1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004-2007 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * UNIX Domain (Local) Sockets 36 * 37 * This is an implementation of UNIX (local) domain sockets. Each socket has 38 * an associated struct unpcb (UNIX protocol control block). Stream sockets 39 * may be connected to 0 or 1 other socket. Datagram sockets may be 40 * connected to 0, 1, or many other sockets. Sockets may be created and 41 * connected in pairs (socketpair(2)), or bound/connected to using the file 42 * system name space. For most purposes, only the receive socket buffer is 43 * used, as sending on one socket delivers directly to the receive socket 44 * buffer of a second socket. 45 * 46 * The implementation is substantially complicated by the fact that 47 * "ancillary data", such as file descriptors or credentials, may be passed 48 * across UNIX domain sockets. The potential for passing UNIX domain sockets 49 * over other UNIX domain sockets requires the implementation of a simple 50 * garbage collector to find and tear down cycles of disconnected sockets. 51 * 52 * TODO: 53 * SEQPACKET, RDM 54 * rethink name space problems 55 * need a proper out-of-band 56 * lock pushdown 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_mac.h" 63 64 #include <sys/param.h> 65 #include <sys/domain.h> 66 #include <sys/fcntl.h> 67 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 68 #include <sys/eventhandler.h> 69 #include <sys/file.h> 70 #include <sys/filedesc.h> 71 #include <sys/jail.h> 72 #include <sys/kernel.h> 73 #include <sys/lock.h> 74 #include <sys/mbuf.h> 75 #include <sys/mount.h> 76 #include <sys/mutex.h> 77 #include <sys/namei.h> 78 #include <sys/proc.h> 79 #include <sys/protosw.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/signalvar.h> 85 #include <sys/stat.h> 86 #include <sys/sx.h> 87 #include <sys/sysctl.h> 88 #include <sys/systm.h> 89 #include <sys/taskqueue.h> 90 #include <sys/un.h> 91 #include <sys/unpcb.h> 92 #include <sys/vnode.h> 93 94 #include <security/mac/mac_framework.h> 95 96 #include <vm/uma.h> 97 98 static uma_zone_t unp_zone; 99 static unp_gen_t unp_gencnt; 100 static u_int unp_count; /* Count of local sockets. */ 101 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 102 static int unp_rights; /* File descriptors in flight. */ 103 static struct unp_head unp_shead; /* List of local stream sockets. */ 104 static struct unp_head unp_dhead; /* List of local datagram sockets. */ 105 106 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 107 108 /* 109 * Garbage collection of cyclic file descriptor/socket references occurs 110 * asynchronously in a taskqueue context in order to avoid recursion and 111 * reentrance in the UNIX domain socket, file descriptor, and socket layer 112 * code. See unp_gc() for a full description. 113 */ 114 static struct task unp_gc_task; 115 116 /* 117 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 118 * stream sockets, although the total for sender and receiver is actually 119 * only PIPSIZ. 120 * 121 * Datagram sockets really use the sendspace as the maximum datagram size, 122 * and don't really want to reserve the sendspace. Their recvspace should be 123 * large enough for at least one max-size datagram plus address. 124 */ 125 #ifndef PIPSIZ 126 #define PIPSIZ 8192 127 #endif 128 static u_long unpst_sendspace = PIPSIZ; 129 static u_long unpst_recvspace = PIPSIZ; 130 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 131 static u_long unpdg_recvspace = 4*1024; 132 133 SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); 134 SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM"); 135 SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); 136 137 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 138 &unpst_sendspace, 0, ""); 139 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 140 &unpst_recvspace, 0, ""); 141 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 142 &unpdg_sendspace, 0, ""); 143 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 144 &unpdg_recvspace, 0, ""); 145 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, ""); 146 147 /*- 148 * Locking and synchronization: 149 * 150 * The global UNIX domain socket rwlock (unp_global_rwlock) protects all 151 * global variables, including the linked lists tracking the set of allocated 152 * UNIX domain sockets. The global rwlock also serves to prevent deadlock 153 * when more than one PCB lock is acquired at a time (i.e., during 154 * connect()). Finally, the global rwlock protects uncounted references from 155 * vnodes to sockets bound to those vnodes: to safely dereference the 156 * v_socket pointer, the global rwlock must be held while a full reference is 157 * acquired. 158 * 159 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 160 * allocated in pru_attach() and freed in pru_detach(). The validity of that 161 * pointer is an invariant, so no lock is required to dereference the so_pcb 162 * pointer if a valid socket reference is held by the caller. In practice, 163 * this is always true during operations performed on a socket. Each unpcb 164 * has a back-pointer to its socket, unp_socket, which will be stable under 165 * the same circumstances. 166 * 167 * This pointer may only be safely dereferenced as long as a valid reference 168 * to the unpcb is held. Typically, this reference will be from the socket, 169 * or from another unpcb when the referring unpcb's lock is held (in order 170 * that the reference not be invalidated during use). For example, to follow 171 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn, 172 * as unp_socket remains valid as long as the reference to unp_conn is valid. 173 * 174 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx. Individual 175 * atomic reads without the lock may be performed "lockless", but more 176 * complex reads and read-modify-writes require the mutex to be held. No 177 * lock order is defined between unpcb locks -- multiple unpcb locks may be 178 * acquired at the same time only when holding the global UNIX domain socket 179 * rwlock exclusively, which prevents deadlocks. 180 * 181 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 182 * protocols, bind() is a non-atomic operation, and connect() requires 183 * potential sleeping in the protocol, due to potentially waiting on local or 184 * distributed file systems. We try to separate "lookup" operations, which 185 * may sleep, and the IPC operations themselves, which typically can occur 186 * with relative atomicity as locks can be held over the entire operation. 187 * 188 * Another tricky issue is simultaneous multi-threaded or multi-process 189 * access to a single UNIX domain socket. These are handled by the flags 190 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 191 * binding, both of which involve dropping UNIX domain socket locks in order 192 * to perform namei() and other file system operations. 193 */ 194 static struct rwlock unp_global_rwlock; 195 196 #define UNP_GLOBAL_LOCK_INIT() rw_init(&unp_global_rwlock, \ 197 "unp_global_rwlock") 198 199 #define UNP_GLOBAL_LOCK_ASSERT() rw_assert(&unp_global_rwlock, \ 200 RA_LOCKED) 201 #define UNP_GLOBAL_UNLOCK_ASSERT() rw_assert(&unp_global_rwlock, \ 202 RA_UNLOCKED) 203 204 #define UNP_GLOBAL_WLOCK() rw_wlock(&unp_global_rwlock) 205 #define UNP_GLOBAL_WUNLOCK() rw_wunlock(&unp_global_rwlock) 206 #define UNP_GLOBAL_WLOCK_ASSERT() rw_assert(&unp_global_rwlock, \ 207 RA_WLOCKED) 208 #define UNP_GLOBAL_WOWNED() rw_wowned(&unp_global_rwlock) 209 210 #define UNP_GLOBAL_RLOCK() rw_rlock(&unp_global_rwlock) 211 #define UNP_GLOBAL_RUNLOCK() rw_runlock(&unp_global_rwlock) 212 #define UNP_GLOBAL_RLOCK_ASSERT() rw_assert(&unp_global_rwlock, \ 213 RA_RLOCKED) 214 215 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 216 "unp_mtx", "unp_mtx", \ 217 MTX_DUPOK|MTX_DEF|MTX_RECURSE) 218 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 219 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 220 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 221 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 222 223 static int unp_connect(struct socket *, struct sockaddr *, 224 struct thread *); 225 static int unp_connect2(struct socket *so, struct socket *so2, int); 226 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 227 static void unp_shutdown(struct unpcb *); 228 static void unp_drop(struct unpcb *, int); 229 static void unp_gc(__unused void *, int); 230 static void unp_scan(struct mbuf *, void (*)(struct file *)); 231 static void unp_mark(struct file *); 232 static void unp_discard(struct file *); 233 static void unp_freerights(struct file **, int); 234 static int unp_internalize(struct mbuf **, struct thread *); 235 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 236 237 /* 238 * Definitions of protocols supported in the LOCAL domain. 239 */ 240 static struct domain localdomain; 241 static struct protosw localsw[] = { 242 { 243 .pr_type = SOCK_STREAM, 244 .pr_domain = &localdomain, 245 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 246 .pr_ctloutput = &uipc_ctloutput, 247 .pr_usrreqs = &uipc_usrreqs 248 }, 249 { 250 .pr_type = SOCK_DGRAM, 251 .pr_domain = &localdomain, 252 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 253 .pr_usrreqs = &uipc_usrreqs 254 }, 255 }; 256 257 static struct domain localdomain = { 258 .dom_family = AF_LOCAL, 259 .dom_name = "local", 260 .dom_init = unp_init, 261 .dom_externalize = unp_externalize, 262 .dom_dispose = unp_dispose, 263 .dom_protosw = localsw, 264 .dom_protoswNPROTOSW = &localsw[sizeof(localsw)/sizeof(localsw[0])] 265 }; 266 DOMAIN_SET(local); 267 268 static void 269 uipc_abort(struct socket *so) 270 { 271 struct unpcb *unp, *unp2; 272 273 unp = sotounpcb(so); 274 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 275 276 UNP_GLOBAL_WLOCK(); 277 UNP_PCB_LOCK(unp); 278 unp2 = unp->unp_conn; 279 if (unp2 != NULL) { 280 UNP_PCB_LOCK(unp2); 281 unp_drop(unp2, ECONNABORTED); 282 UNP_PCB_UNLOCK(unp2); 283 } 284 UNP_PCB_UNLOCK(unp); 285 UNP_GLOBAL_WUNLOCK(); 286 } 287 288 static int 289 uipc_accept(struct socket *so, struct sockaddr **nam) 290 { 291 struct unpcb *unp, *unp2; 292 const struct sockaddr *sa; 293 294 /* 295 * Pass back name of connected socket, if it was bound and we are 296 * still connected (our peer may have closed already!). 297 */ 298 unp = sotounpcb(so); 299 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 300 301 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 302 UNP_GLOBAL_RLOCK(); 303 unp2 = unp->unp_conn; 304 if (unp2 != NULL && unp2->unp_addr != NULL) { 305 UNP_PCB_LOCK(unp2); 306 sa = (struct sockaddr *) unp2->unp_addr; 307 bcopy(sa, *nam, sa->sa_len); 308 UNP_PCB_UNLOCK(unp2); 309 } else { 310 sa = &sun_noname; 311 bcopy(sa, *nam, sa->sa_len); 312 } 313 UNP_GLOBAL_RUNLOCK(); 314 return (0); 315 } 316 317 static int 318 uipc_attach(struct socket *so, int proto, struct thread *td) 319 { 320 u_long sendspace, recvspace; 321 struct unpcb *unp; 322 int error, locked; 323 324 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 325 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 326 switch (so->so_type) { 327 case SOCK_STREAM: 328 sendspace = unpst_sendspace; 329 recvspace = unpst_recvspace; 330 break; 331 332 case SOCK_DGRAM: 333 sendspace = unpdg_sendspace; 334 recvspace = unpdg_recvspace; 335 break; 336 337 default: 338 panic("uipc_attach"); 339 } 340 error = soreserve(so, sendspace, recvspace); 341 if (error) 342 return (error); 343 } 344 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 345 if (unp == NULL) 346 return (ENOBUFS); 347 LIST_INIT(&unp->unp_refs); 348 UNP_PCB_LOCK_INIT(unp); 349 unp->unp_socket = so; 350 so->so_pcb = unp; 351 unp->unp_refcount = 1; 352 locked = 0; 353 354 /* 355 * uipc_attach() may be called indirectly from within the UNIX domain 356 * socket code via sonewconn() in unp_connect(). Since rwlocks can 357 * not be recursed, we do the closest thing. 358 */ 359 if (!UNP_GLOBAL_WOWNED()) { 360 UNP_GLOBAL_WLOCK(); 361 locked = 1; 362 } 363 unp->unp_gencnt = ++unp_gencnt; 364 unp_count++; 365 LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead : &unp_shead, 366 unp, unp_link); 367 if (locked) 368 UNP_GLOBAL_WUNLOCK(); 369 370 return (0); 371 } 372 373 static int 374 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 375 { 376 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 377 struct vattr vattr; 378 int error, namelen; 379 struct nameidata nd; 380 struct unpcb *unp; 381 struct vnode *vp; 382 struct mount *mp; 383 char *buf; 384 385 unp = sotounpcb(so); 386 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 387 388 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 389 if (namelen <= 0) 390 return (EINVAL); 391 392 /* 393 * We don't allow simultaneous bind() calls on a single UNIX domain 394 * socket, so flag in-progress operations, and return an error if an 395 * operation is already in progress. 396 * 397 * Historically, we have not allowed a socket to be rebound, so this 398 * also returns an error. Not allowing re-binding certainly 399 * simplifies the implementation and avoids a great many possible 400 * failure modes. 401 */ 402 UNP_PCB_LOCK(unp); 403 if (unp->unp_vnode != NULL) { 404 UNP_PCB_UNLOCK(unp); 405 return (EINVAL); 406 } 407 if (unp->unp_flags & UNP_BINDING) { 408 UNP_PCB_UNLOCK(unp); 409 return (EALREADY); 410 } 411 unp->unp_flags |= UNP_BINDING; 412 UNP_PCB_UNLOCK(unp); 413 414 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 415 strlcpy(buf, soun->sun_path, namelen + 1); 416 417 mtx_lock(&Giant); 418 restart: 419 mtx_assert(&Giant, MA_OWNED); 420 NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME, UIO_SYSSPACE, 421 buf, td); 422 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 423 error = namei(&nd); 424 if (error) 425 goto error; 426 vp = nd.ni_vp; 427 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 428 NDFREE(&nd, NDF_ONLY_PNBUF); 429 if (nd.ni_dvp == vp) 430 vrele(nd.ni_dvp); 431 else 432 vput(nd.ni_dvp); 433 if (vp != NULL) { 434 vrele(vp); 435 error = EADDRINUSE; 436 goto error; 437 } 438 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 439 if (error) 440 goto error; 441 goto restart; 442 } 443 VATTR_NULL(&vattr); 444 vattr.va_type = VSOCK; 445 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 446 #ifdef MAC 447 error = mac_check_vnode_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 448 &vattr); 449 #endif 450 if (error == 0) { 451 VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE); 452 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 453 } 454 NDFREE(&nd, NDF_ONLY_PNBUF); 455 vput(nd.ni_dvp); 456 if (error) { 457 vn_finished_write(mp); 458 goto error; 459 } 460 vp = nd.ni_vp; 461 ASSERT_VOP_LOCKED(vp, "uipc_bind"); 462 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 463 464 UNP_GLOBAL_WLOCK(); 465 UNP_PCB_LOCK(unp); 466 vp->v_socket = unp->unp_socket; 467 unp->unp_vnode = vp; 468 unp->unp_addr = soun; 469 unp->unp_flags &= ~UNP_BINDING; 470 UNP_PCB_UNLOCK(unp); 471 UNP_GLOBAL_WUNLOCK(); 472 VOP_UNLOCK(vp, 0, td); 473 vn_finished_write(mp); 474 mtx_unlock(&Giant); 475 free(buf, M_TEMP); 476 return (0); 477 478 error: 479 UNP_PCB_LOCK(unp); 480 unp->unp_flags &= ~UNP_BINDING; 481 UNP_PCB_UNLOCK(unp); 482 mtx_unlock(&Giant); 483 free(buf, M_TEMP); 484 return (error); 485 } 486 487 static int 488 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 489 { 490 int error; 491 492 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 493 UNP_GLOBAL_WLOCK(); 494 error = unp_connect(so, nam, td); 495 UNP_GLOBAL_WUNLOCK(); 496 return (error); 497 } 498 499 static void 500 uipc_close(struct socket *so) 501 { 502 struct unpcb *unp, *unp2; 503 504 unp = sotounpcb(so); 505 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 506 507 UNP_GLOBAL_WLOCK(); 508 UNP_PCB_LOCK(unp); 509 unp2 = unp->unp_conn; 510 if (unp2 != NULL) { 511 UNP_PCB_LOCK(unp2); 512 unp_disconnect(unp, unp2); 513 UNP_PCB_UNLOCK(unp2); 514 } 515 UNP_PCB_UNLOCK(unp); 516 UNP_GLOBAL_WUNLOCK(); 517 } 518 519 int 520 uipc_connect2(struct socket *so1, struct socket *so2) 521 { 522 struct unpcb *unp, *unp2; 523 int error; 524 525 UNP_GLOBAL_WLOCK(); 526 unp = so1->so_pcb; 527 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 528 UNP_PCB_LOCK(unp); 529 unp2 = so2->so_pcb; 530 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 531 UNP_PCB_LOCK(unp2); 532 error = unp_connect2(so1, so2, PRU_CONNECT2); 533 UNP_PCB_UNLOCK(unp2); 534 UNP_PCB_UNLOCK(unp); 535 UNP_GLOBAL_WUNLOCK(); 536 return (error); 537 } 538 539 /* control is EOPNOTSUPP */ 540 541 static void 542 uipc_detach(struct socket *so) 543 { 544 struct unpcb *unp, *unp2; 545 struct sockaddr_un *saved_unp_addr; 546 struct vnode *vp; 547 int freeunp, local_unp_rights; 548 549 unp = sotounpcb(so); 550 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 551 552 UNP_GLOBAL_WLOCK(); 553 UNP_PCB_LOCK(unp); 554 555 LIST_REMOVE(unp, unp_link); 556 unp->unp_gencnt = ++unp_gencnt; 557 --unp_count; 558 559 /* 560 * XXXRW: Should assert vp->v_socket == so. 561 */ 562 if ((vp = unp->unp_vnode) != NULL) { 563 unp->unp_vnode->v_socket = NULL; 564 unp->unp_vnode = NULL; 565 } 566 unp2 = unp->unp_conn; 567 if (unp2 != NULL) { 568 UNP_PCB_LOCK(unp2); 569 unp_disconnect(unp, unp2); 570 UNP_PCB_UNLOCK(unp2); 571 } 572 573 /* 574 * We hold the global lock, so it's OK to acquire multiple pcb locks 575 * at a time. 576 */ 577 while (!LIST_EMPTY(&unp->unp_refs)) { 578 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 579 580 UNP_PCB_LOCK(ref); 581 unp_drop(ref, ECONNRESET); 582 UNP_PCB_UNLOCK(ref); 583 } 584 UNP_GLOBAL_WUNLOCK(); 585 unp->unp_socket->so_pcb = NULL; 586 local_unp_rights = unp_rights; 587 saved_unp_addr = unp->unp_addr; 588 unp->unp_addr = NULL; 589 unp->unp_refcount--; 590 freeunp = (unp->unp_refcount == 0); 591 if (saved_unp_addr != NULL) 592 FREE(saved_unp_addr, M_SONAME); 593 if (freeunp) { 594 UNP_PCB_LOCK_DESTROY(unp); 595 uma_zfree(unp_zone, unp); 596 } 597 if (vp) { 598 int vfslocked; 599 600 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 601 vrele(vp); 602 VFS_UNLOCK_GIANT(vfslocked); 603 } 604 if (local_unp_rights) 605 taskqueue_enqueue(taskqueue_thread, &unp_gc_task); 606 } 607 608 static int 609 uipc_disconnect(struct socket *so) 610 { 611 struct unpcb *unp, *unp2; 612 613 unp = sotounpcb(so); 614 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 615 616 UNP_GLOBAL_WLOCK(); 617 UNP_PCB_LOCK(unp); 618 unp2 = unp->unp_conn; 619 if (unp2 != NULL) { 620 UNP_PCB_LOCK(unp2); 621 unp_disconnect(unp, unp2); 622 UNP_PCB_UNLOCK(unp2); 623 } 624 UNP_PCB_UNLOCK(unp); 625 UNP_GLOBAL_WUNLOCK(); 626 return (0); 627 } 628 629 static int 630 uipc_listen(struct socket *so, int backlog, struct thread *td) 631 { 632 struct unpcb *unp; 633 int error; 634 635 unp = sotounpcb(so); 636 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 637 638 UNP_PCB_LOCK(unp); 639 if (unp->unp_vnode == NULL) { 640 UNP_PCB_UNLOCK(unp); 641 return (EINVAL); 642 } 643 644 SOCK_LOCK(so); 645 error = solisten_proto_check(so); 646 if (error == 0) { 647 cru2x(td->td_ucred, &unp->unp_peercred); 648 unp->unp_flags |= UNP_HAVEPCCACHED; 649 solisten_proto(so, backlog); 650 } 651 SOCK_UNLOCK(so); 652 UNP_PCB_UNLOCK(unp); 653 return (error); 654 } 655 656 static int 657 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 658 { 659 struct unpcb *unp, *unp2; 660 const struct sockaddr *sa; 661 662 unp = sotounpcb(so); 663 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 664 665 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 666 UNP_PCB_LOCK(unp); 667 /* 668 * XXX: It seems that this test always fails even when connection is 669 * established. So, this else clause is added as workaround to 670 * return PF_LOCAL sockaddr. 671 */ 672 unp2 = unp->unp_conn; 673 if (unp2 != NULL) { 674 UNP_PCB_LOCK(unp2); 675 if (unp2->unp_addr != NULL) 676 sa = (struct sockaddr *) unp->unp_conn->unp_addr; 677 else 678 sa = &sun_noname; 679 bcopy(sa, *nam, sa->sa_len); 680 UNP_PCB_UNLOCK(unp2); 681 } else { 682 sa = &sun_noname; 683 bcopy(sa, *nam, sa->sa_len); 684 } 685 UNP_PCB_UNLOCK(unp); 686 return (0); 687 } 688 689 static int 690 uipc_rcvd(struct socket *so, int flags) 691 { 692 struct unpcb *unp, *unp2; 693 struct socket *so2; 694 u_int mbcnt, sbcc; 695 u_long newhiwat; 696 697 unp = sotounpcb(so); 698 KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL")); 699 700 if (so->so_type == SOCK_DGRAM) 701 panic("uipc_rcvd DGRAM?"); 702 703 if (so->so_type != SOCK_STREAM) 704 panic("uipc_rcvd unknown socktype"); 705 706 /* 707 * Adjust backpressure on sender and wakeup any waiting to write. 708 * 709 * The consistency requirements here are a bit complex: we must 710 * acquire the lock for our own unpcb in order to prevent it from 711 * disconnecting while in use, changing the unp_conn peer. We do not 712 * need unp2's lock, since the unp2->unp_socket pointer will remain 713 * static as long as the unp2 pcb is valid, which it will be until we 714 * release unp's lock to allow a disconnect. We do need socket 715 * mutexes for both socket endpoints since we manipulate fields in 716 * both; we hold both locks at once since we access both 717 * simultaneously. 718 */ 719 SOCKBUF_LOCK(&so->so_rcv); 720 mbcnt = so->so_rcv.sb_mbcnt; 721 sbcc = so->so_rcv.sb_cc; 722 SOCKBUF_UNLOCK(&so->so_rcv); 723 UNP_PCB_LOCK(unp); 724 unp2 = unp->unp_conn; 725 if (unp2 == NULL) { 726 UNP_PCB_UNLOCK(unp); 727 return (0); 728 } 729 so2 = unp2->unp_socket; 730 SOCKBUF_LOCK(&so2->so_snd); 731 so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt; 732 newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc; 733 (void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat, 734 newhiwat, RLIM_INFINITY); 735 sowwakeup_locked(so2); 736 unp->unp_mbcnt = mbcnt; 737 unp->unp_cc = sbcc; 738 UNP_PCB_UNLOCK(unp); 739 return (0); 740 } 741 742 /* pru_rcvoob is EOPNOTSUPP */ 743 744 static int 745 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 746 struct mbuf *control, struct thread *td) 747 { 748 struct unpcb *unp, *unp2; 749 struct socket *so2; 750 u_int mbcnt, sbcc; 751 u_long newhiwat; 752 int error = 0; 753 754 unp = sotounpcb(so); 755 KASSERT(unp != NULL, ("uipc_send: unp == NULL")); 756 757 if (flags & PRUS_OOB) { 758 error = EOPNOTSUPP; 759 goto release; 760 } 761 762 if (control != NULL && (error = unp_internalize(&control, td))) 763 goto release; 764 765 if ((nam != NULL) || (flags & PRUS_EOF)) 766 UNP_GLOBAL_WLOCK(); 767 else 768 UNP_GLOBAL_RLOCK(); 769 770 switch (so->so_type) { 771 case SOCK_DGRAM: 772 { 773 const struct sockaddr *from; 774 775 unp2 = unp->unp_conn; 776 if (nam != NULL) { 777 UNP_GLOBAL_WLOCK_ASSERT(); 778 if (unp2 != NULL) { 779 error = EISCONN; 780 break; 781 } 782 error = unp_connect(so, nam, td); 783 if (error) 784 break; 785 unp2 = unp->unp_conn; 786 } else { 787 if (unp2 == NULL) { 788 error = ENOTCONN; 789 break; 790 } 791 } 792 /* 793 * Because connect() and send() are non-atomic in a sendto() 794 * with a target address, it's possible that the socket will 795 * have disconnected before the send() can run. In that case 796 * return the slightly counter-intuitive but otherwise 797 * correct error that the socket is not connected. 798 */ 799 if (unp2 == NULL) { 800 error = ENOTCONN; 801 break; 802 } 803 /* Lockless read. */ 804 if (unp2->unp_flags & UNP_WANTCRED) 805 control = unp_addsockcred(td, control); 806 UNP_PCB_LOCK(unp); 807 if (unp->unp_addr != NULL) 808 from = (struct sockaddr *)unp->unp_addr; 809 else 810 from = &sun_noname; 811 so2 = unp2->unp_socket; 812 SOCKBUF_LOCK(&so2->so_rcv); 813 if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) { 814 sorwakeup_locked(so2); 815 m = NULL; 816 control = NULL; 817 } else { 818 SOCKBUF_UNLOCK(&so2->so_rcv); 819 error = ENOBUFS; 820 } 821 if (nam != NULL) { 822 UNP_GLOBAL_WLOCK_ASSERT(); 823 UNP_PCB_LOCK(unp2); 824 unp_disconnect(unp, unp2); 825 UNP_PCB_UNLOCK(unp2); 826 } 827 UNP_PCB_UNLOCK(unp); 828 break; 829 } 830 831 case SOCK_STREAM: 832 /* 833 * Connect if not connected yet. 834 * 835 * Note: A better implementation would complain if not equal 836 * to the peer's address. 837 */ 838 if ((so->so_state & SS_ISCONNECTED) == 0) { 839 if (nam != NULL) { 840 UNP_GLOBAL_WLOCK_ASSERT(); 841 error = unp_connect(so, nam, td); 842 if (error) 843 break; /* XXX */ 844 } else { 845 error = ENOTCONN; 846 break; 847 } 848 } 849 850 /* Lockless read. */ 851 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 852 error = EPIPE; 853 break; 854 } 855 /* 856 * Because connect() and send() are non-atomic in a sendto() 857 * with a target address, it's possible that the socket will 858 * have disconnected before the send() can run. In that case 859 * return the slightly counter-intuitive but otherwise 860 * correct error that the socket is not connected. 861 * 862 * Lock order here has to be handled carefully: we hold the 863 * global lock, so acquiring two unpcb locks is OK. We must 864 * acquire both before acquiring any socket mutexes. We must 865 * also acquire the local socket send mutex before the remote 866 * socket receive mutex. The only tricky thing is making 867 * sure to acquire the unp2 lock before the local socket send 868 * lock, or we will experience deadlocks. 869 */ 870 unp2 = unp->unp_conn; 871 if (unp2 == NULL) { 872 error = ENOTCONN; 873 break; 874 } 875 so2 = unp2->unp_socket; 876 UNP_PCB_LOCK(unp2); 877 SOCKBUF_LOCK(&so2->so_rcv); 878 if (unp2->unp_flags & UNP_WANTCRED) { 879 /* 880 * Credentials are passed only once on SOCK_STREAM. 881 */ 882 unp2->unp_flags &= ~UNP_WANTCRED; 883 control = unp_addsockcred(td, control); 884 } 885 /* 886 * Send to paired receive port, and then reduce send buffer 887 * hiwater marks to maintain backpressure. Wake up readers. 888 */ 889 if (control != NULL) { 890 if (sbappendcontrol_locked(&so2->so_rcv, m, control)) 891 control = NULL; 892 } else 893 sbappend_locked(&so2->so_rcv, m); 894 mbcnt = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt; 895 unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt; 896 sbcc = so2->so_rcv.sb_cc; 897 sorwakeup_locked(so2); 898 899 SOCKBUF_LOCK(&so->so_snd); 900 newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc); 901 (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat, 902 newhiwat, RLIM_INFINITY); 903 so->so_snd.sb_mbmax -= mbcnt; 904 SOCKBUF_UNLOCK(&so->so_snd); 905 unp2->unp_cc = sbcc; 906 UNP_PCB_UNLOCK(unp2); 907 m = NULL; 908 break; 909 910 default: 911 panic("uipc_send unknown socktype"); 912 } 913 914 /* 915 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN. 916 */ 917 if (flags & PRUS_EOF) { 918 UNP_PCB_LOCK(unp); 919 socantsendmore(so); 920 unp_shutdown(unp); 921 UNP_PCB_UNLOCK(unp); 922 } 923 924 if ((nam != NULL) || (flags & PRUS_EOF)) 925 UNP_GLOBAL_WUNLOCK(); 926 else 927 UNP_GLOBAL_RUNLOCK(); 928 929 if (control != NULL && error != 0) 930 unp_dispose(control); 931 932 release: 933 if (control != NULL) 934 m_freem(control); 935 if (m != NULL) 936 m_freem(m); 937 return (error); 938 } 939 940 static int 941 uipc_sense(struct socket *so, struct stat *sb) 942 { 943 struct unpcb *unp, *unp2; 944 struct socket *so2; 945 946 unp = sotounpcb(so); 947 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 948 949 sb->st_blksize = so->so_snd.sb_hiwat; 950 UNP_GLOBAL_RLOCK(); 951 UNP_PCB_LOCK(unp); 952 unp2 = unp->unp_conn; 953 if (so->so_type == SOCK_STREAM && unp2 != NULL) { 954 so2 = unp2->unp_socket; 955 sb->st_blksize += so2->so_rcv.sb_cc; 956 } 957 sb->st_dev = NODEV; 958 if (unp->unp_ino == 0) 959 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 960 sb->st_ino = unp->unp_ino; 961 UNP_PCB_UNLOCK(unp); 962 UNP_GLOBAL_RUNLOCK(); 963 return (0); 964 } 965 966 static int 967 uipc_shutdown(struct socket *so) 968 { 969 struct unpcb *unp; 970 971 unp = sotounpcb(so); 972 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 973 974 UNP_GLOBAL_WLOCK(); 975 UNP_PCB_LOCK(unp); 976 socantsendmore(so); 977 unp_shutdown(unp); 978 UNP_PCB_UNLOCK(unp); 979 UNP_GLOBAL_WUNLOCK(); 980 return (0); 981 } 982 983 static int 984 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 985 { 986 struct unpcb *unp; 987 const struct sockaddr *sa; 988 989 unp = sotounpcb(so); 990 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 991 992 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 993 UNP_PCB_LOCK(unp); 994 if (unp->unp_addr != NULL) 995 sa = (struct sockaddr *) unp->unp_addr; 996 else 997 sa = &sun_noname; 998 bcopy(sa, *nam, sa->sa_len); 999 UNP_PCB_UNLOCK(unp); 1000 return (0); 1001 } 1002 1003 struct pr_usrreqs uipc_usrreqs = { 1004 .pru_abort = uipc_abort, 1005 .pru_accept = uipc_accept, 1006 .pru_attach = uipc_attach, 1007 .pru_bind = uipc_bind, 1008 .pru_connect = uipc_connect, 1009 .pru_connect2 = uipc_connect2, 1010 .pru_detach = uipc_detach, 1011 .pru_disconnect = uipc_disconnect, 1012 .pru_listen = uipc_listen, 1013 .pru_peeraddr = uipc_peeraddr, 1014 .pru_rcvd = uipc_rcvd, 1015 .pru_send = uipc_send, 1016 .pru_sense = uipc_sense, 1017 .pru_shutdown = uipc_shutdown, 1018 .pru_sockaddr = uipc_sockaddr, 1019 .pru_close = uipc_close, 1020 }; 1021 1022 int 1023 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1024 { 1025 struct unpcb *unp; 1026 struct xucred xu; 1027 int error, optval; 1028 1029 if (sopt->sopt_level != 0) 1030 return (EINVAL); 1031 1032 unp = sotounpcb(so); 1033 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1034 error = 0; 1035 switch (sopt->sopt_dir) { 1036 case SOPT_GET: 1037 switch (sopt->sopt_name) { 1038 case LOCAL_PEERCRED: 1039 UNP_PCB_LOCK(unp); 1040 if (unp->unp_flags & UNP_HAVEPC) 1041 xu = unp->unp_peercred; 1042 else { 1043 if (so->so_type == SOCK_STREAM) 1044 error = ENOTCONN; 1045 else 1046 error = EINVAL; 1047 } 1048 UNP_PCB_UNLOCK(unp); 1049 if (error == 0) 1050 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1051 break; 1052 1053 case LOCAL_CREDS: 1054 /* Unocked read. */ 1055 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1056 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1057 break; 1058 1059 case LOCAL_CONNWAIT: 1060 /* Unocked read. */ 1061 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1062 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1063 break; 1064 1065 default: 1066 error = EOPNOTSUPP; 1067 break; 1068 } 1069 break; 1070 1071 case SOPT_SET: 1072 switch (sopt->sopt_name) { 1073 case LOCAL_CREDS: 1074 case LOCAL_CONNWAIT: 1075 error = sooptcopyin(sopt, &optval, sizeof(optval), 1076 sizeof(optval)); 1077 if (error) 1078 break; 1079 1080 #define OPTSET(bit) do { \ 1081 UNP_PCB_LOCK(unp); \ 1082 if (optval) \ 1083 unp->unp_flags |= bit; \ 1084 else \ 1085 unp->unp_flags &= ~bit; \ 1086 UNP_PCB_UNLOCK(unp); \ 1087 } while (0) 1088 1089 switch (sopt->sopt_name) { 1090 case LOCAL_CREDS: 1091 OPTSET(UNP_WANTCRED); 1092 break; 1093 1094 case LOCAL_CONNWAIT: 1095 OPTSET(UNP_CONNWAIT); 1096 break; 1097 1098 default: 1099 break; 1100 } 1101 break; 1102 #undef OPTSET 1103 default: 1104 error = ENOPROTOOPT; 1105 break; 1106 } 1107 break; 1108 1109 default: 1110 error = EOPNOTSUPP; 1111 break; 1112 } 1113 return (error); 1114 } 1115 1116 static int 1117 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1118 { 1119 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1120 struct vnode *vp; 1121 struct socket *so2, *so3; 1122 struct unpcb *unp, *unp2, *unp3; 1123 int error, len; 1124 struct nameidata nd; 1125 char buf[SOCK_MAXADDRLEN]; 1126 struct sockaddr *sa; 1127 1128 UNP_GLOBAL_WLOCK_ASSERT(); 1129 UNP_GLOBAL_WUNLOCK(); 1130 1131 unp = sotounpcb(so); 1132 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1133 1134 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1135 if (len <= 0) 1136 return (EINVAL); 1137 strlcpy(buf, soun->sun_path, len + 1); 1138 1139 UNP_PCB_LOCK(unp); 1140 if (unp->unp_flags & UNP_CONNECTING) { 1141 UNP_PCB_UNLOCK(unp); 1142 return (EALREADY); 1143 } 1144 unp->unp_flags |= UNP_CONNECTING; 1145 UNP_PCB_UNLOCK(unp); 1146 1147 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1148 mtx_lock(&Giant); 1149 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf, td); 1150 error = namei(&nd); 1151 if (error) 1152 vp = NULL; 1153 else 1154 vp = nd.ni_vp; 1155 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1156 NDFREE(&nd, NDF_ONLY_PNBUF); 1157 if (error) 1158 goto bad; 1159 1160 if (vp->v_type != VSOCK) { 1161 error = ENOTSOCK; 1162 goto bad; 1163 } 1164 #ifdef MAC 1165 error = mac_check_vnode_open(td->td_ucred, vp, VWRITE | VREAD); 1166 if (error) 1167 goto bad; 1168 #endif 1169 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1170 if (error) 1171 goto bad; 1172 mtx_unlock(&Giant); 1173 1174 unp = sotounpcb(so); 1175 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1176 1177 /* 1178 * Lock global lock for two reasons: make sure v_socket is stable, 1179 * and to protect simultaneous locking of multiple pcbs. 1180 */ 1181 UNP_GLOBAL_WLOCK(); 1182 so2 = vp->v_socket; 1183 if (so2 == NULL) { 1184 error = ECONNREFUSED; 1185 goto bad2; 1186 } 1187 if (so->so_type != so2->so_type) { 1188 error = EPROTOTYPE; 1189 goto bad2; 1190 } 1191 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1192 if (so2->so_options & SO_ACCEPTCONN) { 1193 /* 1194 * We can't drop the global lock here or 'so2' may 1195 * become invalid, meaning that we will later recurse 1196 * back into the UNIX domain socket code while 1197 * holding the global lock. 1198 */ 1199 so3 = sonewconn(so2, 0); 1200 } else 1201 so3 = NULL; 1202 if (so3 == NULL) { 1203 error = ECONNREFUSED; 1204 goto bad2; 1205 } 1206 unp = sotounpcb(so); 1207 unp2 = sotounpcb(so2); 1208 unp3 = sotounpcb(so3); 1209 UNP_PCB_LOCK(unp); 1210 UNP_PCB_LOCK(unp2); 1211 UNP_PCB_LOCK(unp3); 1212 if (unp2->unp_addr != NULL) { 1213 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1214 unp3->unp_addr = (struct sockaddr_un *) sa; 1215 sa = NULL; 1216 } 1217 /* 1218 * unp_peercred management: 1219 * 1220 * The connecter's (client's) credentials are copied from its 1221 * process structure at the time of connect() (which is now). 1222 */ 1223 cru2x(td->td_ucred, &unp3->unp_peercred); 1224 unp3->unp_flags |= UNP_HAVEPC; 1225 /* 1226 * The receiver's (server's) credentials are copied from the 1227 * unp_peercred member of socket on which the former called 1228 * listen(); uipc_listen() cached that process's credentials 1229 * at that time so we can use them now. 1230 */ 1231 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED, 1232 ("unp_connect: listener without cached peercred")); 1233 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 1234 sizeof(unp->unp_peercred)); 1235 unp->unp_flags |= UNP_HAVEPC; 1236 if (unp2->unp_flags & UNP_WANTCRED) 1237 unp3->unp_flags |= UNP_WANTCRED; 1238 UNP_PCB_UNLOCK(unp3); 1239 UNP_PCB_UNLOCK(unp2); 1240 UNP_PCB_UNLOCK(unp); 1241 #ifdef MAC 1242 SOCK_LOCK(so); 1243 mac_set_socket_peer_from_socket(so, so3); 1244 mac_set_socket_peer_from_socket(so3, so); 1245 SOCK_UNLOCK(so); 1246 #endif 1247 1248 so2 = so3; 1249 } 1250 unp = sotounpcb(so); 1251 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1252 unp2 = sotounpcb(so2); 1253 KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL")); 1254 UNP_PCB_LOCK(unp); 1255 UNP_PCB_LOCK(unp2); 1256 error = unp_connect2(so, so2, PRU_CONNECT); 1257 UNP_PCB_UNLOCK(unp2); 1258 UNP_PCB_UNLOCK(unp); 1259 bad2: 1260 UNP_GLOBAL_WUNLOCK(); 1261 mtx_lock(&Giant); 1262 bad: 1263 mtx_assert(&Giant, MA_OWNED); 1264 if (vp != NULL) 1265 vput(vp); 1266 mtx_unlock(&Giant); 1267 free(sa, M_SONAME); 1268 UNP_GLOBAL_WLOCK(); 1269 UNP_PCB_LOCK(unp); 1270 unp->unp_flags &= ~UNP_CONNECTING; 1271 UNP_PCB_UNLOCK(unp); 1272 return (error); 1273 } 1274 1275 static int 1276 unp_connect2(struct socket *so, struct socket *so2, int req) 1277 { 1278 struct unpcb *unp; 1279 struct unpcb *unp2; 1280 1281 unp = sotounpcb(so); 1282 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1283 unp2 = sotounpcb(so2); 1284 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1285 1286 UNP_GLOBAL_WLOCK_ASSERT(); 1287 UNP_PCB_LOCK_ASSERT(unp); 1288 UNP_PCB_LOCK_ASSERT(unp2); 1289 1290 if (so2->so_type != so->so_type) 1291 return (EPROTOTYPE); 1292 unp->unp_conn = unp2; 1293 1294 switch (so->so_type) { 1295 case SOCK_DGRAM: 1296 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1297 soisconnected(so); 1298 break; 1299 1300 case SOCK_STREAM: 1301 unp2->unp_conn = unp; 1302 if (req == PRU_CONNECT && 1303 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1304 soisconnecting(so); 1305 else 1306 soisconnected(so); 1307 soisconnected(so2); 1308 break; 1309 1310 default: 1311 panic("unp_connect2"); 1312 } 1313 return (0); 1314 } 1315 1316 static void 1317 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1318 { 1319 struct socket *so; 1320 1321 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1322 1323 UNP_GLOBAL_WLOCK_ASSERT(); 1324 UNP_PCB_LOCK_ASSERT(unp); 1325 UNP_PCB_LOCK_ASSERT(unp2); 1326 1327 unp->unp_conn = NULL; 1328 switch (unp->unp_socket->so_type) { 1329 case SOCK_DGRAM: 1330 LIST_REMOVE(unp, unp_reflink); 1331 so = unp->unp_socket; 1332 SOCK_LOCK(so); 1333 so->so_state &= ~SS_ISCONNECTED; 1334 SOCK_UNLOCK(so); 1335 break; 1336 1337 case SOCK_STREAM: 1338 soisdisconnected(unp->unp_socket); 1339 unp2->unp_conn = NULL; 1340 soisdisconnected(unp2->unp_socket); 1341 break; 1342 } 1343 } 1344 1345 /* 1346 * unp_pcblist() assumes that UNIX domain socket memory is never reclaimed by 1347 * the zone (UMA_ZONE_NOFREE), and as such potentially stale pointers are 1348 * safe to reference. It first scans the list of struct unpcb's to generate 1349 * a pointer list, then it rescans its list one entry at a time to 1350 * externalize and copyout. It checks the generation number to see if a 1351 * struct unpcb has been reused, and will skip it if so. 1352 */ 1353 static int 1354 unp_pcblist(SYSCTL_HANDLER_ARGS) 1355 { 1356 int error, i, n; 1357 int freeunp; 1358 struct unpcb *unp, **unp_list; 1359 unp_gen_t gencnt; 1360 struct xunpgen *xug; 1361 struct unp_head *head; 1362 struct xunpcb *xu; 1363 1364 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead); 1365 1366 /* 1367 * The process of preparing the PCB list is too time-consuming and 1368 * resource-intensive to repeat twice on every request. 1369 */ 1370 if (req->oldptr == NULL) { 1371 n = unp_count; 1372 req->oldidx = 2 * (sizeof *xug) 1373 + (n + n/8) * sizeof(struct xunpcb); 1374 return (0); 1375 } 1376 1377 if (req->newptr != NULL) 1378 return (EPERM); 1379 1380 /* 1381 * OK, now we're committed to doing something. 1382 */ 1383 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); 1384 UNP_GLOBAL_RLOCK(); 1385 gencnt = unp_gencnt; 1386 n = unp_count; 1387 UNP_GLOBAL_RUNLOCK(); 1388 1389 xug->xug_len = sizeof *xug; 1390 xug->xug_count = n; 1391 xug->xug_gen = gencnt; 1392 xug->xug_sogen = so_gencnt; 1393 error = SYSCTL_OUT(req, xug, sizeof *xug); 1394 if (error) { 1395 free(xug, M_TEMP); 1396 return (error); 1397 } 1398 1399 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1400 1401 /* 1402 * XXXRW: Note, this code relies very explicitly in pcb's being type 1403 * stable. 1404 */ 1405 UNP_GLOBAL_RLOCK(); 1406 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1407 unp = LIST_NEXT(unp, unp_link)) { 1408 UNP_PCB_LOCK(unp); 1409 if (unp->unp_gencnt <= gencnt) { 1410 if (cr_cansee(req->td->td_ucred, 1411 unp->unp_socket->so_cred)) { 1412 UNP_PCB_UNLOCK(unp); 1413 continue; 1414 } 1415 unp_list[i++] = unp; 1416 unp->unp_refcount++; 1417 } 1418 UNP_PCB_UNLOCK(unp); 1419 } 1420 UNP_GLOBAL_RUNLOCK(); 1421 n = i; /* In case we lost some during malloc. */ 1422 1423 /* 1424 * XXXRW: The logic below asumes that it is OK to lock a mutex in 1425 * an unpcb that may have been freed. 1426 */ 1427 error = 0; 1428 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1429 for (i = 0; i < n; i++) { 1430 unp = unp_list[i]; 1431 UNP_PCB_LOCK(unp); 1432 unp->unp_refcount--; 1433 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) { 1434 xu->xu_len = sizeof *xu; 1435 xu->xu_unpp = unp; 1436 /* 1437 * XXX - need more locking here to protect against 1438 * connect/disconnect races for SMP. 1439 */ 1440 if (unp->unp_addr != NULL) 1441 bcopy(unp->unp_addr, &xu->xu_addr, 1442 unp->unp_addr->sun_len); 1443 if (unp->unp_conn != NULL && 1444 unp->unp_conn->unp_addr != NULL) 1445 bcopy(unp->unp_conn->unp_addr, 1446 &xu->xu_caddr, 1447 unp->unp_conn->unp_addr->sun_len); 1448 bcopy(unp, &xu->xu_unp, sizeof *unp); 1449 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1450 UNP_PCB_UNLOCK(unp); 1451 error = SYSCTL_OUT(req, xu, sizeof *xu); 1452 } else { 1453 freeunp = (unp->unp_refcount == 0); 1454 UNP_PCB_UNLOCK(unp); 1455 if (freeunp) { 1456 UNP_PCB_LOCK_DESTROY(unp); 1457 uma_zfree(unp_zone, unp); 1458 } 1459 } 1460 } 1461 free(xu, M_TEMP); 1462 if (!error) { 1463 /* 1464 * Give the user an updated idea of our state. If the 1465 * generation differs from what we told her before, she knows 1466 * that something happened while we were processing this 1467 * request, and it might be necessary to retry. 1468 */ 1469 xug->xug_gen = unp_gencnt; 1470 xug->xug_sogen = so_gencnt; 1471 xug->xug_count = unp_count; 1472 error = SYSCTL_OUT(req, xug, sizeof *xug); 1473 } 1474 free(unp_list, M_TEMP); 1475 free(xug, M_TEMP); 1476 return (error); 1477 } 1478 1479 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD, 1480 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1481 "List of active local datagram sockets"); 1482 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD, 1483 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1484 "List of active local stream sockets"); 1485 1486 static void 1487 unp_shutdown(struct unpcb *unp) 1488 { 1489 struct unpcb *unp2; 1490 struct socket *so; 1491 1492 UNP_GLOBAL_WLOCK_ASSERT(); 1493 UNP_PCB_LOCK_ASSERT(unp); 1494 1495 unp2 = unp->unp_conn; 1496 if (unp->unp_socket->so_type == SOCK_STREAM && unp2 != NULL) { 1497 so = unp2->unp_socket; 1498 if (so != NULL) 1499 socantrcvmore(so); 1500 } 1501 } 1502 1503 static void 1504 unp_drop(struct unpcb *unp, int errno) 1505 { 1506 struct socket *so = unp->unp_socket; 1507 struct unpcb *unp2; 1508 1509 UNP_GLOBAL_WLOCK_ASSERT(); 1510 UNP_PCB_LOCK_ASSERT(unp); 1511 1512 so->so_error = errno; 1513 unp2 = unp->unp_conn; 1514 if (unp2 == NULL) 1515 return; 1516 1517 UNP_PCB_LOCK(unp2); 1518 unp_disconnect(unp, unp2); 1519 UNP_PCB_UNLOCK(unp2); 1520 } 1521 1522 static void 1523 unp_freerights(struct file **rp, int fdcount) 1524 { 1525 int i; 1526 struct file *fp; 1527 1528 for (i = 0; i < fdcount; i++) { 1529 /* 1530 * Zero the pointer before calling unp_discard since it may 1531 * end up in unp_gc().. 1532 * 1533 * XXXRW: This is less true than it used to be. 1534 */ 1535 fp = *rp; 1536 *rp++ = NULL; 1537 unp_discard(fp); 1538 } 1539 } 1540 1541 int 1542 unp_externalize(struct mbuf *control, struct mbuf **controlp) 1543 { 1544 struct thread *td = curthread; /* XXX */ 1545 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1546 int i; 1547 int *fdp; 1548 struct file **rp; 1549 struct file *fp; 1550 void *data; 1551 socklen_t clen = control->m_len, datalen; 1552 int error, newfds; 1553 int f; 1554 u_int newlen; 1555 1556 UNP_GLOBAL_UNLOCK_ASSERT(); 1557 1558 error = 0; 1559 if (controlp != NULL) /* controlp == NULL => free control messages */ 1560 *controlp = NULL; 1561 1562 while (cm != NULL) { 1563 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 1564 error = EINVAL; 1565 break; 1566 } 1567 1568 data = CMSG_DATA(cm); 1569 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1570 1571 if (cm->cmsg_level == SOL_SOCKET 1572 && cm->cmsg_type == SCM_RIGHTS) { 1573 newfds = datalen / sizeof(struct file *); 1574 rp = data; 1575 1576 /* If we're not outputting the descriptors free them. */ 1577 if (error || controlp == NULL) { 1578 unp_freerights(rp, newfds); 1579 goto next; 1580 } 1581 FILEDESC_LOCK(td->td_proc->p_fd); 1582 /* if the new FD's will not fit free them. */ 1583 if (!fdavail(td, newfds)) { 1584 FILEDESC_UNLOCK(td->td_proc->p_fd); 1585 error = EMSGSIZE; 1586 unp_freerights(rp, newfds); 1587 goto next; 1588 } 1589 /* 1590 * Now change each pointer to an fd in the global 1591 * table to an integer that is the index to the local 1592 * fd table entry that we set up to point to the 1593 * global one we are transferring. 1594 */ 1595 newlen = newfds * sizeof(int); 1596 *controlp = sbcreatecontrol(NULL, newlen, 1597 SCM_RIGHTS, SOL_SOCKET); 1598 if (*controlp == NULL) { 1599 FILEDESC_UNLOCK(td->td_proc->p_fd); 1600 error = E2BIG; 1601 unp_freerights(rp, newfds); 1602 goto next; 1603 } 1604 1605 fdp = (int *) 1606 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1607 for (i = 0; i < newfds; i++) { 1608 if (fdalloc(td, 0, &f)) 1609 panic("unp_externalize fdalloc failed"); 1610 fp = *rp++; 1611 td->td_proc->p_fd->fd_ofiles[f] = fp; 1612 FILE_LOCK(fp); 1613 fp->f_msgcount--; 1614 FILE_UNLOCK(fp); 1615 unp_rights--; 1616 *fdp++ = f; 1617 } 1618 FILEDESC_UNLOCK(td->td_proc->p_fd); 1619 } else { 1620 /* We can just copy anything else across. */ 1621 if (error || controlp == NULL) 1622 goto next; 1623 *controlp = sbcreatecontrol(NULL, datalen, 1624 cm->cmsg_type, cm->cmsg_level); 1625 if (*controlp == NULL) { 1626 error = ENOBUFS; 1627 goto next; 1628 } 1629 bcopy(data, 1630 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 1631 datalen); 1632 } 1633 1634 controlp = &(*controlp)->m_next; 1635 1636 next: 1637 if (CMSG_SPACE(datalen) < clen) { 1638 clen -= CMSG_SPACE(datalen); 1639 cm = (struct cmsghdr *) 1640 ((caddr_t)cm + CMSG_SPACE(datalen)); 1641 } else { 1642 clen = 0; 1643 cm = NULL; 1644 } 1645 } 1646 1647 m_freem(control); 1648 1649 return (error); 1650 } 1651 1652 static void 1653 unp_zone_change(void *tag) 1654 { 1655 1656 uma_zone_set_max(unp_zone, maxsockets); 1657 } 1658 1659 void 1660 unp_init(void) 1661 { 1662 1663 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 1664 NULL, NULL, UMA_ALIGN_PTR, 0); 1665 if (unp_zone == NULL) 1666 panic("unp_init"); 1667 uma_zone_set_max(unp_zone, maxsockets); 1668 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 1669 NULL, EVENTHANDLER_PRI_ANY); 1670 LIST_INIT(&unp_dhead); 1671 LIST_INIT(&unp_shead); 1672 TASK_INIT(&unp_gc_task, 0, unp_gc, NULL); 1673 UNP_GLOBAL_LOCK_INIT(); 1674 } 1675 1676 static int 1677 unp_internalize(struct mbuf **controlp, struct thread *td) 1678 { 1679 struct mbuf *control = *controlp; 1680 struct proc *p = td->td_proc; 1681 struct filedesc *fdescp = p->p_fd; 1682 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1683 struct cmsgcred *cmcred; 1684 struct file **rp; 1685 struct file *fp; 1686 struct timeval *tv; 1687 int i, fd, *fdp; 1688 void *data; 1689 socklen_t clen = control->m_len, datalen; 1690 int error, oldfds; 1691 u_int newlen; 1692 1693 UNP_GLOBAL_UNLOCK_ASSERT(); 1694 1695 error = 0; 1696 *controlp = NULL; 1697 1698 while (cm != NULL) { 1699 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 1700 || cm->cmsg_len > clen) { 1701 error = EINVAL; 1702 goto out; 1703 } 1704 1705 data = CMSG_DATA(cm); 1706 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1707 1708 switch (cm->cmsg_type) { 1709 /* 1710 * Fill in credential information. 1711 */ 1712 case SCM_CREDS: 1713 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 1714 SCM_CREDS, SOL_SOCKET); 1715 if (*controlp == NULL) { 1716 error = ENOBUFS; 1717 goto out; 1718 } 1719 1720 cmcred = (struct cmsgcred *) 1721 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1722 cmcred->cmcred_pid = p->p_pid; 1723 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 1724 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 1725 cmcred->cmcred_euid = td->td_ucred->cr_uid; 1726 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 1727 CMGROUP_MAX); 1728 for (i = 0; i < cmcred->cmcred_ngroups; i++) 1729 cmcred->cmcred_groups[i] = 1730 td->td_ucred->cr_groups[i]; 1731 break; 1732 1733 case SCM_RIGHTS: 1734 oldfds = datalen / sizeof (int); 1735 /* 1736 * Check that all the FDs passed in refer to legal 1737 * files. If not, reject the entire operation. 1738 */ 1739 fdp = data; 1740 FILEDESC_LOCK(fdescp); 1741 for (i = 0; i < oldfds; i++) { 1742 fd = *fdp++; 1743 if ((unsigned)fd >= fdescp->fd_nfiles || 1744 fdescp->fd_ofiles[fd] == NULL) { 1745 FILEDESC_UNLOCK(fdescp); 1746 error = EBADF; 1747 goto out; 1748 } 1749 fp = fdescp->fd_ofiles[fd]; 1750 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 1751 FILEDESC_UNLOCK(fdescp); 1752 error = EOPNOTSUPP; 1753 goto out; 1754 } 1755 1756 } 1757 /* 1758 * Now replace the integer FDs with pointers to 1759 * the associated global file table entry.. 1760 */ 1761 newlen = oldfds * sizeof(struct file *); 1762 *controlp = sbcreatecontrol(NULL, newlen, 1763 SCM_RIGHTS, SOL_SOCKET); 1764 if (*controlp == NULL) { 1765 FILEDESC_UNLOCK(fdescp); 1766 error = E2BIG; 1767 goto out; 1768 } 1769 1770 fdp = data; 1771 rp = (struct file **) 1772 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1773 for (i = 0; i < oldfds; i++) { 1774 fp = fdescp->fd_ofiles[*fdp++]; 1775 *rp++ = fp; 1776 FILE_LOCK(fp); 1777 fp->f_count++; 1778 fp->f_msgcount++; 1779 FILE_UNLOCK(fp); 1780 unp_rights++; 1781 } 1782 FILEDESC_UNLOCK(fdescp); 1783 break; 1784 1785 case SCM_TIMESTAMP: 1786 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 1787 SCM_TIMESTAMP, SOL_SOCKET); 1788 if (*controlp == NULL) { 1789 error = ENOBUFS; 1790 goto out; 1791 } 1792 tv = (struct timeval *) 1793 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1794 microtime(tv); 1795 break; 1796 1797 default: 1798 error = EINVAL; 1799 goto out; 1800 } 1801 1802 controlp = &(*controlp)->m_next; 1803 1804 if (CMSG_SPACE(datalen) < clen) { 1805 clen -= CMSG_SPACE(datalen); 1806 cm = (struct cmsghdr *) 1807 ((caddr_t)cm + CMSG_SPACE(datalen)); 1808 } else { 1809 clen = 0; 1810 cm = NULL; 1811 } 1812 } 1813 1814 out: 1815 m_freem(control); 1816 1817 return (error); 1818 } 1819 1820 static struct mbuf * 1821 unp_addsockcred(struct thread *td, struct mbuf *control) 1822 { 1823 struct mbuf *m, *n, *n_prev; 1824 struct sockcred *sc; 1825 const struct cmsghdr *cm; 1826 int ngroups; 1827 int i; 1828 1829 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 1830 1831 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 1832 if (m == NULL) 1833 return (control); 1834 1835 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 1836 sc->sc_uid = td->td_ucred->cr_ruid; 1837 sc->sc_euid = td->td_ucred->cr_uid; 1838 sc->sc_gid = td->td_ucred->cr_rgid; 1839 sc->sc_egid = td->td_ucred->cr_gid; 1840 sc->sc_ngroups = ngroups; 1841 for (i = 0; i < sc->sc_ngroups; i++) 1842 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 1843 1844 /* 1845 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 1846 * created SCM_CREDS control message (struct sockcred) has another 1847 * format. 1848 */ 1849 if (control != NULL) 1850 for (n = control, n_prev = NULL; n != NULL;) { 1851 cm = mtod(n, struct cmsghdr *); 1852 if (cm->cmsg_level == SOL_SOCKET && 1853 cm->cmsg_type == SCM_CREDS) { 1854 if (n_prev == NULL) 1855 control = n->m_next; 1856 else 1857 n_prev->m_next = n->m_next; 1858 n = m_free(n); 1859 } else { 1860 n_prev = n; 1861 n = n->m_next; 1862 } 1863 } 1864 1865 /* Prepend it to the head. */ 1866 m->m_next = control; 1867 1868 return (m); 1869 } 1870 1871 /* 1872 * unp_defer indicates whether additional work has been defered for a future 1873 * pass through unp_gc(). It is thread local and does not require explicit 1874 * synchronization. 1875 */ 1876 static int unp_defer; 1877 1878 static int unp_taskcount; 1879 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, ""); 1880 1881 static int unp_recycled; 1882 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, ""); 1883 1884 static void 1885 unp_gc(__unused void *arg, int pending) 1886 { 1887 struct file *fp, *nextfp; 1888 struct socket *so; 1889 struct file **extra_ref, **fpp; 1890 int nunref, i; 1891 int nfiles_snap; 1892 int nfiles_slack = 20; 1893 1894 unp_taskcount++; 1895 unp_defer = 0; 1896 /* 1897 * Before going through all this, set all FDs to be NOT deferred and 1898 * NOT externally accessible. 1899 */ 1900 sx_slock(&filelist_lock); 1901 LIST_FOREACH(fp, &filehead, f_list) 1902 fp->f_gcflag &= ~(FMARK|FDEFER); 1903 do { 1904 KASSERT(unp_defer >= 0, ("unp_gc: unp_defer %d", unp_defer)); 1905 LIST_FOREACH(fp, &filehead, f_list) { 1906 FILE_LOCK(fp); 1907 /* 1908 * If the file is not open, skip it -- could be a 1909 * file in the process of being opened, or in the 1910 * process of being closed. If the file is 1911 * "closing", it may have been marked for deferred 1912 * consideration. Clear the flag now if so. 1913 */ 1914 if (fp->f_count == 0) { 1915 if (fp->f_gcflag & FDEFER) 1916 unp_defer--; 1917 fp->f_gcflag &= ~(FMARK|FDEFER); 1918 FILE_UNLOCK(fp); 1919 continue; 1920 } 1921 /* 1922 * If we already marked it as 'defer' in a 1923 * previous pass, then try to process it this 1924 * time and un-mark it. 1925 */ 1926 if (fp->f_gcflag & FDEFER) { 1927 fp->f_gcflag &= ~FDEFER; 1928 unp_defer--; 1929 } else { 1930 /* 1931 * If it's not deferred, then check if it's 1932 * already marked.. if so skip it 1933 */ 1934 if (fp->f_gcflag & FMARK) { 1935 FILE_UNLOCK(fp); 1936 continue; 1937 } 1938 /* 1939 * If all references are from messages in 1940 * transit, then skip it. it's not externally 1941 * accessible. 1942 */ 1943 if (fp->f_count == fp->f_msgcount) { 1944 FILE_UNLOCK(fp); 1945 continue; 1946 } 1947 /* 1948 * If it got this far then it must be 1949 * externally accessible. 1950 */ 1951 fp->f_gcflag |= FMARK; 1952 } 1953 /* 1954 * Either it was deferred, or it is externally 1955 * accessible and not already marked so. Now check 1956 * if it is possibly one of OUR sockets. 1957 */ 1958 if (fp->f_type != DTYPE_SOCKET || 1959 (so = fp->f_data) == NULL) { 1960 FILE_UNLOCK(fp); 1961 continue; 1962 } 1963 if (so->so_proto->pr_domain != &localdomain || 1964 (so->so_proto->pr_flags & PR_RIGHTS) == 0) { 1965 FILE_UNLOCK(fp); 1966 continue; 1967 } 1968 1969 /* 1970 * Tell any other threads that do a subsequent 1971 * fdrop() that we are scanning the message 1972 * buffers. 1973 */ 1974 fp->f_gcflag |= FWAIT; 1975 FILE_UNLOCK(fp); 1976 1977 /* 1978 * So, Ok, it's one of our sockets and it IS 1979 * externally accessible (or was deferred). Now we 1980 * look to see if we hold any file descriptors in its 1981 * message buffers. Follow those links and mark them 1982 * as accessible too. 1983 */ 1984 SOCKBUF_LOCK(&so->so_rcv); 1985 unp_scan(so->so_rcv.sb_mb, unp_mark); 1986 SOCKBUF_UNLOCK(&so->so_rcv); 1987 1988 /* 1989 * Wake up any threads waiting in fdrop(). 1990 */ 1991 FILE_LOCK(fp); 1992 fp->f_gcflag &= ~FWAIT; 1993 wakeup(&fp->f_gcflag); 1994 FILE_UNLOCK(fp); 1995 } 1996 } while (unp_defer); 1997 sx_sunlock(&filelist_lock); 1998 /* 1999 * XXXRW: The following comments need updating for a post-SMPng and 2000 * deferred unp_gc() world, but are still generally accurate. 2001 * 2002 * We grab an extra reference to each of the file table entries that 2003 * are not otherwise accessible and then free the rights that are 2004 * stored in messages on them. 2005 * 2006 * The bug in the orginal code is a little tricky, so I'll describe 2007 * what's wrong with it here. 2008 * 2009 * It is incorrect to simply unp_discard each entry for f_msgcount 2010 * times -- consider the case of sockets A and B that contain 2011 * references to each other. On a last close of some other socket, 2012 * we trigger a gc since the number of outstanding rights (unp_rights) 2013 * is non-zero. If during the sweep phase the gc code unp_discards, 2014 * we end up doing a (full) closef on the descriptor. A closef on A 2015 * results in the following chain. Closef calls soo_close, which 2016 * calls soclose. Soclose calls first (through the switch 2017 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply 2018 * returns because the previous instance had set unp_gcing, and we 2019 * return all the way back to soclose, which marks the socket with 2020 * SS_NOFDREF, and then calls sofree. Sofree calls sorflush to free 2021 * up the rights that are queued in messages on the socket A, i.e., 2022 * the reference on B. The sorflush calls via the dom_dispose switch 2023 * unp_dispose, which unp_scans with unp_discard. This second 2024 * instance of unp_discard just calls closef on B. 2025 * 2026 * Well, a similar chain occurs on B, resulting in a sorflush on B, 2027 * which results in another closef on A. Unfortunately, A is already 2028 * being closed, and the descriptor has already been marked with 2029 * SS_NOFDREF, and soclose panics at this point. 2030 * 2031 * Here, we first take an extra reference to each inaccessible 2032 * descriptor. Then, we call sorflush ourself, since we know it is a 2033 * Unix domain socket anyhow. After we destroy all the rights 2034 * carried in messages, we do a last closef to get rid of our extra 2035 * reference. This is the last close, and the unp_detach etc will 2036 * shut down the socket. 2037 * 2038 * 91/09/19, bsy@cs.cmu.edu 2039 */ 2040 again: 2041 nfiles_snap = openfiles + nfiles_slack; /* some slack */ 2042 extra_ref = malloc(nfiles_snap * sizeof(struct file *), M_TEMP, 2043 M_WAITOK); 2044 sx_slock(&filelist_lock); 2045 if (nfiles_snap < openfiles) { 2046 sx_sunlock(&filelist_lock); 2047 free(extra_ref, M_TEMP); 2048 nfiles_slack += 20; 2049 goto again; 2050 } 2051 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; 2052 fp != NULL; fp = nextfp) { 2053 nextfp = LIST_NEXT(fp, f_list); 2054 FILE_LOCK(fp); 2055 /* 2056 * If it's not open, skip it 2057 */ 2058 if (fp->f_count == 0) { 2059 FILE_UNLOCK(fp); 2060 continue; 2061 } 2062 /* 2063 * If all refs are from msgs, and it's not marked accessible 2064 * then it must be referenced from some unreachable cycle of 2065 * (shut-down) FDs, so include it in our list of FDs to 2066 * remove. 2067 */ 2068 if (fp->f_count == fp->f_msgcount && !(fp->f_gcflag & FMARK)) { 2069 *fpp++ = fp; 2070 nunref++; 2071 fp->f_count++; 2072 } 2073 FILE_UNLOCK(fp); 2074 } 2075 sx_sunlock(&filelist_lock); 2076 /* 2077 * For each FD on our hit list, do the following two things: 2078 */ 2079 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) { 2080 struct file *tfp = *fpp; 2081 FILE_LOCK(tfp); 2082 if (tfp->f_type == DTYPE_SOCKET && 2083 tfp->f_data != NULL) { 2084 FILE_UNLOCK(tfp); 2085 sorflush(tfp->f_data); 2086 } else { 2087 FILE_UNLOCK(tfp); 2088 } 2089 } 2090 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) { 2091 closef(*fpp, (struct thread *) NULL); 2092 unp_recycled++; 2093 } 2094 free(extra_ref, M_TEMP); 2095 } 2096 2097 void 2098 unp_dispose(struct mbuf *m) 2099 { 2100 2101 if (m) 2102 unp_scan(m, unp_discard); 2103 } 2104 2105 static void 2106 unp_scan(struct mbuf *m0, void (*op)(struct file *)) 2107 { 2108 struct mbuf *m; 2109 struct file **rp; 2110 struct cmsghdr *cm; 2111 void *data; 2112 int i; 2113 socklen_t clen, datalen; 2114 int qfds; 2115 2116 while (m0 != NULL) { 2117 for (m = m0; m; m = m->m_next) { 2118 if (m->m_type != MT_CONTROL) 2119 continue; 2120 2121 cm = mtod(m, struct cmsghdr *); 2122 clen = m->m_len; 2123 2124 while (cm != NULL) { 2125 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2126 break; 2127 2128 data = CMSG_DATA(cm); 2129 datalen = (caddr_t)cm + cm->cmsg_len 2130 - (caddr_t)data; 2131 2132 if (cm->cmsg_level == SOL_SOCKET && 2133 cm->cmsg_type == SCM_RIGHTS) { 2134 qfds = datalen / sizeof (struct file *); 2135 rp = data; 2136 for (i = 0; i < qfds; i++) 2137 (*op)(*rp++); 2138 } 2139 2140 if (CMSG_SPACE(datalen) < clen) { 2141 clen -= CMSG_SPACE(datalen); 2142 cm = (struct cmsghdr *) 2143 ((caddr_t)cm + CMSG_SPACE(datalen)); 2144 } else { 2145 clen = 0; 2146 cm = NULL; 2147 } 2148 } 2149 } 2150 m0 = m0->m_act; 2151 } 2152 } 2153 2154 static void 2155 unp_mark(struct file *fp) 2156 { 2157 2158 /* XXXRW: Should probably assert file list lock here. */ 2159 2160 if (fp->f_gcflag & FMARK) 2161 return; 2162 unp_defer++; 2163 fp->f_gcflag |= (FMARK|FDEFER); 2164 } 2165 2166 static void 2167 unp_discard(struct file *fp) 2168 { 2169 2170 UNP_GLOBAL_WLOCK(); 2171 FILE_LOCK(fp); 2172 fp->f_msgcount--; 2173 unp_rights--; 2174 FILE_UNLOCK(fp); 2175 UNP_GLOBAL_WUNLOCK(); 2176 (void) closef(fp, (struct thread *)NULL); 2177 } 2178