xref: /freebsd/sys/kern/uipc_usrreq.c (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * Locking key:
110  * (l)	Locked using list lock
111  * (g)	Locked using linkage lock
112  */
113 
114 static uma_zone_t	unp_zone;
115 static unp_gen_t	unp_gencnt;	/* (l) */
116 static u_int		unp_count;	/* (l) Count of local sockets. */
117 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
118 static int		unp_rights;	/* (g) File descriptors in flight. */
119 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
120 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
121 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
122 
123 struct unp_defer {
124 	SLIST_ENTRY(unp_defer) ud_link;
125 	struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129 
130 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
131 
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139 
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task	unp_defer_task;
146 
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define	PIPSIZ	8192
158 #endif
159 static u_long	unpst_sendspace = PIPSIZ;
160 static u_long	unpst_recvspace = PIPSIZ;
161 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
162 static u_long	unpdg_recvspace = 4*1024;
163 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
164 static u_long	unpsp_recvspace = PIPSIZ;
165 
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
167     "Local domain");
168 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
169     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170     "SOCK_STREAM");
171 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
172     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
173     "SOCK_DGRAM");
174 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
175     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
176     "SOCK_SEQPACKET");
177 
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
179 	   &unpst_sendspace, 0, "Default stream send space.");
180 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpst_recvspace, 0, "Default stream receive space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
183 	   &unpdg_sendspace, 0, "Default datagram send space.");
184 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpdg_recvspace, 0, "Default datagram receive space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
187 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
188 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
189 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
190 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
191     "File descriptors in flight.");
192 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
193     &unp_defers_count, 0,
194     "File descriptors deferred to taskqueue for close.");
195 
196 /*
197  * Locking and synchronization:
198  *
199  * Three types of locks exist in the local domain socket implementation: a
200  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
201  * The linkage lock protects the socket count, global generation number,
202  * and stream/datagram global lists.
203  *
204  * The mtxpool lock protects the vnode from being modified while referenced.
205  * Lock ordering requires that it be acquired before any unpcb locks.
206  *
207  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
208  * note is that this includes the unp_conn field. So long as the unpcb lock
209  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
210  * require that the unpcb pointed to by unp_conn remain live in cases where
211  * we need to drop the unp_mtx as when we need to acquire the lock for a
212  * second unpcb the caller must first acquire an additional reference on the
213  * second unpcb and then revalidate any state (typically check that unp_conn
214  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
215  * between unpcbs is the conventional ascending address order. Two helper
216  * routines exist for this:
217  *
218  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
219  *     safe ordering.
220  *
221  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
222  *     when called. If unp is unlocked and unp2 is subsequently freed
223  *     freed will be set to 1.
224  *
225  * The helper routines for references are:
226  *
227  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
228  *     reference to unp.
229  *
230  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
231  *      releasing the last reference, detach must have been called thus
232  *      unp->unp_socket be NULL.
233  *
234  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
235  * allocated in pru_attach() and freed in pru_detach().  The validity of that
236  * pointer is an invariant, so no lock is required to dereference the so_pcb
237  * pointer if a valid socket reference is held by the caller.  In practice,
238  * this is always true during operations performed on a socket.  Each unpcb
239  * has a back-pointer to its socket, unp_socket, which will be stable under
240  * the same circumstances.
241  *
242  * This pointer may only be safely dereferenced as long as a valid reference
243  * to the unpcb is held.  Typically, this reference will be from the socket,
244  * or from another unpcb when the referring unpcb's lock is held (in order
245  * that the reference not be invalidated during use).  For example, to follow
246  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
247  * that detach is not run clearing unp_socket.
248  *
249  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
250  * protocols, bind() is a non-atomic operation, and connect() requires
251  * potential sleeping in the protocol, due to potentially waiting on local or
252  * distributed file systems.  We try to separate "lookup" operations, which
253  * may sleep, and the IPC operations themselves, which typically can occur
254  * with relative atomicity as locks can be held over the entire operation.
255  *
256  * Another tricky issue is simultaneous multi-threaded or multi-process
257  * access to a single UNIX domain socket.  These are handled by the flags
258  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
259  * binding, both of which involve dropping UNIX domain socket locks in order
260  * to perform namei() and other file system operations.
261  */
262 static struct rwlock	unp_link_rwlock;
263 static struct mtx	unp_defers_lock;
264 
265 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
266 					    "unp_link_rwlock")
267 
268 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
269 					    RA_LOCKED)
270 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
271 					    RA_UNLOCKED)
272 
273 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
274 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
275 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
276 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
277 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
278 					    RA_WLOCKED)
279 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
280 
281 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
282 					    "unp_defer", NULL, MTX_DEF)
283 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
284 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
285 
286 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
287 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
288 
289 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
290 					    "unp", "unp",	\
291 					    MTX_DUPOK|MTX_DEF)
292 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
293 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
294 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
295 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
296 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
297 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
298 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
299 
300 static int	uipc_connect2(struct socket *, struct socket *);
301 static int	uipc_ctloutput(struct socket *, struct sockopt *);
302 static int	unp_connect(struct socket *, struct sockaddr *,
303 		    struct thread *);
304 static int	unp_connectat(int, struct socket *, struct sockaddr *,
305 		    struct thread *);
306 static int	unp_connect2(struct socket *so, struct socket *so2, int);
307 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
308 static void	unp_dispose(struct socket *so);
309 static void	unp_dispose_mbuf(struct mbuf *);
310 static void	unp_shutdown(struct unpcb *);
311 static void	unp_drop(struct unpcb *);
312 static void	unp_gc(__unused void *, int);
313 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
314 static void	unp_discard(struct file *);
315 static void	unp_freerights(struct filedescent **, int);
316 static void	unp_init(void);
317 static int	unp_internalize(struct mbuf **, struct thread *);
318 static void	unp_internalize_fp(struct file *);
319 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
320 static int	unp_externalize_fp(struct file *);
321 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
322 static void	unp_process_defers(void * __unused, int);
323 
324 static void
325 unp_pcb_hold(struct unpcb *unp)
326 {
327 	MPASS(unp->unp_refcount);
328 	refcount_acquire(&unp->unp_refcount);
329 }
330 
331 static int
332 unp_pcb_rele(struct unpcb *unp)
333 {
334 	int freed;
335 
336 	UNP_PCB_LOCK_ASSERT(unp);
337 	MPASS(unp->unp_refcount);
338 	if ((freed = refcount_release(&unp->unp_refcount))) {
339 		/* we got here with having detached? */
340 		MPASS(unp->unp_socket == NULL);
341 		UNP_PCB_UNLOCK(unp);
342 		UNP_PCB_LOCK_DESTROY(unp);
343 		uma_zfree(unp_zone, unp);
344 	}
345 	return (freed);
346 }
347 
348 static void
349 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
350 {
351 	MPASS(unp != unp2);
352 	UNP_PCB_UNLOCK_ASSERT(unp);
353 	UNP_PCB_UNLOCK_ASSERT(unp2);
354 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static __noinline void
364 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p,
365     int *freed)
366 {
367 	struct unpcb *unp2;
368 
369 	unp2 = *unp2p;
370 	unp_pcb_hold(unp2);
371 	UNP_PCB_UNLOCK(unp);
372 	UNP_PCB_LOCK(unp2);
373 	UNP_PCB_LOCK(unp);
374 	*freed = unp_pcb_rele(unp2);
375 	if (*freed)
376 		*unp2p = NULL;
377 }
378 
379 #define unp_pcb_owned_lock2(unp, unp2, freed) do {			\
380 	freed = 0;							\
381 	UNP_PCB_LOCK_ASSERT(unp);					\
382 	UNP_PCB_UNLOCK_ASSERT(unp2);					\
383 	MPASS((unp) != (unp2));						\
384 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))			\
385 		break;							\
386 	else if ((uintptr_t)(unp2) > (uintptr_t)(unp))			\
387 		UNP_PCB_LOCK(unp2);					\
388 	else								\
389 		unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);	\
390 } while (0)
391 
392 /*
393  * Definitions of protocols supported in the LOCAL domain.
394  */
395 static struct domain localdomain;
396 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
397 static struct pr_usrreqs uipc_usrreqs_seqpacket;
398 static struct protosw localsw[] = {
399 {
400 	.pr_type =		SOCK_STREAM,
401 	.pr_domain =		&localdomain,
402 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
403 	.pr_ctloutput =		&uipc_ctloutput,
404 	.pr_usrreqs =		&uipc_usrreqs_stream
405 },
406 {
407 	.pr_type =		SOCK_DGRAM,
408 	.pr_domain =		&localdomain,
409 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
410 	.pr_ctloutput =		&uipc_ctloutput,
411 	.pr_usrreqs =		&uipc_usrreqs_dgram
412 },
413 {
414 	.pr_type =		SOCK_SEQPACKET,
415 	.pr_domain =		&localdomain,
416 
417 	/*
418 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
419 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
420 	 * that supports both atomic record writes and control data.
421 	 */
422 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
423 				    PR_RIGHTS,
424 	.pr_ctloutput =		&uipc_ctloutput,
425 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
426 },
427 };
428 
429 static struct domain localdomain = {
430 	.dom_family =		AF_LOCAL,
431 	.dom_name =		"local",
432 	.dom_init =		unp_init,
433 	.dom_externalize =	unp_externalize,
434 	.dom_dispose =		unp_dispose,
435 	.dom_protosw =		localsw,
436 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
437 };
438 DOMAIN_SET(local);
439 
440 static void
441 uipc_abort(struct socket *so)
442 {
443 	struct unpcb *unp, *unp2;
444 
445 	unp = sotounpcb(so);
446 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
447 	UNP_PCB_UNLOCK_ASSERT(unp);
448 
449 	UNP_PCB_LOCK(unp);
450 	unp2 = unp->unp_conn;
451 	if (unp2 != NULL) {
452 		unp_pcb_hold(unp2);
453 		UNP_PCB_UNLOCK(unp);
454 		unp_drop(unp2);
455 	} else
456 		UNP_PCB_UNLOCK(unp);
457 }
458 
459 static int
460 uipc_accept(struct socket *so, struct sockaddr **nam)
461 {
462 	struct unpcb *unp, *unp2;
463 	const struct sockaddr *sa;
464 
465 	/*
466 	 * Pass back name of connected socket, if it was bound and we are
467 	 * still connected (our peer may have closed already!).
468 	 */
469 	unp = sotounpcb(so);
470 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
471 
472 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
473 	UNP_LINK_RLOCK();
474 	unp2 = unp->unp_conn;
475 	if (unp2 != NULL && unp2->unp_addr != NULL) {
476 		UNP_PCB_LOCK(unp2);
477 		sa = (struct sockaddr *) unp2->unp_addr;
478 		bcopy(sa, *nam, sa->sa_len);
479 		UNP_PCB_UNLOCK(unp2);
480 	} else {
481 		sa = &sun_noname;
482 		bcopy(sa, *nam, sa->sa_len);
483 	}
484 	UNP_LINK_RUNLOCK();
485 	return (0);
486 }
487 
488 static int
489 uipc_attach(struct socket *so, int proto, struct thread *td)
490 {
491 	u_long sendspace, recvspace;
492 	struct unpcb *unp;
493 	int error;
494 	bool locked;
495 
496 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
497 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
498 		switch (so->so_type) {
499 		case SOCK_STREAM:
500 			sendspace = unpst_sendspace;
501 			recvspace = unpst_recvspace;
502 			break;
503 
504 		case SOCK_DGRAM:
505 			sendspace = unpdg_sendspace;
506 			recvspace = unpdg_recvspace;
507 			break;
508 
509 		case SOCK_SEQPACKET:
510 			sendspace = unpsp_sendspace;
511 			recvspace = unpsp_recvspace;
512 			break;
513 
514 		default:
515 			panic("uipc_attach");
516 		}
517 		error = soreserve(so, sendspace, recvspace);
518 		if (error)
519 			return (error);
520 	}
521 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
522 	if (unp == NULL)
523 		return (ENOBUFS);
524 	LIST_INIT(&unp->unp_refs);
525 	UNP_PCB_LOCK_INIT(unp);
526 	unp->unp_socket = so;
527 	so->so_pcb = unp;
528 	unp->unp_refcount = 1;
529 
530 	if ((locked = UNP_LINK_WOWNED()) == false)
531 		UNP_LINK_WLOCK();
532 
533 	unp->unp_gencnt = ++unp_gencnt;
534 	unp->unp_ino = ++unp_ino;
535 	unp_count++;
536 	switch (so->so_type) {
537 	case SOCK_STREAM:
538 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
539 		break;
540 
541 	case SOCK_DGRAM:
542 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
543 		break;
544 
545 	case SOCK_SEQPACKET:
546 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
547 		break;
548 
549 	default:
550 		panic("uipc_attach");
551 	}
552 
553 	if (locked == false)
554 		UNP_LINK_WUNLOCK();
555 
556 	return (0);
557 }
558 
559 static int
560 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
561 {
562 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
563 	struct vattr vattr;
564 	int error, namelen;
565 	struct nameidata nd;
566 	struct unpcb *unp;
567 	struct vnode *vp;
568 	struct mount *mp;
569 	cap_rights_t rights;
570 	char *buf;
571 
572 	if (nam->sa_family != AF_UNIX)
573 		return (EAFNOSUPPORT);
574 
575 	unp = sotounpcb(so);
576 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
577 
578 	if (soun->sun_len > sizeof(struct sockaddr_un))
579 		return (EINVAL);
580 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
581 	if (namelen <= 0)
582 		return (EINVAL);
583 
584 	/*
585 	 * We don't allow simultaneous bind() calls on a single UNIX domain
586 	 * socket, so flag in-progress operations, and return an error if an
587 	 * operation is already in progress.
588 	 *
589 	 * Historically, we have not allowed a socket to be rebound, so this
590 	 * also returns an error.  Not allowing re-binding simplifies the
591 	 * implementation and avoids a great many possible failure modes.
592 	 */
593 	UNP_PCB_LOCK(unp);
594 	if (unp->unp_vnode != NULL) {
595 		UNP_PCB_UNLOCK(unp);
596 		return (EINVAL);
597 	}
598 	if (unp->unp_flags & UNP_BINDING) {
599 		UNP_PCB_UNLOCK(unp);
600 		return (EALREADY);
601 	}
602 	unp->unp_flags |= UNP_BINDING;
603 	UNP_PCB_UNLOCK(unp);
604 
605 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
606 	bcopy(soun->sun_path, buf, namelen);
607 	buf[namelen] = 0;
608 
609 restart:
610 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
611 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
612 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
613 	error = namei(&nd);
614 	if (error)
615 		goto error;
616 	vp = nd.ni_vp;
617 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
618 		NDFREE(&nd, NDF_ONLY_PNBUF);
619 		if (nd.ni_dvp == vp)
620 			vrele(nd.ni_dvp);
621 		else
622 			vput(nd.ni_dvp);
623 		if (vp != NULL) {
624 			vrele(vp);
625 			error = EADDRINUSE;
626 			goto error;
627 		}
628 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
629 		if (error)
630 			goto error;
631 		goto restart;
632 	}
633 	VATTR_NULL(&vattr);
634 	vattr.va_type = VSOCK;
635 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
636 #ifdef MAC
637 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
638 	    &vattr);
639 #endif
640 	if (error == 0)
641 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
642 	NDFREE(&nd, NDF_ONLY_PNBUF);
643 	vput(nd.ni_dvp);
644 	if (error) {
645 		vn_finished_write(mp);
646 		goto error;
647 	}
648 	vp = nd.ni_vp;
649 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
650 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
651 
652 	UNP_PCB_LOCK(unp);
653 	VOP_UNP_BIND(vp, unp);
654 	unp->unp_vnode = vp;
655 	unp->unp_addr = soun;
656 	unp->unp_flags &= ~UNP_BINDING;
657 	UNP_PCB_UNLOCK(unp);
658 	VOP_UNLOCK(vp);
659 	vn_finished_write(mp);
660 	free(buf, M_TEMP);
661 	return (0);
662 
663 error:
664 	UNP_PCB_LOCK(unp);
665 	unp->unp_flags &= ~UNP_BINDING;
666 	UNP_PCB_UNLOCK(unp);
667 	free(buf, M_TEMP);
668 	return (error);
669 }
670 
671 static int
672 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
673 {
674 
675 	return (uipc_bindat(AT_FDCWD, so, nam, td));
676 }
677 
678 static int
679 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
680 {
681 	int error;
682 
683 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
684 	error = unp_connect(so, nam, td);
685 	return (error);
686 }
687 
688 static int
689 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
690     struct thread *td)
691 {
692 	int error;
693 
694 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
695 	error = unp_connectat(fd, so, nam, td);
696 	return (error);
697 }
698 
699 static void
700 uipc_close(struct socket *so)
701 {
702 	struct unpcb *unp, *unp2;
703 	struct vnode *vp = NULL;
704 	struct mtx *vplock;
705 	int freed;
706 	unp = sotounpcb(so);
707 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
708 
709 	vplock = NULL;
710 	if ((vp = unp->unp_vnode) != NULL) {
711 		vplock = mtx_pool_find(mtxpool_sleep, vp);
712 		mtx_lock(vplock);
713 	}
714 	UNP_PCB_LOCK(unp);
715 	if (vp && unp->unp_vnode == NULL) {
716 		mtx_unlock(vplock);
717 		vp = NULL;
718 	}
719 	if (vp != NULL) {
720 		VOP_UNP_DETACH(vp);
721 		unp->unp_vnode = NULL;
722 	}
723 	unp2 = unp->unp_conn;
724 	unp_pcb_hold(unp);
725 	if (__predict_false(unp == unp2)) {
726 		unp_disconnect(unp, unp2);
727 	} else if (unp2 != NULL) {
728 		unp_pcb_hold(unp2);
729 		unp_pcb_owned_lock2(unp, unp2, freed);
730 		unp_disconnect(unp, unp2);
731 		if (unp_pcb_rele(unp2) == 0)
732 			UNP_PCB_UNLOCK(unp2);
733 	}
734 	if (unp_pcb_rele(unp) == 0)
735 		UNP_PCB_UNLOCK(unp);
736 	if (vp) {
737 		mtx_unlock(vplock);
738 		vrele(vp);
739 	}
740 }
741 
742 static int
743 uipc_connect2(struct socket *so1, struct socket *so2)
744 {
745 	struct unpcb *unp, *unp2;
746 	int error;
747 
748 	unp = so1->so_pcb;
749 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
750 	unp2 = so2->so_pcb;
751 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
752 	if (unp != unp2)
753 		unp_pcb_lock2(unp, unp2);
754 	else
755 		UNP_PCB_LOCK(unp);
756 	error = unp_connect2(so1, so2, PRU_CONNECT2);
757 	if (unp != unp2)
758 		UNP_PCB_UNLOCK(unp2);
759 	UNP_PCB_UNLOCK(unp);
760 	return (error);
761 }
762 
763 static void
764 uipc_detach(struct socket *so)
765 {
766 	struct unpcb *unp, *unp2;
767 	struct mtx *vplock;
768 	struct vnode *vp;
769 	int freeunp, local_unp_rights;
770 
771 	unp = sotounpcb(so);
772 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
773 
774 	vp = NULL;
775 	vplock = NULL;
776 	local_unp_rights = 0;
777 
778 	UNP_LINK_WLOCK();
779 	LIST_REMOVE(unp, unp_link);
780 	if (unp->unp_gcflag & UNPGC_DEAD)
781 		LIST_REMOVE(unp, unp_dead);
782 	unp->unp_gencnt = ++unp_gencnt;
783 	--unp_count;
784 	UNP_LINK_WUNLOCK();
785 
786 	UNP_PCB_UNLOCK_ASSERT(unp);
787  restart:
788 	if ((vp = unp->unp_vnode) != NULL) {
789 		vplock = mtx_pool_find(mtxpool_sleep, vp);
790 		mtx_lock(vplock);
791 	}
792 	UNP_PCB_LOCK(unp);
793 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
794 		if (vplock)
795 			mtx_unlock(vplock);
796 		UNP_PCB_UNLOCK(unp);
797 		goto restart;
798 	}
799 	if ((vp = unp->unp_vnode) != NULL) {
800 		VOP_UNP_DETACH(vp);
801 		unp->unp_vnode = NULL;
802 	}
803 	if (__predict_false(unp == unp->unp_conn)) {
804 		unp_disconnect(unp, unp);
805 		unp2 = NULL;
806 	} else {
807 		if ((unp2 = unp->unp_conn) != NULL) {
808 			unp_pcb_owned_lock2(unp, unp2, freeunp);
809 			if (freeunp)
810 				unp2 = NULL;
811 		}
812 		unp_pcb_hold(unp);
813 		if (unp2 != NULL) {
814 			unp_pcb_hold(unp2);
815 			unp_disconnect(unp, unp2);
816 			if (unp_pcb_rele(unp2) == 0)
817 				UNP_PCB_UNLOCK(unp2);
818 		}
819 	}
820 	UNP_PCB_UNLOCK(unp);
821 	UNP_REF_LIST_LOCK();
822 	while (!LIST_EMPTY(&unp->unp_refs)) {
823 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
824 
825 		unp_pcb_hold(ref);
826 		UNP_REF_LIST_UNLOCK();
827 
828 		MPASS(ref != unp);
829 		UNP_PCB_UNLOCK_ASSERT(ref);
830 		unp_drop(ref);
831 		UNP_REF_LIST_LOCK();
832 	}
833 
834 	UNP_REF_LIST_UNLOCK();
835 	UNP_PCB_LOCK(unp);
836 	freeunp = unp_pcb_rele(unp);
837 	MPASS(freeunp == 0);
838 	local_unp_rights = unp_rights;
839 	unp->unp_socket->so_pcb = NULL;
840 	unp->unp_socket = NULL;
841 	free(unp->unp_addr, M_SONAME);
842 	unp->unp_addr = NULL;
843 	if (!unp_pcb_rele(unp))
844 		UNP_PCB_UNLOCK(unp);
845 	if (vp) {
846 		mtx_unlock(vplock);
847 		vrele(vp);
848 	}
849 	if (local_unp_rights)
850 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
851 }
852 
853 static int
854 uipc_disconnect(struct socket *so)
855 {
856 	struct unpcb *unp, *unp2;
857 	int freed;
858 
859 	unp = sotounpcb(so);
860 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
861 
862 	UNP_PCB_LOCK(unp);
863 	if ((unp2 = unp->unp_conn) == NULL) {
864 		UNP_PCB_UNLOCK(unp);
865 		return (0);
866 	}
867 	if (__predict_true(unp != unp2)) {
868 		unp_pcb_owned_lock2(unp, unp2, freed);
869 		if (__predict_false(freed)) {
870 			UNP_PCB_UNLOCK(unp);
871 			return (0);
872 		}
873 		unp_pcb_hold(unp2);
874 	}
875 	unp_pcb_hold(unp);
876 	unp_disconnect(unp, unp2);
877 	if (unp_pcb_rele(unp) == 0)
878 		UNP_PCB_UNLOCK(unp);
879 	if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
880 		UNP_PCB_UNLOCK(unp2);
881 	return (0);
882 }
883 
884 static int
885 uipc_listen(struct socket *so, int backlog, struct thread *td)
886 {
887 	struct unpcb *unp;
888 	int error;
889 
890 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
891 		return (EOPNOTSUPP);
892 
893 	unp = sotounpcb(so);
894 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
895 
896 	UNP_PCB_LOCK(unp);
897 	if (unp->unp_vnode == NULL) {
898 		/* Already connected or not bound to an address. */
899 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
900 		UNP_PCB_UNLOCK(unp);
901 		return (error);
902 	}
903 
904 	SOCK_LOCK(so);
905 	error = solisten_proto_check(so);
906 	if (error == 0) {
907 		cru2xt(td, &unp->unp_peercred);
908 		solisten_proto(so, backlog);
909 	}
910 	SOCK_UNLOCK(so);
911 	UNP_PCB_UNLOCK(unp);
912 	return (error);
913 }
914 
915 static int
916 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
917 {
918 	struct unpcb *unp, *unp2;
919 	const struct sockaddr *sa;
920 
921 	unp = sotounpcb(so);
922 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
923 
924 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
925 	UNP_LINK_RLOCK();
926 	/*
927 	 * XXX: It seems that this test always fails even when connection is
928 	 * established.  So, this else clause is added as workaround to
929 	 * return PF_LOCAL sockaddr.
930 	 */
931 	unp2 = unp->unp_conn;
932 	if (unp2 != NULL) {
933 		UNP_PCB_LOCK(unp2);
934 		if (unp2->unp_addr != NULL)
935 			sa = (struct sockaddr *) unp2->unp_addr;
936 		else
937 			sa = &sun_noname;
938 		bcopy(sa, *nam, sa->sa_len);
939 		UNP_PCB_UNLOCK(unp2);
940 	} else {
941 		sa = &sun_noname;
942 		bcopy(sa, *nam, sa->sa_len);
943 	}
944 	UNP_LINK_RUNLOCK();
945 	return (0);
946 }
947 
948 static int
949 uipc_rcvd(struct socket *so, int flags)
950 {
951 	struct unpcb *unp, *unp2;
952 	struct socket *so2;
953 	u_int mbcnt, sbcc;
954 
955 	unp = sotounpcb(so);
956 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
957 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
958 	    ("%s: socktype %d", __func__, so->so_type));
959 
960 	/*
961 	 * Adjust backpressure on sender and wakeup any waiting to write.
962 	 *
963 	 * The unp lock is acquired to maintain the validity of the unp_conn
964 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
965 	 * static as long as we don't permit unp2 to disconnect from unp,
966 	 * which is prevented by the lock on unp.  We cache values from
967 	 * so_rcv to avoid holding the so_rcv lock over the entire
968 	 * transaction on the remote so_snd.
969 	 */
970 	SOCKBUF_LOCK(&so->so_rcv);
971 	mbcnt = so->so_rcv.sb_mbcnt;
972 	sbcc = sbavail(&so->so_rcv);
973 	SOCKBUF_UNLOCK(&so->so_rcv);
974 	/*
975 	 * There is a benign race condition at this point.  If we're planning to
976 	 * clear SB_STOP, but uipc_send is called on the connected socket at
977 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
978 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
979 	 * full.  The race is benign because the only ill effect is to allow the
980 	 * sockbuf to exceed its size limit, and the size limits are not
981 	 * strictly guaranteed anyway.
982 	 */
983 	UNP_PCB_LOCK(unp);
984 	unp2 = unp->unp_conn;
985 	if (unp2 == NULL) {
986 		UNP_PCB_UNLOCK(unp);
987 		return (0);
988 	}
989 	so2 = unp2->unp_socket;
990 	SOCKBUF_LOCK(&so2->so_snd);
991 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
992 		so2->so_snd.sb_flags &= ~SB_STOP;
993 	sowwakeup_locked(so2);
994 	UNP_PCB_UNLOCK(unp);
995 	return (0);
996 }
997 
998 static int
999 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
1000 {
1001 	int error;
1002 	struct unpcb *unp;
1003 
1004 	unp = so->so_pcb;
1005 	if (unp->unp_conn != NULL)
1006 		return (EISCONN);
1007 	error = unp_connect(so, nam, td);
1008 	if (error)
1009 		return (error);
1010 	UNP_PCB_LOCK(unp);
1011 	if (unp->unp_conn == NULL) {
1012 		UNP_PCB_UNLOCK(unp);
1013 		if (error == 0)
1014 			error = ENOTCONN;
1015 	}
1016 	return (error);
1017 }
1018 
1019 static int
1020 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1021     struct mbuf *control, struct thread *td)
1022 {
1023 	struct unpcb *unp, *unp2;
1024 	struct socket *so2;
1025 	u_int mbcnt, sbcc;
1026 	int freed, error;
1027 
1028 	unp = sotounpcb(so);
1029 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1030 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1031 	    so->so_type == SOCK_SEQPACKET,
1032 	    ("%s: socktype %d", __func__, so->so_type));
1033 
1034 	freed = error = 0;
1035 	if (flags & PRUS_OOB) {
1036 		error = EOPNOTSUPP;
1037 		goto release;
1038 	}
1039 	if (control != NULL && (error = unp_internalize(&control, td)))
1040 		goto release;
1041 
1042 	unp2 = NULL;
1043 	switch (so->so_type) {
1044 	case SOCK_DGRAM:
1045 	{
1046 		const struct sockaddr *from;
1047 
1048 		if (nam != NULL) {
1049 			/*
1050 			 * We return with UNP_PCB_LOCK_HELD so we know that
1051 			 * the reference is live if the pointer is valid.
1052 			 */
1053 			if ((error = connect_internal(so, nam, td)))
1054 				break;
1055 			MPASS(unp->unp_conn != NULL);
1056 			unp2 = unp->unp_conn;
1057 		} else  {
1058 			UNP_PCB_LOCK(unp);
1059 
1060 			/*
1061 			 * Because connect() and send() are non-atomic in a sendto()
1062 			 * with a target address, it's possible that the socket will
1063 			 * have disconnected before the send() can run.  In that case
1064 			 * return the slightly counter-intuitive but otherwise
1065 			 * correct error that the socket is not connected.
1066 			 */
1067 			if ((unp2 = unp->unp_conn)  == NULL) {
1068 				UNP_PCB_UNLOCK(unp);
1069 				error = ENOTCONN;
1070 				break;
1071 			}
1072 		}
1073 		if (__predict_false(unp == unp2)) {
1074 			if (unp->unp_socket == NULL) {
1075 				error = ENOTCONN;
1076 				break;
1077 			}
1078 			goto connect_self;
1079 		}
1080 		unp_pcb_owned_lock2(unp, unp2, freed);
1081 		if (__predict_false(freed)) {
1082 			UNP_PCB_UNLOCK(unp);
1083 			error = ENOTCONN;
1084 			break;
1085 		}
1086 		/*
1087 		 * The socket referencing unp2 may have been closed
1088 		 * or unp may have been disconnected if the unp lock
1089 		 * was dropped to acquire unp2.
1090 		 */
1091 		if (__predict_false(unp->unp_conn == NULL) ||
1092 			unp2->unp_socket == NULL) {
1093 			UNP_PCB_UNLOCK(unp);
1094 			if (unp_pcb_rele(unp2) == 0)
1095 				UNP_PCB_UNLOCK(unp2);
1096 			error = ENOTCONN;
1097 			break;
1098 		}
1099 	connect_self:
1100 		if (unp2->unp_flags & UNP_WANTCRED)
1101 			control = unp_addsockcred(td, control);
1102 		if (unp->unp_addr != NULL)
1103 			from = (struct sockaddr *)unp->unp_addr;
1104 		else
1105 			from = &sun_noname;
1106 		so2 = unp2->unp_socket;
1107 		SOCKBUF_LOCK(&so2->so_rcv);
1108 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1109 		    control)) {
1110 			sorwakeup_locked(so2);
1111 			m = NULL;
1112 			control = NULL;
1113 		} else {
1114 			SOCKBUF_UNLOCK(&so2->so_rcv);
1115 			error = ENOBUFS;
1116 		}
1117 		if (nam != NULL)
1118 			unp_disconnect(unp, unp2);
1119 		if (__predict_true(unp != unp2))
1120 			UNP_PCB_UNLOCK(unp2);
1121 		UNP_PCB_UNLOCK(unp);
1122 		break;
1123 	}
1124 
1125 	case SOCK_SEQPACKET:
1126 	case SOCK_STREAM:
1127 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1128 			if (nam != NULL) {
1129 				if ((error = connect_internal(so, nam, td)))
1130 					break;
1131 			} else  {
1132 				error = ENOTCONN;
1133 				break;
1134 			}
1135 		} else if ((unp2 = unp->unp_conn) == NULL) {
1136 			error = ENOTCONN;
1137 			break;
1138 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1139 			error = EPIPE;
1140 			break;
1141 		} else {
1142 			UNP_PCB_LOCK(unp);
1143 			if ((unp2 = unp->unp_conn) == NULL) {
1144 				UNP_PCB_UNLOCK(unp);
1145 				error = ENOTCONN;
1146 				break;
1147 			}
1148 		}
1149 		unp_pcb_owned_lock2(unp, unp2, freed);
1150 		UNP_PCB_UNLOCK(unp);
1151 		if (__predict_false(freed)) {
1152 			error = ENOTCONN;
1153 			break;
1154 		}
1155 		if ((so2 = unp2->unp_socket) == NULL) {
1156 			UNP_PCB_UNLOCK(unp2);
1157 			error = ENOTCONN;
1158 			break;
1159 		}
1160 		SOCKBUF_LOCK(&so2->so_rcv);
1161 		if (unp2->unp_flags & UNP_WANTCRED) {
1162 			/*
1163 			 * Credentials are passed only once on SOCK_STREAM
1164 			 * and SOCK_SEQPACKET.
1165 			 */
1166 			unp2->unp_flags &= ~UNP_WANTCRED;
1167 			control = unp_addsockcred(td, control);
1168 		}
1169 
1170 		/*
1171 		 * Send to paired receive port and wake up readers.  Don't
1172 		 * check for space available in the receive buffer if we're
1173 		 * attaching ancillary data; Unix domain sockets only check
1174 		 * for space in the sending sockbuf, and that check is
1175 		 * performed one level up the stack.  At that level we cannot
1176 		 * precisely account for the amount of buffer space used
1177 		 * (e.g., because control messages are not yet internalized).
1178 		 */
1179 		switch (so->so_type) {
1180 		case SOCK_STREAM:
1181 			if (control != NULL) {
1182 				sbappendcontrol_locked(&so2->so_rcv, m,
1183 				    control);
1184 				control = NULL;
1185 			} else
1186 				sbappend_locked(&so2->so_rcv, m, flags);
1187 			break;
1188 
1189 		case SOCK_SEQPACKET: {
1190 			const struct sockaddr *from;
1191 
1192 			from = &sun_noname;
1193 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1194 			    from, m, control))
1195 				control = NULL;
1196 			break;
1197 			}
1198 		}
1199 
1200 		mbcnt = so2->so_rcv.sb_mbcnt;
1201 		sbcc = sbavail(&so2->so_rcv);
1202 		if (sbcc)
1203 			sorwakeup_locked(so2);
1204 		else
1205 			SOCKBUF_UNLOCK(&so2->so_rcv);
1206 
1207 		/*
1208 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1209 		 * it would be possible for uipc_rcvd to be called at this
1210 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1211 		 * we would set SB_STOP below.  That could lead to an empty
1212 		 * sockbuf having SB_STOP set
1213 		 */
1214 		SOCKBUF_LOCK(&so->so_snd);
1215 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1216 			so->so_snd.sb_flags |= SB_STOP;
1217 		SOCKBUF_UNLOCK(&so->so_snd);
1218 		UNP_PCB_UNLOCK(unp2);
1219 		m = NULL;
1220 		break;
1221 	}
1222 
1223 	/*
1224 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1225 	 */
1226 	if (flags & PRUS_EOF) {
1227 		UNP_PCB_LOCK(unp);
1228 		socantsendmore(so);
1229 		unp_shutdown(unp);
1230 		UNP_PCB_UNLOCK(unp);
1231 	}
1232 	if (control != NULL && error != 0)
1233 		unp_dispose_mbuf(control);
1234 
1235 release:
1236 	if (control != NULL)
1237 		m_freem(control);
1238 	/*
1239 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1240 	 * for freeing memory.
1241 	 */
1242 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1243 		m_freem(m);
1244 	return (error);
1245 }
1246 
1247 static int
1248 uipc_ready(struct socket *so, struct mbuf *m, int count)
1249 {
1250 	struct unpcb *unp, *unp2;
1251 	struct socket *so2;
1252 	int error;
1253 
1254 	unp = sotounpcb(so);
1255 
1256 	UNP_PCB_LOCK(unp);
1257 	if ((unp2 = unp->unp_conn) == NULL) {
1258 		UNP_PCB_UNLOCK(unp);
1259 		goto error;
1260 	}
1261 	if (unp != unp2) {
1262 		if (UNP_PCB_TRYLOCK(unp2) == 0) {
1263 			unp_pcb_hold(unp2);
1264 			UNP_PCB_UNLOCK(unp);
1265 			UNP_PCB_LOCK(unp2);
1266 			if (unp_pcb_rele(unp2))
1267 				goto error;
1268 		} else
1269 			UNP_PCB_UNLOCK(unp);
1270 	}
1271 	so2 = unp2->unp_socket;
1272 
1273 	SOCKBUF_LOCK(&so2->so_rcv);
1274 	if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1275 		sorwakeup_locked(so2);
1276 	else
1277 		SOCKBUF_UNLOCK(&so2->so_rcv);
1278 
1279 	UNP_PCB_UNLOCK(unp2);
1280 
1281 	return (error);
1282  error:
1283 	for (int i = 0; i < count; i++)
1284 		m = m_free(m);
1285 	return (ECONNRESET);
1286 }
1287 
1288 static int
1289 uipc_sense(struct socket *so, struct stat *sb)
1290 {
1291 	struct unpcb *unp;
1292 
1293 	unp = sotounpcb(so);
1294 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1295 
1296 	sb->st_blksize = so->so_snd.sb_hiwat;
1297 	sb->st_dev = NODEV;
1298 	sb->st_ino = unp->unp_ino;
1299 	return (0);
1300 }
1301 
1302 static int
1303 uipc_shutdown(struct socket *so)
1304 {
1305 	struct unpcb *unp;
1306 
1307 	unp = sotounpcb(so);
1308 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1309 
1310 	UNP_PCB_LOCK(unp);
1311 	socantsendmore(so);
1312 	unp_shutdown(unp);
1313 	UNP_PCB_UNLOCK(unp);
1314 	return (0);
1315 }
1316 
1317 static int
1318 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1319 {
1320 	struct unpcb *unp;
1321 	const struct sockaddr *sa;
1322 
1323 	unp = sotounpcb(so);
1324 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1325 
1326 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1327 	UNP_PCB_LOCK(unp);
1328 	if (unp->unp_addr != NULL)
1329 		sa = (struct sockaddr *) unp->unp_addr;
1330 	else
1331 		sa = &sun_noname;
1332 	bcopy(sa, *nam, sa->sa_len);
1333 	UNP_PCB_UNLOCK(unp);
1334 	return (0);
1335 }
1336 
1337 static struct pr_usrreqs uipc_usrreqs_dgram = {
1338 	.pru_abort = 		uipc_abort,
1339 	.pru_accept =		uipc_accept,
1340 	.pru_attach =		uipc_attach,
1341 	.pru_bind =		uipc_bind,
1342 	.pru_bindat =		uipc_bindat,
1343 	.pru_connect =		uipc_connect,
1344 	.pru_connectat =	uipc_connectat,
1345 	.pru_connect2 =		uipc_connect2,
1346 	.pru_detach =		uipc_detach,
1347 	.pru_disconnect =	uipc_disconnect,
1348 	.pru_listen =		uipc_listen,
1349 	.pru_peeraddr =		uipc_peeraddr,
1350 	.pru_rcvd =		uipc_rcvd,
1351 	.pru_send =		uipc_send,
1352 	.pru_sense =		uipc_sense,
1353 	.pru_shutdown =		uipc_shutdown,
1354 	.pru_sockaddr =		uipc_sockaddr,
1355 	.pru_soreceive =	soreceive_dgram,
1356 	.pru_close =		uipc_close,
1357 };
1358 
1359 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1360 	.pru_abort =		uipc_abort,
1361 	.pru_accept =		uipc_accept,
1362 	.pru_attach =		uipc_attach,
1363 	.pru_bind =		uipc_bind,
1364 	.pru_bindat =		uipc_bindat,
1365 	.pru_connect =		uipc_connect,
1366 	.pru_connectat =	uipc_connectat,
1367 	.pru_connect2 =		uipc_connect2,
1368 	.pru_detach =		uipc_detach,
1369 	.pru_disconnect =	uipc_disconnect,
1370 	.pru_listen =		uipc_listen,
1371 	.pru_peeraddr =		uipc_peeraddr,
1372 	.pru_rcvd =		uipc_rcvd,
1373 	.pru_send =		uipc_send,
1374 	.pru_sense =		uipc_sense,
1375 	.pru_shutdown =		uipc_shutdown,
1376 	.pru_sockaddr =		uipc_sockaddr,
1377 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1378 	.pru_close =		uipc_close,
1379 };
1380 
1381 static struct pr_usrreqs uipc_usrreqs_stream = {
1382 	.pru_abort = 		uipc_abort,
1383 	.pru_accept =		uipc_accept,
1384 	.pru_attach =		uipc_attach,
1385 	.pru_bind =		uipc_bind,
1386 	.pru_bindat =		uipc_bindat,
1387 	.pru_connect =		uipc_connect,
1388 	.pru_connectat =	uipc_connectat,
1389 	.pru_connect2 =		uipc_connect2,
1390 	.pru_detach =		uipc_detach,
1391 	.pru_disconnect =	uipc_disconnect,
1392 	.pru_listen =		uipc_listen,
1393 	.pru_peeraddr =		uipc_peeraddr,
1394 	.pru_rcvd =		uipc_rcvd,
1395 	.pru_send =		uipc_send,
1396 	.pru_ready =		uipc_ready,
1397 	.pru_sense =		uipc_sense,
1398 	.pru_shutdown =		uipc_shutdown,
1399 	.pru_sockaddr =		uipc_sockaddr,
1400 	.pru_soreceive =	soreceive_generic,
1401 	.pru_close =		uipc_close,
1402 };
1403 
1404 static int
1405 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1406 {
1407 	struct unpcb *unp;
1408 	struct xucred xu;
1409 	int error, optval;
1410 
1411 	if (sopt->sopt_level != 0)
1412 		return (EINVAL);
1413 
1414 	unp = sotounpcb(so);
1415 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1416 	error = 0;
1417 	switch (sopt->sopt_dir) {
1418 	case SOPT_GET:
1419 		switch (sopt->sopt_name) {
1420 		case LOCAL_PEERCRED:
1421 			UNP_PCB_LOCK(unp);
1422 			if (unp->unp_flags & UNP_HAVEPC)
1423 				xu = unp->unp_peercred;
1424 			else {
1425 				if (so->so_type == SOCK_STREAM)
1426 					error = ENOTCONN;
1427 				else
1428 					error = EINVAL;
1429 			}
1430 			UNP_PCB_UNLOCK(unp);
1431 			if (error == 0)
1432 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1433 			break;
1434 
1435 		case LOCAL_CREDS:
1436 			/* Unlocked read. */
1437 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1438 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1439 			break;
1440 
1441 		case LOCAL_CONNWAIT:
1442 			/* Unlocked read. */
1443 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1444 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1445 			break;
1446 
1447 		default:
1448 			error = EOPNOTSUPP;
1449 			break;
1450 		}
1451 		break;
1452 
1453 	case SOPT_SET:
1454 		switch (sopt->sopt_name) {
1455 		case LOCAL_CREDS:
1456 		case LOCAL_CONNWAIT:
1457 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1458 					    sizeof(optval));
1459 			if (error)
1460 				break;
1461 
1462 #define	OPTSET(bit) do {						\
1463 	UNP_PCB_LOCK(unp);						\
1464 	if (optval)							\
1465 		unp->unp_flags |= bit;					\
1466 	else								\
1467 		unp->unp_flags &= ~bit;					\
1468 	UNP_PCB_UNLOCK(unp);						\
1469 } while (0)
1470 
1471 			switch (sopt->sopt_name) {
1472 			case LOCAL_CREDS:
1473 				OPTSET(UNP_WANTCRED);
1474 				break;
1475 
1476 			case LOCAL_CONNWAIT:
1477 				OPTSET(UNP_CONNWAIT);
1478 				break;
1479 
1480 			default:
1481 				break;
1482 			}
1483 			break;
1484 #undef	OPTSET
1485 		default:
1486 			error = ENOPROTOOPT;
1487 			break;
1488 		}
1489 		break;
1490 
1491 	default:
1492 		error = EOPNOTSUPP;
1493 		break;
1494 	}
1495 	return (error);
1496 }
1497 
1498 static int
1499 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1500 {
1501 
1502 	return (unp_connectat(AT_FDCWD, so, nam, td));
1503 }
1504 
1505 static int
1506 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1507     struct thread *td)
1508 {
1509 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1510 	struct vnode *vp;
1511 	struct socket *so2;
1512 	struct unpcb *unp, *unp2, *unp3;
1513 	struct nameidata nd;
1514 	char buf[SOCK_MAXADDRLEN];
1515 	struct sockaddr *sa;
1516 	cap_rights_t rights;
1517 	int error, len, freed;
1518 	struct mtx *vplock;
1519 
1520 	if (nam->sa_family != AF_UNIX)
1521 		return (EAFNOSUPPORT);
1522 	if (nam->sa_len > sizeof(struct sockaddr_un))
1523 		return (EINVAL);
1524 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1525 	if (len <= 0)
1526 		return (EINVAL);
1527 	bcopy(soun->sun_path, buf, len);
1528 	buf[len] = 0;
1529 
1530 	unp = sotounpcb(so);
1531 	UNP_PCB_LOCK(unp);
1532 	if (unp->unp_flags & UNP_CONNECTING) {
1533 		UNP_PCB_UNLOCK(unp);
1534 		return (EALREADY);
1535 	}
1536 	unp->unp_flags |= UNP_CONNECTING;
1537 	UNP_PCB_UNLOCK(unp);
1538 
1539 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1540 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1541 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1542 	error = namei(&nd);
1543 	if (error)
1544 		vp = NULL;
1545 	else
1546 		vp = nd.ni_vp;
1547 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1548 	NDFREE(&nd, NDF_ONLY_PNBUF);
1549 	if (error)
1550 		goto bad;
1551 
1552 	if (vp->v_type != VSOCK) {
1553 		error = ENOTSOCK;
1554 		goto bad;
1555 	}
1556 #ifdef MAC
1557 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1558 	if (error)
1559 		goto bad;
1560 #endif
1561 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1562 	if (error)
1563 		goto bad;
1564 
1565 	unp = sotounpcb(so);
1566 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1567 
1568 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1569 	mtx_lock(vplock);
1570 	VOP_UNP_CONNECT(vp, &unp2);
1571 	if (unp2 == NULL) {
1572 		error = ECONNREFUSED;
1573 		goto bad2;
1574 	}
1575 	so2 = unp2->unp_socket;
1576 	if (so->so_type != so2->so_type) {
1577 		error = EPROTOTYPE;
1578 		goto bad2;
1579 	}
1580 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1581 		if (so2->so_options & SO_ACCEPTCONN) {
1582 			CURVNET_SET(so2->so_vnet);
1583 			so2 = sonewconn(so2, 0);
1584 			CURVNET_RESTORE();
1585 		} else
1586 			so2 = NULL;
1587 		if (so2 == NULL) {
1588 			error = ECONNREFUSED;
1589 			goto bad2;
1590 		}
1591 		unp3 = sotounpcb(so2);
1592 		unp_pcb_lock2(unp2, unp3);
1593 		if (unp2->unp_addr != NULL) {
1594 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1595 			unp3->unp_addr = (struct sockaddr_un *) sa;
1596 			sa = NULL;
1597 		}
1598 
1599 		unp_copy_peercred(td, unp3, unp, unp2);
1600 
1601 		UNP_PCB_UNLOCK(unp2);
1602 		unp2 = unp3;
1603 		unp_pcb_owned_lock2(unp2, unp, freed);
1604 		if (__predict_false(freed)) {
1605 			UNP_PCB_UNLOCK(unp2);
1606 			error = ECONNREFUSED;
1607 			goto bad2;
1608 		}
1609 #ifdef MAC
1610 		mac_socketpeer_set_from_socket(so, so2);
1611 		mac_socketpeer_set_from_socket(so2, so);
1612 #endif
1613 	} else {
1614 		if (unp == unp2)
1615 			UNP_PCB_LOCK(unp);
1616 		else
1617 			unp_pcb_lock2(unp, unp2);
1618 	}
1619 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1620 	    sotounpcb(so2) == unp2,
1621 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1622 	error = unp_connect2(so, so2, PRU_CONNECT);
1623 	if (unp != unp2)
1624 		UNP_PCB_UNLOCK(unp2);
1625 	UNP_PCB_UNLOCK(unp);
1626 bad2:
1627 	mtx_unlock(vplock);
1628 bad:
1629 	if (vp != NULL) {
1630 		vput(vp);
1631 	}
1632 	free(sa, M_SONAME);
1633 	UNP_PCB_LOCK(unp);
1634 	unp->unp_flags &= ~UNP_CONNECTING;
1635 	UNP_PCB_UNLOCK(unp);
1636 	return (error);
1637 }
1638 
1639 /*
1640  * Set socket peer credentials at connection time.
1641  *
1642  * The client's PCB credentials are copied from its process structure.  The
1643  * server's PCB credentials are copied from the socket on which it called
1644  * listen(2).  uipc_listen cached that process's credentials at the time.
1645  */
1646 void
1647 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1648     struct unpcb *server_unp, struct unpcb *listen_unp)
1649 {
1650 	cru2xt(td, &client_unp->unp_peercred);
1651 	client_unp->unp_flags |= UNP_HAVEPC;
1652 
1653 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1654 	    sizeof(server_unp->unp_peercred));
1655 	server_unp->unp_flags |= UNP_HAVEPC;
1656 	if (listen_unp->unp_flags & UNP_WANTCRED)
1657 		client_unp->unp_flags |= UNP_WANTCRED;
1658 }
1659 
1660 static int
1661 unp_connect2(struct socket *so, struct socket *so2, int req)
1662 {
1663 	struct unpcb *unp;
1664 	struct unpcb *unp2;
1665 
1666 	unp = sotounpcb(so);
1667 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1668 	unp2 = sotounpcb(so2);
1669 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1670 
1671 	UNP_PCB_LOCK_ASSERT(unp);
1672 	UNP_PCB_LOCK_ASSERT(unp2);
1673 
1674 	if (so2->so_type != so->so_type)
1675 		return (EPROTOTYPE);
1676 	unp->unp_conn = unp2;
1677 	unp_pcb_hold(unp2);
1678 	unp_pcb_hold(unp);
1679 	switch (so->so_type) {
1680 	case SOCK_DGRAM:
1681 		UNP_REF_LIST_LOCK();
1682 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1683 		UNP_REF_LIST_UNLOCK();
1684 		soisconnected(so);
1685 		break;
1686 
1687 	case SOCK_STREAM:
1688 	case SOCK_SEQPACKET:
1689 		unp2->unp_conn = unp;
1690 		if (req == PRU_CONNECT &&
1691 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1692 			soisconnecting(so);
1693 		else
1694 			soisconnected(so);
1695 		soisconnected(so2);
1696 		break;
1697 
1698 	default:
1699 		panic("unp_connect2");
1700 	}
1701 	return (0);
1702 }
1703 
1704 static void
1705 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1706 {
1707 	struct socket *so, *so2;
1708 	int freed __unused;
1709 
1710 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1711 
1712 	UNP_PCB_LOCK_ASSERT(unp);
1713 	UNP_PCB_LOCK_ASSERT(unp2);
1714 
1715 	if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1716 		return;
1717 
1718 	MPASS(unp->unp_conn == unp2);
1719 	unp->unp_conn = NULL;
1720 	so = unp->unp_socket;
1721 	so2 = unp2->unp_socket;
1722 	switch (unp->unp_socket->so_type) {
1723 	case SOCK_DGRAM:
1724 		UNP_REF_LIST_LOCK();
1725 		LIST_REMOVE(unp, unp_reflink);
1726 		UNP_REF_LIST_UNLOCK();
1727 		if (so) {
1728 			SOCK_LOCK(so);
1729 			so->so_state &= ~SS_ISCONNECTED;
1730 			SOCK_UNLOCK(so);
1731 		}
1732 		break;
1733 
1734 	case SOCK_STREAM:
1735 	case SOCK_SEQPACKET:
1736 		if (so)
1737 			soisdisconnected(so);
1738 		MPASS(unp2->unp_conn == unp);
1739 		unp2->unp_conn = NULL;
1740 		if (so2)
1741 			soisdisconnected(so2);
1742 		break;
1743 	}
1744 	freed = unp_pcb_rele(unp);
1745 	MPASS(freed == 0);
1746 	freed = unp_pcb_rele(unp2);
1747 	MPASS(freed == 0);
1748 }
1749 
1750 /*
1751  * unp_pcblist() walks the global list of struct unpcb's to generate a
1752  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1753  * sequentially, validating the generation number on each to see if it has
1754  * been detached.  All of this is necessary because copyout() may sleep on
1755  * disk I/O.
1756  */
1757 static int
1758 unp_pcblist(SYSCTL_HANDLER_ARGS)
1759 {
1760 	struct unpcb *unp, **unp_list;
1761 	unp_gen_t gencnt;
1762 	struct xunpgen *xug;
1763 	struct unp_head *head;
1764 	struct xunpcb *xu;
1765 	u_int i;
1766 	int error, freeunp, n;
1767 
1768 	switch ((intptr_t)arg1) {
1769 	case SOCK_STREAM:
1770 		head = &unp_shead;
1771 		break;
1772 
1773 	case SOCK_DGRAM:
1774 		head = &unp_dhead;
1775 		break;
1776 
1777 	case SOCK_SEQPACKET:
1778 		head = &unp_sphead;
1779 		break;
1780 
1781 	default:
1782 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1783 	}
1784 
1785 	/*
1786 	 * The process of preparing the PCB list is too time-consuming and
1787 	 * resource-intensive to repeat twice on every request.
1788 	 */
1789 	if (req->oldptr == NULL) {
1790 		n = unp_count;
1791 		req->oldidx = 2 * (sizeof *xug)
1792 			+ (n + n/8) * sizeof(struct xunpcb);
1793 		return (0);
1794 	}
1795 
1796 	if (req->newptr != NULL)
1797 		return (EPERM);
1798 
1799 	/*
1800 	 * OK, now we're committed to doing something.
1801 	 */
1802 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1803 	UNP_LINK_RLOCK();
1804 	gencnt = unp_gencnt;
1805 	n = unp_count;
1806 	UNP_LINK_RUNLOCK();
1807 
1808 	xug->xug_len = sizeof *xug;
1809 	xug->xug_count = n;
1810 	xug->xug_gen = gencnt;
1811 	xug->xug_sogen = so_gencnt;
1812 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1813 	if (error) {
1814 		free(xug, M_TEMP);
1815 		return (error);
1816 	}
1817 
1818 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1819 
1820 	UNP_LINK_RLOCK();
1821 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1822 	     unp = LIST_NEXT(unp, unp_link)) {
1823 		UNP_PCB_LOCK(unp);
1824 		if (unp->unp_gencnt <= gencnt) {
1825 			if (cr_cansee(req->td->td_ucred,
1826 			    unp->unp_socket->so_cred)) {
1827 				UNP_PCB_UNLOCK(unp);
1828 				continue;
1829 			}
1830 			unp_list[i++] = unp;
1831 			unp_pcb_hold(unp);
1832 		}
1833 		UNP_PCB_UNLOCK(unp);
1834 	}
1835 	UNP_LINK_RUNLOCK();
1836 	n = i;			/* In case we lost some during malloc. */
1837 
1838 	error = 0;
1839 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1840 	for (i = 0; i < n; i++) {
1841 		unp = unp_list[i];
1842 		UNP_PCB_LOCK(unp);
1843 		freeunp = unp_pcb_rele(unp);
1844 
1845 		if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1846 			xu->xu_len = sizeof *xu;
1847 			xu->xu_unpp = (uintptr_t)unp;
1848 			/*
1849 			 * XXX - need more locking here to protect against
1850 			 * connect/disconnect races for SMP.
1851 			 */
1852 			if (unp->unp_addr != NULL)
1853 				bcopy(unp->unp_addr, &xu->xu_addr,
1854 				      unp->unp_addr->sun_len);
1855 			else
1856 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1857 			if (unp->unp_conn != NULL &&
1858 			    unp->unp_conn->unp_addr != NULL)
1859 				bcopy(unp->unp_conn->unp_addr,
1860 				      &xu->xu_caddr,
1861 				      unp->unp_conn->unp_addr->sun_len);
1862 			else
1863 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1864 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1865 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1866 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1867 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1868 			xu->unp_gencnt = unp->unp_gencnt;
1869 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1870 			UNP_PCB_UNLOCK(unp);
1871 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1872 		} else  if (freeunp == 0)
1873 			UNP_PCB_UNLOCK(unp);
1874 	}
1875 	free(xu, M_TEMP);
1876 	if (!error) {
1877 		/*
1878 		 * Give the user an updated idea of our state.  If the
1879 		 * generation differs from what we told her before, she knows
1880 		 * that something happened while we were processing this
1881 		 * request, and it might be necessary to retry.
1882 		 */
1883 		xug->xug_gen = unp_gencnt;
1884 		xug->xug_sogen = so_gencnt;
1885 		xug->xug_count = unp_count;
1886 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1887 	}
1888 	free(unp_list, M_TEMP);
1889 	free(xug, M_TEMP);
1890 	return (error);
1891 }
1892 
1893 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1894     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1895     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1896     "List of active local datagram sockets");
1897 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1898     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1899     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1900     "List of active local stream sockets");
1901 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1902     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1903     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1904     "List of active local seqpacket sockets");
1905 
1906 static void
1907 unp_shutdown(struct unpcb *unp)
1908 {
1909 	struct unpcb *unp2;
1910 	struct socket *so;
1911 
1912 	UNP_PCB_LOCK_ASSERT(unp);
1913 
1914 	unp2 = unp->unp_conn;
1915 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1916 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1917 		so = unp2->unp_socket;
1918 		if (so != NULL)
1919 			socantrcvmore(so);
1920 	}
1921 }
1922 
1923 static void
1924 unp_drop(struct unpcb *unp)
1925 {
1926 	struct socket *so = unp->unp_socket;
1927 	struct unpcb *unp2;
1928 	int freed;
1929 
1930 	/*
1931 	 * Regardless of whether the socket's peer dropped the connection
1932 	 * with this socket by aborting or disconnecting, POSIX requires
1933 	 * that ECONNRESET is returned.
1934 	 */
1935 	/* acquire a reference so that unp isn't freed from underneath us */
1936 
1937 	UNP_PCB_LOCK(unp);
1938 	if (so)
1939 		so->so_error = ECONNRESET;
1940 	unp2 = unp->unp_conn;
1941 	if (unp2 == unp) {
1942 		unp_disconnect(unp, unp2);
1943 	} else if (unp2 != NULL) {
1944 		unp_pcb_hold(unp2);
1945 		unp_pcb_owned_lock2(unp, unp2, freed);
1946 		unp_disconnect(unp, unp2);
1947 		if (unp_pcb_rele(unp2) == 0)
1948 			UNP_PCB_UNLOCK(unp2);
1949 	}
1950 	if (unp_pcb_rele(unp) == 0)
1951 		UNP_PCB_UNLOCK(unp);
1952 }
1953 
1954 static void
1955 unp_freerights(struct filedescent **fdep, int fdcount)
1956 {
1957 	struct file *fp;
1958 	int i;
1959 
1960 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1961 
1962 	for (i = 0; i < fdcount; i++) {
1963 		fp = fdep[i]->fde_file;
1964 		filecaps_free(&fdep[i]->fde_caps);
1965 		unp_discard(fp);
1966 	}
1967 	free(fdep[0], M_FILECAPS);
1968 }
1969 
1970 static int
1971 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1972 {
1973 	struct thread *td = curthread;		/* XXX */
1974 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1975 	int i;
1976 	int *fdp;
1977 	struct filedesc *fdesc = td->td_proc->p_fd;
1978 	struct filedescent **fdep;
1979 	void *data;
1980 	socklen_t clen = control->m_len, datalen;
1981 	int error, newfds;
1982 	u_int newlen;
1983 
1984 	UNP_LINK_UNLOCK_ASSERT();
1985 
1986 	error = 0;
1987 	if (controlp != NULL) /* controlp == NULL => free control messages */
1988 		*controlp = NULL;
1989 	while (cm != NULL) {
1990 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1991 			error = EINVAL;
1992 			break;
1993 		}
1994 		data = CMSG_DATA(cm);
1995 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1996 		if (cm->cmsg_level == SOL_SOCKET
1997 		    && cm->cmsg_type == SCM_RIGHTS) {
1998 			newfds = datalen / sizeof(*fdep);
1999 			if (newfds == 0)
2000 				goto next;
2001 			fdep = data;
2002 
2003 			/* If we're not outputting the descriptors free them. */
2004 			if (error || controlp == NULL) {
2005 				unp_freerights(fdep, newfds);
2006 				goto next;
2007 			}
2008 			FILEDESC_XLOCK(fdesc);
2009 
2010 			/*
2011 			 * Now change each pointer to an fd in the global
2012 			 * table to an integer that is the index to the local
2013 			 * fd table entry that we set up to point to the
2014 			 * global one we are transferring.
2015 			 */
2016 			newlen = newfds * sizeof(int);
2017 			*controlp = sbcreatecontrol(NULL, newlen,
2018 			    SCM_RIGHTS, SOL_SOCKET);
2019 			if (*controlp == NULL) {
2020 				FILEDESC_XUNLOCK(fdesc);
2021 				error = E2BIG;
2022 				unp_freerights(fdep, newfds);
2023 				goto next;
2024 			}
2025 
2026 			fdp = (int *)
2027 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2028 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2029 				FILEDESC_XUNLOCK(fdesc);
2030 				error = EMSGSIZE;
2031 				unp_freerights(fdep, newfds);
2032 				m_freem(*controlp);
2033 				*controlp = NULL;
2034 				goto next;
2035 			}
2036 			for (i = 0; i < newfds; i++, fdp++) {
2037 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2038 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2039 				    &fdep[i]->fde_caps);
2040 				unp_externalize_fp(fdep[i]->fde_file);
2041 			}
2042 
2043 			/*
2044 			 * The new type indicates that the mbuf data refers to
2045 			 * kernel resources that may need to be released before
2046 			 * the mbuf is freed.
2047 			 */
2048 			m_chtype(*controlp, MT_EXTCONTROL);
2049 			FILEDESC_XUNLOCK(fdesc);
2050 			free(fdep[0], M_FILECAPS);
2051 		} else {
2052 			/* We can just copy anything else across. */
2053 			if (error || controlp == NULL)
2054 				goto next;
2055 			*controlp = sbcreatecontrol(NULL, datalen,
2056 			    cm->cmsg_type, cm->cmsg_level);
2057 			if (*controlp == NULL) {
2058 				error = ENOBUFS;
2059 				goto next;
2060 			}
2061 			bcopy(data,
2062 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2063 			    datalen);
2064 		}
2065 		controlp = &(*controlp)->m_next;
2066 
2067 next:
2068 		if (CMSG_SPACE(datalen) < clen) {
2069 			clen -= CMSG_SPACE(datalen);
2070 			cm = (struct cmsghdr *)
2071 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2072 		} else {
2073 			clen = 0;
2074 			cm = NULL;
2075 		}
2076 	}
2077 
2078 	m_freem(control);
2079 	return (error);
2080 }
2081 
2082 static void
2083 unp_zone_change(void *tag)
2084 {
2085 
2086 	uma_zone_set_max(unp_zone, maxsockets);
2087 }
2088 
2089 static void
2090 unp_init(void)
2091 {
2092 
2093 #ifdef VIMAGE
2094 	if (!IS_DEFAULT_VNET(curvnet))
2095 		return;
2096 #endif
2097 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2098 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2099 	if (unp_zone == NULL)
2100 		panic("unp_init");
2101 	uma_zone_set_max(unp_zone, maxsockets);
2102 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2103 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2104 	    NULL, EVENTHANDLER_PRI_ANY);
2105 	LIST_INIT(&unp_dhead);
2106 	LIST_INIT(&unp_shead);
2107 	LIST_INIT(&unp_sphead);
2108 	SLIST_INIT(&unp_defers);
2109 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2110 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2111 	UNP_LINK_LOCK_INIT();
2112 	UNP_DEFERRED_LOCK_INIT();
2113 }
2114 
2115 static void
2116 unp_internalize_cleanup_rights(struct mbuf *control)
2117 {
2118 	struct cmsghdr *cp;
2119 	struct mbuf *m;
2120 	void *data;
2121 	socklen_t datalen;
2122 
2123 	for (m = control; m != NULL; m = m->m_next) {
2124 		cp = mtod(m, struct cmsghdr *);
2125 		if (cp->cmsg_level != SOL_SOCKET ||
2126 		    cp->cmsg_type != SCM_RIGHTS)
2127 			continue;
2128 		data = CMSG_DATA(cp);
2129 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2130 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2131 	}
2132 }
2133 
2134 static int
2135 unp_internalize(struct mbuf **controlp, struct thread *td)
2136 {
2137 	struct mbuf *control, **initial_controlp;
2138 	struct proc *p;
2139 	struct filedesc *fdesc;
2140 	struct bintime *bt;
2141 	struct cmsghdr *cm;
2142 	struct cmsgcred *cmcred;
2143 	struct filedescent *fde, **fdep, *fdev;
2144 	struct file *fp;
2145 	struct timeval *tv;
2146 	struct timespec *ts;
2147 	void *data;
2148 	socklen_t clen, datalen;
2149 	int i, j, error, *fdp, oldfds;
2150 	u_int newlen;
2151 
2152 	UNP_LINK_UNLOCK_ASSERT();
2153 
2154 	p = td->td_proc;
2155 	fdesc = p->p_fd;
2156 	error = 0;
2157 	control = *controlp;
2158 	clen = control->m_len;
2159 	*controlp = NULL;
2160 	initial_controlp = controlp;
2161 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2162 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2163 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2164 			error = EINVAL;
2165 			goto out;
2166 		}
2167 		data = CMSG_DATA(cm);
2168 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2169 
2170 		switch (cm->cmsg_type) {
2171 		/*
2172 		 * Fill in credential information.
2173 		 */
2174 		case SCM_CREDS:
2175 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2176 			    SCM_CREDS, SOL_SOCKET);
2177 			if (*controlp == NULL) {
2178 				error = ENOBUFS;
2179 				goto out;
2180 			}
2181 			cmcred = (struct cmsgcred *)
2182 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2183 			cmcred->cmcred_pid = p->p_pid;
2184 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2185 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2186 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2187 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2188 			    CMGROUP_MAX);
2189 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2190 				cmcred->cmcred_groups[i] =
2191 				    td->td_ucred->cr_groups[i];
2192 			break;
2193 
2194 		case SCM_RIGHTS:
2195 			oldfds = datalen / sizeof (int);
2196 			if (oldfds == 0)
2197 				break;
2198 			/*
2199 			 * Check that all the FDs passed in refer to legal
2200 			 * files.  If not, reject the entire operation.
2201 			 */
2202 			fdp = data;
2203 			FILEDESC_SLOCK(fdesc);
2204 			for (i = 0; i < oldfds; i++, fdp++) {
2205 				fp = fget_locked(fdesc, *fdp);
2206 				if (fp == NULL) {
2207 					FILEDESC_SUNLOCK(fdesc);
2208 					error = EBADF;
2209 					goto out;
2210 				}
2211 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2212 					FILEDESC_SUNLOCK(fdesc);
2213 					error = EOPNOTSUPP;
2214 					goto out;
2215 				}
2216 
2217 			}
2218 
2219 			/*
2220 			 * Now replace the integer FDs with pointers to the
2221 			 * file structure and capability rights.
2222 			 */
2223 			newlen = oldfds * sizeof(fdep[0]);
2224 			*controlp = sbcreatecontrol(NULL, newlen,
2225 			    SCM_RIGHTS, SOL_SOCKET);
2226 			if (*controlp == NULL) {
2227 				FILEDESC_SUNLOCK(fdesc);
2228 				error = E2BIG;
2229 				goto out;
2230 			}
2231 			fdp = data;
2232 			for (i = 0; i < oldfds; i++, fdp++) {
2233 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2234 					fdp = data;
2235 					for (j = 0; j < i; j++, fdp++) {
2236 						fdrop(fdesc->fd_ofiles[*fdp].
2237 						    fde_file, td);
2238 					}
2239 					FILEDESC_SUNLOCK(fdesc);
2240 					error = EBADF;
2241 					goto out;
2242 				}
2243 			}
2244 			fdp = data;
2245 			fdep = (struct filedescent **)
2246 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2247 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2248 			    M_WAITOK);
2249 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2250 				fde = &fdesc->fd_ofiles[*fdp];
2251 				fdep[i] = fdev;
2252 				fdep[i]->fde_file = fde->fde_file;
2253 				filecaps_copy(&fde->fde_caps,
2254 				    &fdep[i]->fde_caps, true);
2255 				unp_internalize_fp(fdep[i]->fde_file);
2256 			}
2257 			FILEDESC_SUNLOCK(fdesc);
2258 			break;
2259 
2260 		case SCM_TIMESTAMP:
2261 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2262 			    SCM_TIMESTAMP, SOL_SOCKET);
2263 			if (*controlp == NULL) {
2264 				error = ENOBUFS;
2265 				goto out;
2266 			}
2267 			tv = (struct timeval *)
2268 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2269 			microtime(tv);
2270 			break;
2271 
2272 		case SCM_BINTIME:
2273 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2274 			    SCM_BINTIME, SOL_SOCKET);
2275 			if (*controlp == NULL) {
2276 				error = ENOBUFS;
2277 				goto out;
2278 			}
2279 			bt = (struct bintime *)
2280 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2281 			bintime(bt);
2282 			break;
2283 
2284 		case SCM_REALTIME:
2285 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2286 			    SCM_REALTIME, SOL_SOCKET);
2287 			if (*controlp == NULL) {
2288 				error = ENOBUFS;
2289 				goto out;
2290 			}
2291 			ts = (struct timespec *)
2292 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2293 			nanotime(ts);
2294 			break;
2295 
2296 		case SCM_MONOTONIC:
2297 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2298 			    SCM_MONOTONIC, SOL_SOCKET);
2299 			if (*controlp == NULL) {
2300 				error = ENOBUFS;
2301 				goto out;
2302 			}
2303 			ts = (struct timespec *)
2304 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2305 			nanouptime(ts);
2306 			break;
2307 
2308 		default:
2309 			error = EINVAL;
2310 			goto out;
2311 		}
2312 
2313 		if (*controlp != NULL)
2314 			controlp = &(*controlp)->m_next;
2315 		if (CMSG_SPACE(datalen) < clen) {
2316 			clen -= CMSG_SPACE(datalen);
2317 			cm = (struct cmsghdr *)
2318 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2319 		} else {
2320 			clen = 0;
2321 			cm = NULL;
2322 		}
2323 	}
2324 
2325 out:
2326 	if (error != 0 && initial_controlp != NULL)
2327 		unp_internalize_cleanup_rights(*initial_controlp);
2328 	m_freem(control);
2329 	return (error);
2330 }
2331 
2332 static struct mbuf *
2333 unp_addsockcred(struct thread *td, struct mbuf *control)
2334 {
2335 	struct mbuf *m, *n, *n_prev;
2336 	struct sockcred *sc;
2337 	const struct cmsghdr *cm;
2338 	int ngroups;
2339 	int i;
2340 
2341 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2342 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2343 	if (m == NULL)
2344 		return (control);
2345 
2346 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2347 	sc->sc_uid = td->td_ucred->cr_ruid;
2348 	sc->sc_euid = td->td_ucred->cr_uid;
2349 	sc->sc_gid = td->td_ucred->cr_rgid;
2350 	sc->sc_egid = td->td_ucred->cr_gid;
2351 	sc->sc_ngroups = ngroups;
2352 	for (i = 0; i < sc->sc_ngroups; i++)
2353 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2354 
2355 	/*
2356 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2357 	 * created SCM_CREDS control message (struct sockcred) has another
2358 	 * format.
2359 	 */
2360 	if (control != NULL)
2361 		for (n = control, n_prev = NULL; n != NULL;) {
2362 			cm = mtod(n, struct cmsghdr *);
2363     			if (cm->cmsg_level == SOL_SOCKET &&
2364 			    cm->cmsg_type == SCM_CREDS) {
2365     				if (n_prev == NULL)
2366 					control = n->m_next;
2367 				else
2368 					n_prev->m_next = n->m_next;
2369 				n = m_free(n);
2370 			} else {
2371 				n_prev = n;
2372 				n = n->m_next;
2373 			}
2374 		}
2375 
2376 	/* Prepend it to the head. */
2377 	m->m_next = control;
2378 	return (m);
2379 }
2380 
2381 static struct unpcb *
2382 fptounp(struct file *fp)
2383 {
2384 	struct socket *so;
2385 
2386 	if (fp->f_type != DTYPE_SOCKET)
2387 		return (NULL);
2388 	if ((so = fp->f_data) == NULL)
2389 		return (NULL);
2390 	if (so->so_proto->pr_domain != &localdomain)
2391 		return (NULL);
2392 	return sotounpcb(so);
2393 }
2394 
2395 static void
2396 unp_discard(struct file *fp)
2397 {
2398 	struct unp_defer *dr;
2399 
2400 	if (unp_externalize_fp(fp)) {
2401 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2402 		dr->ud_fp = fp;
2403 		UNP_DEFERRED_LOCK();
2404 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2405 		UNP_DEFERRED_UNLOCK();
2406 		atomic_add_int(&unp_defers_count, 1);
2407 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2408 	} else
2409 		(void) closef(fp, (struct thread *)NULL);
2410 }
2411 
2412 static void
2413 unp_process_defers(void *arg __unused, int pending)
2414 {
2415 	struct unp_defer *dr;
2416 	SLIST_HEAD(, unp_defer) drl;
2417 	int count;
2418 
2419 	SLIST_INIT(&drl);
2420 	for (;;) {
2421 		UNP_DEFERRED_LOCK();
2422 		if (SLIST_FIRST(&unp_defers) == NULL) {
2423 			UNP_DEFERRED_UNLOCK();
2424 			break;
2425 		}
2426 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2427 		UNP_DEFERRED_UNLOCK();
2428 		count = 0;
2429 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2430 			SLIST_REMOVE_HEAD(&drl, ud_link);
2431 			closef(dr->ud_fp, NULL);
2432 			free(dr, M_TEMP);
2433 			count++;
2434 		}
2435 		atomic_add_int(&unp_defers_count, -count);
2436 	}
2437 }
2438 
2439 static void
2440 unp_internalize_fp(struct file *fp)
2441 {
2442 	struct unpcb *unp;
2443 
2444 	UNP_LINK_WLOCK();
2445 	if ((unp = fptounp(fp)) != NULL) {
2446 		unp->unp_file = fp;
2447 		unp->unp_msgcount++;
2448 	}
2449 	unp_rights++;
2450 	UNP_LINK_WUNLOCK();
2451 }
2452 
2453 static int
2454 unp_externalize_fp(struct file *fp)
2455 {
2456 	struct unpcb *unp;
2457 	int ret;
2458 
2459 	UNP_LINK_WLOCK();
2460 	if ((unp = fptounp(fp)) != NULL) {
2461 		unp->unp_msgcount--;
2462 		ret = 1;
2463 	} else
2464 		ret = 0;
2465 	unp_rights--;
2466 	UNP_LINK_WUNLOCK();
2467 	return (ret);
2468 }
2469 
2470 /*
2471  * unp_defer indicates whether additional work has been defered for a future
2472  * pass through unp_gc().  It is thread local and does not require explicit
2473  * synchronization.
2474  */
2475 static int	unp_marked;
2476 
2477 static void
2478 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2479 {
2480 	struct unpcb *unp;
2481 	struct file *fp;
2482 	int i;
2483 
2484 	/*
2485 	 * This function can only be called from the gc task.
2486 	 */
2487 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2488 	    ("%s: not on gc callout", __func__));
2489 	UNP_LINK_LOCK_ASSERT();
2490 
2491 	for (i = 0; i < fdcount; i++) {
2492 		fp = fdep[i]->fde_file;
2493 		if ((unp = fptounp(fp)) == NULL)
2494 			continue;
2495 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2496 			continue;
2497 		unp->unp_gcrefs--;
2498 	}
2499 }
2500 
2501 static void
2502 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2503 {
2504 	struct unpcb *unp;
2505 	struct file *fp;
2506 	int i;
2507 
2508 	/*
2509 	 * This function can only be called from the gc task.
2510 	 */
2511 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2512 	    ("%s: not on gc callout", __func__));
2513 	UNP_LINK_LOCK_ASSERT();
2514 
2515 	for (i = 0; i < fdcount; i++) {
2516 		fp = fdep[i]->fde_file;
2517 		if ((unp = fptounp(fp)) == NULL)
2518 			continue;
2519 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2520 			continue;
2521 		unp->unp_gcrefs++;
2522 		unp_marked++;
2523 	}
2524 }
2525 
2526 static void
2527 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2528 {
2529 	struct socket *so, *soa;
2530 
2531 	so = unp->unp_socket;
2532 	SOCK_LOCK(so);
2533 	if (SOLISTENING(so)) {
2534 		/*
2535 		 * Mark all sockets in our accept queue.
2536 		 */
2537 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2538 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2539 				continue;
2540 			SOCKBUF_LOCK(&soa->so_rcv);
2541 			unp_scan(soa->so_rcv.sb_mb, op);
2542 			SOCKBUF_UNLOCK(&soa->so_rcv);
2543 		}
2544 	} else {
2545 		/*
2546 		 * Mark all sockets we reference with RIGHTS.
2547 		 */
2548 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2549 			SOCKBUF_LOCK(&so->so_rcv);
2550 			unp_scan(so->so_rcv.sb_mb, op);
2551 			SOCKBUF_UNLOCK(&so->so_rcv);
2552 		}
2553 	}
2554 	SOCK_UNLOCK(so);
2555 }
2556 
2557 static int unp_recycled;
2558 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2559     "Number of unreachable sockets claimed by the garbage collector.");
2560 
2561 static int unp_taskcount;
2562 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2563     "Number of times the garbage collector has run.");
2564 
2565 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2566     "Number of active local sockets.");
2567 
2568 static void
2569 unp_gc(__unused void *arg, int pending)
2570 {
2571 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2572 				    NULL };
2573 	struct unp_head **head;
2574 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2575 	struct file *f, **unref;
2576 	struct unpcb *unp, *unptmp;
2577 	int i, total, unp_unreachable;
2578 
2579 	LIST_INIT(&unp_deadhead);
2580 	unp_taskcount++;
2581 	UNP_LINK_RLOCK();
2582 	/*
2583 	 * First determine which sockets may be in cycles.
2584 	 */
2585 	unp_unreachable = 0;
2586 
2587 	for (head = heads; *head != NULL; head++)
2588 		LIST_FOREACH(unp, *head, unp_link) {
2589 
2590 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2591 			    ("%s: unp %p has unexpected gc flags 0x%x",
2592 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2593 
2594 			f = unp->unp_file;
2595 
2596 			/*
2597 			 * Check for an unreachable socket potentially in a
2598 			 * cycle.  It must be in a queue as indicated by
2599 			 * msgcount, and this must equal the file reference
2600 			 * count.  Note that when msgcount is 0 the file is
2601 			 * NULL.
2602 			 */
2603 			if (f != NULL && unp->unp_msgcount != 0 &&
2604 			    f->f_count == unp->unp_msgcount) {
2605 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2606 				unp->unp_gcflag |= UNPGC_DEAD;
2607 				unp->unp_gcrefs = unp->unp_msgcount;
2608 				unp_unreachable++;
2609 			}
2610 		}
2611 
2612 	/*
2613 	 * Scan all sockets previously marked as potentially being in a cycle
2614 	 * and remove the references each socket holds on any UNPGC_DEAD
2615 	 * sockets in its queue.  After this step, all remaining references on
2616 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2617 	 */
2618 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2619 		unp_gc_scan(unp, unp_remove_dead_ref);
2620 
2621 	/*
2622 	 * If a socket still has a non-negative refcount, it cannot be in a
2623 	 * cycle.  In this case increment refcount of all children iteratively.
2624 	 * Stop the scan once we do a complete loop without discovering
2625 	 * a new reachable socket.
2626 	 */
2627 	do {
2628 		unp_marked = 0;
2629 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2630 			if (unp->unp_gcrefs > 0) {
2631 				unp->unp_gcflag &= ~UNPGC_DEAD;
2632 				LIST_REMOVE(unp, unp_dead);
2633 				KASSERT(unp_unreachable > 0,
2634 				    ("%s: unp_unreachable underflow.",
2635 				    __func__));
2636 				unp_unreachable--;
2637 				unp_gc_scan(unp, unp_restore_undead_ref);
2638 			}
2639 	} while (unp_marked);
2640 
2641 	UNP_LINK_RUNLOCK();
2642 
2643 	if (unp_unreachable == 0)
2644 		return;
2645 
2646 	/*
2647 	 * Allocate space for a local array of dead unpcbs.
2648 	 * TODO: can this path be simplified by instead using the local
2649 	 * dead list at unp_deadhead, after taking out references
2650 	 * on the file object and/or unpcb and dropping the link lock?
2651 	 */
2652 	unref = malloc(unp_unreachable * sizeof(struct file *),
2653 	    M_TEMP, M_WAITOK);
2654 
2655 	/*
2656 	 * Iterate looking for sockets which have been specifically marked
2657 	 * as unreachable and store them locally.
2658 	 */
2659 	UNP_LINK_RLOCK();
2660 	total = 0;
2661 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2662 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2663 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2664 		unp->unp_gcflag &= ~UNPGC_DEAD;
2665 		f = unp->unp_file;
2666 		if (unp->unp_msgcount == 0 || f == NULL ||
2667 		    f->f_count != unp->unp_msgcount ||
2668 		    !fhold(f))
2669 			continue;
2670 		unref[total++] = f;
2671 		KASSERT(total <= unp_unreachable,
2672 		    ("%s: incorrect unreachable count.", __func__));
2673 	}
2674 	UNP_LINK_RUNLOCK();
2675 
2676 	/*
2677 	 * Now flush all sockets, free'ing rights.  This will free the
2678 	 * struct files associated with these sockets but leave each socket
2679 	 * with one remaining ref.
2680 	 */
2681 	for (i = 0; i < total; i++) {
2682 		struct socket *so;
2683 
2684 		so = unref[i]->f_data;
2685 		CURVNET_SET(so->so_vnet);
2686 		sorflush(so);
2687 		CURVNET_RESTORE();
2688 	}
2689 
2690 	/*
2691 	 * And finally release the sockets so they can be reclaimed.
2692 	 */
2693 	for (i = 0; i < total; i++)
2694 		fdrop(unref[i], NULL);
2695 	unp_recycled += total;
2696 	free(unref, M_TEMP);
2697 }
2698 
2699 static void
2700 unp_dispose_mbuf(struct mbuf *m)
2701 {
2702 
2703 	if (m)
2704 		unp_scan(m, unp_freerights);
2705 }
2706 
2707 /*
2708  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2709  */
2710 static void
2711 unp_dispose(struct socket *so)
2712 {
2713 	struct unpcb *unp;
2714 
2715 	unp = sotounpcb(so);
2716 	UNP_LINK_WLOCK();
2717 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2718 	UNP_LINK_WUNLOCK();
2719 	if (!SOLISTENING(so))
2720 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2721 }
2722 
2723 static void
2724 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2725 {
2726 	struct mbuf *m;
2727 	struct cmsghdr *cm;
2728 	void *data;
2729 	socklen_t clen, datalen;
2730 
2731 	while (m0 != NULL) {
2732 		for (m = m0; m; m = m->m_next) {
2733 			if (m->m_type != MT_CONTROL)
2734 				continue;
2735 
2736 			cm = mtod(m, struct cmsghdr *);
2737 			clen = m->m_len;
2738 
2739 			while (cm != NULL) {
2740 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2741 					break;
2742 
2743 				data = CMSG_DATA(cm);
2744 				datalen = (caddr_t)cm + cm->cmsg_len
2745 				    - (caddr_t)data;
2746 
2747 				if (cm->cmsg_level == SOL_SOCKET &&
2748 				    cm->cmsg_type == SCM_RIGHTS) {
2749 					(*op)(data, datalen /
2750 					    sizeof(struct filedescent *));
2751 				}
2752 
2753 				if (CMSG_SPACE(datalen) < clen) {
2754 					clen -= CMSG_SPACE(datalen);
2755 					cm = (struct cmsghdr *)
2756 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2757 				} else {
2758 					clen = 0;
2759 					cm = NULL;
2760 				}
2761 			}
2762 		}
2763 		m0 = m0->m_nextpkt;
2764 	}
2765 }
2766 
2767 /*
2768  * A helper function called by VFS before socket-type vnode reclamation.
2769  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2770  * use count.
2771  */
2772 void
2773 vfs_unp_reclaim(struct vnode *vp)
2774 {
2775 	struct unpcb *unp;
2776 	int active;
2777 	struct mtx *vplock;
2778 
2779 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2780 	KASSERT(vp->v_type == VSOCK,
2781 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2782 
2783 	active = 0;
2784 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2785 	mtx_lock(vplock);
2786 	VOP_UNP_CONNECT(vp, &unp);
2787 	if (unp == NULL)
2788 		goto done;
2789 	UNP_PCB_LOCK(unp);
2790 	if (unp->unp_vnode == vp) {
2791 		VOP_UNP_DETACH(vp);
2792 		unp->unp_vnode = NULL;
2793 		active = 1;
2794 	}
2795 	UNP_PCB_UNLOCK(unp);
2796  done:
2797 	mtx_unlock(vplock);
2798 	if (active)
2799 		vunref(vp);
2800 }
2801 
2802 #ifdef DDB
2803 static void
2804 db_print_indent(int indent)
2805 {
2806 	int i;
2807 
2808 	for (i = 0; i < indent; i++)
2809 		db_printf(" ");
2810 }
2811 
2812 static void
2813 db_print_unpflags(int unp_flags)
2814 {
2815 	int comma;
2816 
2817 	comma = 0;
2818 	if (unp_flags & UNP_HAVEPC) {
2819 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2820 		comma = 1;
2821 	}
2822 	if (unp_flags & UNP_WANTCRED) {
2823 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2824 		comma = 1;
2825 	}
2826 	if (unp_flags & UNP_CONNWAIT) {
2827 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2828 		comma = 1;
2829 	}
2830 	if (unp_flags & UNP_CONNECTING) {
2831 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2832 		comma = 1;
2833 	}
2834 	if (unp_flags & UNP_BINDING) {
2835 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2836 		comma = 1;
2837 	}
2838 }
2839 
2840 static void
2841 db_print_xucred(int indent, struct xucred *xu)
2842 {
2843 	int comma, i;
2844 
2845 	db_print_indent(indent);
2846 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2847 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2848 	db_print_indent(indent);
2849 	db_printf("cr_groups: ");
2850 	comma = 0;
2851 	for (i = 0; i < xu->cr_ngroups; i++) {
2852 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2853 		comma = 1;
2854 	}
2855 	db_printf("\n");
2856 }
2857 
2858 static void
2859 db_print_unprefs(int indent, struct unp_head *uh)
2860 {
2861 	struct unpcb *unp;
2862 	int counter;
2863 
2864 	counter = 0;
2865 	LIST_FOREACH(unp, uh, unp_reflink) {
2866 		if (counter % 4 == 0)
2867 			db_print_indent(indent);
2868 		db_printf("%p  ", unp);
2869 		if (counter % 4 == 3)
2870 			db_printf("\n");
2871 		counter++;
2872 	}
2873 	if (counter != 0 && counter % 4 != 0)
2874 		db_printf("\n");
2875 }
2876 
2877 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2878 {
2879 	struct unpcb *unp;
2880 
2881         if (!have_addr) {
2882                 db_printf("usage: show unpcb <addr>\n");
2883                 return;
2884         }
2885         unp = (struct unpcb *)addr;
2886 
2887 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2888 	    unp->unp_vnode);
2889 
2890 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2891 	    unp->unp_conn);
2892 
2893 	db_printf("unp_refs:\n");
2894 	db_print_unprefs(2, &unp->unp_refs);
2895 
2896 	/* XXXRW: Would be nice to print the full address, if any. */
2897 	db_printf("unp_addr: %p\n", unp->unp_addr);
2898 
2899 	db_printf("unp_gencnt: %llu\n",
2900 	    (unsigned long long)unp->unp_gencnt);
2901 
2902 	db_printf("unp_flags: %x (", unp->unp_flags);
2903 	db_print_unpflags(unp->unp_flags);
2904 	db_printf(")\n");
2905 
2906 	db_printf("unp_peercred:\n");
2907 	db_print_xucred(2, &unp->unp_peercred);
2908 
2909 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2910 }
2911 #endif
2912