1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * UNIX Domain (Local) Sockets 36 * 37 * This is an implementation of UNIX (local) domain sockets. Each socket has 38 * an associated struct unpcb (UNIX protocol control block). Stream sockets 39 * may be connected to 0 or 1 other socket. Datagram sockets may be 40 * connected to 0, 1, or many other sockets. Sockets may be created and 41 * connected in pairs (socketpair(2)), or bound/connected to using the file 42 * system name space. For most purposes, only the receive socket buffer is 43 * used, as sending on one socket delivers directly to the receive socket 44 * buffer of a second socket. 45 * 46 * The implementation is substantially complicated by the fact that 47 * "ancillary data", such as file descriptors or credentials, may be passed 48 * across UNIX domain sockets. The potential for passing UNIX domain sockets 49 * over other UNIX domain sockets requires the implementation of a simple 50 * garbage collector to find and tear down cycles of disconnected sockets. 51 * 52 * TODO: 53 * RDM 54 * rethink name space problems 55 * need a proper out-of-band 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #include "opt_ddb.h" 62 63 #include <sys/param.h> 64 #include <sys/capsicum.h> 65 #include <sys/domain.h> 66 #include <sys/fcntl.h> 67 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 68 #include <sys/eventhandler.h> 69 #include <sys/file.h> 70 #include <sys/filedesc.h> 71 #include <sys/kernel.h> 72 #include <sys/lock.h> 73 #include <sys/mbuf.h> 74 #include <sys/mount.h> 75 #include <sys/mutex.h> 76 #include <sys/namei.h> 77 #include <sys/proc.h> 78 #include <sys/protosw.h> 79 #include <sys/queue.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/signalvar.h> 85 #include <sys/stat.h> 86 #include <sys/sx.h> 87 #include <sys/sysctl.h> 88 #include <sys/systm.h> 89 #include <sys/taskqueue.h> 90 #include <sys/un.h> 91 #include <sys/unpcb.h> 92 #include <sys/vnode.h> 93 94 #include <net/vnet.h> 95 96 #ifdef DDB 97 #include <ddb/ddb.h> 98 #endif 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/uma.h> 103 104 MALLOC_DECLARE(M_FILECAPS); 105 106 /* 107 * Locking key: 108 * (l) Locked using list lock 109 * (g) Locked using linkage lock 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); 165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, 166 "SOCK_STREAM"); 167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); 168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0, 169 "SOCK_SEQPACKET"); 170 171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 172 &unpst_sendspace, 0, "Default stream send space."); 173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 174 &unpst_recvspace, 0, "Default stream receive space."); 175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 176 &unpdg_sendspace, 0, "Default datagram send space."); 177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 178 &unpdg_recvspace, 0, "Default datagram receive space."); 179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 180 &unpsp_sendspace, 0, "Default seqpacket send space."); 181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 182 &unpsp_recvspace, 0, "Default seqpacket receive space."); 183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 184 "File descriptors in flight."); 185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 186 &unp_defers_count, 0, 187 "File descriptors deferred to taskqueue for close."); 188 189 /* 190 * Locking and synchronization: 191 * 192 * Three types of locks exit in the local domain socket implementation: a 193 * global list mutex, a global linkage rwlock, and per-unpcb mutexes. Of the 194 * global locks, the list lock protects the socket count, global generation 195 * number, and stream/datagram global lists. The linkage lock protects the 196 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be 197 * held exclusively over the acquisition of multiple unpcb locks to prevent 198 * deadlock. 199 * 200 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 201 * allocated in pru_attach() and freed in pru_detach(). The validity of that 202 * pointer is an invariant, so no lock is required to dereference the so_pcb 203 * pointer if a valid socket reference is held by the caller. In practice, 204 * this is always true during operations performed on a socket. Each unpcb 205 * has a back-pointer to its socket, unp_socket, which will be stable under 206 * the same circumstances. 207 * 208 * This pointer may only be safely dereferenced as long as a valid reference 209 * to the unpcb is held. Typically, this reference will be from the socket, 210 * or from another unpcb when the referring unpcb's lock is held (in order 211 * that the reference not be invalidated during use). For example, to follow 212 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn, 213 * as unp_socket remains valid as long as the reference to unp_conn is valid. 214 * 215 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx. Individual 216 * atomic reads without the lock may be performed "lockless", but more 217 * complex reads and read-modify-writes require the mutex to be held. No 218 * lock order is defined between unpcb locks -- multiple unpcb locks may be 219 * acquired at the same time only when holding the linkage rwlock 220 * exclusively, which prevents deadlocks. 221 * 222 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 223 * protocols, bind() is a non-atomic operation, and connect() requires 224 * potential sleeping in the protocol, due to potentially waiting on local or 225 * distributed file systems. We try to separate "lookup" operations, which 226 * may sleep, and the IPC operations themselves, which typically can occur 227 * with relative atomicity as locks can be held over the entire operation. 228 * 229 * Another tricky issue is simultaneous multi-threaded or multi-process 230 * access to a single UNIX domain socket. These are handled by the flags 231 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 232 * binding, both of which involve dropping UNIX domain socket locks in order 233 * to perform namei() and other file system operations. 234 */ 235 static struct rwlock unp_link_rwlock; 236 static struct mtx unp_list_lock; 237 static struct mtx unp_defers_lock; 238 239 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 240 "unp_link_rwlock") 241 242 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 243 RA_LOCKED) 244 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 245 RA_UNLOCKED) 246 247 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 248 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 249 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 250 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 251 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 252 RA_WLOCKED) 253 254 #define UNP_LIST_LOCK_INIT() mtx_init(&unp_list_lock, \ 255 "unp_list_lock", NULL, MTX_DEF) 256 #define UNP_LIST_LOCK() mtx_lock(&unp_list_lock) 257 #define UNP_LIST_UNLOCK() mtx_unlock(&unp_list_lock) 258 259 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 260 "unp_defer", NULL, MTX_DEF) 261 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 262 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 263 264 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 265 "unp_mtx", "unp_mtx", \ 266 MTX_DUPOK|MTX_DEF|MTX_RECURSE) 267 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 268 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 269 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 270 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 271 272 static int uipc_connect2(struct socket *, struct socket *); 273 static int uipc_ctloutput(struct socket *, struct sockopt *); 274 static int unp_connect(struct socket *, struct sockaddr *, 275 struct thread *); 276 static int unp_connectat(int, struct socket *, struct sockaddr *, 277 struct thread *); 278 static int unp_connect2(struct socket *so, struct socket *so2, int); 279 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 280 static void unp_dispose(struct socket *so); 281 static void unp_dispose_mbuf(struct mbuf *); 282 static void unp_shutdown(struct unpcb *); 283 static void unp_drop(struct unpcb *); 284 static void unp_gc(__unused void *, int); 285 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 286 static void unp_discard(struct file *); 287 static void unp_freerights(struct filedescent **, int); 288 static void unp_init(void); 289 static int unp_internalize(struct mbuf **, struct thread *); 290 static void unp_internalize_fp(struct file *); 291 static int unp_externalize(struct mbuf *, struct mbuf **, int); 292 static int unp_externalize_fp(struct file *); 293 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); 294 static void unp_process_defers(void * __unused, int); 295 296 /* 297 * Definitions of protocols supported in the LOCAL domain. 298 */ 299 static struct domain localdomain; 300 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 301 static struct pr_usrreqs uipc_usrreqs_seqpacket; 302 static struct protosw localsw[] = { 303 { 304 .pr_type = SOCK_STREAM, 305 .pr_domain = &localdomain, 306 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, 307 .pr_ctloutput = &uipc_ctloutput, 308 .pr_usrreqs = &uipc_usrreqs_stream 309 }, 310 { 311 .pr_type = SOCK_DGRAM, 312 .pr_domain = &localdomain, 313 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, 314 .pr_ctloutput = &uipc_ctloutput, 315 .pr_usrreqs = &uipc_usrreqs_dgram 316 }, 317 { 318 .pr_type = SOCK_SEQPACKET, 319 .pr_domain = &localdomain, 320 321 /* 322 * XXXRW: For now, PR_ADDR because soreceive will bump into them 323 * due to our use of sbappendaddr. A new sbappend variants is needed 324 * that supports both atomic record writes and control data. 325 */ 326 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| 327 PR_RIGHTS, 328 .pr_ctloutput = &uipc_ctloutput, 329 .pr_usrreqs = &uipc_usrreqs_seqpacket, 330 }, 331 }; 332 333 static struct domain localdomain = { 334 .dom_family = AF_LOCAL, 335 .dom_name = "local", 336 .dom_init = unp_init, 337 .dom_externalize = unp_externalize, 338 .dom_dispose = unp_dispose, 339 .dom_protosw = localsw, 340 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 341 }; 342 DOMAIN_SET(local); 343 344 static void 345 uipc_abort(struct socket *so) 346 { 347 struct unpcb *unp, *unp2; 348 349 unp = sotounpcb(so); 350 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 351 352 UNP_LINK_WLOCK(); 353 UNP_PCB_LOCK(unp); 354 unp2 = unp->unp_conn; 355 if (unp2 != NULL) { 356 UNP_PCB_LOCK(unp2); 357 unp_drop(unp2); 358 UNP_PCB_UNLOCK(unp2); 359 } 360 UNP_PCB_UNLOCK(unp); 361 UNP_LINK_WUNLOCK(); 362 } 363 364 static int 365 uipc_accept(struct socket *so, struct sockaddr **nam) 366 { 367 struct unpcb *unp, *unp2; 368 const struct sockaddr *sa; 369 370 /* 371 * Pass back name of connected socket, if it was bound and we are 372 * still connected (our peer may have closed already!). 373 */ 374 unp = sotounpcb(so); 375 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 376 377 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 378 UNP_LINK_RLOCK(); 379 unp2 = unp->unp_conn; 380 if (unp2 != NULL && unp2->unp_addr != NULL) { 381 UNP_PCB_LOCK(unp2); 382 sa = (struct sockaddr *) unp2->unp_addr; 383 bcopy(sa, *nam, sa->sa_len); 384 UNP_PCB_UNLOCK(unp2); 385 } else { 386 sa = &sun_noname; 387 bcopy(sa, *nam, sa->sa_len); 388 } 389 UNP_LINK_RUNLOCK(); 390 return (0); 391 } 392 393 static int 394 uipc_attach(struct socket *so, int proto, struct thread *td) 395 { 396 u_long sendspace, recvspace; 397 struct unpcb *unp; 398 int error; 399 400 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 401 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 402 switch (so->so_type) { 403 case SOCK_STREAM: 404 sendspace = unpst_sendspace; 405 recvspace = unpst_recvspace; 406 break; 407 408 case SOCK_DGRAM: 409 sendspace = unpdg_sendspace; 410 recvspace = unpdg_recvspace; 411 break; 412 413 case SOCK_SEQPACKET: 414 sendspace = unpsp_sendspace; 415 recvspace = unpsp_recvspace; 416 break; 417 418 default: 419 panic("uipc_attach"); 420 } 421 error = soreserve(so, sendspace, recvspace); 422 if (error) 423 return (error); 424 } 425 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 426 if (unp == NULL) 427 return (ENOBUFS); 428 LIST_INIT(&unp->unp_refs); 429 UNP_PCB_LOCK_INIT(unp); 430 unp->unp_socket = so; 431 so->so_pcb = unp; 432 unp->unp_refcount = 1; 433 if (so->so_head != NULL) 434 unp->unp_flags |= UNP_NASCENT; 435 436 UNP_LIST_LOCK(); 437 unp->unp_gencnt = ++unp_gencnt; 438 unp_count++; 439 switch (so->so_type) { 440 case SOCK_STREAM: 441 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 442 break; 443 444 case SOCK_DGRAM: 445 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 446 break; 447 448 case SOCK_SEQPACKET: 449 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 450 break; 451 452 default: 453 panic("uipc_attach"); 454 } 455 UNP_LIST_UNLOCK(); 456 457 return (0); 458 } 459 460 static int 461 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 462 { 463 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 464 struct vattr vattr; 465 int error, namelen; 466 struct nameidata nd; 467 struct unpcb *unp; 468 struct vnode *vp; 469 struct mount *mp; 470 cap_rights_t rights; 471 char *buf; 472 473 if (nam->sa_family != AF_UNIX) 474 return (EAFNOSUPPORT); 475 476 unp = sotounpcb(so); 477 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 478 479 if (soun->sun_len > sizeof(struct sockaddr_un)) 480 return (EINVAL); 481 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 482 if (namelen <= 0) 483 return (EINVAL); 484 485 /* 486 * We don't allow simultaneous bind() calls on a single UNIX domain 487 * socket, so flag in-progress operations, and return an error if an 488 * operation is already in progress. 489 * 490 * Historically, we have not allowed a socket to be rebound, so this 491 * also returns an error. Not allowing re-binding simplifies the 492 * implementation and avoids a great many possible failure modes. 493 */ 494 UNP_PCB_LOCK(unp); 495 if (unp->unp_vnode != NULL) { 496 UNP_PCB_UNLOCK(unp); 497 return (EINVAL); 498 } 499 if (unp->unp_flags & UNP_BINDING) { 500 UNP_PCB_UNLOCK(unp); 501 return (EALREADY); 502 } 503 unp->unp_flags |= UNP_BINDING; 504 UNP_PCB_UNLOCK(unp); 505 506 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 507 bcopy(soun->sun_path, buf, namelen); 508 buf[namelen] = 0; 509 510 restart: 511 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 512 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); 513 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 514 error = namei(&nd); 515 if (error) 516 goto error; 517 vp = nd.ni_vp; 518 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 519 NDFREE(&nd, NDF_ONLY_PNBUF); 520 if (nd.ni_dvp == vp) 521 vrele(nd.ni_dvp); 522 else 523 vput(nd.ni_dvp); 524 if (vp != NULL) { 525 vrele(vp); 526 error = EADDRINUSE; 527 goto error; 528 } 529 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 530 if (error) 531 goto error; 532 goto restart; 533 } 534 VATTR_NULL(&vattr); 535 vattr.va_type = VSOCK; 536 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); 537 #ifdef MAC 538 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 539 &vattr); 540 #endif 541 if (error == 0) 542 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 543 NDFREE(&nd, NDF_ONLY_PNBUF); 544 vput(nd.ni_dvp); 545 if (error) { 546 vn_finished_write(mp); 547 goto error; 548 } 549 vp = nd.ni_vp; 550 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 551 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 552 553 UNP_LINK_WLOCK(); 554 UNP_PCB_LOCK(unp); 555 VOP_UNP_BIND(vp, unp->unp_socket); 556 unp->unp_vnode = vp; 557 unp->unp_addr = soun; 558 unp->unp_flags &= ~UNP_BINDING; 559 UNP_PCB_UNLOCK(unp); 560 UNP_LINK_WUNLOCK(); 561 VOP_UNLOCK(vp, 0); 562 vn_finished_write(mp); 563 free(buf, M_TEMP); 564 return (0); 565 566 error: 567 UNP_PCB_LOCK(unp); 568 unp->unp_flags &= ~UNP_BINDING; 569 UNP_PCB_UNLOCK(unp); 570 free(buf, M_TEMP); 571 return (error); 572 } 573 574 static int 575 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 576 { 577 578 return (uipc_bindat(AT_FDCWD, so, nam, td)); 579 } 580 581 static int 582 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 583 { 584 int error; 585 586 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 587 UNP_LINK_WLOCK(); 588 error = unp_connect(so, nam, td); 589 UNP_LINK_WUNLOCK(); 590 return (error); 591 } 592 593 static int 594 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 595 struct thread *td) 596 { 597 int error; 598 599 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 600 UNP_LINK_WLOCK(); 601 error = unp_connectat(fd, so, nam, td); 602 UNP_LINK_WUNLOCK(); 603 return (error); 604 } 605 606 static void 607 uipc_close(struct socket *so) 608 { 609 struct unpcb *unp, *unp2; 610 611 unp = sotounpcb(so); 612 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 613 614 UNP_LINK_WLOCK(); 615 UNP_PCB_LOCK(unp); 616 unp2 = unp->unp_conn; 617 if (unp2 != NULL) { 618 UNP_PCB_LOCK(unp2); 619 unp_disconnect(unp, unp2); 620 UNP_PCB_UNLOCK(unp2); 621 } 622 UNP_PCB_UNLOCK(unp); 623 UNP_LINK_WUNLOCK(); 624 } 625 626 static int 627 uipc_connect2(struct socket *so1, struct socket *so2) 628 { 629 struct unpcb *unp, *unp2; 630 int error; 631 632 UNP_LINK_WLOCK(); 633 unp = so1->so_pcb; 634 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 635 UNP_PCB_LOCK(unp); 636 unp2 = so2->so_pcb; 637 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 638 UNP_PCB_LOCK(unp2); 639 error = unp_connect2(so1, so2, PRU_CONNECT2); 640 UNP_PCB_UNLOCK(unp2); 641 UNP_PCB_UNLOCK(unp); 642 UNP_LINK_WUNLOCK(); 643 return (error); 644 } 645 646 static void 647 uipc_detach(struct socket *so) 648 { 649 struct unpcb *unp, *unp2; 650 struct sockaddr_un *saved_unp_addr; 651 struct vnode *vp; 652 int freeunp, local_unp_rights; 653 654 unp = sotounpcb(so); 655 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 656 657 vp = NULL; 658 local_unp_rights = 0; 659 660 UNP_LIST_LOCK(); 661 LIST_REMOVE(unp, unp_link); 662 unp->unp_gencnt = ++unp_gencnt; 663 --unp_count; 664 UNP_LIST_UNLOCK(); 665 666 if ((unp->unp_flags & UNP_NASCENT) != 0) { 667 UNP_PCB_LOCK(unp); 668 goto teardown; 669 } 670 UNP_LINK_WLOCK(); 671 UNP_PCB_LOCK(unp); 672 673 /* 674 * XXXRW: Should assert vp->v_socket == so. 675 */ 676 if ((vp = unp->unp_vnode) != NULL) { 677 VOP_UNP_DETACH(vp); 678 unp->unp_vnode = NULL; 679 } 680 unp2 = unp->unp_conn; 681 if (unp2 != NULL) { 682 UNP_PCB_LOCK(unp2); 683 unp_disconnect(unp, unp2); 684 UNP_PCB_UNLOCK(unp2); 685 } 686 687 /* 688 * We hold the linkage lock exclusively, so it's OK to acquire 689 * multiple pcb locks at a time. 690 */ 691 while (!LIST_EMPTY(&unp->unp_refs)) { 692 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 693 694 UNP_PCB_LOCK(ref); 695 unp_drop(ref); 696 UNP_PCB_UNLOCK(ref); 697 } 698 local_unp_rights = unp_rights; 699 UNP_LINK_WUNLOCK(); 700 teardown: 701 unp->unp_socket->so_pcb = NULL; 702 saved_unp_addr = unp->unp_addr; 703 unp->unp_addr = NULL; 704 unp->unp_refcount--; 705 freeunp = (unp->unp_refcount == 0); 706 if (saved_unp_addr != NULL) 707 free(saved_unp_addr, M_SONAME); 708 if (freeunp) { 709 UNP_PCB_LOCK_DESTROY(unp); 710 uma_zfree(unp_zone, unp); 711 } else 712 UNP_PCB_UNLOCK(unp); 713 if (vp) 714 vrele(vp); 715 if (local_unp_rights) 716 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 717 } 718 719 static int 720 uipc_disconnect(struct socket *so) 721 { 722 struct unpcb *unp, *unp2; 723 724 unp = sotounpcb(so); 725 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 726 727 UNP_LINK_WLOCK(); 728 UNP_PCB_LOCK(unp); 729 unp2 = unp->unp_conn; 730 if (unp2 != NULL) { 731 UNP_PCB_LOCK(unp2); 732 unp_disconnect(unp, unp2); 733 UNP_PCB_UNLOCK(unp2); 734 } 735 UNP_PCB_UNLOCK(unp); 736 UNP_LINK_WUNLOCK(); 737 return (0); 738 } 739 740 static int 741 uipc_listen(struct socket *so, int backlog, struct thread *td) 742 { 743 struct unpcb *unp; 744 int error; 745 746 unp = sotounpcb(so); 747 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 748 749 UNP_PCB_LOCK(unp); 750 if (unp->unp_vnode == NULL) { 751 /* Already connected or not bound to an address. */ 752 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 753 UNP_PCB_UNLOCK(unp); 754 return (error); 755 } 756 757 SOCK_LOCK(so); 758 error = solisten_proto_check(so); 759 if (error == 0) { 760 cru2x(td->td_ucred, &unp->unp_peercred); 761 unp->unp_flags |= UNP_HAVEPCCACHED; 762 solisten_proto(so, backlog); 763 } 764 SOCK_UNLOCK(so); 765 UNP_PCB_UNLOCK(unp); 766 return (error); 767 } 768 769 static int 770 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 771 { 772 struct unpcb *unp, *unp2; 773 const struct sockaddr *sa; 774 775 unp = sotounpcb(so); 776 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 777 778 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 779 UNP_LINK_RLOCK(); 780 /* 781 * XXX: It seems that this test always fails even when connection is 782 * established. So, this else clause is added as workaround to 783 * return PF_LOCAL sockaddr. 784 */ 785 unp2 = unp->unp_conn; 786 if (unp2 != NULL) { 787 UNP_PCB_LOCK(unp2); 788 if (unp2->unp_addr != NULL) 789 sa = (struct sockaddr *) unp2->unp_addr; 790 else 791 sa = &sun_noname; 792 bcopy(sa, *nam, sa->sa_len); 793 UNP_PCB_UNLOCK(unp2); 794 } else { 795 sa = &sun_noname; 796 bcopy(sa, *nam, sa->sa_len); 797 } 798 UNP_LINK_RUNLOCK(); 799 return (0); 800 } 801 802 static int 803 uipc_rcvd(struct socket *so, int flags) 804 { 805 struct unpcb *unp, *unp2; 806 struct socket *so2; 807 u_int mbcnt, sbcc; 808 809 unp = sotounpcb(so); 810 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 811 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 812 ("%s: socktype %d", __func__, so->so_type)); 813 814 /* 815 * Adjust backpressure on sender and wakeup any waiting to write. 816 * 817 * The unp lock is acquired to maintain the validity of the unp_conn 818 * pointer; no lock on unp2 is required as unp2->unp_socket will be 819 * static as long as we don't permit unp2 to disconnect from unp, 820 * which is prevented by the lock on unp. We cache values from 821 * so_rcv to avoid holding the so_rcv lock over the entire 822 * transaction on the remote so_snd. 823 */ 824 SOCKBUF_LOCK(&so->so_rcv); 825 mbcnt = so->so_rcv.sb_mbcnt; 826 sbcc = sbavail(&so->so_rcv); 827 SOCKBUF_UNLOCK(&so->so_rcv); 828 /* 829 * There is a benign race condition at this point. If we're planning to 830 * clear SB_STOP, but uipc_send is called on the connected socket at 831 * this instant, it might add data to the sockbuf and set SB_STOP. Then 832 * we would erroneously clear SB_STOP below, even though the sockbuf is 833 * full. The race is benign because the only ill effect is to allow the 834 * sockbuf to exceed its size limit, and the size limits are not 835 * strictly guaranteed anyway. 836 */ 837 UNP_PCB_LOCK(unp); 838 unp2 = unp->unp_conn; 839 if (unp2 == NULL) { 840 UNP_PCB_UNLOCK(unp); 841 return (0); 842 } 843 so2 = unp2->unp_socket; 844 SOCKBUF_LOCK(&so2->so_snd); 845 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 846 so2->so_snd.sb_flags &= ~SB_STOP; 847 sowwakeup_locked(so2); 848 UNP_PCB_UNLOCK(unp); 849 return (0); 850 } 851 852 static int 853 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 854 struct mbuf *control, struct thread *td) 855 { 856 struct unpcb *unp, *unp2; 857 struct socket *so2; 858 u_int mbcnt, sbcc; 859 int error = 0; 860 861 unp = sotounpcb(so); 862 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 863 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 864 so->so_type == SOCK_SEQPACKET, 865 ("%s: socktype %d", __func__, so->so_type)); 866 867 if (flags & PRUS_OOB) { 868 error = EOPNOTSUPP; 869 goto release; 870 } 871 if (control != NULL && (error = unp_internalize(&control, td))) 872 goto release; 873 if ((nam != NULL) || (flags & PRUS_EOF)) 874 UNP_LINK_WLOCK(); 875 else 876 UNP_LINK_RLOCK(); 877 switch (so->so_type) { 878 case SOCK_DGRAM: 879 { 880 const struct sockaddr *from; 881 882 unp2 = unp->unp_conn; 883 if (nam != NULL) { 884 UNP_LINK_WLOCK_ASSERT(); 885 if (unp2 != NULL) { 886 error = EISCONN; 887 break; 888 } 889 error = unp_connect(so, nam, td); 890 if (error) 891 break; 892 unp2 = unp->unp_conn; 893 } 894 895 /* 896 * Because connect() and send() are non-atomic in a sendto() 897 * with a target address, it's possible that the socket will 898 * have disconnected before the send() can run. In that case 899 * return the slightly counter-intuitive but otherwise 900 * correct error that the socket is not connected. 901 */ 902 if (unp2 == NULL) { 903 error = ENOTCONN; 904 break; 905 } 906 /* Lockless read. */ 907 if (unp2->unp_flags & UNP_WANTCRED) 908 control = unp_addsockcred(td, control); 909 UNP_PCB_LOCK(unp); 910 if (unp->unp_addr != NULL) 911 from = (struct sockaddr *)unp->unp_addr; 912 else 913 from = &sun_noname; 914 so2 = unp2->unp_socket; 915 SOCKBUF_LOCK(&so2->so_rcv); 916 if (sbappendaddr_locked(&so2->so_rcv, from, m, 917 control)) { 918 sorwakeup_locked(so2); 919 m = NULL; 920 control = NULL; 921 } else { 922 SOCKBUF_UNLOCK(&so2->so_rcv); 923 error = ENOBUFS; 924 } 925 if (nam != NULL) { 926 UNP_LINK_WLOCK_ASSERT(); 927 UNP_PCB_LOCK(unp2); 928 unp_disconnect(unp, unp2); 929 UNP_PCB_UNLOCK(unp2); 930 } 931 UNP_PCB_UNLOCK(unp); 932 break; 933 } 934 935 case SOCK_SEQPACKET: 936 case SOCK_STREAM: 937 if ((so->so_state & SS_ISCONNECTED) == 0) { 938 if (nam != NULL) { 939 UNP_LINK_WLOCK_ASSERT(); 940 error = unp_connect(so, nam, td); 941 if (error) 942 break; /* XXX */ 943 } else { 944 error = ENOTCONN; 945 break; 946 } 947 } 948 949 /* Lockless read. */ 950 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 951 error = EPIPE; 952 break; 953 } 954 955 /* 956 * Because connect() and send() are non-atomic in a sendto() 957 * with a target address, it's possible that the socket will 958 * have disconnected before the send() can run. In that case 959 * return the slightly counter-intuitive but otherwise 960 * correct error that the socket is not connected. 961 * 962 * Locking here must be done carefully: the linkage lock 963 * prevents interconnections between unpcbs from changing, so 964 * we can traverse from unp to unp2 without acquiring unp's 965 * lock. Socket buffer locks follow unpcb locks, so we can 966 * acquire both remote and lock socket buffer locks. 967 */ 968 unp2 = unp->unp_conn; 969 if (unp2 == NULL) { 970 error = ENOTCONN; 971 break; 972 } 973 so2 = unp2->unp_socket; 974 UNP_PCB_LOCK(unp2); 975 SOCKBUF_LOCK(&so2->so_rcv); 976 if (unp2->unp_flags & UNP_WANTCRED) { 977 /* 978 * Credentials are passed only once on SOCK_STREAM 979 * and SOCK_SEQPACKET. 980 */ 981 unp2->unp_flags &= ~UNP_WANTCRED; 982 control = unp_addsockcred(td, control); 983 } 984 /* 985 * Send to paired receive port, and then reduce send buffer 986 * hiwater marks to maintain backpressure. Wake up readers. 987 */ 988 switch (so->so_type) { 989 case SOCK_STREAM: 990 if (control != NULL) { 991 if (sbappendcontrol_locked(&so2->so_rcv, m, 992 control)) 993 control = NULL; 994 } else 995 sbappend_locked(&so2->so_rcv, m, flags); 996 break; 997 998 case SOCK_SEQPACKET: { 999 const struct sockaddr *from; 1000 1001 from = &sun_noname; 1002 /* 1003 * Don't check for space available in so2->so_rcv. 1004 * Unix domain sockets only check for space in the 1005 * sending sockbuf, and that check is performed one 1006 * level up the stack. 1007 */ 1008 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1009 from, m, control)) 1010 control = NULL; 1011 break; 1012 } 1013 } 1014 1015 mbcnt = so2->so_rcv.sb_mbcnt; 1016 sbcc = sbavail(&so2->so_rcv); 1017 if (sbcc) 1018 sorwakeup_locked(so2); 1019 else 1020 SOCKBUF_UNLOCK(&so2->so_rcv); 1021 1022 /* 1023 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1024 * it would be possible for uipc_rcvd to be called at this 1025 * point, drain the receiving sockbuf, clear SB_STOP, and then 1026 * we would set SB_STOP below. That could lead to an empty 1027 * sockbuf having SB_STOP set 1028 */ 1029 SOCKBUF_LOCK(&so->so_snd); 1030 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1031 so->so_snd.sb_flags |= SB_STOP; 1032 SOCKBUF_UNLOCK(&so->so_snd); 1033 UNP_PCB_UNLOCK(unp2); 1034 m = NULL; 1035 break; 1036 } 1037 1038 /* 1039 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1040 */ 1041 if (flags & PRUS_EOF) { 1042 UNP_PCB_LOCK(unp); 1043 socantsendmore(so); 1044 unp_shutdown(unp); 1045 UNP_PCB_UNLOCK(unp); 1046 } 1047 1048 if ((nam != NULL) || (flags & PRUS_EOF)) 1049 UNP_LINK_WUNLOCK(); 1050 else 1051 UNP_LINK_RUNLOCK(); 1052 1053 if (control != NULL && error != 0) 1054 unp_dispose_mbuf(control); 1055 1056 release: 1057 if (control != NULL) 1058 m_freem(control); 1059 if (m != NULL) 1060 m_freem(m); 1061 return (error); 1062 } 1063 1064 static int 1065 uipc_ready(struct socket *so, struct mbuf *m, int count) 1066 { 1067 struct unpcb *unp, *unp2; 1068 struct socket *so2; 1069 int error; 1070 1071 unp = sotounpcb(so); 1072 1073 UNP_LINK_RLOCK(); 1074 unp2 = unp->unp_conn; 1075 UNP_PCB_LOCK(unp2); 1076 so2 = unp2->unp_socket; 1077 1078 SOCKBUF_LOCK(&so2->so_rcv); 1079 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1080 sorwakeup_locked(so2); 1081 else 1082 SOCKBUF_UNLOCK(&so2->so_rcv); 1083 1084 UNP_PCB_UNLOCK(unp2); 1085 UNP_LINK_RUNLOCK(); 1086 1087 return (error); 1088 } 1089 1090 static int 1091 uipc_sense(struct socket *so, struct stat *sb) 1092 { 1093 struct unpcb *unp; 1094 1095 unp = sotounpcb(so); 1096 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1097 1098 sb->st_blksize = so->so_snd.sb_hiwat; 1099 UNP_PCB_LOCK(unp); 1100 sb->st_dev = NODEV; 1101 if (unp->unp_ino == 0) 1102 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 1103 sb->st_ino = unp->unp_ino; 1104 UNP_PCB_UNLOCK(unp); 1105 return (0); 1106 } 1107 1108 static int 1109 uipc_shutdown(struct socket *so) 1110 { 1111 struct unpcb *unp; 1112 1113 unp = sotounpcb(so); 1114 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1115 1116 UNP_LINK_WLOCK(); 1117 UNP_PCB_LOCK(unp); 1118 socantsendmore(so); 1119 unp_shutdown(unp); 1120 UNP_PCB_UNLOCK(unp); 1121 UNP_LINK_WUNLOCK(); 1122 return (0); 1123 } 1124 1125 static int 1126 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1127 { 1128 struct unpcb *unp; 1129 const struct sockaddr *sa; 1130 1131 unp = sotounpcb(so); 1132 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1133 1134 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1135 UNP_PCB_LOCK(unp); 1136 if (unp->unp_addr != NULL) 1137 sa = (struct sockaddr *) unp->unp_addr; 1138 else 1139 sa = &sun_noname; 1140 bcopy(sa, *nam, sa->sa_len); 1141 UNP_PCB_UNLOCK(unp); 1142 return (0); 1143 } 1144 1145 static struct pr_usrreqs uipc_usrreqs_dgram = { 1146 .pru_abort = uipc_abort, 1147 .pru_accept = uipc_accept, 1148 .pru_attach = uipc_attach, 1149 .pru_bind = uipc_bind, 1150 .pru_bindat = uipc_bindat, 1151 .pru_connect = uipc_connect, 1152 .pru_connectat = uipc_connectat, 1153 .pru_connect2 = uipc_connect2, 1154 .pru_detach = uipc_detach, 1155 .pru_disconnect = uipc_disconnect, 1156 .pru_listen = uipc_listen, 1157 .pru_peeraddr = uipc_peeraddr, 1158 .pru_rcvd = uipc_rcvd, 1159 .pru_send = uipc_send, 1160 .pru_sense = uipc_sense, 1161 .pru_shutdown = uipc_shutdown, 1162 .pru_sockaddr = uipc_sockaddr, 1163 .pru_soreceive = soreceive_dgram, 1164 .pru_close = uipc_close, 1165 }; 1166 1167 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1168 .pru_abort = uipc_abort, 1169 .pru_accept = uipc_accept, 1170 .pru_attach = uipc_attach, 1171 .pru_bind = uipc_bind, 1172 .pru_bindat = uipc_bindat, 1173 .pru_connect = uipc_connect, 1174 .pru_connectat = uipc_connectat, 1175 .pru_connect2 = uipc_connect2, 1176 .pru_detach = uipc_detach, 1177 .pru_disconnect = uipc_disconnect, 1178 .pru_listen = uipc_listen, 1179 .pru_peeraddr = uipc_peeraddr, 1180 .pru_rcvd = uipc_rcvd, 1181 .pru_send = uipc_send, 1182 .pru_sense = uipc_sense, 1183 .pru_shutdown = uipc_shutdown, 1184 .pru_sockaddr = uipc_sockaddr, 1185 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1186 .pru_close = uipc_close, 1187 }; 1188 1189 static struct pr_usrreqs uipc_usrreqs_stream = { 1190 .pru_abort = uipc_abort, 1191 .pru_accept = uipc_accept, 1192 .pru_attach = uipc_attach, 1193 .pru_bind = uipc_bind, 1194 .pru_bindat = uipc_bindat, 1195 .pru_connect = uipc_connect, 1196 .pru_connectat = uipc_connectat, 1197 .pru_connect2 = uipc_connect2, 1198 .pru_detach = uipc_detach, 1199 .pru_disconnect = uipc_disconnect, 1200 .pru_listen = uipc_listen, 1201 .pru_peeraddr = uipc_peeraddr, 1202 .pru_rcvd = uipc_rcvd, 1203 .pru_send = uipc_send, 1204 .pru_ready = uipc_ready, 1205 .pru_sense = uipc_sense, 1206 .pru_shutdown = uipc_shutdown, 1207 .pru_sockaddr = uipc_sockaddr, 1208 .pru_soreceive = soreceive_generic, 1209 .pru_close = uipc_close, 1210 }; 1211 1212 static int 1213 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1214 { 1215 struct unpcb *unp; 1216 struct xucred xu; 1217 int error, optval; 1218 1219 if (sopt->sopt_level != 0) 1220 return (EINVAL); 1221 1222 unp = sotounpcb(so); 1223 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1224 error = 0; 1225 switch (sopt->sopt_dir) { 1226 case SOPT_GET: 1227 switch (sopt->sopt_name) { 1228 case LOCAL_PEERCRED: 1229 UNP_PCB_LOCK(unp); 1230 if (unp->unp_flags & UNP_HAVEPC) 1231 xu = unp->unp_peercred; 1232 else { 1233 if (so->so_type == SOCK_STREAM) 1234 error = ENOTCONN; 1235 else 1236 error = EINVAL; 1237 } 1238 UNP_PCB_UNLOCK(unp); 1239 if (error == 0) 1240 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1241 break; 1242 1243 case LOCAL_CREDS: 1244 /* Unlocked read. */ 1245 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; 1246 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1247 break; 1248 1249 case LOCAL_CONNWAIT: 1250 /* Unlocked read. */ 1251 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1252 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1253 break; 1254 1255 default: 1256 error = EOPNOTSUPP; 1257 break; 1258 } 1259 break; 1260 1261 case SOPT_SET: 1262 switch (sopt->sopt_name) { 1263 case LOCAL_CREDS: 1264 case LOCAL_CONNWAIT: 1265 error = sooptcopyin(sopt, &optval, sizeof(optval), 1266 sizeof(optval)); 1267 if (error) 1268 break; 1269 1270 #define OPTSET(bit) do { \ 1271 UNP_PCB_LOCK(unp); \ 1272 if (optval) \ 1273 unp->unp_flags |= bit; \ 1274 else \ 1275 unp->unp_flags &= ~bit; \ 1276 UNP_PCB_UNLOCK(unp); \ 1277 } while (0) 1278 1279 switch (sopt->sopt_name) { 1280 case LOCAL_CREDS: 1281 OPTSET(UNP_WANTCRED); 1282 break; 1283 1284 case LOCAL_CONNWAIT: 1285 OPTSET(UNP_CONNWAIT); 1286 break; 1287 1288 default: 1289 break; 1290 } 1291 break; 1292 #undef OPTSET 1293 default: 1294 error = ENOPROTOOPT; 1295 break; 1296 } 1297 break; 1298 1299 default: 1300 error = EOPNOTSUPP; 1301 break; 1302 } 1303 return (error); 1304 } 1305 1306 static int 1307 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1308 { 1309 1310 return (unp_connectat(AT_FDCWD, so, nam, td)); 1311 } 1312 1313 static int 1314 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1315 struct thread *td) 1316 { 1317 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 1318 struct vnode *vp; 1319 struct socket *so2, *so3; 1320 struct unpcb *unp, *unp2, *unp3; 1321 struct nameidata nd; 1322 char buf[SOCK_MAXADDRLEN]; 1323 struct sockaddr *sa; 1324 cap_rights_t rights; 1325 int error, len; 1326 1327 if (nam->sa_family != AF_UNIX) 1328 return (EAFNOSUPPORT); 1329 1330 UNP_LINK_WLOCK_ASSERT(); 1331 1332 unp = sotounpcb(so); 1333 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1334 1335 if (nam->sa_len > sizeof(struct sockaddr_un)) 1336 return (EINVAL); 1337 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1338 if (len <= 0) 1339 return (EINVAL); 1340 bcopy(soun->sun_path, buf, len); 1341 buf[len] = 0; 1342 1343 UNP_PCB_LOCK(unp); 1344 if (unp->unp_flags & UNP_CONNECTING) { 1345 UNP_PCB_UNLOCK(unp); 1346 return (EALREADY); 1347 } 1348 UNP_LINK_WUNLOCK(); 1349 unp->unp_flags |= UNP_CONNECTING; 1350 UNP_PCB_UNLOCK(unp); 1351 1352 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1353 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1354 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); 1355 error = namei(&nd); 1356 if (error) 1357 vp = NULL; 1358 else 1359 vp = nd.ni_vp; 1360 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1361 NDFREE(&nd, NDF_ONLY_PNBUF); 1362 if (error) 1363 goto bad; 1364 1365 if (vp->v_type != VSOCK) { 1366 error = ENOTSOCK; 1367 goto bad; 1368 } 1369 #ifdef MAC 1370 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1371 if (error) 1372 goto bad; 1373 #endif 1374 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1375 if (error) 1376 goto bad; 1377 1378 unp = sotounpcb(so); 1379 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1380 1381 /* 1382 * Lock linkage lock for two reasons: make sure v_socket is stable, 1383 * and to protect simultaneous locking of multiple pcbs. 1384 */ 1385 UNP_LINK_WLOCK(); 1386 VOP_UNP_CONNECT(vp, &so2); 1387 if (so2 == NULL) { 1388 error = ECONNREFUSED; 1389 goto bad2; 1390 } 1391 if (so->so_type != so2->so_type) { 1392 error = EPROTOTYPE; 1393 goto bad2; 1394 } 1395 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 1396 if (so2->so_options & SO_ACCEPTCONN) { 1397 CURVNET_SET(so2->so_vnet); 1398 so3 = sonewconn(so2, 0); 1399 CURVNET_RESTORE(); 1400 } else 1401 so3 = NULL; 1402 if (so3 == NULL) { 1403 error = ECONNREFUSED; 1404 goto bad2; 1405 } 1406 unp = sotounpcb(so); 1407 unp2 = sotounpcb(so2); 1408 unp3 = sotounpcb(so3); 1409 UNP_PCB_LOCK(unp); 1410 UNP_PCB_LOCK(unp2); 1411 UNP_PCB_LOCK(unp3); 1412 if (unp2->unp_addr != NULL) { 1413 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1414 unp3->unp_addr = (struct sockaddr_un *) sa; 1415 sa = NULL; 1416 } 1417 1418 /* 1419 * The connector's (client's) credentials are copied from its 1420 * process structure at the time of connect() (which is now). 1421 */ 1422 cru2x(td->td_ucred, &unp3->unp_peercred); 1423 unp3->unp_flags |= UNP_HAVEPC; 1424 1425 /* 1426 * The receiver's (server's) credentials are copied from the 1427 * unp_peercred member of socket on which the former called 1428 * listen(); uipc_listen() cached that process's credentials 1429 * at that time so we can use them now. 1430 */ 1431 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED, 1432 ("unp_connect: listener without cached peercred")); 1433 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 1434 sizeof(unp->unp_peercred)); 1435 unp->unp_flags |= UNP_HAVEPC; 1436 if (unp2->unp_flags & UNP_WANTCRED) 1437 unp3->unp_flags |= UNP_WANTCRED; 1438 UNP_PCB_UNLOCK(unp3); 1439 UNP_PCB_UNLOCK(unp2); 1440 UNP_PCB_UNLOCK(unp); 1441 #ifdef MAC 1442 mac_socketpeer_set_from_socket(so, so3); 1443 mac_socketpeer_set_from_socket(so3, so); 1444 #endif 1445 1446 so2 = so3; 1447 } 1448 unp = sotounpcb(so); 1449 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1450 unp2 = sotounpcb(so2); 1451 KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL")); 1452 UNP_PCB_LOCK(unp); 1453 UNP_PCB_LOCK(unp2); 1454 error = unp_connect2(so, so2, PRU_CONNECT); 1455 UNP_PCB_UNLOCK(unp2); 1456 UNP_PCB_UNLOCK(unp); 1457 bad2: 1458 UNP_LINK_WUNLOCK(); 1459 bad: 1460 if (vp != NULL) 1461 vput(vp); 1462 free(sa, M_SONAME); 1463 UNP_LINK_WLOCK(); 1464 UNP_PCB_LOCK(unp); 1465 unp->unp_flags &= ~UNP_CONNECTING; 1466 UNP_PCB_UNLOCK(unp); 1467 return (error); 1468 } 1469 1470 static int 1471 unp_connect2(struct socket *so, struct socket *so2, int req) 1472 { 1473 struct unpcb *unp; 1474 struct unpcb *unp2; 1475 1476 unp = sotounpcb(so); 1477 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1478 unp2 = sotounpcb(so2); 1479 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1480 1481 UNP_LINK_WLOCK_ASSERT(); 1482 UNP_PCB_LOCK_ASSERT(unp); 1483 UNP_PCB_LOCK_ASSERT(unp2); 1484 1485 if (so2->so_type != so->so_type) 1486 return (EPROTOTYPE); 1487 unp2->unp_flags &= ~UNP_NASCENT; 1488 unp->unp_conn = unp2; 1489 1490 switch (so->so_type) { 1491 case SOCK_DGRAM: 1492 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1493 soisconnected(so); 1494 break; 1495 1496 case SOCK_STREAM: 1497 case SOCK_SEQPACKET: 1498 unp2->unp_conn = unp; 1499 if (req == PRU_CONNECT && 1500 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1501 soisconnecting(so); 1502 else 1503 soisconnected(so); 1504 soisconnected(so2); 1505 break; 1506 1507 default: 1508 panic("unp_connect2"); 1509 } 1510 return (0); 1511 } 1512 1513 static void 1514 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1515 { 1516 struct socket *so; 1517 1518 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); 1519 1520 UNP_LINK_WLOCK_ASSERT(); 1521 UNP_PCB_LOCK_ASSERT(unp); 1522 UNP_PCB_LOCK_ASSERT(unp2); 1523 1524 unp->unp_conn = NULL; 1525 switch (unp->unp_socket->so_type) { 1526 case SOCK_DGRAM: 1527 LIST_REMOVE(unp, unp_reflink); 1528 so = unp->unp_socket; 1529 SOCK_LOCK(so); 1530 so->so_state &= ~SS_ISCONNECTED; 1531 SOCK_UNLOCK(so); 1532 break; 1533 1534 case SOCK_STREAM: 1535 case SOCK_SEQPACKET: 1536 soisdisconnected(unp->unp_socket); 1537 unp2->unp_conn = NULL; 1538 soisdisconnected(unp2->unp_socket); 1539 break; 1540 } 1541 } 1542 1543 /* 1544 * unp_pcblist() walks the global list of struct unpcb's to generate a 1545 * pointer list, bumping the refcount on each unpcb. It then copies them out 1546 * sequentially, validating the generation number on each to see if it has 1547 * been detached. All of this is necessary because copyout() may sleep on 1548 * disk I/O. 1549 */ 1550 static int 1551 unp_pcblist(SYSCTL_HANDLER_ARGS) 1552 { 1553 int error, i, n; 1554 int freeunp; 1555 struct unpcb *unp, **unp_list; 1556 unp_gen_t gencnt; 1557 struct xunpgen *xug; 1558 struct unp_head *head; 1559 struct xunpcb *xu; 1560 1561 switch ((intptr_t)arg1) { 1562 case SOCK_STREAM: 1563 head = &unp_shead; 1564 break; 1565 1566 case SOCK_DGRAM: 1567 head = &unp_dhead; 1568 break; 1569 1570 case SOCK_SEQPACKET: 1571 head = &unp_sphead; 1572 break; 1573 1574 default: 1575 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1576 } 1577 1578 /* 1579 * The process of preparing the PCB list is too time-consuming and 1580 * resource-intensive to repeat twice on every request. 1581 */ 1582 if (req->oldptr == NULL) { 1583 n = unp_count; 1584 req->oldidx = 2 * (sizeof *xug) 1585 + (n + n/8) * sizeof(struct xunpcb); 1586 return (0); 1587 } 1588 1589 if (req->newptr != NULL) 1590 return (EPERM); 1591 1592 /* 1593 * OK, now we're committed to doing something. 1594 */ 1595 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); 1596 UNP_LIST_LOCK(); 1597 gencnt = unp_gencnt; 1598 n = unp_count; 1599 UNP_LIST_UNLOCK(); 1600 1601 xug->xug_len = sizeof *xug; 1602 xug->xug_count = n; 1603 xug->xug_gen = gencnt; 1604 xug->xug_sogen = so_gencnt; 1605 error = SYSCTL_OUT(req, xug, sizeof *xug); 1606 if (error) { 1607 free(xug, M_TEMP); 1608 return (error); 1609 } 1610 1611 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1612 1613 UNP_LIST_LOCK(); 1614 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1615 unp = LIST_NEXT(unp, unp_link)) { 1616 UNP_PCB_LOCK(unp); 1617 if (unp->unp_gencnt <= gencnt) { 1618 if (cr_cansee(req->td->td_ucred, 1619 unp->unp_socket->so_cred)) { 1620 UNP_PCB_UNLOCK(unp); 1621 continue; 1622 } 1623 unp_list[i++] = unp; 1624 unp->unp_refcount++; 1625 } 1626 UNP_PCB_UNLOCK(unp); 1627 } 1628 UNP_LIST_UNLOCK(); 1629 n = i; /* In case we lost some during malloc. */ 1630 1631 error = 0; 1632 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1633 for (i = 0; i < n; i++) { 1634 unp = unp_list[i]; 1635 UNP_PCB_LOCK(unp); 1636 unp->unp_refcount--; 1637 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) { 1638 xu->xu_len = sizeof *xu; 1639 xu->xu_unpp = unp; 1640 /* 1641 * XXX - need more locking here to protect against 1642 * connect/disconnect races for SMP. 1643 */ 1644 if (unp->unp_addr != NULL) 1645 bcopy(unp->unp_addr, &xu->xu_addr, 1646 unp->unp_addr->sun_len); 1647 if (unp->unp_conn != NULL && 1648 unp->unp_conn->unp_addr != NULL) 1649 bcopy(unp->unp_conn->unp_addr, 1650 &xu->xu_caddr, 1651 unp->unp_conn->unp_addr->sun_len); 1652 bcopy(unp, &xu->xu_unp, sizeof *unp); 1653 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1654 UNP_PCB_UNLOCK(unp); 1655 error = SYSCTL_OUT(req, xu, sizeof *xu); 1656 } else { 1657 freeunp = (unp->unp_refcount == 0); 1658 UNP_PCB_UNLOCK(unp); 1659 if (freeunp) { 1660 UNP_PCB_LOCK_DESTROY(unp); 1661 uma_zfree(unp_zone, unp); 1662 } 1663 } 1664 } 1665 free(xu, M_TEMP); 1666 if (!error) { 1667 /* 1668 * Give the user an updated idea of our state. If the 1669 * generation differs from what we told her before, she knows 1670 * that something happened while we were processing this 1671 * request, and it might be necessary to retry. 1672 */ 1673 xug->xug_gen = unp_gencnt; 1674 xug->xug_sogen = so_gencnt; 1675 xug->xug_count = unp_count; 1676 error = SYSCTL_OUT(req, xug, sizeof *xug); 1677 } 1678 free(unp_list, M_TEMP); 1679 free(xug, M_TEMP); 1680 return (error); 1681 } 1682 1683 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1684 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1685 "List of active local datagram sockets"); 1686 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, 1687 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1688 "List of active local stream sockets"); 1689 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1690 CTLTYPE_OPAQUE | CTLFLAG_RD, 1691 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1692 "List of active local seqpacket sockets"); 1693 1694 static void 1695 unp_shutdown(struct unpcb *unp) 1696 { 1697 struct unpcb *unp2; 1698 struct socket *so; 1699 1700 UNP_LINK_WLOCK_ASSERT(); 1701 UNP_PCB_LOCK_ASSERT(unp); 1702 1703 unp2 = unp->unp_conn; 1704 if ((unp->unp_socket->so_type == SOCK_STREAM || 1705 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1706 so = unp2->unp_socket; 1707 if (so != NULL) 1708 socantrcvmore(so); 1709 } 1710 } 1711 1712 static void 1713 unp_drop(struct unpcb *unp) 1714 { 1715 struct socket *so = unp->unp_socket; 1716 struct unpcb *unp2; 1717 1718 UNP_LINK_WLOCK_ASSERT(); 1719 UNP_PCB_LOCK_ASSERT(unp); 1720 1721 /* 1722 * Regardless of whether the socket's peer dropped the connection 1723 * with this socket by aborting or disconnecting, POSIX requires 1724 * that ECONNRESET is returned. 1725 */ 1726 so->so_error = ECONNRESET; 1727 unp2 = unp->unp_conn; 1728 if (unp2 == NULL) 1729 return; 1730 UNP_PCB_LOCK(unp2); 1731 unp_disconnect(unp, unp2); 1732 UNP_PCB_UNLOCK(unp2); 1733 } 1734 1735 static void 1736 unp_freerights(struct filedescent **fdep, int fdcount) 1737 { 1738 struct file *fp; 1739 int i; 1740 1741 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1742 1743 for (i = 0; i < fdcount; i++) { 1744 fp = fdep[i]->fde_file; 1745 filecaps_free(&fdep[i]->fde_caps); 1746 unp_discard(fp); 1747 } 1748 free(fdep[0], M_FILECAPS); 1749 } 1750 1751 static int 1752 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 1753 { 1754 struct thread *td = curthread; /* XXX */ 1755 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1756 int i; 1757 int *fdp; 1758 struct filedesc *fdesc = td->td_proc->p_fd; 1759 struct filedescent **fdep; 1760 void *data; 1761 socklen_t clen = control->m_len, datalen; 1762 int error, newfds; 1763 u_int newlen; 1764 1765 UNP_LINK_UNLOCK_ASSERT(); 1766 1767 error = 0; 1768 if (controlp != NULL) /* controlp == NULL => free control messages */ 1769 *controlp = NULL; 1770 while (cm != NULL) { 1771 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 1772 error = EINVAL; 1773 break; 1774 } 1775 data = CMSG_DATA(cm); 1776 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1777 if (cm->cmsg_level == SOL_SOCKET 1778 && cm->cmsg_type == SCM_RIGHTS) { 1779 newfds = datalen / sizeof(*fdep); 1780 if (newfds == 0) 1781 goto next; 1782 fdep = data; 1783 1784 /* If we're not outputting the descriptors free them. */ 1785 if (error || controlp == NULL) { 1786 unp_freerights(fdep, newfds); 1787 goto next; 1788 } 1789 FILEDESC_XLOCK(fdesc); 1790 1791 /* 1792 * Now change each pointer to an fd in the global 1793 * table to an integer that is the index to the local 1794 * fd table entry that we set up to point to the 1795 * global one we are transferring. 1796 */ 1797 newlen = newfds * sizeof(int); 1798 *controlp = sbcreatecontrol(NULL, newlen, 1799 SCM_RIGHTS, SOL_SOCKET); 1800 if (*controlp == NULL) { 1801 FILEDESC_XUNLOCK(fdesc); 1802 error = E2BIG; 1803 unp_freerights(fdep, newfds); 1804 goto next; 1805 } 1806 1807 fdp = (int *) 1808 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1809 if (fdallocn(td, 0, fdp, newfds) != 0) { 1810 FILEDESC_XUNLOCK(fdesc); 1811 error = EMSGSIZE; 1812 unp_freerights(fdep, newfds); 1813 m_freem(*controlp); 1814 *controlp = NULL; 1815 goto next; 1816 } 1817 for (i = 0; i < newfds; i++, fdp++) { 1818 _finstall(fdesc, fdep[i]->fde_file, *fdp, 1819 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, 1820 &fdep[i]->fde_caps); 1821 unp_externalize_fp(fdep[i]->fde_file); 1822 } 1823 FILEDESC_XUNLOCK(fdesc); 1824 free(fdep[0], M_FILECAPS); 1825 } else { 1826 /* We can just copy anything else across. */ 1827 if (error || controlp == NULL) 1828 goto next; 1829 *controlp = sbcreatecontrol(NULL, datalen, 1830 cm->cmsg_type, cm->cmsg_level); 1831 if (*controlp == NULL) { 1832 error = ENOBUFS; 1833 goto next; 1834 } 1835 bcopy(data, 1836 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 1837 datalen); 1838 } 1839 controlp = &(*controlp)->m_next; 1840 1841 next: 1842 if (CMSG_SPACE(datalen) < clen) { 1843 clen -= CMSG_SPACE(datalen); 1844 cm = (struct cmsghdr *) 1845 ((caddr_t)cm + CMSG_SPACE(datalen)); 1846 } else { 1847 clen = 0; 1848 cm = NULL; 1849 } 1850 } 1851 1852 m_freem(control); 1853 return (error); 1854 } 1855 1856 static void 1857 unp_zone_change(void *tag) 1858 { 1859 1860 uma_zone_set_max(unp_zone, maxsockets); 1861 } 1862 1863 static void 1864 unp_init(void) 1865 { 1866 1867 #ifdef VIMAGE 1868 if (!IS_DEFAULT_VNET(curvnet)) 1869 return; 1870 #endif 1871 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, 1872 NULL, NULL, UMA_ALIGN_PTR, 0); 1873 if (unp_zone == NULL) 1874 panic("unp_init"); 1875 uma_zone_set_max(unp_zone, maxsockets); 1876 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 1877 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 1878 NULL, EVENTHANDLER_PRI_ANY); 1879 LIST_INIT(&unp_dhead); 1880 LIST_INIT(&unp_shead); 1881 LIST_INIT(&unp_sphead); 1882 SLIST_INIT(&unp_defers); 1883 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 1884 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 1885 UNP_LINK_LOCK_INIT(); 1886 UNP_LIST_LOCK_INIT(); 1887 UNP_DEFERRED_LOCK_INIT(); 1888 } 1889 1890 static int 1891 unp_internalize(struct mbuf **controlp, struct thread *td) 1892 { 1893 struct mbuf *control = *controlp; 1894 struct proc *p = td->td_proc; 1895 struct filedesc *fdesc = p->p_fd; 1896 struct bintime *bt; 1897 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1898 struct cmsgcred *cmcred; 1899 struct filedescent *fde, **fdep, *fdev; 1900 struct file *fp; 1901 struct timeval *tv; 1902 struct timespec *ts; 1903 int i, *fdp; 1904 void *data; 1905 socklen_t clen = control->m_len, datalen; 1906 int error, oldfds; 1907 u_int newlen; 1908 1909 UNP_LINK_UNLOCK_ASSERT(); 1910 1911 error = 0; 1912 *controlp = NULL; 1913 while (cm != NULL) { 1914 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 1915 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 1916 error = EINVAL; 1917 goto out; 1918 } 1919 data = CMSG_DATA(cm); 1920 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1921 1922 switch (cm->cmsg_type) { 1923 /* 1924 * Fill in credential information. 1925 */ 1926 case SCM_CREDS: 1927 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 1928 SCM_CREDS, SOL_SOCKET); 1929 if (*controlp == NULL) { 1930 error = ENOBUFS; 1931 goto out; 1932 } 1933 cmcred = (struct cmsgcred *) 1934 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1935 cmcred->cmcred_pid = p->p_pid; 1936 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 1937 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 1938 cmcred->cmcred_euid = td->td_ucred->cr_uid; 1939 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 1940 CMGROUP_MAX); 1941 for (i = 0; i < cmcred->cmcred_ngroups; i++) 1942 cmcred->cmcred_groups[i] = 1943 td->td_ucred->cr_groups[i]; 1944 break; 1945 1946 case SCM_RIGHTS: 1947 oldfds = datalen / sizeof (int); 1948 if (oldfds == 0) 1949 break; 1950 /* 1951 * Check that all the FDs passed in refer to legal 1952 * files. If not, reject the entire operation. 1953 */ 1954 fdp = data; 1955 FILEDESC_SLOCK(fdesc); 1956 for (i = 0; i < oldfds; i++, fdp++) { 1957 fp = fget_locked(fdesc, *fdp); 1958 if (fp == NULL) { 1959 FILEDESC_SUNLOCK(fdesc); 1960 error = EBADF; 1961 goto out; 1962 } 1963 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 1964 FILEDESC_SUNLOCK(fdesc); 1965 error = EOPNOTSUPP; 1966 goto out; 1967 } 1968 1969 } 1970 1971 /* 1972 * Now replace the integer FDs with pointers to the 1973 * file structure and capability rights. 1974 */ 1975 newlen = oldfds * sizeof(fdep[0]); 1976 *controlp = sbcreatecontrol(NULL, newlen, 1977 SCM_RIGHTS, SOL_SOCKET); 1978 if (*controlp == NULL) { 1979 FILEDESC_SUNLOCK(fdesc); 1980 error = E2BIG; 1981 goto out; 1982 } 1983 fdp = data; 1984 fdep = (struct filedescent **) 1985 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 1986 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 1987 M_WAITOK); 1988 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 1989 fde = &fdesc->fd_ofiles[*fdp]; 1990 fdep[i] = fdev; 1991 fdep[i]->fde_file = fde->fde_file; 1992 filecaps_copy(&fde->fde_caps, 1993 &fdep[i]->fde_caps, true); 1994 unp_internalize_fp(fdep[i]->fde_file); 1995 } 1996 FILEDESC_SUNLOCK(fdesc); 1997 break; 1998 1999 case SCM_TIMESTAMP: 2000 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2001 SCM_TIMESTAMP, SOL_SOCKET); 2002 if (*controlp == NULL) { 2003 error = ENOBUFS; 2004 goto out; 2005 } 2006 tv = (struct timeval *) 2007 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2008 microtime(tv); 2009 break; 2010 2011 case SCM_BINTIME: 2012 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2013 SCM_BINTIME, SOL_SOCKET); 2014 if (*controlp == NULL) { 2015 error = ENOBUFS; 2016 goto out; 2017 } 2018 bt = (struct bintime *) 2019 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2020 bintime(bt); 2021 break; 2022 2023 case SCM_REALTIME: 2024 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2025 SCM_REALTIME, SOL_SOCKET); 2026 if (*controlp == NULL) { 2027 error = ENOBUFS; 2028 goto out; 2029 } 2030 ts = (struct timespec *) 2031 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2032 nanotime(ts); 2033 break; 2034 2035 case SCM_MONOTONIC: 2036 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2037 SCM_MONOTONIC, SOL_SOCKET); 2038 if (*controlp == NULL) { 2039 error = ENOBUFS; 2040 goto out; 2041 } 2042 ts = (struct timespec *) 2043 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2044 nanouptime(ts); 2045 break; 2046 2047 default: 2048 error = EINVAL; 2049 goto out; 2050 } 2051 2052 controlp = &(*controlp)->m_next; 2053 if (CMSG_SPACE(datalen) < clen) { 2054 clen -= CMSG_SPACE(datalen); 2055 cm = (struct cmsghdr *) 2056 ((caddr_t)cm + CMSG_SPACE(datalen)); 2057 } else { 2058 clen = 0; 2059 cm = NULL; 2060 } 2061 } 2062 2063 out: 2064 m_freem(control); 2065 return (error); 2066 } 2067 2068 static struct mbuf * 2069 unp_addsockcred(struct thread *td, struct mbuf *control) 2070 { 2071 struct mbuf *m, *n, *n_prev; 2072 struct sockcred *sc; 2073 const struct cmsghdr *cm; 2074 int ngroups; 2075 int i; 2076 2077 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2078 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); 2079 if (m == NULL) 2080 return (control); 2081 2082 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); 2083 sc->sc_uid = td->td_ucred->cr_ruid; 2084 sc->sc_euid = td->td_ucred->cr_uid; 2085 sc->sc_gid = td->td_ucred->cr_rgid; 2086 sc->sc_egid = td->td_ucred->cr_gid; 2087 sc->sc_ngroups = ngroups; 2088 for (i = 0; i < sc->sc_ngroups; i++) 2089 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2090 2091 /* 2092 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2093 * created SCM_CREDS control message (struct sockcred) has another 2094 * format. 2095 */ 2096 if (control != NULL) 2097 for (n = control, n_prev = NULL; n != NULL;) { 2098 cm = mtod(n, struct cmsghdr *); 2099 if (cm->cmsg_level == SOL_SOCKET && 2100 cm->cmsg_type == SCM_CREDS) { 2101 if (n_prev == NULL) 2102 control = n->m_next; 2103 else 2104 n_prev->m_next = n->m_next; 2105 n = m_free(n); 2106 } else { 2107 n_prev = n; 2108 n = n->m_next; 2109 } 2110 } 2111 2112 /* Prepend it to the head. */ 2113 m->m_next = control; 2114 return (m); 2115 } 2116 2117 static struct unpcb * 2118 fptounp(struct file *fp) 2119 { 2120 struct socket *so; 2121 2122 if (fp->f_type != DTYPE_SOCKET) 2123 return (NULL); 2124 if ((so = fp->f_data) == NULL) 2125 return (NULL); 2126 if (so->so_proto->pr_domain != &localdomain) 2127 return (NULL); 2128 return sotounpcb(so); 2129 } 2130 2131 static void 2132 unp_discard(struct file *fp) 2133 { 2134 struct unp_defer *dr; 2135 2136 if (unp_externalize_fp(fp)) { 2137 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2138 dr->ud_fp = fp; 2139 UNP_DEFERRED_LOCK(); 2140 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2141 UNP_DEFERRED_UNLOCK(); 2142 atomic_add_int(&unp_defers_count, 1); 2143 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2144 } else 2145 (void) closef(fp, (struct thread *)NULL); 2146 } 2147 2148 static void 2149 unp_process_defers(void *arg __unused, int pending) 2150 { 2151 struct unp_defer *dr; 2152 SLIST_HEAD(, unp_defer) drl; 2153 int count; 2154 2155 SLIST_INIT(&drl); 2156 for (;;) { 2157 UNP_DEFERRED_LOCK(); 2158 if (SLIST_FIRST(&unp_defers) == NULL) { 2159 UNP_DEFERRED_UNLOCK(); 2160 break; 2161 } 2162 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2163 UNP_DEFERRED_UNLOCK(); 2164 count = 0; 2165 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2166 SLIST_REMOVE_HEAD(&drl, ud_link); 2167 closef(dr->ud_fp, NULL); 2168 free(dr, M_TEMP); 2169 count++; 2170 } 2171 atomic_add_int(&unp_defers_count, -count); 2172 } 2173 } 2174 2175 static void 2176 unp_internalize_fp(struct file *fp) 2177 { 2178 struct unpcb *unp; 2179 2180 UNP_LINK_WLOCK(); 2181 if ((unp = fptounp(fp)) != NULL) { 2182 unp->unp_file = fp; 2183 unp->unp_msgcount++; 2184 } 2185 fhold(fp); 2186 unp_rights++; 2187 UNP_LINK_WUNLOCK(); 2188 } 2189 2190 static int 2191 unp_externalize_fp(struct file *fp) 2192 { 2193 struct unpcb *unp; 2194 int ret; 2195 2196 UNP_LINK_WLOCK(); 2197 if ((unp = fptounp(fp)) != NULL) { 2198 unp->unp_msgcount--; 2199 ret = 1; 2200 } else 2201 ret = 0; 2202 unp_rights--; 2203 UNP_LINK_WUNLOCK(); 2204 return (ret); 2205 } 2206 2207 /* 2208 * unp_defer indicates whether additional work has been defered for a future 2209 * pass through unp_gc(). It is thread local and does not require explicit 2210 * synchronization. 2211 */ 2212 static int unp_marked; 2213 static int unp_unreachable; 2214 2215 static void 2216 unp_accessable(struct filedescent **fdep, int fdcount) 2217 { 2218 struct unpcb *unp; 2219 struct file *fp; 2220 int i; 2221 2222 for (i = 0; i < fdcount; i++) { 2223 fp = fdep[i]->fde_file; 2224 if ((unp = fptounp(fp)) == NULL) 2225 continue; 2226 if (unp->unp_gcflag & UNPGC_REF) 2227 continue; 2228 unp->unp_gcflag &= ~UNPGC_DEAD; 2229 unp->unp_gcflag |= UNPGC_REF; 2230 unp_marked++; 2231 } 2232 } 2233 2234 static void 2235 unp_gc_process(struct unpcb *unp) 2236 { 2237 struct socket *soa; 2238 struct socket *so; 2239 struct file *fp; 2240 2241 /* Already processed. */ 2242 if (unp->unp_gcflag & UNPGC_SCANNED) 2243 return; 2244 fp = unp->unp_file; 2245 2246 /* 2247 * Check for a socket potentially in a cycle. It must be in a 2248 * queue as indicated by msgcount, and this must equal the file 2249 * reference count. Note that when msgcount is 0 the file is NULL. 2250 */ 2251 if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp && 2252 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) { 2253 unp->unp_gcflag |= UNPGC_DEAD; 2254 unp_unreachable++; 2255 return; 2256 } 2257 2258 /* 2259 * Mark all sockets we reference with RIGHTS. 2260 */ 2261 so = unp->unp_socket; 2262 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2263 SOCKBUF_LOCK(&so->so_rcv); 2264 unp_scan(so->so_rcv.sb_mb, unp_accessable); 2265 SOCKBUF_UNLOCK(&so->so_rcv); 2266 } 2267 2268 /* 2269 * Mark all sockets in our accept queue. 2270 */ 2271 ACCEPT_LOCK(); 2272 TAILQ_FOREACH(soa, &so->so_comp, so_list) { 2273 if ((sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) != 0) 2274 continue; 2275 SOCKBUF_LOCK(&soa->so_rcv); 2276 unp_scan(soa->so_rcv.sb_mb, unp_accessable); 2277 SOCKBUF_UNLOCK(&soa->so_rcv); 2278 } 2279 ACCEPT_UNLOCK(); 2280 unp->unp_gcflag |= UNPGC_SCANNED; 2281 } 2282 2283 static int unp_recycled; 2284 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2285 "Number of unreachable sockets claimed by the garbage collector."); 2286 2287 static int unp_taskcount; 2288 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2289 "Number of times the garbage collector has run."); 2290 2291 static void 2292 unp_gc(__unused void *arg, int pending) 2293 { 2294 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2295 NULL }; 2296 struct unp_head **head; 2297 struct file *f, **unref; 2298 struct unpcb *unp; 2299 int i, total; 2300 2301 unp_taskcount++; 2302 UNP_LIST_LOCK(); 2303 /* 2304 * First clear all gc flags from previous runs, apart from 2305 * UNPGC_IGNORE_RIGHTS. 2306 */ 2307 for (head = heads; *head != NULL; head++) 2308 LIST_FOREACH(unp, *head, unp_link) 2309 unp->unp_gcflag = 2310 (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS); 2311 2312 /* 2313 * Scan marking all reachable sockets with UNPGC_REF. Once a socket 2314 * is reachable all of the sockets it references are reachable. 2315 * Stop the scan once we do a complete loop without discovering 2316 * a new reachable socket. 2317 */ 2318 do { 2319 unp_unreachable = 0; 2320 unp_marked = 0; 2321 for (head = heads; *head != NULL; head++) 2322 LIST_FOREACH(unp, *head, unp_link) 2323 unp_gc_process(unp); 2324 } while (unp_marked); 2325 UNP_LIST_UNLOCK(); 2326 if (unp_unreachable == 0) 2327 return; 2328 2329 /* 2330 * Allocate space for a local list of dead unpcbs. 2331 */ 2332 unref = malloc(unp_unreachable * sizeof(struct file *), 2333 M_TEMP, M_WAITOK); 2334 2335 /* 2336 * Iterate looking for sockets which have been specifically marked 2337 * as as unreachable and store them locally. 2338 */ 2339 UNP_LINK_RLOCK(); 2340 UNP_LIST_LOCK(); 2341 for (total = 0, head = heads; *head != NULL; head++) 2342 LIST_FOREACH(unp, *head, unp_link) 2343 if ((unp->unp_gcflag & UNPGC_DEAD) != 0) { 2344 f = unp->unp_file; 2345 if (unp->unp_msgcount == 0 || f == NULL || 2346 f->f_count != unp->unp_msgcount) 2347 continue; 2348 unref[total++] = f; 2349 fhold(f); 2350 KASSERT(total <= unp_unreachable, 2351 ("unp_gc: incorrect unreachable count.")); 2352 } 2353 UNP_LIST_UNLOCK(); 2354 UNP_LINK_RUNLOCK(); 2355 2356 /* 2357 * Now flush all sockets, free'ing rights. This will free the 2358 * struct files associated with these sockets but leave each socket 2359 * with one remaining ref. 2360 */ 2361 for (i = 0; i < total; i++) { 2362 struct socket *so; 2363 2364 so = unref[i]->f_data; 2365 CURVNET_SET(so->so_vnet); 2366 sorflush(so); 2367 CURVNET_RESTORE(); 2368 } 2369 2370 /* 2371 * And finally release the sockets so they can be reclaimed. 2372 */ 2373 for (i = 0; i < total; i++) 2374 fdrop(unref[i], NULL); 2375 unp_recycled += total; 2376 free(unref, M_TEMP); 2377 } 2378 2379 static void 2380 unp_dispose_mbuf(struct mbuf *m) 2381 { 2382 2383 if (m) 2384 unp_scan(m, unp_freerights); 2385 } 2386 2387 /* 2388 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2389 */ 2390 static void 2391 unp_dispose(struct socket *so) 2392 { 2393 struct unpcb *unp; 2394 2395 unp = sotounpcb(so); 2396 UNP_LIST_LOCK(); 2397 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2398 UNP_LIST_UNLOCK(); 2399 unp_dispose_mbuf(so->so_rcv.sb_mb); 2400 } 2401 2402 static void 2403 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2404 { 2405 struct mbuf *m; 2406 struct cmsghdr *cm; 2407 void *data; 2408 socklen_t clen, datalen; 2409 2410 while (m0 != NULL) { 2411 for (m = m0; m; m = m->m_next) { 2412 if (m->m_type != MT_CONTROL) 2413 continue; 2414 2415 cm = mtod(m, struct cmsghdr *); 2416 clen = m->m_len; 2417 2418 while (cm != NULL) { 2419 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2420 break; 2421 2422 data = CMSG_DATA(cm); 2423 datalen = (caddr_t)cm + cm->cmsg_len 2424 - (caddr_t)data; 2425 2426 if (cm->cmsg_level == SOL_SOCKET && 2427 cm->cmsg_type == SCM_RIGHTS) { 2428 (*op)(data, datalen / 2429 sizeof(struct filedescent *)); 2430 } 2431 2432 if (CMSG_SPACE(datalen) < clen) { 2433 clen -= CMSG_SPACE(datalen); 2434 cm = (struct cmsghdr *) 2435 ((caddr_t)cm + CMSG_SPACE(datalen)); 2436 } else { 2437 clen = 0; 2438 cm = NULL; 2439 } 2440 } 2441 } 2442 m0 = m0->m_nextpkt; 2443 } 2444 } 2445 2446 /* 2447 * A helper function called by VFS before socket-type vnode reclamation. 2448 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2449 * use count. 2450 */ 2451 void 2452 vfs_unp_reclaim(struct vnode *vp) 2453 { 2454 struct socket *so; 2455 struct unpcb *unp; 2456 int active; 2457 2458 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2459 KASSERT(vp->v_type == VSOCK, 2460 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2461 2462 active = 0; 2463 UNP_LINK_WLOCK(); 2464 VOP_UNP_CONNECT(vp, &so); 2465 if (so == NULL) 2466 goto done; 2467 unp = sotounpcb(so); 2468 if (unp == NULL) 2469 goto done; 2470 UNP_PCB_LOCK(unp); 2471 if (unp->unp_vnode == vp) { 2472 VOP_UNP_DETACH(vp); 2473 unp->unp_vnode = NULL; 2474 active = 1; 2475 } 2476 UNP_PCB_UNLOCK(unp); 2477 done: 2478 UNP_LINK_WUNLOCK(); 2479 if (active) 2480 vunref(vp); 2481 } 2482 2483 #ifdef DDB 2484 static void 2485 db_print_indent(int indent) 2486 { 2487 int i; 2488 2489 for (i = 0; i < indent; i++) 2490 db_printf(" "); 2491 } 2492 2493 static void 2494 db_print_unpflags(int unp_flags) 2495 { 2496 int comma; 2497 2498 comma = 0; 2499 if (unp_flags & UNP_HAVEPC) { 2500 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2501 comma = 1; 2502 } 2503 if (unp_flags & UNP_HAVEPCCACHED) { 2504 db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : ""); 2505 comma = 1; 2506 } 2507 if (unp_flags & UNP_WANTCRED) { 2508 db_printf("%sUNP_WANTCRED", comma ? ", " : ""); 2509 comma = 1; 2510 } 2511 if (unp_flags & UNP_CONNWAIT) { 2512 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2513 comma = 1; 2514 } 2515 if (unp_flags & UNP_CONNECTING) { 2516 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2517 comma = 1; 2518 } 2519 if (unp_flags & UNP_BINDING) { 2520 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2521 comma = 1; 2522 } 2523 } 2524 2525 static void 2526 db_print_xucred(int indent, struct xucred *xu) 2527 { 2528 int comma, i; 2529 2530 db_print_indent(indent); 2531 db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n", 2532 xu->cr_version, xu->cr_uid, xu->cr_ngroups); 2533 db_print_indent(indent); 2534 db_printf("cr_groups: "); 2535 comma = 0; 2536 for (i = 0; i < xu->cr_ngroups; i++) { 2537 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2538 comma = 1; 2539 } 2540 db_printf("\n"); 2541 } 2542 2543 static void 2544 db_print_unprefs(int indent, struct unp_head *uh) 2545 { 2546 struct unpcb *unp; 2547 int counter; 2548 2549 counter = 0; 2550 LIST_FOREACH(unp, uh, unp_reflink) { 2551 if (counter % 4 == 0) 2552 db_print_indent(indent); 2553 db_printf("%p ", unp); 2554 if (counter % 4 == 3) 2555 db_printf("\n"); 2556 counter++; 2557 } 2558 if (counter != 0 && counter % 4 != 0) 2559 db_printf("\n"); 2560 } 2561 2562 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2563 { 2564 struct unpcb *unp; 2565 2566 if (!have_addr) { 2567 db_printf("usage: show unpcb <addr>\n"); 2568 return; 2569 } 2570 unp = (struct unpcb *)addr; 2571 2572 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2573 unp->unp_vnode); 2574 2575 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2576 unp->unp_conn); 2577 2578 db_printf("unp_refs:\n"); 2579 db_print_unprefs(2, &unp->unp_refs); 2580 2581 /* XXXRW: Would be nice to print the full address, if any. */ 2582 db_printf("unp_addr: %p\n", unp->unp_addr); 2583 2584 db_printf("unp_gencnt: %llu\n", 2585 (unsigned long long)unp->unp_gencnt); 2586 2587 db_printf("unp_flags: %x (", unp->unp_flags); 2588 db_print_unpflags(unp->unp_flags); 2589 db_printf(")\n"); 2590 2591 db_printf("unp_peercred:\n"); 2592 db_print_xucred(2, &unp->unp_peercred); 2593 2594 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2595 } 2596 #endif 2597