xref: /freebsd/sys/kern/uipc_usrreq.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2007 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	SEQPACKET, RDM
54  *	rethink name space problems
55  *	need a proper out-of-band
56  *	lock pushdown
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_mac.h"
63 
64 #include <sys/param.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/jail.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/mbuf.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/namei.h>
78 #include <sys/proc.h>
79 #include <sys/protosw.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <security/mac/mac_framework.h>
95 
96 #include <vm/uma.h>
97 
98 static uma_zone_t	unp_zone;
99 static unp_gen_t	unp_gencnt;
100 static u_int		unp_count;	/* Count of local sockets. */
101 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
102 static int		unp_rights;	/* File descriptors in flight. */
103 static struct unp_head	unp_shead;	/* List of local stream sockets. */
104 static struct unp_head	unp_dhead;	/* List of local datagram sockets. */
105 
106 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
107 
108 /*
109  * Garbage collection of cyclic file descriptor/socket references occurs
110  * asynchronously in a taskqueue context in order to avoid recursion and
111  * reentrance in the UNIX domain socket, file descriptor, and socket layer
112  * code.  See unp_gc() for a full description.
113  */
114 static struct task	unp_gc_task;
115 
116 /*
117  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
118  * stream sockets, although the total for sender and receiver is actually
119  * only PIPSIZ.
120  *
121  * Datagram sockets really use the sendspace as the maximum datagram size,
122  * and don't really want to reserve the sendspace.  Their recvspace should be
123  * large enough for at least one max-size datagram plus address.
124  */
125 #ifndef PIPSIZ
126 #define	PIPSIZ	8192
127 #endif
128 static u_long	unpst_sendspace = PIPSIZ;
129 static u_long	unpst_recvspace = PIPSIZ;
130 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
131 static u_long	unpdg_recvspace = 4*1024;
132 
133 SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
134 SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
135 SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
136 
137 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
138 	   &unpst_sendspace, 0, "");
139 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
140 	   &unpst_recvspace, 0, "");
141 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
142 	   &unpdg_sendspace, 0, "");
143 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
144 	   &unpdg_recvspace, 0, "");
145 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
146 
147 /*-
148  * Locking and synchronization:
149  *
150  * The global UNIX domain socket rwlock (unp_global_rwlock) protects all
151  * global variables, including the linked lists tracking the set of allocated
152  * UNIX domain sockets.  The global rwlock also serves to prevent deadlock
153  * when more than one PCB lock is acquired at a time (i.e., during
154  * connect()).  Finally, the global rwlock protects uncounted references from
155  * vnodes to sockets bound to those vnodes: to safely dereference the
156  * v_socket pointer, the global rwlock must be held while a full reference is
157  * acquired.
158  *
159  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
160  * allocated in pru_attach() and freed in pru_detach().  The validity of that
161  * pointer is an invariant, so no lock is required to dereference the so_pcb
162  * pointer if a valid socket reference is held by the caller.  In practice,
163  * this is always true during operations performed on a socket.  Each unpcb
164  * has a back-pointer to its socket, unp_socket, which will be stable under
165  * the same circumstances.
166  *
167  * This pointer may only be safely dereferenced as long as a valid reference
168  * to the unpcb is held.  Typically, this reference will be from the socket,
169  * or from another unpcb when the referring unpcb's lock is held (in order
170  * that the reference not be invalidated during use).  For example, to follow
171  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
172  * as unp_socket remains valid as long as the reference to unp_conn is valid.
173  *
174  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
175  * atomic reads without the lock may be performed "lockless", but more
176  * complex reads and read-modify-writes require the mutex to be held.  No
177  * lock order is defined between unpcb locks -- multiple unpcb locks may be
178  * acquired at the same time only when holding the global UNIX domain socket
179  * rwlock exclusively, which prevents deadlocks.
180  *
181  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
182  * protocols, bind() is a non-atomic operation, and connect() requires
183  * potential sleeping in the protocol, due to potentially waiting on local or
184  * distributed file systems.  We try to separate "lookup" operations, which
185  * may sleep, and the IPC operations themselves, which typically can occur
186  * with relative atomicity as locks can be held over the entire operation.
187  *
188  * Another tricky issue is simultaneous multi-threaded or multi-process
189  * access to a single UNIX domain socket.  These are handled by the flags
190  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
191  * binding, both of which involve dropping UNIX domain socket locks in order
192  * to perform namei() and other file system operations.
193  */
194 static struct rwlock	unp_global_rwlock;
195 
196 #define	UNP_GLOBAL_LOCK_INIT()		rw_init(&unp_global_rwlock,	\
197 					    "unp_global_rwlock")
198 
199 #define	UNP_GLOBAL_LOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
200 					    RA_LOCKED)
201 #define	UNP_GLOBAL_UNLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
202 					    RA_UNLOCKED)
203 
204 #define	UNP_GLOBAL_WLOCK()		rw_wlock(&unp_global_rwlock)
205 #define	UNP_GLOBAL_WUNLOCK()		rw_wunlock(&unp_global_rwlock)
206 #define	UNP_GLOBAL_WLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
207 					    RA_WLOCKED)
208 #define	UNP_GLOBAL_WOWNED()		rw_wowned(&unp_global_rwlock)
209 
210 #define	UNP_GLOBAL_RLOCK()		rw_rlock(&unp_global_rwlock)
211 #define	UNP_GLOBAL_RUNLOCK()		rw_runlock(&unp_global_rwlock)
212 #define	UNP_GLOBAL_RLOCK_ASSERT()	rw_assert(&unp_global_rwlock,	\
213 					    RA_RLOCKED)
214 
215 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
216 					    "unp_mtx", "unp_mtx",	\
217 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
218 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
219 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
220 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
221 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
222 
223 static int	unp_connect(struct socket *, struct sockaddr *,
224 		    struct thread *);
225 static int	unp_connect2(struct socket *so, struct socket *so2, int);
226 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
227 static void	unp_shutdown(struct unpcb *);
228 static void	unp_drop(struct unpcb *, int);
229 static void	unp_gc(__unused void *, int);
230 static void	unp_scan(struct mbuf *, void (*)(struct file *));
231 static void	unp_mark(struct file *);
232 static void	unp_discard(struct file *);
233 static void	unp_freerights(struct file **, int);
234 static int	unp_internalize(struct mbuf **, struct thread *);
235 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
236 
237 /*
238  * Definitions of protocols supported in the LOCAL domain.
239  */
240 static struct domain localdomain;
241 static struct protosw localsw[] = {
242 {
243 	.pr_type =		SOCK_STREAM,
244 	.pr_domain =		&localdomain,
245 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
246 	.pr_ctloutput =		&uipc_ctloutput,
247 	.pr_usrreqs =		&uipc_usrreqs
248 },
249 {
250 	.pr_type =		SOCK_DGRAM,
251 	.pr_domain =		&localdomain,
252 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
253 	.pr_usrreqs =		&uipc_usrreqs
254 },
255 };
256 
257 static struct domain localdomain = {
258 	.dom_family =		AF_LOCAL,
259 	.dom_name =		"local",
260 	.dom_init =		unp_init,
261 	.dom_externalize =	unp_externalize,
262 	.dom_dispose =		unp_dispose,
263 	.dom_protosw =		localsw,
264 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
265 };
266 DOMAIN_SET(local);
267 
268 static void
269 uipc_abort(struct socket *so)
270 {
271 	struct unpcb *unp, *unp2;
272 
273 	unp = sotounpcb(so);
274 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
275 
276 	UNP_GLOBAL_WLOCK();
277 	UNP_PCB_LOCK(unp);
278 	unp2 = unp->unp_conn;
279 	if (unp2 != NULL) {
280 		UNP_PCB_LOCK(unp2);
281 		unp_drop(unp2, ECONNABORTED);
282 		UNP_PCB_UNLOCK(unp2);
283 	}
284 	UNP_PCB_UNLOCK(unp);
285 	UNP_GLOBAL_WUNLOCK();
286 }
287 
288 static int
289 uipc_accept(struct socket *so, struct sockaddr **nam)
290 {
291 	struct unpcb *unp, *unp2;
292 	const struct sockaddr *sa;
293 
294 	/*
295 	 * Pass back name of connected socket, if it was bound and we are
296 	 * still connected (our peer may have closed already!).
297 	 */
298 	unp = sotounpcb(so);
299 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
300 
301 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
302 	UNP_GLOBAL_RLOCK();
303 	unp2 = unp->unp_conn;
304 	if (unp2 != NULL && unp2->unp_addr != NULL) {
305 		UNP_PCB_LOCK(unp2);
306 		sa = (struct sockaddr *) unp2->unp_addr;
307 		bcopy(sa, *nam, sa->sa_len);
308 		UNP_PCB_UNLOCK(unp2);
309 	} else {
310 		sa = &sun_noname;
311 		bcopy(sa, *nam, sa->sa_len);
312 	}
313 	UNP_GLOBAL_RUNLOCK();
314 	return (0);
315 }
316 
317 static int
318 uipc_attach(struct socket *so, int proto, struct thread *td)
319 {
320 	u_long sendspace, recvspace;
321 	struct unpcb *unp;
322 	int error, locked;
323 
324 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
325 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
326 		switch (so->so_type) {
327 		case SOCK_STREAM:
328 			sendspace = unpst_sendspace;
329 			recvspace = unpst_recvspace;
330 			break;
331 
332 		case SOCK_DGRAM:
333 			sendspace = unpdg_sendspace;
334 			recvspace = unpdg_recvspace;
335 			break;
336 
337 		default:
338 			panic("uipc_attach");
339 		}
340 		error = soreserve(so, sendspace, recvspace);
341 		if (error)
342 			return (error);
343 	}
344 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
345 	if (unp == NULL)
346 		return (ENOBUFS);
347 	LIST_INIT(&unp->unp_refs);
348 	UNP_PCB_LOCK_INIT(unp);
349 	unp->unp_socket = so;
350 	so->so_pcb = unp;
351 	unp->unp_refcount = 1;
352 	locked = 0;
353 
354 	/*
355 	 * uipc_attach() may be called indirectly from within the UNIX domain
356 	 * socket code via sonewconn() in unp_connect().  Since rwlocks can
357 	 * not be recursed, we do the closest thing.
358 	 */
359 	if (!UNP_GLOBAL_WOWNED()) {
360 		UNP_GLOBAL_WLOCK();
361 		locked = 1;
362 	}
363 	unp->unp_gencnt = ++unp_gencnt;
364 	unp_count++;
365 	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead : &unp_shead,
366 	    unp, unp_link);
367 	if (locked)
368 		UNP_GLOBAL_WUNLOCK();
369 
370 	return (0);
371 }
372 
373 static int
374 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
375 {
376 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
377 	struct vattr vattr;
378 	int error, namelen;
379 	struct nameidata nd;
380 	struct unpcb *unp;
381 	struct vnode *vp;
382 	struct mount *mp;
383 	char *buf;
384 
385 	unp = sotounpcb(so);
386 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
387 
388 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
389 	if (namelen <= 0)
390 		return (EINVAL);
391 
392 	/*
393 	 * We don't allow simultaneous bind() calls on a single UNIX domain
394 	 * socket, so flag in-progress operations, and return an error if an
395 	 * operation is already in progress.
396 	 *
397 	 * Historically, we have not allowed a socket to be rebound, so this
398 	 * also returns an error.  Not allowing re-binding certainly
399 	 * simplifies the implementation and avoids a great many possible
400 	 * failure modes.
401 	 */
402 	UNP_PCB_LOCK(unp);
403 	if (unp->unp_vnode != NULL) {
404 		UNP_PCB_UNLOCK(unp);
405 		return (EINVAL);
406 	}
407 	if (unp->unp_flags & UNP_BINDING) {
408 		UNP_PCB_UNLOCK(unp);
409 		return (EALREADY);
410 	}
411 	unp->unp_flags |= UNP_BINDING;
412 	UNP_PCB_UNLOCK(unp);
413 
414 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
415 	strlcpy(buf, soun->sun_path, namelen + 1);
416 
417 	mtx_lock(&Giant);
418 restart:
419 	mtx_assert(&Giant, MA_OWNED);
420 	NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME, UIO_SYSSPACE,
421 	    buf, td);
422 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
423 	error = namei(&nd);
424 	if (error)
425 		goto error;
426 	vp = nd.ni_vp;
427 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
428 		NDFREE(&nd, NDF_ONLY_PNBUF);
429 		if (nd.ni_dvp == vp)
430 			vrele(nd.ni_dvp);
431 		else
432 			vput(nd.ni_dvp);
433 		if (vp != NULL) {
434 			vrele(vp);
435 			error = EADDRINUSE;
436 			goto error;
437 		}
438 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
439 		if (error)
440 			goto error;
441 		goto restart;
442 	}
443 	VATTR_NULL(&vattr);
444 	vattr.va_type = VSOCK;
445 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
446 #ifdef MAC
447 	error = mac_check_vnode_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
448 	    &vattr);
449 #endif
450 	if (error == 0) {
451 		VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE);
452 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
453 	}
454 	NDFREE(&nd, NDF_ONLY_PNBUF);
455 	vput(nd.ni_dvp);
456 	if (error) {
457 		vn_finished_write(mp);
458 		goto error;
459 	}
460 	vp = nd.ni_vp;
461 	ASSERT_VOP_LOCKED(vp, "uipc_bind");
462 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
463 
464 	UNP_GLOBAL_WLOCK();
465 	UNP_PCB_LOCK(unp);
466 	vp->v_socket = unp->unp_socket;
467 	unp->unp_vnode = vp;
468 	unp->unp_addr = soun;
469 	unp->unp_flags &= ~UNP_BINDING;
470 	UNP_PCB_UNLOCK(unp);
471 	UNP_GLOBAL_WUNLOCK();
472 	VOP_UNLOCK(vp, 0, td);
473 	vn_finished_write(mp);
474 	mtx_unlock(&Giant);
475 	free(buf, M_TEMP);
476 	return (0);
477 
478 error:
479 	UNP_PCB_LOCK(unp);
480 	unp->unp_flags &= ~UNP_BINDING;
481 	UNP_PCB_UNLOCK(unp);
482 	mtx_unlock(&Giant);
483 	free(buf, M_TEMP);
484 	return (error);
485 }
486 
487 static int
488 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
489 {
490 	int error;
491 
492 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
493 	UNP_GLOBAL_WLOCK();
494 	error = unp_connect(so, nam, td);
495 	UNP_GLOBAL_WUNLOCK();
496 	return (error);
497 }
498 
499 static void
500 uipc_close(struct socket *so)
501 {
502 	struct unpcb *unp, *unp2;
503 
504 	unp = sotounpcb(so);
505 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
506 
507 	UNP_GLOBAL_WLOCK();
508 	UNP_PCB_LOCK(unp);
509 	unp2 = unp->unp_conn;
510 	if (unp2 != NULL) {
511 		UNP_PCB_LOCK(unp2);
512 		unp_disconnect(unp, unp2);
513 		UNP_PCB_UNLOCK(unp2);
514 	}
515 	UNP_PCB_UNLOCK(unp);
516 	UNP_GLOBAL_WUNLOCK();
517 }
518 
519 int
520 uipc_connect2(struct socket *so1, struct socket *so2)
521 {
522 	struct unpcb *unp, *unp2;
523 	int error;
524 
525 	UNP_GLOBAL_WLOCK();
526 	unp = so1->so_pcb;
527 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
528 	UNP_PCB_LOCK(unp);
529 	unp2 = so2->so_pcb;
530 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
531 	UNP_PCB_LOCK(unp2);
532 	error = unp_connect2(so1, so2, PRU_CONNECT2);
533 	UNP_PCB_UNLOCK(unp2);
534 	UNP_PCB_UNLOCK(unp);
535 	UNP_GLOBAL_WUNLOCK();
536 	return (error);
537 }
538 
539 /* control is EOPNOTSUPP */
540 
541 static void
542 uipc_detach(struct socket *so)
543 {
544 	struct unpcb *unp, *unp2;
545 	struct sockaddr_un *saved_unp_addr;
546 	struct vnode *vp;
547 	int freeunp, local_unp_rights;
548 
549 	unp = sotounpcb(so);
550 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
551 
552 	UNP_GLOBAL_WLOCK();
553 	UNP_PCB_LOCK(unp);
554 
555 	LIST_REMOVE(unp, unp_link);
556 	unp->unp_gencnt = ++unp_gencnt;
557 	--unp_count;
558 
559 	/*
560 	 * XXXRW: Should assert vp->v_socket == so.
561 	 */
562 	if ((vp = unp->unp_vnode) != NULL) {
563 		unp->unp_vnode->v_socket = NULL;
564 		unp->unp_vnode = NULL;
565 	}
566 	unp2 = unp->unp_conn;
567 	if (unp2 != NULL) {
568 		UNP_PCB_LOCK(unp2);
569 		unp_disconnect(unp, unp2);
570 		UNP_PCB_UNLOCK(unp2);
571 	}
572 
573 	/*
574 	 * We hold the global lock, so it's OK to acquire multiple pcb locks
575 	 * at a time.
576 	 */
577 	while (!LIST_EMPTY(&unp->unp_refs)) {
578 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
579 
580 		UNP_PCB_LOCK(ref);
581 		unp_drop(ref, ECONNRESET);
582 		UNP_PCB_UNLOCK(ref);
583 	}
584 	UNP_GLOBAL_WUNLOCK();
585 	unp->unp_socket->so_pcb = NULL;
586 	local_unp_rights = unp_rights;
587 	saved_unp_addr = unp->unp_addr;
588 	unp->unp_addr = NULL;
589 	unp->unp_refcount--;
590 	freeunp = (unp->unp_refcount == 0);
591 	if (saved_unp_addr != NULL)
592 		FREE(saved_unp_addr, M_SONAME);
593 	if (freeunp) {
594 		UNP_PCB_LOCK_DESTROY(unp);
595 		uma_zfree(unp_zone, unp);
596 	}
597 	if (vp) {
598 		int vfslocked;
599 
600 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
601 		vrele(vp);
602 		VFS_UNLOCK_GIANT(vfslocked);
603 	}
604 	if (local_unp_rights)
605 		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
606 }
607 
608 static int
609 uipc_disconnect(struct socket *so)
610 {
611 	struct unpcb *unp, *unp2;
612 
613 	unp = sotounpcb(so);
614 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
615 
616 	UNP_GLOBAL_WLOCK();
617 	UNP_PCB_LOCK(unp);
618 	unp2 = unp->unp_conn;
619 	if (unp2 != NULL) {
620 		UNP_PCB_LOCK(unp2);
621 		unp_disconnect(unp, unp2);
622 		UNP_PCB_UNLOCK(unp2);
623 	}
624 	UNP_PCB_UNLOCK(unp);
625 	UNP_GLOBAL_WUNLOCK();
626 	return (0);
627 }
628 
629 static int
630 uipc_listen(struct socket *so, int backlog, struct thread *td)
631 {
632 	struct unpcb *unp;
633 	int error;
634 
635 	unp = sotounpcb(so);
636 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
637 
638 	UNP_PCB_LOCK(unp);
639 	if (unp->unp_vnode == NULL) {
640 		UNP_PCB_UNLOCK(unp);
641 		return (EINVAL);
642 	}
643 
644 	SOCK_LOCK(so);
645 	error = solisten_proto_check(so);
646 	if (error == 0) {
647 		cru2x(td->td_ucred, &unp->unp_peercred);
648 		unp->unp_flags |= UNP_HAVEPCCACHED;
649 		solisten_proto(so, backlog);
650 	}
651 	SOCK_UNLOCK(so);
652 	UNP_PCB_UNLOCK(unp);
653 	return (error);
654 }
655 
656 static int
657 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
658 {
659 	struct unpcb *unp, *unp2;
660 	const struct sockaddr *sa;
661 
662 	unp = sotounpcb(so);
663 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
664 
665 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
666 	UNP_PCB_LOCK(unp);
667 	/*
668 	 * XXX: It seems that this test always fails even when connection is
669 	 * established.  So, this else clause is added as workaround to
670 	 * return PF_LOCAL sockaddr.
671 	 */
672 	unp2 = unp->unp_conn;
673 	if (unp2 != NULL) {
674 		UNP_PCB_LOCK(unp2);
675 		if (unp2->unp_addr != NULL)
676 			sa = (struct sockaddr *) unp->unp_conn->unp_addr;
677 		else
678 			sa = &sun_noname;
679 		bcopy(sa, *nam, sa->sa_len);
680 		UNP_PCB_UNLOCK(unp2);
681 	} else {
682 		sa = &sun_noname;
683 		bcopy(sa, *nam, sa->sa_len);
684 	}
685 	UNP_PCB_UNLOCK(unp);
686 	return (0);
687 }
688 
689 static int
690 uipc_rcvd(struct socket *so, int flags)
691 {
692 	struct unpcb *unp, *unp2;
693 	struct socket *so2;
694 	u_int mbcnt, sbcc;
695 	u_long newhiwat;
696 
697 	unp = sotounpcb(so);
698 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
699 
700 	if (so->so_type == SOCK_DGRAM)
701 		panic("uipc_rcvd DGRAM?");
702 
703 	if (so->so_type != SOCK_STREAM)
704 		panic("uipc_rcvd unknown socktype");
705 
706 	/*
707 	 * Adjust backpressure on sender and wakeup any waiting to write.
708 	 *
709 	 * The consistency requirements here are a bit complex: we must
710 	 * acquire the lock for our own unpcb in order to prevent it from
711 	 * disconnecting while in use, changing the unp_conn peer.  We do not
712 	 * need unp2's lock, since the unp2->unp_socket pointer will remain
713 	 * static as long as the unp2 pcb is valid, which it will be until we
714 	 * release unp's lock to allow a disconnect.  We do need socket
715 	 * mutexes for both socket endpoints since we manipulate fields in
716 	 * both; we hold both locks at once since we access both
717 	 * simultaneously.
718 	 */
719 	SOCKBUF_LOCK(&so->so_rcv);
720 	mbcnt = so->so_rcv.sb_mbcnt;
721 	sbcc = so->so_rcv.sb_cc;
722 	SOCKBUF_UNLOCK(&so->so_rcv);
723 	UNP_PCB_LOCK(unp);
724 	unp2 = unp->unp_conn;
725 	if (unp2 == NULL) {
726 		UNP_PCB_UNLOCK(unp);
727 		return (0);
728 	}
729 	so2 = unp2->unp_socket;
730 	SOCKBUF_LOCK(&so2->so_snd);
731 	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
732 	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
733 	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
734 	    newhiwat, RLIM_INFINITY);
735 	sowwakeup_locked(so2);
736 	unp->unp_mbcnt = mbcnt;
737 	unp->unp_cc = sbcc;
738 	UNP_PCB_UNLOCK(unp);
739 	return (0);
740 }
741 
742 /* pru_rcvoob is EOPNOTSUPP */
743 
744 static int
745 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
746     struct mbuf *control, struct thread *td)
747 {
748 	struct unpcb *unp, *unp2;
749 	struct socket *so2;
750 	u_int mbcnt, sbcc;
751 	u_long newhiwat;
752 	int error = 0;
753 
754 	unp = sotounpcb(so);
755 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
756 
757 	if (flags & PRUS_OOB) {
758 		error = EOPNOTSUPP;
759 		goto release;
760 	}
761 
762 	if (control != NULL && (error = unp_internalize(&control, td)))
763 		goto release;
764 
765 	if ((nam != NULL) || (flags & PRUS_EOF))
766 		UNP_GLOBAL_WLOCK();
767 	else
768 		UNP_GLOBAL_RLOCK();
769 
770 	switch (so->so_type) {
771 	case SOCK_DGRAM:
772 	{
773 		const struct sockaddr *from;
774 
775 		unp2 = unp->unp_conn;
776 		if (nam != NULL) {
777 			UNP_GLOBAL_WLOCK_ASSERT();
778 			if (unp2 != NULL) {
779 				error = EISCONN;
780 				break;
781 			}
782 			error = unp_connect(so, nam, td);
783 			if (error)
784 				break;
785 			unp2 = unp->unp_conn;
786 		} else {
787 			if (unp2 == NULL) {
788 				error = ENOTCONN;
789 				break;
790 			}
791 		}
792 		/*
793 		 * Because connect() and send() are non-atomic in a sendto()
794 		 * with a target address, it's possible that the socket will
795 		 * have disconnected before the send() can run.  In that case
796 		 * return the slightly counter-intuitive but otherwise
797 		 * correct error that the socket is not connected.
798 		 */
799 		if (unp2 == NULL) {
800 			error = ENOTCONN;
801 			break;
802 		}
803 		/* Lockless read. */
804 		if (unp2->unp_flags & UNP_WANTCRED)
805 			control = unp_addsockcred(td, control);
806 		UNP_PCB_LOCK(unp);
807 		if (unp->unp_addr != NULL)
808 			from = (struct sockaddr *)unp->unp_addr;
809 		else
810 			from = &sun_noname;
811 		so2 = unp2->unp_socket;
812 		SOCKBUF_LOCK(&so2->so_rcv);
813 		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
814 			sorwakeup_locked(so2);
815 			m = NULL;
816 			control = NULL;
817 		} else {
818 			SOCKBUF_UNLOCK(&so2->so_rcv);
819 			error = ENOBUFS;
820 		}
821 		if (nam != NULL) {
822 			UNP_GLOBAL_WLOCK_ASSERT();
823 			UNP_PCB_LOCK(unp2);
824 			unp_disconnect(unp, unp2);
825 			UNP_PCB_UNLOCK(unp2);
826 		}
827 		UNP_PCB_UNLOCK(unp);
828 		break;
829 	}
830 
831 	case SOCK_STREAM:
832 		/*
833 		 * Connect if not connected yet.
834 		 *
835 		 * Note: A better implementation would complain if not equal
836 		 * to the peer's address.
837 		 */
838 		if ((so->so_state & SS_ISCONNECTED) == 0) {
839 			if (nam != NULL) {
840 				UNP_GLOBAL_WLOCK_ASSERT();
841 				error = unp_connect(so, nam, td);
842 				if (error)
843 					break;	/* XXX */
844 			} else {
845 				error = ENOTCONN;
846 				break;
847 			}
848 		}
849 
850 		/* Lockless read. */
851 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
852 			error = EPIPE;
853 			break;
854 		}
855 		/*
856 		 * Because connect() and send() are non-atomic in a sendto()
857 		 * with a target address, it's possible that the socket will
858 		 * have disconnected before the send() can run.  In that case
859 		 * return the slightly counter-intuitive but otherwise
860 		 * correct error that the socket is not connected.
861 		 *
862 		 * Lock order here has to be handled carefully: we hold the
863 		 * global lock, so acquiring two unpcb locks is OK.  We must
864 		 * acquire both before acquiring any socket mutexes.  We must
865 		 * also acquire the local socket send mutex before the remote
866 		 * socket receive mutex.  The only tricky thing is making
867 		 * sure to acquire the unp2 lock before the local socket send
868 		 * lock, or we will experience deadlocks.
869 		 */
870 		unp2 = unp->unp_conn;
871 		if (unp2 == NULL) {
872 			error = ENOTCONN;
873 			break;
874 		}
875 		so2 = unp2->unp_socket;
876 		UNP_PCB_LOCK(unp2);
877 		SOCKBUF_LOCK(&so2->so_rcv);
878 		if (unp2->unp_flags & UNP_WANTCRED) {
879 			/*
880 			 * Credentials are passed only once on SOCK_STREAM.
881 			 */
882 			unp2->unp_flags &= ~UNP_WANTCRED;
883 			control = unp_addsockcred(td, control);
884 		}
885 		/*
886 		 * Send to paired receive port, and then reduce send buffer
887 		 * hiwater marks to maintain backpressure.  Wake up readers.
888 		 */
889 		if (control != NULL) {
890 			if (sbappendcontrol_locked(&so2->so_rcv, m, control))
891 				control = NULL;
892 		} else
893 			sbappend_locked(&so2->so_rcv, m);
894 		mbcnt = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
895 		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
896 		sbcc = so2->so_rcv.sb_cc;
897 		sorwakeup_locked(so2);
898 
899 		SOCKBUF_LOCK(&so->so_snd);
900 		newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
901 		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
902 		    newhiwat, RLIM_INFINITY);
903 		so->so_snd.sb_mbmax -= mbcnt;
904 		SOCKBUF_UNLOCK(&so->so_snd);
905 		unp2->unp_cc = sbcc;
906 		UNP_PCB_UNLOCK(unp2);
907 		m = NULL;
908 		break;
909 
910 	default:
911 		panic("uipc_send unknown socktype");
912 	}
913 
914 	/*
915 	 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN.
916 	 */
917 	if (flags & PRUS_EOF) {
918 		UNP_PCB_LOCK(unp);
919 		socantsendmore(so);
920 		unp_shutdown(unp);
921 		UNP_PCB_UNLOCK(unp);
922 	}
923 
924 	if ((nam != NULL) || (flags & PRUS_EOF))
925 		UNP_GLOBAL_WUNLOCK();
926 	else
927 		UNP_GLOBAL_RUNLOCK();
928 
929 	if (control != NULL && error != 0)
930 		unp_dispose(control);
931 
932 release:
933 	if (control != NULL)
934 		m_freem(control);
935 	if (m != NULL)
936 		m_freem(m);
937 	return (error);
938 }
939 
940 static int
941 uipc_sense(struct socket *so, struct stat *sb)
942 {
943 	struct unpcb *unp, *unp2;
944 	struct socket *so2;
945 
946 	unp = sotounpcb(so);
947 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
948 
949 	sb->st_blksize = so->so_snd.sb_hiwat;
950 	UNP_GLOBAL_RLOCK();
951 	UNP_PCB_LOCK(unp);
952 	unp2 = unp->unp_conn;
953 	if (so->so_type == SOCK_STREAM && unp2 != NULL) {
954 		so2 = unp2->unp_socket;
955 		sb->st_blksize += so2->so_rcv.sb_cc;
956 	}
957 	sb->st_dev = NODEV;
958 	if (unp->unp_ino == 0)
959 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
960 	sb->st_ino = unp->unp_ino;
961 	UNP_PCB_UNLOCK(unp);
962 	UNP_GLOBAL_RUNLOCK();
963 	return (0);
964 }
965 
966 static int
967 uipc_shutdown(struct socket *so)
968 {
969 	struct unpcb *unp;
970 
971 	unp = sotounpcb(so);
972 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
973 
974 	UNP_GLOBAL_WLOCK();
975 	UNP_PCB_LOCK(unp);
976 	socantsendmore(so);
977 	unp_shutdown(unp);
978 	UNP_PCB_UNLOCK(unp);
979 	UNP_GLOBAL_WUNLOCK();
980 	return (0);
981 }
982 
983 static int
984 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
985 {
986 	struct unpcb *unp;
987 	const struct sockaddr *sa;
988 
989 	unp = sotounpcb(so);
990 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
991 
992 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
993 	UNP_PCB_LOCK(unp);
994 	if (unp->unp_addr != NULL)
995 		sa = (struct sockaddr *) unp->unp_addr;
996 	else
997 		sa = &sun_noname;
998 	bcopy(sa, *nam, sa->sa_len);
999 	UNP_PCB_UNLOCK(unp);
1000 	return (0);
1001 }
1002 
1003 struct pr_usrreqs uipc_usrreqs = {
1004 	.pru_abort = 		uipc_abort,
1005 	.pru_accept =		uipc_accept,
1006 	.pru_attach =		uipc_attach,
1007 	.pru_bind =		uipc_bind,
1008 	.pru_connect =		uipc_connect,
1009 	.pru_connect2 =		uipc_connect2,
1010 	.pru_detach =		uipc_detach,
1011 	.pru_disconnect =	uipc_disconnect,
1012 	.pru_listen =		uipc_listen,
1013 	.pru_peeraddr =		uipc_peeraddr,
1014 	.pru_rcvd =		uipc_rcvd,
1015 	.pru_send =		uipc_send,
1016 	.pru_sense =		uipc_sense,
1017 	.pru_shutdown =		uipc_shutdown,
1018 	.pru_sockaddr =		uipc_sockaddr,
1019 	.pru_close =		uipc_close,
1020 };
1021 
1022 int
1023 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1024 {
1025 	struct unpcb *unp;
1026 	struct xucred xu;
1027 	int error, optval;
1028 
1029 	if (sopt->sopt_level != 0)
1030 		return (EINVAL);
1031 
1032 	unp = sotounpcb(so);
1033 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1034 	error = 0;
1035 	switch (sopt->sopt_dir) {
1036 	case SOPT_GET:
1037 		switch (sopt->sopt_name) {
1038 		case LOCAL_PEERCRED:
1039 			UNP_PCB_LOCK(unp);
1040 			if (unp->unp_flags & UNP_HAVEPC)
1041 				xu = unp->unp_peercred;
1042 			else {
1043 				if (so->so_type == SOCK_STREAM)
1044 					error = ENOTCONN;
1045 				else
1046 					error = EINVAL;
1047 			}
1048 			UNP_PCB_UNLOCK(unp);
1049 			if (error == 0)
1050 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1051 			break;
1052 
1053 		case LOCAL_CREDS:
1054 			/* Unocked read. */
1055 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1056 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1057 			break;
1058 
1059 		case LOCAL_CONNWAIT:
1060 			/* Unocked read. */
1061 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1062 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1063 			break;
1064 
1065 		default:
1066 			error = EOPNOTSUPP;
1067 			break;
1068 		}
1069 		break;
1070 
1071 	case SOPT_SET:
1072 		switch (sopt->sopt_name) {
1073 		case LOCAL_CREDS:
1074 		case LOCAL_CONNWAIT:
1075 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1076 					    sizeof(optval));
1077 			if (error)
1078 				break;
1079 
1080 #define	OPTSET(bit) do {						\
1081 	UNP_PCB_LOCK(unp);						\
1082 	if (optval)							\
1083 		unp->unp_flags |= bit;					\
1084 	else								\
1085 		unp->unp_flags &= ~bit;					\
1086 	UNP_PCB_UNLOCK(unp);						\
1087 } while (0)
1088 
1089 			switch (sopt->sopt_name) {
1090 			case LOCAL_CREDS:
1091 				OPTSET(UNP_WANTCRED);
1092 				break;
1093 
1094 			case LOCAL_CONNWAIT:
1095 				OPTSET(UNP_CONNWAIT);
1096 				break;
1097 
1098 			default:
1099 				break;
1100 			}
1101 			break;
1102 #undef	OPTSET
1103 		default:
1104 			error = ENOPROTOOPT;
1105 			break;
1106 		}
1107 		break;
1108 
1109 	default:
1110 		error = EOPNOTSUPP;
1111 		break;
1112 	}
1113 	return (error);
1114 }
1115 
1116 static int
1117 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1118 {
1119 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1120 	struct vnode *vp;
1121 	struct socket *so2, *so3;
1122 	struct unpcb *unp, *unp2, *unp3;
1123 	int error, len;
1124 	struct nameidata nd;
1125 	char buf[SOCK_MAXADDRLEN];
1126 	struct sockaddr *sa;
1127 
1128 	UNP_GLOBAL_WLOCK_ASSERT();
1129 	UNP_GLOBAL_WUNLOCK();
1130 
1131 	unp = sotounpcb(so);
1132 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1133 
1134 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1135 	if (len <= 0)
1136 		return (EINVAL);
1137 	strlcpy(buf, soun->sun_path, len + 1);
1138 
1139 	UNP_PCB_LOCK(unp);
1140 	if (unp->unp_flags & UNP_CONNECTING) {
1141 		UNP_PCB_UNLOCK(unp);
1142 		return (EALREADY);
1143 	}
1144 	unp->unp_flags |= UNP_CONNECTING;
1145 	UNP_PCB_UNLOCK(unp);
1146 
1147 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1148 	mtx_lock(&Giant);
1149 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf, td);
1150 	error = namei(&nd);
1151 	if (error)
1152 		vp = NULL;
1153 	else
1154 		vp = nd.ni_vp;
1155 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1156 	NDFREE(&nd, NDF_ONLY_PNBUF);
1157 	if (error)
1158 		goto bad;
1159 
1160 	if (vp->v_type != VSOCK) {
1161 		error = ENOTSOCK;
1162 		goto bad;
1163 	}
1164 #ifdef MAC
1165 	error = mac_check_vnode_open(td->td_ucred, vp, VWRITE | VREAD);
1166 	if (error)
1167 		goto bad;
1168 #endif
1169 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1170 	if (error)
1171 		goto bad;
1172 	mtx_unlock(&Giant);
1173 
1174 	unp = sotounpcb(so);
1175 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1176 
1177 	/*
1178 	 * Lock global lock for two reasons: make sure v_socket is stable,
1179 	 * and to protect simultaneous locking of multiple pcbs.
1180 	 */
1181 	UNP_GLOBAL_WLOCK();
1182 	so2 = vp->v_socket;
1183 	if (so2 == NULL) {
1184 		error = ECONNREFUSED;
1185 		goto bad2;
1186 	}
1187 	if (so->so_type != so2->so_type) {
1188 		error = EPROTOTYPE;
1189 		goto bad2;
1190 	}
1191 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1192 		if (so2->so_options & SO_ACCEPTCONN) {
1193 			/*
1194 			 * We can't drop the global lock here or 'so2' may
1195 			 * become invalid, meaning that we will later recurse
1196 			 * back into the UNIX domain socket code while
1197 			 * holding the global lock.
1198 			 */
1199 			so3 = sonewconn(so2, 0);
1200 		} else
1201 			so3 = NULL;
1202 		if (so3 == NULL) {
1203 			error = ECONNREFUSED;
1204 			goto bad2;
1205 		}
1206 		unp = sotounpcb(so);
1207 		unp2 = sotounpcb(so2);
1208 		unp3 = sotounpcb(so3);
1209 		UNP_PCB_LOCK(unp);
1210 		UNP_PCB_LOCK(unp2);
1211 		UNP_PCB_LOCK(unp3);
1212 		if (unp2->unp_addr != NULL) {
1213 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1214 			unp3->unp_addr = (struct sockaddr_un *) sa;
1215 			sa = NULL;
1216 		}
1217 		/*
1218 		 * unp_peercred management:
1219 		 *
1220 		 * The connecter's (client's) credentials are copied from its
1221 		 * process structure at the time of connect() (which is now).
1222 		 */
1223 		cru2x(td->td_ucred, &unp3->unp_peercred);
1224 		unp3->unp_flags |= UNP_HAVEPC;
1225 		/*
1226 		 * The receiver's (server's) credentials are copied from the
1227 		 * unp_peercred member of socket on which the former called
1228 		 * listen(); uipc_listen() cached that process's credentials
1229 		 * at that time so we can use them now.
1230 		 */
1231 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1232 		    ("unp_connect: listener without cached peercred"));
1233 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1234 		    sizeof(unp->unp_peercred));
1235 		unp->unp_flags |= UNP_HAVEPC;
1236 		if (unp2->unp_flags & UNP_WANTCRED)
1237 			unp3->unp_flags |= UNP_WANTCRED;
1238 		UNP_PCB_UNLOCK(unp3);
1239 		UNP_PCB_UNLOCK(unp2);
1240 		UNP_PCB_UNLOCK(unp);
1241 #ifdef MAC
1242 		SOCK_LOCK(so);
1243 		mac_set_socket_peer_from_socket(so, so3);
1244 		mac_set_socket_peer_from_socket(so3, so);
1245 		SOCK_UNLOCK(so);
1246 #endif
1247 
1248 		so2 = so3;
1249 	}
1250 	unp = sotounpcb(so);
1251 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1252 	unp2 = sotounpcb(so2);
1253 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1254 	UNP_PCB_LOCK(unp);
1255 	UNP_PCB_LOCK(unp2);
1256 	error = unp_connect2(so, so2, PRU_CONNECT);
1257 	UNP_PCB_UNLOCK(unp2);
1258 	UNP_PCB_UNLOCK(unp);
1259 bad2:
1260 	UNP_GLOBAL_WUNLOCK();
1261 	mtx_lock(&Giant);
1262 bad:
1263 	mtx_assert(&Giant, MA_OWNED);
1264 	if (vp != NULL)
1265 		vput(vp);
1266 	mtx_unlock(&Giant);
1267 	free(sa, M_SONAME);
1268 	UNP_GLOBAL_WLOCK();
1269 	UNP_PCB_LOCK(unp);
1270 	unp->unp_flags &= ~UNP_CONNECTING;
1271 	UNP_PCB_UNLOCK(unp);
1272 	return (error);
1273 }
1274 
1275 static int
1276 unp_connect2(struct socket *so, struct socket *so2, int req)
1277 {
1278 	struct unpcb *unp;
1279 	struct unpcb *unp2;
1280 
1281 	unp = sotounpcb(so);
1282 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1283 	unp2 = sotounpcb(so2);
1284 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1285 
1286 	UNP_GLOBAL_WLOCK_ASSERT();
1287 	UNP_PCB_LOCK_ASSERT(unp);
1288 	UNP_PCB_LOCK_ASSERT(unp2);
1289 
1290 	if (so2->so_type != so->so_type)
1291 		return (EPROTOTYPE);
1292 	unp->unp_conn = unp2;
1293 
1294 	switch (so->so_type) {
1295 	case SOCK_DGRAM:
1296 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1297 		soisconnected(so);
1298 		break;
1299 
1300 	case SOCK_STREAM:
1301 		unp2->unp_conn = unp;
1302 		if (req == PRU_CONNECT &&
1303 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1304 			soisconnecting(so);
1305 		else
1306 			soisconnected(so);
1307 		soisconnected(so2);
1308 		break;
1309 
1310 	default:
1311 		panic("unp_connect2");
1312 	}
1313 	return (0);
1314 }
1315 
1316 static void
1317 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1318 {
1319 	struct socket *so;
1320 
1321 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1322 
1323 	UNP_GLOBAL_WLOCK_ASSERT();
1324 	UNP_PCB_LOCK_ASSERT(unp);
1325 	UNP_PCB_LOCK_ASSERT(unp2);
1326 
1327 	unp->unp_conn = NULL;
1328 	switch (unp->unp_socket->so_type) {
1329 	case SOCK_DGRAM:
1330 		LIST_REMOVE(unp, unp_reflink);
1331 		so = unp->unp_socket;
1332 		SOCK_LOCK(so);
1333 		so->so_state &= ~SS_ISCONNECTED;
1334 		SOCK_UNLOCK(so);
1335 		break;
1336 
1337 	case SOCK_STREAM:
1338 		soisdisconnected(unp->unp_socket);
1339 		unp2->unp_conn = NULL;
1340 		soisdisconnected(unp2->unp_socket);
1341 		break;
1342 	}
1343 }
1344 
1345 /*
1346  * unp_pcblist() assumes that UNIX domain socket memory is never reclaimed by
1347  * the zone (UMA_ZONE_NOFREE), and as such potentially stale pointers are
1348  * safe to reference.  It first scans the list of struct unpcb's to generate
1349  * a pointer list, then it rescans its list one entry at a time to
1350  * externalize and copyout.  It checks the generation number to see if a
1351  * struct unpcb has been reused, and will skip it if so.
1352  */
1353 static int
1354 unp_pcblist(SYSCTL_HANDLER_ARGS)
1355 {
1356 	int error, i, n;
1357 	int freeunp;
1358 	struct unpcb *unp, **unp_list;
1359 	unp_gen_t gencnt;
1360 	struct xunpgen *xug;
1361 	struct unp_head *head;
1362 	struct xunpcb *xu;
1363 
1364 	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1365 
1366 	/*
1367 	 * The process of preparing the PCB list is too time-consuming and
1368 	 * resource-intensive to repeat twice on every request.
1369 	 */
1370 	if (req->oldptr == NULL) {
1371 		n = unp_count;
1372 		req->oldidx = 2 * (sizeof *xug)
1373 			+ (n + n/8) * sizeof(struct xunpcb);
1374 		return (0);
1375 	}
1376 
1377 	if (req->newptr != NULL)
1378 		return (EPERM);
1379 
1380 	/*
1381 	 * OK, now we're committed to doing something.
1382 	 */
1383 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1384 	UNP_GLOBAL_RLOCK();
1385 	gencnt = unp_gencnt;
1386 	n = unp_count;
1387 	UNP_GLOBAL_RUNLOCK();
1388 
1389 	xug->xug_len = sizeof *xug;
1390 	xug->xug_count = n;
1391 	xug->xug_gen = gencnt;
1392 	xug->xug_sogen = so_gencnt;
1393 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1394 	if (error) {
1395 		free(xug, M_TEMP);
1396 		return (error);
1397 	}
1398 
1399 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1400 
1401 	/*
1402 	 * XXXRW: Note, this code relies very explicitly in pcb's being type
1403 	 * stable.
1404 	 */
1405 	UNP_GLOBAL_RLOCK();
1406 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1407 	     unp = LIST_NEXT(unp, unp_link)) {
1408 		UNP_PCB_LOCK(unp);
1409 		if (unp->unp_gencnt <= gencnt) {
1410 			if (cr_cansee(req->td->td_ucred,
1411 			    unp->unp_socket->so_cred)) {
1412 				UNP_PCB_UNLOCK(unp);
1413 				continue;
1414 			}
1415 			unp_list[i++] = unp;
1416 			unp->unp_refcount++;
1417 		}
1418 		UNP_PCB_UNLOCK(unp);
1419 	}
1420 	UNP_GLOBAL_RUNLOCK();
1421 	n = i;			/* In case we lost some during malloc. */
1422 
1423 	/*
1424 	 * XXXRW: The logic below asumes that it is OK to lock a mutex in
1425 	 * an unpcb that may have been freed.
1426 	 */
1427 	error = 0;
1428 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1429 	for (i = 0; i < n; i++) {
1430 		unp = unp_list[i];
1431 		UNP_PCB_LOCK(unp);
1432 		unp->unp_refcount--;
1433 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1434 			xu->xu_len = sizeof *xu;
1435 			xu->xu_unpp = unp;
1436 			/*
1437 			 * XXX - need more locking here to protect against
1438 			 * connect/disconnect races for SMP.
1439 			 */
1440 			if (unp->unp_addr != NULL)
1441 				bcopy(unp->unp_addr, &xu->xu_addr,
1442 				      unp->unp_addr->sun_len);
1443 			if (unp->unp_conn != NULL &&
1444 			    unp->unp_conn->unp_addr != NULL)
1445 				bcopy(unp->unp_conn->unp_addr,
1446 				      &xu->xu_caddr,
1447 				      unp->unp_conn->unp_addr->sun_len);
1448 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1449 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1450 			UNP_PCB_UNLOCK(unp);
1451 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1452 		} else {
1453 			freeunp = (unp->unp_refcount == 0);
1454 			UNP_PCB_UNLOCK(unp);
1455 			if (freeunp) {
1456 				UNP_PCB_LOCK_DESTROY(unp);
1457 				uma_zfree(unp_zone, unp);
1458 			}
1459 		}
1460 	}
1461 	free(xu, M_TEMP);
1462 	if (!error) {
1463 		/*
1464 		 * Give the user an updated idea of our state.  If the
1465 		 * generation differs from what we told her before, she knows
1466 		 * that something happened while we were processing this
1467 		 * request, and it might be necessary to retry.
1468 		 */
1469 		xug->xug_gen = unp_gencnt;
1470 		xug->xug_sogen = so_gencnt;
1471 		xug->xug_count = unp_count;
1472 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1473 	}
1474 	free(unp_list, M_TEMP);
1475 	free(xug, M_TEMP);
1476 	return (error);
1477 }
1478 
1479 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1480 	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1481 	    "List of active local datagram sockets");
1482 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1483 	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1484 	    "List of active local stream sockets");
1485 
1486 static void
1487 unp_shutdown(struct unpcb *unp)
1488 {
1489 	struct unpcb *unp2;
1490 	struct socket *so;
1491 
1492 	UNP_GLOBAL_WLOCK_ASSERT();
1493 	UNP_PCB_LOCK_ASSERT(unp);
1494 
1495 	unp2 = unp->unp_conn;
1496 	if (unp->unp_socket->so_type == SOCK_STREAM && unp2 != NULL) {
1497 		so = unp2->unp_socket;
1498 		if (so != NULL)
1499 			socantrcvmore(so);
1500 	}
1501 }
1502 
1503 static void
1504 unp_drop(struct unpcb *unp, int errno)
1505 {
1506 	struct socket *so = unp->unp_socket;
1507 	struct unpcb *unp2;
1508 
1509 	UNP_GLOBAL_WLOCK_ASSERT();
1510 	UNP_PCB_LOCK_ASSERT(unp);
1511 
1512 	so->so_error = errno;
1513 	unp2 = unp->unp_conn;
1514 	if (unp2 == NULL)
1515 		return;
1516 
1517 	UNP_PCB_LOCK(unp2);
1518 	unp_disconnect(unp, unp2);
1519 	UNP_PCB_UNLOCK(unp2);
1520 }
1521 
1522 static void
1523 unp_freerights(struct file **rp, int fdcount)
1524 {
1525 	int i;
1526 	struct file *fp;
1527 
1528 	for (i = 0; i < fdcount; i++) {
1529 		/*
1530 		 * Zero the pointer before calling unp_discard since it may
1531 		 * end up in unp_gc()..
1532 		 *
1533 		 * XXXRW: This is less true than it used to be.
1534 		 */
1535 		fp = *rp;
1536 		*rp++ = NULL;
1537 		unp_discard(fp);
1538 	}
1539 }
1540 
1541 int
1542 unp_externalize(struct mbuf *control, struct mbuf **controlp)
1543 {
1544 	struct thread *td = curthread;		/* XXX */
1545 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1546 	int i;
1547 	int *fdp;
1548 	struct file **rp;
1549 	struct file *fp;
1550 	void *data;
1551 	socklen_t clen = control->m_len, datalen;
1552 	int error, newfds;
1553 	int f;
1554 	u_int newlen;
1555 
1556 	UNP_GLOBAL_UNLOCK_ASSERT();
1557 
1558 	error = 0;
1559 	if (controlp != NULL) /* controlp == NULL => free control messages */
1560 		*controlp = NULL;
1561 
1562 	while (cm != NULL) {
1563 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1564 			error = EINVAL;
1565 			break;
1566 		}
1567 
1568 		data = CMSG_DATA(cm);
1569 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1570 
1571 		if (cm->cmsg_level == SOL_SOCKET
1572 		    && cm->cmsg_type == SCM_RIGHTS) {
1573 			newfds = datalen / sizeof(struct file *);
1574 			rp = data;
1575 
1576 			/* If we're not outputting the descriptors free them. */
1577 			if (error || controlp == NULL) {
1578 				unp_freerights(rp, newfds);
1579 				goto next;
1580 			}
1581 			FILEDESC_LOCK(td->td_proc->p_fd);
1582 			/* if the new FD's will not fit free them.  */
1583 			if (!fdavail(td, newfds)) {
1584 				FILEDESC_UNLOCK(td->td_proc->p_fd);
1585 				error = EMSGSIZE;
1586 				unp_freerights(rp, newfds);
1587 				goto next;
1588 			}
1589 			/*
1590 			 * Now change each pointer to an fd in the global
1591 			 * table to an integer that is the index to the local
1592 			 * fd table entry that we set up to point to the
1593 			 * global one we are transferring.
1594 			 */
1595 			newlen = newfds * sizeof(int);
1596 			*controlp = sbcreatecontrol(NULL, newlen,
1597 			    SCM_RIGHTS, SOL_SOCKET);
1598 			if (*controlp == NULL) {
1599 				FILEDESC_UNLOCK(td->td_proc->p_fd);
1600 				error = E2BIG;
1601 				unp_freerights(rp, newfds);
1602 				goto next;
1603 			}
1604 
1605 			fdp = (int *)
1606 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1607 			for (i = 0; i < newfds; i++) {
1608 				if (fdalloc(td, 0, &f))
1609 					panic("unp_externalize fdalloc failed");
1610 				fp = *rp++;
1611 				td->td_proc->p_fd->fd_ofiles[f] = fp;
1612 				FILE_LOCK(fp);
1613 				fp->f_msgcount--;
1614 				FILE_UNLOCK(fp);
1615 				unp_rights--;
1616 				*fdp++ = f;
1617 			}
1618 			FILEDESC_UNLOCK(td->td_proc->p_fd);
1619 		} else {
1620 			/* We can just copy anything else across. */
1621 			if (error || controlp == NULL)
1622 				goto next;
1623 			*controlp = sbcreatecontrol(NULL, datalen,
1624 			    cm->cmsg_type, cm->cmsg_level);
1625 			if (*controlp == NULL) {
1626 				error = ENOBUFS;
1627 				goto next;
1628 			}
1629 			bcopy(data,
1630 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1631 			    datalen);
1632 		}
1633 
1634 		controlp = &(*controlp)->m_next;
1635 
1636 next:
1637 		if (CMSG_SPACE(datalen) < clen) {
1638 			clen -= CMSG_SPACE(datalen);
1639 			cm = (struct cmsghdr *)
1640 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1641 		} else {
1642 			clen = 0;
1643 			cm = NULL;
1644 		}
1645 	}
1646 
1647 	m_freem(control);
1648 
1649 	return (error);
1650 }
1651 
1652 static void
1653 unp_zone_change(void *tag)
1654 {
1655 
1656 	uma_zone_set_max(unp_zone, maxsockets);
1657 }
1658 
1659 void
1660 unp_init(void)
1661 {
1662 
1663 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1664 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1665 	if (unp_zone == NULL)
1666 		panic("unp_init");
1667 	uma_zone_set_max(unp_zone, maxsockets);
1668 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1669 	    NULL, EVENTHANDLER_PRI_ANY);
1670 	LIST_INIT(&unp_dhead);
1671 	LIST_INIT(&unp_shead);
1672 	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1673 	UNP_GLOBAL_LOCK_INIT();
1674 }
1675 
1676 static int
1677 unp_internalize(struct mbuf **controlp, struct thread *td)
1678 {
1679 	struct mbuf *control = *controlp;
1680 	struct proc *p = td->td_proc;
1681 	struct filedesc *fdescp = p->p_fd;
1682 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1683 	struct cmsgcred *cmcred;
1684 	struct file **rp;
1685 	struct file *fp;
1686 	struct timeval *tv;
1687 	int i, fd, *fdp;
1688 	void *data;
1689 	socklen_t clen = control->m_len, datalen;
1690 	int error, oldfds;
1691 	u_int newlen;
1692 
1693 	UNP_GLOBAL_UNLOCK_ASSERT();
1694 
1695 	error = 0;
1696 	*controlp = NULL;
1697 
1698 	while (cm != NULL) {
1699 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1700 		    || cm->cmsg_len > clen) {
1701 			error = EINVAL;
1702 			goto out;
1703 		}
1704 
1705 		data = CMSG_DATA(cm);
1706 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1707 
1708 		switch (cm->cmsg_type) {
1709 		/*
1710 		 * Fill in credential information.
1711 		 */
1712 		case SCM_CREDS:
1713 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1714 			    SCM_CREDS, SOL_SOCKET);
1715 			if (*controlp == NULL) {
1716 				error = ENOBUFS;
1717 				goto out;
1718 			}
1719 
1720 			cmcred = (struct cmsgcred *)
1721 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1722 			cmcred->cmcred_pid = p->p_pid;
1723 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1724 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1725 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1726 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1727 							CMGROUP_MAX);
1728 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1729 				cmcred->cmcred_groups[i] =
1730 				    td->td_ucred->cr_groups[i];
1731 			break;
1732 
1733 		case SCM_RIGHTS:
1734 			oldfds = datalen / sizeof (int);
1735 			/*
1736 			 * Check that all the FDs passed in refer to legal
1737 			 * files.  If not, reject the entire operation.
1738 			 */
1739 			fdp = data;
1740 			FILEDESC_LOCK(fdescp);
1741 			for (i = 0; i < oldfds; i++) {
1742 				fd = *fdp++;
1743 				if ((unsigned)fd >= fdescp->fd_nfiles ||
1744 				    fdescp->fd_ofiles[fd] == NULL) {
1745 					FILEDESC_UNLOCK(fdescp);
1746 					error = EBADF;
1747 					goto out;
1748 				}
1749 				fp = fdescp->fd_ofiles[fd];
1750 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1751 					FILEDESC_UNLOCK(fdescp);
1752 					error = EOPNOTSUPP;
1753 					goto out;
1754 				}
1755 
1756 			}
1757 			/*
1758 			 * Now replace the integer FDs with pointers to
1759 			 * the associated global file table entry..
1760 			 */
1761 			newlen = oldfds * sizeof(struct file *);
1762 			*controlp = sbcreatecontrol(NULL, newlen,
1763 			    SCM_RIGHTS, SOL_SOCKET);
1764 			if (*controlp == NULL) {
1765 				FILEDESC_UNLOCK(fdescp);
1766 				error = E2BIG;
1767 				goto out;
1768 			}
1769 
1770 			fdp = data;
1771 			rp = (struct file **)
1772 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1773 			for (i = 0; i < oldfds; i++) {
1774 				fp = fdescp->fd_ofiles[*fdp++];
1775 				*rp++ = fp;
1776 				FILE_LOCK(fp);
1777 				fp->f_count++;
1778 				fp->f_msgcount++;
1779 				FILE_UNLOCK(fp);
1780 				unp_rights++;
1781 			}
1782 			FILEDESC_UNLOCK(fdescp);
1783 			break;
1784 
1785 		case SCM_TIMESTAMP:
1786 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1787 			    SCM_TIMESTAMP, SOL_SOCKET);
1788 			if (*controlp == NULL) {
1789 				error = ENOBUFS;
1790 				goto out;
1791 			}
1792 			tv = (struct timeval *)
1793 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1794 			microtime(tv);
1795 			break;
1796 
1797 		default:
1798 			error = EINVAL;
1799 			goto out;
1800 		}
1801 
1802 		controlp = &(*controlp)->m_next;
1803 
1804 		if (CMSG_SPACE(datalen) < clen) {
1805 			clen -= CMSG_SPACE(datalen);
1806 			cm = (struct cmsghdr *)
1807 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1808 		} else {
1809 			clen = 0;
1810 			cm = NULL;
1811 		}
1812 	}
1813 
1814 out:
1815 	m_freem(control);
1816 
1817 	return (error);
1818 }
1819 
1820 static struct mbuf *
1821 unp_addsockcred(struct thread *td, struct mbuf *control)
1822 {
1823 	struct mbuf *m, *n, *n_prev;
1824 	struct sockcred *sc;
1825 	const struct cmsghdr *cm;
1826 	int ngroups;
1827 	int i;
1828 
1829 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1830 
1831 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1832 	if (m == NULL)
1833 		return (control);
1834 
1835 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1836 	sc->sc_uid = td->td_ucred->cr_ruid;
1837 	sc->sc_euid = td->td_ucred->cr_uid;
1838 	sc->sc_gid = td->td_ucred->cr_rgid;
1839 	sc->sc_egid = td->td_ucred->cr_gid;
1840 	sc->sc_ngroups = ngroups;
1841 	for (i = 0; i < sc->sc_ngroups; i++)
1842 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1843 
1844 	/*
1845 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1846 	 * created SCM_CREDS control message (struct sockcred) has another
1847 	 * format.
1848 	 */
1849 	if (control != NULL)
1850 		for (n = control, n_prev = NULL; n != NULL;) {
1851 			cm = mtod(n, struct cmsghdr *);
1852     			if (cm->cmsg_level == SOL_SOCKET &&
1853 			    cm->cmsg_type == SCM_CREDS) {
1854     				if (n_prev == NULL)
1855 					control = n->m_next;
1856 				else
1857 					n_prev->m_next = n->m_next;
1858 				n = m_free(n);
1859 			} else {
1860 				n_prev = n;
1861 				n = n->m_next;
1862 			}
1863 		}
1864 
1865 	/* Prepend it to the head. */
1866 	m->m_next = control;
1867 
1868 	return (m);
1869 }
1870 
1871 /*
1872  * unp_defer indicates whether additional work has been defered for a future
1873  * pass through unp_gc().  It is thread local and does not require explicit
1874  * synchronization.
1875  */
1876 static int	unp_defer;
1877 
1878 static int unp_taskcount;
1879 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, "");
1880 
1881 static int unp_recycled;
1882 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, "");
1883 
1884 static void
1885 unp_gc(__unused void *arg, int pending)
1886 {
1887 	struct file *fp, *nextfp;
1888 	struct socket *so;
1889 	struct file **extra_ref, **fpp;
1890 	int nunref, i;
1891 	int nfiles_snap;
1892 	int nfiles_slack = 20;
1893 
1894 	unp_taskcount++;
1895 	unp_defer = 0;
1896 	/*
1897 	 * Before going through all this, set all FDs to be NOT deferred and
1898 	 * NOT externally accessible.
1899 	 */
1900 	sx_slock(&filelist_lock);
1901 	LIST_FOREACH(fp, &filehead, f_list)
1902 		fp->f_gcflag &= ~(FMARK|FDEFER);
1903 	do {
1904 		KASSERT(unp_defer >= 0, ("unp_gc: unp_defer %d", unp_defer));
1905 		LIST_FOREACH(fp, &filehead, f_list) {
1906 			FILE_LOCK(fp);
1907 			/*
1908 			 * If the file is not open, skip it -- could be a
1909 			 * file in the process of being opened, or in the
1910 			 * process of being closed.  If the file is
1911 			 * "closing", it may have been marked for deferred
1912 			 * consideration.  Clear the flag now if so.
1913 			 */
1914 			if (fp->f_count == 0) {
1915 				if (fp->f_gcflag & FDEFER)
1916 					unp_defer--;
1917 				fp->f_gcflag &= ~(FMARK|FDEFER);
1918 				FILE_UNLOCK(fp);
1919 				continue;
1920 			}
1921 			/*
1922 			 * If we already marked it as 'defer' in a
1923 			 * previous pass, then try to process it this
1924 			 * time and un-mark it.
1925 			 */
1926 			if (fp->f_gcflag & FDEFER) {
1927 				fp->f_gcflag &= ~FDEFER;
1928 				unp_defer--;
1929 			} else {
1930 				/*
1931 				 * If it's not deferred, then check if it's
1932 				 * already marked.. if so skip it
1933 				 */
1934 				if (fp->f_gcflag & FMARK) {
1935 					FILE_UNLOCK(fp);
1936 					continue;
1937 				}
1938 				/*
1939 				 * If all references are from messages in
1940 				 * transit, then skip it. it's not externally
1941 				 * accessible.
1942 				 */
1943 				if (fp->f_count == fp->f_msgcount) {
1944 					FILE_UNLOCK(fp);
1945 					continue;
1946 				}
1947 				/*
1948 				 * If it got this far then it must be
1949 				 * externally accessible.
1950 				 */
1951 				fp->f_gcflag |= FMARK;
1952 			}
1953 			/*
1954 			 * Either it was deferred, or it is externally
1955 			 * accessible and not already marked so.  Now check
1956 			 * if it is possibly one of OUR sockets.
1957 			 */
1958 			if (fp->f_type != DTYPE_SOCKET ||
1959 			    (so = fp->f_data) == NULL) {
1960 				FILE_UNLOCK(fp);
1961 				continue;
1962 			}
1963 			if (so->so_proto->pr_domain != &localdomain ||
1964 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1965 				FILE_UNLOCK(fp);
1966 				continue;
1967 			}
1968 
1969 			/*
1970 			 * Tell any other threads that do a subsequent
1971 			 * fdrop() that we are scanning the message
1972 			 * buffers.
1973 			 */
1974 			fp->f_gcflag |= FWAIT;
1975 			FILE_UNLOCK(fp);
1976 
1977 			/*
1978 			 * So, Ok, it's one of our sockets and it IS
1979 			 * externally accessible (or was deferred).  Now we
1980 			 * look to see if we hold any file descriptors in its
1981 			 * message buffers. Follow those links and mark them
1982 			 * as accessible too.
1983 			 */
1984 			SOCKBUF_LOCK(&so->so_rcv);
1985 			unp_scan(so->so_rcv.sb_mb, unp_mark);
1986 			SOCKBUF_UNLOCK(&so->so_rcv);
1987 
1988 			/*
1989 			 * Wake up any threads waiting in fdrop().
1990 			 */
1991 			FILE_LOCK(fp);
1992 			fp->f_gcflag &= ~FWAIT;
1993 			wakeup(&fp->f_gcflag);
1994 			FILE_UNLOCK(fp);
1995 		}
1996 	} while (unp_defer);
1997 	sx_sunlock(&filelist_lock);
1998 	/*
1999 	 * XXXRW: The following comments need updating for a post-SMPng and
2000 	 * deferred unp_gc() world, but are still generally accurate.
2001 	 *
2002 	 * We grab an extra reference to each of the file table entries that
2003 	 * are not otherwise accessible and then free the rights that are
2004 	 * stored in messages on them.
2005 	 *
2006 	 * The bug in the orginal code is a little tricky, so I'll describe
2007 	 * what's wrong with it here.
2008 	 *
2009 	 * It is incorrect to simply unp_discard each entry for f_msgcount
2010 	 * times -- consider the case of sockets A and B that contain
2011 	 * references to each other.  On a last close of some other socket,
2012 	 * we trigger a gc since the number of outstanding rights (unp_rights)
2013 	 * is non-zero.  If during the sweep phase the gc code unp_discards,
2014 	 * we end up doing a (full) closef on the descriptor.  A closef on A
2015 	 * results in the following chain.  Closef calls soo_close, which
2016 	 * calls soclose.   Soclose calls first (through the switch
2017 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
2018 	 * returns because the previous instance had set unp_gcing, and we
2019 	 * return all the way back to soclose, which marks the socket with
2020 	 * SS_NOFDREF, and then calls sofree.  Sofree calls sorflush to free
2021 	 * up the rights that are queued in messages on the socket A, i.e.,
2022 	 * the reference on B.  The sorflush calls via the dom_dispose switch
2023 	 * unp_dispose, which unp_scans with unp_discard.  This second
2024 	 * instance of unp_discard just calls closef on B.
2025 	 *
2026 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
2027 	 * which results in another closef on A.  Unfortunately, A is already
2028 	 * being closed, and the descriptor has already been marked with
2029 	 * SS_NOFDREF, and soclose panics at this point.
2030 	 *
2031 	 * Here, we first take an extra reference to each inaccessible
2032 	 * descriptor.  Then, we call sorflush ourself, since we know it is a
2033 	 * Unix domain socket anyhow.  After we destroy all the rights
2034 	 * carried in messages, we do a last closef to get rid of our extra
2035 	 * reference.  This is the last close, and the unp_detach etc will
2036 	 * shut down the socket.
2037 	 *
2038 	 * 91/09/19, bsy@cs.cmu.edu
2039 	 */
2040 again:
2041 	nfiles_snap = openfiles + nfiles_slack;	/* some slack */
2042 	extra_ref = malloc(nfiles_snap * sizeof(struct file *), M_TEMP,
2043 	    M_WAITOK);
2044 	sx_slock(&filelist_lock);
2045 	if (nfiles_snap < openfiles) {
2046 		sx_sunlock(&filelist_lock);
2047 		free(extra_ref, M_TEMP);
2048 		nfiles_slack += 20;
2049 		goto again;
2050 	}
2051 	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref;
2052 	    fp != NULL; fp = nextfp) {
2053 		nextfp = LIST_NEXT(fp, f_list);
2054 		FILE_LOCK(fp);
2055 		/*
2056 		 * If it's not open, skip it
2057 		 */
2058 		if (fp->f_count == 0) {
2059 			FILE_UNLOCK(fp);
2060 			continue;
2061 		}
2062 		/*
2063 		 * If all refs are from msgs, and it's not marked accessible
2064 		 * then it must be referenced from some unreachable cycle of
2065 		 * (shut-down) FDs, so include it in our list of FDs to
2066 		 * remove.
2067 		 */
2068 		if (fp->f_count == fp->f_msgcount && !(fp->f_gcflag & FMARK)) {
2069 			*fpp++ = fp;
2070 			nunref++;
2071 			fp->f_count++;
2072 		}
2073 		FILE_UNLOCK(fp);
2074 	}
2075 	sx_sunlock(&filelist_lock);
2076 	/*
2077 	 * For each FD on our hit list, do the following two things:
2078 	 */
2079 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
2080 		struct file *tfp = *fpp;
2081 		FILE_LOCK(tfp);
2082 		if (tfp->f_type == DTYPE_SOCKET &&
2083 		    tfp->f_data != NULL) {
2084 			FILE_UNLOCK(tfp);
2085 			sorflush(tfp->f_data);
2086 		} else {
2087 			FILE_UNLOCK(tfp);
2088 		}
2089 	}
2090 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
2091 		closef(*fpp, (struct thread *) NULL);
2092 		unp_recycled++;
2093 	}
2094 	free(extra_ref, M_TEMP);
2095 }
2096 
2097 void
2098 unp_dispose(struct mbuf *m)
2099 {
2100 
2101 	if (m)
2102 		unp_scan(m, unp_discard);
2103 }
2104 
2105 static void
2106 unp_scan(struct mbuf *m0, void (*op)(struct file *))
2107 {
2108 	struct mbuf *m;
2109 	struct file **rp;
2110 	struct cmsghdr *cm;
2111 	void *data;
2112 	int i;
2113 	socklen_t clen, datalen;
2114 	int qfds;
2115 
2116 	while (m0 != NULL) {
2117 		for (m = m0; m; m = m->m_next) {
2118 			if (m->m_type != MT_CONTROL)
2119 				continue;
2120 
2121 			cm = mtod(m, struct cmsghdr *);
2122 			clen = m->m_len;
2123 
2124 			while (cm != NULL) {
2125 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2126 					break;
2127 
2128 				data = CMSG_DATA(cm);
2129 				datalen = (caddr_t)cm + cm->cmsg_len
2130 				    - (caddr_t)data;
2131 
2132 				if (cm->cmsg_level == SOL_SOCKET &&
2133 				    cm->cmsg_type == SCM_RIGHTS) {
2134 					qfds = datalen / sizeof (struct file *);
2135 					rp = data;
2136 					for (i = 0; i < qfds; i++)
2137 						(*op)(*rp++);
2138 				}
2139 
2140 				if (CMSG_SPACE(datalen) < clen) {
2141 					clen -= CMSG_SPACE(datalen);
2142 					cm = (struct cmsghdr *)
2143 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2144 				} else {
2145 					clen = 0;
2146 					cm = NULL;
2147 				}
2148 			}
2149 		}
2150 		m0 = m0->m_act;
2151 	}
2152 }
2153 
2154 static void
2155 unp_mark(struct file *fp)
2156 {
2157 
2158 	/* XXXRW: Should probably assert file list lock here. */
2159 
2160 	if (fp->f_gcflag & FMARK)
2161 		return;
2162 	unp_defer++;
2163 	fp->f_gcflag |= (FMARK|FDEFER);
2164 }
2165 
2166 static void
2167 unp_discard(struct file *fp)
2168 {
2169 
2170 	UNP_GLOBAL_WLOCK();
2171 	FILE_LOCK(fp);
2172 	fp->f_msgcount--;
2173 	unp_rights--;
2174 	FILE_UNLOCK(fp);
2175 	UNP_GLOBAL_WUNLOCK();
2176 	(void) closef(fp, (struct thread *)NULL);
2177 }
2178