xref: /freebsd/sys/kern/uipc_usrreq.c (revision 2d4e511ca269f1908d27f4e5779c53475527391d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * Locking key:
110  * (l)	Locked using list lock
111  * (g)	Locked using linkage lock
112  */
113 
114 static uma_zone_t	unp_zone;
115 static unp_gen_t	unp_gencnt;	/* (l) */
116 static u_int		unp_count;	/* (l) Count of local sockets. */
117 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
118 static int		unp_rights;	/* (g) File descriptors in flight. */
119 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
120 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
121 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
122 
123 struct unp_defer {
124 	SLIST_ENTRY(unp_defer) ud_link;
125 	struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129 
130 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
131 
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139 
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task	unp_defer_task;
146 
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define	PIPSIZ	8192
158 #endif
159 static u_long	unpst_sendspace = PIPSIZ;
160 static u_long	unpst_recvspace = PIPSIZ;
161 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
162 static u_long	unpdg_recvspace = 4*1024;
163 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
164 static u_long	unpsp_recvspace = PIPSIZ;
165 
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
167     "Local domain");
168 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
169     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170     "SOCK_STREAM");
171 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
172     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
173     "SOCK_DGRAM");
174 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
175     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
176     "SOCK_SEQPACKET");
177 
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
179 	   &unpst_sendspace, 0, "Default stream send space.");
180 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpst_recvspace, 0, "Default stream receive space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
183 	   &unpdg_sendspace, 0, "Default datagram send space.");
184 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpdg_recvspace, 0, "Default datagram receive space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
187 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
188 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
189 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
190 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
191     "File descriptors in flight.");
192 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
193     &unp_defers_count, 0,
194     "File descriptors deferred to taskqueue for close.");
195 
196 /*
197  * Locking and synchronization:
198  *
199  * Three types of locks exist in the local domain socket implementation: a
200  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
201  * The linkage lock protects the socket count, global generation number,
202  * and stream/datagram global lists.
203  *
204  * The mtxpool lock protects the vnode from being modified while referenced.
205  * Lock ordering requires that it be acquired before any unpcb locks.
206  *
207  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
208  * note is that this includes the unp_conn field. So long as the unpcb lock
209  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
210  * require that the unpcb pointed to by unp_conn remain live in cases where
211  * we need to drop the unp_mtx as when we need to acquire the lock for a
212  * second unpcb the caller must first acquire an additional reference on the
213  * second unpcb and then revalidate any state (typically check that unp_conn
214  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
215  * between unpcbs is the conventional ascending address order. Two helper
216  * routines exist for this:
217  *
218  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
219  *     safe ordering.
220  *
221  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
222  *     when called. If unp is unlocked and unp2 is subsequently freed
223  *     freed will be set to 1.
224  *
225  * The helper routines for references are:
226  *
227  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
228  *     reference to unp.
229  *
230  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
231  *      releasing the last reference, detach must have been called thus
232  *      unp->unp_socket be NULL.
233  *
234  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
235  * allocated in pru_attach() and freed in pru_detach().  The validity of that
236  * pointer is an invariant, so no lock is required to dereference the so_pcb
237  * pointer if a valid socket reference is held by the caller.  In practice,
238  * this is always true during operations performed on a socket.  Each unpcb
239  * has a back-pointer to its socket, unp_socket, which will be stable under
240  * the same circumstances.
241  *
242  * This pointer may only be safely dereferenced as long as a valid reference
243  * to the unpcb is held.  Typically, this reference will be from the socket,
244  * or from another unpcb when the referring unpcb's lock is held (in order
245  * that the reference not be invalidated during use).  For example, to follow
246  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
247  * that detach is not run clearing unp_socket.
248  *
249  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
250  * protocols, bind() is a non-atomic operation, and connect() requires
251  * potential sleeping in the protocol, due to potentially waiting on local or
252  * distributed file systems.  We try to separate "lookup" operations, which
253  * may sleep, and the IPC operations themselves, which typically can occur
254  * with relative atomicity as locks can be held over the entire operation.
255  *
256  * Another tricky issue is simultaneous multi-threaded or multi-process
257  * access to a single UNIX domain socket.  These are handled by the flags
258  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
259  * binding, both of which involve dropping UNIX domain socket locks in order
260  * to perform namei() and other file system operations.
261  */
262 static struct rwlock	unp_link_rwlock;
263 static struct mtx	unp_defers_lock;
264 
265 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
266 					    "unp_link_rwlock")
267 
268 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
269 					    RA_LOCKED)
270 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
271 					    RA_UNLOCKED)
272 
273 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
274 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
275 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
276 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
277 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
278 					    RA_WLOCKED)
279 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
280 
281 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
282 					    "unp_defer", NULL, MTX_DEF)
283 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
284 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
285 
286 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
287 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
288 
289 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
290 					    "unp", "unp",	\
291 					    MTX_DUPOK|MTX_DEF)
292 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
293 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
294 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
295 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
296 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
297 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
298 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
299 
300 static int	uipc_connect2(struct socket *, struct socket *);
301 static int	uipc_ctloutput(struct socket *, struct sockopt *);
302 static int	unp_connect(struct socket *, struct sockaddr *,
303 		    struct thread *);
304 static int	unp_connectat(int, struct socket *, struct sockaddr *,
305 		    struct thread *);
306 static int	unp_connect2(struct socket *so, struct socket *so2, int);
307 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
308 static void	unp_dispose(struct socket *so);
309 static void	unp_dispose_mbuf(struct mbuf *);
310 static void	unp_shutdown(struct unpcb *);
311 static void	unp_drop(struct unpcb *);
312 static void	unp_gc(__unused void *, int);
313 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
314 static void	unp_discard(struct file *);
315 static void	unp_freerights(struct filedescent **, int);
316 static void	unp_init(void);
317 static int	unp_internalize(struct mbuf **, struct thread *);
318 static void	unp_internalize_fp(struct file *);
319 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
320 static int	unp_externalize_fp(struct file *);
321 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
322 static void	unp_process_defers(void * __unused, int);
323 
324 static void
325 unp_pcb_hold(struct unpcb *unp)
326 {
327 	MPASS(unp->unp_refcount);
328 	refcount_acquire(&unp->unp_refcount);
329 }
330 
331 static int
332 unp_pcb_rele(struct unpcb *unp)
333 {
334 	int freed;
335 
336 	UNP_PCB_LOCK_ASSERT(unp);
337 	MPASS(unp->unp_refcount);
338 	if ((freed = refcount_release(&unp->unp_refcount))) {
339 		/* we got here with having detached? */
340 		MPASS(unp->unp_socket == NULL);
341 		UNP_PCB_UNLOCK(unp);
342 		UNP_PCB_LOCK_DESTROY(unp);
343 		uma_zfree(unp_zone, unp);
344 	}
345 	return (freed);
346 }
347 
348 static void
349 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
350 {
351 	MPASS(unp != unp2);
352 	UNP_PCB_UNLOCK_ASSERT(unp);
353 	UNP_PCB_UNLOCK_ASSERT(unp2);
354 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static __noinline void
364 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p,
365     int *freed)
366 {
367 	struct unpcb *unp2;
368 
369 	unp2 = *unp2p;
370 	unp_pcb_hold(unp2);
371 	UNP_PCB_UNLOCK(unp);
372 	UNP_PCB_LOCK(unp2);
373 	UNP_PCB_LOCK(unp);
374 	*freed = unp_pcb_rele(unp2);
375 	if (*freed)
376 		*unp2p = NULL;
377 }
378 
379 #define unp_pcb_owned_lock2(unp, unp2, freed) do {			\
380 	freed = 0;							\
381 	UNP_PCB_LOCK_ASSERT(unp);					\
382 	UNP_PCB_UNLOCK_ASSERT(unp2);					\
383 	MPASS((unp) != (unp2));						\
384 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))			\
385 		break;							\
386 	else if ((uintptr_t)(unp2) > (uintptr_t)(unp))			\
387 		UNP_PCB_LOCK(unp2);					\
388 	else								\
389 		unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);	\
390 } while (0)
391 
392 /*
393  * Definitions of protocols supported in the LOCAL domain.
394  */
395 static struct domain localdomain;
396 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
397 static struct pr_usrreqs uipc_usrreqs_seqpacket;
398 static struct protosw localsw[] = {
399 {
400 	.pr_type =		SOCK_STREAM,
401 	.pr_domain =		&localdomain,
402 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
403 	.pr_ctloutput =		&uipc_ctloutput,
404 	.pr_usrreqs =		&uipc_usrreqs_stream
405 },
406 {
407 	.pr_type =		SOCK_DGRAM,
408 	.pr_domain =		&localdomain,
409 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
410 	.pr_ctloutput =		&uipc_ctloutput,
411 	.pr_usrreqs =		&uipc_usrreqs_dgram
412 },
413 {
414 	.pr_type =		SOCK_SEQPACKET,
415 	.pr_domain =		&localdomain,
416 
417 	/*
418 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
419 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
420 	 * that supports both atomic record writes and control data.
421 	 */
422 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
423 				    PR_RIGHTS,
424 	.pr_ctloutput =		&uipc_ctloutput,
425 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
426 },
427 };
428 
429 static struct domain localdomain = {
430 	.dom_family =		AF_LOCAL,
431 	.dom_name =		"local",
432 	.dom_init =		unp_init,
433 	.dom_externalize =	unp_externalize,
434 	.dom_dispose =		unp_dispose,
435 	.dom_protosw =		localsw,
436 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
437 };
438 DOMAIN_SET(local);
439 
440 static void
441 uipc_abort(struct socket *so)
442 {
443 	struct unpcb *unp, *unp2;
444 
445 	unp = sotounpcb(so);
446 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
447 	UNP_PCB_UNLOCK_ASSERT(unp);
448 
449 	UNP_PCB_LOCK(unp);
450 	unp2 = unp->unp_conn;
451 	if (unp2 != NULL) {
452 		unp_pcb_hold(unp2);
453 		UNP_PCB_UNLOCK(unp);
454 		unp_drop(unp2);
455 	} else
456 		UNP_PCB_UNLOCK(unp);
457 }
458 
459 static int
460 uipc_accept(struct socket *so, struct sockaddr **nam)
461 {
462 	struct unpcb *unp, *unp2;
463 	const struct sockaddr *sa;
464 
465 	/*
466 	 * Pass back name of connected socket, if it was bound and we are
467 	 * still connected (our peer may have closed already!).
468 	 */
469 	unp = sotounpcb(so);
470 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
471 
472 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
473 	UNP_LINK_RLOCK();
474 	unp2 = unp->unp_conn;
475 	if (unp2 != NULL && unp2->unp_addr != NULL) {
476 		UNP_PCB_LOCK(unp2);
477 		sa = (struct sockaddr *) unp2->unp_addr;
478 		bcopy(sa, *nam, sa->sa_len);
479 		UNP_PCB_UNLOCK(unp2);
480 	} else {
481 		sa = &sun_noname;
482 		bcopy(sa, *nam, sa->sa_len);
483 	}
484 	UNP_LINK_RUNLOCK();
485 	return (0);
486 }
487 
488 static int
489 uipc_attach(struct socket *so, int proto, struct thread *td)
490 {
491 	u_long sendspace, recvspace;
492 	struct unpcb *unp;
493 	int error;
494 	bool locked;
495 
496 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
497 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
498 		switch (so->so_type) {
499 		case SOCK_STREAM:
500 			sendspace = unpst_sendspace;
501 			recvspace = unpst_recvspace;
502 			break;
503 
504 		case SOCK_DGRAM:
505 			sendspace = unpdg_sendspace;
506 			recvspace = unpdg_recvspace;
507 			break;
508 
509 		case SOCK_SEQPACKET:
510 			sendspace = unpsp_sendspace;
511 			recvspace = unpsp_recvspace;
512 			break;
513 
514 		default:
515 			panic("uipc_attach");
516 		}
517 		error = soreserve(so, sendspace, recvspace);
518 		if (error)
519 			return (error);
520 	}
521 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
522 	if (unp == NULL)
523 		return (ENOBUFS);
524 	LIST_INIT(&unp->unp_refs);
525 	UNP_PCB_LOCK_INIT(unp);
526 	unp->unp_socket = so;
527 	so->so_pcb = unp;
528 	unp->unp_refcount = 1;
529 	if (so->so_listen != NULL)
530 		unp->unp_flags |= UNP_NASCENT;
531 
532 	if ((locked = UNP_LINK_WOWNED()) == false)
533 		UNP_LINK_WLOCK();
534 
535 	unp->unp_gencnt = ++unp_gencnt;
536 	unp->unp_ino = ++unp_ino;
537 	unp_count++;
538 	switch (so->so_type) {
539 	case SOCK_STREAM:
540 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
541 		break;
542 
543 	case SOCK_DGRAM:
544 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
545 		break;
546 
547 	case SOCK_SEQPACKET:
548 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
549 		break;
550 
551 	default:
552 		panic("uipc_attach");
553 	}
554 
555 	if (locked == false)
556 		UNP_LINK_WUNLOCK();
557 
558 	return (0);
559 }
560 
561 static int
562 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
563 {
564 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
565 	struct vattr vattr;
566 	int error, namelen;
567 	struct nameidata nd;
568 	struct unpcb *unp;
569 	struct vnode *vp;
570 	struct mount *mp;
571 	cap_rights_t rights;
572 	char *buf;
573 
574 	if (nam->sa_family != AF_UNIX)
575 		return (EAFNOSUPPORT);
576 
577 	unp = sotounpcb(so);
578 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
579 
580 	if (soun->sun_len > sizeof(struct sockaddr_un))
581 		return (EINVAL);
582 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
583 	if (namelen <= 0)
584 		return (EINVAL);
585 
586 	/*
587 	 * We don't allow simultaneous bind() calls on a single UNIX domain
588 	 * socket, so flag in-progress operations, and return an error if an
589 	 * operation is already in progress.
590 	 *
591 	 * Historically, we have not allowed a socket to be rebound, so this
592 	 * also returns an error.  Not allowing re-binding simplifies the
593 	 * implementation and avoids a great many possible failure modes.
594 	 */
595 	UNP_PCB_LOCK(unp);
596 	if (unp->unp_vnode != NULL) {
597 		UNP_PCB_UNLOCK(unp);
598 		return (EINVAL);
599 	}
600 	if (unp->unp_flags & UNP_BINDING) {
601 		UNP_PCB_UNLOCK(unp);
602 		return (EALREADY);
603 	}
604 	unp->unp_flags |= UNP_BINDING;
605 	UNP_PCB_UNLOCK(unp);
606 
607 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
608 	bcopy(soun->sun_path, buf, namelen);
609 	buf[namelen] = 0;
610 
611 restart:
612 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
613 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
614 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
615 	error = namei(&nd);
616 	if (error)
617 		goto error;
618 	vp = nd.ni_vp;
619 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
620 		NDFREE(&nd, NDF_ONLY_PNBUF);
621 		if (nd.ni_dvp == vp)
622 			vrele(nd.ni_dvp);
623 		else
624 			vput(nd.ni_dvp);
625 		if (vp != NULL) {
626 			vrele(vp);
627 			error = EADDRINUSE;
628 			goto error;
629 		}
630 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
631 		if (error)
632 			goto error;
633 		goto restart;
634 	}
635 	VATTR_NULL(&vattr);
636 	vattr.va_type = VSOCK;
637 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
638 #ifdef MAC
639 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
640 	    &vattr);
641 #endif
642 	if (error == 0)
643 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
644 	NDFREE(&nd, NDF_ONLY_PNBUF);
645 	vput(nd.ni_dvp);
646 	if (error) {
647 		vn_finished_write(mp);
648 		goto error;
649 	}
650 	vp = nd.ni_vp;
651 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
652 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
653 
654 	UNP_PCB_LOCK(unp);
655 	VOP_UNP_BIND(vp, unp);
656 	unp->unp_vnode = vp;
657 	unp->unp_addr = soun;
658 	unp->unp_flags &= ~UNP_BINDING;
659 	UNP_PCB_UNLOCK(unp);
660 	VOP_UNLOCK(vp);
661 	vn_finished_write(mp);
662 	free(buf, M_TEMP);
663 	return (0);
664 
665 error:
666 	UNP_PCB_LOCK(unp);
667 	unp->unp_flags &= ~UNP_BINDING;
668 	UNP_PCB_UNLOCK(unp);
669 	free(buf, M_TEMP);
670 	return (error);
671 }
672 
673 static int
674 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
675 {
676 
677 	return (uipc_bindat(AT_FDCWD, so, nam, td));
678 }
679 
680 static int
681 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
682 {
683 	int error;
684 
685 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
686 	error = unp_connect(so, nam, td);
687 	return (error);
688 }
689 
690 static int
691 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
692     struct thread *td)
693 {
694 	int error;
695 
696 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
697 	error = unp_connectat(fd, so, nam, td);
698 	return (error);
699 }
700 
701 static void
702 uipc_close(struct socket *so)
703 {
704 	struct unpcb *unp, *unp2;
705 	struct vnode *vp = NULL;
706 	struct mtx *vplock;
707 	int freed;
708 	unp = sotounpcb(so);
709 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
710 
711 	vplock = NULL;
712 	if ((vp = unp->unp_vnode) != NULL) {
713 		vplock = mtx_pool_find(mtxpool_sleep, vp);
714 		mtx_lock(vplock);
715 	}
716 	UNP_PCB_LOCK(unp);
717 	if (vp && unp->unp_vnode == NULL) {
718 		mtx_unlock(vplock);
719 		vp = NULL;
720 	}
721 	if (vp != NULL) {
722 		VOP_UNP_DETACH(vp);
723 		unp->unp_vnode = NULL;
724 	}
725 	unp2 = unp->unp_conn;
726 	unp_pcb_hold(unp);
727 	if (__predict_false(unp == unp2)) {
728 		unp_disconnect(unp, unp2);
729 	} else if (unp2 != NULL) {
730 		unp_pcb_hold(unp2);
731 		unp_pcb_owned_lock2(unp, unp2, freed);
732 		unp_disconnect(unp, unp2);
733 		if (unp_pcb_rele(unp2) == 0)
734 			UNP_PCB_UNLOCK(unp2);
735 	}
736 	if (unp_pcb_rele(unp) == 0)
737 		UNP_PCB_UNLOCK(unp);
738 	if (vp) {
739 		mtx_unlock(vplock);
740 		vrele(vp);
741 	}
742 }
743 
744 static int
745 uipc_connect2(struct socket *so1, struct socket *so2)
746 {
747 	struct unpcb *unp, *unp2;
748 	int error;
749 
750 	unp = so1->so_pcb;
751 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
752 	unp2 = so2->so_pcb;
753 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
754 	if (unp != unp2)
755 		unp_pcb_lock2(unp, unp2);
756 	else
757 		UNP_PCB_LOCK(unp);
758 	error = unp_connect2(so1, so2, PRU_CONNECT2);
759 	if (unp != unp2)
760 		UNP_PCB_UNLOCK(unp2);
761 	UNP_PCB_UNLOCK(unp);
762 	return (error);
763 }
764 
765 static void
766 uipc_detach(struct socket *so)
767 {
768 	struct unpcb *unp, *unp2;
769 	struct mtx *vplock;
770 	struct sockaddr_un *saved_unp_addr;
771 	struct vnode *vp;
772 	int freeunp, local_unp_rights;
773 
774 	unp = sotounpcb(so);
775 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
776 
777 	vp = NULL;
778 	vplock = NULL;
779 	local_unp_rights = 0;
780 
781 	UNP_LINK_WLOCK();
782 	LIST_REMOVE(unp, unp_link);
783 	if (unp->unp_gcflag & UNPGC_DEAD)
784 		LIST_REMOVE(unp, unp_dead);
785 	unp->unp_gencnt = ++unp_gencnt;
786 	--unp_count;
787 	UNP_LINK_WUNLOCK();
788 
789 	UNP_PCB_UNLOCK_ASSERT(unp);
790  restart:
791 	if ((vp = unp->unp_vnode) != NULL) {
792 		vplock = mtx_pool_find(mtxpool_sleep, vp);
793 		mtx_lock(vplock);
794 	}
795 	UNP_PCB_LOCK(unp);
796 	if (unp->unp_vnode != vp &&
797 		unp->unp_vnode != NULL) {
798 		if (vplock)
799 			mtx_unlock(vplock);
800 		UNP_PCB_UNLOCK(unp);
801 		goto restart;
802 	}
803 	if ((unp->unp_flags & UNP_NASCENT) != 0) {
804 		goto teardown;
805 	}
806 	if ((vp = unp->unp_vnode) != NULL) {
807 		VOP_UNP_DETACH(vp);
808 		unp->unp_vnode = NULL;
809 	}
810 	if (__predict_false(unp == unp->unp_conn)) {
811 		unp_disconnect(unp, unp);
812 		unp2 = NULL;
813 		goto connect_self;
814 	}
815 	if ((unp2 = unp->unp_conn) != NULL) {
816 		unp_pcb_owned_lock2(unp, unp2, freeunp);
817 		if (freeunp)
818 			unp2 = NULL;
819 	}
820 	unp_pcb_hold(unp);
821 	if (unp2 != NULL) {
822 		unp_pcb_hold(unp2);
823 		unp_disconnect(unp, unp2);
824 		if (unp_pcb_rele(unp2) == 0)
825 			UNP_PCB_UNLOCK(unp2);
826 	}
827  connect_self:
828 	UNP_PCB_UNLOCK(unp);
829 	UNP_REF_LIST_LOCK();
830 	while (!LIST_EMPTY(&unp->unp_refs)) {
831 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
832 
833 		unp_pcb_hold(ref);
834 		UNP_REF_LIST_UNLOCK();
835 
836 		MPASS(ref != unp);
837 		UNP_PCB_UNLOCK_ASSERT(ref);
838 		unp_drop(ref);
839 		UNP_REF_LIST_LOCK();
840 	}
841 
842 	UNP_REF_LIST_UNLOCK();
843 	UNP_PCB_LOCK(unp);
844 	freeunp = unp_pcb_rele(unp);
845 	MPASS(freeunp == 0);
846 	local_unp_rights = unp_rights;
847 teardown:
848 	unp->unp_socket->so_pcb = NULL;
849 	saved_unp_addr = unp->unp_addr;
850 	unp->unp_addr = NULL;
851 	unp->unp_socket = NULL;
852 	freeunp = unp_pcb_rele(unp);
853 	if (saved_unp_addr != NULL)
854 		free(saved_unp_addr, M_SONAME);
855 	if (!freeunp)
856 		UNP_PCB_UNLOCK(unp);
857 	if (vp) {
858 		mtx_unlock(vplock);
859 		vrele(vp);
860 	}
861 	if (local_unp_rights)
862 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
863 }
864 
865 static int
866 uipc_disconnect(struct socket *so)
867 {
868 	struct unpcb *unp, *unp2;
869 	int freed;
870 
871 	unp = sotounpcb(so);
872 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
873 
874 	UNP_PCB_LOCK(unp);
875 	if ((unp2 = unp->unp_conn) == NULL) {
876 		UNP_PCB_UNLOCK(unp);
877 		return (0);
878 	}
879 	if (__predict_true(unp != unp2)) {
880 		unp_pcb_owned_lock2(unp, unp2, freed);
881 		if (__predict_false(freed)) {
882 			UNP_PCB_UNLOCK(unp);
883 			return (0);
884 		}
885 		unp_pcb_hold(unp2);
886 	}
887 	unp_pcb_hold(unp);
888 	unp_disconnect(unp, unp2);
889 	if (unp_pcb_rele(unp) == 0)
890 		UNP_PCB_UNLOCK(unp);
891 	if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
892 		UNP_PCB_UNLOCK(unp2);
893 	return (0);
894 }
895 
896 static int
897 uipc_listen(struct socket *so, int backlog, struct thread *td)
898 {
899 	struct unpcb *unp;
900 	int error;
901 
902 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
903 		return (EOPNOTSUPP);
904 
905 	unp = sotounpcb(so);
906 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
907 
908 	UNP_PCB_LOCK(unp);
909 	if (unp->unp_vnode == NULL) {
910 		/* Already connected or not bound to an address. */
911 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
912 		UNP_PCB_UNLOCK(unp);
913 		return (error);
914 	}
915 
916 	SOCK_LOCK(so);
917 	error = solisten_proto_check(so);
918 	if (error == 0) {
919 		cru2xt(td, &unp->unp_peercred);
920 		solisten_proto(so, backlog);
921 	}
922 	SOCK_UNLOCK(so);
923 	UNP_PCB_UNLOCK(unp);
924 	return (error);
925 }
926 
927 static int
928 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
929 {
930 	struct unpcb *unp, *unp2;
931 	const struct sockaddr *sa;
932 
933 	unp = sotounpcb(so);
934 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
935 
936 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
937 	UNP_LINK_RLOCK();
938 	/*
939 	 * XXX: It seems that this test always fails even when connection is
940 	 * established.  So, this else clause is added as workaround to
941 	 * return PF_LOCAL sockaddr.
942 	 */
943 	unp2 = unp->unp_conn;
944 	if (unp2 != NULL) {
945 		UNP_PCB_LOCK(unp2);
946 		if (unp2->unp_addr != NULL)
947 			sa = (struct sockaddr *) unp2->unp_addr;
948 		else
949 			sa = &sun_noname;
950 		bcopy(sa, *nam, sa->sa_len);
951 		UNP_PCB_UNLOCK(unp2);
952 	} else {
953 		sa = &sun_noname;
954 		bcopy(sa, *nam, sa->sa_len);
955 	}
956 	UNP_LINK_RUNLOCK();
957 	return (0);
958 }
959 
960 static int
961 uipc_rcvd(struct socket *so, int flags)
962 {
963 	struct unpcb *unp, *unp2;
964 	struct socket *so2;
965 	u_int mbcnt, sbcc;
966 
967 	unp = sotounpcb(so);
968 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
969 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
970 	    ("%s: socktype %d", __func__, so->so_type));
971 
972 	/*
973 	 * Adjust backpressure on sender and wakeup any waiting to write.
974 	 *
975 	 * The unp lock is acquired to maintain the validity of the unp_conn
976 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
977 	 * static as long as we don't permit unp2 to disconnect from unp,
978 	 * which is prevented by the lock on unp.  We cache values from
979 	 * so_rcv to avoid holding the so_rcv lock over the entire
980 	 * transaction on the remote so_snd.
981 	 */
982 	SOCKBUF_LOCK(&so->so_rcv);
983 	mbcnt = so->so_rcv.sb_mbcnt;
984 	sbcc = sbavail(&so->so_rcv);
985 	SOCKBUF_UNLOCK(&so->so_rcv);
986 	/*
987 	 * There is a benign race condition at this point.  If we're planning to
988 	 * clear SB_STOP, but uipc_send is called on the connected socket at
989 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
990 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
991 	 * full.  The race is benign because the only ill effect is to allow the
992 	 * sockbuf to exceed its size limit, and the size limits are not
993 	 * strictly guaranteed anyway.
994 	 */
995 	UNP_PCB_LOCK(unp);
996 	unp2 = unp->unp_conn;
997 	if (unp2 == NULL) {
998 		UNP_PCB_UNLOCK(unp);
999 		return (0);
1000 	}
1001 	so2 = unp2->unp_socket;
1002 	SOCKBUF_LOCK(&so2->so_snd);
1003 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
1004 		so2->so_snd.sb_flags &= ~SB_STOP;
1005 	sowwakeup_locked(so2);
1006 	UNP_PCB_UNLOCK(unp);
1007 	return (0);
1008 }
1009 
1010 static int
1011 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
1012 {
1013 	int error;
1014 	struct unpcb *unp;
1015 
1016 	unp = so->so_pcb;
1017 	if (unp->unp_conn != NULL)
1018 		return (EISCONN);
1019 	error = unp_connect(so, nam, td);
1020 	if (error)
1021 		return (error);
1022 	UNP_PCB_LOCK(unp);
1023 	if (unp->unp_conn == NULL) {
1024 		UNP_PCB_UNLOCK(unp);
1025 		if (error == 0)
1026 			error = ENOTCONN;
1027 	}
1028 	return (error);
1029 }
1030 
1031 static int
1032 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1033     struct mbuf *control, struct thread *td)
1034 {
1035 	struct unpcb *unp, *unp2;
1036 	struct socket *so2;
1037 	u_int mbcnt, sbcc;
1038 	int freed, error;
1039 
1040 	unp = sotounpcb(so);
1041 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1042 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1043 	    so->so_type == SOCK_SEQPACKET,
1044 	    ("%s: socktype %d", __func__, so->so_type));
1045 
1046 	freed = error = 0;
1047 	if (flags & PRUS_OOB) {
1048 		error = EOPNOTSUPP;
1049 		goto release;
1050 	}
1051 	if (control != NULL && (error = unp_internalize(&control, td)))
1052 		goto release;
1053 
1054 	unp2 = NULL;
1055 	switch (so->so_type) {
1056 	case SOCK_DGRAM:
1057 	{
1058 		const struct sockaddr *from;
1059 
1060 		if (nam != NULL) {
1061 			/*
1062 			 * We return with UNP_PCB_LOCK_HELD so we know that
1063 			 * the reference is live if the pointer is valid.
1064 			 */
1065 			if ((error = connect_internal(so, nam, td)))
1066 				break;
1067 			MPASS(unp->unp_conn != NULL);
1068 			unp2 = unp->unp_conn;
1069 		} else  {
1070 			UNP_PCB_LOCK(unp);
1071 
1072 			/*
1073 			 * Because connect() and send() are non-atomic in a sendto()
1074 			 * with a target address, it's possible that the socket will
1075 			 * have disconnected before the send() can run.  In that case
1076 			 * return the slightly counter-intuitive but otherwise
1077 			 * correct error that the socket is not connected.
1078 			 */
1079 			if ((unp2 = unp->unp_conn)  == NULL) {
1080 				UNP_PCB_UNLOCK(unp);
1081 				error = ENOTCONN;
1082 				break;
1083 			}
1084 		}
1085 		if (__predict_false(unp == unp2)) {
1086 			if (unp->unp_socket == NULL) {
1087 				error = ENOTCONN;
1088 				break;
1089 			}
1090 			goto connect_self;
1091 		}
1092 		unp_pcb_owned_lock2(unp, unp2, freed);
1093 		if (__predict_false(freed)) {
1094 			UNP_PCB_UNLOCK(unp);
1095 			error = ENOTCONN;
1096 			break;
1097 		}
1098 		/*
1099 		 * The socket referencing unp2 may have been closed
1100 		 * or unp may have been disconnected if the unp lock
1101 		 * was dropped to acquire unp2.
1102 		 */
1103 		if (__predict_false(unp->unp_conn == NULL) ||
1104 			unp2->unp_socket == NULL) {
1105 			UNP_PCB_UNLOCK(unp);
1106 			if (unp_pcb_rele(unp2) == 0)
1107 				UNP_PCB_UNLOCK(unp2);
1108 			error = ENOTCONN;
1109 			break;
1110 		}
1111 	connect_self:
1112 		if (unp2->unp_flags & UNP_WANTCRED)
1113 			control = unp_addsockcred(td, control);
1114 		if (unp->unp_addr != NULL)
1115 			from = (struct sockaddr *)unp->unp_addr;
1116 		else
1117 			from = &sun_noname;
1118 		so2 = unp2->unp_socket;
1119 		SOCKBUF_LOCK(&so2->so_rcv);
1120 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1121 		    control)) {
1122 			sorwakeup_locked(so2);
1123 			m = NULL;
1124 			control = NULL;
1125 		} else {
1126 			SOCKBUF_UNLOCK(&so2->so_rcv);
1127 			error = ENOBUFS;
1128 		}
1129 		if (nam != NULL)
1130 			unp_disconnect(unp, unp2);
1131 		if (__predict_true(unp != unp2))
1132 			UNP_PCB_UNLOCK(unp2);
1133 		UNP_PCB_UNLOCK(unp);
1134 		break;
1135 	}
1136 
1137 	case SOCK_SEQPACKET:
1138 	case SOCK_STREAM:
1139 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1140 			if (nam != NULL) {
1141 				if ((error = connect_internal(so, nam, td)))
1142 					break;
1143 			} else  {
1144 				error = ENOTCONN;
1145 				break;
1146 			}
1147 		} else if ((unp2 = unp->unp_conn) == NULL) {
1148 			error = ENOTCONN;
1149 			break;
1150 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1151 			error = EPIPE;
1152 			break;
1153 		} else {
1154 			UNP_PCB_LOCK(unp);
1155 			if ((unp2 = unp->unp_conn) == NULL) {
1156 				UNP_PCB_UNLOCK(unp);
1157 				error = ENOTCONN;
1158 				break;
1159 			}
1160 		}
1161 		unp_pcb_owned_lock2(unp, unp2, freed);
1162 		UNP_PCB_UNLOCK(unp);
1163 		if (__predict_false(freed)) {
1164 			error = ENOTCONN;
1165 			break;
1166 		}
1167 		if ((so2 = unp2->unp_socket) == NULL) {
1168 			UNP_PCB_UNLOCK(unp2);
1169 			error = ENOTCONN;
1170 			break;
1171 		}
1172 		SOCKBUF_LOCK(&so2->so_rcv);
1173 		if (unp2->unp_flags & UNP_WANTCRED) {
1174 			/*
1175 			 * Credentials are passed only once on SOCK_STREAM
1176 			 * and SOCK_SEQPACKET.
1177 			 */
1178 			unp2->unp_flags &= ~UNP_WANTCRED;
1179 			control = unp_addsockcred(td, control);
1180 		}
1181 
1182 		/*
1183 		 * Send to paired receive port and wake up readers.  Don't
1184 		 * check for space available in the receive buffer if we're
1185 		 * attaching ancillary data; Unix domain sockets only check
1186 		 * for space in the sending sockbuf, and that check is
1187 		 * performed one level up the stack.  At that level we cannot
1188 		 * precisely account for the amount of buffer space used
1189 		 * (e.g., because control messages are not yet internalized).
1190 		 */
1191 		switch (so->so_type) {
1192 		case SOCK_STREAM:
1193 			if (control != NULL) {
1194 				sbappendcontrol_locked(&so2->so_rcv, m,
1195 				    control);
1196 				control = NULL;
1197 			} else
1198 				sbappend_locked(&so2->so_rcv, m, flags);
1199 			break;
1200 
1201 		case SOCK_SEQPACKET: {
1202 			const struct sockaddr *from;
1203 
1204 			from = &sun_noname;
1205 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1206 			    from, m, control))
1207 				control = NULL;
1208 			break;
1209 			}
1210 		}
1211 
1212 		mbcnt = so2->so_rcv.sb_mbcnt;
1213 		sbcc = sbavail(&so2->so_rcv);
1214 		if (sbcc)
1215 			sorwakeup_locked(so2);
1216 		else
1217 			SOCKBUF_UNLOCK(&so2->so_rcv);
1218 
1219 		/*
1220 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1221 		 * it would be possible for uipc_rcvd to be called at this
1222 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1223 		 * we would set SB_STOP below.  That could lead to an empty
1224 		 * sockbuf having SB_STOP set
1225 		 */
1226 		SOCKBUF_LOCK(&so->so_snd);
1227 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1228 			so->so_snd.sb_flags |= SB_STOP;
1229 		SOCKBUF_UNLOCK(&so->so_snd);
1230 		UNP_PCB_UNLOCK(unp2);
1231 		m = NULL;
1232 		break;
1233 	}
1234 
1235 	/*
1236 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1237 	 */
1238 	if (flags & PRUS_EOF) {
1239 		UNP_PCB_LOCK(unp);
1240 		socantsendmore(so);
1241 		unp_shutdown(unp);
1242 		UNP_PCB_UNLOCK(unp);
1243 	}
1244 	if (control != NULL && error != 0)
1245 		unp_dispose_mbuf(control);
1246 
1247 release:
1248 	if (control != NULL)
1249 		m_freem(control);
1250 	/*
1251 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1252 	 * for freeing memory.
1253 	 */
1254 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1255 		m_freem(m);
1256 	return (error);
1257 }
1258 
1259 static int
1260 uipc_ready(struct socket *so, struct mbuf *m, int count)
1261 {
1262 	struct unpcb *unp, *unp2;
1263 	struct socket *so2;
1264 	int error;
1265 
1266 	unp = sotounpcb(so);
1267 
1268 	UNP_PCB_LOCK(unp);
1269 	if ((unp2 = unp->unp_conn) == NULL) {
1270 		UNP_PCB_UNLOCK(unp);
1271 		goto error;
1272 	}
1273 	if (unp != unp2) {
1274 		if (UNP_PCB_TRYLOCK(unp2) == 0) {
1275 			unp_pcb_hold(unp2);
1276 			UNP_PCB_UNLOCK(unp);
1277 			UNP_PCB_LOCK(unp2);
1278 			if (unp_pcb_rele(unp2))
1279 				goto error;
1280 		} else
1281 			UNP_PCB_UNLOCK(unp);
1282 	}
1283 	so2 = unp2->unp_socket;
1284 
1285 	SOCKBUF_LOCK(&so2->so_rcv);
1286 	if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1287 		sorwakeup_locked(so2);
1288 	else
1289 		SOCKBUF_UNLOCK(&so2->so_rcv);
1290 
1291 	UNP_PCB_UNLOCK(unp2);
1292 
1293 	return (error);
1294  error:
1295 	for (int i = 0; i < count; i++)
1296 		m = m_free(m);
1297 	return (ECONNRESET);
1298 }
1299 
1300 static int
1301 uipc_sense(struct socket *so, struct stat *sb)
1302 {
1303 	struct unpcb *unp;
1304 
1305 	unp = sotounpcb(so);
1306 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1307 
1308 	sb->st_blksize = so->so_snd.sb_hiwat;
1309 	sb->st_dev = NODEV;
1310 	sb->st_ino = unp->unp_ino;
1311 	return (0);
1312 }
1313 
1314 static int
1315 uipc_shutdown(struct socket *so)
1316 {
1317 	struct unpcb *unp;
1318 
1319 	unp = sotounpcb(so);
1320 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1321 
1322 	UNP_PCB_LOCK(unp);
1323 	socantsendmore(so);
1324 	unp_shutdown(unp);
1325 	UNP_PCB_UNLOCK(unp);
1326 	return (0);
1327 }
1328 
1329 static int
1330 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1331 {
1332 	struct unpcb *unp;
1333 	const struct sockaddr *sa;
1334 
1335 	unp = sotounpcb(so);
1336 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1337 
1338 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1339 	UNP_PCB_LOCK(unp);
1340 	if (unp->unp_addr != NULL)
1341 		sa = (struct sockaddr *) unp->unp_addr;
1342 	else
1343 		sa = &sun_noname;
1344 	bcopy(sa, *nam, sa->sa_len);
1345 	UNP_PCB_UNLOCK(unp);
1346 	return (0);
1347 }
1348 
1349 static struct pr_usrreqs uipc_usrreqs_dgram = {
1350 	.pru_abort = 		uipc_abort,
1351 	.pru_accept =		uipc_accept,
1352 	.pru_attach =		uipc_attach,
1353 	.pru_bind =		uipc_bind,
1354 	.pru_bindat =		uipc_bindat,
1355 	.pru_connect =		uipc_connect,
1356 	.pru_connectat =	uipc_connectat,
1357 	.pru_connect2 =		uipc_connect2,
1358 	.pru_detach =		uipc_detach,
1359 	.pru_disconnect =	uipc_disconnect,
1360 	.pru_listen =		uipc_listen,
1361 	.pru_peeraddr =		uipc_peeraddr,
1362 	.pru_rcvd =		uipc_rcvd,
1363 	.pru_send =		uipc_send,
1364 	.pru_sense =		uipc_sense,
1365 	.pru_shutdown =		uipc_shutdown,
1366 	.pru_sockaddr =		uipc_sockaddr,
1367 	.pru_soreceive =	soreceive_dgram,
1368 	.pru_close =		uipc_close,
1369 };
1370 
1371 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1372 	.pru_abort =		uipc_abort,
1373 	.pru_accept =		uipc_accept,
1374 	.pru_attach =		uipc_attach,
1375 	.pru_bind =		uipc_bind,
1376 	.pru_bindat =		uipc_bindat,
1377 	.pru_connect =		uipc_connect,
1378 	.pru_connectat =	uipc_connectat,
1379 	.pru_connect2 =		uipc_connect2,
1380 	.pru_detach =		uipc_detach,
1381 	.pru_disconnect =	uipc_disconnect,
1382 	.pru_listen =		uipc_listen,
1383 	.pru_peeraddr =		uipc_peeraddr,
1384 	.pru_rcvd =		uipc_rcvd,
1385 	.pru_send =		uipc_send,
1386 	.pru_sense =		uipc_sense,
1387 	.pru_shutdown =		uipc_shutdown,
1388 	.pru_sockaddr =		uipc_sockaddr,
1389 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1390 	.pru_close =		uipc_close,
1391 };
1392 
1393 static struct pr_usrreqs uipc_usrreqs_stream = {
1394 	.pru_abort = 		uipc_abort,
1395 	.pru_accept =		uipc_accept,
1396 	.pru_attach =		uipc_attach,
1397 	.pru_bind =		uipc_bind,
1398 	.pru_bindat =		uipc_bindat,
1399 	.pru_connect =		uipc_connect,
1400 	.pru_connectat =	uipc_connectat,
1401 	.pru_connect2 =		uipc_connect2,
1402 	.pru_detach =		uipc_detach,
1403 	.pru_disconnect =	uipc_disconnect,
1404 	.pru_listen =		uipc_listen,
1405 	.pru_peeraddr =		uipc_peeraddr,
1406 	.pru_rcvd =		uipc_rcvd,
1407 	.pru_send =		uipc_send,
1408 	.pru_ready =		uipc_ready,
1409 	.pru_sense =		uipc_sense,
1410 	.pru_shutdown =		uipc_shutdown,
1411 	.pru_sockaddr =		uipc_sockaddr,
1412 	.pru_soreceive =	soreceive_generic,
1413 	.pru_close =		uipc_close,
1414 };
1415 
1416 static int
1417 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1418 {
1419 	struct unpcb *unp;
1420 	struct xucred xu;
1421 	int error, optval;
1422 
1423 	if (sopt->sopt_level != 0)
1424 		return (EINVAL);
1425 
1426 	unp = sotounpcb(so);
1427 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1428 	error = 0;
1429 	switch (sopt->sopt_dir) {
1430 	case SOPT_GET:
1431 		switch (sopt->sopt_name) {
1432 		case LOCAL_PEERCRED:
1433 			UNP_PCB_LOCK(unp);
1434 			if (unp->unp_flags & UNP_HAVEPC)
1435 				xu = unp->unp_peercred;
1436 			else {
1437 				if (so->so_type == SOCK_STREAM)
1438 					error = ENOTCONN;
1439 				else
1440 					error = EINVAL;
1441 			}
1442 			UNP_PCB_UNLOCK(unp);
1443 			if (error == 0)
1444 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1445 			break;
1446 
1447 		case LOCAL_CREDS:
1448 			/* Unlocked read. */
1449 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1450 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1451 			break;
1452 
1453 		case LOCAL_CONNWAIT:
1454 			/* Unlocked read. */
1455 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1456 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1457 			break;
1458 
1459 		default:
1460 			error = EOPNOTSUPP;
1461 			break;
1462 		}
1463 		break;
1464 
1465 	case SOPT_SET:
1466 		switch (sopt->sopt_name) {
1467 		case LOCAL_CREDS:
1468 		case LOCAL_CONNWAIT:
1469 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1470 					    sizeof(optval));
1471 			if (error)
1472 				break;
1473 
1474 #define	OPTSET(bit) do {						\
1475 	UNP_PCB_LOCK(unp);						\
1476 	if (optval)							\
1477 		unp->unp_flags |= bit;					\
1478 	else								\
1479 		unp->unp_flags &= ~bit;					\
1480 	UNP_PCB_UNLOCK(unp);						\
1481 } while (0)
1482 
1483 			switch (sopt->sopt_name) {
1484 			case LOCAL_CREDS:
1485 				OPTSET(UNP_WANTCRED);
1486 				break;
1487 
1488 			case LOCAL_CONNWAIT:
1489 				OPTSET(UNP_CONNWAIT);
1490 				break;
1491 
1492 			default:
1493 				break;
1494 			}
1495 			break;
1496 #undef	OPTSET
1497 		default:
1498 			error = ENOPROTOOPT;
1499 			break;
1500 		}
1501 		break;
1502 
1503 	default:
1504 		error = EOPNOTSUPP;
1505 		break;
1506 	}
1507 	return (error);
1508 }
1509 
1510 static int
1511 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1512 {
1513 
1514 	return (unp_connectat(AT_FDCWD, so, nam, td));
1515 }
1516 
1517 static int
1518 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1519     struct thread *td)
1520 {
1521 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1522 	struct vnode *vp;
1523 	struct socket *so2;
1524 	struct unpcb *unp, *unp2, *unp3;
1525 	struct nameidata nd;
1526 	char buf[SOCK_MAXADDRLEN];
1527 	struct sockaddr *sa;
1528 	cap_rights_t rights;
1529 	int error, len, freed;
1530 	struct mtx *vplock;
1531 
1532 	if (nam->sa_family != AF_UNIX)
1533 		return (EAFNOSUPPORT);
1534 	if (nam->sa_len > sizeof(struct sockaddr_un))
1535 		return (EINVAL);
1536 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1537 	if (len <= 0)
1538 		return (EINVAL);
1539 	bcopy(soun->sun_path, buf, len);
1540 	buf[len] = 0;
1541 
1542 	unp = sotounpcb(so);
1543 	UNP_PCB_LOCK(unp);
1544 	if (unp->unp_flags & UNP_CONNECTING) {
1545 		UNP_PCB_UNLOCK(unp);
1546 		return (EALREADY);
1547 	}
1548 	unp->unp_flags |= UNP_CONNECTING;
1549 	UNP_PCB_UNLOCK(unp);
1550 
1551 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1552 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1553 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1554 	error = namei(&nd);
1555 	if (error)
1556 		vp = NULL;
1557 	else
1558 		vp = nd.ni_vp;
1559 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1560 	NDFREE(&nd, NDF_ONLY_PNBUF);
1561 	if (error)
1562 		goto bad;
1563 
1564 	if (vp->v_type != VSOCK) {
1565 		error = ENOTSOCK;
1566 		goto bad;
1567 	}
1568 #ifdef MAC
1569 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1570 	if (error)
1571 		goto bad;
1572 #endif
1573 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1574 	if (error)
1575 		goto bad;
1576 
1577 	unp = sotounpcb(so);
1578 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1579 
1580 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1581 	mtx_lock(vplock);
1582 	VOP_UNP_CONNECT(vp, &unp2);
1583 	if (unp2 == NULL) {
1584 		error = ECONNREFUSED;
1585 		goto bad2;
1586 	}
1587 	so2 = unp2->unp_socket;
1588 	if (so->so_type != so2->so_type) {
1589 		error = EPROTOTYPE;
1590 		goto bad2;
1591 	}
1592 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1593 		if (so2->so_options & SO_ACCEPTCONN) {
1594 			CURVNET_SET(so2->so_vnet);
1595 			so2 = sonewconn(so2, 0);
1596 			CURVNET_RESTORE();
1597 		} else
1598 			so2 = NULL;
1599 		if (so2 == NULL) {
1600 			error = ECONNREFUSED;
1601 			goto bad2;
1602 		}
1603 		unp3 = sotounpcb(so2);
1604 		unp_pcb_lock2(unp2, unp3);
1605 		if (unp2->unp_addr != NULL) {
1606 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1607 			unp3->unp_addr = (struct sockaddr_un *) sa;
1608 			sa = NULL;
1609 		}
1610 
1611 		unp_copy_peercred(td, unp3, unp, unp2);
1612 
1613 		UNP_PCB_UNLOCK(unp2);
1614 		unp2 = unp3;
1615 		unp_pcb_owned_lock2(unp2, unp, freed);
1616 		if (__predict_false(freed)) {
1617 			UNP_PCB_UNLOCK(unp2);
1618 			error = ECONNREFUSED;
1619 			goto bad2;
1620 		}
1621 #ifdef MAC
1622 		mac_socketpeer_set_from_socket(so, so2);
1623 		mac_socketpeer_set_from_socket(so2, so);
1624 #endif
1625 	} else {
1626 		if (unp == unp2)
1627 			UNP_PCB_LOCK(unp);
1628 		else
1629 			unp_pcb_lock2(unp, unp2);
1630 	}
1631 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1632 	    sotounpcb(so2) == unp2,
1633 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1634 	error = unp_connect2(so, so2, PRU_CONNECT);
1635 	if (unp != unp2)
1636 		UNP_PCB_UNLOCK(unp2);
1637 	UNP_PCB_UNLOCK(unp);
1638 bad2:
1639 	mtx_unlock(vplock);
1640 bad:
1641 	if (vp != NULL) {
1642 		vput(vp);
1643 	}
1644 	free(sa, M_SONAME);
1645 	UNP_PCB_LOCK(unp);
1646 	unp->unp_flags &= ~UNP_CONNECTING;
1647 	UNP_PCB_UNLOCK(unp);
1648 	return (error);
1649 }
1650 
1651 /*
1652  * Set socket peer credentials at connection time.
1653  *
1654  * The client's PCB credentials are copied from its process structure.  The
1655  * server's PCB credentials are copied from the socket on which it called
1656  * listen(2).  uipc_listen cached that process's credentials at the time.
1657  */
1658 void
1659 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1660     struct unpcb *server_unp, struct unpcb *listen_unp)
1661 {
1662 	cru2xt(td, &client_unp->unp_peercred);
1663 	client_unp->unp_flags |= UNP_HAVEPC;
1664 
1665 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1666 	    sizeof(server_unp->unp_peercred));
1667 	server_unp->unp_flags |= UNP_HAVEPC;
1668 	if (listen_unp->unp_flags & UNP_WANTCRED)
1669 		client_unp->unp_flags |= UNP_WANTCRED;
1670 }
1671 
1672 static int
1673 unp_connect2(struct socket *so, struct socket *so2, int req)
1674 {
1675 	struct unpcb *unp;
1676 	struct unpcb *unp2;
1677 
1678 	unp = sotounpcb(so);
1679 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1680 	unp2 = sotounpcb(so2);
1681 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1682 
1683 	UNP_PCB_LOCK_ASSERT(unp);
1684 	UNP_PCB_LOCK_ASSERT(unp2);
1685 
1686 	if (so2->so_type != so->so_type)
1687 		return (EPROTOTYPE);
1688 	unp2->unp_flags &= ~UNP_NASCENT;
1689 	unp->unp_conn = unp2;
1690 	unp_pcb_hold(unp2);
1691 	unp_pcb_hold(unp);
1692 	switch (so->so_type) {
1693 	case SOCK_DGRAM:
1694 		UNP_REF_LIST_LOCK();
1695 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1696 		UNP_REF_LIST_UNLOCK();
1697 		soisconnected(so);
1698 		break;
1699 
1700 	case SOCK_STREAM:
1701 	case SOCK_SEQPACKET:
1702 		unp2->unp_conn = unp;
1703 		if (req == PRU_CONNECT &&
1704 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1705 			soisconnecting(so);
1706 		else
1707 			soisconnected(so);
1708 		soisconnected(so2);
1709 		break;
1710 
1711 	default:
1712 		panic("unp_connect2");
1713 	}
1714 	return (0);
1715 }
1716 
1717 static void
1718 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1719 {
1720 	struct socket *so, *so2;
1721 	int freed __unused;
1722 
1723 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1724 
1725 	UNP_PCB_LOCK_ASSERT(unp);
1726 	UNP_PCB_LOCK_ASSERT(unp2);
1727 
1728 	if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1729 		return;
1730 
1731 	MPASS(unp->unp_conn == unp2);
1732 	unp->unp_conn = NULL;
1733 	so = unp->unp_socket;
1734 	so2 = unp2->unp_socket;
1735 	switch (unp->unp_socket->so_type) {
1736 	case SOCK_DGRAM:
1737 		UNP_REF_LIST_LOCK();
1738 		LIST_REMOVE(unp, unp_reflink);
1739 		UNP_REF_LIST_UNLOCK();
1740 		if (so) {
1741 			SOCK_LOCK(so);
1742 			so->so_state &= ~SS_ISCONNECTED;
1743 			SOCK_UNLOCK(so);
1744 		}
1745 		break;
1746 
1747 	case SOCK_STREAM:
1748 	case SOCK_SEQPACKET:
1749 		if (so)
1750 			soisdisconnected(so);
1751 		MPASS(unp2->unp_conn == unp);
1752 		unp2->unp_conn = NULL;
1753 		if (so2)
1754 			soisdisconnected(so2);
1755 		break;
1756 	}
1757 	freed = unp_pcb_rele(unp);
1758 	MPASS(freed == 0);
1759 	freed = unp_pcb_rele(unp2);
1760 	MPASS(freed == 0);
1761 }
1762 
1763 /*
1764  * unp_pcblist() walks the global list of struct unpcb's to generate a
1765  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1766  * sequentially, validating the generation number on each to see if it has
1767  * been detached.  All of this is necessary because copyout() may sleep on
1768  * disk I/O.
1769  */
1770 static int
1771 unp_pcblist(SYSCTL_HANDLER_ARGS)
1772 {
1773 	struct unpcb *unp, **unp_list;
1774 	unp_gen_t gencnt;
1775 	struct xunpgen *xug;
1776 	struct unp_head *head;
1777 	struct xunpcb *xu;
1778 	u_int i;
1779 	int error, freeunp, n;
1780 
1781 	switch ((intptr_t)arg1) {
1782 	case SOCK_STREAM:
1783 		head = &unp_shead;
1784 		break;
1785 
1786 	case SOCK_DGRAM:
1787 		head = &unp_dhead;
1788 		break;
1789 
1790 	case SOCK_SEQPACKET:
1791 		head = &unp_sphead;
1792 		break;
1793 
1794 	default:
1795 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1796 	}
1797 
1798 	/*
1799 	 * The process of preparing the PCB list is too time-consuming and
1800 	 * resource-intensive to repeat twice on every request.
1801 	 */
1802 	if (req->oldptr == NULL) {
1803 		n = unp_count;
1804 		req->oldidx = 2 * (sizeof *xug)
1805 			+ (n + n/8) * sizeof(struct xunpcb);
1806 		return (0);
1807 	}
1808 
1809 	if (req->newptr != NULL)
1810 		return (EPERM);
1811 
1812 	/*
1813 	 * OK, now we're committed to doing something.
1814 	 */
1815 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1816 	UNP_LINK_RLOCK();
1817 	gencnt = unp_gencnt;
1818 	n = unp_count;
1819 	UNP_LINK_RUNLOCK();
1820 
1821 	xug->xug_len = sizeof *xug;
1822 	xug->xug_count = n;
1823 	xug->xug_gen = gencnt;
1824 	xug->xug_sogen = so_gencnt;
1825 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1826 	if (error) {
1827 		free(xug, M_TEMP);
1828 		return (error);
1829 	}
1830 
1831 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1832 
1833 	UNP_LINK_RLOCK();
1834 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1835 	     unp = LIST_NEXT(unp, unp_link)) {
1836 		UNP_PCB_LOCK(unp);
1837 		if (unp->unp_gencnt <= gencnt) {
1838 			if (cr_cansee(req->td->td_ucred,
1839 			    unp->unp_socket->so_cred)) {
1840 				UNP_PCB_UNLOCK(unp);
1841 				continue;
1842 			}
1843 			unp_list[i++] = unp;
1844 			unp_pcb_hold(unp);
1845 		}
1846 		UNP_PCB_UNLOCK(unp);
1847 	}
1848 	UNP_LINK_RUNLOCK();
1849 	n = i;			/* In case we lost some during malloc. */
1850 
1851 	error = 0;
1852 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1853 	for (i = 0; i < n; i++) {
1854 		unp = unp_list[i];
1855 		UNP_PCB_LOCK(unp);
1856 		freeunp = unp_pcb_rele(unp);
1857 
1858 		if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1859 			xu->xu_len = sizeof *xu;
1860 			xu->xu_unpp = (uintptr_t)unp;
1861 			/*
1862 			 * XXX - need more locking here to protect against
1863 			 * connect/disconnect races for SMP.
1864 			 */
1865 			if (unp->unp_addr != NULL)
1866 				bcopy(unp->unp_addr, &xu->xu_addr,
1867 				      unp->unp_addr->sun_len);
1868 			else
1869 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1870 			if (unp->unp_conn != NULL &&
1871 			    unp->unp_conn->unp_addr != NULL)
1872 				bcopy(unp->unp_conn->unp_addr,
1873 				      &xu->xu_caddr,
1874 				      unp->unp_conn->unp_addr->sun_len);
1875 			else
1876 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1877 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1878 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1879 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1880 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1881 			xu->unp_gencnt = unp->unp_gencnt;
1882 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1883 			UNP_PCB_UNLOCK(unp);
1884 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1885 		} else  if (freeunp == 0)
1886 			UNP_PCB_UNLOCK(unp);
1887 	}
1888 	free(xu, M_TEMP);
1889 	if (!error) {
1890 		/*
1891 		 * Give the user an updated idea of our state.  If the
1892 		 * generation differs from what we told her before, she knows
1893 		 * that something happened while we were processing this
1894 		 * request, and it might be necessary to retry.
1895 		 */
1896 		xug->xug_gen = unp_gencnt;
1897 		xug->xug_sogen = so_gencnt;
1898 		xug->xug_count = unp_count;
1899 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1900 	}
1901 	free(unp_list, M_TEMP);
1902 	free(xug, M_TEMP);
1903 	return (error);
1904 }
1905 
1906 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1907     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1908     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1909     "List of active local datagram sockets");
1910 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1911     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1912     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1913     "List of active local stream sockets");
1914 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1915     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1916     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1917     "List of active local seqpacket sockets");
1918 
1919 static void
1920 unp_shutdown(struct unpcb *unp)
1921 {
1922 	struct unpcb *unp2;
1923 	struct socket *so;
1924 
1925 	UNP_PCB_LOCK_ASSERT(unp);
1926 
1927 	unp2 = unp->unp_conn;
1928 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1929 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1930 		so = unp2->unp_socket;
1931 		if (so != NULL)
1932 			socantrcvmore(so);
1933 	}
1934 }
1935 
1936 static void
1937 unp_drop(struct unpcb *unp)
1938 {
1939 	struct socket *so = unp->unp_socket;
1940 	struct unpcb *unp2;
1941 	int freed;
1942 
1943 	/*
1944 	 * Regardless of whether the socket's peer dropped the connection
1945 	 * with this socket by aborting or disconnecting, POSIX requires
1946 	 * that ECONNRESET is returned.
1947 	 */
1948 	/* acquire a reference so that unp isn't freed from underneath us */
1949 
1950 	UNP_PCB_LOCK(unp);
1951 	if (so)
1952 		so->so_error = ECONNRESET;
1953 	unp2 = unp->unp_conn;
1954 	if (unp2 == unp) {
1955 		unp_disconnect(unp, unp2);
1956 	} else if (unp2 != NULL) {
1957 		unp_pcb_hold(unp2);
1958 		unp_pcb_owned_lock2(unp, unp2, freed);
1959 		unp_disconnect(unp, unp2);
1960 		if (unp_pcb_rele(unp2) == 0)
1961 			UNP_PCB_UNLOCK(unp2);
1962 	}
1963 	if (unp_pcb_rele(unp) == 0)
1964 		UNP_PCB_UNLOCK(unp);
1965 }
1966 
1967 static void
1968 unp_freerights(struct filedescent **fdep, int fdcount)
1969 {
1970 	struct file *fp;
1971 	int i;
1972 
1973 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1974 
1975 	for (i = 0; i < fdcount; i++) {
1976 		fp = fdep[i]->fde_file;
1977 		filecaps_free(&fdep[i]->fde_caps);
1978 		unp_discard(fp);
1979 	}
1980 	free(fdep[0], M_FILECAPS);
1981 }
1982 
1983 static int
1984 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1985 {
1986 	struct thread *td = curthread;		/* XXX */
1987 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1988 	int i;
1989 	int *fdp;
1990 	struct filedesc *fdesc = td->td_proc->p_fd;
1991 	struct filedescent **fdep;
1992 	void *data;
1993 	socklen_t clen = control->m_len, datalen;
1994 	int error, newfds;
1995 	u_int newlen;
1996 
1997 	UNP_LINK_UNLOCK_ASSERT();
1998 
1999 	error = 0;
2000 	if (controlp != NULL) /* controlp == NULL => free control messages */
2001 		*controlp = NULL;
2002 	while (cm != NULL) {
2003 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2004 			error = EINVAL;
2005 			break;
2006 		}
2007 		data = CMSG_DATA(cm);
2008 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2009 		if (cm->cmsg_level == SOL_SOCKET
2010 		    && cm->cmsg_type == SCM_RIGHTS) {
2011 			newfds = datalen / sizeof(*fdep);
2012 			if (newfds == 0)
2013 				goto next;
2014 			fdep = data;
2015 
2016 			/* If we're not outputting the descriptors free them. */
2017 			if (error || controlp == NULL) {
2018 				unp_freerights(fdep, newfds);
2019 				goto next;
2020 			}
2021 			FILEDESC_XLOCK(fdesc);
2022 
2023 			/*
2024 			 * Now change each pointer to an fd in the global
2025 			 * table to an integer that is the index to the local
2026 			 * fd table entry that we set up to point to the
2027 			 * global one we are transferring.
2028 			 */
2029 			newlen = newfds * sizeof(int);
2030 			*controlp = sbcreatecontrol(NULL, newlen,
2031 			    SCM_RIGHTS, SOL_SOCKET);
2032 			if (*controlp == NULL) {
2033 				FILEDESC_XUNLOCK(fdesc);
2034 				error = E2BIG;
2035 				unp_freerights(fdep, newfds);
2036 				goto next;
2037 			}
2038 
2039 			fdp = (int *)
2040 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2041 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2042 				FILEDESC_XUNLOCK(fdesc);
2043 				error = EMSGSIZE;
2044 				unp_freerights(fdep, newfds);
2045 				m_freem(*controlp);
2046 				*controlp = NULL;
2047 				goto next;
2048 			}
2049 			for (i = 0; i < newfds; i++, fdp++) {
2050 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2051 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2052 				    &fdep[i]->fde_caps);
2053 				unp_externalize_fp(fdep[i]->fde_file);
2054 			}
2055 
2056 			/*
2057 			 * The new type indicates that the mbuf data refers to
2058 			 * kernel resources that may need to be released before
2059 			 * the mbuf is freed.
2060 			 */
2061 			m_chtype(*controlp, MT_EXTCONTROL);
2062 			FILEDESC_XUNLOCK(fdesc);
2063 			free(fdep[0], M_FILECAPS);
2064 		} else {
2065 			/* We can just copy anything else across. */
2066 			if (error || controlp == NULL)
2067 				goto next;
2068 			*controlp = sbcreatecontrol(NULL, datalen,
2069 			    cm->cmsg_type, cm->cmsg_level);
2070 			if (*controlp == NULL) {
2071 				error = ENOBUFS;
2072 				goto next;
2073 			}
2074 			bcopy(data,
2075 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2076 			    datalen);
2077 		}
2078 		controlp = &(*controlp)->m_next;
2079 
2080 next:
2081 		if (CMSG_SPACE(datalen) < clen) {
2082 			clen -= CMSG_SPACE(datalen);
2083 			cm = (struct cmsghdr *)
2084 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2085 		} else {
2086 			clen = 0;
2087 			cm = NULL;
2088 		}
2089 	}
2090 
2091 	m_freem(control);
2092 	return (error);
2093 }
2094 
2095 static void
2096 unp_zone_change(void *tag)
2097 {
2098 
2099 	uma_zone_set_max(unp_zone, maxsockets);
2100 }
2101 
2102 static void
2103 unp_init(void)
2104 {
2105 
2106 #ifdef VIMAGE
2107 	if (!IS_DEFAULT_VNET(curvnet))
2108 		return;
2109 #endif
2110 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2111 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2112 	if (unp_zone == NULL)
2113 		panic("unp_init");
2114 	uma_zone_set_max(unp_zone, maxsockets);
2115 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2116 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2117 	    NULL, EVENTHANDLER_PRI_ANY);
2118 	LIST_INIT(&unp_dhead);
2119 	LIST_INIT(&unp_shead);
2120 	LIST_INIT(&unp_sphead);
2121 	SLIST_INIT(&unp_defers);
2122 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2123 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2124 	UNP_LINK_LOCK_INIT();
2125 	UNP_DEFERRED_LOCK_INIT();
2126 }
2127 
2128 static void
2129 unp_internalize_cleanup_rights(struct mbuf *control)
2130 {
2131 	struct cmsghdr *cp;
2132 	struct mbuf *m;
2133 	void *data;
2134 	socklen_t datalen;
2135 
2136 	for (m = control; m != NULL; m = m->m_next) {
2137 		cp = mtod(m, struct cmsghdr *);
2138 		if (cp->cmsg_level != SOL_SOCKET ||
2139 		    cp->cmsg_type != SCM_RIGHTS)
2140 			continue;
2141 		data = CMSG_DATA(cp);
2142 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2143 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2144 	}
2145 }
2146 
2147 static int
2148 unp_internalize(struct mbuf **controlp, struct thread *td)
2149 {
2150 	struct mbuf *control, **initial_controlp;
2151 	struct proc *p;
2152 	struct filedesc *fdesc;
2153 	struct bintime *bt;
2154 	struct cmsghdr *cm;
2155 	struct cmsgcred *cmcred;
2156 	struct filedescent *fde, **fdep, *fdev;
2157 	struct file *fp;
2158 	struct timeval *tv;
2159 	struct timespec *ts;
2160 	void *data;
2161 	socklen_t clen, datalen;
2162 	int i, j, error, *fdp, oldfds;
2163 	u_int newlen;
2164 
2165 	UNP_LINK_UNLOCK_ASSERT();
2166 
2167 	p = td->td_proc;
2168 	fdesc = p->p_fd;
2169 	error = 0;
2170 	control = *controlp;
2171 	clen = control->m_len;
2172 	*controlp = NULL;
2173 	initial_controlp = controlp;
2174 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2175 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2176 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2177 			error = EINVAL;
2178 			goto out;
2179 		}
2180 		data = CMSG_DATA(cm);
2181 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2182 
2183 		switch (cm->cmsg_type) {
2184 		/*
2185 		 * Fill in credential information.
2186 		 */
2187 		case SCM_CREDS:
2188 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2189 			    SCM_CREDS, SOL_SOCKET);
2190 			if (*controlp == NULL) {
2191 				error = ENOBUFS;
2192 				goto out;
2193 			}
2194 			cmcred = (struct cmsgcred *)
2195 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2196 			cmcred->cmcred_pid = p->p_pid;
2197 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2198 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2199 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2200 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2201 			    CMGROUP_MAX);
2202 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2203 				cmcred->cmcred_groups[i] =
2204 				    td->td_ucred->cr_groups[i];
2205 			break;
2206 
2207 		case SCM_RIGHTS:
2208 			oldfds = datalen / sizeof (int);
2209 			if (oldfds == 0)
2210 				break;
2211 			/*
2212 			 * Check that all the FDs passed in refer to legal
2213 			 * files.  If not, reject the entire operation.
2214 			 */
2215 			fdp = data;
2216 			FILEDESC_SLOCK(fdesc);
2217 			for (i = 0; i < oldfds; i++, fdp++) {
2218 				fp = fget_locked(fdesc, *fdp);
2219 				if (fp == NULL) {
2220 					FILEDESC_SUNLOCK(fdesc);
2221 					error = EBADF;
2222 					goto out;
2223 				}
2224 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2225 					FILEDESC_SUNLOCK(fdesc);
2226 					error = EOPNOTSUPP;
2227 					goto out;
2228 				}
2229 
2230 			}
2231 
2232 			/*
2233 			 * Now replace the integer FDs with pointers to the
2234 			 * file structure and capability rights.
2235 			 */
2236 			newlen = oldfds * sizeof(fdep[0]);
2237 			*controlp = sbcreatecontrol(NULL, newlen,
2238 			    SCM_RIGHTS, SOL_SOCKET);
2239 			if (*controlp == NULL) {
2240 				FILEDESC_SUNLOCK(fdesc);
2241 				error = E2BIG;
2242 				goto out;
2243 			}
2244 			fdp = data;
2245 			for (i = 0; i < oldfds; i++, fdp++) {
2246 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2247 					fdp = data;
2248 					for (j = 0; j < i; j++, fdp++) {
2249 						fdrop(fdesc->fd_ofiles[*fdp].
2250 						    fde_file, td);
2251 					}
2252 					FILEDESC_SUNLOCK(fdesc);
2253 					error = EBADF;
2254 					goto out;
2255 				}
2256 			}
2257 			fdp = data;
2258 			fdep = (struct filedescent **)
2259 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2260 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2261 			    M_WAITOK);
2262 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2263 				fde = &fdesc->fd_ofiles[*fdp];
2264 				fdep[i] = fdev;
2265 				fdep[i]->fde_file = fde->fde_file;
2266 				filecaps_copy(&fde->fde_caps,
2267 				    &fdep[i]->fde_caps, true);
2268 				unp_internalize_fp(fdep[i]->fde_file);
2269 			}
2270 			FILEDESC_SUNLOCK(fdesc);
2271 			break;
2272 
2273 		case SCM_TIMESTAMP:
2274 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2275 			    SCM_TIMESTAMP, SOL_SOCKET);
2276 			if (*controlp == NULL) {
2277 				error = ENOBUFS;
2278 				goto out;
2279 			}
2280 			tv = (struct timeval *)
2281 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2282 			microtime(tv);
2283 			break;
2284 
2285 		case SCM_BINTIME:
2286 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2287 			    SCM_BINTIME, SOL_SOCKET);
2288 			if (*controlp == NULL) {
2289 				error = ENOBUFS;
2290 				goto out;
2291 			}
2292 			bt = (struct bintime *)
2293 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2294 			bintime(bt);
2295 			break;
2296 
2297 		case SCM_REALTIME:
2298 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2299 			    SCM_REALTIME, SOL_SOCKET);
2300 			if (*controlp == NULL) {
2301 				error = ENOBUFS;
2302 				goto out;
2303 			}
2304 			ts = (struct timespec *)
2305 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2306 			nanotime(ts);
2307 			break;
2308 
2309 		case SCM_MONOTONIC:
2310 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2311 			    SCM_MONOTONIC, SOL_SOCKET);
2312 			if (*controlp == NULL) {
2313 				error = ENOBUFS;
2314 				goto out;
2315 			}
2316 			ts = (struct timespec *)
2317 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2318 			nanouptime(ts);
2319 			break;
2320 
2321 		default:
2322 			error = EINVAL;
2323 			goto out;
2324 		}
2325 
2326 		if (*controlp != NULL)
2327 			controlp = &(*controlp)->m_next;
2328 		if (CMSG_SPACE(datalen) < clen) {
2329 			clen -= CMSG_SPACE(datalen);
2330 			cm = (struct cmsghdr *)
2331 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2332 		} else {
2333 			clen = 0;
2334 			cm = NULL;
2335 		}
2336 	}
2337 
2338 out:
2339 	if (error != 0 && initial_controlp != NULL)
2340 		unp_internalize_cleanup_rights(*initial_controlp);
2341 	m_freem(control);
2342 	return (error);
2343 }
2344 
2345 static struct mbuf *
2346 unp_addsockcred(struct thread *td, struct mbuf *control)
2347 {
2348 	struct mbuf *m, *n, *n_prev;
2349 	struct sockcred *sc;
2350 	const struct cmsghdr *cm;
2351 	int ngroups;
2352 	int i;
2353 
2354 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2355 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2356 	if (m == NULL)
2357 		return (control);
2358 
2359 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2360 	sc->sc_uid = td->td_ucred->cr_ruid;
2361 	sc->sc_euid = td->td_ucred->cr_uid;
2362 	sc->sc_gid = td->td_ucred->cr_rgid;
2363 	sc->sc_egid = td->td_ucred->cr_gid;
2364 	sc->sc_ngroups = ngroups;
2365 	for (i = 0; i < sc->sc_ngroups; i++)
2366 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2367 
2368 	/*
2369 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2370 	 * created SCM_CREDS control message (struct sockcred) has another
2371 	 * format.
2372 	 */
2373 	if (control != NULL)
2374 		for (n = control, n_prev = NULL; n != NULL;) {
2375 			cm = mtod(n, struct cmsghdr *);
2376     			if (cm->cmsg_level == SOL_SOCKET &&
2377 			    cm->cmsg_type == SCM_CREDS) {
2378     				if (n_prev == NULL)
2379 					control = n->m_next;
2380 				else
2381 					n_prev->m_next = n->m_next;
2382 				n = m_free(n);
2383 			} else {
2384 				n_prev = n;
2385 				n = n->m_next;
2386 			}
2387 		}
2388 
2389 	/* Prepend it to the head. */
2390 	m->m_next = control;
2391 	return (m);
2392 }
2393 
2394 static struct unpcb *
2395 fptounp(struct file *fp)
2396 {
2397 	struct socket *so;
2398 
2399 	if (fp->f_type != DTYPE_SOCKET)
2400 		return (NULL);
2401 	if ((so = fp->f_data) == NULL)
2402 		return (NULL);
2403 	if (so->so_proto->pr_domain != &localdomain)
2404 		return (NULL);
2405 	return sotounpcb(so);
2406 }
2407 
2408 static void
2409 unp_discard(struct file *fp)
2410 {
2411 	struct unp_defer *dr;
2412 
2413 	if (unp_externalize_fp(fp)) {
2414 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2415 		dr->ud_fp = fp;
2416 		UNP_DEFERRED_LOCK();
2417 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2418 		UNP_DEFERRED_UNLOCK();
2419 		atomic_add_int(&unp_defers_count, 1);
2420 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2421 	} else
2422 		(void) closef(fp, (struct thread *)NULL);
2423 }
2424 
2425 static void
2426 unp_process_defers(void *arg __unused, int pending)
2427 {
2428 	struct unp_defer *dr;
2429 	SLIST_HEAD(, unp_defer) drl;
2430 	int count;
2431 
2432 	SLIST_INIT(&drl);
2433 	for (;;) {
2434 		UNP_DEFERRED_LOCK();
2435 		if (SLIST_FIRST(&unp_defers) == NULL) {
2436 			UNP_DEFERRED_UNLOCK();
2437 			break;
2438 		}
2439 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2440 		UNP_DEFERRED_UNLOCK();
2441 		count = 0;
2442 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2443 			SLIST_REMOVE_HEAD(&drl, ud_link);
2444 			closef(dr->ud_fp, NULL);
2445 			free(dr, M_TEMP);
2446 			count++;
2447 		}
2448 		atomic_add_int(&unp_defers_count, -count);
2449 	}
2450 }
2451 
2452 static void
2453 unp_internalize_fp(struct file *fp)
2454 {
2455 	struct unpcb *unp;
2456 
2457 	UNP_LINK_WLOCK();
2458 	if ((unp = fptounp(fp)) != NULL) {
2459 		unp->unp_file = fp;
2460 		unp->unp_msgcount++;
2461 	}
2462 	unp_rights++;
2463 	UNP_LINK_WUNLOCK();
2464 }
2465 
2466 static int
2467 unp_externalize_fp(struct file *fp)
2468 {
2469 	struct unpcb *unp;
2470 	int ret;
2471 
2472 	UNP_LINK_WLOCK();
2473 	if ((unp = fptounp(fp)) != NULL) {
2474 		unp->unp_msgcount--;
2475 		ret = 1;
2476 	} else
2477 		ret = 0;
2478 	unp_rights--;
2479 	UNP_LINK_WUNLOCK();
2480 	return (ret);
2481 }
2482 
2483 /*
2484  * unp_defer indicates whether additional work has been defered for a future
2485  * pass through unp_gc().  It is thread local and does not require explicit
2486  * synchronization.
2487  */
2488 static int	unp_marked;
2489 
2490 static void
2491 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2492 {
2493 	struct unpcb *unp;
2494 	struct file *fp;
2495 	int i;
2496 
2497 	/*
2498 	 * This function can only be called from the gc task.
2499 	 */
2500 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2501 	    ("%s: not on gc callout", __func__));
2502 	UNP_LINK_LOCK_ASSERT();
2503 
2504 	for (i = 0; i < fdcount; i++) {
2505 		fp = fdep[i]->fde_file;
2506 		if ((unp = fptounp(fp)) == NULL)
2507 			continue;
2508 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2509 			continue;
2510 		unp->unp_gcrefs--;
2511 	}
2512 }
2513 
2514 static void
2515 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2516 {
2517 	struct unpcb *unp;
2518 	struct file *fp;
2519 	int i;
2520 
2521 	/*
2522 	 * This function can only be called from the gc task.
2523 	 */
2524 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2525 	    ("%s: not on gc callout", __func__));
2526 	UNP_LINK_LOCK_ASSERT();
2527 
2528 	for (i = 0; i < fdcount; i++) {
2529 		fp = fdep[i]->fde_file;
2530 		if ((unp = fptounp(fp)) == NULL)
2531 			continue;
2532 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2533 			continue;
2534 		unp->unp_gcrefs++;
2535 		unp_marked++;
2536 	}
2537 }
2538 
2539 static void
2540 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2541 {
2542 	struct socket *so, *soa;
2543 
2544 	so = unp->unp_socket;
2545 	SOCK_LOCK(so);
2546 	if (SOLISTENING(so)) {
2547 		/*
2548 		 * Mark all sockets in our accept queue.
2549 		 */
2550 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2551 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2552 				continue;
2553 			SOCKBUF_LOCK(&soa->so_rcv);
2554 			unp_scan(soa->so_rcv.sb_mb, op);
2555 			SOCKBUF_UNLOCK(&soa->so_rcv);
2556 		}
2557 	} else {
2558 		/*
2559 		 * Mark all sockets we reference with RIGHTS.
2560 		 */
2561 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2562 			SOCKBUF_LOCK(&so->so_rcv);
2563 			unp_scan(so->so_rcv.sb_mb, op);
2564 			SOCKBUF_UNLOCK(&so->so_rcv);
2565 		}
2566 	}
2567 	SOCK_UNLOCK(so);
2568 }
2569 
2570 static int unp_recycled;
2571 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2572     "Number of unreachable sockets claimed by the garbage collector.");
2573 
2574 static int unp_taskcount;
2575 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2576     "Number of times the garbage collector has run.");
2577 
2578 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2579     "Number of active local sockets.");
2580 
2581 static void
2582 unp_gc(__unused void *arg, int pending)
2583 {
2584 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2585 				    NULL };
2586 	struct unp_head **head;
2587 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2588 	struct file *f, **unref;
2589 	struct unpcb *unp, *unptmp;
2590 	int i, total, unp_unreachable;
2591 
2592 	LIST_INIT(&unp_deadhead);
2593 	unp_taskcount++;
2594 	UNP_LINK_RLOCK();
2595 	/*
2596 	 * First determine which sockets may be in cycles.
2597 	 */
2598 	unp_unreachable = 0;
2599 
2600 	for (head = heads; *head != NULL; head++)
2601 		LIST_FOREACH(unp, *head, unp_link) {
2602 
2603 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2604 			    ("%s: unp %p has unexpected gc flags 0x%x",
2605 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2606 
2607 			f = unp->unp_file;
2608 
2609 			/*
2610 			 * Check for an unreachable socket potentially in a
2611 			 * cycle.  It must be in a queue as indicated by
2612 			 * msgcount, and this must equal the file reference
2613 			 * count.  Note that when msgcount is 0 the file is
2614 			 * NULL.
2615 			 */
2616 			if (f != NULL && unp->unp_msgcount != 0 &&
2617 			    f->f_count == unp->unp_msgcount) {
2618 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2619 				unp->unp_gcflag |= UNPGC_DEAD;
2620 				unp->unp_gcrefs = unp->unp_msgcount;
2621 				unp_unreachable++;
2622 			}
2623 		}
2624 
2625 	/*
2626 	 * Scan all sockets previously marked as potentially being in a cycle
2627 	 * and remove the references each socket holds on any UNPGC_DEAD
2628 	 * sockets in its queue.  After this step, all remaining references on
2629 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2630 	 */
2631 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2632 		unp_gc_scan(unp, unp_remove_dead_ref);
2633 
2634 	/*
2635 	 * If a socket still has a non-negative refcount, it cannot be in a
2636 	 * cycle.  In this case increment refcount of all children iteratively.
2637 	 * Stop the scan once we do a complete loop without discovering
2638 	 * a new reachable socket.
2639 	 */
2640 	do {
2641 		unp_marked = 0;
2642 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2643 			if (unp->unp_gcrefs > 0) {
2644 				unp->unp_gcflag &= ~UNPGC_DEAD;
2645 				LIST_REMOVE(unp, unp_dead);
2646 				KASSERT(unp_unreachable > 0,
2647 				    ("%s: unp_unreachable underflow.",
2648 				    __func__));
2649 				unp_unreachable--;
2650 				unp_gc_scan(unp, unp_restore_undead_ref);
2651 			}
2652 	} while (unp_marked);
2653 
2654 	UNP_LINK_RUNLOCK();
2655 
2656 	if (unp_unreachable == 0)
2657 		return;
2658 
2659 	/*
2660 	 * Allocate space for a local array of dead unpcbs.
2661 	 * TODO: can this path be simplified by instead using the local
2662 	 * dead list at unp_deadhead, after taking out references
2663 	 * on the file object and/or unpcb and dropping the link lock?
2664 	 */
2665 	unref = malloc(unp_unreachable * sizeof(struct file *),
2666 	    M_TEMP, M_WAITOK);
2667 
2668 	/*
2669 	 * Iterate looking for sockets which have been specifically marked
2670 	 * as unreachable and store them locally.
2671 	 */
2672 	UNP_LINK_RLOCK();
2673 	total = 0;
2674 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2675 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2676 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2677 		unp->unp_gcflag &= ~UNPGC_DEAD;
2678 		f = unp->unp_file;
2679 		if (unp->unp_msgcount == 0 || f == NULL ||
2680 		    f->f_count != unp->unp_msgcount ||
2681 		    !fhold(f))
2682 			continue;
2683 		unref[total++] = f;
2684 		KASSERT(total <= unp_unreachable,
2685 		    ("%s: incorrect unreachable count.", __func__));
2686 	}
2687 	UNP_LINK_RUNLOCK();
2688 
2689 	/*
2690 	 * Now flush all sockets, free'ing rights.  This will free the
2691 	 * struct files associated with these sockets but leave each socket
2692 	 * with one remaining ref.
2693 	 */
2694 	for (i = 0; i < total; i++) {
2695 		struct socket *so;
2696 
2697 		so = unref[i]->f_data;
2698 		CURVNET_SET(so->so_vnet);
2699 		sorflush(so);
2700 		CURVNET_RESTORE();
2701 	}
2702 
2703 	/*
2704 	 * And finally release the sockets so they can be reclaimed.
2705 	 */
2706 	for (i = 0; i < total; i++)
2707 		fdrop(unref[i], NULL);
2708 	unp_recycled += total;
2709 	free(unref, M_TEMP);
2710 }
2711 
2712 static void
2713 unp_dispose_mbuf(struct mbuf *m)
2714 {
2715 
2716 	if (m)
2717 		unp_scan(m, unp_freerights);
2718 }
2719 
2720 /*
2721  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2722  */
2723 static void
2724 unp_dispose(struct socket *so)
2725 {
2726 	struct unpcb *unp;
2727 
2728 	unp = sotounpcb(so);
2729 	UNP_LINK_WLOCK();
2730 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2731 	UNP_LINK_WUNLOCK();
2732 	if (!SOLISTENING(so))
2733 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2734 }
2735 
2736 static void
2737 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2738 {
2739 	struct mbuf *m;
2740 	struct cmsghdr *cm;
2741 	void *data;
2742 	socklen_t clen, datalen;
2743 
2744 	while (m0 != NULL) {
2745 		for (m = m0; m; m = m->m_next) {
2746 			if (m->m_type != MT_CONTROL)
2747 				continue;
2748 
2749 			cm = mtod(m, struct cmsghdr *);
2750 			clen = m->m_len;
2751 
2752 			while (cm != NULL) {
2753 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2754 					break;
2755 
2756 				data = CMSG_DATA(cm);
2757 				datalen = (caddr_t)cm + cm->cmsg_len
2758 				    - (caddr_t)data;
2759 
2760 				if (cm->cmsg_level == SOL_SOCKET &&
2761 				    cm->cmsg_type == SCM_RIGHTS) {
2762 					(*op)(data, datalen /
2763 					    sizeof(struct filedescent *));
2764 				}
2765 
2766 				if (CMSG_SPACE(datalen) < clen) {
2767 					clen -= CMSG_SPACE(datalen);
2768 					cm = (struct cmsghdr *)
2769 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2770 				} else {
2771 					clen = 0;
2772 					cm = NULL;
2773 				}
2774 			}
2775 		}
2776 		m0 = m0->m_nextpkt;
2777 	}
2778 }
2779 
2780 /*
2781  * A helper function called by VFS before socket-type vnode reclamation.
2782  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2783  * use count.
2784  */
2785 void
2786 vfs_unp_reclaim(struct vnode *vp)
2787 {
2788 	struct unpcb *unp;
2789 	int active;
2790 	struct mtx *vplock;
2791 
2792 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2793 	KASSERT(vp->v_type == VSOCK,
2794 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2795 
2796 	active = 0;
2797 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2798 	mtx_lock(vplock);
2799 	VOP_UNP_CONNECT(vp, &unp);
2800 	if (unp == NULL)
2801 		goto done;
2802 	UNP_PCB_LOCK(unp);
2803 	if (unp->unp_vnode == vp) {
2804 		VOP_UNP_DETACH(vp);
2805 		unp->unp_vnode = NULL;
2806 		active = 1;
2807 	}
2808 	UNP_PCB_UNLOCK(unp);
2809  done:
2810 	mtx_unlock(vplock);
2811 	if (active)
2812 		vunref(vp);
2813 }
2814 
2815 #ifdef DDB
2816 static void
2817 db_print_indent(int indent)
2818 {
2819 	int i;
2820 
2821 	for (i = 0; i < indent; i++)
2822 		db_printf(" ");
2823 }
2824 
2825 static void
2826 db_print_unpflags(int unp_flags)
2827 {
2828 	int comma;
2829 
2830 	comma = 0;
2831 	if (unp_flags & UNP_HAVEPC) {
2832 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2833 		comma = 1;
2834 	}
2835 	if (unp_flags & UNP_WANTCRED) {
2836 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2837 		comma = 1;
2838 	}
2839 	if (unp_flags & UNP_CONNWAIT) {
2840 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2841 		comma = 1;
2842 	}
2843 	if (unp_flags & UNP_CONNECTING) {
2844 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2845 		comma = 1;
2846 	}
2847 	if (unp_flags & UNP_BINDING) {
2848 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2849 		comma = 1;
2850 	}
2851 }
2852 
2853 static void
2854 db_print_xucred(int indent, struct xucred *xu)
2855 {
2856 	int comma, i;
2857 
2858 	db_print_indent(indent);
2859 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2860 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2861 	db_print_indent(indent);
2862 	db_printf("cr_groups: ");
2863 	comma = 0;
2864 	for (i = 0; i < xu->cr_ngroups; i++) {
2865 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2866 		comma = 1;
2867 	}
2868 	db_printf("\n");
2869 }
2870 
2871 static void
2872 db_print_unprefs(int indent, struct unp_head *uh)
2873 {
2874 	struct unpcb *unp;
2875 	int counter;
2876 
2877 	counter = 0;
2878 	LIST_FOREACH(unp, uh, unp_reflink) {
2879 		if (counter % 4 == 0)
2880 			db_print_indent(indent);
2881 		db_printf("%p  ", unp);
2882 		if (counter % 4 == 3)
2883 			db_printf("\n");
2884 		counter++;
2885 	}
2886 	if (counter != 0 && counter % 4 != 0)
2887 		db_printf("\n");
2888 }
2889 
2890 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2891 {
2892 	struct unpcb *unp;
2893 
2894         if (!have_addr) {
2895                 db_printf("usage: show unpcb <addr>\n");
2896                 return;
2897         }
2898         unp = (struct unpcb *)addr;
2899 
2900 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2901 	    unp->unp_vnode);
2902 
2903 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2904 	    unp->unp_conn);
2905 
2906 	db_printf("unp_refs:\n");
2907 	db_print_unprefs(2, &unp->unp_refs);
2908 
2909 	/* XXXRW: Would be nice to print the full address, if any. */
2910 	db_printf("unp_addr: %p\n", unp->unp_addr);
2911 
2912 	db_printf("unp_gencnt: %llu\n",
2913 	    (unsigned long long)unp->unp_gencnt);
2914 
2915 	db_printf("unp_flags: %x (", unp->unp_flags);
2916 	db_print_unpflags(unp->unp_flags);
2917 	db_printf(")\n");
2918 
2919 	db_printf("unp_peercred:\n");
2920 	db_print_xucred(2, &unp->unp_peercred);
2921 
2922 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2923 }
2924 #endif
2925