1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 */ 35 36 /* 37 * UNIX Domain (Local) Sockets 38 * 39 * This is an implementation of UNIX (local) domain sockets. Each socket has 40 * an associated struct unpcb (UNIX protocol control block). Stream sockets 41 * may be connected to 0 or 1 other socket. Datagram sockets may be 42 * connected to 0, 1, or many other sockets. Sockets may be created and 43 * connected in pairs (socketpair(2)), or bound/connected to using the file 44 * system name space. For most purposes, only the receive socket buffer is 45 * used, as sending on one socket delivers directly to the receive socket 46 * buffer of a second socket. 47 * 48 * The implementation is substantially complicated by the fact that 49 * "ancillary data", such as file descriptors or credentials, may be passed 50 * across UNIX domain sockets. The potential for passing UNIX domain sockets 51 * over other UNIX domain sockets requires the implementation of a simple 52 * garbage collector to find and tear down cycles of disconnected sockets. 53 * 54 * TODO: 55 * RDM 56 * rethink name space problems 57 * need a proper out-of-band 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_ddb.h" 64 65 #include <sys/param.h> 66 #include <sys/capsicum.h> 67 #include <sys/domain.h> 68 #include <sys/eventhandler.h> 69 #include <sys/fcntl.h> 70 #include <sys/file.h> 71 #include <sys/filedesc.h> 72 #include <sys/kernel.h> 73 #include <sys/lock.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/mount.h> 77 #include <sys/mutex.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/signalvar.h> 87 #include <sys/stat.h> 88 #include <sys/sx.h> 89 #include <sys/sysctl.h> 90 #include <sys/systm.h> 91 #include <sys/taskqueue.h> 92 #include <sys/un.h> 93 #include <sys/unpcb.h> 94 #include <sys/vnode.h> 95 96 #include <net/vnet.h> 97 98 #ifdef DDB 99 #include <ddb/ddb.h> 100 #endif 101 102 #include <security/mac/mac_framework.h> 103 104 #include <vm/uma.h> 105 106 MALLOC_DECLARE(M_FILECAPS); 107 108 /* 109 * See unpcb.h for the locking key. 110 */ 111 112 static uma_zone_t unp_zone; 113 static unp_gen_t unp_gencnt; /* (l) */ 114 static u_int unp_count; /* (l) Count of local sockets. */ 115 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 116 static int unp_rights; /* (g) File descriptors in flight. */ 117 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 118 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 119 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 120 121 struct unp_defer { 122 SLIST_ENTRY(unp_defer) ud_link; 123 struct file *ud_fp; 124 }; 125 static SLIST_HEAD(, unp_defer) unp_defers; 126 static int unp_defers_count; 127 128 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for 147 * stream sockets, although the total for sender and receiver is actually 148 * only PIPSIZ. 149 * 150 * Datagram sockets really use the sendspace as the maximum datagram size, 151 * and don't really want to reserve the sendspace. Their recvspace should be 152 * large enough for at least one max-size datagram plus address. 153 */ 154 #ifndef PIPSIZ 155 #define PIPSIZ 8192 156 #endif 157 static u_long unpst_sendspace = PIPSIZ; 158 static u_long unpst_recvspace = PIPSIZ; 159 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 160 static u_long unpdg_recvspace = 4*1024; 161 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ 162 static u_long unpsp_recvspace = PIPSIZ; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 165 "Local domain"); 166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "SOCK_DGRAM"); 172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 174 "SOCK_SEQPACKET"); 175 176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 177 &unpst_sendspace, 0, "Default stream send space."); 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 179 &unpst_recvspace, 0, "Default stream receive space."); 180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 181 &unpdg_sendspace, 0, "Default datagram send space."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 183 &unpdg_recvspace, 0, "Default datagram receive space."); 184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 185 &unpsp_sendspace, 0, "Default seqpacket send space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 187 &unpsp_recvspace, 0, "Default seqpacket receive space."); 188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 189 "File descriptors in flight."); 190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 191 &unp_defers_count, 0, 192 "File descriptors deferred to taskqueue for close."); 193 194 /* 195 * Locking and synchronization: 196 * 197 * Several types of locks exist in the local domain socket implementation: 198 * - a global linkage lock 199 * - a global connection list lock 200 * - the mtxpool lock 201 * - per-unpcb mutexes 202 * 203 * The linkage lock protects the global socket lists, the generation number 204 * counter and garbage collector state. 205 * 206 * The connection list lock protects the list of referring sockets in a datagram 207 * socket PCB. This lock is also overloaded to protect a global list of 208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS 209 * messages. To avoid recursion, such references are released by a dedicated 210 * thread. 211 * 212 * The mtxpool lock protects the vnode from being modified while referenced. 213 * Lock ordering rules require that it be acquired before any PCB locks. 214 * 215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the 216 * unpcb. This includes the unp_conn field, which either links two connected 217 * PCBs together (for connected socket types) or points at the destination 218 * socket (for connectionless socket types). The operations of creating or 219 * destroying a connection therefore involve locking multiple PCBs. To avoid 220 * lock order reversals, in some cases this involves dropping a PCB lock and 221 * using a reference counter to maintain liveness. 222 * 223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 224 * allocated in pru_attach() and freed in pru_detach(). The validity of that 225 * pointer is an invariant, so no lock is required to dereference the so_pcb 226 * pointer if a valid socket reference is held by the caller. In practice, 227 * this is always true during operations performed on a socket. Each unpcb 228 * has a back-pointer to its socket, unp_socket, which will be stable under 229 * the same circumstances. 230 * 231 * This pointer may only be safely dereferenced as long as a valid reference 232 * to the unpcb is held. Typically, this reference will be from the socket, 233 * or from another unpcb when the referring unpcb's lock is held (in order 234 * that the reference not be invalidated during use). For example, to follow 235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 236 * that detach is not run clearing unp_socket. 237 * 238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 239 * protocols, bind() is a non-atomic operation, and connect() requires 240 * potential sleeping in the protocol, due to potentially waiting on local or 241 * distributed file systems. We try to separate "lookup" operations, which 242 * may sleep, and the IPC operations themselves, which typically can occur 243 * with relative atomicity as locks can be held over the entire operation. 244 * 245 * Another tricky issue is simultaneous multi-threaded or multi-process 246 * access to a single UNIX domain socket. These are handled by the flags 247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 248 * binding, both of which involve dropping UNIX domain socket locks in order 249 * to perform namei() and other file system operations. 250 */ 251 static struct rwlock unp_link_rwlock; 252 static struct mtx unp_defers_lock; 253 254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 255 "unp_link_rwlock") 256 257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 258 RA_LOCKED) 259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 260 RA_UNLOCKED) 261 262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 267 RA_WLOCKED) 268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 269 270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 271 "unp_defer", NULL, MTX_DEF) 272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 274 275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 277 278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 279 "unp", "unp", \ 280 MTX_DUPOK|MTX_DEF) 281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx) 283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 289 290 static int uipc_connect2(struct socket *, struct socket *); 291 static int uipc_ctloutput(struct socket *, struct sockopt *); 292 static int unp_connect(struct socket *, struct sockaddr *, 293 struct thread *); 294 static int unp_connectat(int, struct socket *, struct sockaddr *, 295 struct thread *); 296 static int unp_connect2(struct socket *so, struct socket *so2, int); 297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 298 static void unp_dispose(struct socket *so); 299 static void unp_dispose_mbuf(struct mbuf *); 300 static void unp_shutdown(struct unpcb *); 301 static void unp_drop(struct unpcb *); 302 static void unp_gc(__unused void *, int); 303 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 304 static void unp_discard(struct file *); 305 static void unp_freerights(struct filedescent **, int); 306 static void unp_init(void); 307 static int unp_internalize(struct mbuf **, struct thread *); 308 static void unp_internalize_fp(struct file *); 309 static int unp_externalize(struct mbuf *, struct mbuf **, int); 310 static int unp_externalize_fp(struct file *); 311 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *, int); 312 static void unp_process_defers(void * __unused, int); 313 314 static void 315 unp_pcb_hold(struct unpcb *unp) 316 { 317 u_int old __unused; 318 319 old = refcount_acquire(&unp->unp_refcount); 320 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp)); 321 } 322 323 static __result_use_check bool 324 unp_pcb_rele(struct unpcb *unp) 325 { 326 bool ret; 327 328 UNP_PCB_LOCK_ASSERT(unp); 329 330 if ((ret = refcount_release(&unp->unp_refcount))) { 331 UNP_PCB_UNLOCK(unp); 332 UNP_PCB_LOCK_DESTROY(unp); 333 uma_zfree(unp_zone, unp); 334 } 335 return (ret); 336 } 337 338 static void 339 unp_pcb_rele_notlast(struct unpcb *unp) 340 { 341 bool ret __unused; 342 343 ret = refcount_release(&unp->unp_refcount); 344 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp)); 345 } 346 347 static void 348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2) 349 { 350 UNP_PCB_UNLOCK_ASSERT(unp); 351 UNP_PCB_UNLOCK_ASSERT(unp2); 352 353 if (unp == unp2) { 354 UNP_PCB_LOCK(unp); 355 } else if ((uintptr_t)unp2 > (uintptr_t)unp) { 356 UNP_PCB_LOCK(unp); 357 UNP_PCB_LOCK(unp2); 358 } else { 359 UNP_PCB_LOCK(unp2); 360 UNP_PCB_LOCK(unp); 361 } 362 } 363 364 static void 365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2) 366 { 367 UNP_PCB_UNLOCK(unp); 368 if (unp != unp2) 369 UNP_PCB_UNLOCK(unp2); 370 } 371 372 /* 373 * Try to lock the connected peer of an already locked socket. In some cases 374 * this requires that we unlock the current socket. The pairbusy counter is 375 * used to block concurrent connection attempts while the lock is dropped. The 376 * caller must be careful to revalidate PCB state. 377 */ 378 static struct unpcb * 379 unp_pcb_lock_peer(struct unpcb *unp) 380 { 381 struct unpcb *unp2; 382 383 UNP_PCB_LOCK_ASSERT(unp); 384 unp2 = unp->unp_conn; 385 if (unp2 == NULL) 386 return (NULL); 387 if (__predict_false(unp == unp2)) 388 return (unp); 389 390 UNP_PCB_UNLOCK_ASSERT(unp2); 391 392 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) 393 return (unp2); 394 if ((uintptr_t)unp2 > (uintptr_t)unp) { 395 UNP_PCB_LOCK(unp2); 396 return (unp2); 397 } 398 unp->unp_pairbusy++; 399 unp_pcb_hold(unp2); 400 UNP_PCB_UNLOCK(unp); 401 402 UNP_PCB_LOCK(unp2); 403 UNP_PCB_LOCK(unp); 404 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL, 405 ("%s: socket %p was reconnected", __func__, unp)); 406 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) { 407 unp->unp_flags &= ~UNP_WAITING; 408 wakeup(unp); 409 } 410 if (unp_pcb_rele(unp2)) { 411 /* unp2 is unlocked. */ 412 return (NULL); 413 } 414 if (unp->unp_conn == NULL) { 415 UNP_PCB_UNLOCK(unp2); 416 return (NULL); 417 } 418 return (unp2); 419 } 420 421 /* 422 * Definitions of protocols supported in the LOCAL domain. 423 */ 424 static struct domain localdomain; 425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; 426 static struct pr_usrreqs uipc_usrreqs_seqpacket; 427 static struct protosw localsw[] = { 428 { 429 .pr_type = SOCK_STREAM, 430 .pr_domain = &localdomain, 431 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS| 432 PR_CAPATTACH, 433 .pr_ctloutput = &uipc_ctloutput, 434 .pr_usrreqs = &uipc_usrreqs_stream 435 }, 436 { 437 .pr_type = SOCK_DGRAM, 438 .pr_domain = &localdomain, 439 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS|PR_CAPATTACH, 440 .pr_ctloutput = &uipc_ctloutput, 441 .pr_usrreqs = &uipc_usrreqs_dgram 442 }, 443 { 444 .pr_type = SOCK_SEQPACKET, 445 .pr_domain = &localdomain, 446 447 /* 448 * XXXRW: For now, PR_ADDR because soreceive will bump into them 449 * due to our use of sbappendaddr. A new sbappend variants is needed 450 * that supports both atomic record writes and control data. 451 */ 452 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED| 453 PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH, 454 .pr_ctloutput = &uipc_ctloutput, 455 .pr_usrreqs = &uipc_usrreqs_seqpacket, 456 }, 457 }; 458 459 static struct domain localdomain = { 460 .dom_family = AF_LOCAL, 461 .dom_name = "local", 462 .dom_init = unp_init, 463 .dom_externalize = unp_externalize, 464 .dom_dispose = unp_dispose, 465 .dom_protosw = localsw, 466 .dom_protoswNPROTOSW = &localsw[nitems(localsw)] 467 }; 468 DOMAIN_SET(local); 469 470 static void 471 uipc_abort(struct socket *so) 472 { 473 struct unpcb *unp, *unp2; 474 475 unp = sotounpcb(so); 476 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 477 UNP_PCB_UNLOCK_ASSERT(unp); 478 479 UNP_PCB_LOCK(unp); 480 unp2 = unp->unp_conn; 481 if (unp2 != NULL) { 482 unp_pcb_hold(unp2); 483 UNP_PCB_UNLOCK(unp); 484 unp_drop(unp2); 485 } else 486 UNP_PCB_UNLOCK(unp); 487 } 488 489 static int 490 uipc_accept(struct socket *so, struct sockaddr **nam) 491 { 492 struct unpcb *unp, *unp2; 493 const struct sockaddr *sa; 494 495 /* 496 * Pass back name of connected socket, if it was bound and we are 497 * still connected (our peer may have closed already!). 498 */ 499 unp = sotounpcb(so); 500 KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); 501 502 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 503 UNP_PCB_LOCK(unp); 504 unp2 = unp_pcb_lock_peer(unp); 505 if (unp2 != NULL && unp2->unp_addr != NULL) 506 sa = (struct sockaddr *)unp2->unp_addr; 507 else 508 sa = &sun_noname; 509 bcopy(sa, *nam, sa->sa_len); 510 if (unp2 != NULL) 511 unp_pcb_unlock_pair(unp, unp2); 512 else 513 UNP_PCB_UNLOCK(unp); 514 return (0); 515 } 516 517 static int 518 uipc_attach(struct socket *so, int proto, struct thread *td) 519 { 520 u_long sendspace, recvspace; 521 struct unpcb *unp; 522 int error; 523 bool locked; 524 525 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 526 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 527 switch (so->so_type) { 528 case SOCK_STREAM: 529 sendspace = unpst_sendspace; 530 recvspace = unpst_recvspace; 531 break; 532 533 case SOCK_DGRAM: 534 sendspace = unpdg_sendspace; 535 recvspace = unpdg_recvspace; 536 break; 537 538 case SOCK_SEQPACKET: 539 sendspace = unpsp_sendspace; 540 recvspace = unpsp_recvspace; 541 break; 542 543 default: 544 panic("uipc_attach"); 545 } 546 error = soreserve(so, sendspace, recvspace); 547 if (error) 548 return (error); 549 } 550 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 551 if (unp == NULL) 552 return (ENOBUFS); 553 LIST_INIT(&unp->unp_refs); 554 UNP_PCB_LOCK_INIT(unp); 555 unp->unp_socket = so; 556 so->so_pcb = unp; 557 refcount_init(&unp->unp_refcount, 1); 558 559 if ((locked = UNP_LINK_WOWNED()) == false) 560 UNP_LINK_WLOCK(); 561 562 unp->unp_gencnt = ++unp_gencnt; 563 unp->unp_ino = ++unp_ino; 564 unp_count++; 565 switch (so->so_type) { 566 case SOCK_STREAM: 567 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 568 break; 569 570 case SOCK_DGRAM: 571 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 572 break; 573 574 case SOCK_SEQPACKET: 575 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 576 break; 577 578 default: 579 panic("uipc_attach"); 580 } 581 582 if (locked == false) 583 UNP_LINK_WUNLOCK(); 584 585 return (0); 586 } 587 588 static int 589 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 590 { 591 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 592 struct vattr vattr; 593 int error, namelen; 594 struct nameidata nd; 595 struct unpcb *unp; 596 struct vnode *vp; 597 struct mount *mp; 598 cap_rights_t rights; 599 char *buf; 600 601 if (nam->sa_family != AF_UNIX) 602 return (EAFNOSUPPORT); 603 604 unp = sotounpcb(so); 605 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 606 607 if (soun->sun_len > sizeof(struct sockaddr_un)) 608 return (EINVAL); 609 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 610 if (namelen <= 0) 611 return (EINVAL); 612 613 /* 614 * We don't allow simultaneous bind() calls on a single UNIX domain 615 * socket, so flag in-progress operations, and return an error if an 616 * operation is already in progress. 617 * 618 * Historically, we have not allowed a socket to be rebound, so this 619 * also returns an error. Not allowing re-binding simplifies the 620 * implementation and avoids a great many possible failure modes. 621 */ 622 UNP_PCB_LOCK(unp); 623 if (unp->unp_vnode != NULL) { 624 UNP_PCB_UNLOCK(unp); 625 return (EINVAL); 626 } 627 if (unp->unp_flags & UNP_BINDING) { 628 UNP_PCB_UNLOCK(unp); 629 return (EALREADY); 630 } 631 unp->unp_flags |= UNP_BINDING; 632 UNP_PCB_UNLOCK(unp); 633 634 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 635 bcopy(soun->sun_path, buf, namelen); 636 buf[namelen] = 0; 637 638 restart: 639 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, 640 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT), 641 td); 642 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 643 error = namei(&nd); 644 if (error) 645 goto error; 646 vp = nd.ni_vp; 647 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 648 NDFREE(&nd, NDF_ONLY_PNBUF); 649 if (nd.ni_dvp == vp) 650 vrele(nd.ni_dvp); 651 else 652 vput(nd.ni_dvp); 653 if (vp != NULL) { 654 vrele(vp); 655 error = EADDRINUSE; 656 goto error; 657 } 658 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); 659 if (error) 660 goto error; 661 goto restart; 662 } 663 VATTR_NULL(&vattr); 664 vattr.va_type = VSOCK; 665 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask); 666 #ifdef MAC 667 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 668 &vattr); 669 #endif 670 if (error == 0) 671 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 672 NDFREE(&nd, NDF_ONLY_PNBUF); 673 if (error) { 674 VOP_VPUT_PAIR(nd.ni_dvp, NULL, true); 675 vn_finished_write(mp); 676 if (error == ERELOOKUP) 677 goto restart; 678 goto error; 679 } 680 vp = nd.ni_vp; 681 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 682 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 683 684 UNP_PCB_LOCK(unp); 685 VOP_UNP_BIND(vp, unp); 686 unp->unp_vnode = vp; 687 unp->unp_addr = soun; 688 unp->unp_flags &= ~UNP_BINDING; 689 UNP_PCB_UNLOCK(unp); 690 vref(vp); 691 VOP_VPUT_PAIR(nd.ni_dvp, &vp, true); 692 vn_finished_write(mp); 693 free(buf, M_TEMP); 694 return (0); 695 696 error: 697 UNP_PCB_LOCK(unp); 698 unp->unp_flags &= ~UNP_BINDING; 699 UNP_PCB_UNLOCK(unp); 700 free(buf, M_TEMP); 701 return (error); 702 } 703 704 static int 705 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 706 { 707 708 return (uipc_bindat(AT_FDCWD, so, nam, td)); 709 } 710 711 static int 712 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 713 { 714 int error; 715 716 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 717 error = unp_connect(so, nam, td); 718 return (error); 719 } 720 721 static int 722 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 723 struct thread *td) 724 { 725 int error; 726 727 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 728 error = unp_connectat(fd, so, nam, td); 729 return (error); 730 } 731 732 static void 733 uipc_close(struct socket *so) 734 { 735 struct unpcb *unp, *unp2; 736 struct vnode *vp = NULL; 737 struct mtx *vplock; 738 739 unp = sotounpcb(so); 740 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 741 742 vplock = NULL; 743 if ((vp = unp->unp_vnode) != NULL) { 744 vplock = mtx_pool_find(mtxpool_sleep, vp); 745 mtx_lock(vplock); 746 } 747 UNP_PCB_LOCK(unp); 748 if (vp && unp->unp_vnode == NULL) { 749 mtx_unlock(vplock); 750 vp = NULL; 751 } 752 if (vp != NULL) { 753 VOP_UNP_DETACH(vp); 754 unp->unp_vnode = NULL; 755 } 756 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 757 unp_disconnect(unp, unp2); 758 else 759 UNP_PCB_UNLOCK(unp); 760 if (vp) { 761 mtx_unlock(vplock); 762 vrele(vp); 763 } 764 } 765 766 static int 767 uipc_connect2(struct socket *so1, struct socket *so2) 768 { 769 struct unpcb *unp, *unp2; 770 int error; 771 772 unp = so1->so_pcb; 773 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 774 unp2 = so2->so_pcb; 775 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 776 unp_pcb_lock_pair(unp, unp2); 777 error = unp_connect2(so1, so2, PRU_CONNECT2); 778 unp_pcb_unlock_pair(unp, unp2); 779 return (error); 780 } 781 782 static void 783 uipc_detach(struct socket *so) 784 { 785 struct unpcb *unp, *unp2; 786 struct mtx *vplock; 787 struct vnode *vp; 788 int local_unp_rights; 789 790 unp = sotounpcb(so); 791 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 792 793 vp = NULL; 794 vplock = NULL; 795 796 SOCK_LOCK(so); 797 if (!SOLISTENING(so)) { 798 /* 799 * Once the socket is removed from the global lists, 800 * uipc_ready() will not be able to locate its socket buffer, so 801 * clear the buffer now. At this point internalized rights have 802 * already been disposed of. 803 */ 804 sbrelease(&so->so_rcv, so); 805 } 806 SOCK_UNLOCK(so); 807 808 UNP_LINK_WLOCK(); 809 LIST_REMOVE(unp, unp_link); 810 if (unp->unp_gcflag & UNPGC_DEAD) 811 LIST_REMOVE(unp, unp_dead); 812 unp->unp_gencnt = ++unp_gencnt; 813 --unp_count; 814 UNP_LINK_WUNLOCK(); 815 816 UNP_PCB_UNLOCK_ASSERT(unp); 817 restart: 818 if ((vp = unp->unp_vnode) != NULL) { 819 vplock = mtx_pool_find(mtxpool_sleep, vp); 820 mtx_lock(vplock); 821 } 822 UNP_PCB_LOCK(unp); 823 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { 824 if (vplock) 825 mtx_unlock(vplock); 826 UNP_PCB_UNLOCK(unp); 827 goto restart; 828 } 829 if ((vp = unp->unp_vnode) != NULL) { 830 VOP_UNP_DETACH(vp); 831 unp->unp_vnode = NULL; 832 } 833 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 834 unp_disconnect(unp, unp2); 835 else 836 UNP_PCB_UNLOCK(unp); 837 838 UNP_REF_LIST_LOCK(); 839 while (!LIST_EMPTY(&unp->unp_refs)) { 840 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 841 842 unp_pcb_hold(ref); 843 UNP_REF_LIST_UNLOCK(); 844 845 MPASS(ref != unp); 846 UNP_PCB_UNLOCK_ASSERT(ref); 847 unp_drop(ref); 848 UNP_REF_LIST_LOCK(); 849 } 850 UNP_REF_LIST_UNLOCK(); 851 852 UNP_PCB_LOCK(unp); 853 local_unp_rights = unp_rights; 854 unp->unp_socket->so_pcb = NULL; 855 unp->unp_socket = NULL; 856 free(unp->unp_addr, M_SONAME); 857 unp->unp_addr = NULL; 858 if (!unp_pcb_rele(unp)) 859 UNP_PCB_UNLOCK(unp); 860 if (vp) { 861 mtx_unlock(vplock); 862 vrele(vp); 863 } 864 if (local_unp_rights) 865 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 866 } 867 868 static int 869 uipc_disconnect(struct socket *so) 870 { 871 struct unpcb *unp, *unp2; 872 873 unp = sotounpcb(so); 874 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 875 876 UNP_PCB_LOCK(unp); 877 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 878 unp_disconnect(unp, unp2); 879 else 880 UNP_PCB_UNLOCK(unp); 881 return (0); 882 } 883 884 static int 885 uipc_listen(struct socket *so, int backlog, struct thread *td) 886 { 887 struct unpcb *unp; 888 int error; 889 890 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) 891 return (EOPNOTSUPP); 892 893 unp = sotounpcb(so); 894 KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); 895 896 UNP_PCB_LOCK(unp); 897 if (unp->unp_vnode == NULL) { 898 /* Already connected or not bound to an address. */ 899 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; 900 UNP_PCB_UNLOCK(unp); 901 return (error); 902 } 903 904 SOCK_LOCK(so); 905 error = solisten_proto_check(so); 906 if (error == 0) { 907 cru2xt(td, &unp->unp_peercred); 908 solisten_proto(so, backlog); 909 } 910 SOCK_UNLOCK(so); 911 UNP_PCB_UNLOCK(unp); 912 return (error); 913 } 914 915 static int 916 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 917 { 918 struct unpcb *unp, *unp2; 919 const struct sockaddr *sa; 920 921 unp = sotounpcb(so); 922 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 923 924 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 925 UNP_LINK_RLOCK(); 926 /* 927 * XXX: It seems that this test always fails even when connection is 928 * established. So, this else clause is added as workaround to 929 * return PF_LOCAL sockaddr. 930 */ 931 unp2 = unp->unp_conn; 932 if (unp2 != NULL) { 933 UNP_PCB_LOCK(unp2); 934 if (unp2->unp_addr != NULL) 935 sa = (struct sockaddr *) unp2->unp_addr; 936 else 937 sa = &sun_noname; 938 bcopy(sa, *nam, sa->sa_len); 939 UNP_PCB_UNLOCK(unp2); 940 } else { 941 sa = &sun_noname; 942 bcopy(sa, *nam, sa->sa_len); 943 } 944 UNP_LINK_RUNLOCK(); 945 return (0); 946 } 947 948 static int 949 uipc_rcvd(struct socket *so, int flags) 950 { 951 struct unpcb *unp, *unp2; 952 struct socket *so2; 953 u_int mbcnt, sbcc; 954 955 unp = sotounpcb(so); 956 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 957 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, 958 ("%s: socktype %d", __func__, so->so_type)); 959 960 /* 961 * Adjust backpressure on sender and wakeup any waiting to write. 962 * 963 * The unp lock is acquired to maintain the validity of the unp_conn 964 * pointer; no lock on unp2 is required as unp2->unp_socket will be 965 * static as long as we don't permit unp2 to disconnect from unp, 966 * which is prevented by the lock on unp. We cache values from 967 * so_rcv to avoid holding the so_rcv lock over the entire 968 * transaction on the remote so_snd. 969 */ 970 SOCKBUF_LOCK(&so->so_rcv); 971 mbcnt = so->so_rcv.sb_mbcnt; 972 sbcc = sbavail(&so->so_rcv); 973 SOCKBUF_UNLOCK(&so->so_rcv); 974 /* 975 * There is a benign race condition at this point. If we're planning to 976 * clear SB_STOP, but uipc_send is called on the connected socket at 977 * this instant, it might add data to the sockbuf and set SB_STOP. Then 978 * we would erroneously clear SB_STOP below, even though the sockbuf is 979 * full. The race is benign because the only ill effect is to allow the 980 * sockbuf to exceed its size limit, and the size limits are not 981 * strictly guaranteed anyway. 982 */ 983 UNP_PCB_LOCK(unp); 984 unp2 = unp->unp_conn; 985 if (unp2 == NULL) { 986 UNP_PCB_UNLOCK(unp); 987 return (0); 988 } 989 so2 = unp2->unp_socket; 990 SOCKBUF_LOCK(&so2->so_snd); 991 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) 992 so2->so_snd.sb_flags &= ~SB_STOP; 993 sowwakeup_locked(so2); 994 UNP_PCB_UNLOCK(unp); 995 return (0); 996 } 997 998 static int 999 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 1000 struct mbuf *control, struct thread *td) 1001 { 1002 struct unpcb *unp, *unp2; 1003 struct socket *so2; 1004 u_int mbcnt, sbcc; 1005 int freed, error; 1006 1007 unp = sotounpcb(so); 1008 KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); 1009 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || 1010 so->so_type == SOCK_SEQPACKET, 1011 ("%s: socktype %d", __func__, so->so_type)); 1012 1013 freed = error = 0; 1014 if (flags & PRUS_OOB) { 1015 error = EOPNOTSUPP; 1016 goto release; 1017 } 1018 if (control != NULL && (error = unp_internalize(&control, td))) 1019 goto release; 1020 1021 unp2 = NULL; 1022 switch (so->so_type) { 1023 case SOCK_DGRAM: 1024 { 1025 const struct sockaddr *from; 1026 1027 if (nam != NULL) { 1028 error = unp_connect(so, nam, td); 1029 if (error != 0) 1030 break; 1031 } 1032 UNP_PCB_LOCK(unp); 1033 1034 /* 1035 * Because connect() and send() are non-atomic in a sendto() 1036 * with a target address, it's possible that the socket will 1037 * have disconnected before the send() can run. In that case 1038 * return the slightly counter-intuitive but otherwise 1039 * correct error that the socket is not connected. 1040 */ 1041 unp2 = unp_pcb_lock_peer(unp); 1042 if (unp2 == NULL) { 1043 UNP_PCB_UNLOCK(unp); 1044 error = ENOTCONN; 1045 break; 1046 } 1047 1048 if (unp2->unp_flags & UNP_WANTCRED_MASK) 1049 control = unp_addsockcred(td, control, 1050 unp2->unp_flags); 1051 if (unp->unp_addr != NULL) 1052 from = (struct sockaddr *)unp->unp_addr; 1053 else 1054 from = &sun_noname; 1055 so2 = unp2->unp_socket; 1056 SOCKBUF_LOCK(&so2->so_rcv); 1057 if (sbappendaddr_locked(&so2->so_rcv, from, m, 1058 control)) { 1059 sorwakeup_locked(so2); 1060 m = NULL; 1061 control = NULL; 1062 } else { 1063 soroverflow_locked(so2); 1064 error = ENOBUFS; 1065 } 1066 if (nam != NULL) 1067 unp_disconnect(unp, unp2); 1068 else 1069 unp_pcb_unlock_pair(unp, unp2); 1070 break; 1071 } 1072 1073 case SOCK_SEQPACKET: 1074 case SOCK_STREAM: 1075 if ((so->so_state & SS_ISCONNECTED) == 0) { 1076 if (nam != NULL) { 1077 error = unp_connect(so, nam, td); 1078 if (error != 0) 1079 break; 1080 } else { 1081 error = ENOTCONN; 1082 break; 1083 } 1084 } 1085 1086 UNP_PCB_LOCK(unp); 1087 if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) { 1088 UNP_PCB_UNLOCK(unp); 1089 error = ENOTCONN; 1090 break; 1091 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1092 unp_pcb_unlock_pair(unp, unp2); 1093 error = EPIPE; 1094 break; 1095 } 1096 UNP_PCB_UNLOCK(unp); 1097 if ((so2 = unp2->unp_socket) == NULL) { 1098 UNP_PCB_UNLOCK(unp2); 1099 error = ENOTCONN; 1100 break; 1101 } 1102 SOCKBUF_LOCK(&so2->so_rcv); 1103 if (unp2->unp_flags & UNP_WANTCRED_MASK) { 1104 /* 1105 * Credentials are passed only once on SOCK_STREAM and 1106 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or 1107 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS). 1108 */ 1109 control = unp_addsockcred(td, control, unp2->unp_flags); 1110 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT; 1111 } 1112 1113 /* 1114 * Send to paired receive port and wake up readers. Don't 1115 * check for space available in the receive buffer if we're 1116 * attaching ancillary data; Unix domain sockets only check 1117 * for space in the sending sockbuf, and that check is 1118 * performed one level up the stack. At that level we cannot 1119 * precisely account for the amount of buffer space used 1120 * (e.g., because control messages are not yet internalized). 1121 */ 1122 switch (so->so_type) { 1123 case SOCK_STREAM: 1124 if (control != NULL) { 1125 sbappendcontrol_locked(&so2->so_rcv, m, 1126 control, flags); 1127 control = NULL; 1128 } else 1129 sbappend_locked(&so2->so_rcv, m, flags); 1130 break; 1131 1132 case SOCK_SEQPACKET: 1133 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, 1134 &sun_noname, m, control)) 1135 control = NULL; 1136 break; 1137 } 1138 1139 mbcnt = so2->so_rcv.sb_mbcnt; 1140 sbcc = sbavail(&so2->so_rcv); 1141 if (sbcc) 1142 sorwakeup_locked(so2); 1143 else 1144 SOCKBUF_UNLOCK(&so2->so_rcv); 1145 1146 /* 1147 * The PCB lock on unp2 protects the SB_STOP flag. Without it, 1148 * it would be possible for uipc_rcvd to be called at this 1149 * point, drain the receiving sockbuf, clear SB_STOP, and then 1150 * we would set SB_STOP below. That could lead to an empty 1151 * sockbuf having SB_STOP set 1152 */ 1153 SOCKBUF_LOCK(&so->so_snd); 1154 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) 1155 so->so_snd.sb_flags |= SB_STOP; 1156 SOCKBUF_UNLOCK(&so->so_snd); 1157 UNP_PCB_UNLOCK(unp2); 1158 m = NULL; 1159 break; 1160 } 1161 1162 /* 1163 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. 1164 */ 1165 if (flags & PRUS_EOF) { 1166 UNP_PCB_LOCK(unp); 1167 socantsendmore(so); 1168 unp_shutdown(unp); 1169 UNP_PCB_UNLOCK(unp); 1170 } 1171 if (control != NULL && error != 0) 1172 unp_dispose_mbuf(control); 1173 1174 release: 1175 if (control != NULL) 1176 m_freem(control); 1177 /* 1178 * In case of PRUS_NOTREADY, uipc_ready() is responsible 1179 * for freeing memory. 1180 */ 1181 if (m != NULL && (flags & PRUS_NOTREADY) == 0) 1182 m_freem(m); 1183 return (error); 1184 } 1185 1186 static bool 1187 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp) 1188 { 1189 struct mbuf *mb, *n; 1190 struct sockbuf *sb; 1191 1192 SOCK_LOCK(so); 1193 if (SOLISTENING(so)) { 1194 SOCK_UNLOCK(so); 1195 return (false); 1196 } 1197 mb = NULL; 1198 sb = &so->so_rcv; 1199 SOCKBUF_LOCK(sb); 1200 if (sb->sb_fnrdy != NULL) { 1201 for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) { 1202 if (mb == m) { 1203 *errorp = sbready(sb, m, count); 1204 break; 1205 } 1206 mb = mb->m_next; 1207 if (mb == NULL) { 1208 mb = n; 1209 if (mb != NULL) 1210 n = mb->m_nextpkt; 1211 } 1212 } 1213 } 1214 SOCKBUF_UNLOCK(sb); 1215 SOCK_UNLOCK(so); 1216 return (mb != NULL); 1217 } 1218 1219 static int 1220 uipc_ready(struct socket *so, struct mbuf *m, int count) 1221 { 1222 struct unpcb *unp, *unp2; 1223 struct socket *so2; 1224 int error, i; 1225 1226 unp = sotounpcb(so); 1227 1228 KASSERT(so->so_type == SOCK_STREAM, 1229 ("%s: unexpected socket type for %p", __func__, so)); 1230 1231 UNP_PCB_LOCK(unp); 1232 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1233 UNP_PCB_UNLOCK(unp); 1234 so2 = unp2->unp_socket; 1235 SOCKBUF_LOCK(&so2->so_rcv); 1236 if ((error = sbready(&so2->so_rcv, m, count)) == 0) 1237 sorwakeup_locked(so2); 1238 else 1239 SOCKBUF_UNLOCK(&so2->so_rcv); 1240 UNP_PCB_UNLOCK(unp2); 1241 return (error); 1242 } 1243 UNP_PCB_UNLOCK(unp); 1244 1245 /* 1246 * The receiving socket has been disconnected, but may still be valid. 1247 * In this case, the now-ready mbufs are still present in its socket 1248 * buffer, so perform an exhaustive search before giving up and freeing 1249 * the mbufs. 1250 */ 1251 UNP_LINK_RLOCK(); 1252 LIST_FOREACH(unp, &unp_shead, unp_link) { 1253 if (uipc_ready_scan(unp->unp_socket, m, count, &error)) 1254 break; 1255 } 1256 UNP_LINK_RUNLOCK(); 1257 1258 if (unp == NULL) { 1259 for (i = 0; i < count; i++) 1260 m = m_free(m); 1261 error = ECONNRESET; 1262 } 1263 return (error); 1264 } 1265 1266 static int 1267 uipc_sense(struct socket *so, struct stat *sb) 1268 { 1269 struct unpcb *unp; 1270 1271 unp = sotounpcb(so); 1272 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 1273 1274 sb->st_blksize = so->so_snd.sb_hiwat; 1275 sb->st_dev = NODEV; 1276 sb->st_ino = unp->unp_ino; 1277 return (0); 1278 } 1279 1280 static int 1281 uipc_shutdown(struct socket *so) 1282 { 1283 struct unpcb *unp; 1284 1285 unp = sotounpcb(so); 1286 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); 1287 1288 UNP_PCB_LOCK(unp); 1289 socantsendmore(so); 1290 unp_shutdown(unp); 1291 UNP_PCB_UNLOCK(unp); 1292 return (0); 1293 } 1294 1295 static int 1296 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 1297 { 1298 struct unpcb *unp; 1299 const struct sockaddr *sa; 1300 1301 unp = sotounpcb(so); 1302 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 1303 1304 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1305 UNP_PCB_LOCK(unp); 1306 if (unp->unp_addr != NULL) 1307 sa = (struct sockaddr *) unp->unp_addr; 1308 else 1309 sa = &sun_noname; 1310 bcopy(sa, *nam, sa->sa_len); 1311 UNP_PCB_UNLOCK(unp); 1312 return (0); 1313 } 1314 1315 static struct pr_usrreqs uipc_usrreqs_dgram = { 1316 .pru_abort = uipc_abort, 1317 .pru_accept = uipc_accept, 1318 .pru_attach = uipc_attach, 1319 .pru_bind = uipc_bind, 1320 .pru_bindat = uipc_bindat, 1321 .pru_connect = uipc_connect, 1322 .pru_connectat = uipc_connectat, 1323 .pru_connect2 = uipc_connect2, 1324 .pru_detach = uipc_detach, 1325 .pru_disconnect = uipc_disconnect, 1326 .pru_listen = uipc_listen, 1327 .pru_peeraddr = uipc_peeraddr, 1328 .pru_rcvd = uipc_rcvd, 1329 .pru_send = uipc_send, 1330 .pru_sense = uipc_sense, 1331 .pru_shutdown = uipc_shutdown, 1332 .pru_sockaddr = uipc_sockaddr, 1333 .pru_soreceive = soreceive_dgram, 1334 .pru_close = uipc_close, 1335 }; 1336 1337 static struct pr_usrreqs uipc_usrreqs_seqpacket = { 1338 .pru_abort = uipc_abort, 1339 .pru_accept = uipc_accept, 1340 .pru_attach = uipc_attach, 1341 .pru_bind = uipc_bind, 1342 .pru_bindat = uipc_bindat, 1343 .pru_connect = uipc_connect, 1344 .pru_connectat = uipc_connectat, 1345 .pru_connect2 = uipc_connect2, 1346 .pru_detach = uipc_detach, 1347 .pru_disconnect = uipc_disconnect, 1348 .pru_listen = uipc_listen, 1349 .pru_peeraddr = uipc_peeraddr, 1350 .pru_rcvd = uipc_rcvd, 1351 .pru_send = uipc_send, 1352 .pru_sense = uipc_sense, 1353 .pru_shutdown = uipc_shutdown, 1354 .pru_sockaddr = uipc_sockaddr, 1355 .pru_soreceive = soreceive_generic, /* XXX: or...? */ 1356 .pru_close = uipc_close, 1357 }; 1358 1359 static struct pr_usrreqs uipc_usrreqs_stream = { 1360 .pru_abort = uipc_abort, 1361 .pru_accept = uipc_accept, 1362 .pru_attach = uipc_attach, 1363 .pru_bind = uipc_bind, 1364 .pru_bindat = uipc_bindat, 1365 .pru_connect = uipc_connect, 1366 .pru_connectat = uipc_connectat, 1367 .pru_connect2 = uipc_connect2, 1368 .pru_detach = uipc_detach, 1369 .pru_disconnect = uipc_disconnect, 1370 .pru_listen = uipc_listen, 1371 .pru_peeraddr = uipc_peeraddr, 1372 .pru_rcvd = uipc_rcvd, 1373 .pru_send = uipc_send, 1374 .pru_ready = uipc_ready, 1375 .pru_sense = uipc_sense, 1376 .pru_shutdown = uipc_shutdown, 1377 .pru_sockaddr = uipc_sockaddr, 1378 .pru_soreceive = soreceive_generic, 1379 .pru_close = uipc_close, 1380 }; 1381 1382 static int 1383 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 1384 { 1385 struct unpcb *unp; 1386 struct xucred xu; 1387 int error, optval; 1388 1389 if (sopt->sopt_level != SOL_LOCAL) 1390 return (EINVAL); 1391 1392 unp = sotounpcb(so); 1393 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 1394 error = 0; 1395 switch (sopt->sopt_dir) { 1396 case SOPT_GET: 1397 switch (sopt->sopt_name) { 1398 case LOCAL_PEERCRED: 1399 UNP_PCB_LOCK(unp); 1400 if (unp->unp_flags & UNP_HAVEPC) 1401 xu = unp->unp_peercred; 1402 else { 1403 if (so->so_type == SOCK_STREAM) 1404 error = ENOTCONN; 1405 else 1406 error = EINVAL; 1407 } 1408 UNP_PCB_UNLOCK(unp); 1409 if (error == 0) 1410 error = sooptcopyout(sopt, &xu, sizeof(xu)); 1411 break; 1412 1413 case LOCAL_CREDS: 1414 /* Unlocked read. */ 1415 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0; 1416 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1417 break; 1418 1419 case LOCAL_CREDS_PERSISTENT: 1420 /* Unlocked read. */ 1421 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0; 1422 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1423 break; 1424 1425 case LOCAL_CONNWAIT: 1426 /* Unlocked read. */ 1427 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; 1428 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1429 break; 1430 1431 default: 1432 error = EOPNOTSUPP; 1433 break; 1434 } 1435 break; 1436 1437 case SOPT_SET: 1438 switch (sopt->sopt_name) { 1439 case LOCAL_CREDS: 1440 case LOCAL_CREDS_PERSISTENT: 1441 case LOCAL_CONNWAIT: 1442 error = sooptcopyin(sopt, &optval, sizeof(optval), 1443 sizeof(optval)); 1444 if (error) 1445 break; 1446 1447 #define OPTSET(bit, exclusive) do { \ 1448 UNP_PCB_LOCK(unp); \ 1449 if (optval) { \ 1450 if ((unp->unp_flags & (exclusive)) != 0) { \ 1451 UNP_PCB_UNLOCK(unp); \ 1452 error = EINVAL; \ 1453 break; \ 1454 } \ 1455 unp->unp_flags |= (bit); \ 1456 } else \ 1457 unp->unp_flags &= ~(bit); \ 1458 UNP_PCB_UNLOCK(unp); \ 1459 } while (0) 1460 1461 switch (sopt->sopt_name) { 1462 case LOCAL_CREDS: 1463 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS); 1464 break; 1465 1466 case LOCAL_CREDS_PERSISTENT: 1467 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT); 1468 break; 1469 1470 case LOCAL_CONNWAIT: 1471 OPTSET(UNP_CONNWAIT, 0); 1472 break; 1473 1474 default: 1475 break; 1476 } 1477 break; 1478 #undef OPTSET 1479 default: 1480 error = ENOPROTOOPT; 1481 break; 1482 } 1483 break; 1484 1485 default: 1486 error = EOPNOTSUPP; 1487 break; 1488 } 1489 return (error); 1490 } 1491 1492 static int 1493 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1494 { 1495 1496 return (unp_connectat(AT_FDCWD, so, nam, td)); 1497 } 1498 1499 static int 1500 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 1501 struct thread *td) 1502 { 1503 struct mtx *vplock; 1504 struct sockaddr_un *soun; 1505 struct vnode *vp; 1506 struct socket *so2; 1507 struct unpcb *unp, *unp2, *unp3; 1508 struct nameidata nd; 1509 char buf[SOCK_MAXADDRLEN]; 1510 struct sockaddr *sa; 1511 cap_rights_t rights; 1512 int error, len; 1513 bool connreq; 1514 1515 if (nam->sa_family != AF_UNIX) 1516 return (EAFNOSUPPORT); 1517 if (nam->sa_len > sizeof(struct sockaddr_un)) 1518 return (EINVAL); 1519 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 1520 if (len <= 0) 1521 return (EINVAL); 1522 soun = (struct sockaddr_un *)nam; 1523 bcopy(soun->sun_path, buf, len); 1524 buf[len] = 0; 1525 1526 unp = sotounpcb(so); 1527 UNP_PCB_LOCK(unp); 1528 for (;;) { 1529 /* 1530 * Wait for connection state to stabilize. If a connection 1531 * already exists, give up. For datagram sockets, which permit 1532 * multiple consecutive connect(2) calls, upper layers are 1533 * responsible for disconnecting in advance of a subsequent 1534 * connect(2), but this is not synchronized with PCB connection 1535 * state. 1536 * 1537 * Also make sure that no threads are currently attempting to 1538 * lock the peer socket, to ensure that unp_conn cannot 1539 * transition between two valid sockets while locks are dropped. 1540 */ 1541 if (unp->unp_conn != NULL) { 1542 UNP_PCB_UNLOCK(unp); 1543 return (EISCONN); 1544 } 1545 if ((unp->unp_flags & UNP_CONNECTING) != 0) { 1546 UNP_PCB_UNLOCK(unp); 1547 return (EALREADY); 1548 } 1549 if (unp->unp_pairbusy > 0) { 1550 unp->unp_flags |= UNP_WAITING; 1551 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0); 1552 continue; 1553 } 1554 break; 1555 } 1556 unp->unp_flags |= UNP_CONNECTING; 1557 UNP_PCB_UNLOCK(unp); 1558 1559 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0; 1560 if (connreq) 1561 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 1562 else 1563 sa = NULL; 1564 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 1565 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT), 1566 td); 1567 error = namei(&nd); 1568 if (error) 1569 vp = NULL; 1570 else 1571 vp = nd.ni_vp; 1572 ASSERT_VOP_LOCKED(vp, "unp_connect"); 1573 NDFREE_NOTHING(&nd); 1574 if (error) 1575 goto bad; 1576 1577 if (vp->v_type != VSOCK) { 1578 error = ENOTSOCK; 1579 goto bad; 1580 } 1581 #ifdef MAC 1582 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 1583 if (error) 1584 goto bad; 1585 #endif 1586 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 1587 if (error) 1588 goto bad; 1589 1590 unp = sotounpcb(so); 1591 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 1592 1593 vplock = mtx_pool_find(mtxpool_sleep, vp); 1594 mtx_lock(vplock); 1595 VOP_UNP_CONNECT(vp, &unp2); 1596 if (unp2 == NULL) { 1597 error = ECONNREFUSED; 1598 goto bad2; 1599 } 1600 so2 = unp2->unp_socket; 1601 if (so->so_type != so2->so_type) { 1602 error = EPROTOTYPE; 1603 goto bad2; 1604 } 1605 if (connreq) { 1606 if (SOLISTENING(so2)) { 1607 CURVNET_SET(so2->so_vnet); 1608 so2 = sonewconn(so2, 0); 1609 CURVNET_RESTORE(); 1610 } else 1611 so2 = NULL; 1612 if (so2 == NULL) { 1613 error = ECONNREFUSED; 1614 goto bad2; 1615 } 1616 unp3 = sotounpcb(so2); 1617 unp_pcb_lock_pair(unp2, unp3); 1618 if (unp2->unp_addr != NULL) { 1619 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 1620 unp3->unp_addr = (struct sockaddr_un *) sa; 1621 sa = NULL; 1622 } 1623 1624 unp_copy_peercred(td, unp3, unp, unp2); 1625 1626 UNP_PCB_UNLOCK(unp2); 1627 unp2 = unp3; 1628 1629 /* 1630 * It is safe to block on the PCB lock here since unp2 is 1631 * nascent and cannot be connected to any other sockets. 1632 */ 1633 UNP_PCB_LOCK(unp); 1634 #ifdef MAC 1635 mac_socketpeer_set_from_socket(so, so2); 1636 mac_socketpeer_set_from_socket(so2, so); 1637 #endif 1638 } else { 1639 unp_pcb_lock_pair(unp, unp2); 1640 } 1641 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 1642 sotounpcb(so2) == unp2, 1643 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 1644 error = unp_connect2(so, so2, PRU_CONNECT); 1645 unp_pcb_unlock_pair(unp, unp2); 1646 bad2: 1647 mtx_unlock(vplock); 1648 bad: 1649 if (vp != NULL) { 1650 vput(vp); 1651 } 1652 free(sa, M_SONAME); 1653 UNP_PCB_LOCK(unp); 1654 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 1655 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 1656 unp->unp_flags &= ~UNP_CONNECTING; 1657 UNP_PCB_UNLOCK(unp); 1658 return (error); 1659 } 1660 1661 /* 1662 * Set socket peer credentials at connection time. 1663 * 1664 * The client's PCB credentials are copied from its process structure. The 1665 * server's PCB credentials are copied from the socket on which it called 1666 * listen(2). uipc_listen cached that process's credentials at the time. 1667 */ 1668 void 1669 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 1670 struct unpcb *server_unp, struct unpcb *listen_unp) 1671 { 1672 cru2xt(td, &client_unp->unp_peercred); 1673 client_unp->unp_flags |= UNP_HAVEPC; 1674 1675 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 1676 sizeof(server_unp->unp_peercred)); 1677 server_unp->unp_flags |= UNP_HAVEPC; 1678 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK); 1679 } 1680 1681 static int 1682 unp_connect2(struct socket *so, struct socket *so2, int req) 1683 { 1684 struct unpcb *unp; 1685 struct unpcb *unp2; 1686 1687 unp = sotounpcb(so); 1688 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 1689 unp2 = sotounpcb(so2); 1690 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 1691 1692 UNP_PCB_LOCK_ASSERT(unp); 1693 UNP_PCB_LOCK_ASSERT(unp2); 1694 KASSERT(unp->unp_conn == NULL, 1695 ("%s: socket %p is already connected", __func__, unp)); 1696 1697 if (so2->so_type != so->so_type) 1698 return (EPROTOTYPE); 1699 unp->unp_conn = unp2; 1700 unp_pcb_hold(unp2); 1701 unp_pcb_hold(unp); 1702 switch (so->so_type) { 1703 case SOCK_DGRAM: 1704 UNP_REF_LIST_LOCK(); 1705 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 1706 UNP_REF_LIST_UNLOCK(); 1707 soisconnected(so); 1708 break; 1709 1710 case SOCK_STREAM: 1711 case SOCK_SEQPACKET: 1712 KASSERT(unp2->unp_conn == NULL, 1713 ("%s: socket %p is already connected", __func__, unp2)); 1714 unp2->unp_conn = unp; 1715 if (req == PRU_CONNECT && 1716 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) 1717 soisconnecting(so); 1718 else 1719 soisconnected(so); 1720 soisconnected(so2); 1721 break; 1722 1723 default: 1724 panic("unp_connect2"); 1725 } 1726 return (0); 1727 } 1728 1729 static void 1730 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 1731 { 1732 struct socket *so, *so2; 1733 #ifdef INVARIANTS 1734 struct unpcb *unptmp; 1735 #endif 1736 1737 UNP_PCB_LOCK_ASSERT(unp); 1738 UNP_PCB_LOCK_ASSERT(unp2); 1739 KASSERT(unp->unp_conn == unp2, 1740 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2)); 1741 1742 unp->unp_conn = NULL; 1743 so = unp->unp_socket; 1744 so2 = unp2->unp_socket; 1745 switch (unp->unp_socket->so_type) { 1746 case SOCK_DGRAM: 1747 UNP_REF_LIST_LOCK(); 1748 #ifdef INVARIANTS 1749 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) { 1750 if (unptmp == unp) 1751 break; 1752 } 1753 KASSERT(unptmp != NULL, 1754 ("%s: %p not found in reflist of %p", __func__, unp, unp2)); 1755 #endif 1756 LIST_REMOVE(unp, unp_reflink); 1757 UNP_REF_LIST_UNLOCK(); 1758 if (so) { 1759 SOCK_LOCK(so); 1760 so->so_state &= ~SS_ISCONNECTED; 1761 SOCK_UNLOCK(so); 1762 } 1763 break; 1764 1765 case SOCK_STREAM: 1766 case SOCK_SEQPACKET: 1767 if (so) 1768 soisdisconnected(so); 1769 MPASS(unp2->unp_conn == unp); 1770 unp2->unp_conn = NULL; 1771 if (so2) 1772 soisdisconnected(so2); 1773 break; 1774 } 1775 1776 if (unp == unp2) { 1777 unp_pcb_rele_notlast(unp); 1778 if (!unp_pcb_rele(unp)) 1779 UNP_PCB_UNLOCK(unp); 1780 } else { 1781 if (!unp_pcb_rele(unp)) 1782 UNP_PCB_UNLOCK(unp); 1783 if (!unp_pcb_rele(unp2)) 1784 UNP_PCB_UNLOCK(unp2); 1785 } 1786 } 1787 1788 /* 1789 * unp_pcblist() walks the global list of struct unpcb's to generate a 1790 * pointer list, bumping the refcount on each unpcb. It then copies them out 1791 * sequentially, validating the generation number on each to see if it has 1792 * been detached. All of this is necessary because copyout() may sleep on 1793 * disk I/O. 1794 */ 1795 static int 1796 unp_pcblist(SYSCTL_HANDLER_ARGS) 1797 { 1798 struct unpcb *unp, **unp_list; 1799 unp_gen_t gencnt; 1800 struct xunpgen *xug; 1801 struct unp_head *head; 1802 struct xunpcb *xu; 1803 u_int i; 1804 int error, n; 1805 1806 switch ((intptr_t)arg1) { 1807 case SOCK_STREAM: 1808 head = &unp_shead; 1809 break; 1810 1811 case SOCK_DGRAM: 1812 head = &unp_dhead; 1813 break; 1814 1815 case SOCK_SEQPACKET: 1816 head = &unp_sphead; 1817 break; 1818 1819 default: 1820 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 1821 } 1822 1823 /* 1824 * The process of preparing the PCB list is too time-consuming and 1825 * resource-intensive to repeat twice on every request. 1826 */ 1827 if (req->oldptr == NULL) { 1828 n = unp_count; 1829 req->oldidx = 2 * (sizeof *xug) 1830 + (n + n/8) * sizeof(struct xunpcb); 1831 return (0); 1832 } 1833 1834 if (req->newptr != NULL) 1835 return (EPERM); 1836 1837 /* 1838 * OK, now we're committed to doing something. 1839 */ 1840 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 1841 UNP_LINK_RLOCK(); 1842 gencnt = unp_gencnt; 1843 n = unp_count; 1844 UNP_LINK_RUNLOCK(); 1845 1846 xug->xug_len = sizeof *xug; 1847 xug->xug_count = n; 1848 xug->xug_gen = gencnt; 1849 xug->xug_sogen = so_gencnt; 1850 error = SYSCTL_OUT(req, xug, sizeof *xug); 1851 if (error) { 1852 free(xug, M_TEMP); 1853 return (error); 1854 } 1855 1856 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 1857 1858 UNP_LINK_RLOCK(); 1859 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 1860 unp = LIST_NEXT(unp, unp_link)) { 1861 UNP_PCB_LOCK(unp); 1862 if (unp->unp_gencnt <= gencnt) { 1863 if (cr_cansee(req->td->td_ucred, 1864 unp->unp_socket->so_cred)) { 1865 UNP_PCB_UNLOCK(unp); 1866 continue; 1867 } 1868 unp_list[i++] = unp; 1869 unp_pcb_hold(unp); 1870 } 1871 UNP_PCB_UNLOCK(unp); 1872 } 1873 UNP_LINK_RUNLOCK(); 1874 n = i; /* In case we lost some during malloc. */ 1875 1876 error = 0; 1877 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 1878 for (i = 0; i < n; i++) { 1879 unp = unp_list[i]; 1880 UNP_PCB_LOCK(unp); 1881 if (unp_pcb_rele(unp)) 1882 continue; 1883 1884 if (unp->unp_gencnt <= gencnt) { 1885 xu->xu_len = sizeof *xu; 1886 xu->xu_unpp = (uintptr_t)unp; 1887 /* 1888 * XXX - need more locking here to protect against 1889 * connect/disconnect races for SMP. 1890 */ 1891 if (unp->unp_addr != NULL) 1892 bcopy(unp->unp_addr, &xu->xu_addr, 1893 unp->unp_addr->sun_len); 1894 else 1895 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 1896 if (unp->unp_conn != NULL && 1897 unp->unp_conn->unp_addr != NULL) 1898 bcopy(unp->unp_conn->unp_addr, 1899 &xu->xu_caddr, 1900 unp->unp_conn->unp_addr->sun_len); 1901 else 1902 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 1903 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 1904 xu->unp_conn = (uintptr_t)unp->unp_conn; 1905 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 1906 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 1907 xu->unp_gencnt = unp->unp_gencnt; 1908 sotoxsocket(unp->unp_socket, &xu->xu_socket); 1909 UNP_PCB_UNLOCK(unp); 1910 error = SYSCTL_OUT(req, xu, sizeof *xu); 1911 } else { 1912 UNP_PCB_UNLOCK(unp); 1913 } 1914 } 1915 free(xu, M_TEMP); 1916 if (!error) { 1917 /* 1918 * Give the user an updated idea of our state. If the 1919 * generation differs from what we told her before, she knows 1920 * that something happened while we were processing this 1921 * request, and it might be necessary to retry. 1922 */ 1923 xug->xug_gen = unp_gencnt; 1924 xug->xug_sogen = so_gencnt; 1925 xug->xug_count = unp_count; 1926 error = SYSCTL_OUT(req, xug, sizeof *xug); 1927 } 1928 free(unp_list, M_TEMP); 1929 free(xug, M_TEMP); 1930 return (error); 1931 } 1932 1933 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 1934 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1935 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 1936 "List of active local datagram sockets"); 1937 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 1938 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1939 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 1940 "List of active local stream sockets"); 1941 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 1942 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 1943 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 1944 "List of active local seqpacket sockets"); 1945 1946 static void 1947 unp_shutdown(struct unpcb *unp) 1948 { 1949 struct unpcb *unp2; 1950 struct socket *so; 1951 1952 UNP_PCB_LOCK_ASSERT(unp); 1953 1954 unp2 = unp->unp_conn; 1955 if ((unp->unp_socket->so_type == SOCK_STREAM || 1956 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { 1957 so = unp2->unp_socket; 1958 if (so != NULL) 1959 socantrcvmore(so); 1960 } 1961 } 1962 1963 static void 1964 unp_drop(struct unpcb *unp) 1965 { 1966 struct socket *so = unp->unp_socket; 1967 struct unpcb *unp2; 1968 1969 /* 1970 * Regardless of whether the socket's peer dropped the connection 1971 * with this socket by aborting or disconnecting, POSIX requires 1972 * that ECONNRESET is returned. 1973 */ 1974 1975 UNP_PCB_LOCK(unp); 1976 if (so) 1977 so->so_error = ECONNRESET; 1978 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 1979 /* Last reference dropped in unp_disconnect(). */ 1980 unp_pcb_rele_notlast(unp); 1981 unp_disconnect(unp, unp2); 1982 } else if (!unp_pcb_rele(unp)) { 1983 UNP_PCB_UNLOCK(unp); 1984 } 1985 } 1986 1987 static void 1988 unp_freerights(struct filedescent **fdep, int fdcount) 1989 { 1990 struct file *fp; 1991 int i; 1992 1993 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 1994 1995 for (i = 0; i < fdcount; i++) { 1996 fp = fdep[i]->fde_file; 1997 filecaps_free(&fdep[i]->fde_caps); 1998 unp_discard(fp); 1999 } 2000 free(fdep[0], M_FILECAPS); 2001 } 2002 2003 static int 2004 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 2005 { 2006 struct thread *td = curthread; /* XXX */ 2007 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2008 int i; 2009 int *fdp; 2010 struct filedesc *fdesc = td->td_proc->p_fd; 2011 struct filedescent **fdep; 2012 void *data; 2013 socklen_t clen = control->m_len, datalen; 2014 int error, newfds; 2015 u_int newlen; 2016 2017 UNP_LINK_UNLOCK_ASSERT(); 2018 2019 error = 0; 2020 if (controlp != NULL) /* controlp == NULL => free control messages */ 2021 *controlp = NULL; 2022 while (cm != NULL) { 2023 if (sizeof(*cm) > clen || cm->cmsg_len > clen) { 2024 error = EINVAL; 2025 break; 2026 } 2027 data = CMSG_DATA(cm); 2028 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2029 if (cm->cmsg_level == SOL_SOCKET 2030 && cm->cmsg_type == SCM_RIGHTS) { 2031 newfds = datalen / sizeof(*fdep); 2032 if (newfds == 0) 2033 goto next; 2034 fdep = data; 2035 2036 /* If we're not outputting the descriptors free them. */ 2037 if (error || controlp == NULL) { 2038 unp_freerights(fdep, newfds); 2039 goto next; 2040 } 2041 FILEDESC_XLOCK(fdesc); 2042 2043 /* 2044 * Now change each pointer to an fd in the global 2045 * table to an integer that is the index to the local 2046 * fd table entry that we set up to point to the 2047 * global one we are transferring. 2048 */ 2049 newlen = newfds * sizeof(int); 2050 *controlp = sbcreatecontrol(NULL, newlen, 2051 SCM_RIGHTS, SOL_SOCKET); 2052 if (*controlp == NULL) { 2053 FILEDESC_XUNLOCK(fdesc); 2054 error = E2BIG; 2055 unp_freerights(fdep, newfds); 2056 goto next; 2057 } 2058 2059 fdp = (int *) 2060 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2061 if (fdallocn(td, 0, fdp, newfds) != 0) { 2062 FILEDESC_XUNLOCK(fdesc); 2063 error = EMSGSIZE; 2064 unp_freerights(fdep, newfds); 2065 m_freem(*controlp); 2066 *controlp = NULL; 2067 goto next; 2068 } 2069 for (i = 0; i < newfds; i++, fdp++) { 2070 _finstall(fdesc, fdep[i]->fde_file, *fdp, 2071 (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0, 2072 &fdep[i]->fde_caps); 2073 unp_externalize_fp(fdep[i]->fde_file); 2074 } 2075 2076 /* 2077 * The new type indicates that the mbuf data refers to 2078 * kernel resources that may need to be released before 2079 * the mbuf is freed. 2080 */ 2081 m_chtype(*controlp, MT_EXTCONTROL); 2082 FILEDESC_XUNLOCK(fdesc); 2083 free(fdep[0], M_FILECAPS); 2084 } else { 2085 /* We can just copy anything else across. */ 2086 if (error || controlp == NULL) 2087 goto next; 2088 *controlp = sbcreatecontrol(NULL, datalen, 2089 cm->cmsg_type, cm->cmsg_level); 2090 if (*controlp == NULL) { 2091 error = ENOBUFS; 2092 goto next; 2093 } 2094 bcopy(data, 2095 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 2096 datalen); 2097 } 2098 controlp = &(*controlp)->m_next; 2099 2100 next: 2101 if (CMSG_SPACE(datalen) < clen) { 2102 clen -= CMSG_SPACE(datalen); 2103 cm = (struct cmsghdr *) 2104 ((caddr_t)cm + CMSG_SPACE(datalen)); 2105 } else { 2106 clen = 0; 2107 cm = NULL; 2108 } 2109 } 2110 2111 m_freem(control); 2112 return (error); 2113 } 2114 2115 static void 2116 unp_zone_change(void *tag) 2117 { 2118 2119 uma_zone_set_max(unp_zone, maxsockets); 2120 } 2121 2122 #ifdef INVARIANTS 2123 static void 2124 unp_zdtor(void *mem, int size __unused, void *arg __unused) 2125 { 2126 struct unpcb *unp; 2127 2128 unp = mem; 2129 2130 KASSERT(LIST_EMPTY(&unp->unp_refs), 2131 ("%s: unpcb %p has lingering refs", __func__, unp)); 2132 KASSERT(unp->unp_socket == NULL, 2133 ("%s: unpcb %p has socket backpointer", __func__, unp)); 2134 KASSERT(unp->unp_vnode == NULL, 2135 ("%s: unpcb %p has vnode references", __func__, unp)); 2136 KASSERT(unp->unp_conn == NULL, 2137 ("%s: unpcb %p is still connected", __func__, unp)); 2138 KASSERT(unp->unp_addr == NULL, 2139 ("%s: unpcb %p has leaked addr", __func__, unp)); 2140 } 2141 #endif 2142 2143 static void 2144 unp_init(void) 2145 { 2146 uma_dtor dtor; 2147 2148 #ifdef VIMAGE 2149 if (!IS_DEFAULT_VNET(curvnet)) 2150 return; 2151 #endif 2152 2153 #ifdef INVARIANTS 2154 dtor = unp_zdtor; 2155 #else 2156 dtor = NULL; 2157 #endif 2158 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor, 2159 NULL, NULL, UMA_ALIGN_CACHE, 0); 2160 uma_zone_set_max(unp_zone, maxsockets); 2161 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 2162 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 2163 NULL, EVENTHANDLER_PRI_ANY); 2164 LIST_INIT(&unp_dhead); 2165 LIST_INIT(&unp_shead); 2166 LIST_INIT(&unp_sphead); 2167 SLIST_INIT(&unp_defers); 2168 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 2169 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 2170 UNP_LINK_LOCK_INIT(); 2171 UNP_DEFERRED_LOCK_INIT(); 2172 } 2173 2174 static void 2175 unp_internalize_cleanup_rights(struct mbuf *control) 2176 { 2177 struct cmsghdr *cp; 2178 struct mbuf *m; 2179 void *data; 2180 socklen_t datalen; 2181 2182 for (m = control; m != NULL; m = m->m_next) { 2183 cp = mtod(m, struct cmsghdr *); 2184 if (cp->cmsg_level != SOL_SOCKET || 2185 cp->cmsg_type != SCM_RIGHTS) 2186 continue; 2187 data = CMSG_DATA(cp); 2188 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 2189 unp_freerights(data, datalen / sizeof(struct filedesc *)); 2190 } 2191 } 2192 2193 static int 2194 unp_internalize(struct mbuf **controlp, struct thread *td) 2195 { 2196 struct mbuf *control, **initial_controlp; 2197 struct proc *p; 2198 struct filedesc *fdesc; 2199 struct bintime *bt; 2200 struct cmsghdr *cm; 2201 struct cmsgcred *cmcred; 2202 struct filedescent *fde, **fdep, *fdev; 2203 struct file *fp; 2204 struct timeval *tv; 2205 struct timespec *ts; 2206 void *data; 2207 socklen_t clen, datalen; 2208 int i, j, error, *fdp, oldfds; 2209 u_int newlen; 2210 2211 UNP_LINK_UNLOCK_ASSERT(); 2212 2213 p = td->td_proc; 2214 fdesc = p->p_fd; 2215 error = 0; 2216 control = *controlp; 2217 clen = control->m_len; 2218 *controlp = NULL; 2219 initial_controlp = controlp; 2220 for (cm = mtod(control, struct cmsghdr *); cm != NULL;) { 2221 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET 2222 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { 2223 error = EINVAL; 2224 goto out; 2225 } 2226 data = CMSG_DATA(cm); 2227 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 2228 2229 switch (cm->cmsg_type) { 2230 /* 2231 * Fill in credential information. 2232 */ 2233 case SCM_CREDS: 2234 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), 2235 SCM_CREDS, SOL_SOCKET); 2236 if (*controlp == NULL) { 2237 error = ENOBUFS; 2238 goto out; 2239 } 2240 cmcred = (struct cmsgcred *) 2241 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2242 cmcred->cmcred_pid = p->p_pid; 2243 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 2244 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 2245 cmcred->cmcred_euid = td->td_ucred->cr_uid; 2246 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 2247 CMGROUP_MAX); 2248 for (i = 0; i < cmcred->cmcred_ngroups; i++) 2249 cmcred->cmcred_groups[i] = 2250 td->td_ucred->cr_groups[i]; 2251 break; 2252 2253 case SCM_RIGHTS: 2254 oldfds = datalen / sizeof (int); 2255 if (oldfds == 0) 2256 break; 2257 /* 2258 * Check that all the FDs passed in refer to legal 2259 * files. If not, reject the entire operation. 2260 */ 2261 fdp = data; 2262 FILEDESC_SLOCK(fdesc); 2263 for (i = 0; i < oldfds; i++, fdp++) { 2264 fp = fget_locked(fdesc, *fdp); 2265 if (fp == NULL) { 2266 FILEDESC_SUNLOCK(fdesc); 2267 error = EBADF; 2268 goto out; 2269 } 2270 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 2271 FILEDESC_SUNLOCK(fdesc); 2272 error = EOPNOTSUPP; 2273 goto out; 2274 } 2275 } 2276 2277 /* 2278 * Now replace the integer FDs with pointers to the 2279 * file structure and capability rights. 2280 */ 2281 newlen = oldfds * sizeof(fdep[0]); 2282 *controlp = sbcreatecontrol(NULL, newlen, 2283 SCM_RIGHTS, SOL_SOCKET); 2284 if (*controlp == NULL) { 2285 FILEDESC_SUNLOCK(fdesc); 2286 error = E2BIG; 2287 goto out; 2288 } 2289 fdp = data; 2290 for (i = 0; i < oldfds; i++, fdp++) { 2291 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 2292 fdp = data; 2293 for (j = 0; j < i; j++, fdp++) { 2294 fdrop(fdesc->fd_ofiles[*fdp]. 2295 fde_file, td); 2296 } 2297 FILEDESC_SUNLOCK(fdesc); 2298 error = EBADF; 2299 goto out; 2300 } 2301 } 2302 fdp = data; 2303 fdep = (struct filedescent **) 2304 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2305 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 2306 M_WAITOK); 2307 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 2308 fde = &fdesc->fd_ofiles[*fdp]; 2309 fdep[i] = fdev; 2310 fdep[i]->fde_file = fde->fde_file; 2311 filecaps_copy(&fde->fde_caps, 2312 &fdep[i]->fde_caps, true); 2313 unp_internalize_fp(fdep[i]->fde_file); 2314 } 2315 FILEDESC_SUNLOCK(fdesc); 2316 break; 2317 2318 case SCM_TIMESTAMP: 2319 *controlp = sbcreatecontrol(NULL, sizeof(*tv), 2320 SCM_TIMESTAMP, SOL_SOCKET); 2321 if (*controlp == NULL) { 2322 error = ENOBUFS; 2323 goto out; 2324 } 2325 tv = (struct timeval *) 2326 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2327 microtime(tv); 2328 break; 2329 2330 case SCM_BINTIME: 2331 *controlp = sbcreatecontrol(NULL, sizeof(*bt), 2332 SCM_BINTIME, SOL_SOCKET); 2333 if (*controlp == NULL) { 2334 error = ENOBUFS; 2335 goto out; 2336 } 2337 bt = (struct bintime *) 2338 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2339 bintime(bt); 2340 break; 2341 2342 case SCM_REALTIME: 2343 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2344 SCM_REALTIME, SOL_SOCKET); 2345 if (*controlp == NULL) { 2346 error = ENOBUFS; 2347 goto out; 2348 } 2349 ts = (struct timespec *) 2350 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2351 nanotime(ts); 2352 break; 2353 2354 case SCM_MONOTONIC: 2355 *controlp = sbcreatecontrol(NULL, sizeof(*ts), 2356 SCM_MONOTONIC, SOL_SOCKET); 2357 if (*controlp == NULL) { 2358 error = ENOBUFS; 2359 goto out; 2360 } 2361 ts = (struct timespec *) 2362 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 2363 nanouptime(ts); 2364 break; 2365 2366 default: 2367 error = EINVAL; 2368 goto out; 2369 } 2370 2371 if (*controlp != NULL) 2372 controlp = &(*controlp)->m_next; 2373 if (CMSG_SPACE(datalen) < clen) { 2374 clen -= CMSG_SPACE(datalen); 2375 cm = (struct cmsghdr *) 2376 ((caddr_t)cm + CMSG_SPACE(datalen)); 2377 } else { 2378 clen = 0; 2379 cm = NULL; 2380 } 2381 } 2382 2383 out: 2384 if (error != 0 && initial_controlp != NULL) 2385 unp_internalize_cleanup_rights(*initial_controlp); 2386 m_freem(control); 2387 return (error); 2388 } 2389 2390 static struct mbuf * 2391 unp_addsockcred(struct thread *td, struct mbuf *control, int mode) 2392 { 2393 struct mbuf *m, *n, *n_prev; 2394 const struct cmsghdr *cm; 2395 int ngroups, i, cmsgtype; 2396 size_t ctrlsz; 2397 2398 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 2399 if (mode & UNP_WANTCRED_ALWAYS) { 2400 ctrlsz = SOCKCRED2SIZE(ngroups); 2401 cmsgtype = SCM_CREDS2; 2402 } else { 2403 ctrlsz = SOCKCREDSIZE(ngroups); 2404 cmsgtype = SCM_CREDS; 2405 } 2406 2407 m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET); 2408 if (m == NULL) 2409 return (control); 2410 2411 if (mode & UNP_WANTCRED_ALWAYS) { 2412 struct sockcred2 *sc; 2413 2414 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2415 sc->sc_version = 0; 2416 sc->sc_pid = td->td_proc->p_pid; 2417 sc->sc_uid = td->td_ucred->cr_ruid; 2418 sc->sc_euid = td->td_ucred->cr_uid; 2419 sc->sc_gid = td->td_ucred->cr_rgid; 2420 sc->sc_egid = td->td_ucred->cr_gid; 2421 sc->sc_ngroups = ngroups; 2422 for (i = 0; i < sc->sc_ngroups; i++) 2423 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2424 } else { 2425 struct sockcred *sc; 2426 2427 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 2428 sc->sc_uid = td->td_ucred->cr_ruid; 2429 sc->sc_euid = td->td_ucred->cr_uid; 2430 sc->sc_gid = td->td_ucred->cr_rgid; 2431 sc->sc_egid = td->td_ucred->cr_gid; 2432 sc->sc_ngroups = ngroups; 2433 for (i = 0; i < sc->sc_ngroups; i++) 2434 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 2435 } 2436 2437 /* 2438 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 2439 * created SCM_CREDS control message (struct sockcred) has another 2440 * format. 2441 */ 2442 if (control != NULL && cmsgtype == SCM_CREDS) 2443 for (n = control, n_prev = NULL; n != NULL;) { 2444 cm = mtod(n, struct cmsghdr *); 2445 if (cm->cmsg_level == SOL_SOCKET && 2446 cm->cmsg_type == SCM_CREDS) { 2447 if (n_prev == NULL) 2448 control = n->m_next; 2449 else 2450 n_prev->m_next = n->m_next; 2451 n = m_free(n); 2452 } else { 2453 n_prev = n; 2454 n = n->m_next; 2455 } 2456 } 2457 2458 /* Prepend it to the head. */ 2459 m->m_next = control; 2460 return (m); 2461 } 2462 2463 static struct unpcb * 2464 fptounp(struct file *fp) 2465 { 2466 struct socket *so; 2467 2468 if (fp->f_type != DTYPE_SOCKET) 2469 return (NULL); 2470 if ((so = fp->f_data) == NULL) 2471 return (NULL); 2472 if (so->so_proto->pr_domain != &localdomain) 2473 return (NULL); 2474 return sotounpcb(so); 2475 } 2476 2477 static void 2478 unp_discard(struct file *fp) 2479 { 2480 struct unp_defer *dr; 2481 2482 if (unp_externalize_fp(fp)) { 2483 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 2484 dr->ud_fp = fp; 2485 UNP_DEFERRED_LOCK(); 2486 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 2487 UNP_DEFERRED_UNLOCK(); 2488 atomic_add_int(&unp_defers_count, 1); 2489 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 2490 } else 2491 closef_nothread(fp); 2492 } 2493 2494 static void 2495 unp_process_defers(void *arg __unused, int pending) 2496 { 2497 struct unp_defer *dr; 2498 SLIST_HEAD(, unp_defer) drl; 2499 int count; 2500 2501 SLIST_INIT(&drl); 2502 for (;;) { 2503 UNP_DEFERRED_LOCK(); 2504 if (SLIST_FIRST(&unp_defers) == NULL) { 2505 UNP_DEFERRED_UNLOCK(); 2506 break; 2507 } 2508 SLIST_SWAP(&unp_defers, &drl, unp_defer); 2509 UNP_DEFERRED_UNLOCK(); 2510 count = 0; 2511 while ((dr = SLIST_FIRST(&drl)) != NULL) { 2512 SLIST_REMOVE_HEAD(&drl, ud_link); 2513 closef_nothread(dr->ud_fp); 2514 free(dr, M_TEMP); 2515 count++; 2516 } 2517 atomic_add_int(&unp_defers_count, -count); 2518 } 2519 } 2520 2521 static void 2522 unp_internalize_fp(struct file *fp) 2523 { 2524 struct unpcb *unp; 2525 2526 UNP_LINK_WLOCK(); 2527 if ((unp = fptounp(fp)) != NULL) { 2528 unp->unp_file = fp; 2529 unp->unp_msgcount++; 2530 } 2531 unp_rights++; 2532 UNP_LINK_WUNLOCK(); 2533 } 2534 2535 static int 2536 unp_externalize_fp(struct file *fp) 2537 { 2538 struct unpcb *unp; 2539 int ret; 2540 2541 UNP_LINK_WLOCK(); 2542 if ((unp = fptounp(fp)) != NULL) { 2543 unp->unp_msgcount--; 2544 ret = 1; 2545 } else 2546 ret = 0; 2547 unp_rights--; 2548 UNP_LINK_WUNLOCK(); 2549 return (ret); 2550 } 2551 2552 /* 2553 * unp_defer indicates whether additional work has been defered for a future 2554 * pass through unp_gc(). It is thread local and does not require explicit 2555 * synchronization. 2556 */ 2557 static int unp_marked; 2558 2559 static void 2560 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 2561 { 2562 struct unpcb *unp; 2563 struct file *fp; 2564 int i; 2565 2566 /* 2567 * This function can only be called from the gc task. 2568 */ 2569 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2570 ("%s: not on gc callout", __func__)); 2571 UNP_LINK_LOCK_ASSERT(); 2572 2573 for (i = 0; i < fdcount; i++) { 2574 fp = fdep[i]->fde_file; 2575 if ((unp = fptounp(fp)) == NULL) 2576 continue; 2577 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2578 continue; 2579 unp->unp_gcrefs--; 2580 } 2581 } 2582 2583 static void 2584 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 2585 { 2586 struct unpcb *unp; 2587 struct file *fp; 2588 int i; 2589 2590 /* 2591 * This function can only be called from the gc task. 2592 */ 2593 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 2594 ("%s: not on gc callout", __func__)); 2595 UNP_LINK_LOCK_ASSERT(); 2596 2597 for (i = 0; i < fdcount; i++) { 2598 fp = fdep[i]->fde_file; 2599 if ((unp = fptounp(fp)) == NULL) 2600 continue; 2601 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 2602 continue; 2603 unp->unp_gcrefs++; 2604 unp_marked++; 2605 } 2606 } 2607 2608 static void 2609 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 2610 { 2611 struct socket *so, *soa; 2612 2613 so = unp->unp_socket; 2614 SOCK_LOCK(so); 2615 if (SOLISTENING(so)) { 2616 /* 2617 * Mark all sockets in our accept queue. 2618 */ 2619 TAILQ_FOREACH(soa, &so->sol_comp, so_list) { 2620 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 2621 continue; 2622 SOCKBUF_LOCK(&soa->so_rcv); 2623 unp_scan(soa->so_rcv.sb_mb, op); 2624 SOCKBUF_UNLOCK(&soa->so_rcv); 2625 } 2626 } else { 2627 /* 2628 * Mark all sockets we reference with RIGHTS. 2629 */ 2630 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { 2631 SOCKBUF_LOCK(&so->so_rcv); 2632 unp_scan(so->so_rcv.sb_mb, op); 2633 SOCKBUF_UNLOCK(&so->so_rcv); 2634 } 2635 } 2636 SOCK_UNLOCK(so); 2637 } 2638 2639 static int unp_recycled; 2640 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 2641 "Number of unreachable sockets claimed by the garbage collector."); 2642 2643 static int unp_taskcount; 2644 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 2645 "Number of times the garbage collector has run."); 2646 2647 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 2648 "Number of active local sockets."); 2649 2650 static void 2651 unp_gc(__unused void *arg, int pending) 2652 { 2653 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 2654 NULL }; 2655 struct unp_head **head; 2656 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 2657 struct file *f, **unref; 2658 struct unpcb *unp, *unptmp; 2659 int i, total, unp_unreachable; 2660 2661 LIST_INIT(&unp_deadhead); 2662 unp_taskcount++; 2663 UNP_LINK_RLOCK(); 2664 /* 2665 * First determine which sockets may be in cycles. 2666 */ 2667 unp_unreachable = 0; 2668 2669 for (head = heads; *head != NULL; head++) 2670 LIST_FOREACH(unp, *head, unp_link) { 2671 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 2672 ("%s: unp %p has unexpected gc flags 0x%x", 2673 __func__, unp, (unsigned int)unp->unp_gcflag)); 2674 2675 f = unp->unp_file; 2676 2677 /* 2678 * Check for an unreachable socket potentially in a 2679 * cycle. It must be in a queue as indicated by 2680 * msgcount, and this must equal the file reference 2681 * count. Note that when msgcount is 0 the file is 2682 * NULL. 2683 */ 2684 if (f != NULL && unp->unp_msgcount != 0 && 2685 refcount_load(&f->f_count) == unp->unp_msgcount) { 2686 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 2687 unp->unp_gcflag |= UNPGC_DEAD; 2688 unp->unp_gcrefs = unp->unp_msgcount; 2689 unp_unreachable++; 2690 } 2691 } 2692 2693 /* 2694 * Scan all sockets previously marked as potentially being in a cycle 2695 * and remove the references each socket holds on any UNPGC_DEAD 2696 * sockets in its queue. After this step, all remaining references on 2697 * sockets marked UNPGC_DEAD should not be part of any cycle. 2698 */ 2699 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 2700 unp_gc_scan(unp, unp_remove_dead_ref); 2701 2702 /* 2703 * If a socket still has a non-negative refcount, it cannot be in a 2704 * cycle. In this case increment refcount of all children iteratively. 2705 * Stop the scan once we do a complete loop without discovering 2706 * a new reachable socket. 2707 */ 2708 do { 2709 unp_marked = 0; 2710 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 2711 if (unp->unp_gcrefs > 0) { 2712 unp->unp_gcflag &= ~UNPGC_DEAD; 2713 LIST_REMOVE(unp, unp_dead); 2714 KASSERT(unp_unreachable > 0, 2715 ("%s: unp_unreachable underflow.", 2716 __func__)); 2717 unp_unreachable--; 2718 unp_gc_scan(unp, unp_restore_undead_ref); 2719 } 2720 } while (unp_marked); 2721 2722 UNP_LINK_RUNLOCK(); 2723 2724 if (unp_unreachable == 0) 2725 return; 2726 2727 /* 2728 * Allocate space for a local array of dead unpcbs. 2729 * TODO: can this path be simplified by instead using the local 2730 * dead list at unp_deadhead, after taking out references 2731 * on the file object and/or unpcb and dropping the link lock? 2732 */ 2733 unref = malloc(unp_unreachable * sizeof(struct file *), 2734 M_TEMP, M_WAITOK); 2735 2736 /* 2737 * Iterate looking for sockets which have been specifically marked 2738 * as unreachable and store them locally. 2739 */ 2740 UNP_LINK_RLOCK(); 2741 total = 0; 2742 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 2743 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 2744 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 2745 unp->unp_gcflag &= ~UNPGC_DEAD; 2746 f = unp->unp_file; 2747 if (unp->unp_msgcount == 0 || f == NULL || 2748 refcount_load(&f->f_count) != unp->unp_msgcount || 2749 !fhold(f)) 2750 continue; 2751 unref[total++] = f; 2752 KASSERT(total <= unp_unreachable, 2753 ("%s: incorrect unreachable count.", __func__)); 2754 } 2755 UNP_LINK_RUNLOCK(); 2756 2757 /* 2758 * Now flush all sockets, free'ing rights. This will free the 2759 * struct files associated with these sockets but leave each socket 2760 * with one remaining ref. 2761 */ 2762 for (i = 0; i < total; i++) { 2763 struct socket *so; 2764 2765 so = unref[i]->f_data; 2766 CURVNET_SET(so->so_vnet); 2767 sorflush(so); 2768 CURVNET_RESTORE(); 2769 } 2770 2771 /* 2772 * And finally release the sockets so they can be reclaimed. 2773 */ 2774 for (i = 0; i < total; i++) 2775 fdrop(unref[i], NULL); 2776 unp_recycled += total; 2777 free(unref, M_TEMP); 2778 } 2779 2780 static void 2781 unp_dispose_mbuf(struct mbuf *m) 2782 { 2783 2784 if (m) 2785 unp_scan(m, unp_freerights); 2786 } 2787 2788 /* 2789 * Synchronize against unp_gc, which can trip over data as we are freeing it. 2790 */ 2791 static void 2792 unp_dispose(struct socket *so) 2793 { 2794 struct unpcb *unp; 2795 2796 unp = sotounpcb(so); 2797 UNP_LINK_WLOCK(); 2798 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 2799 UNP_LINK_WUNLOCK(); 2800 if (!SOLISTENING(so)) 2801 unp_dispose_mbuf(so->so_rcv.sb_mb); 2802 } 2803 2804 static void 2805 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 2806 { 2807 struct mbuf *m; 2808 struct cmsghdr *cm; 2809 void *data; 2810 socklen_t clen, datalen; 2811 2812 while (m0 != NULL) { 2813 for (m = m0; m; m = m->m_next) { 2814 if (m->m_type != MT_CONTROL) 2815 continue; 2816 2817 cm = mtod(m, struct cmsghdr *); 2818 clen = m->m_len; 2819 2820 while (cm != NULL) { 2821 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 2822 break; 2823 2824 data = CMSG_DATA(cm); 2825 datalen = (caddr_t)cm + cm->cmsg_len 2826 - (caddr_t)data; 2827 2828 if (cm->cmsg_level == SOL_SOCKET && 2829 cm->cmsg_type == SCM_RIGHTS) { 2830 (*op)(data, datalen / 2831 sizeof(struct filedescent *)); 2832 } 2833 2834 if (CMSG_SPACE(datalen) < clen) { 2835 clen -= CMSG_SPACE(datalen); 2836 cm = (struct cmsghdr *) 2837 ((caddr_t)cm + CMSG_SPACE(datalen)); 2838 } else { 2839 clen = 0; 2840 cm = NULL; 2841 } 2842 } 2843 } 2844 m0 = m0->m_nextpkt; 2845 } 2846 } 2847 2848 /* 2849 * A helper function called by VFS before socket-type vnode reclamation. 2850 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 2851 * use count. 2852 */ 2853 void 2854 vfs_unp_reclaim(struct vnode *vp) 2855 { 2856 struct unpcb *unp; 2857 int active; 2858 struct mtx *vplock; 2859 2860 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 2861 KASSERT(vp->v_type == VSOCK, 2862 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 2863 2864 active = 0; 2865 vplock = mtx_pool_find(mtxpool_sleep, vp); 2866 mtx_lock(vplock); 2867 VOP_UNP_CONNECT(vp, &unp); 2868 if (unp == NULL) 2869 goto done; 2870 UNP_PCB_LOCK(unp); 2871 if (unp->unp_vnode == vp) { 2872 VOP_UNP_DETACH(vp); 2873 unp->unp_vnode = NULL; 2874 active = 1; 2875 } 2876 UNP_PCB_UNLOCK(unp); 2877 done: 2878 mtx_unlock(vplock); 2879 if (active) 2880 vunref(vp); 2881 } 2882 2883 #ifdef DDB 2884 static void 2885 db_print_indent(int indent) 2886 { 2887 int i; 2888 2889 for (i = 0; i < indent; i++) 2890 db_printf(" "); 2891 } 2892 2893 static void 2894 db_print_unpflags(int unp_flags) 2895 { 2896 int comma; 2897 2898 comma = 0; 2899 if (unp_flags & UNP_HAVEPC) { 2900 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 2901 comma = 1; 2902 } 2903 if (unp_flags & UNP_WANTCRED_ALWAYS) { 2904 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : ""); 2905 comma = 1; 2906 } 2907 if (unp_flags & UNP_WANTCRED_ONESHOT) { 2908 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : ""); 2909 comma = 1; 2910 } 2911 if (unp_flags & UNP_CONNWAIT) { 2912 db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); 2913 comma = 1; 2914 } 2915 if (unp_flags & UNP_CONNECTING) { 2916 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 2917 comma = 1; 2918 } 2919 if (unp_flags & UNP_BINDING) { 2920 db_printf("%sUNP_BINDING", comma ? ", " : ""); 2921 comma = 1; 2922 } 2923 } 2924 2925 static void 2926 db_print_xucred(int indent, struct xucred *xu) 2927 { 2928 int comma, i; 2929 2930 db_print_indent(indent); 2931 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 2932 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 2933 db_print_indent(indent); 2934 db_printf("cr_groups: "); 2935 comma = 0; 2936 for (i = 0; i < xu->cr_ngroups; i++) { 2937 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 2938 comma = 1; 2939 } 2940 db_printf("\n"); 2941 } 2942 2943 static void 2944 db_print_unprefs(int indent, struct unp_head *uh) 2945 { 2946 struct unpcb *unp; 2947 int counter; 2948 2949 counter = 0; 2950 LIST_FOREACH(unp, uh, unp_reflink) { 2951 if (counter % 4 == 0) 2952 db_print_indent(indent); 2953 db_printf("%p ", unp); 2954 if (counter % 4 == 3) 2955 db_printf("\n"); 2956 counter++; 2957 } 2958 if (counter != 0 && counter % 4 != 0) 2959 db_printf("\n"); 2960 } 2961 2962 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 2963 { 2964 struct unpcb *unp; 2965 2966 if (!have_addr) { 2967 db_printf("usage: show unpcb <addr>\n"); 2968 return; 2969 } 2970 unp = (struct unpcb *)addr; 2971 2972 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 2973 unp->unp_vnode); 2974 2975 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 2976 unp->unp_conn); 2977 2978 db_printf("unp_refs:\n"); 2979 db_print_unprefs(2, &unp->unp_refs); 2980 2981 /* XXXRW: Would be nice to print the full address, if any. */ 2982 db_printf("unp_addr: %p\n", unp->unp_addr); 2983 2984 db_printf("unp_gencnt: %llu\n", 2985 (unsigned long long)unp->unp_gencnt); 2986 2987 db_printf("unp_flags: %x (", unp->unp_flags); 2988 db_print_unpflags(unp->unp_flags); 2989 db_printf(")\n"); 2990 2991 db_printf("unp_peercred:\n"); 2992 db_print_xucred(2, &unp->unp_peercred); 2993 2994 db_printf("unp_refcount: %u\n", unp->unp_refcount); 2995 } 2996 #endif 2997