRED) { 1174 /* 1175 * Credentials are passed only once on SOCK_STREAM 1176 * and SOCK_SEQPACKET. 1177 */ 1178 unp2->unp_flags &= ~UNP_WANTCRED; 1179 control = unp_addsockcred(td, control); 1180 } 1181 1182 /* 1183 * Send to paired receive port and wake up readers. Don't 1184 * check for space available in the receive buffer if we're 1185 * attaching ancillary data; Unix domain sockets only check 1186 * for space in the sending sockbuf, and that check is 1187 * performed one level up the stack. At that level we cannot 1188 * precisely account for the amount of buffer space used 1189 * (e.g., because control messages are not yet internalized). 1190 */ 1191 switch (so->so_type) { 1192 case SOCK_STREAM: 1193 if (control != NULL) { 1194 sbappendcontrol_locked(&so2->so_rcv, m, 1195 control); 1196 control = NULL; 1197 } else 1198 sbappend_locked(&so2->so_rcv, m, flags); 1199 break; 1200 1201 case SOCK_SEQPACKET: { 1202 const struct sockaddr *from; 1203 1204 from = &sun_noname; 1205 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1206 from, m, control)) 1207 control = NULL; 1208 break; 1209 } 1210 } 1211 1212 mbcnt = so2->so_rcv.sb_mbcnt; 1213 sbcc = sbavail(&so2->so_rcv); 1214 if (sbcc) 1215 sorwakeup_locked(so2); 1216 else 1217 SOCKBUF_UNLOCK(&so2->so_rcv); 1218 1219 /* 1220 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1221 * it would be possible for uipc_rcvd to be called at this 1222 * point, drain the receiving sockbuf, clear SB_STOP, and then 1223 * we would set SB_STOP below. That could lead to an empty 1224 * sockbuf having SB_STOP set 1225 */ 1226 SOCKBUF_LOCK(&so->so_snd); 1227 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1228 so->so_snd.sb_flags |= SB_STOP; 1229 SOCKBUF_UNLOCK(&so->so_snd); 1230 UNP_PCB_UNLOCK(unp2); 1231 m = NULL; 1232 break; 1233 } 1234 1235 /* 1236 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1237 */ 1238 if (flags & PRUS_EOF) { 1239 UNP_PCB_LOCK(unp); 1240 socantsendmore(so); 1241 unp_shutdown(unp); 1242 UNP_PCB_UNLOCK(unp); 1243 } 1244 if (control != NULL && error != 0) 1245 unp_dispose_mbuf(control); 1246 1247 release: 1248 if (control != NULL) 1249 m_freem(control); 1250 /* 1251 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1252 * for freeing memory. 1253 */ 1254 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1255 m_freem(m); 1256 return (error); 1257 } 1258 1259 static int 1260 uipc_ready(struct socket *so, struct mbuf *m, int count) 1261 { 1262 struct unpcb *unp, *unp2; 1263 struct socket *so2; 1264 int error; 1265 1266 unp = sotounpcb(so); 1267 1268 UNP_PCB_LOCK(unp); 1269 if ((unp2 = unp->unp_conn) == NULL) { 1270 UNP_PCB_UNLOCK(unp); 1271 goto error; 1272 } 1273 if (unp != unp2) { 1274 if (UNP_PCB_TRYLOCK(unp2) == 0) { 1275 unp_pcb_hold(unp2); 1276 UNP_PCB_UNLOCK(unp); 1277 UNP_PCB_LOCK(unp2); 1278 if (unp_pcb_rele(unp2)) 1279 goto error; 1280 } else 1281 UNP_PCB_UNLOCK(unp); 1282 } 1283 so2 = unp2->unp_socket; 1284 1285 SOCKBUF_LOCK(&so2->so_rcv); 1286 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1287 sorwakeup_locked(so2); 1288 else 1289 SOCKBUF_UNLOCK(&so2->so_rcv); 1290 1291 UNP_PCB_UNLOCK(unp2); 1292 1293 return (error); 1294 error: 1295 for (int i = 0; i < count; i++) 1296 m = m_free(m); 1297 return (ECONNRESET); 1298 } 1299 1300 static int 1301 uipc_sense(struct socket *so, struct stat *sb) 1302 { 1303 struct unpcb *unp; 1304 1305 unp = sotounpcb(so); 1306 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1307 1308 sb->st_blksize = so->so_snd.sb_hiwat; 1309 sb->st_dev = NODEV; 1310 sb->st_ino = unp->unp_ino; 1311 return (0); 1312 } 1313 1314 static int 1315 uipc_shutdown(struct socket *so) 1316 { 1317 struct unpcb *unp; 1318 1319 unp = sotounpcb(so); 1320 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1321 1322 UNP_PCB_LOCK(unp); 1323 socantsendmore(so); 1324 unp_shutdown(unp); 1325 UNP_PCB_UNLOCK(unp); 1326 return (0); 1327 } 1328 1329 static int 1330 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1331 { 1332 struct unpcb *unp; 1333 const struct sockaddr *sa; 1334 1335 unp = sotounpcb(so); 1336 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1337 1338 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1339 UNP_PCB_LOCK(unp); 1340 if (unp->unp_addr != NULL) 1341 sa = (struct sockaddr *) unp->unp_addr; 1342 else 1343 sa = &sun_noname; 1344 bcopy(sa, *nam, sa->sa_len); 1345 UNP_PCB_UNLOCK(unp); 1346 return (0); 1347 } 1348 1349 static struct pr_usrreqs uipc_usrreqs_dgram = { 1350 .pru_abort = uipc_abort, 1351 .pru_accept = uipc_accept, 1352 .pru_attach = uipc_attach, 1353 .pru_bind = uipc_bind, 1354 .pru_bindat = uipc_bindat, 1355 .pru_connect = uipc_connect, 1356 .pru_connectat = uipc_connectat, 1357 .pru_connect2 = uipc_connect2, 1358 .pru_detach = uipc_detach, 1359 .pru_disconnect = uipc_disconnect, 1360 .pru_listen = uipc_listen, 1361 .pru_peeraddr = uipc_peeraddr, 1362 .pru_rcvd = uipc_rcvd, 1363 .pru_send = uipc_send, 1364 .pru_sense = uipc_sense, 1365 .pru_shutdown = uipc_shutdown, 1366 .pru_sockaddr = uipc_sockaddr, 1367 .pru_soreceive = soreceive_dgram, 1368 .pru_close = uipc_close, 1369 }; 1370 1371 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1372 .pru_abort = uipc_abort, 1373 .pru_accept = uipc_accept, 1374 .pru_attach = uipc_attach, 1375 .pru_bind = uipc_bind, 1376 .pru_bindat = uipc_bindat, 1377 .pru_connect = uipc_connect, 1378 .pru_connectat = uipc_connectat, 1379 .pru_connect2 = uipc_connect2, 1380 .pru_detach = uipc_detach, 1381 .pru_disconnect = uipc_disconnect, 1382 .pru_listen = uipc_listen, 1383 .pru_peeraddr = uipc_peeraddr, 1384 .pru_rcvd = uipc_rcvd, 1385 .pru_send = uipc_send, 1386 .pru_sense = uipc_sense, 1387 .pru_shutdown = uipc_shutdown, 1388 .pru_sockaddr = uipc_sockaddr, 1389 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1390 .pru_close = uipc_close, 1391 }; 1392 1393 static struct pr_usrreqs uipc_usrreqs_stream = { 1394 .pru_abort = uipc_abort, 1395 .pru_accept = uipc_accept, 1396 .pru_attach = uipc_attach, 1397 .pru_bind = uipc_bind, 1398 .pru_bindat = uipc_bindat, 1399 .pru_connect = uipc_connect, 1400 .pru_connectat = uipc_connectat, 1401 .pru_connect2 = uipc_connect2, 1402 .pru_detach = uipc_detach, 1403 .pru_disconnect = uipc_disconnect, 1404 .pru_listen = uipc_listen, 1405 .pru_peeraddr = uipc_peeraddr, 1406 .pru_rcvd = uipc_rcvd, 1407 .pru_send = uipc_send, 1408 .pru_ready = uipc_ready, 1409 .pru_sense = uipc_sense, 1410 .pru_shutdown = uipc_shutdown, 1411 .pru_sockaddr = uipc_sockaddr, 1412 .pru_soreceive = soreceive_generic, 1413 .pru_close = uipc_close, 1414 }; 1415 1416 static int 1417 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1418 { 1419 struct unpcb *unp; 1420 struct xucred xu; 1421 int error, optval; 1422 1423 if (sopt->sopt_level != 0) 1424 return (EINVAL); 1425 1426 unp = sotounpcb(so); 1427 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1428 error = 0; 1429 switch (sopt->sopt_dir) { 1430 case SOPT_GET: 1431 switch (sopt->sopt_name) { 1432 case LOCAL_PEERCRED: 1433 UNP_PCB_LOCK(unp); 1434 if (unp->unp_flags & UNP_HAVEPC) 1435 xu = unp->unp_peercred; 1436 else { 1437 if (so->so_type == SOCK_STREAM) 1438 error = ENOTCONN; 1439 else 1440 error = EINVAL; 1441 } 1442 UNP_PCB_UNLOCK(unp); 1443 if (error == 0) 1444 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1445 break; 1446 1447 case LOCAL_CREDS: 1448 /* Unlocked read. */ 1449 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1450 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1451 break; 1452 1453 case LOCAL_CONNWAIT: 1454 /* Unlocked read. */ 1455 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1456 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1457 break; 1458 1459 default: 1460 error = EOPNOTSUPP; 1461 break; 1462 } 1463 break; 1464 1465 case SOPT_SET: 1466 switch (sopt->sopt_name) { 1467 case LOCAL_CREDS: 1468 case LOCAL_CONNWAIT: 1469 error = sooptcopyin(sopt, &optval, sizeof(optval), 1470 sizeof(optval)); 1471 if (error) 1472 break; 1473 1474 #define OPTSET(bit) do { \ 1475 UNP_PCB_LOCK(unp); \ 1476 if (optval) \ 1477 unp->unp_flags |= bit; \ 1478 else \ 1479 unp->unp_flags &= ~bit; \ 1480 UNP_PCB_UNLOCK(unp); \ 1481 } while (0) 1482 1483 switch (sopt->sopt_name) { 1484 case LOCAL_CREDS: 1485 OPTSET(UNP_WANTCRED); 1486 break; 1487 1488 case LOCAL_CONNWAIT: 1489 OPTSET(UNP_CONNWAIT); 1490 break; 1491 1492 default: 1493 break; 1494 } 1495 break; 1496 #undef OPTSET 1497 default: 1498 error = ENOPROTOOPT; 1499 break; 1500 } 1501 break; 1502 1503 default: 1504 error = EOPNOTSUPP; 1505 break; 1506 } 1507 return (error); 1508 } 1509 1510 static int 1511 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1512 { 1513 1514 return (unp_connectat(AT_FDCWD, so, nam, td)); 1515 } 1516 1517 static int 1518 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1519 struct thread *td) 1520 { 1521 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1522 struct vnode *vp; 1523 struct socket *so2; 1524 struct unpcb *unp, *unp2, *unp3; 1525 struct nameidata nd; 1526 char buf[SOCK_MAXADDRLEN]; 1527 struct sockaddr *sa; 1528 cap_rights_t rights; 1529 int error, len, freed; 1530 struct mtx *vplock; 1531 1532 if (nam->sa_family != AF_UNIX) 1533 return (EAFNOSUPPORT); 1534 if (nam->sa_len > sizeof(struct sockaddr_un)) 1535 return (EINVAL); 1536 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1537 if (len <= 0) 1538 return (EINVAL); 1539 bcopy(soun->sun_path, buf, len); 1540 buf[len] = 0; 1541 1542 unp = sotounpcb(so); 1543 UNP_PCB_LOCK(unp); 1544 if (unp->unp_flags & UNP_CONNECTING) { 1545 UNP_PCB_UNLOCK(unp); 1546 return (EALREADY); 1547 } 1548 unp->unp_flags |= UNP_CONNECTING; 1549 UNP_PCB_UNLOCK(unp); 1550 1551 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1552 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1553 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1554 error = namei(&nd); 1555 if (error) 1556 vp = NULL; 1557 else 1558 vp = nd.ni_vp; 1559 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1560 NDFREE(&nd, NDF_ONLY_PNBUF); 1561 if (error) 1562 goto bad; 1563 1564 if (vp->v_type != VSOCK) { 1565 error = ENOTSOCK; 1566 goto bad; 1567 } 1568 #ifdef MAC 1569 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1570 if (error) 1571 goto bad; 1572 #endif 1573 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1574 if (error) 1575 goto bad; 1576 1577 unp = sotounpcb(so); 1578 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1579 1580 vplock = mtx_pool_find(mtxpool_sleep, vp); 1581 mtx_lock(vplock); 1582 VOP_UNP_CONNECT(vp, &unp2); 1583 if (unp2 == NULL) { 1584 error = ECONNREFUSED; 1585 goto bad2; 1586 } 1587 so2 = unp2->unp_socket; 1588 if (so->so_type != so2->so_type) { 1589 error = EPROTOTYPE; 1590 goto bad2; 1591 } 1592 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1593 if (so2->so_options & SO_ACCEPTCONN) { 1594 CURVNET_SET(so2->so_vnet); 1595 so2 = sonewconn(so2, 0); 1596 CURVNET_RESTORE(); 1597 } else 1598 so2 = NULL; 1599 if (so2 == NULL) { 1600 error = ECONNREFUSED; 1601 goto bad2; 1602 } 1603 unp3 = sotounpcb(so2); 1604 unp_pcb_lock2(unp2, unp3); 1605 if (unp2->unp_addr != NULL) { 1606 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1607 unp3->unp_addr = (struct sockaddr_un *) sa; 1608 sa = NULL; 1609 } 1610 1611 unp_copy_peercred(td, unp3, unp, unp2); 1612 1613 UNP_PCB_UNLOCK(unp2); 1614 unp2 = unp3; 1615 unp_pcb_owned_lock2(unp2, unp, freed); 1616 if (__predict_false(freed)) { 1617 UNP_PCB_UNLOCK(unp2); 1618 error = ECONNREFUSED; 1619 goto bad2; 1620 } 1621 #ifdef MAC 1622 mac_socketpeer_set_from_socket(so, so2); 1623 mac_socketpeer_set_from_socket(so2, so); 1624 #endif 1625 } else { 1626 if (unp == unp2) 1627 UNP_PCB_LOCK(unp); 1628 else 1629 unp_pcb_lock2(unp, unp2); 1630 } 1631 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1632 sotounpcb(so2) == unp2, 1633 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1634 error = unp_connect2(so, so2, PRU_CONNECT); 1635 if (unp != unp2) 1636 UNP_PCB_UNLOCK(unp2); 1637 UNP_PCB_UNLOCK(unp); 1638 bad2: 1639 mtx_unlock(vplock); 1640 bad: 1641 if (vp != NULL) { 1642 vput(vp); 1643 } 1644 free(sa, M_SONAME); 1645 UNP_PCB_LOCK(unp); 1646 unp->unp_flags &= ~UNP_CONNECTING; 1647 UNP_PCB_UNLOCK(unp); 1648 return (error); 1649 } 1650 1651 /* 1652 * Set socket peer credentials at connection time. 1653 * 1654 * The client's PCB credentials are copied from its process structure. The 1655 * server's PCB credentials are copied from the socket on which it called 1656 * listen(2). uipc_listen cached that process's credentials at the time. 1657 */ 1658 void 1659 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 1660 struct unpcb *server_unp, struct unpcb *listen_unp) 1661 { 1662 cru2xt(td, &client_unp->unp_peercred); 1663 client_unp->unp_flags |= UNP_HAVEPC; 1664 1665 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 1666 sizeof(server_unp->unp_peercred)); 1667 server_unp->unp_flags |= UNP_HAVEPC; 1668 if (listen_unp->unp_flags & UNP_WANTCRED) 1669 client_unp->unp_flags |= UNP_WANTCRED; 1670 } 1671 1672 static int 1673 unp_connect2(struct socket *so, struct socket *so2, int req) 1674 { 1675 struct unpcb *unp; 1676 struct unpcb *unp2; 1677 1678 unp = sotounpcb(so); 1679 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1680 unp2 = sotounpcb(so2); 1681 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1682 1683 UNP_PCB_LOCK_ASSERT(unp); 1684 UNP_PCB_LOCK_ASSERT(unp2); 1685 1686 if (so2->so_type != so->so_type) 1687 return (EPROTOTYPE); 1688 unp2->unp_flags &= ~UNP_NASCENT; 1689 unp->unp_conn = unp2; 1690 unp_pcb_hold(unp2); 1691 unp_pcb_hold(unp); 1692 switch (so->so_type) { 1693 case SOCK_DGRAM: 1694 UNP_REF_LIST_LOCK(); 1695 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1696 UNP_REF_LIST_UNLOCK(); 1697 soisconnected(so); 1698 break; 1699 1700 case SOCK_STREAM: 1701 case SOCK_SEQPACKET: 1702 unp2->unp_conn = unp; 1703 if (req == PRU_CONNECT && 1704 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1705 soisconnecting(so); 1706 else 1707 soisconnected(so); 1708 soisconnected(so2); 1709 break; 1710 1711 default: 1712 panic("unp_connect2"); 1713 } 1714 return (0); 1715 } 1716 1717 static void 1718 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1719 { 1720 struct socket *so, *so2; 1721 int freed __unused; 1722 1723 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1724 1725 UNP_PCB_LOCK_ASSERT(unp); 1726 UNP_PCB_LOCK_ASSERT(unp2); 1727 1728 if (unp->unp_conn == NULL && unp2->unp_conn == NULL) 1729 return; 1730 1731 MPASS(unp->unp_conn == unp2); 1732 unp->unp_conn = NULL; 1733 so = unp->unp_socket; 1734 so2 = unp2->unp_socket; 1735 switch (unp->unp_socket->so_type) { 1736 case SOCK_DGRAM: 1737 UNP_REF_LIST_LOCK(); 1738 LIST_REMOVE(unp, unp_reflink); 1739 UNP_REF_LIST_UNLOCK(); 1740 if (so) { 1741 SOCK_LOCK(so); 1742 so->so_state &= ~SS_ISCONNECTED; 1743 SOCK_UNLOCK(so); 1744 } 1745 break; 1746 1747 case SOCK_STREAM: 1748 case SOCK_SEQPACKET: 1749 if (so) 1750 soisdisconnected(so); 1751 MPASS(unp2->unp_conn == unp); 1752 unp2->unp_conn = NULL; 1753 if (so2) 1754 soisdisconnected(so2); 1755 break; 1756 } 1757 freed = unp_pcb_rele(unp); 1758 MPASS(freed == 0); 1759 freed = unp_pcb_rele(unp2); 1760 MPASS(freed == 0); 1761 } 1762 1763 /* 1764 * unp_pcblist() walks the global list of struct unpcb's to generate a 1765 * pointer list, bumping the refcount on each unpcb. It then copies them out 1766 * sequentially, validating the generation number on each to see if it has 1767 * been detached. All of this is necessary because copyout() may sleep on 1768 * disk I/O. 1769 */ 1770 static int 1771 unp_pcblist(SYSCTL_HANDLER_ARGS) 1772 { 1773 struct unpcb *unp, **unp_list; 1774 unp_gen_t gencnt; 1775 struct xunpgen *xug; 1776 struct unp_head *head; 1777 struct xunpcb *xu; 1778 u_int i; 1779 int error, freeunp, n; 1780 1781 switch ((intptr_t)arg1) { 1782 case SOCK_STREAM: 1783 head = &unp_shead; 1784 break; 1785 1786 case SOCK_DGRAM: 1787 head = &unp_dhead; 1788 break; 1789 1790 case SOCK_SEQPACKET: 1791 head = &unp_sphead; 1792 break; 1793 1794 default: 1795 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1796 } 1797 1798 /* 1799 * The process of preparing the PCB list is too time-consuming and 1800 * resource-intensive to repeat twice on every request. 1801 */ 1802 if (req->oldptr == NULL) { 1803 n = unp_count; 1804 req->oldidx = 2 * (sizeof *xug) 1805 + (n + n/8) * sizeof(struct xunpcb); 1806 return (0); 1807 } 1808 1809 if (req->newptr != NULL) 1810 return (EPERM); 1811 1812 /* 1813 * OK, now we're committed to doing something. 1814 */ 1815 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 1816 UNP_LINK_RLOCK(); 1817 gencnt = unp_gencnt; 1818 n = unp_count; 1819 UNP_LINK_RUNLOCK(); 1820 1821 xug->xug_len = sizeof *xug; 1822 xug->xug_count = n; 1823 xug->xug_gen = gencnt; 1824 xug->xug_sogen = so_gencnt; 1825 error = SYSCTL_OUT(req, xug, sizeof *xug); 1826 if (error) { 1827 free(xug, M_TEMP); 1828 return (error); 1829 } 1830 1831 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1832 1833 UNP_LINK_RLOCK(); 1834 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1835 unp = LIST_NEXT(unp, unp_link)) { 1836 UNP_PCB_LOCK(unp); 1837 if (unp->unp_gencnt <= gencnt) { 1838 if (cr_cansee(req->td->td_ucred, 1839 unp->unp_socket->so_cred)) { 1840 UNP_PCB_UNLOCK(unp); 1841 continue; 1842 } 1843 unp_list[i++] = unp; 1844 unp_pcb_hold(unp); 1845 } 1846 UNP_PCB_UNLOCK(unp); 1847 } 1848 UNP_LINK_RUNLOCK(); 1849 n = i; /* In case we lost some during malloc. */ 1850 1851 error = 0; 1852 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1853 for (i = 0; i < n; i++) { 1854 unp = unp_list[i]; 1855 UNP_PCB_LOCK(unp); 1856 freeunp = unp_pcb_rele(unp); 1857 1858 if (freeunp == 0 && unp->unp_gencnt <= gencnt) { 1859 xu->xu_len = sizeof *xu; 1860 xu->xu_unpp = (uintptr_t)unp; 1861 /* 1862 * XXX - need more locking here to protect against 1863 * connect/disconnect races for SMP. 1864 */ 1865 if (unp->unp_addr != NULL) 1866 bcopy(unp->unp_addr, &xu->xu_addr, 1867 unp->unp_addr->sun_len); 1868 else 1869 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1870 if (unp->unp_conn != NULL && 1871 unp->unp_conn->unp_addr != NULL) 1872 bcopy(unp->unp_conn->unp_addr, 1873 &xu->xu_caddr, 1874 unp->unp_conn->unp_addr->sun_len); 1875 else 1876 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1877 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 1878 xu->unp_conn = (uintptr_t)unp->unp_conn; 1879 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 1880 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 1881 xu->unp_gencnt = unp->unp_gencnt; 1882 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1883 UNP_PCB_UNLOCK(unp); 1884 error = SYSCTL_OUT(req, xu, sizeof *xu); 1885 } else if (freeunp == 0) 1886 UNP_PCB_UNLOCK(unp); 1887 } 1888 free(xu, M_TEMP); 1889 if (!error) { 1890 /* 1891 * Give the user an updated idea of our state. If the 1892 * generation differs from what we told her before, she knows 1893 * that something happened while we were processing this 1894 * request, and it might be necessary to retry. 1895 */ 1896 xug->xug_gen = unp_gencnt; 1897 xug->xug_sogen = so_gencnt; 1898 xug->xug_count = unp_count; 1899 error = SYSCTL_OUT(req, xug, sizeof *xug); 1900 } 1901 free(unp_list, M_TEMP); 1902 free(xug, M_TEMP); 1903 return (error); 1904 } 1905 1906 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 1907 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1908 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1909 "List of active local datagram sockets"); 1910 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 1911 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1912 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1913 "List of active local stream sockets"); 1914 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1915 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1916 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1917 "List of active local seqpacket sockets"); 1918 1919 static void 1920 unp_shutdown(struct unpcb *unp) 1921 { 1922 struct unpcb *unp2; 1923 struct socket *so; 1924 1925 UNP_PCB_LOCK_ASSERT(unp); 1926 1927 unp2 = unp->unp_conn; 1928 if ((unp->unp_socket->so_type == SOCK_STREAM || 1929 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1930 so = unp2->unp_socket; 1931 if (so != NULL) 1932 socantrcvmore(so); 1933 } 1934 } 1935 1936 static void 1937 unp_drop(struct unpcb *unp) 1938 { 1939 struct socket *so = unp->unp_socket; 1940 struct unpcb *unp2; 1941 int freed; 1942 1943 /* 1944 * Regardless of whether the socket's peer dropped the connection 1945 * with this socket by aborting or disconnecting, POSIX requires 1946 * that ECONNRESET is returned. 1947 */ 1948 /* acquire a reference so that unp isn't freed from underneath us */ 1949 1950 UNP_PCB_LOCK(unp); 1951 if (so) 1952 so->so_error = ECONNRESET; 1953 unp2 = unp->unp_conn; 1954 if (unp2 == unp) { 1955 unp_disconnect(unp, unp2); 1956 } else if (unp2 != NULL) { 1957 unp_pcb_hold(unp2); 1958 unp_pcb_owned_lock2(unp, unp2, freed); 1959 unp_disconnect(unp, unp2); 1960 if (unp_pcb_rele(unp2) == 0) 1961 UNP_PCB_UNLOCK(unp2); 1962 } 1963 if (unp_pcb_rele(unp) == 0) 1964 UNP_PCB_UNLOCK(unp); 1965 } 1966 1967 static void 1968 unp_freerights(struct filedescent **fdep, int fdcount) 1969 { 1970 struct file *fp; 1971 int i; 1972 1973 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1974 1975 for (i = 0; i < fdcount; i++) { 1976 fp = fdep[i]->fde_file; 1977 filecaps_free(&fdep[i]->fde_caps); 1978 unp_discard(fp); 1979 } 1980 free(fdep[0], M_FILECAPS); 1981 } 1982 1983 static int 1984 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1985 { 1986 struct thread *td = curthread; /* XXX */ 1987 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1988 int i; 1989 int *fdp; 1990 struct filedesc *fdesc = td->td_proc->p_fd; 1991 struct filedescent **fdep; 1992 void *data; 1993 socklen_t clen = control->m_len, datalen; 1994 int error, newfds; 1995 u_int newlen; 1996 1997 UNP_LINK_UNLOCK_ASSERT(); 1998 1999 error = 0; 2000 if (controlp != NULL) /* controlp == NULL => free control messages */ 2001 *controlp = NULL; 2002 while (cm != NULL) { 2003 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 2004 error = EINVAL; 2005 break; 2006 } 2007 data = CMSG_DATA(cm); 2008 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2009 if (cm->cmsg_level == SOL_SOCKET 2010 && cm->cmsg_type == SCM_RIGHTS) { 2011 newfds = datalen / sizeof(*fdep); 2012 if (newfds == 0) 2013 goto next; 2014 fdep = data; 2015 2016 /* If we're not outputting the descriptors free them. */ 2017 if (error || controlp == NULL) { 2018 unp_freerights(fdep, newfds); 2019 goto next; 2020 } 2021 FILEDESC_XLOCK(fdesc); 2022 2023 /* 2024 * Now change each pointer to an fd in the global 2025 * table to an integer that is the index to the local 2026 * fd table entry that we set up to point to the 2027 * global one we are transferring. 2028 */ 2029 newlen = newfds * sizeof(int); 2030 *controlp = sbcreatecontrol(NULL, newlen, 2031 SCM_RIGHTS, SOL_SOCKET); 2032 if (*controlp == NULL) { 2033 FILEDESC_XUNLOCK(fdesc); 2034 error = E2BIG; 2035 unp_freerights(fdep, newfds); 2036 goto next; 2037 } 2038 2039 fdp = (int *) 2040 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2041 if (fdallocn(td, 0, fdp, newfds) != 0) { 2042 FILEDESC_XUNLOCK(fdesc); 2043 error = EMSGSIZE; 2044 unp_freerights(fdep, newfds); 2045 m_freem(*controlp); 2046 *controlp = NULL; 2047 goto next; 2048 } 2049 for (i = 0; i < newfds; i++, fdp++) { 2050 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2051 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 2052 &fdep[i]->fde_caps); 2053 unp_externalize_fp(fdep[i]->fde_file); 2054 } 2055 2056 /* 2057 * The new type indicates that the mbuf data refers to 2058 * kernel resources that may need to be released before 2059 * the mbuf is freed. 2060 */ 2061 m_chtype(*controlp, MT_EXTCONTROL); 2062 FILEDESC_XUNLOCK(fdesc); 2063 free(fdep[0], M_FILECAPS); 2064 } else { 2065 /* We can just copy anything else across. */ 2066 if (error || controlp == NULL) 2067 goto next; 2068 *controlp = sbcreatecontrol(NULL, datalen, 2069 cm->cmsg_type, cm->cmsg_level); 2070 if (*controlp == NULL) { 2071 error = ENOBUFS; 2072 goto next; 2073 } 2074 bcopy(data, 2075 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2076 datalen); 2077 } 2078 controlp = &(*controlp)->m_next; 2079 2080 next: 2081 if (CMSG_SPACE(datalen) < clen) { 2082 clen -= CMSG_SPACE(datalen); 2083 cm = (struct cmsghdr *) 2084 ((caddr_t)cm + CMSG_SPACE(datalen)); 2085 } else { 2086 clen = 0; 2087 cm = NULL; 2088 } 2089 } 2090 2091 m_freem(control); 2092 return (error); 2093 } 2094 2095 static void 2096 unp_zone_change(void *tag) 2097 { 2098 2099 uma_zone_set_max(unp_zone, maxsockets); 2100 } 2101 2102 static void 2103 unp_init(void) 2104 { 2105 2106 #ifdef VIMAGE 2107 if (!IS_DEFAULT_VNET(curvnet)) 2108 return; 2109 #endif 2110 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 2111 NULL, NULL, UMA_ALIGN_CACHE, 0); 2112 if (unp_zone == NULL) 2113 panic("unp_init"); 2114 uma_zone_set_max(unp_zone, maxsockets); 2115 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2116 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2117 NULL, EVENTHANDLER_PRI_ANY); 2118 LIST_INIT(&unp_dhead); 2119 LIST_INIT(&unp_shead); 2120 LIST_INIT(&unp_sphead); 2121 SLIST_INIT(&unp_defers); 2122 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2123 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2124 UNP_LINK_LOCK_INIT(); 2125 UNP_DEFERRED_LOCK_INIT(); 2126 } 2127 2128 static void 2129 unp_internalize_cleanup_rights(struct mbuf *control) 2130 { 2131 struct cmsghdr *cp; 2132 struct mbuf *m; 2133 void *data; 2134 socklen_t datalen; 2135 2136 for (m = control; m != NULL; m = m->m_next) { 2137 cp = mtod(m, struct cmsghdr *); 2138 if (cp->cmsg_level != SOL_SOCKET || 2139 cp->cmsg_type != SCM_RIGHTS) 2140 continue; 2141 data = CMSG_DATA(cp); 2142 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 2143 unp_freerights(data, datalen / sizeof(struct filedesc *)); 2144 } 2145 } 2146 2147 static int 2148 unp_internalize(struct mbuf **controlp, struct thread *td) 2149 { 2150 struct mbuf *control, **initial_controlp; 2151 struct proc *p; 2152 struct filedesc *fdesc; 2153 struct bintime *bt; 2154 struct cmsghdr *cm; 2155 struct cmsgcred *cmcred; 2156 struct filedescent *fde, **fdep, *fdev; 2157 struct file *fp; 2158 struct timeval *tv; 2159 struct timespec *ts; 2160 void *data; 2161 socklen_t clen, datalen; 2162 int i, j, error, *fdp, oldfds; 2163 u_int newlen; 2164 2165 UNP_LINK_UNLOCK_ASSERT(); 2166 2167 p = td->td_proc; 2168 fdesc = p->p_fd; 2169 error = 0; 2170 control = *controlp; 2171 clen = control->m_len; 2172 *controlp = NULL; 2173 initial_controlp = controlp; 2174 for (cm = mtod(control, struct cmsghdr *); cm != NULL;) { 2175 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2176 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2177 error = EINVAL; 2178 goto out; 2179 } 2180 data = CMSG_DATA(cm); 2181 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2182 2183 switch (cm->cmsg_type) { 2184 /* 2185 * Fill in credential information. 2186 */ 2187 case SCM_CREDS: 2188 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2189 SCM_CREDS, SOL_SOCKET); 2190 if (*controlp == NULL) { 2191 error = ENOBUFS; 2192 goto out; 2193 } 2194 cmcred = (struct cmsgcred *) 2195 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2196 cmcred->cmcred_pid = p->p_pid; 2197 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2198 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2199 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2200 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2201 CMGROUP_MAX); 2202 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2203 cmcred->cmcred_groups[i] = 2204 td->td_ucred->cr_groups[i]; 2205 break; 2206 2207 case SCM_RIGHTS: 2208 oldfds = datalen / sizeof (int); 2209 if (oldfds == 0) 2210 break; 2211 /* 2212 * Check that all the FDs passed in refer to legal 2213 * files. If not, reject the entire operation. 2214 */ 2215 fdp = data; 2216 FILEDESC_SLOCK(fdesc); 2217 for (i = 0; i < oldfds; i++, fdp++) { 2218 fp = fget_locked(fdesc, *fdp); 2219 if (fp == NULL) { 2220 FILEDESC_SUNLOCK(fdesc); 2221 error = EBADF; 2222 goto out; 2223 } 2224 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2225 FILEDESC_SUNLOCK(fdesc); 2226 error = EOPNOTSUPP; 2227 goto out; 2228 } 2229 2230 } 2231 2232 /* 2233 * Now replace the integer FDs with pointers to the 2234 * file structure and capability rights. 2235 */ 2236 newlen = oldfds * sizeof(fdep[0]); 2237 *controlp = sbcreatecontrol(NULL, newlen, 2238 SCM_RIGHTS, SOL_SOCKET); 2239 if (*controlp == NULL) { 2240 FILEDESC_SUNLOCK(fdesc); 2241 error = E2BIG; 2242 goto out; 2243 } 2244 fdp = data; 2245 for (i = 0; i < oldfds; i++, fdp++) { 2246 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 2247 fdp = data; 2248 for (j = 0; j < i; j++, fdp++) { 2249 fdrop(fdesc->fd_ofiles[*fdp]. 2250 fde_file, td); 2251 } 2252 FILEDESC_SUNLOCK(fdesc); 2253 error = EBADF; 2254 goto out; 2255 } 2256 } 2257 fdp = data; 2258 fdep = (struct filedescent **) 2259 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2260 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2261 M_WAITOK); 2262 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2263 fde = &fdesc->fd_ofiles[*fdp]; 2264 fdep[i] = fdev; 2265 fdep[i]->fde_file = fde->fde_file; 2266 filecaps_copy(&fde->fde_caps, 2267 &fdep[i]->fde_caps, true); 2268 unp_internalize_fp(fdep[i]->fde_file); 2269 } 2270 FILEDESC_SUNLOCK(fdesc); 2271 break; 2272 2273 case SCM_TIMESTAMP: 2274 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2275 SCM_TIMESTAMP, SOL_SOCKET); 2276 if (*controlp == NULL) { 2277 error = ENOBUFS; 2278 goto out; 2279 } 2280 tv = (struct timeval *) 2281 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2282 microtime(tv); 2283 break; 2284 2285 case SCM_BINTIME: 2286 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2287 SCM_BINTIME, SOL_SOCKET); 2288 if (*controlp == NULL) { 2289 error = ENOBUFS; 2290 goto out; 2291 } 2292 bt = (struct bintime *) 2293 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2294 bintime(bt); 2295 break; 2296 2297 case SCM_REALTIME: 2298 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2299 SCM_REALTIME, SOL_SOCKET); 2300 if (*controlp == NULL) { 2301 error = ENOBUFS; 2302 goto out; 2303 } 2304 ts = (struct timespec *) 2305 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2306 nanotime(ts); 2307 break; 2308 2309 case SCM_MONOTONIC: 2310 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2311 SCM_MONOTONIC, SOL_SOCKET); 2312 if (*controlp == NULL) { 2313 error = ENOBUFS; 2314 goto out; 2315 } 2316 ts = (struct timespec *) 2317 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2318 nanouptime(ts); 2319 break; 2320 2321 default: 2322 error = EINVAL; 2323 goto out; 2324 } 2325 2326 if (*controlp != NULL) 2327 controlp = &(*controlp)->m_next; 2328 if (CMSG_SPACE(datalen) < clen) { 2329 clen -= CMSG_SPACE(datalen); 2330 cm = (struct cmsghdr *) 2331 ((caddr_t)cm + CMSG_SPACE(datalen)); 2332 } else { 2333 clen = 0; 2334 cm = NULL; 2335 } 2336 } 2337 2338 out: 2339 if (error != 0 && initial_controlp != NULL) 2340 unp_internalize_cleanup_rights(*initial_controlp); 2341 m_freem(control); 2342 return (error); 2343 } 2344 2345 static struct mbuf * 2346 unp_addsockcred(struct thread *td, struct mbuf *control) 2347 { 2348 struct mbuf *m, *n, *n_prev; 2349 struct sockcred *sc; 2350 const struct cmsghdr *cm; 2351 int ngroups; 2352 int i; 2353 2354 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2355 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2356 if (m == NULL) 2357 return (control); 2358 2359 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2360 sc->sc_uid = td->td_ucred->cr_ruid; 2361 sc->sc_euid = td->td_ucred->cr_uid; 2362 sc->sc_gid = td->td_ucred->cr_rgid; 2363 sc->sc_egid = td->td_ucred->cr_gid; 2364 sc->sc_ngroups = ngroups; 2365 for (i = 0; i < sc->sc_ngroups; i++) 2366 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2367 2368 /* 2369 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2370 * created SCM_CREDS control message (struct sockcred) has another 2371 * format. 2372 */ 2373 if (control != NULL) 2374 for (n = control, n_prev = NULL; n != NULL;) { 2375 cm = mtod(n, struct cmsghdr *); 2376 if (cm->cmsg_level == SOL_SOCKET && 2377 cm->cmsg_type == SCM_CREDS) { 2378 if (n_prev == NULL) 2379 control = n->m_next; 2380 else 2381 n_prev->m_next = n->m_next; 2382 n = m_free(n); 2383 } else { 2384 n_prev = n; 2385 n = n->m_next; 2386 } 2387 } 2388 2389 /* Prepend it to the head. */ 2390 m->m_next = control; 2391 return (m); 2392 } 2393 2394 static struct unpcb * 2395 fptounp(struct file *fp) 2396 { 2397 struct socket *so; 2398 2399 if (fp->f_type != DTYPE_SOCKET) 2400 return (NULL); 2401 if ((so = fp->f_data) == NULL) 2402 return (NULL); 2403 if (so->so_proto->pr_domain != &localdomain) 2404 return (NULL); 2405 return sotounpcb(so); 2406 } 2407 2408 static void 2409 unp_discard(struct file *fp) 2410 { 2411 struct unp_defer *dr; 2412 2413 if (unp_externalize_fp(fp)) { 2414 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2415 dr->ud_fp = fp; 2416 UNP_DEFERRED_LOCK(); 2417 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2418 UNP_DEFERRED_UNLOCK(); 2419 atomic_add_int(&unp_defers_count, 1); 2420 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2421 } else 2422 (void) closef(fp, (struct thread *)NULL); 2423 } 2424 2425 static void 2426 unp_process_defers(void *arg __unused, int pending) 2427 { 2428 struct unp_defer *dr; 2429 SLIST_HEAD(, unp_defer) drl; 2430 int count; 2431 2432 SLIST_INIT(&drl); 2433 for (;;) { 2434 UNP_DEFERRED_LOCK(); 2435 if (SLIST_FIRST(&unp_defers) == NULL) { 2436 UNP_DEFERRED_UNLOCK(); 2437 break; 2438 } 2439 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2440 UNP_DEFERRED_UNLOCK(); 2441 count = 0; 2442 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2443 SLIST_REMOVE_HEAD(&drl, ud_link); 2444 closef(dr->ud_fp, NULL); 2445 free(dr, M_TEMP); 2446 count++; 2447 } 2448 atomic_add_int(&unp_defers_count, -count); 2449 } 2450 } 2451 2452 static void 2453 unp_internalize_fp(struct file *fp) 2454 { 2455 struct unpcb *unp; 2456 2457 UNP_LINK_WLOCK(); 2458 if ((unp = fptounp(fp)) != NULL) { 2459 unp->unp_file = fp; 2460 unp->unp_msgcount++; 2461 } 2462 unp_rights++; 2463 UNP_LINK_WUNLOCK(); 2464 } 2465 2466 static int 2467 unp_externalize_fp(struct file *fp) 2468 { 2469 struct unpcb *unp; 2470 int ret; 2471 2472 UNP_LINK_WLOCK(); 2473 if ((unp = fptounp(fp)) != NULL) { 2474 unp->unp_msgcount--; 2475 ret = 1; 2476 } else 2477 ret = 0; 2478 unp_rights--; 2479 UNP_LINK_WUNLOCK(); 2480 return (ret); 2481 } 2482 2483 /* 2484 * unp_defer indicates whether additional work has been defered for a future 2485 * pass through unp_gc(). It is thread local and does not require explicit 2486 * synchronization. 2487 */ 2488 static int unp_marked; 2489 2490 static void 2491 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 2492 { 2493 struct unpcb *unp; 2494 struct file *fp; 2495 int i; 2496 2497 /* 2498 * This function can only be called from the gc task. 2499 */ 2500 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2501 ("%s: not on gc callout", __func__)); 2502 UNP_LINK_LOCK_ASSERT(); 2503 2504 for (i = 0; i < fdcount; i++) { 2505 fp = fdep[i]->fde_file; 2506 if ((unp = fptounp(fp)) == NULL) 2507 continue; 2508 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2509 continue; 2510 unp->unp_gcrefs--; 2511 } 2512 } 2513 2514 static void 2515 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 2516 { 2517 struct unpcb *unp; 2518 struct file *fp; 2519 int i; 2520 2521 /* 2522 * This function can only be called from the gc task. 2523 */ 2524 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2525 ("%s: not on gc callout", __func__)); 2526 UNP_LINK_LOCK_ASSERT(); 2527 2528 for (i = 0; i < fdcount; i++) { 2529 fp = fdep[i]->fde_file; 2530 if ((unp = fptounp(fp)) == NULL) 2531 continue; 2532 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2533 continue; 2534 unp->unp_gcrefs++; 2535 unp_marked++; 2536 } 2537 } 2538 2539 static void 2540 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 2541 { 2542 struct socket *so, *soa; 2543 2544 so = unp->unp_socket; 2545 SOCK_LOCK(so); 2546 if (SOLISTENING(so)) { 2547 /* 2548 * Mark all sockets in our accept queue. 2549 */ 2550 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2551 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2552 continue; 2553 SOCKBUF_LOCK(&soa->so_rcv); 2554 unp_scan(soa->so_rcv.sb_mb, op); 2555 SOCKBUF_UNLOCK(&soa->so_rcv); 2556 } 2557 } else { 2558 /* 2559 * Mark all sockets we reference with RIGHTS. 2560 */ 2561 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2562 SOCKBUF_LOCK(&so->so_rcv); 2563 unp_scan(so->so_rcv.sb_mb, op); 2564 SOCKBUF_UNLOCK(&so->so_rcv); 2565 } 2566 } 2567 SOCK_UNLOCK(so); 2568 } 2569 2570 static int unp_recycled; 2571 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2572 "Number of unreachable sockets claimed by the garbage collector."); 2573 2574 static int unp_taskcount; 2575 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2576 "Number of times the garbage collector has run."); 2577 2578 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 2579 "Number of active local sockets."); 2580 2581 static void 2582 unp_gc(__unused void *arg, int pending) 2583 { 2584 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2585 NULL }; 2586 struct unp_head **head; 2587 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 2588 struct file *f, **unref; 2589 struct unpcb *unp, *unptmp; 2590 int i, total, unp_unreachable; 2591 2592 LIST_INIT(&unp_deadhead); 2593 unp_taskcount++; 2594 UNP_LINK_RLOCK(); 2595 /* 2596 * First determine which sockets may be in cycles. 2597 */ 2598 unp_unreachable = 0; 2599 2600 for (head = heads; *head != NULL; head++) 2601 LIST_FOREACH(unp, *head, unp_link) { 2602 2603 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 2604 ("%s: unp %p has unexpected gc flags 0x%x", 2605 __func__, unp, (unsigned int)unp->unp_gcflag)); 2606 2607 f = unp->unp_file; 2608 2609 /* 2610 * Check for an unreachable socket potentially in a 2611 * cycle. It must be in a queue as indicated by 2612 * msgcount, and this must equal the file reference 2613 * count. Note that when msgcount is 0 the file is 2614 * NULL. 2615 */ 2616 if (f != NULL && unp->unp_msgcount != 0 && 2617 f->f_count == unp->unp_msgcount) { 2618 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 2619 unp->unp_gcflag |= UNPGC_DEAD; 2620 unp->unp_gcrefs = unp->unp_msgcount; 2621 unp_unreachable++; 2622 } 2623 } 2624 2625 /* 2626 * Scan all sockets previously marked as potentially being in a cycle 2627 * and remove the references each socket holds on any UNPGC_DEAD 2628 * sockets in its queue. After this step, all remaining references on 2629 * sockets marked UNPGC_DEAD should not be part of any cycle. 2630 */ 2631 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 2632 unp_gc_scan(unp, unp_remove_dead_ref); 2633 2634 /* 2635 * If a socket still has a non-negative refcount, it cannot be in a 2636 * cycle. In this case increment refcount of all children iteratively. 2637 * Stop the scan once we do a complete loop without discovering 2638 * a new reachable socket. 2639 */ 2640 do { 2641 unp_marked = 0; 2642 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 2643 if (unp->unp_gcrefs > 0) { 2644 unp->unp_gcflag &= ~UNPGC_DEAD; 2645 LIST_REMOVE(unp, unp_dead); 2646 KASSERT(unp_unreachable > 0, 2647 ("%s: unp_unreachable underflow.", 2648 __func__)); 2649 unp_unreachable--; 2650 unp_gc_scan(unp, unp_restore_undead_ref); 2651 } 2652 } while (unp_marked); 2653 2654 UNP_LINK_RUNLOCK(); 2655 2656 if (unp_unreachable == 0) 2657 return; 2658 2659 /* 2660 * Allocate space for a local array of dead unpcbs. 2661 * TODO: can this path be simplified by instead using the local 2662 * dead list at unp_deadhead, after taking out references 2663 * on the file object and/or unpcb and dropping the link lock? 2664 */ 2665 unref = malloc(unp_unreachable * sizeof(struct file *), 2666 M_TEMP, M_WAITOK); 2667 2668 /* 2669 * Iterate looking for sockets which have been specifically marked 2670 * as unreachable and store them locally. 2671 */ 2672 UNP_LINK_RLOCK(); 2673 total = 0; 2674 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 2675 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 2676 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 2677 unp->unp_gcflag &= ~UNPGC_DEAD; 2678 f = unp->unp_file; 2679 if (unp->unp_msgcount == 0 || f == NULL || 2680 f->f_count != unp->unp_msgcount || 2681 !fhold(f)) 2682 continue; 2683 unref[total++] = f; 2684 KASSERT(total <= unp_unreachable, 2685 ("%s: incorrect unreachable count.", __func__)); 2686 } 2687 UNP_LINK_RUNLOCK(); 2688 2689 /* 2690 * Now flush all sockets, free'ing rights. This will free the 2691 * struct files associated with these sockets but leave each socket 2692 * with one remaining ref. 2693 */ 2694 for (i = 0; i < total; i++) { 2695 struct socket *so; 2696 2697 so = unref[i]->f_data; 2698 CURVNET_SET(so->so_vnet); 2699 sorflush(so); 2700 CURVNET_RESTORE(); 2701 } 2702 2703 /* 2704 * And finally release the sockets so they can be reclaimed. 2705 */ 2706 for (i = 0; i < total; i++) 2707 fdrop(unref[i], NULL); 2708 unp_recycled += total; 2709 free(unref, M_TEMP); 2710 } 2711 2712 static void 2713 unp_dispose_mbuf(struct mbuf *m) 2714 { 2715 2716 if (m) 2717 unp_scan(m, unp_freerights); 2718 } 2719 2720 /* 2721 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2722 */ 2723 static void 2724 unp_dispose(struct socket *so) 2725 { 2726 struct unpcb *unp; 2727 2728 unp = sotounpcb(so); 2729 UNP_LINK_WLOCK(); 2730 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2731 UNP_LINK_WUNLOCK(); 2732 if (!SOLISTENING(so)) 2733 unp_dispose_mbuf(so->so_rcv.sb_mb); 2734 } 2735 2736 static void 2737 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2738 { 2739 struct mbuf *m; 2740 struct cmsghdr *cm; 2741 void *data; 2742 socklen_t clen, datalen; 2743 2744 while (m0 != NULL) { 2745 for (m = m0; m; m = m->m_next) { 2746 if (m->m_type != MT_CONTROL) 2747 continue; 2748 2749 cm = mtod(m, struct cmsghdr *); 2750 clen = m->m_len; 2751 2752 while (cm != NULL) { 2753 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2754 break; 2755 2756 data = CMSG_DATA(cm); 2757 datalen = (caddr_t)cm + cm->cmsg_len 2758 - (caddr_t)data; 2759 2760 if (cm->cmsg_level == SOL_SOCKET && 2761 cm->cmsg_type == SCM_RIGHTS) { 2762 (*op)(data, datalen / 2763 sizeof(struct filedescent *)); 2764 } 2765 2766 if (CMSG_SPACE(datalen) < clen) { 2767 clen -= CMSG_SPACE(datalen); 2768 cm = (struct cmsghdr *) 2769 ((caddr_t)cm + CMSG_SPACE(datalen)); 2770 } else { 2771 clen = 0; 2772 cm = NULL; 2773 } 2774 } 2775 } 2776 m0 = m0->m_nextpkt; 2777 } 2778 } 2779 2780 /* 2781 * A helper function called by VFS before socket-type vnode reclamation. 2782 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2783 * use count. 2784 */ 2785 void 2786 vfs_unp_reclaim(struct vnode *vp) 2787 { 2788 struct unpcb *unp; 2789 int active; 2790 struct mtx *vplock; 2791 2792 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2793 KASSERT(vp->v_type == VSOCK, 2794 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2795 2796 active = 0; 2797 vplock = mtx_pool_find(mtxpool_sleep, vp); 2798 mtx_lock(vplock); 2799 VOP_UNP_CONNECT(vp, &unp); 2800 if (unp == NULL) 2801 goto done; 2802 UNP_PCB_LOCK(unp); 2803 if (unp->unp_vnode == vp) { 2804 VOP_UNP_DETACH(vp); 2805 unp->unp_vnode = NULL; 2806 active = 1; 2807 } 2808 UNP_PCB_UNLOCK(unp); 2809 done: 2810 mtx_unlock(vplock); 2811 if (active) 2812 vunref(vp); 2813 } 2814 2815 #ifdef DDB 2816 static void 2817 db_print_indent(int indent) 2818 { 2819 int i; 2820 2821 for (i = 0; i < indent; i++) 2822 db_printf(" "); 2823 } 2824 2825 static void 2826 db_print_unpflags(int unp_flags) 2827 { 2828 int comma; 2829 2830 comma = 0; 2831 if (unp_flags & UNP_HAVEPC) { 2832 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2833 comma = 1; 2834 } 2835 if (unp_flags & UNP_WANTCRED) { 2836 db_printf("%sUNP_WANTCRED", comma ? ", " : ""); 2837 comma = 1; 2838 } 2839 if (unp_flags & UNP_CONNWAIT) { 2840 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2841 comma = 1; 2842 } 2843 if (unp_flags & UNP_CONNECTING) { 2844 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2845 comma = 1; 2846 } 2847 if (unp_flags & UNP_BINDING) { 2848 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2849 comma = 1; 2850 } 2851 } 2852 2853 static void 2854 db_print_xucred(int indent, struct xucred *xu) 2855 { 2856 int comma, i; 2857 2858 db_print_indent(indent); 2859 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 2860 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 2861 db_print_indent(indent); 2862 db_printf("cr_groups: "); 2863 comma = 0; 2864 for (i = 0; i < xu->cr_ngroups; i++) { 2865 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2866 comma = 1; 2867 } 2868 db_printf("\n"); 2869 } 2870 2871 static void 2872 db_print_unprefs(int indent, struct unp_head *uh) 2873 { 2874 struct unpcb *unp; 2875 int counter; 2876 2877 counter = 0; 2878 LIST_FOREACH(unp, uh, unp_reflink) { 2879 if (counter % 4 == 0) 2880 db_print_indent(indent); 2881 db_printf("%p ", unp); 2882 if (counter % 4 == 3) 2883 db_printf("\n"); 2884 counter++; 2885 } 2886 if (counter != 0 && counter % 4 != 0) 2887 db_printf("\n"); 2888 } 2889 2890 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2891 { 2892 struct unpcb *unp; 2893 2894 if (!have_addr) { 2895 db_printf("usage: show unpcb <addr>\n"); 2896 return; 2897 } 2898 unp = (struct unpcb *)addr; 2899 2900 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2901 unp->unp_vnode); 2902 2903 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2904 unp->unp_conn); 2905 2906 db_printf("unp_refs:\n"); 2907 db_print_unprefs(2, &unp->unp_refs); 2908 2909 /* XXXRW: Would be nice to print the full address, if any. */ 2910 db_printf("unp_addr: %p\n", unp->unp_addr); 2911 2912 db_printf("unp_gencnt: %llu\n", 2913 (unsigned long long)unp->unp_gencnt); 2914 2915 db_printf("unp_flags: %x (", unp->unp_flags); 2916 db_print_unpflags(unp->unp_flags); 2917 db_printf(")\n"); 2918 2919 db_printf("unp_peercred:\n"); 2920 db_print_xucred(2, &unp->unp_peercred); 2921 2922 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2923 } 2924 #endif 2925