xref: /freebsd/sys/kern/uipc_usrreq.c (revision 0e97acdf58fe27b09c4824a474b0344daf997c5f)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * UNIX Domain (Local) Sockets
36  *
37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
40  * connected to 0, 1, or many other sockets.  Sockets may be created and
41  * connected in pairs (socketpair(2)), or bound/connected to using the file
42  * system name space.  For most purposes, only the receive socket buffer is
43  * used, as sending on one socket delivers directly to the receive socket
44  * buffer of a second socket.
45  *
46  * The implementation is substantially complicated by the fact that
47  * "ancillary data", such as file descriptors or credentials, may be passed
48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49  * over other UNIX domain sockets requires the implementation of a simple
50  * garbage collector to find and tear down cycles of disconnected sockets.
51  *
52  * TODO:
53  *	RDM
54  *	rethink name space problems
55  *	need a proper out-of-band
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #include "opt_ddb.h"
62 
63 #include <sys/param.h>
64 #include <sys/capsicum.h>
65 #include <sys/domain.h>
66 #include <sys/fcntl.h>
67 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68 #include <sys/eventhandler.h>
69 #include <sys/file.h>
70 #include <sys/filedesc.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/namei.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 MALLOC_DECLARE(M_FILECAPS);
105 
106 /*
107  * Locking key:
108  * (l)	Locked using list lock
109  * (g)	Locked using linkage lock
110  */
111 
112 static uma_zone_t	unp_zone;
113 static unp_gen_t	unp_gencnt;	/* (l) */
114 static u_int		unp_count;	/* (l) Count of local sockets. */
115 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116 static int		unp_rights;	/* (g) File descriptors in flight. */
117 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120 
121 struct unp_defer {
122 	SLIST_ENTRY(unp_defer) ud_link;
123 	struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127 
128 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define	PIPSIZ	8192
156 #endif
157 static u_long	unpst_sendspace = PIPSIZ;
158 static u_long	unpst_recvspace = PIPSIZ;
159 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160 static u_long	unpdg_recvspace = 4*1024;
161 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162 static u_long	unpsp_recvspace = PIPSIZ;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
169     "SOCK_SEQPACKET");
170 
171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
172 	   &unpst_sendspace, 0, "Default stream send space.");
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
174 	   &unpst_recvspace, 0, "Default stream receive space.");
175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
176 	   &unpdg_sendspace, 0, "Default datagram send space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
178 	   &unpdg_recvspace, 0, "Default datagram receive space.");
179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
180 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
182 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184     "File descriptors in flight.");
185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
186     &unp_defers_count, 0,
187     "File descriptors deferred to taskqueue for close.");
188 
189 /*
190  * Locking and synchronization:
191  *
192  * Three types of locks exit in the local domain socket implementation: a
193  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
194  * global locks, the list lock protects the socket count, global generation
195  * number, and stream/datagram global lists.  The linkage lock protects the
196  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
197  * held exclusively over the acquisition of multiple unpcb locks to prevent
198  * deadlock.
199  *
200  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
201  * allocated in pru_attach() and freed in pru_detach().  The validity of that
202  * pointer is an invariant, so no lock is required to dereference the so_pcb
203  * pointer if a valid socket reference is held by the caller.  In practice,
204  * this is always true during operations performed on a socket.  Each unpcb
205  * has a back-pointer to its socket, unp_socket, which will be stable under
206  * the same circumstances.
207  *
208  * This pointer may only be safely dereferenced as long as a valid reference
209  * to the unpcb is held.  Typically, this reference will be from the socket,
210  * or from another unpcb when the referring unpcb's lock is held (in order
211  * that the reference not be invalidated during use).  For example, to follow
212  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
213  * as unp_socket remains valid as long as the reference to unp_conn is valid.
214  *
215  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
216  * atomic reads without the lock may be performed "lockless", but more
217  * complex reads and read-modify-writes require the mutex to be held.  No
218  * lock order is defined between unpcb locks -- multiple unpcb locks may be
219  * acquired at the same time only when holding the linkage rwlock
220  * exclusively, which prevents deadlocks.
221  *
222  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
223  * protocols, bind() is a non-atomic operation, and connect() requires
224  * potential sleeping in the protocol, due to potentially waiting on local or
225  * distributed file systems.  We try to separate "lookup" operations, which
226  * may sleep, and the IPC operations themselves, which typically can occur
227  * with relative atomicity as locks can be held over the entire operation.
228  *
229  * Another tricky issue is simultaneous multi-threaded or multi-process
230  * access to a single UNIX domain socket.  These are handled by the flags
231  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
232  * binding, both of which involve dropping UNIX domain socket locks in order
233  * to perform namei() and other file system operations.
234  */
235 static struct rwlock	unp_link_rwlock;
236 static struct mtx	unp_list_lock;
237 static struct mtx	unp_defers_lock;
238 
239 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
240 					    "unp_link_rwlock")
241 
242 #define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243 					    RA_LOCKED)
244 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
245 					    RA_UNLOCKED)
246 
247 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
248 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
249 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
250 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
251 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
252 					    RA_WLOCKED)
253 
254 #define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
255 					    "unp_list_lock", NULL, MTX_DEF)
256 #define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
257 #define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
258 
259 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
260 					    "unp_defer", NULL, MTX_DEF)
261 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
262 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
263 
264 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
265 					    "unp_mtx", "unp_mtx",	\
266 					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
267 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
268 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
269 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
270 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
271 
272 static int	uipc_connect2(struct socket *, struct socket *);
273 static int	uipc_ctloutput(struct socket *, struct sockopt *);
274 static int	unp_connect(struct socket *, struct sockaddr *,
275 		    struct thread *);
276 static int	unp_connectat(int, struct socket *, struct sockaddr *,
277 		    struct thread *);
278 static int	unp_connect2(struct socket *so, struct socket *so2, int);
279 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
280 static void	unp_dispose(struct mbuf *);
281 static void	unp_shutdown(struct unpcb *);
282 static void	unp_drop(struct unpcb *, int);
283 static void	unp_gc(__unused void *, int);
284 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
285 static void	unp_discard(struct file *);
286 static void	unp_freerights(struct filedescent **, int);
287 static void	unp_init(void);
288 static int	unp_internalize(struct mbuf **, struct thread *);
289 static void	unp_internalize_fp(struct file *);
290 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
291 static int	unp_externalize_fp(struct file *);
292 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
293 static void	unp_process_defers(void * __unused, int);
294 
295 /*
296  * Definitions of protocols supported in the LOCAL domain.
297  */
298 static struct domain localdomain;
299 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
300 static struct pr_usrreqs uipc_usrreqs_seqpacket;
301 static struct protosw localsw[] = {
302 {
303 	.pr_type =		SOCK_STREAM,
304 	.pr_domain =		&localdomain,
305 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
306 	.pr_ctloutput =		&uipc_ctloutput,
307 	.pr_usrreqs =		&uipc_usrreqs_stream
308 },
309 {
310 	.pr_type =		SOCK_DGRAM,
311 	.pr_domain =		&localdomain,
312 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
313 	.pr_ctloutput =		&uipc_ctloutput,
314 	.pr_usrreqs =		&uipc_usrreqs_dgram
315 },
316 {
317 	.pr_type =		SOCK_SEQPACKET,
318 	.pr_domain =		&localdomain,
319 
320 	/*
321 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
322 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
323 	 * that supports both atomic record writes and control data.
324 	 */
325 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
326 				    PR_RIGHTS,
327 	.pr_ctloutput =		&uipc_ctloutput,
328 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
329 },
330 };
331 
332 static struct domain localdomain = {
333 	.dom_family =		AF_LOCAL,
334 	.dom_name =		"local",
335 	.dom_init =		unp_init,
336 	.dom_externalize =	unp_externalize,
337 	.dom_dispose =		unp_dispose,
338 	.dom_protosw =		localsw,
339 	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
340 };
341 DOMAIN_SET(local);
342 
343 static void
344 uipc_abort(struct socket *so)
345 {
346 	struct unpcb *unp, *unp2;
347 
348 	unp = sotounpcb(so);
349 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
350 
351 	UNP_LINK_WLOCK();
352 	UNP_PCB_LOCK(unp);
353 	unp2 = unp->unp_conn;
354 	if (unp2 != NULL) {
355 		UNP_PCB_LOCK(unp2);
356 		unp_drop(unp2, ECONNABORTED);
357 		UNP_PCB_UNLOCK(unp2);
358 	}
359 	UNP_PCB_UNLOCK(unp);
360 	UNP_LINK_WUNLOCK();
361 }
362 
363 static int
364 uipc_accept(struct socket *so, struct sockaddr **nam)
365 {
366 	struct unpcb *unp, *unp2;
367 	const struct sockaddr *sa;
368 
369 	/*
370 	 * Pass back name of connected socket, if it was bound and we are
371 	 * still connected (our peer may have closed already!).
372 	 */
373 	unp = sotounpcb(so);
374 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
375 
376 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
377 	UNP_LINK_RLOCK();
378 	unp2 = unp->unp_conn;
379 	if (unp2 != NULL && unp2->unp_addr != NULL) {
380 		UNP_PCB_LOCK(unp2);
381 		sa = (struct sockaddr *) unp2->unp_addr;
382 		bcopy(sa, *nam, sa->sa_len);
383 		UNP_PCB_UNLOCK(unp2);
384 	} else {
385 		sa = &sun_noname;
386 		bcopy(sa, *nam, sa->sa_len);
387 	}
388 	UNP_LINK_RUNLOCK();
389 	return (0);
390 }
391 
392 static int
393 uipc_attach(struct socket *so, int proto, struct thread *td)
394 {
395 	u_long sendspace, recvspace;
396 	struct unpcb *unp;
397 	int error;
398 
399 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
400 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
401 		switch (so->so_type) {
402 		case SOCK_STREAM:
403 			sendspace = unpst_sendspace;
404 			recvspace = unpst_recvspace;
405 			break;
406 
407 		case SOCK_DGRAM:
408 			sendspace = unpdg_sendspace;
409 			recvspace = unpdg_recvspace;
410 			break;
411 
412 		case SOCK_SEQPACKET:
413 			sendspace = unpsp_sendspace;
414 			recvspace = unpsp_recvspace;
415 			break;
416 
417 		default:
418 			panic("uipc_attach");
419 		}
420 		error = soreserve(so, sendspace, recvspace);
421 		if (error)
422 			return (error);
423 	}
424 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
425 	if (unp == NULL)
426 		return (ENOBUFS);
427 	LIST_INIT(&unp->unp_refs);
428 	UNP_PCB_LOCK_INIT(unp);
429 	unp->unp_socket = so;
430 	so->so_pcb = unp;
431 	unp->unp_refcount = 1;
432 
433 	UNP_LIST_LOCK();
434 	unp->unp_gencnt = ++unp_gencnt;
435 	unp_count++;
436 	switch (so->so_type) {
437 	case SOCK_STREAM:
438 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
439 		break;
440 
441 	case SOCK_DGRAM:
442 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
443 		break;
444 
445 	case SOCK_SEQPACKET:
446 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
447 		break;
448 
449 	default:
450 		panic("uipc_attach");
451 	}
452 	UNP_LIST_UNLOCK();
453 
454 	return (0);
455 }
456 
457 static int
458 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
459 {
460 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
461 	struct vattr vattr;
462 	int error, namelen;
463 	struct nameidata nd;
464 	struct unpcb *unp;
465 	struct vnode *vp;
466 	struct mount *mp;
467 	cap_rights_t rights;
468 	char *buf;
469 
470 	if (nam->sa_family != AF_UNIX)
471 		return (EAFNOSUPPORT);
472 
473 	unp = sotounpcb(so);
474 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
475 
476 	if (soun->sun_len > sizeof(struct sockaddr_un))
477 		return (EINVAL);
478 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
479 	if (namelen <= 0)
480 		return (EINVAL);
481 
482 	/*
483 	 * We don't allow simultaneous bind() calls on a single UNIX domain
484 	 * socket, so flag in-progress operations, and return an error if an
485 	 * operation is already in progress.
486 	 *
487 	 * Historically, we have not allowed a socket to be rebound, so this
488 	 * also returns an error.  Not allowing re-binding simplifies the
489 	 * implementation and avoids a great many possible failure modes.
490 	 */
491 	UNP_PCB_LOCK(unp);
492 	if (unp->unp_vnode != NULL) {
493 		UNP_PCB_UNLOCK(unp);
494 		return (EINVAL);
495 	}
496 	if (unp->unp_flags & UNP_BINDING) {
497 		UNP_PCB_UNLOCK(unp);
498 		return (EALREADY);
499 	}
500 	unp->unp_flags |= UNP_BINDING;
501 	UNP_PCB_UNLOCK(unp);
502 
503 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
504 	bcopy(soun->sun_path, buf, namelen);
505 	buf[namelen] = 0;
506 
507 restart:
508 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
509 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
510 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
511 	error = namei(&nd);
512 	if (error)
513 		goto error;
514 	vp = nd.ni_vp;
515 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
516 		NDFREE(&nd, NDF_ONLY_PNBUF);
517 		if (nd.ni_dvp == vp)
518 			vrele(nd.ni_dvp);
519 		else
520 			vput(nd.ni_dvp);
521 		if (vp != NULL) {
522 			vrele(vp);
523 			error = EADDRINUSE;
524 			goto error;
525 		}
526 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
527 		if (error)
528 			goto error;
529 		goto restart;
530 	}
531 	VATTR_NULL(&vattr);
532 	vattr.va_type = VSOCK;
533 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
534 #ifdef MAC
535 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
536 	    &vattr);
537 #endif
538 	if (error == 0)
539 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
540 	NDFREE(&nd, NDF_ONLY_PNBUF);
541 	vput(nd.ni_dvp);
542 	if (error) {
543 		vn_finished_write(mp);
544 		goto error;
545 	}
546 	vp = nd.ni_vp;
547 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
548 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
549 
550 	UNP_LINK_WLOCK();
551 	UNP_PCB_LOCK(unp);
552 	VOP_UNP_BIND(vp, unp->unp_socket);
553 	unp->unp_vnode = vp;
554 	unp->unp_addr = soun;
555 	unp->unp_flags &= ~UNP_BINDING;
556 	UNP_PCB_UNLOCK(unp);
557 	UNP_LINK_WUNLOCK();
558 	VOP_UNLOCK(vp, 0);
559 	vn_finished_write(mp);
560 	free(buf, M_TEMP);
561 	return (0);
562 
563 error:
564 	UNP_PCB_LOCK(unp);
565 	unp->unp_flags &= ~UNP_BINDING;
566 	UNP_PCB_UNLOCK(unp);
567 	free(buf, M_TEMP);
568 	return (error);
569 }
570 
571 static int
572 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
573 {
574 
575 	return (uipc_bindat(AT_FDCWD, so, nam, td));
576 }
577 
578 static int
579 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
580 {
581 	int error;
582 
583 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
584 	UNP_LINK_WLOCK();
585 	error = unp_connect(so, nam, td);
586 	UNP_LINK_WUNLOCK();
587 	return (error);
588 }
589 
590 static int
591 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
592     struct thread *td)
593 {
594 	int error;
595 
596 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
597 	UNP_LINK_WLOCK();
598 	error = unp_connectat(fd, so, nam, td);
599 	UNP_LINK_WUNLOCK();
600 	return (error);
601 }
602 
603 static void
604 uipc_close(struct socket *so)
605 {
606 	struct unpcb *unp, *unp2;
607 
608 	unp = sotounpcb(so);
609 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
610 
611 	UNP_LINK_WLOCK();
612 	UNP_PCB_LOCK(unp);
613 	unp2 = unp->unp_conn;
614 	if (unp2 != NULL) {
615 		UNP_PCB_LOCK(unp2);
616 		unp_disconnect(unp, unp2);
617 		UNP_PCB_UNLOCK(unp2);
618 	}
619 	UNP_PCB_UNLOCK(unp);
620 	UNP_LINK_WUNLOCK();
621 }
622 
623 static int
624 uipc_connect2(struct socket *so1, struct socket *so2)
625 {
626 	struct unpcb *unp, *unp2;
627 	int error;
628 
629 	UNP_LINK_WLOCK();
630 	unp = so1->so_pcb;
631 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
632 	UNP_PCB_LOCK(unp);
633 	unp2 = so2->so_pcb;
634 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
635 	UNP_PCB_LOCK(unp2);
636 	error = unp_connect2(so1, so2, PRU_CONNECT2);
637 	UNP_PCB_UNLOCK(unp2);
638 	UNP_PCB_UNLOCK(unp);
639 	UNP_LINK_WUNLOCK();
640 	return (error);
641 }
642 
643 static void
644 uipc_detach(struct socket *so)
645 {
646 	struct unpcb *unp, *unp2;
647 	struct sockaddr_un *saved_unp_addr;
648 	struct vnode *vp;
649 	int freeunp, local_unp_rights;
650 
651 	unp = sotounpcb(so);
652 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
653 
654 	UNP_LINK_WLOCK();
655 	UNP_LIST_LOCK();
656 	UNP_PCB_LOCK(unp);
657 	LIST_REMOVE(unp, unp_link);
658 	unp->unp_gencnt = ++unp_gencnt;
659 	--unp_count;
660 	UNP_LIST_UNLOCK();
661 
662 	/*
663 	 * XXXRW: Should assert vp->v_socket == so.
664 	 */
665 	if ((vp = unp->unp_vnode) != NULL) {
666 		VOP_UNP_DETACH(vp);
667 		unp->unp_vnode = NULL;
668 	}
669 	unp2 = unp->unp_conn;
670 	if (unp2 != NULL) {
671 		UNP_PCB_LOCK(unp2);
672 		unp_disconnect(unp, unp2);
673 		UNP_PCB_UNLOCK(unp2);
674 	}
675 
676 	/*
677 	 * We hold the linkage lock exclusively, so it's OK to acquire
678 	 * multiple pcb locks at a time.
679 	 */
680 	while (!LIST_EMPTY(&unp->unp_refs)) {
681 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
682 
683 		UNP_PCB_LOCK(ref);
684 		unp_drop(ref, ECONNRESET);
685 		UNP_PCB_UNLOCK(ref);
686 	}
687 	local_unp_rights = unp_rights;
688 	UNP_LINK_WUNLOCK();
689 	unp->unp_socket->so_pcb = NULL;
690 	saved_unp_addr = unp->unp_addr;
691 	unp->unp_addr = NULL;
692 	unp->unp_refcount--;
693 	freeunp = (unp->unp_refcount == 0);
694 	if (saved_unp_addr != NULL)
695 		free(saved_unp_addr, M_SONAME);
696 	if (freeunp) {
697 		UNP_PCB_LOCK_DESTROY(unp);
698 		uma_zfree(unp_zone, unp);
699 	} else
700 		UNP_PCB_UNLOCK(unp);
701 	if (vp)
702 		vrele(vp);
703 	if (local_unp_rights)
704 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
705 }
706 
707 static int
708 uipc_disconnect(struct socket *so)
709 {
710 	struct unpcb *unp, *unp2;
711 
712 	unp = sotounpcb(so);
713 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
714 
715 	UNP_LINK_WLOCK();
716 	UNP_PCB_LOCK(unp);
717 	unp2 = unp->unp_conn;
718 	if (unp2 != NULL) {
719 		UNP_PCB_LOCK(unp2);
720 		unp_disconnect(unp, unp2);
721 		UNP_PCB_UNLOCK(unp2);
722 	}
723 	UNP_PCB_UNLOCK(unp);
724 	UNP_LINK_WUNLOCK();
725 	return (0);
726 }
727 
728 static int
729 uipc_listen(struct socket *so, int backlog, struct thread *td)
730 {
731 	struct unpcb *unp;
732 	int error;
733 
734 	unp = sotounpcb(so);
735 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
736 
737 	UNP_PCB_LOCK(unp);
738 	if (unp->unp_vnode == NULL) {
739 		UNP_PCB_UNLOCK(unp);
740 		return (EINVAL);
741 	}
742 
743 	SOCK_LOCK(so);
744 	error = solisten_proto_check(so);
745 	if (error == 0) {
746 		cru2x(td->td_ucred, &unp->unp_peercred);
747 		unp->unp_flags |= UNP_HAVEPCCACHED;
748 		solisten_proto(so, backlog);
749 	}
750 	SOCK_UNLOCK(so);
751 	UNP_PCB_UNLOCK(unp);
752 	return (error);
753 }
754 
755 static int
756 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
757 {
758 	struct unpcb *unp, *unp2;
759 	const struct sockaddr *sa;
760 
761 	unp = sotounpcb(so);
762 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
763 
764 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
765 	UNP_LINK_RLOCK();
766 	/*
767 	 * XXX: It seems that this test always fails even when connection is
768 	 * established.  So, this else clause is added as workaround to
769 	 * return PF_LOCAL sockaddr.
770 	 */
771 	unp2 = unp->unp_conn;
772 	if (unp2 != NULL) {
773 		UNP_PCB_LOCK(unp2);
774 		if (unp2->unp_addr != NULL)
775 			sa = (struct sockaddr *) unp2->unp_addr;
776 		else
777 			sa = &sun_noname;
778 		bcopy(sa, *nam, sa->sa_len);
779 		UNP_PCB_UNLOCK(unp2);
780 	} else {
781 		sa = &sun_noname;
782 		bcopy(sa, *nam, sa->sa_len);
783 	}
784 	UNP_LINK_RUNLOCK();
785 	return (0);
786 }
787 
788 static int
789 uipc_rcvd(struct socket *so, int flags)
790 {
791 	struct unpcb *unp, *unp2;
792 	struct socket *so2;
793 	u_int mbcnt, sbcc;
794 
795 	unp = sotounpcb(so);
796 	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
797 
798 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
799 		panic("uipc_rcvd socktype %d", so->so_type);
800 
801 	/*
802 	 * Adjust backpressure on sender and wakeup any waiting to write.
803 	 *
804 	 * The unp lock is acquired to maintain the validity of the unp_conn
805 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
806 	 * static as long as we don't permit unp2 to disconnect from unp,
807 	 * which is prevented by the lock on unp.  We cache values from
808 	 * so_rcv to avoid holding the so_rcv lock over the entire
809 	 * transaction on the remote so_snd.
810 	 */
811 	SOCKBUF_LOCK(&so->so_rcv);
812 	mbcnt = so->so_rcv.sb_mbcnt;
813 	sbcc = so->so_rcv.sb_cc;
814 	SOCKBUF_UNLOCK(&so->so_rcv);
815 	/*
816 	 * There is a benign race condition at this point.  If we're planning to
817 	 * clear SB_STOP, but uipc_send is called on the connected socket at
818 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
819 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
820 	 * full.  The race is benign because the only ill effect is to allow the
821 	 * sockbuf to exceed its size limit, and the size limits are not
822 	 * strictly guaranteed anyway.
823 	 */
824 	UNP_PCB_LOCK(unp);
825 	unp2 = unp->unp_conn;
826 	if (unp2 == NULL) {
827 		UNP_PCB_UNLOCK(unp);
828 		return (0);
829 	}
830 	so2 = unp2->unp_socket;
831 	SOCKBUF_LOCK(&so2->so_snd);
832 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
833 		so2->so_snd.sb_flags &= ~SB_STOP;
834 	sowwakeup_locked(so2);
835 	UNP_PCB_UNLOCK(unp);
836 	return (0);
837 }
838 
839 static int
840 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
841     struct mbuf *control, struct thread *td)
842 {
843 	struct unpcb *unp, *unp2;
844 	struct socket *so2;
845 	u_int mbcnt, sbcc;
846 	int error = 0;
847 
848 	unp = sotounpcb(so);
849 	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
850 
851 	if (flags & PRUS_OOB) {
852 		error = EOPNOTSUPP;
853 		goto release;
854 	}
855 	if (control != NULL && (error = unp_internalize(&control, td)))
856 		goto release;
857 	if ((nam != NULL) || (flags & PRUS_EOF))
858 		UNP_LINK_WLOCK();
859 	else
860 		UNP_LINK_RLOCK();
861 	switch (so->so_type) {
862 	case SOCK_DGRAM:
863 	{
864 		const struct sockaddr *from;
865 
866 		unp2 = unp->unp_conn;
867 		if (nam != NULL) {
868 			UNP_LINK_WLOCK_ASSERT();
869 			if (unp2 != NULL) {
870 				error = EISCONN;
871 				break;
872 			}
873 			error = unp_connect(so, nam, td);
874 			if (error)
875 				break;
876 			unp2 = unp->unp_conn;
877 		}
878 
879 		/*
880 		 * Because connect() and send() are non-atomic in a sendto()
881 		 * with a target address, it's possible that the socket will
882 		 * have disconnected before the send() can run.  In that case
883 		 * return the slightly counter-intuitive but otherwise
884 		 * correct error that the socket is not connected.
885 		 */
886 		if (unp2 == NULL) {
887 			error = ENOTCONN;
888 			break;
889 		}
890 		/* Lockless read. */
891 		if (unp2->unp_flags & UNP_WANTCRED)
892 			control = unp_addsockcred(td, control);
893 		UNP_PCB_LOCK(unp);
894 		if (unp->unp_addr != NULL)
895 			from = (struct sockaddr *)unp->unp_addr;
896 		else
897 			from = &sun_noname;
898 		so2 = unp2->unp_socket;
899 		SOCKBUF_LOCK(&so2->so_rcv);
900 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
901 		    control)) {
902 			sorwakeup_locked(so2);
903 			m = NULL;
904 			control = NULL;
905 		} else {
906 			SOCKBUF_UNLOCK(&so2->so_rcv);
907 			error = ENOBUFS;
908 		}
909 		if (nam != NULL) {
910 			UNP_LINK_WLOCK_ASSERT();
911 			UNP_PCB_LOCK(unp2);
912 			unp_disconnect(unp, unp2);
913 			UNP_PCB_UNLOCK(unp2);
914 		}
915 		UNP_PCB_UNLOCK(unp);
916 		break;
917 	}
918 
919 	case SOCK_SEQPACKET:
920 	case SOCK_STREAM:
921 		if ((so->so_state & SS_ISCONNECTED) == 0) {
922 			if (nam != NULL) {
923 				UNP_LINK_WLOCK_ASSERT();
924 				error = unp_connect(so, nam, td);
925 				if (error)
926 					break;	/* XXX */
927 			} else {
928 				error = ENOTCONN;
929 				break;
930 			}
931 		}
932 
933 		/* Lockless read. */
934 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
935 			error = EPIPE;
936 			break;
937 		}
938 
939 		/*
940 		 * Because connect() and send() are non-atomic in a sendto()
941 		 * with a target address, it's possible that the socket will
942 		 * have disconnected before the send() can run.  In that case
943 		 * return the slightly counter-intuitive but otherwise
944 		 * correct error that the socket is not connected.
945 		 *
946 		 * Locking here must be done carefully: the linkage lock
947 		 * prevents interconnections between unpcbs from changing, so
948 		 * we can traverse from unp to unp2 without acquiring unp's
949 		 * lock.  Socket buffer locks follow unpcb locks, so we can
950 		 * acquire both remote and lock socket buffer locks.
951 		 */
952 		unp2 = unp->unp_conn;
953 		if (unp2 == NULL) {
954 			error = ENOTCONN;
955 			break;
956 		}
957 		so2 = unp2->unp_socket;
958 		UNP_PCB_LOCK(unp2);
959 		SOCKBUF_LOCK(&so2->so_rcv);
960 		if (unp2->unp_flags & UNP_WANTCRED) {
961 			/*
962 			 * Credentials are passed only once on SOCK_STREAM
963 			 * and SOCK_SEQPACKET.
964 			 */
965 			unp2->unp_flags &= ~UNP_WANTCRED;
966 			control = unp_addsockcred(td, control);
967 		}
968 		/*
969 		 * Send to paired receive port, and then reduce send buffer
970 		 * hiwater marks to maintain backpressure.  Wake up readers.
971 		 */
972 		switch (so->so_type) {
973 		case SOCK_STREAM:
974 			if (control != NULL) {
975 				if (sbappendcontrol_locked(&so2->so_rcv, m,
976 				    control))
977 					control = NULL;
978 			} else
979 				sbappend_locked(&so2->so_rcv, m);
980 			break;
981 
982 		case SOCK_SEQPACKET: {
983 			const struct sockaddr *from;
984 
985 			from = &sun_noname;
986 			/*
987 			 * Don't check for space available in so2->so_rcv.
988 			 * Unix domain sockets only check for space in the
989 			 * sending sockbuf, and that check is performed one
990 			 * level up the stack.
991 			 */
992 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
993 				from, m, control))
994 				control = NULL;
995 			break;
996 			}
997 		}
998 
999 		mbcnt = so2->so_rcv.sb_mbcnt;
1000 		sbcc = so2->so_rcv.sb_cc;
1001 		sorwakeup_locked(so2);
1002 
1003 		/*
1004 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1005 		 * it would be possible for uipc_rcvd to be called at this
1006 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1007 		 * we would set SB_STOP below.  That could lead to an empty
1008 		 * sockbuf having SB_STOP set
1009 		 */
1010 		SOCKBUF_LOCK(&so->so_snd);
1011 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1012 			so->so_snd.sb_flags |= SB_STOP;
1013 		SOCKBUF_UNLOCK(&so->so_snd);
1014 		UNP_PCB_UNLOCK(unp2);
1015 		m = NULL;
1016 		break;
1017 
1018 	default:
1019 		panic("uipc_send unknown socktype");
1020 	}
1021 
1022 	/*
1023 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1024 	 */
1025 	if (flags & PRUS_EOF) {
1026 		UNP_PCB_LOCK(unp);
1027 		socantsendmore(so);
1028 		unp_shutdown(unp);
1029 		UNP_PCB_UNLOCK(unp);
1030 	}
1031 
1032 	if ((nam != NULL) || (flags & PRUS_EOF))
1033 		UNP_LINK_WUNLOCK();
1034 	else
1035 		UNP_LINK_RUNLOCK();
1036 
1037 	if (control != NULL && error != 0)
1038 		unp_dispose(control);
1039 
1040 release:
1041 	if (control != NULL)
1042 		m_freem(control);
1043 	if (m != NULL)
1044 		m_freem(m);
1045 	return (error);
1046 }
1047 
1048 static int
1049 uipc_sense(struct socket *so, struct stat *sb)
1050 {
1051 	struct unpcb *unp;
1052 
1053 	unp = sotounpcb(so);
1054 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1055 
1056 	sb->st_blksize = so->so_snd.sb_hiwat;
1057 	UNP_PCB_LOCK(unp);
1058 	sb->st_dev = NODEV;
1059 	if (unp->unp_ino == 0)
1060 		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1061 	sb->st_ino = unp->unp_ino;
1062 	UNP_PCB_UNLOCK(unp);
1063 	return (0);
1064 }
1065 
1066 static int
1067 uipc_shutdown(struct socket *so)
1068 {
1069 	struct unpcb *unp;
1070 
1071 	unp = sotounpcb(so);
1072 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1073 
1074 	UNP_LINK_WLOCK();
1075 	UNP_PCB_LOCK(unp);
1076 	socantsendmore(so);
1077 	unp_shutdown(unp);
1078 	UNP_PCB_UNLOCK(unp);
1079 	UNP_LINK_WUNLOCK();
1080 	return (0);
1081 }
1082 
1083 static int
1084 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1085 {
1086 	struct unpcb *unp;
1087 	const struct sockaddr *sa;
1088 
1089 	unp = sotounpcb(so);
1090 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1091 
1092 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1093 	UNP_PCB_LOCK(unp);
1094 	if (unp->unp_addr != NULL)
1095 		sa = (struct sockaddr *) unp->unp_addr;
1096 	else
1097 		sa = &sun_noname;
1098 	bcopy(sa, *nam, sa->sa_len);
1099 	UNP_PCB_UNLOCK(unp);
1100 	return (0);
1101 }
1102 
1103 static struct pr_usrreqs uipc_usrreqs_dgram = {
1104 	.pru_abort = 		uipc_abort,
1105 	.pru_accept =		uipc_accept,
1106 	.pru_attach =		uipc_attach,
1107 	.pru_bind =		uipc_bind,
1108 	.pru_bindat =		uipc_bindat,
1109 	.pru_connect =		uipc_connect,
1110 	.pru_connectat =	uipc_connectat,
1111 	.pru_connect2 =		uipc_connect2,
1112 	.pru_detach =		uipc_detach,
1113 	.pru_disconnect =	uipc_disconnect,
1114 	.pru_listen =		uipc_listen,
1115 	.pru_peeraddr =		uipc_peeraddr,
1116 	.pru_rcvd =		uipc_rcvd,
1117 	.pru_send =		uipc_send,
1118 	.pru_sense =		uipc_sense,
1119 	.pru_shutdown =		uipc_shutdown,
1120 	.pru_sockaddr =		uipc_sockaddr,
1121 	.pru_soreceive =	soreceive_dgram,
1122 	.pru_close =		uipc_close,
1123 };
1124 
1125 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1126 	.pru_abort =		uipc_abort,
1127 	.pru_accept =		uipc_accept,
1128 	.pru_attach =		uipc_attach,
1129 	.pru_bind =		uipc_bind,
1130 	.pru_bindat =		uipc_bindat,
1131 	.pru_connect =		uipc_connect,
1132 	.pru_connectat =	uipc_connectat,
1133 	.pru_connect2 =		uipc_connect2,
1134 	.pru_detach =		uipc_detach,
1135 	.pru_disconnect =	uipc_disconnect,
1136 	.pru_listen =		uipc_listen,
1137 	.pru_peeraddr =		uipc_peeraddr,
1138 	.pru_rcvd =		uipc_rcvd,
1139 	.pru_send =		uipc_send,
1140 	.pru_sense =		uipc_sense,
1141 	.pru_shutdown =		uipc_shutdown,
1142 	.pru_sockaddr =		uipc_sockaddr,
1143 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1144 	.pru_close =		uipc_close,
1145 };
1146 
1147 static struct pr_usrreqs uipc_usrreqs_stream = {
1148 	.pru_abort = 		uipc_abort,
1149 	.pru_accept =		uipc_accept,
1150 	.pru_attach =		uipc_attach,
1151 	.pru_bind =		uipc_bind,
1152 	.pru_bindat =		uipc_bindat,
1153 	.pru_connect =		uipc_connect,
1154 	.pru_connectat =	uipc_connectat,
1155 	.pru_connect2 =		uipc_connect2,
1156 	.pru_detach =		uipc_detach,
1157 	.pru_disconnect =	uipc_disconnect,
1158 	.pru_listen =		uipc_listen,
1159 	.pru_peeraddr =		uipc_peeraddr,
1160 	.pru_rcvd =		uipc_rcvd,
1161 	.pru_send =		uipc_send,
1162 	.pru_sense =		uipc_sense,
1163 	.pru_shutdown =		uipc_shutdown,
1164 	.pru_sockaddr =		uipc_sockaddr,
1165 	.pru_soreceive =	soreceive_generic,
1166 	.pru_close =		uipc_close,
1167 };
1168 
1169 static int
1170 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1171 {
1172 	struct unpcb *unp;
1173 	struct xucred xu;
1174 	int error, optval;
1175 
1176 	if (sopt->sopt_level != 0)
1177 		return (EINVAL);
1178 
1179 	unp = sotounpcb(so);
1180 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1181 	error = 0;
1182 	switch (sopt->sopt_dir) {
1183 	case SOPT_GET:
1184 		switch (sopt->sopt_name) {
1185 		case LOCAL_PEERCRED:
1186 			UNP_PCB_LOCK(unp);
1187 			if (unp->unp_flags & UNP_HAVEPC)
1188 				xu = unp->unp_peercred;
1189 			else {
1190 				if (so->so_type == SOCK_STREAM)
1191 					error = ENOTCONN;
1192 				else
1193 					error = EINVAL;
1194 			}
1195 			UNP_PCB_UNLOCK(unp);
1196 			if (error == 0)
1197 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1198 			break;
1199 
1200 		case LOCAL_CREDS:
1201 			/* Unlocked read. */
1202 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1203 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1204 			break;
1205 
1206 		case LOCAL_CONNWAIT:
1207 			/* Unlocked read. */
1208 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1209 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1210 			break;
1211 
1212 		default:
1213 			error = EOPNOTSUPP;
1214 			break;
1215 		}
1216 		break;
1217 
1218 	case SOPT_SET:
1219 		switch (sopt->sopt_name) {
1220 		case LOCAL_CREDS:
1221 		case LOCAL_CONNWAIT:
1222 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1223 					    sizeof(optval));
1224 			if (error)
1225 				break;
1226 
1227 #define	OPTSET(bit) do {						\
1228 	UNP_PCB_LOCK(unp);						\
1229 	if (optval)							\
1230 		unp->unp_flags |= bit;					\
1231 	else								\
1232 		unp->unp_flags &= ~bit;					\
1233 	UNP_PCB_UNLOCK(unp);						\
1234 } while (0)
1235 
1236 			switch (sopt->sopt_name) {
1237 			case LOCAL_CREDS:
1238 				OPTSET(UNP_WANTCRED);
1239 				break;
1240 
1241 			case LOCAL_CONNWAIT:
1242 				OPTSET(UNP_CONNWAIT);
1243 				break;
1244 
1245 			default:
1246 				break;
1247 			}
1248 			break;
1249 #undef	OPTSET
1250 		default:
1251 			error = ENOPROTOOPT;
1252 			break;
1253 		}
1254 		break;
1255 
1256 	default:
1257 		error = EOPNOTSUPP;
1258 		break;
1259 	}
1260 	return (error);
1261 }
1262 
1263 static int
1264 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1265 {
1266 
1267 	return (unp_connectat(AT_FDCWD, so, nam, td));
1268 }
1269 
1270 static int
1271 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1272     struct thread *td)
1273 {
1274 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1275 	struct vnode *vp;
1276 	struct socket *so2, *so3;
1277 	struct unpcb *unp, *unp2, *unp3;
1278 	struct nameidata nd;
1279 	char buf[SOCK_MAXADDRLEN];
1280 	struct sockaddr *sa;
1281 	cap_rights_t rights;
1282 	int error, len;
1283 
1284 	if (nam->sa_family != AF_UNIX)
1285 		return (EAFNOSUPPORT);
1286 
1287 	UNP_LINK_WLOCK_ASSERT();
1288 
1289 	unp = sotounpcb(so);
1290 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1291 
1292 	if (nam->sa_len > sizeof(struct sockaddr_un))
1293 		return (EINVAL);
1294 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1295 	if (len <= 0)
1296 		return (EINVAL);
1297 	bcopy(soun->sun_path, buf, len);
1298 	buf[len] = 0;
1299 
1300 	UNP_PCB_LOCK(unp);
1301 	if (unp->unp_flags & UNP_CONNECTING) {
1302 		UNP_PCB_UNLOCK(unp);
1303 		return (EALREADY);
1304 	}
1305 	UNP_LINK_WUNLOCK();
1306 	unp->unp_flags |= UNP_CONNECTING;
1307 	UNP_PCB_UNLOCK(unp);
1308 
1309 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1310 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1311 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1312 	error = namei(&nd);
1313 	if (error)
1314 		vp = NULL;
1315 	else
1316 		vp = nd.ni_vp;
1317 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1318 	NDFREE(&nd, NDF_ONLY_PNBUF);
1319 	if (error)
1320 		goto bad;
1321 
1322 	if (vp->v_type != VSOCK) {
1323 		error = ENOTSOCK;
1324 		goto bad;
1325 	}
1326 #ifdef MAC
1327 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1328 	if (error)
1329 		goto bad;
1330 #endif
1331 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1332 	if (error)
1333 		goto bad;
1334 
1335 	unp = sotounpcb(so);
1336 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1337 
1338 	/*
1339 	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1340 	 * and to protect simultaneous locking of multiple pcbs.
1341 	 */
1342 	UNP_LINK_WLOCK();
1343 	VOP_UNP_CONNECT(vp, &so2);
1344 	if (so2 == NULL) {
1345 		error = ECONNREFUSED;
1346 		goto bad2;
1347 	}
1348 	if (so->so_type != so2->so_type) {
1349 		error = EPROTOTYPE;
1350 		goto bad2;
1351 	}
1352 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1353 		if (so2->so_options & SO_ACCEPTCONN) {
1354 			CURVNET_SET(so2->so_vnet);
1355 			so3 = sonewconn(so2, 0);
1356 			CURVNET_RESTORE();
1357 		} else
1358 			so3 = NULL;
1359 		if (so3 == NULL) {
1360 			error = ECONNREFUSED;
1361 			goto bad2;
1362 		}
1363 		unp = sotounpcb(so);
1364 		unp2 = sotounpcb(so2);
1365 		unp3 = sotounpcb(so3);
1366 		UNP_PCB_LOCK(unp);
1367 		UNP_PCB_LOCK(unp2);
1368 		UNP_PCB_LOCK(unp3);
1369 		if (unp2->unp_addr != NULL) {
1370 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1371 			unp3->unp_addr = (struct sockaddr_un *) sa;
1372 			sa = NULL;
1373 		}
1374 
1375 		/*
1376 		 * The connector's (client's) credentials are copied from its
1377 		 * process structure at the time of connect() (which is now).
1378 		 */
1379 		cru2x(td->td_ucred, &unp3->unp_peercred);
1380 		unp3->unp_flags |= UNP_HAVEPC;
1381 
1382 		/*
1383 		 * The receiver's (server's) credentials are copied from the
1384 		 * unp_peercred member of socket on which the former called
1385 		 * listen(); uipc_listen() cached that process's credentials
1386 		 * at that time so we can use them now.
1387 		 */
1388 		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1389 		    ("unp_connect: listener without cached peercred"));
1390 		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1391 		    sizeof(unp->unp_peercred));
1392 		unp->unp_flags |= UNP_HAVEPC;
1393 		if (unp2->unp_flags & UNP_WANTCRED)
1394 			unp3->unp_flags |= UNP_WANTCRED;
1395 		UNP_PCB_UNLOCK(unp3);
1396 		UNP_PCB_UNLOCK(unp2);
1397 		UNP_PCB_UNLOCK(unp);
1398 #ifdef MAC
1399 		mac_socketpeer_set_from_socket(so, so3);
1400 		mac_socketpeer_set_from_socket(so3, so);
1401 #endif
1402 
1403 		so2 = so3;
1404 	}
1405 	unp = sotounpcb(so);
1406 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1407 	unp2 = sotounpcb(so2);
1408 	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1409 	UNP_PCB_LOCK(unp);
1410 	UNP_PCB_LOCK(unp2);
1411 	error = unp_connect2(so, so2, PRU_CONNECT);
1412 	UNP_PCB_UNLOCK(unp2);
1413 	UNP_PCB_UNLOCK(unp);
1414 bad2:
1415 	UNP_LINK_WUNLOCK();
1416 bad:
1417 	if (vp != NULL)
1418 		vput(vp);
1419 	free(sa, M_SONAME);
1420 	UNP_LINK_WLOCK();
1421 	UNP_PCB_LOCK(unp);
1422 	unp->unp_flags &= ~UNP_CONNECTING;
1423 	UNP_PCB_UNLOCK(unp);
1424 	return (error);
1425 }
1426 
1427 static int
1428 unp_connect2(struct socket *so, struct socket *so2, int req)
1429 {
1430 	struct unpcb *unp;
1431 	struct unpcb *unp2;
1432 
1433 	unp = sotounpcb(so);
1434 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1435 	unp2 = sotounpcb(so2);
1436 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1437 
1438 	UNP_LINK_WLOCK_ASSERT();
1439 	UNP_PCB_LOCK_ASSERT(unp);
1440 	UNP_PCB_LOCK_ASSERT(unp2);
1441 
1442 	if (so2->so_type != so->so_type)
1443 		return (EPROTOTYPE);
1444 	unp->unp_conn = unp2;
1445 
1446 	switch (so->so_type) {
1447 	case SOCK_DGRAM:
1448 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1449 		soisconnected(so);
1450 		break;
1451 
1452 	case SOCK_STREAM:
1453 	case SOCK_SEQPACKET:
1454 		unp2->unp_conn = unp;
1455 		if (req == PRU_CONNECT &&
1456 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1457 			soisconnecting(so);
1458 		else
1459 			soisconnected(so);
1460 		soisconnected(so2);
1461 		break;
1462 
1463 	default:
1464 		panic("unp_connect2");
1465 	}
1466 	return (0);
1467 }
1468 
1469 static void
1470 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1471 {
1472 	struct socket *so;
1473 
1474 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1475 
1476 	UNP_LINK_WLOCK_ASSERT();
1477 	UNP_PCB_LOCK_ASSERT(unp);
1478 	UNP_PCB_LOCK_ASSERT(unp2);
1479 
1480 	unp->unp_conn = NULL;
1481 	switch (unp->unp_socket->so_type) {
1482 	case SOCK_DGRAM:
1483 		LIST_REMOVE(unp, unp_reflink);
1484 		so = unp->unp_socket;
1485 		SOCK_LOCK(so);
1486 		so->so_state &= ~SS_ISCONNECTED;
1487 		SOCK_UNLOCK(so);
1488 		break;
1489 
1490 	case SOCK_STREAM:
1491 	case SOCK_SEQPACKET:
1492 		soisdisconnected(unp->unp_socket);
1493 		unp2->unp_conn = NULL;
1494 		soisdisconnected(unp2->unp_socket);
1495 		break;
1496 	}
1497 }
1498 
1499 /*
1500  * unp_pcblist() walks the global list of struct unpcb's to generate a
1501  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1502  * sequentially, validating the generation number on each to see if it has
1503  * been detached.  All of this is necessary because copyout() may sleep on
1504  * disk I/O.
1505  */
1506 static int
1507 unp_pcblist(SYSCTL_HANDLER_ARGS)
1508 {
1509 	int error, i, n;
1510 	int freeunp;
1511 	struct unpcb *unp, **unp_list;
1512 	unp_gen_t gencnt;
1513 	struct xunpgen *xug;
1514 	struct unp_head *head;
1515 	struct xunpcb *xu;
1516 
1517 	switch ((intptr_t)arg1) {
1518 	case SOCK_STREAM:
1519 		head = &unp_shead;
1520 		break;
1521 
1522 	case SOCK_DGRAM:
1523 		head = &unp_dhead;
1524 		break;
1525 
1526 	case SOCK_SEQPACKET:
1527 		head = &unp_sphead;
1528 		break;
1529 
1530 	default:
1531 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1532 	}
1533 
1534 	/*
1535 	 * The process of preparing the PCB list is too time-consuming and
1536 	 * resource-intensive to repeat twice on every request.
1537 	 */
1538 	if (req->oldptr == NULL) {
1539 		n = unp_count;
1540 		req->oldidx = 2 * (sizeof *xug)
1541 			+ (n + n/8) * sizeof(struct xunpcb);
1542 		return (0);
1543 	}
1544 
1545 	if (req->newptr != NULL)
1546 		return (EPERM);
1547 
1548 	/*
1549 	 * OK, now we're committed to doing something.
1550 	 */
1551 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1552 	UNP_LIST_LOCK();
1553 	gencnt = unp_gencnt;
1554 	n = unp_count;
1555 	UNP_LIST_UNLOCK();
1556 
1557 	xug->xug_len = sizeof *xug;
1558 	xug->xug_count = n;
1559 	xug->xug_gen = gencnt;
1560 	xug->xug_sogen = so_gencnt;
1561 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1562 	if (error) {
1563 		free(xug, M_TEMP);
1564 		return (error);
1565 	}
1566 
1567 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1568 
1569 	UNP_LIST_LOCK();
1570 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1571 	     unp = LIST_NEXT(unp, unp_link)) {
1572 		UNP_PCB_LOCK(unp);
1573 		if (unp->unp_gencnt <= gencnt) {
1574 			if (cr_cansee(req->td->td_ucred,
1575 			    unp->unp_socket->so_cred)) {
1576 				UNP_PCB_UNLOCK(unp);
1577 				continue;
1578 			}
1579 			unp_list[i++] = unp;
1580 			unp->unp_refcount++;
1581 		}
1582 		UNP_PCB_UNLOCK(unp);
1583 	}
1584 	UNP_LIST_UNLOCK();
1585 	n = i;			/* In case we lost some during malloc. */
1586 
1587 	error = 0;
1588 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1589 	for (i = 0; i < n; i++) {
1590 		unp = unp_list[i];
1591 		UNP_PCB_LOCK(unp);
1592 		unp->unp_refcount--;
1593 	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1594 			xu->xu_len = sizeof *xu;
1595 			xu->xu_unpp = unp;
1596 			/*
1597 			 * XXX - need more locking here to protect against
1598 			 * connect/disconnect races for SMP.
1599 			 */
1600 			if (unp->unp_addr != NULL)
1601 				bcopy(unp->unp_addr, &xu->xu_addr,
1602 				      unp->unp_addr->sun_len);
1603 			if (unp->unp_conn != NULL &&
1604 			    unp->unp_conn->unp_addr != NULL)
1605 				bcopy(unp->unp_conn->unp_addr,
1606 				      &xu->xu_caddr,
1607 				      unp->unp_conn->unp_addr->sun_len);
1608 			bcopy(unp, &xu->xu_unp, sizeof *unp);
1609 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1610 			UNP_PCB_UNLOCK(unp);
1611 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1612 		} else {
1613 			freeunp = (unp->unp_refcount == 0);
1614 			UNP_PCB_UNLOCK(unp);
1615 			if (freeunp) {
1616 				UNP_PCB_LOCK_DESTROY(unp);
1617 				uma_zfree(unp_zone, unp);
1618 			}
1619 		}
1620 	}
1621 	free(xu, M_TEMP);
1622 	if (!error) {
1623 		/*
1624 		 * Give the user an updated idea of our state.  If the
1625 		 * generation differs from what we told her before, she knows
1626 		 * that something happened while we were processing this
1627 		 * request, and it might be necessary to retry.
1628 		 */
1629 		xug->xug_gen = unp_gencnt;
1630 		xug->xug_sogen = so_gencnt;
1631 		xug->xug_count = unp_count;
1632 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1633 	}
1634 	free(unp_list, M_TEMP);
1635 	free(xug, M_TEMP);
1636 	return (error);
1637 }
1638 
1639 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1640     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1641     "List of active local datagram sockets");
1642 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1643     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1644     "List of active local stream sockets");
1645 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1646     CTLTYPE_OPAQUE | CTLFLAG_RD,
1647     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1648     "List of active local seqpacket sockets");
1649 
1650 static void
1651 unp_shutdown(struct unpcb *unp)
1652 {
1653 	struct unpcb *unp2;
1654 	struct socket *so;
1655 
1656 	UNP_LINK_WLOCK_ASSERT();
1657 	UNP_PCB_LOCK_ASSERT(unp);
1658 
1659 	unp2 = unp->unp_conn;
1660 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1661 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1662 		so = unp2->unp_socket;
1663 		if (so != NULL)
1664 			socantrcvmore(so);
1665 	}
1666 }
1667 
1668 static void
1669 unp_drop(struct unpcb *unp, int errno)
1670 {
1671 	struct socket *so = unp->unp_socket;
1672 	struct unpcb *unp2;
1673 
1674 	UNP_LINK_WLOCK_ASSERT();
1675 	UNP_PCB_LOCK_ASSERT(unp);
1676 
1677 	so->so_error = errno;
1678 	unp2 = unp->unp_conn;
1679 	if (unp2 == NULL)
1680 		return;
1681 	UNP_PCB_LOCK(unp2);
1682 	unp_disconnect(unp, unp2);
1683 	UNP_PCB_UNLOCK(unp2);
1684 }
1685 
1686 static void
1687 unp_freerights(struct filedescent **fdep, int fdcount)
1688 {
1689 	struct file *fp;
1690 	int i;
1691 
1692 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1693 
1694 	for (i = 0; i < fdcount; i++) {
1695 		fp = fdep[i]->fde_file;
1696 		filecaps_free(&fdep[i]->fde_caps);
1697 		unp_discard(fp);
1698 	}
1699 	free(fdep[0], M_FILECAPS);
1700 }
1701 
1702 static int
1703 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1704 {
1705 	struct thread *td = curthread;		/* XXX */
1706 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1707 	int i;
1708 	int *fdp;
1709 	struct filedesc *fdesc = td->td_proc->p_fd;
1710 	struct filedescent *fde, **fdep;
1711 	void *data;
1712 	socklen_t clen = control->m_len, datalen;
1713 	int error, newfds;
1714 	u_int newlen;
1715 
1716 	UNP_LINK_UNLOCK_ASSERT();
1717 
1718 	error = 0;
1719 	if (controlp != NULL) /* controlp == NULL => free control messages */
1720 		*controlp = NULL;
1721 	while (cm != NULL) {
1722 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1723 			error = EINVAL;
1724 			break;
1725 		}
1726 		data = CMSG_DATA(cm);
1727 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1728 		if (cm->cmsg_level == SOL_SOCKET
1729 		    && cm->cmsg_type == SCM_RIGHTS) {
1730 			newfds = datalen / sizeof(*fdep);
1731 			if (newfds == 0)
1732 				goto next;
1733 			fdep = data;
1734 
1735 			/* If we're not outputting the descriptors free them. */
1736 			if (error || controlp == NULL) {
1737 				unp_freerights(fdep, newfds);
1738 				goto next;
1739 			}
1740 			FILEDESC_XLOCK(fdesc);
1741 
1742 			/*
1743 			 * Now change each pointer to an fd in the global
1744 			 * table to an integer that is the index to the local
1745 			 * fd table entry that we set up to point to the
1746 			 * global one we are transferring.
1747 			 */
1748 			newlen = newfds * sizeof(int);
1749 			*controlp = sbcreatecontrol(NULL, newlen,
1750 			    SCM_RIGHTS, SOL_SOCKET);
1751 			if (*controlp == NULL) {
1752 				FILEDESC_XUNLOCK(fdesc);
1753 				error = E2BIG;
1754 				unp_freerights(fdep, newfds);
1755 				goto next;
1756 			}
1757 
1758 			fdp = (int *)
1759 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1760 			if (fdallocn(td, 0, fdp, newfds) != 0) {
1761 				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1762 				error = EMSGSIZE;
1763 				unp_freerights(fdep, newfds);
1764 				m_freem(*controlp);
1765 				*controlp = NULL;
1766 				goto next;
1767 			}
1768 			for (i = 0; i < newfds; i++, fdp++) {
1769 				fde = &fdesc->fd_ofiles[*fdp];
1770 				fde->fde_file = fdep[i]->fde_file;
1771 				filecaps_move(&fdep[i]->fde_caps,
1772 				    &fde->fde_caps);
1773 				if ((flags & MSG_CMSG_CLOEXEC) != 0)
1774 					fde->fde_flags |= UF_EXCLOSE;
1775 				unp_externalize_fp(fde->fde_file);
1776 			}
1777 			FILEDESC_XUNLOCK(fdesc);
1778 			free(fdep[0], M_FILECAPS);
1779 		} else {
1780 			/* We can just copy anything else across. */
1781 			if (error || controlp == NULL)
1782 				goto next;
1783 			*controlp = sbcreatecontrol(NULL, datalen,
1784 			    cm->cmsg_type, cm->cmsg_level);
1785 			if (*controlp == NULL) {
1786 				error = ENOBUFS;
1787 				goto next;
1788 			}
1789 			bcopy(data,
1790 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1791 			    datalen);
1792 		}
1793 		controlp = &(*controlp)->m_next;
1794 
1795 next:
1796 		if (CMSG_SPACE(datalen) < clen) {
1797 			clen -= CMSG_SPACE(datalen);
1798 			cm = (struct cmsghdr *)
1799 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1800 		} else {
1801 			clen = 0;
1802 			cm = NULL;
1803 		}
1804 	}
1805 
1806 	m_freem(control);
1807 	return (error);
1808 }
1809 
1810 static void
1811 unp_zone_change(void *tag)
1812 {
1813 
1814 	uma_zone_set_max(unp_zone, maxsockets);
1815 }
1816 
1817 static void
1818 unp_init(void)
1819 {
1820 
1821 #ifdef VIMAGE
1822 	if (!IS_DEFAULT_VNET(curvnet))
1823 		return;
1824 #endif
1825 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1826 	    NULL, NULL, UMA_ALIGN_PTR, 0);
1827 	if (unp_zone == NULL)
1828 		panic("unp_init");
1829 	uma_zone_set_max(unp_zone, maxsockets);
1830 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1831 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1832 	    NULL, EVENTHANDLER_PRI_ANY);
1833 	LIST_INIT(&unp_dhead);
1834 	LIST_INIT(&unp_shead);
1835 	LIST_INIT(&unp_sphead);
1836 	SLIST_INIT(&unp_defers);
1837 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1838 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1839 	UNP_LINK_LOCK_INIT();
1840 	UNP_LIST_LOCK_INIT();
1841 	UNP_DEFERRED_LOCK_INIT();
1842 }
1843 
1844 static int
1845 unp_internalize(struct mbuf **controlp, struct thread *td)
1846 {
1847 	struct mbuf *control = *controlp;
1848 	struct proc *p = td->td_proc;
1849 	struct filedesc *fdesc = p->p_fd;
1850 	struct bintime *bt;
1851 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1852 	struct cmsgcred *cmcred;
1853 	struct filedescent *fde, **fdep, *fdev;
1854 	struct file *fp;
1855 	struct timeval *tv;
1856 	int i, *fdp;
1857 	void *data;
1858 	socklen_t clen = control->m_len, datalen;
1859 	int error, oldfds;
1860 	u_int newlen;
1861 
1862 	UNP_LINK_UNLOCK_ASSERT();
1863 
1864 	error = 0;
1865 	*controlp = NULL;
1866 	while (cm != NULL) {
1867 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1868 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
1869 			error = EINVAL;
1870 			goto out;
1871 		}
1872 		data = CMSG_DATA(cm);
1873 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1874 
1875 		switch (cm->cmsg_type) {
1876 		/*
1877 		 * Fill in credential information.
1878 		 */
1879 		case SCM_CREDS:
1880 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1881 			    SCM_CREDS, SOL_SOCKET);
1882 			if (*controlp == NULL) {
1883 				error = ENOBUFS;
1884 				goto out;
1885 			}
1886 			cmcred = (struct cmsgcred *)
1887 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1888 			cmcred->cmcred_pid = p->p_pid;
1889 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1890 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1891 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1892 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1893 			    CMGROUP_MAX);
1894 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1895 				cmcred->cmcred_groups[i] =
1896 				    td->td_ucred->cr_groups[i];
1897 			break;
1898 
1899 		case SCM_RIGHTS:
1900 			oldfds = datalen / sizeof (int);
1901 			if (oldfds == 0)
1902 				break;
1903 			/*
1904 			 * Check that all the FDs passed in refer to legal
1905 			 * files.  If not, reject the entire operation.
1906 			 */
1907 			fdp = data;
1908 			FILEDESC_SLOCK(fdesc);
1909 			for (i = 0; i < oldfds; i++, fdp++) {
1910 				fp = fget_locked(fdesc, *fdp);
1911 				if (fp == NULL) {
1912 					FILEDESC_SUNLOCK(fdesc);
1913 					error = EBADF;
1914 					goto out;
1915 				}
1916 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1917 					FILEDESC_SUNLOCK(fdesc);
1918 					error = EOPNOTSUPP;
1919 					goto out;
1920 				}
1921 
1922 			}
1923 
1924 			/*
1925 			 * Now replace the integer FDs with pointers to the
1926 			 * file structure and capability rights.
1927 			 */
1928 			newlen = oldfds * sizeof(fdep[0]);
1929 			*controlp = sbcreatecontrol(NULL, newlen,
1930 			    SCM_RIGHTS, SOL_SOCKET);
1931 			if (*controlp == NULL) {
1932 				FILEDESC_SUNLOCK(fdesc);
1933 				error = E2BIG;
1934 				goto out;
1935 			}
1936 			fdp = data;
1937 			fdep = (struct filedescent **)
1938 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1939 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1940 			    M_WAITOK);
1941 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1942 				fde = &fdesc->fd_ofiles[*fdp];
1943 				fdep[i] = fdev;
1944 				fdep[i]->fde_file = fde->fde_file;
1945 				filecaps_copy(&fde->fde_caps,
1946 				    &fdep[i]->fde_caps);
1947 				unp_internalize_fp(fdep[i]->fde_file);
1948 			}
1949 			FILEDESC_SUNLOCK(fdesc);
1950 			break;
1951 
1952 		case SCM_TIMESTAMP:
1953 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1954 			    SCM_TIMESTAMP, SOL_SOCKET);
1955 			if (*controlp == NULL) {
1956 				error = ENOBUFS;
1957 				goto out;
1958 			}
1959 			tv = (struct timeval *)
1960 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1961 			microtime(tv);
1962 			break;
1963 
1964 		case SCM_BINTIME:
1965 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1966 			    SCM_BINTIME, SOL_SOCKET);
1967 			if (*controlp == NULL) {
1968 				error = ENOBUFS;
1969 				goto out;
1970 			}
1971 			bt = (struct bintime *)
1972 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1973 			bintime(bt);
1974 			break;
1975 
1976 		default:
1977 			error = EINVAL;
1978 			goto out;
1979 		}
1980 
1981 		controlp = &(*controlp)->m_next;
1982 		if (CMSG_SPACE(datalen) < clen) {
1983 			clen -= CMSG_SPACE(datalen);
1984 			cm = (struct cmsghdr *)
1985 			    ((caddr_t)cm + CMSG_SPACE(datalen));
1986 		} else {
1987 			clen = 0;
1988 			cm = NULL;
1989 		}
1990 	}
1991 
1992 out:
1993 	m_freem(control);
1994 	return (error);
1995 }
1996 
1997 static struct mbuf *
1998 unp_addsockcred(struct thread *td, struct mbuf *control)
1999 {
2000 	struct mbuf *m, *n, *n_prev;
2001 	struct sockcred *sc;
2002 	const struct cmsghdr *cm;
2003 	int ngroups;
2004 	int i;
2005 
2006 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2007 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2008 	if (m == NULL)
2009 		return (control);
2010 
2011 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2012 	sc->sc_uid = td->td_ucred->cr_ruid;
2013 	sc->sc_euid = td->td_ucred->cr_uid;
2014 	sc->sc_gid = td->td_ucred->cr_rgid;
2015 	sc->sc_egid = td->td_ucred->cr_gid;
2016 	sc->sc_ngroups = ngroups;
2017 	for (i = 0; i < sc->sc_ngroups; i++)
2018 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2019 
2020 	/*
2021 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2022 	 * created SCM_CREDS control message (struct sockcred) has another
2023 	 * format.
2024 	 */
2025 	if (control != NULL)
2026 		for (n = control, n_prev = NULL; n != NULL;) {
2027 			cm = mtod(n, struct cmsghdr *);
2028     			if (cm->cmsg_level == SOL_SOCKET &&
2029 			    cm->cmsg_type == SCM_CREDS) {
2030     				if (n_prev == NULL)
2031 					control = n->m_next;
2032 				else
2033 					n_prev->m_next = n->m_next;
2034 				n = m_free(n);
2035 			} else {
2036 				n_prev = n;
2037 				n = n->m_next;
2038 			}
2039 		}
2040 
2041 	/* Prepend it to the head. */
2042 	m->m_next = control;
2043 	return (m);
2044 }
2045 
2046 static struct unpcb *
2047 fptounp(struct file *fp)
2048 {
2049 	struct socket *so;
2050 
2051 	if (fp->f_type != DTYPE_SOCKET)
2052 		return (NULL);
2053 	if ((so = fp->f_data) == NULL)
2054 		return (NULL);
2055 	if (so->so_proto->pr_domain != &localdomain)
2056 		return (NULL);
2057 	return sotounpcb(so);
2058 }
2059 
2060 static void
2061 unp_discard(struct file *fp)
2062 {
2063 	struct unp_defer *dr;
2064 
2065 	if (unp_externalize_fp(fp)) {
2066 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2067 		dr->ud_fp = fp;
2068 		UNP_DEFERRED_LOCK();
2069 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2070 		UNP_DEFERRED_UNLOCK();
2071 		atomic_add_int(&unp_defers_count, 1);
2072 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2073 	} else
2074 		(void) closef(fp, (struct thread *)NULL);
2075 }
2076 
2077 static void
2078 unp_process_defers(void *arg __unused, int pending)
2079 {
2080 	struct unp_defer *dr;
2081 	SLIST_HEAD(, unp_defer) drl;
2082 	int count;
2083 
2084 	SLIST_INIT(&drl);
2085 	for (;;) {
2086 		UNP_DEFERRED_LOCK();
2087 		if (SLIST_FIRST(&unp_defers) == NULL) {
2088 			UNP_DEFERRED_UNLOCK();
2089 			break;
2090 		}
2091 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2092 		UNP_DEFERRED_UNLOCK();
2093 		count = 0;
2094 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2095 			SLIST_REMOVE_HEAD(&drl, ud_link);
2096 			closef(dr->ud_fp, NULL);
2097 			free(dr, M_TEMP);
2098 			count++;
2099 		}
2100 		atomic_add_int(&unp_defers_count, -count);
2101 	}
2102 }
2103 
2104 static void
2105 unp_internalize_fp(struct file *fp)
2106 {
2107 	struct unpcb *unp;
2108 
2109 	UNP_LINK_WLOCK();
2110 	if ((unp = fptounp(fp)) != NULL) {
2111 		unp->unp_file = fp;
2112 		unp->unp_msgcount++;
2113 	}
2114 	fhold(fp);
2115 	unp_rights++;
2116 	UNP_LINK_WUNLOCK();
2117 }
2118 
2119 static int
2120 unp_externalize_fp(struct file *fp)
2121 {
2122 	struct unpcb *unp;
2123 	int ret;
2124 
2125 	UNP_LINK_WLOCK();
2126 	if ((unp = fptounp(fp)) != NULL) {
2127 		unp->unp_msgcount--;
2128 		ret = 1;
2129 	} else
2130 		ret = 0;
2131 	unp_rights--;
2132 	UNP_LINK_WUNLOCK();
2133 	return (ret);
2134 }
2135 
2136 /*
2137  * unp_defer indicates whether additional work has been defered for a future
2138  * pass through unp_gc().  It is thread local and does not require explicit
2139  * synchronization.
2140  */
2141 static int	unp_marked;
2142 static int	unp_unreachable;
2143 
2144 static void
2145 unp_accessable(struct filedescent **fdep, int fdcount)
2146 {
2147 	struct unpcb *unp;
2148 	struct file *fp;
2149 	int i;
2150 
2151 	for (i = 0; i < fdcount; i++) {
2152 		fp = fdep[i]->fde_file;
2153 		if ((unp = fptounp(fp)) == NULL)
2154 			continue;
2155 		if (unp->unp_gcflag & UNPGC_REF)
2156 			continue;
2157 		unp->unp_gcflag &= ~UNPGC_DEAD;
2158 		unp->unp_gcflag |= UNPGC_REF;
2159 		unp_marked++;
2160 	}
2161 }
2162 
2163 static void
2164 unp_gc_process(struct unpcb *unp)
2165 {
2166 	struct socket *soa;
2167 	struct socket *so;
2168 	struct file *fp;
2169 
2170 	/* Already processed. */
2171 	if (unp->unp_gcflag & UNPGC_SCANNED)
2172 		return;
2173 	fp = unp->unp_file;
2174 
2175 	/*
2176 	 * Check for a socket potentially in a cycle.  It must be in a
2177 	 * queue as indicated by msgcount, and this must equal the file
2178 	 * reference count.  Note that when msgcount is 0 the file is NULL.
2179 	 */
2180 	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2181 	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2182 		unp->unp_gcflag |= UNPGC_DEAD;
2183 		unp_unreachable++;
2184 		return;
2185 	}
2186 
2187 	/*
2188 	 * Mark all sockets we reference with RIGHTS.
2189 	 */
2190 	so = unp->unp_socket;
2191 	SOCKBUF_LOCK(&so->so_rcv);
2192 	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2193 	SOCKBUF_UNLOCK(&so->so_rcv);
2194 
2195 	/*
2196 	 * Mark all sockets in our accept queue.
2197 	 */
2198 	ACCEPT_LOCK();
2199 	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2200 		SOCKBUF_LOCK(&soa->so_rcv);
2201 		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2202 		SOCKBUF_UNLOCK(&soa->so_rcv);
2203 	}
2204 	ACCEPT_UNLOCK();
2205 	unp->unp_gcflag |= UNPGC_SCANNED;
2206 }
2207 
2208 static int unp_recycled;
2209 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2210     "Number of unreachable sockets claimed by the garbage collector.");
2211 
2212 static int unp_taskcount;
2213 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2214     "Number of times the garbage collector has run.");
2215 
2216 static void
2217 unp_gc(__unused void *arg, int pending)
2218 {
2219 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2220 				    NULL };
2221 	struct unp_head **head;
2222 	struct file *f, **unref;
2223 	struct unpcb *unp;
2224 	int i, total;
2225 
2226 	unp_taskcount++;
2227 	UNP_LIST_LOCK();
2228 	/*
2229 	 * First clear all gc flags from previous runs.
2230 	 */
2231 	for (head = heads; *head != NULL; head++)
2232 		LIST_FOREACH(unp, *head, unp_link)
2233 			unp->unp_gcflag = 0;
2234 
2235 	/*
2236 	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2237 	 * is reachable all of the sockets it references are reachable.
2238 	 * Stop the scan once we do a complete loop without discovering
2239 	 * a new reachable socket.
2240 	 */
2241 	do {
2242 		unp_unreachable = 0;
2243 		unp_marked = 0;
2244 		for (head = heads; *head != NULL; head++)
2245 			LIST_FOREACH(unp, *head, unp_link)
2246 				unp_gc_process(unp);
2247 	} while (unp_marked);
2248 	UNP_LIST_UNLOCK();
2249 	if (unp_unreachable == 0)
2250 		return;
2251 
2252 	/*
2253 	 * Allocate space for a local list of dead unpcbs.
2254 	 */
2255 	unref = malloc(unp_unreachable * sizeof(struct file *),
2256 	    M_TEMP, M_WAITOK);
2257 
2258 	/*
2259 	 * Iterate looking for sockets which have been specifically marked
2260 	 * as as unreachable and store them locally.
2261 	 */
2262 	UNP_LINK_RLOCK();
2263 	UNP_LIST_LOCK();
2264 	for (total = 0, head = heads; *head != NULL; head++)
2265 		LIST_FOREACH(unp, *head, unp_link)
2266 			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2267 				f = unp->unp_file;
2268 				if (unp->unp_msgcount == 0 || f == NULL ||
2269 				    f->f_count != unp->unp_msgcount)
2270 					continue;
2271 				unref[total++] = f;
2272 				fhold(f);
2273 				KASSERT(total <= unp_unreachable,
2274 				    ("unp_gc: incorrect unreachable count."));
2275 			}
2276 	UNP_LIST_UNLOCK();
2277 	UNP_LINK_RUNLOCK();
2278 
2279 	/*
2280 	 * Now flush all sockets, free'ing rights.  This will free the
2281 	 * struct files associated with these sockets but leave each socket
2282 	 * with one remaining ref.
2283 	 */
2284 	for (i = 0; i < total; i++) {
2285 		struct socket *so;
2286 
2287 		so = unref[i]->f_data;
2288 		CURVNET_SET(so->so_vnet);
2289 		sorflush(so);
2290 		CURVNET_RESTORE();
2291 	}
2292 
2293 	/*
2294 	 * And finally release the sockets so they can be reclaimed.
2295 	 */
2296 	for (i = 0; i < total; i++)
2297 		fdrop(unref[i], NULL);
2298 	unp_recycled += total;
2299 	free(unref, M_TEMP);
2300 }
2301 
2302 static void
2303 unp_dispose(struct mbuf *m)
2304 {
2305 
2306 	if (m)
2307 		unp_scan(m, unp_freerights);
2308 }
2309 
2310 static void
2311 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2312 {
2313 	struct mbuf *m;
2314 	struct cmsghdr *cm;
2315 	void *data;
2316 	socklen_t clen, datalen;
2317 
2318 	while (m0 != NULL) {
2319 		for (m = m0; m; m = m->m_next) {
2320 			if (m->m_type != MT_CONTROL)
2321 				continue;
2322 
2323 			cm = mtod(m, struct cmsghdr *);
2324 			clen = m->m_len;
2325 
2326 			while (cm != NULL) {
2327 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2328 					break;
2329 
2330 				data = CMSG_DATA(cm);
2331 				datalen = (caddr_t)cm + cm->cmsg_len
2332 				    - (caddr_t)data;
2333 
2334 				if (cm->cmsg_level == SOL_SOCKET &&
2335 				    cm->cmsg_type == SCM_RIGHTS) {
2336 					(*op)(data, datalen /
2337 					    sizeof(struct filedescent *));
2338 				}
2339 
2340 				if (CMSG_SPACE(datalen) < clen) {
2341 					clen -= CMSG_SPACE(datalen);
2342 					cm = (struct cmsghdr *)
2343 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2344 				} else {
2345 					clen = 0;
2346 					cm = NULL;
2347 				}
2348 			}
2349 		}
2350 		m0 = m0->m_nextpkt;
2351 	}
2352 }
2353 
2354 /*
2355  * A helper function called by VFS before socket-type vnode reclamation.
2356  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2357  * use count.
2358  */
2359 void
2360 vfs_unp_reclaim(struct vnode *vp)
2361 {
2362 	struct socket *so;
2363 	struct unpcb *unp;
2364 	int active;
2365 
2366 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2367 	KASSERT(vp->v_type == VSOCK,
2368 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2369 
2370 	active = 0;
2371 	UNP_LINK_WLOCK();
2372 	VOP_UNP_CONNECT(vp, &so);
2373 	if (so == NULL)
2374 		goto done;
2375 	unp = sotounpcb(so);
2376 	if (unp == NULL)
2377 		goto done;
2378 	UNP_PCB_LOCK(unp);
2379 	if (unp->unp_vnode == vp) {
2380 		VOP_UNP_DETACH(vp);
2381 		unp->unp_vnode = NULL;
2382 		active = 1;
2383 	}
2384 	UNP_PCB_UNLOCK(unp);
2385 done:
2386 	UNP_LINK_WUNLOCK();
2387 	if (active)
2388 		vunref(vp);
2389 }
2390 
2391 #ifdef DDB
2392 static void
2393 db_print_indent(int indent)
2394 {
2395 	int i;
2396 
2397 	for (i = 0; i < indent; i++)
2398 		db_printf(" ");
2399 }
2400 
2401 static void
2402 db_print_unpflags(int unp_flags)
2403 {
2404 	int comma;
2405 
2406 	comma = 0;
2407 	if (unp_flags & UNP_HAVEPC) {
2408 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2409 		comma = 1;
2410 	}
2411 	if (unp_flags & UNP_HAVEPCCACHED) {
2412 		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2413 		comma = 1;
2414 	}
2415 	if (unp_flags & UNP_WANTCRED) {
2416 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2417 		comma = 1;
2418 	}
2419 	if (unp_flags & UNP_CONNWAIT) {
2420 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2421 		comma = 1;
2422 	}
2423 	if (unp_flags & UNP_CONNECTING) {
2424 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2425 		comma = 1;
2426 	}
2427 	if (unp_flags & UNP_BINDING) {
2428 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2429 		comma = 1;
2430 	}
2431 }
2432 
2433 static void
2434 db_print_xucred(int indent, struct xucred *xu)
2435 {
2436 	int comma, i;
2437 
2438 	db_print_indent(indent);
2439 	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2440 	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2441 	db_print_indent(indent);
2442 	db_printf("cr_groups: ");
2443 	comma = 0;
2444 	for (i = 0; i < xu->cr_ngroups; i++) {
2445 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2446 		comma = 1;
2447 	}
2448 	db_printf("\n");
2449 }
2450 
2451 static void
2452 db_print_unprefs(int indent, struct unp_head *uh)
2453 {
2454 	struct unpcb *unp;
2455 	int counter;
2456 
2457 	counter = 0;
2458 	LIST_FOREACH(unp, uh, unp_reflink) {
2459 		if (counter % 4 == 0)
2460 			db_print_indent(indent);
2461 		db_printf("%p  ", unp);
2462 		if (counter % 4 == 3)
2463 			db_printf("\n");
2464 		counter++;
2465 	}
2466 	if (counter != 0 && counter % 4 != 0)
2467 		db_printf("\n");
2468 }
2469 
2470 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2471 {
2472 	struct unpcb *unp;
2473 
2474         if (!have_addr) {
2475                 db_printf("usage: show unpcb <addr>\n");
2476                 return;
2477         }
2478         unp = (struct unpcb *)addr;
2479 
2480 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2481 	    unp->unp_vnode);
2482 
2483 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2484 	    unp->unp_conn);
2485 
2486 	db_printf("unp_refs:\n");
2487 	db_print_unprefs(2, &unp->unp_refs);
2488 
2489 	/* XXXRW: Would be nice to print the full address, if any. */
2490 	db_printf("unp_addr: %p\n", unp->unp_addr);
2491 
2492 	db_printf("unp_gencnt: %llu\n",
2493 	    (unsigned long long)unp->unp_gencnt);
2494 
2495 	db_printf("unp_flags: %x (", unp->unp_flags);
2496 	db_print_unpflags(unp->unp_flags);
2497 	db_printf(")\n");
2498 
2499 	db_printf("unp_peercred:\n");
2500 	db_print_xucred(2, &unp->unp_peercred);
2501 
2502 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2503 }
2504 #endif
2505