1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All Rights Reserved. 6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. 7 * Copyright (c) 2018 Matthew Macy 8 * Copyright (c) 2022-2025 Gleb Smirnoff <glebius@FreeBSD.org> 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * UNIX Domain (Local) Sockets 37 * 38 * This is an implementation of UNIX (local) domain sockets. Each socket has 39 * an associated struct unpcb (UNIX protocol control block). Stream sockets 40 * may be connected to 0 or 1 other socket. Datagram sockets may be 41 * connected to 0, 1, or many other sockets. Sockets may be created and 42 * connected in pairs (socketpair(2)), or bound/connected to using the file 43 * system name space. For most purposes, only the receive socket buffer is 44 * used, as sending on one socket delivers directly to the receive socket 45 * buffer of a second socket. 46 * 47 * The implementation is substantially complicated by the fact that 48 * "ancillary data", such as file descriptors or credentials, may be passed 49 * across UNIX domain sockets. The potential for passing UNIX domain sockets 50 * over other UNIX domain sockets requires the implementation of a simple 51 * garbage collector to find and tear down cycles of disconnected sockets. 52 * 53 * TODO: 54 * RDM 55 * rethink name space problems 56 * need a proper out-of-band 57 */ 58 59 #include "opt_ddb.h" 60 61 #include <sys/param.h> 62 #include <sys/capsicum.h> 63 #include <sys/domain.h> 64 #include <sys/eventhandler.h> 65 #include <sys/fcntl.h> 66 #include <sys/file.h> 67 #include <sys/filedesc.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/lock.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/mount.h> 74 #include <sys/mutex.h> 75 #include <sys/namei.h> 76 #include <sys/poll.h> 77 #include <sys/proc.h> 78 #include <sys/protosw.h> 79 #include <sys/queue.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/signalvar.h> 85 #include <sys/stat.h> 86 #include <sys/sx.h> 87 #include <sys/sysctl.h> 88 #include <sys/systm.h> 89 #include <sys/taskqueue.h> 90 #include <sys/un.h> 91 #include <sys/unpcb.h> 92 #include <sys/vnode.h> 93 94 #include <net/vnet.h> 95 96 #ifdef DDB 97 #include <ddb/ddb.h> 98 #endif 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/uma.h> 103 104 MALLOC_DECLARE(M_FILECAPS); 105 106 static struct domain localdomain; 107 108 static uma_zone_t unp_zone; 109 static unp_gen_t unp_gencnt; /* (l) */ 110 static u_int unp_count; /* (l) Count of local sockets. */ 111 static ino_t unp_ino; /* Prototype for fake inode numbers. */ 112 static int unp_rights; /* (g) File descriptors in flight. */ 113 static struct unp_head unp_shead; /* (l) List of stream sockets. */ 114 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ 115 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ 116 static struct mtx_pool *unp_vp_mtxpool; 117 118 struct unp_defer { 119 SLIST_ENTRY(unp_defer) ud_link; 120 struct file *ud_fp; 121 }; 122 static SLIST_HEAD(, unp_defer) unp_defers; 123 static int unp_defers_count; 124 125 static const struct sockaddr sun_noname = { 126 .sa_len = sizeof(sun_noname), 127 .sa_family = AF_LOCAL, 128 }; 129 130 /* 131 * Garbage collection of cyclic file descriptor/socket references occurs 132 * asynchronously in a taskqueue context in order to avoid recursion and 133 * reentrance in the UNIX domain socket, file descriptor, and socket layer 134 * code. See unp_gc() for a full description. 135 */ 136 static struct timeout_task unp_gc_task; 137 138 /* 139 * The close of unix domain sockets attached as SCM_RIGHTS is 140 * postponed to the taskqueue, to avoid arbitrary recursion depth. 141 * The attached sockets might have another sockets attached. 142 */ 143 static struct task unp_defer_task; 144 145 /* 146 * SOCK_STREAM and SOCK_SEQPACKET unix(4) sockets fully bypass the send buffer, 147 * however the notion of send buffer still makes sense with them. Its size is 148 * the amount of space that a send(2) syscall may copyin(9) before checking 149 * with the receive buffer of a peer. Although not linked anywhere yet, 150 * pointed to by a stack variable, effectively it is a buffer that needs to be 151 * sized. 152 * 153 * SOCK_DGRAM sockets really use the sendspace as the maximum datagram size, 154 * and don't really want to reserve the sendspace. Their recvspace should be 155 * large enough for at least one max-size datagram plus address. 156 */ 157 static u_long unpst_sendspace = 64*1024; 158 static u_long unpst_recvspace = 64*1024; 159 static u_long unpdg_maxdgram = 8*1024; /* support 8KB syslog msgs */ 160 static u_long unpdg_recvspace = 16*1024; 161 static u_long unpsp_sendspace = 64*1024; 162 static u_long unpsp_recvspace = 64*1024; 163 164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 165 "Local domain"); 166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, 167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 168 "SOCK_STREAM"); 169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "SOCK_DGRAM"); 172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, 173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 174 "SOCK_SEQPACKET"); 175 176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 177 &unpst_sendspace, 0, "Default stream send space."); 178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 179 &unpst_recvspace, 0, "Default stream receive space."); 180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 181 &unpdg_maxdgram, 0, "Maximum datagram size."); 182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 183 &unpdg_recvspace, 0, "Default datagram receive space."); 184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, 185 &unpsp_sendspace, 0, "Default seqpacket send space."); 186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, 187 &unpsp_recvspace, 0, "Default seqpacket receive space."); 188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, 189 "File descriptors in flight."); 190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, 191 &unp_defers_count, 0, 192 "File descriptors deferred to taskqueue for close."); 193 194 /* 195 * Locking and synchronization: 196 * 197 * Several types of locks exist in the local domain socket implementation: 198 * - a global linkage lock 199 * - a global connection list lock 200 * - the mtxpool lock 201 * - per-unpcb mutexes 202 * 203 * The linkage lock protects the global socket lists, the generation number 204 * counter and garbage collector state. 205 * 206 * The connection list lock protects the list of referring sockets in a datagram 207 * socket PCB. This lock is also overloaded to protect a global list of 208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS 209 * messages. To avoid recursion, such references are released by a dedicated 210 * thread. 211 * 212 * The mtxpool lock protects the vnode from being modified while referenced. 213 * Lock ordering rules require that it be acquired before any PCB locks. 214 * 215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the 216 * unpcb. This includes the unp_conn field, which either links two connected 217 * PCBs together (for connected socket types) or points at the destination 218 * socket (for connectionless socket types). The operations of creating or 219 * destroying a connection therefore involve locking multiple PCBs. To avoid 220 * lock order reversals, in some cases this involves dropping a PCB lock and 221 * using a reference counter to maintain liveness. 222 * 223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, 224 * allocated in pr_attach() and freed in pr_detach(). The validity of that 225 * pointer is an invariant, so no lock is required to dereference the so_pcb 226 * pointer if a valid socket reference is held by the caller. In practice, 227 * this is always true during operations performed on a socket. Each unpcb 228 * has a back-pointer to its socket, unp_socket, which will be stable under 229 * the same circumstances. 230 * 231 * This pointer may only be safely dereferenced as long as a valid reference 232 * to the unpcb is held. Typically, this reference will be from the socket, 233 * or from another unpcb when the referring unpcb's lock is held (in order 234 * that the reference not be invalidated during use). For example, to follow 235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee 236 * that detach is not run clearing unp_socket. 237 * 238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network 239 * protocols, bind() is a non-atomic operation, and connect() requires 240 * potential sleeping in the protocol, due to potentially waiting on local or 241 * distributed file systems. We try to separate "lookup" operations, which 242 * may sleep, and the IPC operations themselves, which typically can occur 243 * with relative atomicity as locks can be held over the entire operation. 244 * 245 * Another tricky issue is simultaneous multi-threaded or multi-process 246 * access to a single UNIX domain socket. These are handled by the flags 247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or 248 * binding, both of which involve dropping UNIX domain socket locks in order 249 * to perform namei() and other file system operations. 250 */ 251 static struct rwlock unp_link_rwlock; 252 static struct mtx unp_defers_lock; 253 254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ 255 "unp_link_rwlock") 256 257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 258 RA_LOCKED) 259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 260 RA_UNLOCKED) 261 262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) 263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) 264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) 265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) 266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ 267 RA_WLOCKED) 268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) 269 270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ 271 "unp_defer", NULL, MTX_DEF) 272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) 273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) 274 275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); 276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); 277 278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ 279 "unp", "unp", \ 280 MTX_DUPOK|MTX_DEF) 281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) 282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx) 283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) 284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) 285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) 286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) 287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) 288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) 289 290 static int uipc_connect2(struct socket *, struct socket *); 291 static int uipc_ctloutput(struct socket *, struct sockopt *); 292 static int unp_connect(struct socket *, struct sockaddr *, 293 struct thread *); 294 static int unp_connectat(int, struct socket *, struct sockaddr *, 295 struct thread *, bool); 296 static void unp_connect2(struct socket *, struct socket *, bool); 297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); 298 static void unp_dispose(struct socket *so); 299 static void unp_drop(struct unpcb *); 300 static void unp_gc(__unused void *, int); 301 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); 302 static void unp_discard(struct file *); 303 static void unp_freerights(struct filedescent **, int); 304 static int unp_internalize(struct mbuf *, struct mchain *, 305 struct thread *); 306 static void unp_internalize_fp(struct file *); 307 static int unp_externalize(struct mbuf *, struct mbuf **, int); 308 static int unp_externalize_fp(struct file *); 309 static void unp_addsockcred(struct thread *, struct mchain *, int); 310 static void unp_process_defers(void * __unused, int); 311 312 static void uipc_wrknl_lock(void *); 313 static void uipc_wrknl_unlock(void *); 314 static void uipc_wrknl_assert_lock(void *, int); 315 316 static void 317 unp_pcb_hold(struct unpcb *unp) 318 { 319 u_int old __unused; 320 321 old = refcount_acquire(&unp->unp_refcount); 322 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp)); 323 } 324 325 static __result_use_check bool 326 unp_pcb_rele(struct unpcb *unp) 327 { 328 bool ret; 329 330 UNP_PCB_LOCK_ASSERT(unp); 331 332 if ((ret = refcount_release(&unp->unp_refcount))) { 333 UNP_PCB_UNLOCK(unp); 334 UNP_PCB_LOCK_DESTROY(unp); 335 uma_zfree(unp_zone, unp); 336 } 337 return (ret); 338 } 339 340 static void 341 unp_pcb_rele_notlast(struct unpcb *unp) 342 { 343 bool ret __unused; 344 345 ret = refcount_release(&unp->unp_refcount); 346 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp)); 347 } 348 349 static void 350 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2) 351 { 352 UNP_PCB_UNLOCK_ASSERT(unp); 353 UNP_PCB_UNLOCK_ASSERT(unp2); 354 355 if (unp == unp2) { 356 UNP_PCB_LOCK(unp); 357 } else if ((uintptr_t)unp2 > (uintptr_t)unp) { 358 UNP_PCB_LOCK(unp); 359 UNP_PCB_LOCK(unp2); 360 } else { 361 UNP_PCB_LOCK(unp2); 362 UNP_PCB_LOCK(unp); 363 } 364 } 365 366 static void 367 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2) 368 { 369 UNP_PCB_UNLOCK(unp); 370 if (unp != unp2) 371 UNP_PCB_UNLOCK(unp2); 372 } 373 374 /* 375 * Try to lock the connected peer of an already locked socket. In some cases 376 * this requires that we unlock the current socket. The pairbusy counter is 377 * used to block concurrent connection attempts while the lock is dropped. The 378 * caller must be careful to revalidate PCB state. 379 */ 380 static struct unpcb * 381 unp_pcb_lock_peer(struct unpcb *unp) 382 { 383 struct unpcb *unp2; 384 385 UNP_PCB_LOCK_ASSERT(unp); 386 unp2 = unp->unp_conn; 387 if (unp2 == NULL) 388 return (NULL); 389 if (__predict_false(unp == unp2)) 390 return (unp); 391 392 UNP_PCB_UNLOCK_ASSERT(unp2); 393 394 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) 395 return (unp2); 396 if ((uintptr_t)unp2 > (uintptr_t)unp) { 397 UNP_PCB_LOCK(unp2); 398 return (unp2); 399 } 400 unp->unp_pairbusy++; 401 unp_pcb_hold(unp2); 402 UNP_PCB_UNLOCK(unp); 403 404 UNP_PCB_LOCK(unp2); 405 UNP_PCB_LOCK(unp); 406 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL, 407 ("%s: socket %p was reconnected", __func__, unp)); 408 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) { 409 unp->unp_flags &= ~UNP_WAITING; 410 wakeup(unp); 411 } 412 if (unp_pcb_rele(unp2)) { 413 /* unp2 is unlocked. */ 414 return (NULL); 415 } 416 if (unp->unp_conn == NULL) { 417 UNP_PCB_UNLOCK(unp2); 418 return (NULL); 419 } 420 return (unp2); 421 } 422 423 /* 424 * Try to lock peer of our socket for purposes of sending data to it. 425 */ 426 static int 427 uipc_lock_peer(struct socket *so, struct unpcb **unp2) 428 { 429 struct unpcb *unp; 430 int error; 431 432 unp = sotounpcb(so); 433 UNP_PCB_LOCK(unp); 434 *unp2 = unp_pcb_lock_peer(unp); 435 if (__predict_false(so->so_error != 0)) { 436 error = so->so_error; 437 so->so_error = 0; 438 UNP_PCB_UNLOCK(unp); 439 if (*unp2 != NULL) 440 UNP_PCB_UNLOCK(*unp2); 441 return (error); 442 } 443 if (__predict_false(*unp2 == NULL)) { 444 /* 445 * Different error code for a previously connected socket and 446 * a never connected one. The SS_ISDISCONNECTED is set in the 447 * unp_soisdisconnected() and is synchronized by the pcb lock. 448 */ 449 error = so->so_state & SS_ISDISCONNECTED ? EPIPE : ENOTCONN; 450 UNP_PCB_UNLOCK(unp); 451 return (error); 452 } 453 UNP_PCB_UNLOCK(unp); 454 455 return (0); 456 } 457 458 static void 459 uipc_abort(struct socket *so) 460 { 461 struct unpcb *unp, *unp2; 462 463 unp = sotounpcb(so); 464 KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); 465 UNP_PCB_UNLOCK_ASSERT(unp); 466 467 UNP_PCB_LOCK(unp); 468 unp2 = unp->unp_conn; 469 if (unp2 != NULL) { 470 unp_pcb_hold(unp2); 471 UNP_PCB_UNLOCK(unp); 472 unp_drop(unp2); 473 } else 474 UNP_PCB_UNLOCK(unp); 475 } 476 477 static int 478 uipc_attach(struct socket *so, int proto, struct thread *td) 479 { 480 u_long sendspace, recvspace; 481 struct unpcb *unp; 482 int error; 483 bool locked; 484 485 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); 486 switch (so->so_type) { 487 case SOCK_DGRAM: 488 STAILQ_INIT(&so->so_rcv.uxdg_mb); 489 STAILQ_INIT(&so->so_snd.uxdg_mb); 490 TAILQ_INIT(&so->so_rcv.uxdg_conns); 491 /* 492 * Since send buffer is either bypassed or is a part 493 * of one-to-many receive buffer, we assign both space 494 * limits to unpdg_recvspace. 495 */ 496 sendspace = recvspace = unpdg_recvspace; 497 break; 498 499 case SOCK_STREAM: 500 sendspace = unpst_sendspace; 501 recvspace = unpst_recvspace; 502 goto common; 503 504 case SOCK_SEQPACKET: 505 sendspace = unpsp_sendspace; 506 recvspace = unpsp_recvspace; 507 common: 508 /* 509 * XXXGL: we need to initialize the mutex with MTX_DUPOK. 510 * Ideally, protocols that have PR_SOCKBUF should be 511 * responsible for mutex initialization officially, and then 512 * this uglyness with mtx_destroy(); mtx_init(); would go away. 513 */ 514 mtx_destroy(&so->so_rcv_mtx); 515 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF | MTX_DUPOK); 516 knlist_init(&so->so_wrsel.si_note, so, uipc_wrknl_lock, 517 uipc_wrknl_unlock, uipc_wrknl_assert_lock); 518 STAILQ_INIT(&so->so_rcv.uxst_mbq); 519 break; 520 default: 521 panic("uipc_attach"); 522 } 523 error = soreserve(so, sendspace, recvspace); 524 if (error) 525 return (error); 526 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); 527 if (unp == NULL) 528 return (ENOBUFS); 529 LIST_INIT(&unp->unp_refs); 530 UNP_PCB_LOCK_INIT(unp); 531 unp->unp_socket = so; 532 so->so_pcb = unp; 533 refcount_init(&unp->unp_refcount, 1); 534 unp->unp_mode = ACCESSPERMS; 535 536 if ((locked = UNP_LINK_WOWNED()) == false) 537 UNP_LINK_WLOCK(); 538 539 unp->unp_gencnt = ++unp_gencnt; 540 unp->unp_ino = ++unp_ino; 541 unp_count++; 542 switch (so->so_type) { 543 case SOCK_STREAM: 544 LIST_INSERT_HEAD(&unp_shead, unp, unp_link); 545 break; 546 547 case SOCK_DGRAM: 548 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); 549 break; 550 551 case SOCK_SEQPACKET: 552 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); 553 break; 554 555 default: 556 panic("uipc_attach"); 557 } 558 559 if (locked == false) 560 UNP_LINK_WUNLOCK(); 561 562 return (0); 563 } 564 565 static int 566 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 567 { 568 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 569 struct vattr vattr; 570 int error, namelen; 571 struct nameidata nd; 572 struct unpcb *unp; 573 struct vnode *vp; 574 struct mount *mp; 575 cap_rights_t rights; 576 char *buf; 577 mode_t mode; 578 579 if (nam->sa_family != AF_UNIX) 580 return (EAFNOSUPPORT); 581 582 unp = sotounpcb(so); 583 KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); 584 585 if (soun->sun_len > sizeof(struct sockaddr_un)) 586 return (EINVAL); 587 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 588 if (namelen <= 0) 589 return (EINVAL); 590 591 /* 592 * We don't allow simultaneous bind() calls on a single UNIX domain 593 * socket, so flag in-progress operations, and return an error if an 594 * operation is already in progress. 595 * 596 * Historically, we have not allowed a socket to be rebound, so this 597 * also returns an error. Not allowing re-binding simplifies the 598 * implementation and avoids a great many possible failure modes. 599 */ 600 UNP_PCB_LOCK(unp); 601 if (unp->unp_vnode != NULL) { 602 UNP_PCB_UNLOCK(unp); 603 return (EINVAL); 604 } 605 if (unp->unp_flags & UNP_BINDING) { 606 UNP_PCB_UNLOCK(unp); 607 return (EALREADY); 608 } 609 unp->unp_flags |= UNP_BINDING; 610 mode = unp->unp_mode & ~td->td_proc->p_pd->pd_cmask; 611 UNP_PCB_UNLOCK(unp); 612 613 buf = malloc(namelen + 1, M_TEMP, M_WAITOK); 614 bcopy(soun->sun_path, buf, namelen); 615 buf[namelen] = 0; 616 617 restart: 618 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE, 619 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT)); 620 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 621 error = namei(&nd); 622 if (error) 623 goto error; 624 vp = nd.ni_vp; 625 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { 626 NDFREE_PNBUF(&nd); 627 if (nd.ni_dvp == vp) 628 vrele(nd.ni_dvp); 629 else 630 vput(nd.ni_dvp); 631 if (vp != NULL) { 632 vrele(vp); 633 error = EADDRINUSE; 634 goto error; 635 } 636 error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH); 637 if (error) 638 goto error; 639 goto restart; 640 } 641 VATTR_NULL(&vattr); 642 vattr.va_type = VSOCK; 643 vattr.va_mode = mode; 644 #ifdef MAC 645 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, 646 &vattr); 647 #endif 648 if (error == 0) { 649 /* 650 * The prior lookup may have left LK_SHARED in cn_lkflags, 651 * and VOP_CREATE technically only requires the new vnode to 652 * be locked shared. Most filesystems will return the new vnode 653 * locked exclusive regardless, but we should explicitly 654 * specify that here since we require it and assert to that 655 * effect below. 656 */ 657 nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) | 658 LK_EXCLUSIVE; 659 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 660 } 661 NDFREE_PNBUF(&nd); 662 if (error) { 663 VOP_VPUT_PAIR(nd.ni_dvp, NULL, true); 664 vn_finished_write(mp); 665 if (error == ERELOOKUP) 666 goto restart; 667 goto error; 668 } 669 vp = nd.ni_vp; 670 ASSERT_VOP_ELOCKED(vp, "uipc_bind"); 671 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); 672 673 UNP_PCB_LOCK(unp); 674 VOP_UNP_BIND(vp, unp); 675 unp->unp_vnode = vp; 676 unp->unp_addr = soun; 677 unp->unp_flags &= ~UNP_BINDING; 678 UNP_PCB_UNLOCK(unp); 679 vref(vp); 680 VOP_VPUT_PAIR(nd.ni_dvp, &vp, true); 681 vn_finished_write(mp); 682 free(buf, M_TEMP); 683 return (0); 684 685 error: 686 UNP_PCB_LOCK(unp); 687 unp->unp_flags &= ~UNP_BINDING; 688 UNP_PCB_UNLOCK(unp); 689 free(buf, M_TEMP); 690 return (error); 691 } 692 693 static int 694 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 695 { 696 697 return (uipc_bindat(AT_FDCWD, so, nam, td)); 698 } 699 700 static int 701 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 702 { 703 int error; 704 705 KASSERT(td == curthread, ("uipc_connect: td != curthread")); 706 error = unp_connect(so, nam, td); 707 return (error); 708 } 709 710 static int 711 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, 712 struct thread *td) 713 { 714 int error; 715 716 KASSERT(td == curthread, ("uipc_connectat: td != curthread")); 717 error = unp_connectat(fd, so, nam, td, false); 718 return (error); 719 } 720 721 static void 722 uipc_close(struct socket *so) 723 { 724 struct unpcb *unp, *unp2; 725 struct vnode *vp = NULL; 726 struct mtx *vplock; 727 728 unp = sotounpcb(so); 729 KASSERT(unp != NULL, ("uipc_close: unp == NULL")); 730 731 vplock = NULL; 732 if ((vp = unp->unp_vnode) != NULL) { 733 vplock = mtx_pool_find(unp_vp_mtxpool, vp); 734 mtx_lock(vplock); 735 } 736 UNP_PCB_LOCK(unp); 737 if (vp && unp->unp_vnode == NULL) { 738 mtx_unlock(vplock); 739 vp = NULL; 740 } 741 if (vp != NULL) { 742 VOP_UNP_DETACH(vp); 743 unp->unp_vnode = NULL; 744 } 745 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 746 unp_disconnect(unp, unp2); 747 else 748 UNP_PCB_UNLOCK(unp); 749 if (vp) { 750 mtx_unlock(vplock); 751 vrele(vp); 752 } 753 } 754 755 static int 756 uipc_chmod(struct socket *so, mode_t mode, struct ucred *cred __unused, 757 struct thread *td __unused) 758 { 759 struct unpcb *unp; 760 int error; 761 762 if ((mode & ~ACCESSPERMS) != 0) 763 return (EINVAL); 764 765 error = 0; 766 unp = sotounpcb(so); 767 UNP_PCB_LOCK(unp); 768 if (unp->unp_vnode != NULL || (unp->unp_flags & UNP_BINDING) != 0) 769 error = EINVAL; 770 else 771 unp->unp_mode = mode; 772 UNP_PCB_UNLOCK(unp); 773 return (error); 774 } 775 776 static int 777 uipc_connect2(struct socket *so1, struct socket *so2) 778 { 779 struct unpcb *unp, *unp2; 780 781 if (so1->so_type != so2->so_type) 782 return (EPROTOTYPE); 783 784 unp = so1->so_pcb; 785 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); 786 unp2 = so2->so_pcb; 787 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); 788 unp_pcb_lock_pair(unp, unp2); 789 unp_connect2(so1, so2, false); 790 unp_pcb_unlock_pair(unp, unp2); 791 792 return (0); 793 } 794 795 static void 796 uipc_detach(struct socket *so) 797 { 798 struct unpcb *unp, *unp2; 799 struct mtx *vplock; 800 struct vnode *vp; 801 int local_unp_rights; 802 803 unp = sotounpcb(so); 804 KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); 805 806 vp = NULL; 807 vplock = NULL; 808 809 if (!SOLISTENING(so)) 810 unp_dispose(so); 811 812 UNP_LINK_WLOCK(); 813 LIST_REMOVE(unp, unp_link); 814 if (unp->unp_gcflag & UNPGC_DEAD) 815 LIST_REMOVE(unp, unp_dead); 816 unp->unp_gencnt = ++unp_gencnt; 817 --unp_count; 818 UNP_LINK_WUNLOCK(); 819 820 UNP_PCB_UNLOCK_ASSERT(unp); 821 restart: 822 if ((vp = unp->unp_vnode) != NULL) { 823 vplock = mtx_pool_find(unp_vp_mtxpool, vp); 824 mtx_lock(vplock); 825 } 826 UNP_PCB_LOCK(unp); 827 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { 828 if (vplock) 829 mtx_unlock(vplock); 830 UNP_PCB_UNLOCK(unp); 831 goto restart; 832 } 833 if ((vp = unp->unp_vnode) != NULL) { 834 VOP_UNP_DETACH(vp); 835 unp->unp_vnode = NULL; 836 } 837 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 838 unp_disconnect(unp, unp2); 839 else 840 UNP_PCB_UNLOCK(unp); 841 842 UNP_REF_LIST_LOCK(); 843 while (!LIST_EMPTY(&unp->unp_refs)) { 844 struct unpcb *ref = LIST_FIRST(&unp->unp_refs); 845 846 unp_pcb_hold(ref); 847 UNP_REF_LIST_UNLOCK(); 848 849 MPASS(ref != unp); 850 UNP_PCB_UNLOCK_ASSERT(ref); 851 unp_drop(ref); 852 UNP_REF_LIST_LOCK(); 853 } 854 UNP_REF_LIST_UNLOCK(); 855 856 UNP_PCB_LOCK(unp); 857 local_unp_rights = unp_rights; 858 unp->unp_socket->so_pcb = NULL; 859 unp->unp_socket = NULL; 860 free(unp->unp_addr, M_SONAME); 861 unp->unp_addr = NULL; 862 if (!unp_pcb_rele(unp)) 863 UNP_PCB_UNLOCK(unp); 864 if (vp) { 865 mtx_unlock(vplock); 866 vrele(vp); 867 } 868 if (local_unp_rights) 869 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); 870 871 switch (so->so_type) { 872 case SOCK_STREAM: 873 case SOCK_SEQPACKET: 874 MPASS(SOLISTENING(so) || (STAILQ_EMPTY(&so->so_rcv.uxst_mbq) && 875 so->so_rcv.uxst_peer == NULL)); 876 break; 877 case SOCK_DGRAM: 878 /* 879 * Everything should have been unlinked/freed by unp_dispose() 880 * and/or unp_disconnect(). 881 */ 882 MPASS(so->so_rcv.uxdg_peeked == NULL); 883 MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb)); 884 MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns)); 885 MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb)); 886 } 887 } 888 889 static int 890 uipc_disconnect(struct socket *so) 891 { 892 struct unpcb *unp, *unp2; 893 894 unp = sotounpcb(so); 895 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); 896 897 UNP_PCB_LOCK(unp); 898 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) 899 unp_disconnect(unp, unp2); 900 else 901 UNP_PCB_UNLOCK(unp); 902 return (0); 903 } 904 905 static int 906 uipc_listen(struct socket *so, int backlog, struct thread *td) 907 { 908 struct unpcb *unp; 909 int error; 910 911 MPASS(so->so_type != SOCK_DGRAM); 912 913 /* 914 * Synchronize with concurrent connection attempts. 915 */ 916 error = 0; 917 unp = sotounpcb(so); 918 UNP_PCB_LOCK(unp); 919 if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0) 920 error = EINVAL; 921 else if (unp->unp_vnode == NULL) 922 error = EDESTADDRREQ; 923 if (error != 0) { 924 UNP_PCB_UNLOCK(unp); 925 return (error); 926 } 927 928 SOCK_LOCK(so); 929 error = solisten_proto_check(so); 930 if (error == 0) { 931 cru2xt(td, &unp->unp_peercred); 932 if (!SOLISTENING(so)) { 933 (void)chgsbsize(so->so_cred->cr_uidinfo, 934 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 935 (void)chgsbsize(so->so_cred->cr_uidinfo, 936 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 937 } 938 solisten_proto(so, backlog); 939 } 940 SOCK_UNLOCK(so); 941 UNP_PCB_UNLOCK(unp); 942 return (error); 943 } 944 945 static int 946 uipc_peeraddr(struct socket *so, struct sockaddr *ret) 947 { 948 struct unpcb *unp, *unp2; 949 const struct sockaddr *sa; 950 951 unp = sotounpcb(so); 952 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); 953 954 UNP_PCB_LOCK(unp); 955 unp2 = unp_pcb_lock_peer(unp); 956 if (unp2 != NULL) { 957 if (unp2->unp_addr != NULL) 958 sa = (struct sockaddr *)unp2->unp_addr; 959 else 960 sa = &sun_noname; 961 bcopy(sa, ret, sa->sa_len); 962 unp_pcb_unlock_pair(unp, unp2); 963 } else { 964 UNP_PCB_UNLOCK(unp); 965 sa = &sun_noname; 966 bcopy(sa, ret, sa->sa_len); 967 } 968 return (0); 969 } 970 971 /* 972 * pr_sosend() called with mbuf instead of uio is a kernel thread. NFS, 973 * netgraph(4) and other subsystems can call into socket code. The 974 * function will condition the mbuf so that it can be safely put onto socket 975 * buffer and calculate its char count and mbuf count. 976 * 977 * Note: we don't support receiving control data from a kernel thread. Our 978 * pr_sosend methods have MPASS() to check that. This may change. 979 */ 980 static void 981 uipc_reset_kernel_mbuf(struct mbuf *m, struct mchain *mc) 982 { 983 984 M_ASSERTPKTHDR(m); 985 986 m_clrprotoflags(m); 987 m_tag_delete_chain(m, NULL); 988 m->m_pkthdr.rcvif = NULL; 989 m->m_pkthdr.flowid = 0; 990 m->m_pkthdr.csum_flags = 0; 991 m->m_pkthdr.fibnum = 0; 992 m->m_pkthdr.rsstype = 0; 993 994 mc_init_m(mc, m); 995 MPASS(m->m_pkthdr.len == mc->mc_len); 996 } 997 998 #ifdef SOCKBUF_DEBUG 999 static inline void 1000 uipc_stream_sbcheck(struct sockbuf *sb) 1001 { 1002 struct mbuf *d; 1003 u_int dacc, dccc, dctl, dmbcnt; 1004 bool notready = false; 1005 1006 dacc = dccc = dctl = dmbcnt = 0; 1007 STAILQ_FOREACH(d, &sb->uxst_mbq, m_stailq) { 1008 if (d == sb->uxst_fnrdy) { 1009 MPASS(d->m_flags & M_NOTREADY); 1010 notready = true; 1011 } 1012 if (d->m_type == MT_CONTROL) 1013 dctl += d->m_len; 1014 else if (d->m_type == MT_DATA) { 1015 dccc += d->m_len; 1016 if (!notready) 1017 dacc += d->m_len; 1018 } else 1019 MPASS(0); 1020 dmbcnt += MSIZE; 1021 if (d->m_flags & M_EXT) 1022 dmbcnt += d->m_ext.ext_size; 1023 if (d->m_stailq.stqe_next == NULL) 1024 MPASS(sb->uxst_mbq.stqh_last == &d->m_stailq.stqe_next); 1025 } 1026 MPASS(sb->uxst_fnrdy == NULL || notready); 1027 MPASS(dacc == sb->sb_acc); 1028 MPASS(dccc == sb->sb_ccc); 1029 MPASS(dctl == sb->sb_ctl); 1030 MPASS(dmbcnt == sb->sb_mbcnt); 1031 (void)STAILQ_EMPTY(&sb->uxst_mbq); 1032 } 1033 #define UIPC_STREAM_SBCHECK(sb) uipc_stream_sbcheck(sb) 1034 #else 1035 #define UIPC_STREAM_SBCHECK(sb) do {} while (0) 1036 #endif 1037 1038 /* 1039 * uipc_stream_sbspace() returns how much a writer can send, limited by char 1040 * count or mbuf memory use, whatever ends first. 1041 * 1042 * An obvious and legitimate reason for a socket having more data than allowed, 1043 * is lowering the limit with setsockopt(SO_RCVBUF) on already full buffer. 1044 * Also, sb_mbcnt may overcommit sb_mbmax in case if previous write observed 1045 * 'space < mbspace', but mchain allocated to hold 'space' bytes of data ended 1046 * up with 'mc_mlen > mbspace'. A typical scenario would be a full buffer with 1047 * writer trying to push in a large write, and a slow reader, that reads just 1048 * a few bytes at a time. In that case writer will keep creating new mbufs 1049 * with mc_split(). These mbufs will carry little chars, but will all point at 1050 * the same cluster, thus each adding cluster size to sb_mbcnt. This means we 1051 * will count same cluster many times potentially underutilizing socket buffer. 1052 * We aren't optimizing towards ineffective readers. Classic socket buffer had 1053 * the same "feature". 1054 */ 1055 static inline u_int 1056 uipc_stream_sbspace(struct sockbuf *sb) 1057 { 1058 u_int space, mbspace; 1059 1060 if (__predict_true(sb->sb_hiwat >= sb->sb_ccc + sb->sb_ctl)) 1061 space = sb->sb_hiwat - sb->sb_ccc - sb->sb_ctl; 1062 else 1063 return (0); 1064 if (__predict_true(sb->sb_mbmax >= sb->sb_mbcnt)) 1065 mbspace = sb->sb_mbmax - sb->sb_mbcnt; 1066 else 1067 return (0); 1068 1069 return (min(space, mbspace)); 1070 } 1071 1072 static int 1073 uipc_sosend_stream_or_seqpacket(struct socket *so, struct sockaddr *addr, 1074 struct uio *uio0, struct mbuf *m, struct mbuf *c, int flags, 1075 struct thread *td) 1076 { 1077 struct unpcb *unp2; 1078 struct socket *so2; 1079 struct sockbuf *sb; 1080 struct uio *uio; 1081 struct mchain mc, cmc; 1082 size_t resid, sent; 1083 bool nonblock, eor, aio; 1084 int error; 1085 1086 MPASS((uio0 != NULL && m == NULL) || (m != NULL && uio0 == NULL)); 1087 MPASS(m == NULL || c == NULL); 1088 1089 if (__predict_false(flags & MSG_OOB)) 1090 return (EOPNOTSUPP); 1091 1092 nonblock = (so->so_state & SS_NBIO) || 1093 (flags & (MSG_DONTWAIT | MSG_NBIO)); 1094 eor = flags & MSG_EOR; 1095 1096 mc = MCHAIN_INITIALIZER(&mc); 1097 cmc = MCHAIN_INITIALIZER(&cmc); 1098 sent = 0; 1099 aio = false; 1100 1101 if (m == NULL) { 1102 if (c != NULL && (error = unp_internalize(c, &cmc, td))) 1103 goto out; 1104 /* 1105 * This function may read more data from the uio than it would 1106 * then place on socket. That would leave uio inconsistent 1107 * upon return. Normally uio is allocated on the stack of the 1108 * syscall thread and we don't care about leaving it consistent. 1109 * However, aio(9) will allocate a uio as part of job and will 1110 * use it to track progress. We detect aio(9) checking the 1111 * SB_AIO_RUNNING flag. It is safe to check it without lock 1112 * cause it is set and cleared in the same taskqueue thread. 1113 * 1114 * This check can also produce a false positive: there is 1115 * aio(9) job and also there is a syscall we are serving now. 1116 * No sane software does that, it would leave to a mess in 1117 * the socket buffer, as aio(9) doesn't grab the I/O sx(9). 1118 * But syzkaller can create this mess. For such false positive 1119 * our goal is just don't panic or leak memory. 1120 */ 1121 if (__predict_false(so->so_snd.sb_flags & SB_AIO_RUNNING)) { 1122 uio = cloneuio(uio0); 1123 aio = true; 1124 } else { 1125 uio = uio0; 1126 resid = uio->uio_resid; 1127 } 1128 /* 1129 * Optimization for a case when our send fits into the receive 1130 * buffer - do the copyin before taking any locks, sized to our 1131 * send buffer. Later copyins will also take into account 1132 * space in the peer's receive buffer. 1133 */ 1134 error = mc_uiotomc(&mc, uio, so->so_snd.sb_hiwat, 0, M_WAITOK, 1135 eor ? M_EOR : 0); 1136 if (__predict_false(error)) 1137 goto out2; 1138 } else 1139 uipc_reset_kernel_mbuf(m, &mc); 1140 1141 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1142 if (error) 1143 goto out2; 1144 1145 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0)) 1146 goto out3; 1147 1148 if (unp2->unp_flags & UNP_WANTCRED_MASK) { 1149 /* 1150 * Credentials are passed only once on SOCK_STREAM and 1151 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or 1152 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS). 1153 */ 1154 unp_addsockcred(td, &cmc, unp2->unp_flags); 1155 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT; 1156 } 1157 1158 /* 1159 * Cycle through the data to send and available space in the peer's 1160 * receive buffer. Put a reference on the peer socket, so that it 1161 * doesn't get freed while we sbwait(). If peer goes away, we will 1162 * observe the SBS_CANTRCVMORE and our sorele() will finalize peer's 1163 * socket destruction. 1164 */ 1165 so2 = unp2->unp_socket; 1166 soref(so2); 1167 UNP_PCB_UNLOCK(unp2); 1168 sb = &so2->so_rcv; 1169 while (mc.mc_len + cmc.mc_len > 0) { 1170 struct mchain mcnext = MCHAIN_INITIALIZER(&mcnext); 1171 u_int space; 1172 1173 SOCK_RECVBUF_LOCK(so2); 1174 restart: 1175 UIPC_STREAM_SBCHECK(sb); 1176 if (__predict_false(cmc.mc_len > sb->sb_hiwat)) { 1177 SOCK_RECVBUF_UNLOCK(so2); 1178 error = EMSGSIZE; 1179 goto out4; 1180 } 1181 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { 1182 SOCK_RECVBUF_UNLOCK(so2); 1183 error = EPIPE; 1184 goto out4; 1185 } 1186 /* 1187 * Wait on the peer socket receive buffer until we have enough 1188 * space to put at least control. The data is a stream and can 1189 * be put partially, but control is really a datagram. 1190 */ 1191 space = uipc_stream_sbspace(sb); 1192 if (space < sb->sb_lowat || space < cmc.mc_len) { 1193 if (nonblock) { 1194 if (aio) 1195 sb->uxst_flags |= UXST_PEER_AIO; 1196 SOCK_RECVBUF_UNLOCK(so2); 1197 if (aio) { 1198 SOCK_SENDBUF_LOCK(so); 1199 so->so_snd.sb_ccc = 1200 so->so_snd.sb_hiwat - space; 1201 SOCK_SENDBUF_UNLOCK(so); 1202 } 1203 error = EWOULDBLOCK; 1204 goto out4; 1205 } 1206 if ((error = sbwait(so2, SO_RCV)) != 0) { 1207 SOCK_RECVBUF_UNLOCK(so2); 1208 goto out4; 1209 } else 1210 goto restart; 1211 } 1212 MPASS(space >= cmc.mc_len); 1213 space -= cmc.mc_len; 1214 if (space == 0) { 1215 /* There is space only to send control. */ 1216 MPASS(!STAILQ_EMPTY(&cmc.mc_q)); 1217 mcnext = mc; 1218 mc = MCHAIN_INITIALIZER(&mc); 1219 } else if (space < mc.mc_len) { 1220 /* Not enough space. */ 1221 if (__predict_false(mc_split(&mc, &mcnext, space, 1222 M_NOWAIT) == ENOMEM)) { 1223 /* 1224 * If allocation failed use M_WAITOK and merge 1225 * the chain back. Next time mc_split() will 1226 * easily split at the same place. Only if we 1227 * race with setsockopt(SO_RCVBUF) shrinking 1228 * sb_hiwat can this happen more than once. 1229 */ 1230 SOCK_RECVBUF_UNLOCK(so2); 1231 (void)mc_split(&mc, &mcnext, space, M_WAITOK); 1232 mc_concat(&mc, &mcnext); 1233 SOCK_RECVBUF_LOCK(so2); 1234 goto restart; 1235 } 1236 MPASS(mc.mc_len == space); 1237 } 1238 if (!STAILQ_EMPTY(&cmc.mc_q)) { 1239 STAILQ_CONCAT(&sb->uxst_mbq, &cmc.mc_q); 1240 sb->sb_ctl += cmc.mc_len; 1241 sb->sb_mbcnt += cmc.mc_mlen; 1242 cmc.mc_len = 0; 1243 } 1244 sent += mc.mc_len; 1245 if (sb->uxst_fnrdy == NULL) 1246 sb->sb_acc += mc.mc_len; 1247 sb->sb_ccc += mc.mc_len; 1248 sb->sb_mbcnt += mc.mc_mlen; 1249 STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q); 1250 UIPC_STREAM_SBCHECK(sb); 1251 space = uipc_stream_sbspace(sb); 1252 sorwakeup_locked(so2); 1253 if (!STAILQ_EMPTY(&mcnext.mc_q)) { 1254 /* 1255 * Such assignment is unsafe in general, but it is 1256 * safe with !STAILQ_EMPTY(&mcnext.mc_q). In C++ we 1257 * could reload = for STAILQs :) 1258 */ 1259 mc = mcnext; 1260 } else if (uio != NULL && uio->uio_resid > 0) { 1261 /* 1262 * Copyin sum of peer's receive buffer space and our 1263 * sb_hiwat, which is our virtual send buffer size. 1264 * See comment above unpst_sendspace declaration. 1265 * We are reading sb_hiwat locklessly, cause a) we 1266 * don't care about an application that does send(2) 1267 * and setsockopt(2) racing internally, and for an 1268 * application that does this in sequence we will see 1269 * the correct value cause sbsetopt() uses buffer lock 1270 * and we also have already acquired it at least once. 1271 */ 1272 error = mc_uiotomc(&mc, uio, space + 1273 atomic_load_int(&so->so_snd.sb_hiwat), 0, M_WAITOK, 1274 eor ? M_EOR : 0); 1275 if (__predict_false(error)) 1276 goto out4; 1277 } else 1278 mc = MCHAIN_INITIALIZER(&mc); 1279 } 1280 1281 MPASS(STAILQ_EMPTY(&mc.mc_q)); 1282 1283 td->td_ru.ru_msgsnd++; 1284 out4: 1285 sorele(so2); 1286 out3: 1287 SOCK_IO_SEND_UNLOCK(so); 1288 out2: 1289 if (aio) { 1290 freeuio(uio); 1291 uioadvance(uio0, sent); 1292 } else if (uio != NULL) 1293 uio->uio_resid = resid - sent; 1294 if (!mc_empty(&cmc)) 1295 unp_scan(mc_first(&cmc), unp_freerights); 1296 out: 1297 mc_freem(&mc); 1298 mc_freem(&cmc); 1299 1300 return (error); 1301 } 1302 1303 /* 1304 * Wakeup a writer, used by recv(2) and shutdown(2). 1305 * 1306 * @param so Points to a connected stream socket with receive buffer locked 1307 * 1308 * In a blocking mode peer is sleeping on our receive buffer, and we need just 1309 * wakeup(9) on it. But to wake up various event engines, we need to reach 1310 * over to peer's selinfo. This can be safely done as the socket buffer 1311 * receive lock is protecting us from the peer going away. 1312 */ 1313 static void 1314 uipc_wakeup_writer(struct socket *so) 1315 { 1316 struct sockbuf *sb = &so->so_rcv; 1317 struct selinfo *sel; 1318 1319 SOCK_RECVBUF_LOCK_ASSERT(so); 1320 MPASS(sb->uxst_peer != NULL); 1321 1322 sel = &sb->uxst_peer->so_wrsel; 1323 1324 if (sb->uxst_flags & UXST_PEER_SEL) { 1325 selwakeuppri(sel, PSOCK); 1326 /* 1327 * XXXGL: sowakeup() does SEL_WAITING() without locks. 1328 */ 1329 if (!SEL_WAITING(sel)) 1330 sb->uxst_flags &= ~UXST_PEER_SEL; 1331 } 1332 if (sb->sb_flags & SB_WAIT) { 1333 sb->sb_flags &= ~SB_WAIT; 1334 wakeup(&sb->sb_acc); 1335 } 1336 KNOTE_LOCKED(&sel->si_note, 0); 1337 SOCK_RECVBUF_UNLOCK(so); 1338 } 1339 1340 static void 1341 uipc_cantrcvmore(struct socket *so) 1342 { 1343 1344 SOCK_RECVBUF_LOCK(so); 1345 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 1346 selwakeuppri(&so->so_rdsel, PSOCK); 1347 KNOTE_LOCKED(&so->so_rdsel.si_note, 0); 1348 if (so->so_rcv.uxst_peer != NULL) 1349 uipc_wakeup_writer(so); 1350 else 1351 SOCK_RECVBUF_UNLOCK(so); 1352 } 1353 1354 static int 1355 uipc_soreceive_stream_or_seqpacket(struct socket *so, struct sockaddr **psa, 1356 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1357 { 1358 struct sockbuf *sb = &so->so_rcv; 1359 struct mbuf *control, *m, *first, *last, *next; 1360 u_int ctl, space, datalen, mbcnt, lastlen; 1361 int error, flags; 1362 bool nonblock, waitall, peek; 1363 1364 MPASS(mp0 == NULL); 1365 1366 if (psa != NULL) 1367 *psa = NULL; 1368 if (controlp != NULL) 1369 *controlp = NULL; 1370 1371 flags = flagsp != NULL ? *flagsp : 0; 1372 nonblock = (so->so_state & SS_NBIO) || 1373 (flags & (MSG_DONTWAIT | MSG_NBIO)); 1374 peek = flags & MSG_PEEK; 1375 waitall = (flags & MSG_WAITALL) && !peek; 1376 1377 /* 1378 * This check may fail only on a socket that never went through 1379 * connect(2). We can check this locklessly, cause: a) for a new born 1380 * socket we don't care about applications that may race internally 1381 * between connect(2) and recv(2), and b) for a dying socket if we 1382 * miss update by unp_sosidisconnected(), we would still get the check 1383 * correct. For dying socket we would observe SBS_CANTRCVMORE later. 1384 */ 1385 if (__predict_false((atomic_load_short(&so->so_state) & 1386 (SS_ISCONNECTED|SS_ISDISCONNECTED)) == 0)) 1387 return (ENOTCONN); 1388 1389 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1390 if (__predict_false(error)) 1391 return (error); 1392 1393 restart: 1394 SOCK_RECVBUF_LOCK(so); 1395 UIPC_STREAM_SBCHECK(sb); 1396 while (sb->sb_acc < sb->sb_lowat && 1397 (sb->sb_ctl == 0 || controlp == NULL)) { 1398 if (so->so_error) { 1399 error = so->so_error; 1400 if (!peek) 1401 so->so_error = 0; 1402 SOCK_RECVBUF_UNLOCK(so); 1403 SOCK_IO_RECV_UNLOCK(so); 1404 return (error); 1405 } 1406 if (sb->sb_state & SBS_CANTRCVMORE) { 1407 SOCK_RECVBUF_UNLOCK(so); 1408 SOCK_IO_RECV_UNLOCK(so); 1409 return (0); 1410 } 1411 if (nonblock) { 1412 SOCK_RECVBUF_UNLOCK(so); 1413 SOCK_IO_RECV_UNLOCK(so); 1414 return (EWOULDBLOCK); 1415 } 1416 error = sbwait(so, SO_RCV); 1417 if (error) { 1418 SOCK_RECVBUF_UNLOCK(so); 1419 SOCK_IO_RECV_UNLOCK(so); 1420 return (error); 1421 } 1422 } 1423 1424 MPASS(STAILQ_FIRST(&sb->uxst_mbq)); 1425 MPASS(sb->sb_acc > 0 || sb->sb_ctl > 0); 1426 1427 mbcnt = 0; 1428 ctl = 0; 1429 first = STAILQ_FIRST(&sb->uxst_mbq); 1430 if (first->m_type == MT_CONTROL) { 1431 control = first; 1432 STAILQ_FOREACH_FROM(first, &sb->uxst_mbq, m_stailq) { 1433 if (first->m_type != MT_CONTROL) 1434 break; 1435 ctl += first->m_len; 1436 mbcnt += MSIZE; 1437 if (first->m_flags & M_EXT) 1438 mbcnt += first->m_ext.ext_size; 1439 } 1440 } else 1441 control = NULL; 1442 1443 /* 1444 * Find split point for the next copyout. On exit from the loop: 1445 * last == NULL - socket to be flushed 1446 * last != NULL 1447 * lastlen > last->m_len - uio to be filled, last to be adjusted 1448 * lastlen == 0 - MT_CONTROL, M_EOR or M_NOTREADY encountered 1449 */ 1450 space = uio->uio_resid; 1451 datalen = 0; 1452 for (m = first, last = sb->uxst_fnrdy, lastlen = 0; 1453 m != sb->uxst_fnrdy; 1454 m = STAILQ_NEXT(m, m_stailq)) { 1455 if (m->m_type != MT_DATA) { 1456 last = m; 1457 lastlen = 0; 1458 break; 1459 } 1460 if (space >= m->m_len) { 1461 space -= m->m_len; 1462 datalen += m->m_len; 1463 mbcnt += MSIZE; 1464 if (m->m_flags & M_EXT) 1465 mbcnt += m->m_ext.ext_size; 1466 if (m->m_flags & M_EOR) { 1467 last = STAILQ_NEXT(m, m_stailq); 1468 lastlen = 0; 1469 flags |= MSG_EOR; 1470 break; 1471 } 1472 } else { 1473 datalen += space; 1474 last = m; 1475 lastlen = space; 1476 break; 1477 } 1478 } 1479 1480 UIPC_STREAM_SBCHECK(sb); 1481 if (!peek) { 1482 if (last == NULL) 1483 STAILQ_INIT(&sb->uxst_mbq); 1484 else { 1485 STAILQ_FIRST(&sb->uxst_mbq) = last; 1486 MPASS(last->m_len > lastlen); 1487 last->m_len -= lastlen; 1488 last->m_data += lastlen; 1489 } 1490 MPASS(sb->sb_acc >= datalen); 1491 sb->sb_acc -= datalen; 1492 sb->sb_ccc -= datalen; 1493 MPASS(sb->sb_ctl >= ctl); 1494 sb->sb_ctl -= ctl; 1495 MPASS(sb->sb_mbcnt >= mbcnt); 1496 sb->sb_mbcnt -= mbcnt; 1497 UIPC_STREAM_SBCHECK(sb); 1498 if (__predict_true(sb->uxst_peer != NULL)) { 1499 struct unpcb *unp2; 1500 bool aio; 1501 1502 if ((aio = sb->uxst_flags & UXST_PEER_AIO)) 1503 sb->uxst_flags &= ~UXST_PEER_AIO; 1504 1505 uipc_wakeup_writer(so); 1506 /* 1507 * XXXGL: need to go through uipc_lock_peer() after 1508 * the receive buffer lock dropped, it was protecting 1509 * us from unp_soisdisconnected(). The aio workarounds 1510 * should be refactored to the aio(4) side. 1511 */ 1512 if (aio && uipc_lock_peer(so, &unp2) == 0) { 1513 struct socket *so2 = unp2->unp_socket; 1514 1515 SOCK_SENDBUF_LOCK(so2); 1516 so2->so_snd.sb_ccc -= datalen; 1517 sowakeup_aio(so2, SO_SND); 1518 SOCK_SENDBUF_UNLOCK(so2); 1519 UNP_PCB_UNLOCK(unp2); 1520 } 1521 } else 1522 SOCK_RECVBUF_UNLOCK(so); 1523 } else 1524 SOCK_RECVBUF_UNLOCK(so); 1525 1526 while (control != NULL && control->m_type == MT_CONTROL) { 1527 if (!peek) { 1528 /* 1529 * unp_externalize() failure must abort entire read(2). 1530 * Such failure should also free the problematic 1531 * control, but link back the remaining data to the head 1532 * of the buffer, so that socket is not left in a state 1533 * where it can't progress forward with reading. 1534 * Probability of such a failure is really low, so it 1535 * is fine that we need to perform pretty complex 1536 * operation here to reconstruct the buffer. 1537 */ 1538 error = unp_externalize(control, controlp, flags); 1539 control = m_free(control); 1540 if (__predict_false(error && control != NULL)) { 1541 struct mchain cmc; 1542 1543 mc_init_m(&cmc, control); 1544 1545 SOCK_RECVBUF_LOCK(so); 1546 MPASS(!(sb->sb_state & SBS_CANTRCVMORE)); 1547 1548 if (__predict_false(cmc.mc_len + sb->sb_ccc + 1549 sb->sb_ctl > sb->sb_hiwat)) { 1550 /* 1551 * Too bad, while unp_externalize() was 1552 * failing, the other side had filled 1553 * the buffer and we can't prepend data 1554 * back. Losing data! 1555 */ 1556 SOCK_RECVBUF_UNLOCK(so); 1557 SOCK_IO_RECV_UNLOCK(so); 1558 unp_scan(mc_first(&cmc), 1559 unp_freerights); 1560 mc_freem(&cmc); 1561 return (error); 1562 } 1563 1564 UIPC_STREAM_SBCHECK(sb); 1565 /* XXXGL: STAILQ_PREPEND */ 1566 STAILQ_CONCAT(&cmc.mc_q, &sb->uxst_mbq); 1567 STAILQ_SWAP(&cmc.mc_q, &sb->uxst_mbq, mbuf); 1568 1569 sb->sb_ctl = sb->sb_acc = sb->sb_ccc = 1570 sb->sb_mbcnt = 0; 1571 STAILQ_FOREACH(m, &sb->uxst_mbq, m_stailq) { 1572 if (m->m_type == MT_DATA) { 1573 sb->sb_acc += m->m_len; 1574 sb->sb_ccc += m->m_len; 1575 } else { 1576 sb->sb_ctl += m->m_len; 1577 } 1578 sb->sb_mbcnt += MSIZE; 1579 if (m->m_flags & M_EXT) 1580 sb->sb_mbcnt += 1581 m->m_ext.ext_size; 1582 } 1583 UIPC_STREAM_SBCHECK(sb); 1584 SOCK_RECVBUF_UNLOCK(so); 1585 SOCK_IO_RECV_UNLOCK(so); 1586 return (error); 1587 } 1588 if (controlp != NULL) { 1589 while (*controlp != NULL) 1590 controlp = &(*controlp)->m_next; 1591 } 1592 } else { 1593 /* 1594 * XXXGL 1595 * 1596 * In MSG_PEEK case control is not externalized. This 1597 * means we are leaking some kernel pointers to the 1598 * userland. They are useless to a law-abiding 1599 * application, but may be useful to a malware. This 1600 * is what the historical implementation in the 1601 * soreceive_generic() did. To be improved? 1602 */ 1603 if (controlp != NULL) { 1604 *controlp = m_copym(control, 0, control->m_len, 1605 M_WAITOK); 1606 controlp = &(*controlp)->m_next; 1607 } 1608 control = STAILQ_NEXT(control, m_stailq); 1609 } 1610 } 1611 1612 for (m = first; m != last; m = next) { 1613 next = STAILQ_NEXT(m, m_stailq); 1614 error = uiomove(mtod(m, char *), m->m_len, uio); 1615 if (__predict_false(error)) { 1616 SOCK_IO_RECV_UNLOCK(so); 1617 if (!peek) 1618 for (; m != last; m = next) { 1619 next = STAILQ_NEXT(m, m_stailq); 1620 m_free(m); 1621 } 1622 return (error); 1623 } 1624 if (!peek) 1625 m_free(m); 1626 } 1627 if (last != NULL && lastlen > 0) { 1628 if (!peek) { 1629 MPASS(!(m->m_flags & M_PKTHDR)); 1630 MPASS(last->m_data - M_START(last) >= lastlen); 1631 error = uiomove(mtod(last, char *) - lastlen, 1632 lastlen, uio); 1633 } else 1634 error = uiomove(mtod(last, char *), lastlen, uio); 1635 if (__predict_false(error)) { 1636 SOCK_IO_RECV_UNLOCK(so); 1637 return (error); 1638 } 1639 } 1640 if (waitall && !(flags & MSG_EOR) && uio->uio_resid > 0) 1641 goto restart; 1642 SOCK_IO_RECV_UNLOCK(so); 1643 1644 if (flagsp != NULL) 1645 *flagsp |= flags; 1646 1647 uio->uio_td->td_ru.ru_msgrcv++; 1648 1649 return (0); 1650 } 1651 1652 static int 1653 uipc_sopoll_stream_or_seqpacket(struct socket *so, int events, 1654 struct thread *td) 1655 { 1656 struct unpcb *unp = sotounpcb(so); 1657 int revents; 1658 1659 UNP_PCB_LOCK(unp); 1660 if (SOLISTENING(so)) { 1661 /* The above check is safe, since conversion to listening uses 1662 * both protocol and socket lock. 1663 */ 1664 SOCK_LOCK(so); 1665 if (!(events & (POLLIN | POLLRDNORM))) 1666 revents = 0; 1667 else if (!TAILQ_EMPTY(&so->sol_comp)) 1668 revents = events & (POLLIN | POLLRDNORM); 1669 else if (so->so_error) 1670 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 1671 else { 1672 selrecord(td, &so->so_rdsel); 1673 revents = 0; 1674 } 1675 SOCK_UNLOCK(so); 1676 } else { 1677 if (so->so_state & SS_ISDISCONNECTED) 1678 revents = POLLHUP; 1679 else 1680 revents = 0; 1681 if (events & (POLLIN | POLLRDNORM | POLLRDHUP)) { 1682 SOCK_RECVBUF_LOCK(so); 1683 if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat || 1684 so->so_error || so->so_rerror) 1685 revents |= events & (POLLIN | POLLRDNORM); 1686 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 1687 revents |= events & 1688 (POLLIN | POLLRDNORM | POLLRDHUP); 1689 if (!(revents & (POLLIN | POLLRDNORM | POLLRDHUP))) { 1690 selrecord(td, &so->so_rdsel); 1691 so->so_rcv.sb_flags |= SB_SEL; 1692 } 1693 SOCK_RECVBUF_UNLOCK(so); 1694 } 1695 if (events & (POLLOUT | POLLWRNORM)) { 1696 struct socket *so2 = so->so_rcv.uxst_peer; 1697 1698 if (so2 != NULL) { 1699 struct sockbuf *sb = &so2->so_rcv; 1700 1701 SOCK_RECVBUF_LOCK(so2); 1702 if (uipc_stream_sbspace(sb) >= sb->sb_lowat) 1703 revents |= events & 1704 (POLLOUT | POLLWRNORM); 1705 if (sb->sb_state & SBS_CANTRCVMORE) 1706 revents |= POLLHUP; 1707 if (!(revents & (POLLOUT | POLLWRNORM))) { 1708 so2->so_rcv.uxst_flags |= UXST_PEER_SEL; 1709 selrecord(td, &so->so_wrsel); 1710 } 1711 SOCK_RECVBUF_UNLOCK(so2); 1712 } else 1713 selrecord(td, &so->so_wrsel); 1714 } 1715 } 1716 UNP_PCB_UNLOCK(unp); 1717 return (revents); 1718 } 1719 1720 static void 1721 uipc_wrknl_lock(void *arg) 1722 { 1723 struct socket *so = arg; 1724 struct unpcb *unp = sotounpcb(so); 1725 1726 retry: 1727 if (SOLISTENING(so)) { 1728 SOLISTEN_LOCK(so); 1729 } else { 1730 UNP_PCB_LOCK(unp); 1731 if (__predict_false(SOLISTENING(so))) { 1732 UNP_PCB_UNLOCK(unp); 1733 goto retry; 1734 } 1735 if (so->so_rcv.uxst_peer != NULL) 1736 SOCK_RECVBUF_LOCK(so->so_rcv.uxst_peer); 1737 } 1738 } 1739 1740 static void 1741 uipc_wrknl_unlock(void *arg) 1742 { 1743 struct socket *so = arg; 1744 struct unpcb *unp = sotounpcb(so); 1745 1746 if (SOLISTENING(so)) 1747 SOLISTEN_UNLOCK(so); 1748 else { 1749 if (so->so_rcv.uxst_peer != NULL) 1750 SOCK_RECVBUF_UNLOCK(so->so_rcv.uxst_peer); 1751 UNP_PCB_UNLOCK(unp); 1752 } 1753 } 1754 1755 static void 1756 uipc_wrknl_assert_lock(void *arg, int what) 1757 { 1758 struct socket *so = arg; 1759 1760 if (SOLISTENING(so)) { 1761 if (what == LA_LOCKED) 1762 SOLISTEN_LOCK_ASSERT(so); 1763 else 1764 SOLISTEN_UNLOCK_ASSERT(so); 1765 } else { 1766 /* 1767 * The pr_soreceive method will put a note without owning the 1768 * unp lock, so we can't assert it here. But we can safely 1769 * dereference uxst_peer pointer, since receive buffer lock 1770 * is assumed to be held here. 1771 */ 1772 if (what == LA_LOCKED && so->so_rcv.uxst_peer != NULL) 1773 SOCK_RECVBUF_LOCK_ASSERT(so->so_rcv.uxst_peer); 1774 } 1775 } 1776 1777 static void 1778 uipc_filt_sowdetach(struct knote *kn) 1779 { 1780 struct socket *so = kn->kn_fp->f_data; 1781 1782 uipc_wrknl_lock(so); 1783 knlist_remove(&so->so_wrsel.si_note, kn, 1); 1784 uipc_wrknl_unlock(so); 1785 } 1786 1787 static int 1788 uipc_filt_sowrite(struct knote *kn, long hint) 1789 { 1790 struct socket *so = kn->kn_fp->f_data, *so2; 1791 struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn; 1792 1793 if (SOLISTENING(so)) 1794 return (0); 1795 1796 if (unp2 == NULL) { 1797 if (so->so_state & SS_ISDISCONNECTED) { 1798 kn->kn_flags |= EV_EOF; 1799 kn->kn_fflags = so->so_error; 1800 return (1); 1801 } else 1802 return (0); 1803 } 1804 1805 so2 = unp2->unp_socket; 1806 SOCK_RECVBUF_LOCK_ASSERT(so2); 1807 kn->kn_data = uipc_stream_sbspace(&so2->so_rcv); 1808 1809 if (so2->so_rcv.sb_state & SBS_CANTRCVMORE) { 1810 /* 1811 * XXXGL: maybe kn->kn_flags |= EV_EOF ? 1812 */ 1813 return (1); 1814 } else if (kn->kn_sfflags & NOTE_LOWAT) 1815 return (kn->kn_data >= kn->kn_sdata); 1816 else 1817 return (kn->kn_data >= so2->so_rcv.sb_lowat); 1818 } 1819 1820 static int 1821 uipc_filt_soempty(struct knote *kn, long hint) 1822 { 1823 struct socket *so = kn->kn_fp->f_data, *so2; 1824 struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn; 1825 1826 if (SOLISTENING(so) || unp2 == NULL) 1827 return (1); 1828 1829 so2 = unp2->unp_socket; 1830 SOCK_RECVBUF_LOCK_ASSERT(so2); 1831 kn->kn_data = uipc_stream_sbspace(&so2->so_rcv); 1832 1833 return (kn->kn_data == 0 ? 1 : 0); 1834 } 1835 1836 static const struct filterops uipc_write_filtops = { 1837 .f_isfd = 1, 1838 .f_detach = uipc_filt_sowdetach, 1839 .f_event = uipc_filt_sowrite, 1840 }; 1841 static const struct filterops uipc_empty_filtops = { 1842 .f_isfd = 1, 1843 .f_detach = uipc_filt_sowdetach, 1844 .f_event = uipc_filt_soempty, 1845 }; 1846 1847 static int 1848 uipc_kqfilter_stream_or_seqpacket(struct socket *so, struct knote *kn) 1849 { 1850 struct unpcb *unp = sotounpcb(so); 1851 struct knlist *knl; 1852 1853 switch (kn->kn_filter) { 1854 case EVFILT_READ: 1855 return (sokqfilter_generic(so, kn)); 1856 case EVFILT_WRITE: 1857 kn->kn_fop = &uipc_write_filtops; 1858 break; 1859 case EVFILT_EMPTY: 1860 kn->kn_fop = &uipc_empty_filtops; 1861 break; 1862 default: 1863 return (EINVAL); 1864 } 1865 1866 knl = &so->so_wrsel.si_note; 1867 UNP_PCB_LOCK(unp); 1868 if (SOLISTENING(so)) { 1869 SOLISTEN_LOCK(so); 1870 knlist_add(knl, kn, 1); 1871 SOLISTEN_UNLOCK(so); 1872 } else { 1873 struct socket *so2 = so->so_rcv.uxst_peer; 1874 1875 if (so2 != NULL) 1876 SOCK_RECVBUF_LOCK(so2); 1877 knlist_add(knl, kn, 1); 1878 if (so2 != NULL) 1879 SOCK_RECVBUF_UNLOCK(so2); 1880 } 1881 UNP_PCB_UNLOCK(unp); 1882 return (0); 1883 } 1884 1885 /* PF_UNIX/SOCK_DGRAM version of sbspace() */ 1886 static inline bool 1887 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt) 1888 { 1889 u_int bleft, mleft; 1890 1891 /* 1892 * Negative space may happen if send(2) is followed by 1893 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum. 1894 */ 1895 if (__predict_false(sb->sb_hiwat < sb->uxdg_cc || 1896 sb->sb_mbmax < sb->uxdg_mbcnt)) 1897 return (false); 1898 1899 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) 1900 return (false); 1901 1902 bleft = sb->sb_hiwat - sb->uxdg_cc; 1903 mleft = sb->sb_mbmax - sb->uxdg_mbcnt; 1904 1905 return (bleft >= cc && mleft >= mbcnt); 1906 } 1907 1908 /* 1909 * PF_UNIX/SOCK_DGRAM send 1910 * 1911 * Allocate a record consisting of 3 mbufs in the sequence of 1912 * from -> control -> data and append it to the socket buffer. 1913 * 1914 * The first mbuf carries sender's name and is a pkthdr that stores 1915 * overall length of datagram, its memory consumption and control length. 1916 */ 1917 #define ctllen PH_loc.thirtytwo[1] 1918 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <= 1919 offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen"); 1920 static int 1921 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1922 struct mbuf *m, struct mbuf *c, int flags, struct thread *td) 1923 { 1924 struct unpcb *unp, *unp2; 1925 const struct sockaddr *from; 1926 struct socket *so2; 1927 struct sockbuf *sb; 1928 struct mchain cmc = MCHAIN_INITIALIZER(&cmc); 1929 struct mbuf *f; 1930 u_int cc, ctl, mbcnt; 1931 u_int dcc __diagused, dctl __diagused, dmbcnt __diagused; 1932 int error; 1933 1934 MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL)); 1935 1936 error = 0; 1937 f = NULL; 1938 1939 if (__predict_false(flags & MSG_OOB)) { 1940 error = EOPNOTSUPP; 1941 goto out; 1942 } 1943 if (m == NULL) { 1944 if (__predict_false(uio->uio_resid > unpdg_maxdgram)) { 1945 error = EMSGSIZE; 1946 goto out; 1947 } 1948 m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR); 1949 if (__predict_false(m == NULL)) { 1950 error = EFAULT; 1951 goto out; 1952 } 1953 f = m_gethdr(M_WAITOK, MT_SONAME); 1954 cc = m->m_pkthdr.len; 1955 mbcnt = MSIZE + m->m_pkthdr.memlen; 1956 if (c != NULL && (error = unp_internalize(c, &cmc, td))) 1957 goto out; 1958 } else { 1959 struct mchain mc; 1960 1961 uipc_reset_kernel_mbuf(m, &mc); 1962 cc = mc.mc_len; 1963 mbcnt = mc.mc_mlen; 1964 if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) { 1965 error = EMSGSIZE; 1966 goto out; 1967 } 1968 if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) { 1969 error = ENOBUFS; 1970 goto out; 1971 } 1972 } 1973 1974 unp = sotounpcb(so); 1975 MPASS(unp); 1976 1977 /* 1978 * XXXGL: would be cool to fully remove so_snd out of the equation 1979 * and avoid this lock, which is not only extraneous, but also being 1980 * released, thus still leaving possibility for a race. We can easily 1981 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it 1982 * is more difficult to invent something to handle so_error. 1983 */ 1984 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1985 if (error) 1986 goto out2; 1987 SOCK_SENDBUF_LOCK(so); 1988 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1989 SOCK_SENDBUF_UNLOCK(so); 1990 error = EPIPE; 1991 goto out3; 1992 } 1993 if (so->so_error != 0) { 1994 error = so->so_error; 1995 so->so_error = 0; 1996 SOCK_SENDBUF_UNLOCK(so); 1997 goto out3; 1998 } 1999 if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) { 2000 SOCK_SENDBUF_UNLOCK(so); 2001 error = EDESTADDRREQ; 2002 goto out3; 2003 } 2004 SOCK_SENDBUF_UNLOCK(so); 2005 2006 if (addr != NULL) { 2007 if ((error = unp_connectat(AT_FDCWD, so, addr, td, true))) 2008 goto out3; 2009 UNP_PCB_LOCK_ASSERT(unp); 2010 unp2 = unp->unp_conn; 2011 UNP_PCB_LOCK_ASSERT(unp2); 2012 } else { 2013 UNP_PCB_LOCK(unp); 2014 unp2 = unp_pcb_lock_peer(unp); 2015 if (unp2 == NULL) { 2016 UNP_PCB_UNLOCK(unp); 2017 error = ENOTCONN; 2018 goto out3; 2019 } 2020 } 2021 2022 if (unp2->unp_flags & UNP_WANTCRED_MASK) 2023 unp_addsockcred(td, &cmc, unp2->unp_flags); 2024 if (unp->unp_addr != NULL) 2025 from = (struct sockaddr *)unp->unp_addr; 2026 else 2027 from = &sun_noname; 2028 f->m_len = from->sa_len; 2029 MPASS(from->sa_len <= MLEN); 2030 bcopy(from, mtod(f, void *), from->sa_len); 2031 2032 /* 2033 * Concatenate mbufs: from -> control -> data. 2034 * Save overall cc and mbcnt in "from" mbuf. 2035 */ 2036 if (!STAILQ_EMPTY(&cmc.mc_q)) { 2037 f->m_next = mc_first(&cmc); 2038 mc_last(&cmc)->m_next = m; 2039 /* XXXGL: This is dirty as well as rollback after ENOBUFS. */ 2040 STAILQ_INIT(&cmc.mc_q); 2041 } else 2042 f->m_next = m; 2043 m = NULL; 2044 ctl = f->m_len + cmc.mc_len; 2045 mbcnt += cmc.mc_mlen; 2046 #ifdef INVARIANTS 2047 dcc = dctl = dmbcnt = 0; 2048 for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) { 2049 if (mb->m_type == MT_DATA) 2050 dcc += mb->m_len; 2051 else 2052 dctl += mb->m_len; 2053 dmbcnt += MSIZE; 2054 if (mb->m_flags & M_EXT) 2055 dmbcnt += mb->m_ext.ext_size; 2056 } 2057 MPASS(dcc == cc); 2058 MPASS(dctl == ctl); 2059 MPASS(dmbcnt == mbcnt); 2060 #endif 2061 f->m_pkthdr.len = cc + ctl; 2062 f->m_pkthdr.memlen = mbcnt; 2063 f->m_pkthdr.ctllen = ctl; 2064 2065 /* 2066 * Destination socket buffer selection. 2067 * 2068 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the 2069 * destination address is supplied, create a temporary connection for 2070 * the run time of the function (see call to unp_connectat() above and 2071 * to unp_disconnect() below). We distinguish them by condition of 2072 * (addr != NULL). We intentionally avoid adding 'bool connected' for 2073 * that condition, since, again, through the run time of this code we 2074 * are always connected. For such "unconnected" sends, the destination 2075 * buffer would be the receive buffer of destination socket so2. 2076 * 2077 * For connected sends, data lands on the send buffer of the sender's 2078 * socket "so". Then, if we just added the very first datagram 2079 * on this send buffer, we need to add the send buffer on to the 2080 * receiving socket's buffer list. We put ourselves on top of the 2081 * list. Such logic gives infrequent senders priority over frequent 2082 * senders. 2083 * 2084 * Note on byte count management. As long as event methods kevent(2), 2085 * select(2) are not protocol specific (yet), we need to maintain 2086 * meaningful values on the receive buffer. So, the receive buffer 2087 * would accumulate counters from all connected buffers potentially 2088 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax. 2089 */ 2090 so2 = unp2->unp_socket; 2091 sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv; 2092 SOCK_RECVBUF_LOCK(so2); 2093 if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) { 2094 if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb)) 2095 TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd, 2096 uxdg_clist); 2097 STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt); 2098 sb->uxdg_cc += cc + ctl; 2099 sb->uxdg_ctl += ctl; 2100 sb->uxdg_mbcnt += mbcnt; 2101 so2->so_rcv.sb_acc += cc + ctl; 2102 so2->so_rcv.sb_ccc += cc + ctl; 2103 so2->so_rcv.sb_ctl += ctl; 2104 so2->so_rcv.sb_mbcnt += mbcnt; 2105 sorwakeup_locked(so2); 2106 f = NULL; 2107 } else { 2108 soroverflow_locked(so2); 2109 error = ENOBUFS; 2110 if (f->m_next->m_type == MT_CONTROL) { 2111 STAILQ_FIRST(&cmc.mc_q) = f->m_next; 2112 f->m_next = NULL; 2113 } 2114 } 2115 2116 if (addr != NULL) 2117 unp_disconnect(unp, unp2); 2118 else 2119 unp_pcb_unlock_pair(unp, unp2); 2120 2121 td->td_ru.ru_msgsnd++; 2122 2123 out3: 2124 SOCK_IO_SEND_UNLOCK(so); 2125 out2: 2126 if (!mc_empty(&cmc)) 2127 unp_scan(mc_first(&cmc), unp_freerights); 2128 out: 2129 if (f) 2130 m_freem(f); 2131 mc_freem(&cmc); 2132 if (m) 2133 m_freem(m); 2134 2135 return (error); 2136 } 2137 2138 /* 2139 * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK. 2140 * The mbuf has already been unlinked from the uxdg_mb of socket buffer 2141 * and needs to be linked onto uxdg_peeked of receive socket buffer. 2142 */ 2143 static int 2144 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa, 2145 struct uio *uio, struct mbuf **controlp, int *flagsp) 2146 { 2147 ssize_t len = 0; 2148 int error; 2149 2150 so->so_rcv.uxdg_peeked = m; 2151 so->so_rcv.uxdg_cc += m->m_pkthdr.len; 2152 so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen; 2153 so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen; 2154 SOCK_RECVBUF_UNLOCK(so); 2155 2156 KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); 2157 if (psa != NULL) 2158 *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK); 2159 2160 m = m->m_next; 2161 KASSERT(m, ("%s: no data or control after soname", __func__)); 2162 2163 /* 2164 * With MSG_PEEK the control isn't executed, just copied. 2165 */ 2166 while (m != NULL && m->m_type == MT_CONTROL) { 2167 if (controlp != NULL) { 2168 *controlp = m_copym(m, 0, m->m_len, M_WAITOK); 2169 controlp = &(*controlp)->m_next; 2170 } 2171 m = m->m_next; 2172 } 2173 KASSERT(m == NULL || m->m_type == MT_DATA, 2174 ("%s: not MT_DATA mbuf %p", __func__, m)); 2175 while (m != NULL && uio->uio_resid > 0) { 2176 len = uio->uio_resid; 2177 if (len > m->m_len) 2178 len = m->m_len; 2179 error = uiomove(mtod(m, char *), (int)len, uio); 2180 if (error) { 2181 SOCK_IO_RECV_UNLOCK(so); 2182 return (error); 2183 } 2184 if (len == m->m_len) 2185 m = m->m_next; 2186 } 2187 SOCK_IO_RECV_UNLOCK(so); 2188 2189 if (flagsp != NULL) { 2190 if (m != NULL) { 2191 if (*flagsp & MSG_TRUNC) { 2192 /* Report real length of the packet */ 2193 uio->uio_resid -= m_length(m, NULL) - len; 2194 } 2195 *flagsp |= MSG_TRUNC; 2196 } else 2197 *flagsp &= ~MSG_TRUNC; 2198 } 2199 2200 return (0); 2201 } 2202 2203 /* 2204 * PF_UNIX/SOCK_DGRAM receive 2205 */ 2206 static int 2207 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2208 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2209 { 2210 struct sockbuf *sb = NULL; 2211 struct mbuf *m; 2212 int flags, error; 2213 ssize_t len = 0; 2214 bool nonblock; 2215 2216 MPASS(mp0 == NULL); 2217 2218 if (psa != NULL) 2219 *psa = NULL; 2220 if (controlp != NULL) 2221 *controlp = NULL; 2222 2223 flags = flagsp != NULL ? *flagsp : 0; 2224 nonblock = (so->so_state & SS_NBIO) || 2225 (flags & (MSG_DONTWAIT | MSG_NBIO)); 2226 2227 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2228 if (__predict_false(error)) 2229 return (error); 2230 2231 /* 2232 * Loop blocking while waiting for a datagram. Prioritize connected 2233 * peers over unconnected sends. Set sb to selected socket buffer 2234 * containing an mbuf on exit from the wait loop. A datagram that 2235 * had already been peeked at has top priority. 2236 */ 2237 SOCK_RECVBUF_LOCK(so); 2238 while ((m = so->so_rcv.uxdg_peeked) == NULL && 2239 (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL && 2240 (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) { 2241 if (so->so_error) { 2242 error = so->so_error; 2243 if (!(flags & MSG_PEEK)) 2244 so->so_error = 0; 2245 SOCK_RECVBUF_UNLOCK(so); 2246 SOCK_IO_RECV_UNLOCK(so); 2247 return (error); 2248 } 2249 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2250 uio->uio_resid == 0) { 2251 SOCK_RECVBUF_UNLOCK(so); 2252 SOCK_IO_RECV_UNLOCK(so); 2253 return (0); 2254 } 2255 if (nonblock) { 2256 SOCK_RECVBUF_UNLOCK(so); 2257 SOCK_IO_RECV_UNLOCK(so); 2258 return (EWOULDBLOCK); 2259 } 2260 error = sbwait(so, SO_RCV); 2261 if (error) { 2262 SOCK_RECVBUF_UNLOCK(so); 2263 SOCK_IO_RECV_UNLOCK(so); 2264 return (error); 2265 } 2266 } 2267 2268 if (sb == NULL) 2269 sb = &so->so_rcv; 2270 else if (m == NULL) 2271 m = STAILQ_FIRST(&sb->uxdg_mb); 2272 else 2273 MPASS(m == so->so_rcv.uxdg_peeked); 2274 2275 MPASS(sb->uxdg_cc > 0); 2276 M_ASSERTPKTHDR(m); 2277 KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); 2278 2279 if (uio->uio_td) 2280 uio->uio_td->td_ru.ru_msgrcv++; 2281 2282 if (__predict_true(m != so->so_rcv.uxdg_peeked)) { 2283 STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt); 2284 if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv) 2285 TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist); 2286 } else 2287 so->so_rcv.uxdg_peeked = NULL; 2288 2289 sb->uxdg_cc -= m->m_pkthdr.len; 2290 sb->uxdg_ctl -= m->m_pkthdr.ctllen; 2291 sb->uxdg_mbcnt -= m->m_pkthdr.memlen; 2292 2293 if (__predict_false(flags & MSG_PEEK)) 2294 return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp)); 2295 2296 so->so_rcv.sb_acc -= m->m_pkthdr.len; 2297 so->so_rcv.sb_ccc -= m->m_pkthdr.len; 2298 so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen; 2299 so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen; 2300 SOCK_RECVBUF_UNLOCK(so); 2301 2302 if (psa != NULL) 2303 *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK); 2304 m = m_free(m); 2305 KASSERT(m, ("%s: no data or control after soname", __func__)); 2306 2307 /* 2308 * Packet to copyout() is now in 'm' and it is disconnected from the 2309 * queue. 2310 * 2311 * Process one or more MT_CONTROL mbufs present before any data mbufs 2312 * in the first mbuf chain on the socket buffer. We call into the 2313 * unp_externalize() to perform externalization (or freeing if 2314 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs 2315 * without MT_DATA mbufs. 2316 */ 2317 while (m != NULL && m->m_type == MT_CONTROL) { 2318 error = unp_externalize(m, controlp, flags); 2319 m = m_free(m); 2320 if (error != 0) { 2321 SOCK_IO_RECV_UNLOCK(so); 2322 unp_scan(m, unp_freerights); 2323 m_freem(m); 2324 return (error); 2325 } 2326 if (controlp != NULL) { 2327 while (*controlp != NULL) 2328 controlp = &(*controlp)->m_next; 2329 } 2330 } 2331 KASSERT(m == NULL || m->m_type == MT_DATA, 2332 ("%s: not MT_DATA mbuf %p", __func__, m)); 2333 while (m != NULL && uio->uio_resid > 0) { 2334 len = uio->uio_resid; 2335 if (len > m->m_len) 2336 len = m->m_len; 2337 error = uiomove(mtod(m, char *), (int)len, uio); 2338 if (error) { 2339 SOCK_IO_RECV_UNLOCK(so); 2340 m_freem(m); 2341 return (error); 2342 } 2343 if (len == m->m_len) 2344 m = m_free(m); 2345 else { 2346 m->m_data += len; 2347 m->m_len -= len; 2348 } 2349 } 2350 SOCK_IO_RECV_UNLOCK(so); 2351 2352 if (m != NULL) { 2353 if (flagsp != NULL) { 2354 if (flags & MSG_TRUNC) { 2355 /* Report real length of the packet */ 2356 uio->uio_resid -= m_length(m, NULL); 2357 } 2358 *flagsp |= MSG_TRUNC; 2359 } 2360 m_freem(m); 2361 } else if (flagsp != NULL) 2362 *flagsp &= ~MSG_TRUNC; 2363 2364 return (0); 2365 } 2366 2367 static int 2368 uipc_sendfile_wait(struct socket *so, off_t need, int *space) 2369 { 2370 struct unpcb *unp2; 2371 struct socket *so2; 2372 struct sockbuf *sb; 2373 bool nonblock, sockref; 2374 int error; 2375 2376 MPASS(so->so_type == SOCK_STREAM); 2377 MPASS(need > 0); 2378 MPASS(space != NULL); 2379 2380 nonblock = so->so_state & SS_NBIO; 2381 sockref = false; 2382 2383 if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) 2384 return (ENOTCONN); 2385 2386 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0)) 2387 return (error); 2388 2389 so2 = unp2->unp_socket; 2390 sb = &so2->so_rcv; 2391 SOCK_RECVBUF_LOCK(so2); 2392 UNP_PCB_UNLOCK(unp2); 2393 while ((*space = uipc_stream_sbspace(sb)) < need && 2394 (*space < so->so_snd.sb_hiwat / 2)) { 2395 UIPC_STREAM_SBCHECK(sb); 2396 if (nonblock) { 2397 SOCK_RECVBUF_UNLOCK(so2); 2398 return (EAGAIN); 2399 } 2400 if (!sockref) 2401 soref(so2); 2402 error = sbwait(so2, SO_RCV); 2403 if (error == 0 && 2404 __predict_false(sb->sb_state & SBS_CANTRCVMORE)) 2405 error = EPIPE; 2406 if (error) { 2407 SOCK_RECVBUF_UNLOCK(so2); 2408 sorele(so2); 2409 return (error); 2410 } 2411 } 2412 UIPC_STREAM_SBCHECK(sb); 2413 SOCK_RECVBUF_UNLOCK(so2); 2414 if (sockref) 2415 sorele(so2); 2416 2417 return (0); 2418 } 2419 2420 /* 2421 * Although this is a pr_send method, for unix(4) it is called only via 2422 * sendfile(2) path. This means we can be sure that mbufs are clear of 2423 * any extra flags and don't require any conditioning. 2424 */ 2425 static int 2426 uipc_sendfile(struct socket *so, int flags, struct mbuf *m, 2427 struct sockaddr *from, struct mbuf *control, struct thread *td) 2428 { 2429 struct mchain mc; 2430 struct unpcb *unp2; 2431 struct socket *so2; 2432 struct sockbuf *sb; 2433 bool notready, wakeup; 2434 int error; 2435 2436 MPASS(so->so_type == SOCK_STREAM); 2437 MPASS(from == NULL && control == NULL); 2438 KASSERT(!(m->m_flags & M_EXTPG), 2439 ("unix(4): TLS sendfile(2) not supported")); 2440 2441 notready = flags & PRUS_NOTREADY; 2442 2443 if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) { 2444 error = ENOTCONN; 2445 goto out; 2446 } 2447 2448 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0)) 2449 goto out; 2450 2451 mc_init_m(&mc, m); 2452 2453 so2 = unp2->unp_socket; 2454 sb = &so2->so_rcv; 2455 SOCK_RECVBUF_LOCK(so2); 2456 UNP_PCB_UNLOCK(unp2); 2457 UIPC_STREAM_SBCHECK(sb); 2458 sb->sb_ccc += mc.mc_len; 2459 sb->sb_mbcnt += mc.mc_mlen; 2460 if (sb->uxst_fnrdy == NULL) { 2461 if (notready) { 2462 wakeup = false; 2463 STAILQ_FOREACH(m, &mc.mc_q, m_stailq) { 2464 if (m->m_flags & M_NOTREADY) { 2465 sb->uxst_fnrdy = m; 2466 break; 2467 } else { 2468 sb->sb_acc += m->m_len; 2469 wakeup = true; 2470 } 2471 } 2472 } else { 2473 wakeup = true; 2474 sb->sb_acc += mc.mc_len; 2475 } 2476 } else { 2477 wakeup = false; 2478 } 2479 STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q); 2480 UIPC_STREAM_SBCHECK(sb); 2481 if (wakeup) 2482 sorwakeup_locked(so2); 2483 else 2484 SOCK_RECVBUF_UNLOCK(so2); 2485 2486 return (0); 2487 out: 2488 /* 2489 * In case of not ready data, uipc_ready() is responsible 2490 * for freeing memory. 2491 */ 2492 if (m != NULL && !notready) 2493 m_freem(m); 2494 2495 return (error); 2496 } 2497 2498 static int 2499 uipc_sbready(struct sockbuf *sb, struct mbuf *m, int count) 2500 { 2501 bool blocker; 2502 2503 /* assert locked */ 2504 2505 blocker = (sb->uxst_fnrdy == m); 2506 STAILQ_FOREACH_FROM(m, &sb->uxst_mbq, m_stailq) { 2507 if (count > 0) { 2508 MPASS(m->m_flags & M_NOTREADY); 2509 m->m_flags &= ~M_NOTREADY; 2510 if (blocker) 2511 sb->sb_acc += m->m_len; 2512 count--; 2513 } else if (m->m_flags & M_NOTREADY) 2514 break; 2515 else if (blocker) 2516 sb->sb_acc += m->m_len; 2517 } 2518 if (blocker) { 2519 sb->uxst_fnrdy = m; 2520 return (0); 2521 } else 2522 return (EINPROGRESS); 2523 } 2524 2525 static bool 2526 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp) 2527 { 2528 struct mbuf *mb; 2529 struct sockbuf *sb; 2530 2531 SOCK_LOCK(so); 2532 if (SOLISTENING(so)) { 2533 SOCK_UNLOCK(so); 2534 return (false); 2535 } 2536 mb = NULL; 2537 sb = &so->so_rcv; 2538 SOCK_RECVBUF_LOCK(so); 2539 if (sb->uxst_fnrdy != NULL) { 2540 STAILQ_FOREACH(mb, &sb->uxst_mbq, m_stailq) { 2541 if (mb == m) { 2542 *errorp = uipc_sbready(sb, m, count); 2543 break; 2544 } 2545 } 2546 } 2547 SOCK_RECVBUF_UNLOCK(so); 2548 SOCK_UNLOCK(so); 2549 return (mb != NULL); 2550 } 2551 2552 static int 2553 uipc_ready(struct socket *so, struct mbuf *m, int count) 2554 { 2555 struct unpcb *unp, *unp2; 2556 int error; 2557 2558 MPASS(so->so_type == SOCK_STREAM); 2559 2560 if (__predict_true(uipc_lock_peer(so, &unp2) == 0)) { 2561 struct socket *so2; 2562 struct sockbuf *sb; 2563 2564 so2 = unp2->unp_socket; 2565 sb = &so2->so_rcv; 2566 SOCK_RECVBUF_LOCK(so2); 2567 UNP_PCB_UNLOCK(unp2); 2568 UIPC_STREAM_SBCHECK(sb); 2569 error = uipc_sbready(sb, m, count); 2570 UIPC_STREAM_SBCHECK(sb); 2571 if (error == 0) 2572 sorwakeup_locked(so2); 2573 else 2574 SOCK_RECVBUF_UNLOCK(so2); 2575 } else { 2576 /* 2577 * The receiving socket has been disconnected, but may still 2578 * be valid. In this case, the not-ready mbufs are still 2579 * present in its socket buffer, so perform an exhaustive 2580 * search before giving up and freeing the mbufs. 2581 */ 2582 UNP_LINK_RLOCK(); 2583 LIST_FOREACH(unp, &unp_shead, unp_link) { 2584 if (uipc_ready_scan(unp->unp_socket, m, count, &error)) 2585 break; 2586 } 2587 UNP_LINK_RUNLOCK(); 2588 2589 if (unp == NULL) { 2590 for (int i = 0; i < count; i++) 2591 m = m_free(m); 2592 return (ECONNRESET); 2593 } 2594 } 2595 return (error); 2596 } 2597 2598 static int 2599 uipc_sense(struct socket *so, struct stat *sb) 2600 { 2601 struct unpcb *unp; 2602 2603 unp = sotounpcb(so); 2604 KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); 2605 2606 sb->st_blksize = so->so_snd.sb_hiwat; 2607 sb->st_dev = NODEV; 2608 sb->st_ino = unp->unp_ino; 2609 return (0); 2610 } 2611 2612 static int 2613 uipc_shutdown(struct socket *so, enum shutdown_how how) 2614 { 2615 struct unpcb *unp = sotounpcb(so); 2616 int error; 2617 2618 SOCK_LOCK(so); 2619 if (SOLISTENING(so)) { 2620 if (how != SHUT_WR) { 2621 so->so_error = ECONNABORTED; 2622 solisten_wakeup(so); /* unlocks so */ 2623 } else 2624 SOCK_UNLOCK(so); 2625 return (ENOTCONN); 2626 } else if ((so->so_state & 2627 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2628 /* 2629 * POSIX mandates us to just return ENOTCONN when shutdown(2) is 2630 * invoked on a datagram sockets, however historically we would 2631 * actually tear socket down. This is known to be leveraged by 2632 * some applications to unblock process waiting in recv(2) by 2633 * other process that it shares that socket with. Try to meet 2634 * both backward-compatibility and POSIX requirements by forcing 2635 * ENOTCONN but still flushing buffers and performing wakeup(9). 2636 * 2637 * XXXGL: it remains unknown what applications expect this 2638 * behavior and is this isolated to unix/dgram or inet/dgram or 2639 * both. See: D10351, D3039. 2640 */ 2641 error = ENOTCONN; 2642 if (so->so_type != SOCK_DGRAM) { 2643 SOCK_UNLOCK(so); 2644 return (error); 2645 } 2646 } else 2647 error = 0; 2648 SOCK_UNLOCK(so); 2649 2650 switch (how) { 2651 case SHUT_RD: 2652 if (so->so_type == SOCK_DGRAM) 2653 socantrcvmore(so); 2654 else 2655 uipc_cantrcvmore(so); 2656 unp_dispose(so); 2657 break; 2658 case SHUT_RDWR: 2659 if (so->so_type == SOCK_DGRAM) 2660 socantrcvmore(so); 2661 else 2662 uipc_cantrcvmore(so); 2663 unp_dispose(so); 2664 /* FALLTHROUGH */ 2665 case SHUT_WR: 2666 if (so->so_type == SOCK_DGRAM) { 2667 socantsendmore(so); 2668 } else { 2669 UNP_PCB_LOCK(unp); 2670 if (unp->unp_conn != NULL) 2671 uipc_cantrcvmore(unp->unp_conn->unp_socket); 2672 UNP_PCB_UNLOCK(unp); 2673 } 2674 } 2675 wakeup(&so->so_timeo); 2676 2677 return (error); 2678 } 2679 2680 static int 2681 uipc_sockaddr(struct socket *so, struct sockaddr *ret) 2682 { 2683 struct unpcb *unp; 2684 const struct sockaddr *sa; 2685 2686 unp = sotounpcb(so); 2687 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); 2688 2689 UNP_PCB_LOCK(unp); 2690 if (unp->unp_addr != NULL) 2691 sa = (struct sockaddr *) unp->unp_addr; 2692 else 2693 sa = &sun_noname; 2694 bcopy(sa, ret, sa->sa_len); 2695 UNP_PCB_UNLOCK(unp); 2696 return (0); 2697 } 2698 2699 static int 2700 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 2701 { 2702 struct unpcb *unp; 2703 struct xucred xu; 2704 int error, optval; 2705 2706 if (sopt->sopt_level != SOL_LOCAL) 2707 return (EINVAL); 2708 2709 unp = sotounpcb(so); 2710 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); 2711 error = 0; 2712 switch (sopt->sopt_dir) { 2713 case SOPT_GET: 2714 switch (sopt->sopt_name) { 2715 case LOCAL_PEERCRED: 2716 UNP_PCB_LOCK(unp); 2717 if (unp->unp_flags & UNP_HAVEPC) 2718 xu = unp->unp_peercred; 2719 else { 2720 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 2721 error = ENOTCONN; 2722 else 2723 error = EINVAL; 2724 } 2725 UNP_PCB_UNLOCK(unp); 2726 if (error == 0) 2727 error = sooptcopyout(sopt, &xu, sizeof(xu)); 2728 break; 2729 2730 case LOCAL_CREDS: 2731 /* Unlocked read. */ 2732 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0; 2733 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2734 break; 2735 2736 case LOCAL_CREDS_PERSISTENT: 2737 /* Unlocked read. */ 2738 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0; 2739 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2740 break; 2741 2742 default: 2743 error = EOPNOTSUPP; 2744 break; 2745 } 2746 break; 2747 2748 case SOPT_SET: 2749 switch (sopt->sopt_name) { 2750 case LOCAL_CREDS: 2751 case LOCAL_CREDS_PERSISTENT: 2752 error = sooptcopyin(sopt, &optval, sizeof(optval), 2753 sizeof(optval)); 2754 if (error) 2755 break; 2756 2757 #define OPTSET(bit, exclusive) do { \ 2758 UNP_PCB_LOCK(unp); \ 2759 if (optval) { \ 2760 if ((unp->unp_flags & (exclusive)) != 0) { \ 2761 UNP_PCB_UNLOCK(unp); \ 2762 error = EINVAL; \ 2763 break; \ 2764 } \ 2765 unp->unp_flags |= (bit); \ 2766 } else \ 2767 unp->unp_flags &= ~(bit); \ 2768 UNP_PCB_UNLOCK(unp); \ 2769 } while (0) 2770 2771 switch (sopt->sopt_name) { 2772 case LOCAL_CREDS: 2773 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS); 2774 break; 2775 2776 case LOCAL_CREDS_PERSISTENT: 2777 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT); 2778 break; 2779 2780 default: 2781 break; 2782 } 2783 break; 2784 #undef OPTSET 2785 default: 2786 error = ENOPROTOOPT; 2787 break; 2788 } 2789 break; 2790 2791 default: 2792 error = EOPNOTSUPP; 2793 break; 2794 } 2795 return (error); 2796 } 2797 2798 static int 2799 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 2800 { 2801 2802 return (unp_connectat(AT_FDCWD, so, nam, td, false)); 2803 } 2804 2805 static int 2806 unp_connectat(int fd, struct socket *so, struct sockaddr *nam, 2807 struct thread *td, bool return_locked) 2808 { 2809 struct mtx *vplock; 2810 struct sockaddr_un *soun; 2811 struct vnode *vp; 2812 struct socket *so2; 2813 struct unpcb *unp, *unp2, *unp3; 2814 struct nameidata nd; 2815 char buf[SOCK_MAXADDRLEN]; 2816 struct sockaddr *sa; 2817 cap_rights_t rights; 2818 int error, len; 2819 bool connreq; 2820 2821 CURVNET_ASSERT_SET(); 2822 2823 if (nam->sa_family != AF_UNIX) 2824 return (EAFNOSUPPORT); 2825 if (nam->sa_len > sizeof(struct sockaddr_un)) 2826 return (EINVAL); 2827 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 2828 if (len <= 0) 2829 return (EINVAL); 2830 soun = (struct sockaddr_un *)nam; 2831 bcopy(soun->sun_path, buf, len); 2832 buf[len] = 0; 2833 2834 error = 0; 2835 unp = sotounpcb(so); 2836 UNP_PCB_LOCK(unp); 2837 for (;;) { 2838 /* 2839 * Wait for connection state to stabilize. If a connection 2840 * already exists, give up. For datagram sockets, which permit 2841 * multiple consecutive connect(2) calls, upper layers are 2842 * responsible for disconnecting in advance of a subsequent 2843 * connect(2), but this is not synchronized with PCB connection 2844 * state. 2845 * 2846 * Also make sure that no threads are currently attempting to 2847 * lock the peer socket, to ensure that unp_conn cannot 2848 * transition between two valid sockets while locks are dropped. 2849 */ 2850 if (SOLISTENING(so)) 2851 error = EOPNOTSUPP; 2852 else if (unp->unp_conn != NULL) 2853 error = EISCONN; 2854 else if ((unp->unp_flags & UNP_CONNECTING) != 0) { 2855 error = EALREADY; 2856 } 2857 if (error != 0) { 2858 UNP_PCB_UNLOCK(unp); 2859 return (error); 2860 } 2861 if (unp->unp_pairbusy > 0) { 2862 unp->unp_flags |= UNP_WAITING; 2863 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0); 2864 continue; 2865 } 2866 break; 2867 } 2868 unp->unp_flags |= UNP_CONNECTING; 2869 UNP_PCB_UNLOCK(unp); 2870 2871 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0; 2872 if (connreq) 2873 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); 2874 else 2875 sa = NULL; 2876 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, 2877 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT)); 2878 error = namei(&nd); 2879 if (error) 2880 vp = NULL; 2881 else 2882 vp = nd.ni_vp; 2883 ASSERT_VOP_LOCKED(vp, "unp_connect"); 2884 if (error) 2885 goto bad; 2886 NDFREE_PNBUF(&nd); 2887 2888 if (vp->v_type != VSOCK) { 2889 error = ENOTSOCK; 2890 goto bad; 2891 } 2892 #ifdef MAC 2893 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); 2894 if (error) 2895 goto bad; 2896 #endif 2897 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); 2898 if (error) 2899 goto bad; 2900 2901 unp = sotounpcb(so); 2902 KASSERT(unp != NULL, ("unp_connect: unp == NULL")); 2903 2904 vplock = mtx_pool_find(unp_vp_mtxpool, vp); 2905 mtx_lock(vplock); 2906 VOP_UNP_CONNECT(vp, &unp2); 2907 if (unp2 == NULL) { 2908 error = ECONNREFUSED; 2909 goto bad2; 2910 } 2911 so2 = unp2->unp_socket; 2912 if (so->so_type != so2->so_type) { 2913 error = EPROTOTYPE; 2914 goto bad2; 2915 } 2916 if (connreq) { 2917 if (SOLISTENING(so2)) 2918 so2 = solisten_clone(so2); 2919 else 2920 so2 = NULL; 2921 if (so2 == NULL) { 2922 error = ECONNREFUSED; 2923 goto bad2; 2924 } 2925 if ((error = uipc_attach(so2, 0, NULL)) != 0) { 2926 sodealloc(so2); 2927 goto bad2; 2928 } 2929 unp3 = sotounpcb(so2); 2930 unp_pcb_lock_pair(unp2, unp3); 2931 if (unp2->unp_addr != NULL) { 2932 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); 2933 unp3->unp_addr = (struct sockaddr_un *) sa; 2934 sa = NULL; 2935 } 2936 2937 unp_copy_peercred(td, unp3, unp, unp2); 2938 2939 UNP_PCB_UNLOCK(unp2); 2940 unp2 = unp3; 2941 2942 /* 2943 * It is safe to block on the PCB lock here since unp2 is 2944 * nascent and cannot be connected to any other sockets. 2945 */ 2946 UNP_PCB_LOCK(unp); 2947 #ifdef MAC 2948 mac_socketpeer_set_from_socket(so, so2); 2949 mac_socketpeer_set_from_socket(so2, so); 2950 #endif 2951 } else { 2952 unp_pcb_lock_pair(unp, unp2); 2953 } 2954 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && 2955 sotounpcb(so2) == unp2, 2956 ("%s: unp2 %p so2 %p", __func__, unp2, so2)); 2957 unp_connect2(so, so2, connreq); 2958 if (connreq) 2959 (void)solisten_enqueue(so2, SS_ISCONNECTED); 2960 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 2961 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 2962 unp->unp_flags &= ~UNP_CONNECTING; 2963 if (!return_locked) 2964 unp_pcb_unlock_pair(unp, unp2); 2965 bad2: 2966 mtx_unlock(vplock); 2967 bad: 2968 if (vp != NULL) { 2969 /* 2970 * If we are returning locked (called via uipc_sosend_dgram()), 2971 * we need to be sure that vput() won't sleep. This is 2972 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock. 2973 * SOCK_STREAM/SEQPACKET can't request return_locked (yet). 2974 */ 2975 MPASS(!(return_locked && connreq)); 2976 vput(vp); 2977 } 2978 free(sa, M_SONAME); 2979 if (__predict_false(error)) { 2980 UNP_PCB_LOCK(unp); 2981 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0, 2982 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp)); 2983 unp->unp_flags &= ~UNP_CONNECTING; 2984 UNP_PCB_UNLOCK(unp); 2985 } 2986 return (error); 2987 } 2988 2989 /* 2990 * Set socket peer credentials at connection time. 2991 * 2992 * The client's PCB credentials are copied from its process structure. The 2993 * server's PCB credentials are copied from the socket on which it called 2994 * listen(2). uipc_listen cached that process's credentials at the time. 2995 */ 2996 void 2997 unp_copy_peercred(struct thread *td, struct unpcb *client_unp, 2998 struct unpcb *server_unp, struct unpcb *listen_unp) 2999 { 3000 cru2xt(td, &client_unp->unp_peercred); 3001 client_unp->unp_flags |= UNP_HAVEPC; 3002 3003 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, 3004 sizeof(server_unp->unp_peercred)); 3005 server_unp->unp_flags |= UNP_HAVEPC; 3006 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK); 3007 } 3008 3009 /* 3010 * unix/stream & unix/seqpacket version of soisconnected(). 3011 * 3012 * The crucial thing we are doing here is setting up the uxst_peer linkage, 3013 * holding unp and receive buffer locks of the both sockets. The disconnect 3014 * procedure does the same. This gives as a safe way to access the peer in the 3015 * send(2) and recv(2) during the socket lifetime. 3016 * 3017 * The less important thing is event notification of the fact that a socket is 3018 * now connected. It is unusual for a software to put a socket into event 3019 * mechanism before connect(2), but is supposed to be supported. Note that 3020 * there can not be any sleeping I/O on the socket, yet, only presence in the 3021 * select/poll/kevent. 3022 * 3023 * This function can be called via two call paths: 3024 * 1) socketpair(2) - in this case socket has not been yet reported to userland 3025 * and just can't have any event notifications mechanisms set up. The 3026 * 'wakeup' boolean is always false. 3027 * 2) connect(2) of existing socket to a recent clone of a listener: 3028 * 2.1) Socket that connect(2)s will have 'wakeup' true. An application 3029 * could have already put it into event mechanism, is it shall be 3030 * reported as readable and as writable. 3031 * 2.2) Socket that was just cloned with solisten_clone(). Same as 1). 3032 */ 3033 static void 3034 unp_soisconnected(struct socket *so, bool wakeup) 3035 { 3036 struct socket *so2 = sotounpcb(so)->unp_conn->unp_socket; 3037 struct sockbuf *sb; 3038 3039 SOCK_LOCK_ASSERT(so); 3040 UNP_PCB_LOCK_ASSERT(sotounpcb(so)); 3041 UNP_PCB_LOCK_ASSERT(sotounpcb(so2)); 3042 SOCK_RECVBUF_LOCK_ASSERT(so); 3043 SOCK_RECVBUF_LOCK_ASSERT(so2); 3044 3045 MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET); 3046 MPASS((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 3047 SS_ISDISCONNECTING)) == 0); 3048 MPASS(so->so_qstate == SQ_NONE); 3049 3050 so->so_state &= ~SS_ISDISCONNECTED; 3051 so->so_state |= SS_ISCONNECTED; 3052 3053 sb = &so2->so_rcv; 3054 sb->uxst_peer = so; 3055 3056 if (wakeup) { 3057 KNOTE_LOCKED(&sb->sb_sel->si_note, 0); 3058 sb = &so->so_rcv; 3059 selwakeuppri(sb->sb_sel, PSOCK); 3060 SOCK_SENDBUF_LOCK_ASSERT(so); 3061 sb = &so->so_snd; 3062 selwakeuppri(sb->sb_sel, PSOCK); 3063 SOCK_SENDBUF_UNLOCK(so); 3064 } 3065 } 3066 3067 static void 3068 unp_connect2(struct socket *so, struct socket *so2, bool wakeup) 3069 { 3070 struct unpcb *unp; 3071 struct unpcb *unp2; 3072 3073 MPASS(so2->so_type == so->so_type); 3074 unp = sotounpcb(so); 3075 KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); 3076 unp2 = sotounpcb(so2); 3077 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); 3078 3079 UNP_PCB_LOCK_ASSERT(unp); 3080 UNP_PCB_LOCK_ASSERT(unp2); 3081 KASSERT(unp->unp_conn == NULL, 3082 ("%s: socket %p is already connected", __func__, unp)); 3083 3084 unp->unp_conn = unp2; 3085 unp_pcb_hold(unp2); 3086 unp_pcb_hold(unp); 3087 switch (so->so_type) { 3088 case SOCK_DGRAM: 3089 UNP_REF_LIST_LOCK(); 3090 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 3091 UNP_REF_LIST_UNLOCK(); 3092 soisconnected(so); 3093 break; 3094 3095 case SOCK_STREAM: 3096 case SOCK_SEQPACKET: 3097 KASSERT(unp2->unp_conn == NULL, 3098 ("%s: socket %p is already connected", __func__, unp2)); 3099 unp2->unp_conn = unp; 3100 SOCK_LOCK(so); 3101 SOCK_LOCK(so2); 3102 if (wakeup) /* Avoid LOR with receive buffer lock. */ 3103 SOCK_SENDBUF_LOCK(so); 3104 SOCK_RECVBUF_LOCK(so); 3105 SOCK_RECVBUF_LOCK(so2); 3106 unp_soisconnected(so, wakeup); /* Will unlock send buffer. */ 3107 unp_soisconnected(so2, false); 3108 SOCK_RECVBUF_UNLOCK(so); 3109 SOCK_RECVBUF_UNLOCK(so2); 3110 SOCK_UNLOCK(so); 3111 SOCK_UNLOCK(so2); 3112 break; 3113 3114 default: 3115 panic("unp_connect2"); 3116 } 3117 } 3118 3119 static void 3120 unp_soisdisconnected(struct socket *so) 3121 { 3122 SOCK_LOCK_ASSERT(so); 3123 SOCK_RECVBUF_LOCK_ASSERT(so); 3124 MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET); 3125 MPASS(!SOLISTENING(so)); 3126 MPASS((so->so_state & (SS_ISCONNECTING | SS_ISDISCONNECTING | 3127 SS_ISDISCONNECTED)) == 0); 3128 MPASS(so->so_state & SS_ISCONNECTED); 3129 3130 so->so_state |= SS_ISDISCONNECTED; 3131 so->so_state &= ~SS_ISCONNECTED; 3132 so->so_rcv.uxst_peer = NULL; 3133 socantrcvmore_locked(so); 3134 } 3135 3136 static void 3137 unp_disconnect(struct unpcb *unp, struct unpcb *unp2) 3138 { 3139 struct socket *so, *so2; 3140 struct mbuf *m = NULL; 3141 #ifdef INVARIANTS 3142 struct unpcb *unptmp; 3143 #endif 3144 3145 UNP_PCB_LOCK_ASSERT(unp); 3146 UNP_PCB_LOCK_ASSERT(unp2); 3147 KASSERT(unp->unp_conn == unp2, 3148 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2)); 3149 3150 unp->unp_conn = NULL; 3151 so = unp->unp_socket; 3152 so2 = unp2->unp_socket; 3153 switch (unp->unp_socket->so_type) { 3154 case SOCK_DGRAM: 3155 /* 3156 * Remove our send socket buffer from the peer's receive buffer. 3157 * Move the data to the receive buffer only if it is empty. 3158 * This is a protection against a scenario where a peer 3159 * connects, floods and disconnects, effectively blocking 3160 * sendto() from unconnected sockets. 3161 */ 3162 SOCK_RECVBUF_LOCK(so2); 3163 if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) { 3164 TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd, 3165 uxdg_clist); 3166 if (__predict_true((so2->so_rcv.sb_state & 3167 SBS_CANTRCVMORE) == 0) && 3168 STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) { 3169 STAILQ_CONCAT(&so2->so_rcv.uxdg_mb, 3170 &so->so_snd.uxdg_mb); 3171 so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc; 3172 so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl; 3173 so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt; 3174 } else { 3175 m = STAILQ_FIRST(&so->so_snd.uxdg_mb); 3176 STAILQ_INIT(&so->so_snd.uxdg_mb); 3177 so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc; 3178 so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc; 3179 so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl; 3180 so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt; 3181 } 3182 /* Note: so may reconnect. */ 3183 so->so_snd.uxdg_cc = 0; 3184 so->so_snd.uxdg_ctl = 0; 3185 so->so_snd.uxdg_mbcnt = 0; 3186 } 3187 SOCK_RECVBUF_UNLOCK(so2); 3188 UNP_REF_LIST_LOCK(); 3189 #ifdef INVARIANTS 3190 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) { 3191 if (unptmp == unp) 3192 break; 3193 } 3194 KASSERT(unptmp != NULL, 3195 ("%s: %p not found in reflist of %p", __func__, unp, unp2)); 3196 #endif 3197 LIST_REMOVE(unp, unp_reflink); 3198 UNP_REF_LIST_UNLOCK(); 3199 if (so) { 3200 SOCK_LOCK(so); 3201 so->so_state &= ~SS_ISCONNECTED; 3202 SOCK_UNLOCK(so); 3203 } 3204 break; 3205 3206 case SOCK_STREAM: 3207 case SOCK_SEQPACKET: 3208 SOCK_LOCK(so); 3209 SOCK_LOCK(so2); 3210 SOCK_RECVBUF_LOCK(so); 3211 SOCK_RECVBUF_LOCK(so2); 3212 unp_soisdisconnected(so); 3213 MPASS(unp2->unp_conn == unp); 3214 unp2->unp_conn = NULL; 3215 unp_soisdisconnected(so2); 3216 SOCK_UNLOCK(so); 3217 SOCK_UNLOCK(so2); 3218 break; 3219 } 3220 3221 if (unp == unp2) { 3222 unp_pcb_rele_notlast(unp); 3223 if (!unp_pcb_rele(unp)) 3224 UNP_PCB_UNLOCK(unp); 3225 } else { 3226 if (!unp_pcb_rele(unp)) 3227 UNP_PCB_UNLOCK(unp); 3228 if (!unp_pcb_rele(unp2)) 3229 UNP_PCB_UNLOCK(unp2); 3230 } 3231 3232 if (m != NULL) { 3233 unp_scan(m, unp_freerights); 3234 m_freemp(m); 3235 } 3236 } 3237 3238 /* 3239 * unp_pcblist() walks the global list of struct unpcb's to generate a 3240 * pointer list, bumping the refcount on each unpcb. It then copies them out 3241 * sequentially, validating the generation number on each to see if it has 3242 * been detached. All of this is necessary because copyout() may sleep on 3243 * disk I/O. 3244 */ 3245 static int 3246 unp_pcblist(SYSCTL_HANDLER_ARGS) 3247 { 3248 struct unpcb *unp, **unp_list; 3249 unp_gen_t gencnt; 3250 struct xunpgen *xug; 3251 struct unp_head *head; 3252 struct xunpcb *xu; 3253 u_int i; 3254 int error, n; 3255 3256 switch ((intptr_t)arg1) { 3257 case SOCK_STREAM: 3258 head = &unp_shead; 3259 break; 3260 3261 case SOCK_DGRAM: 3262 head = &unp_dhead; 3263 break; 3264 3265 case SOCK_SEQPACKET: 3266 head = &unp_sphead; 3267 break; 3268 3269 default: 3270 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); 3271 } 3272 3273 /* 3274 * The process of preparing the PCB list is too time-consuming and 3275 * resource-intensive to repeat twice on every request. 3276 */ 3277 if (req->oldptr == NULL) { 3278 n = unp_count; 3279 req->oldidx = 2 * (sizeof *xug) 3280 + (n + n/8) * sizeof(struct xunpcb); 3281 return (0); 3282 } 3283 3284 if (req->newptr != NULL) 3285 return (EPERM); 3286 3287 /* 3288 * OK, now we're committed to doing something. 3289 */ 3290 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); 3291 UNP_LINK_RLOCK(); 3292 gencnt = unp_gencnt; 3293 n = unp_count; 3294 UNP_LINK_RUNLOCK(); 3295 3296 xug->xug_len = sizeof *xug; 3297 xug->xug_count = n; 3298 xug->xug_gen = gencnt; 3299 xug->xug_sogen = so_gencnt; 3300 error = SYSCTL_OUT(req, xug, sizeof *xug); 3301 if (error) { 3302 free(xug, M_TEMP); 3303 return (error); 3304 } 3305 3306 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 3307 3308 UNP_LINK_RLOCK(); 3309 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 3310 unp = LIST_NEXT(unp, unp_link)) { 3311 UNP_PCB_LOCK(unp); 3312 if (unp->unp_gencnt <= gencnt) { 3313 if (cr_cansee(req->td->td_ucred, 3314 unp->unp_socket->so_cred)) { 3315 UNP_PCB_UNLOCK(unp); 3316 continue; 3317 } 3318 unp_list[i++] = unp; 3319 unp_pcb_hold(unp); 3320 } 3321 UNP_PCB_UNLOCK(unp); 3322 } 3323 UNP_LINK_RUNLOCK(); 3324 n = i; /* In case we lost some during malloc. */ 3325 3326 error = 0; 3327 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); 3328 for (i = 0; i < n; i++) { 3329 unp = unp_list[i]; 3330 UNP_PCB_LOCK(unp); 3331 if (unp_pcb_rele(unp)) 3332 continue; 3333 3334 if (unp->unp_gencnt <= gencnt) { 3335 xu->xu_len = sizeof *xu; 3336 xu->xu_unpp = (uintptr_t)unp; 3337 /* 3338 * XXX - need more locking here to protect against 3339 * connect/disconnect races for SMP. 3340 */ 3341 if (unp->unp_addr != NULL) 3342 bcopy(unp->unp_addr, &xu->xu_addr, 3343 unp->unp_addr->sun_len); 3344 else 3345 bzero(&xu->xu_addr, sizeof(xu->xu_addr)); 3346 if (unp->unp_conn != NULL && 3347 unp->unp_conn->unp_addr != NULL) 3348 bcopy(unp->unp_conn->unp_addr, 3349 &xu->xu_caddr, 3350 unp->unp_conn->unp_addr->sun_len); 3351 else 3352 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); 3353 xu->unp_vnode = (uintptr_t)unp->unp_vnode; 3354 xu->unp_conn = (uintptr_t)unp->unp_conn; 3355 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); 3356 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); 3357 xu->unp_gencnt = unp->unp_gencnt; 3358 sotoxsocket(unp->unp_socket, &xu->xu_socket); 3359 UNP_PCB_UNLOCK(unp); 3360 error = SYSCTL_OUT(req, xu, sizeof *xu); 3361 } else { 3362 UNP_PCB_UNLOCK(unp); 3363 } 3364 } 3365 free(xu, M_TEMP); 3366 if (!error) { 3367 /* 3368 * Give the user an updated idea of our state. If the 3369 * generation differs from what we told her before, she knows 3370 * that something happened while we were processing this 3371 * request, and it might be necessary to retry. 3372 */ 3373 xug->xug_gen = unp_gencnt; 3374 xug->xug_sogen = so_gencnt; 3375 xug->xug_count = unp_count; 3376 error = SYSCTL_OUT(req, xug, sizeof *xug); 3377 } 3378 free(unp_list, M_TEMP); 3379 free(xug, M_TEMP); 3380 return (error); 3381 } 3382 3383 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, 3384 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 3385 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 3386 "List of active local datagram sockets"); 3387 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, 3388 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 3389 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 3390 "List of active local stream sockets"); 3391 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, 3392 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 3393 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 3394 "List of active local seqpacket sockets"); 3395 3396 static void 3397 unp_drop(struct unpcb *unp) 3398 { 3399 struct socket *so; 3400 struct unpcb *unp2; 3401 3402 /* 3403 * Regardless of whether the socket's peer dropped the connection 3404 * with this socket by aborting or disconnecting, POSIX requires 3405 * that ECONNRESET is returned on next connected send(2) in case of 3406 * a SOCK_DGRAM socket and EPIPE for SOCK_STREAM. 3407 */ 3408 UNP_PCB_LOCK(unp); 3409 if ((so = unp->unp_socket) != NULL) 3410 so->so_error = 3411 so->so_proto->pr_type == SOCK_DGRAM ? ECONNRESET : EPIPE; 3412 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) { 3413 /* Last reference dropped in unp_disconnect(). */ 3414 unp_pcb_rele_notlast(unp); 3415 unp_disconnect(unp, unp2); 3416 } else if (!unp_pcb_rele(unp)) { 3417 UNP_PCB_UNLOCK(unp); 3418 } 3419 } 3420 3421 static void 3422 unp_freerights(struct filedescent **fdep, int fdcount) 3423 { 3424 struct file *fp; 3425 int i; 3426 3427 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); 3428 3429 for (i = 0; i < fdcount; i++) { 3430 fp = fdep[i]->fde_file; 3431 filecaps_free(&fdep[i]->fde_caps); 3432 unp_discard(fp); 3433 } 3434 free(fdep[0], M_FILECAPS); 3435 } 3436 3437 static bool 3438 restrict_rights(struct file *fp, struct thread *td) 3439 { 3440 struct prison *prison1, *prison2; 3441 3442 prison1 = fp->f_cred->cr_prison; 3443 prison2 = td->td_ucred->cr_prison; 3444 return (prison1 != prison2 && prison1->pr_root != prison2->pr_root && 3445 prison2 != &prison0); 3446 } 3447 3448 static int 3449 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) 3450 { 3451 struct thread *td = curthread; /* XXX */ 3452 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 3453 int *fdp; 3454 struct filedesc *fdesc = td->td_proc->p_fd; 3455 struct filedescent **fdep; 3456 void *data; 3457 socklen_t clen = control->m_len, datalen; 3458 int error, fdflags, newfds; 3459 u_int newlen; 3460 3461 UNP_LINK_UNLOCK_ASSERT(); 3462 3463 fdflags = ((flags & MSG_CMSG_CLOEXEC) ? O_CLOEXEC : 0) | 3464 ((flags & MSG_CMSG_CLOFORK) ? O_CLOFORK : 0); 3465 3466 error = 0; 3467 if (controlp != NULL) /* controlp == NULL => free control messages */ 3468 *controlp = NULL; 3469 while (cm != NULL) { 3470 MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len); 3471 3472 data = CMSG_DATA(cm); 3473 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 3474 if (cm->cmsg_level == SOL_SOCKET 3475 && cm->cmsg_type == SCM_RIGHTS) { 3476 newfds = datalen / sizeof(*fdep); 3477 if (newfds == 0) 3478 goto next; 3479 fdep = data; 3480 3481 /* If we're not outputting the descriptors free them. */ 3482 if (error || controlp == NULL) { 3483 unp_freerights(fdep, newfds); 3484 goto next; 3485 } 3486 FILEDESC_XLOCK(fdesc); 3487 3488 /* 3489 * Now change each pointer to an fd in the global 3490 * table to an integer that is the index to the local 3491 * fd table entry that we set up to point to the 3492 * global one we are transferring. 3493 */ 3494 newlen = newfds * sizeof(int); 3495 *controlp = sbcreatecontrol(NULL, newlen, 3496 SCM_RIGHTS, SOL_SOCKET, M_WAITOK); 3497 3498 fdp = (int *) 3499 CMSG_DATA(mtod(*controlp, struct cmsghdr *)); 3500 if ((error = fdallocn(td, 0, fdp, newfds))) { 3501 FILEDESC_XUNLOCK(fdesc); 3502 unp_freerights(fdep, newfds); 3503 m_freem(*controlp); 3504 *controlp = NULL; 3505 goto next; 3506 } 3507 for (int i = 0; i < newfds; i++, fdp++) { 3508 struct file *fp; 3509 3510 fp = fdep[i]->fde_file; 3511 _finstall(fdesc, fp, *fdp, fdflags | 3512 (restrict_rights(fp, td) ? 3513 O_RESOLVE_BENEATH : 0), &fdep[i]->fde_caps); 3514 unp_externalize_fp(fp); 3515 } 3516 3517 /* 3518 * The new type indicates that the mbuf data refers to 3519 * kernel resources that may need to be released before 3520 * the mbuf is freed. 3521 */ 3522 m_chtype(*controlp, MT_EXTCONTROL); 3523 FILEDESC_XUNLOCK(fdesc); 3524 free(fdep[0], M_FILECAPS); 3525 } else { 3526 /* We can just copy anything else across. */ 3527 if (error || controlp == NULL) 3528 goto next; 3529 *controlp = sbcreatecontrol(NULL, datalen, 3530 cm->cmsg_type, cm->cmsg_level, M_WAITOK); 3531 bcopy(data, 3532 CMSG_DATA(mtod(*controlp, struct cmsghdr *)), 3533 datalen); 3534 } 3535 controlp = &(*controlp)->m_next; 3536 3537 next: 3538 if (CMSG_SPACE(datalen) < clen) { 3539 clen -= CMSG_SPACE(datalen); 3540 cm = (struct cmsghdr *) 3541 ((caddr_t)cm + CMSG_SPACE(datalen)); 3542 } else { 3543 clen = 0; 3544 cm = NULL; 3545 } 3546 } 3547 3548 return (error); 3549 } 3550 3551 static void 3552 unp_zone_change(void *tag) 3553 { 3554 3555 uma_zone_set_max(unp_zone, maxsockets); 3556 } 3557 3558 #ifdef INVARIANTS 3559 static void 3560 unp_zdtor(void *mem, int size __unused, void *arg __unused) 3561 { 3562 struct unpcb *unp; 3563 3564 unp = mem; 3565 3566 KASSERT(LIST_EMPTY(&unp->unp_refs), 3567 ("%s: unpcb %p has lingering refs", __func__, unp)); 3568 KASSERT(unp->unp_socket == NULL, 3569 ("%s: unpcb %p has socket backpointer", __func__, unp)); 3570 KASSERT(unp->unp_vnode == NULL, 3571 ("%s: unpcb %p has vnode references", __func__, unp)); 3572 KASSERT(unp->unp_conn == NULL, 3573 ("%s: unpcb %p is still connected", __func__, unp)); 3574 KASSERT(unp->unp_addr == NULL, 3575 ("%s: unpcb %p has leaked addr", __func__, unp)); 3576 } 3577 #endif 3578 3579 static void 3580 unp_init(void *arg __unused) 3581 { 3582 uma_dtor dtor; 3583 3584 #ifdef INVARIANTS 3585 dtor = unp_zdtor; 3586 #else 3587 dtor = NULL; 3588 #endif 3589 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor, 3590 NULL, NULL, UMA_ALIGN_CACHE, 0); 3591 uma_zone_set_max(unp_zone, maxsockets); 3592 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); 3593 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, 3594 NULL, EVENTHANDLER_PRI_ANY); 3595 LIST_INIT(&unp_dhead); 3596 LIST_INIT(&unp_shead); 3597 LIST_INIT(&unp_sphead); 3598 SLIST_INIT(&unp_defers); 3599 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); 3600 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); 3601 UNP_LINK_LOCK_INIT(); 3602 UNP_DEFERRED_LOCK_INIT(); 3603 unp_vp_mtxpool = mtx_pool_create("unp vp mtxpool", 32, MTX_DEF); 3604 } 3605 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL); 3606 3607 static void 3608 unp_internalize_cleanup_rights(struct mbuf *control) 3609 { 3610 struct cmsghdr *cp; 3611 struct mbuf *m; 3612 void *data; 3613 socklen_t datalen; 3614 3615 for (m = control; m != NULL; m = m->m_next) { 3616 cp = mtod(m, struct cmsghdr *); 3617 if (cp->cmsg_level != SOL_SOCKET || 3618 cp->cmsg_type != SCM_RIGHTS) 3619 continue; 3620 data = CMSG_DATA(cp); 3621 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data; 3622 unp_freerights(data, datalen / sizeof(struct filedesc *)); 3623 } 3624 } 3625 3626 static int 3627 unp_internalize(struct mbuf *control, struct mchain *mc, struct thread *td) 3628 { 3629 struct proc *p; 3630 struct filedesc *fdesc; 3631 struct bintime *bt; 3632 struct cmsghdr *cm; 3633 struct cmsgcred *cmcred; 3634 struct mbuf *m; 3635 struct filedescent *fde, **fdep, *fdev; 3636 struct file *fp; 3637 struct timeval *tv; 3638 struct timespec *ts; 3639 void *data; 3640 socklen_t clen, datalen; 3641 int i, j, error, *fdp, oldfds; 3642 u_int newlen; 3643 3644 MPASS(control->m_next == NULL); /* COMPAT_OLDSOCK may violate */ 3645 UNP_LINK_UNLOCK_ASSERT(); 3646 3647 p = td->td_proc; 3648 fdesc = p->p_fd; 3649 error = 0; 3650 *mc = MCHAIN_INITIALIZER(mc); 3651 for (clen = control->m_len, cm = mtod(control, struct cmsghdr *), 3652 data = CMSG_DATA(cm); 3653 3654 clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET && 3655 clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) && 3656 (char *)cm + cm->cmsg_len >= (char *)data; 3657 3658 clen -= min(CMSG_SPACE(datalen), clen), 3659 cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)), 3660 data = CMSG_DATA(cm)) { 3661 datalen = (char *)cm + cm->cmsg_len - (char *)data; 3662 switch (cm->cmsg_type) { 3663 case SCM_CREDS: 3664 m = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS, 3665 SOL_SOCKET, M_WAITOK); 3666 cmcred = (struct cmsgcred *) 3667 CMSG_DATA(mtod(m, struct cmsghdr *)); 3668 cmcred->cmcred_pid = p->p_pid; 3669 cmcred->cmcred_uid = td->td_ucred->cr_ruid; 3670 cmcred->cmcred_gid = td->td_ucred->cr_rgid; 3671 cmcred->cmcred_euid = td->td_ucred->cr_uid; 3672 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, 3673 CMGROUP_MAX); 3674 for (i = 0; i < cmcred->cmcred_ngroups; i++) 3675 cmcred->cmcred_groups[i] = 3676 td->td_ucred->cr_groups[i]; 3677 break; 3678 3679 case SCM_RIGHTS: 3680 oldfds = datalen / sizeof (int); 3681 if (oldfds == 0) 3682 continue; 3683 /* On some machines sizeof pointer is bigger than 3684 * sizeof int, so we need to check if data fits into 3685 * single mbuf. We could allocate several mbufs, and 3686 * unp_externalize() should even properly handle that. 3687 * But it is not worth to complicate the code for an 3688 * insane scenario of passing over 200 file descriptors 3689 * at once. 3690 */ 3691 newlen = oldfds * sizeof(fdep[0]); 3692 if (CMSG_SPACE(newlen) > MCLBYTES) { 3693 error = EMSGSIZE; 3694 goto out; 3695 } 3696 /* 3697 * Check that all the FDs passed in refer to legal 3698 * files. If not, reject the entire operation. 3699 */ 3700 fdp = data; 3701 FILEDESC_SLOCK(fdesc); 3702 for (i = 0; i < oldfds; i++, fdp++) { 3703 fp = fget_noref(fdesc, *fdp); 3704 if (fp == NULL) { 3705 FILEDESC_SUNLOCK(fdesc); 3706 error = EBADF; 3707 goto out; 3708 } 3709 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { 3710 FILEDESC_SUNLOCK(fdesc); 3711 error = EOPNOTSUPP; 3712 goto out; 3713 } 3714 } 3715 3716 /* 3717 * Now replace the integer FDs with pointers to the 3718 * file structure and capability rights. 3719 */ 3720 m = sbcreatecontrol(NULL, newlen, SCM_RIGHTS, 3721 SOL_SOCKET, M_WAITOK); 3722 fdp = data; 3723 for (i = 0; i < oldfds; i++, fdp++) { 3724 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) { 3725 fdp = data; 3726 for (j = 0; j < i; j++, fdp++) { 3727 fdrop(fdesc->fd_ofiles[*fdp]. 3728 fde_file, td); 3729 } 3730 FILEDESC_SUNLOCK(fdesc); 3731 error = EBADF; 3732 goto out; 3733 } 3734 } 3735 fdp = data; 3736 fdep = (struct filedescent **) 3737 CMSG_DATA(mtod(m, struct cmsghdr *)); 3738 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, 3739 M_WAITOK); 3740 for (i = 0; i < oldfds; i++, fdev++, fdp++) { 3741 fde = &fdesc->fd_ofiles[*fdp]; 3742 fdep[i] = fdev; 3743 fdep[i]->fde_file = fde->fde_file; 3744 filecaps_copy(&fde->fde_caps, 3745 &fdep[i]->fde_caps, true); 3746 unp_internalize_fp(fdep[i]->fde_file); 3747 } 3748 FILEDESC_SUNLOCK(fdesc); 3749 break; 3750 3751 case SCM_TIMESTAMP: 3752 m = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP, 3753 SOL_SOCKET, M_WAITOK); 3754 tv = (struct timeval *) 3755 CMSG_DATA(mtod(m, struct cmsghdr *)); 3756 microtime(tv); 3757 break; 3758 3759 case SCM_BINTIME: 3760 m = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME, 3761 SOL_SOCKET, M_WAITOK); 3762 bt = (struct bintime *) 3763 CMSG_DATA(mtod(m, struct cmsghdr *)); 3764 bintime(bt); 3765 break; 3766 3767 case SCM_REALTIME: 3768 m = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME, 3769 SOL_SOCKET, M_WAITOK); 3770 ts = (struct timespec *) 3771 CMSG_DATA(mtod(m, struct cmsghdr *)); 3772 nanotime(ts); 3773 break; 3774 3775 case SCM_MONOTONIC: 3776 m = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC, 3777 SOL_SOCKET, M_WAITOK); 3778 ts = (struct timespec *) 3779 CMSG_DATA(mtod(m, struct cmsghdr *)); 3780 nanouptime(ts); 3781 break; 3782 3783 default: 3784 error = EINVAL; 3785 goto out; 3786 } 3787 3788 mc_append(mc, m); 3789 } 3790 if (clen > 0) 3791 error = EINVAL; 3792 3793 out: 3794 if (error != 0) 3795 unp_internalize_cleanup_rights(mc_first(mc)); 3796 m_freem(control); 3797 return (error); 3798 } 3799 3800 static void 3801 unp_addsockcred(struct thread *td, struct mchain *mc, int mode) 3802 { 3803 struct mbuf *m, *n, *n_prev; 3804 const struct cmsghdr *cm; 3805 int ngroups, i, cmsgtype; 3806 size_t ctrlsz; 3807 3808 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); 3809 if (mode & UNP_WANTCRED_ALWAYS) { 3810 ctrlsz = SOCKCRED2SIZE(ngroups); 3811 cmsgtype = SCM_CREDS2; 3812 } else { 3813 ctrlsz = SOCKCREDSIZE(ngroups); 3814 cmsgtype = SCM_CREDS; 3815 } 3816 3817 /* XXXGL: uipc_sosend_*() need to be improved so that we can M_WAITOK */ 3818 m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT); 3819 if (m == NULL) 3820 return; 3821 MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL); 3822 3823 if (mode & UNP_WANTCRED_ALWAYS) { 3824 struct sockcred2 *sc; 3825 3826 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 3827 sc->sc_version = 0; 3828 sc->sc_pid = td->td_proc->p_pid; 3829 sc->sc_uid = td->td_ucred->cr_ruid; 3830 sc->sc_euid = td->td_ucred->cr_uid; 3831 sc->sc_gid = td->td_ucred->cr_rgid; 3832 sc->sc_egid = td->td_ucred->cr_gid; 3833 sc->sc_ngroups = ngroups; 3834 for (i = 0; i < sc->sc_ngroups; i++) 3835 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 3836 } else { 3837 struct sockcred *sc; 3838 3839 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *)); 3840 sc->sc_uid = td->td_ucred->cr_ruid; 3841 sc->sc_euid = td->td_ucred->cr_uid; 3842 sc->sc_gid = td->td_ucred->cr_rgid; 3843 sc->sc_egid = td->td_ucred->cr_gid; 3844 sc->sc_ngroups = ngroups; 3845 for (i = 0; i < sc->sc_ngroups; i++) 3846 sc->sc_groups[i] = td->td_ucred->cr_groups[i]; 3847 } 3848 3849 /* 3850 * Unlink SCM_CREDS control messages (struct cmsgcred), since just 3851 * created SCM_CREDS control message (struct sockcred) has another 3852 * format. 3853 */ 3854 if (!STAILQ_EMPTY(&mc->mc_q) && cmsgtype == SCM_CREDS) 3855 STAILQ_FOREACH_SAFE(n, &mc->mc_q, m_stailq, n_prev) { 3856 cm = mtod(n, struct cmsghdr *); 3857 if (cm->cmsg_level == SOL_SOCKET && 3858 cm->cmsg_type == SCM_CREDS) { 3859 mc_remove(mc, n); 3860 m_free(n); 3861 } 3862 } 3863 3864 /* Prepend it to the head. */ 3865 mc_prepend(mc, m); 3866 } 3867 3868 static struct unpcb * 3869 fptounp(struct file *fp) 3870 { 3871 struct socket *so; 3872 3873 if (fp->f_type != DTYPE_SOCKET) 3874 return (NULL); 3875 if ((so = fp->f_data) == NULL) 3876 return (NULL); 3877 if (so->so_proto->pr_domain != &localdomain) 3878 return (NULL); 3879 return sotounpcb(so); 3880 } 3881 3882 static void 3883 unp_discard(struct file *fp) 3884 { 3885 struct unp_defer *dr; 3886 3887 if (unp_externalize_fp(fp)) { 3888 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); 3889 dr->ud_fp = fp; 3890 UNP_DEFERRED_LOCK(); 3891 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); 3892 UNP_DEFERRED_UNLOCK(); 3893 atomic_add_int(&unp_defers_count, 1); 3894 taskqueue_enqueue(taskqueue_thread, &unp_defer_task); 3895 } else 3896 closef_nothread(fp); 3897 } 3898 3899 static void 3900 unp_process_defers(void *arg __unused, int pending) 3901 { 3902 struct unp_defer *dr; 3903 SLIST_HEAD(, unp_defer) drl; 3904 int count; 3905 3906 SLIST_INIT(&drl); 3907 for (;;) { 3908 UNP_DEFERRED_LOCK(); 3909 if (SLIST_FIRST(&unp_defers) == NULL) { 3910 UNP_DEFERRED_UNLOCK(); 3911 break; 3912 } 3913 SLIST_SWAP(&unp_defers, &drl, unp_defer); 3914 UNP_DEFERRED_UNLOCK(); 3915 count = 0; 3916 while ((dr = SLIST_FIRST(&drl)) != NULL) { 3917 SLIST_REMOVE_HEAD(&drl, ud_link); 3918 closef_nothread(dr->ud_fp); 3919 free(dr, M_TEMP); 3920 count++; 3921 } 3922 atomic_add_int(&unp_defers_count, -count); 3923 } 3924 } 3925 3926 static void 3927 unp_internalize_fp(struct file *fp) 3928 { 3929 struct unpcb *unp; 3930 3931 UNP_LINK_WLOCK(); 3932 if ((unp = fptounp(fp)) != NULL) { 3933 unp->unp_file = fp; 3934 unp->unp_msgcount++; 3935 } 3936 unp_rights++; 3937 UNP_LINK_WUNLOCK(); 3938 } 3939 3940 static int 3941 unp_externalize_fp(struct file *fp) 3942 { 3943 struct unpcb *unp; 3944 int ret; 3945 3946 UNP_LINK_WLOCK(); 3947 if ((unp = fptounp(fp)) != NULL) { 3948 unp->unp_msgcount--; 3949 ret = 1; 3950 } else 3951 ret = 0; 3952 unp_rights--; 3953 UNP_LINK_WUNLOCK(); 3954 return (ret); 3955 } 3956 3957 /* 3958 * unp_defer indicates whether additional work has been defered for a future 3959 * pass through unp_gc(). It is thread local and does not require explicit 3960 * synchronization. 3961 */ 3962 static int unp_marked; 3963 3964 static void 3965 unp_remove_dead_ref(struct filedescent **fdep, int fdcount) 3966 { 3967 struct unpcb *unp; 3968 struct file *fp; 3969 int i; 3970 3971 /* 3972 * This function can only be called from the gc task. 3973 */ 3974 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 3975 ("%s: not on gc callout", __func__)); 3976 UNP_LINK_LOCK_ASSERT(); 3977 3978 for (i = 0; i < fdcount; i++) { 3979 fp = fdep[i]->fde_file; 3980 if ((unp = fptounp(fp)) == NULL) 3981 continue; 3982 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 3983 continue; 3984 unp->unp_gcrefs--; 3985 } 3986 } 3987 3988 static void 3989 unp_restore_undead_ref(struct filedescent **fdep, int fdcount) 3990 { 3991 struct unpcb *unp; 3992 struct file *fp; 3993 int i; 3994 3995 /* 3996 * This function can only be called from the gc task. 3997 */ 3998 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0, 3999 ("%s: not on gc callout", __func__)); 4000 UNP_LINK_LOCK_ASSERT(); 4001 4002 for (i = 0; i < fdcount; i++) { 4003 fp = fdep[i]->fde_file; 4004 if ((unp = fptounp(fp)) == NULL) 4005 continue; 4006 if ((unp->unp_gcflag & UNPGC_DEAD) == 0) 4007 continue; 4008 unp->unp_gcrefs++; 4009 unp_marked++; 4010 } 4011 } 4012 4013 static void 4014 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int)) 4015 { 4016 struct sockbuf *sb; 4017 4018 SOCK_LOCK_ASSERT(so); 4019 4020 if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS) 4021 return; 4022 4023 SOCK_RECVBUF_LOCK(so); 4024 switch (so->so_type) { 4025 case SOCK_DGRAM: 4026 unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op); 4027 unp_scan(so->so_rcv.uxdg_peeked, op); 4028 TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist) 4029 unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op); 4030 break; 4031 case SOCK_STREAM: 4032 case SOCK_SEQPACKET: 4033 unp_scan(STAILQ_FIRST(&so->so_rcv.uxst_mbq), op); 4034 break; 4035 } 4036 SOCK_RECVBUF_UNLOCK(so); 4037 } 4038 4039 static void 4040 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int)) 4041 { 4042 struct socket *so, *soa; 4043 4044 so = unp->unp_socket; 4045 SOCK_LOCK(so); 4046 if (SOLISTENING(so)) { 4047 /* 4048 * Mark all sockets in our accept queue. 4049 */ 4050 TAILQ_FOREACH(soa, &so->sol_comp, so_list) 4051 unp_scan_socket(soa, op); 4052 } else { 4053 /* 4054 * Mark all sockets we reference with RIGHTS. 4055 */ 4056 unp_scan_socket(so, op); 4057 } 4058 SOCK_UNLOCK(so); 4059 } 4060 4061 static int unp_recycled; 4062 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 4063 "Number of unreachable sockets claimed by the garbage collector."); 4064 4065 static int unp_taskcount; 4066 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 4067 "Number of times the garbage collector has run."); 4068 4069 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0, 4070 "Number of active local sockets."); 4071 4072 static void 4073 unp_gc(__unused void *arg, int pending) 4074 { 4075 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, 4076 NULL }; 4077 struct unp_head **head; 4078 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */ 4079 struct file *f, **unref; 4080 struct unpcb *unp, *unptmp; 4081 int i, total, unp_unreachable; 4082 4083 LIST_INIT(&unp_deadhead); 4084 unp_taskcount++; 4085 UNP_LINK_RLOCK(); 4086 /* 4087 * First determine which sockets may be in cycles. 4088 */ 4089 unp_unreachable = 0; 4090 4091 for (head = heads; *head != NULL; head++) 4092 LIST_FOREACH(unp, *head, unp_link) { 4093 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0, 4094 ("%s: unp %p has unexpected gc flags 0x%x", 4095 __func__, unp, (unsigned int)unp->unp_gcflag)); 4096 4097 f = unp->unp_file; 4098 4099 /* 4100 * Check for an unreachable socket potentially in a 4101 * cycle. It must be in a queue as indicated by 4102 * msgcount, and this must equal the file reference 4103 * count. Note that when msgcount is 0 the file is 4104 * NULL. 4105 */ 4106 if (f != NULL && unp->unp_msgcount != 0 && 4107 refcount_load(&f->f_count) == unp->unp_msgcount) { 4108 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead); 4109 unp->unp_gcflag |= UNPGC_DEAD; 4110 unp->unp_gcrefs = unp->unp_msgcount; 4111 unp_unreachable++; 4112 } 4113 } 4114 4115 /* 4116 * Scan all sockets previously marked as potentially being in a cycle 4117 * and remove the references each socket holds on any UNPGC_DEAD 4118 * sockets in its queue. After this step, all remaining references on 4119 * sockets marked UNPGC_DEAD should not be part of any cycle. 4120 */ 4121 LIST_FOREACH(unp, &unp_deadhead, unp_dead) 4122 unp_gc_scan(unp, unp_remove_dead_ref); 4123 4124 /* 4125 * If a socket still has a non-negative refcount, it cannot be in a 4126 * cycle. In this case increment refcount of all children iteratively. 4127 * Stop the scan once we do a complete loop without discovering 4128 * a new reachable socket. 4129 */ 4130 do { 4131 unp_marked = 0; 4132 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp) 4133 if (unp->unp_gcrefs > 0) { 4134 unp->unp_gcflag &= ~UNPGC_DEAD; 4135 LIST_REMOVE(unp, unp_dead); 4136 KASSERT(unp_unreachable > 0, 4137 ("%s: unp_unreachable underflow.", 4138 __func__)); 4139 unp_unreachable--; 4140 unp_gc_scan(unp, unp_restore_undead_ref); 4141 } 4142 } while (unp_marked); 4143 4144 UNP_LINK_RUNLOCK(); 4145 4146 if (unp_unreachable == 0) 4147 return; 4148 4149 /* 4150 * Allocate space for a local array of dead unpcbs. 4151 * TODO: can this path be simplified by instead using the local 4152 * dead list at unp_deadhead, after taking out references 4153 * on the file object and/or unpcb and dropping the link lock? 4154 */ 4155 unref = malloc(unp_unreachable * sizeof(struct file *), 4156 M_TEMP, M_WAITOK); 4157 4158 /* 4159 * Iterate looking for sockets which have been specifically marked 4160 * as unreachable and store them locally. 4161 */ 4162 UNP_LINK_RLOCK(); 4163 total = 0; 4164 LIST_FOREACH(unp, &unp_deadhead, unp_dead) { 4165 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0, 4166 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp)); 4167 unp->unp_gcflag &= ~UNPGC_DEAD; 4168 f = unp->unp_file; 4169 if (unp->unp_msgcount == 0 || f == NULL || 4170 refcount_load(&f->f_count) != unp->unp_msgcount || 4171 !fhold(f)) 4172 continue; 4173 unref[total++] = f; 4174 KASSERT(total <= unp_unreachable, 4175 ("%s: incorrect unreachable count.", __func__)); 4176 } 4177 UNP_LINK_RUNLOCK(); 4178 4179 /* 4180 * Now flush all sockets, free'ing rights. This will free the 4181 * struct files associated with these sockets but leave each socket 4182 * with one remaining ref. 4183 */ 4184 for (i = 0; i < total; i++) { 4185 struct socket *so; 4186 4187 so = unref[i]->f_data; 4188 CURVNET_SET(so->so_vnet); 4189 socantrcvmore(so); 4190 unp_dispose(so); 4191 CURVNET_RESTORE(); 4192 } 4193 4194 /* 4195 * And finally release the sockets so they can be reclaimed. 4196 */ 4197 for (i = 0; i < total; i++) 4198 fdrop(unref[i], NULL); 4199 unp_recycled += total; 4200 free(unref, M_TEMP); 4201 } 4202 4203 /* 4204 * Synchronize against unp_gc, which can trip over data as we are freeing it. 4205 */ 4206 static void 4207 unp_dispose(struct socket *so) 4208 { 4209 struct sockbuf *sb; 4210 struct unpcb *unp; 4211 struct mbuf *m; 4212 int error __diagused; 4213 4214 MPASS(!SOLISTENING(so)); 4215 4216 unp = sotounpcb(so); 4217 UNP_LINK_WLOCK(); 4218 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; 4219 UNP_LINK_WUNLOCK(); 4220 4221 /* 4222 * Grab our special mbufs before calling sbrelease(). 4223 */ 4224 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 4225 MPASS(!error); 4226 SOCK_RECVBUF_LOCK(so); 4227 switch (so->so_type) { 4228 case SOCK_DGRAM: 4229 while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) { 4230 STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb); 4231 TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist); 4232 /* Note: socket of sb may reconnect. */ 4233 sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0; 4234 } 4235 sb = &so->so_rcv; 4236 if (sb->uxdg_peeked != NULL) { 4237 STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked, 4238 m_stailqpkt); 4239 sb->uxdg_peeked = NULL; 4240 } 4241 m = STAILQ_FIRST(&sb->uxdg_mb); 4242 STAILQ_INIT(&sb->uxdg_mb); 4243 break; 4244 case SOCK_STREAM: 4245 case SOCK_SEQPACKET: 4246 sb = &so->so_rcv; 4247 m = STAILQ_FIRST(&sb->uxst_mbq); 4248 STAILQ_INIT(&sb->uxst_mbq); 4249 sb->sb_acc = sb->sb_ccc = sb->sb_ctl = sb->sb_mbcnt = 0; 4250 /* 4251 * Trim M_NOTREADY buffers from the free list. They are 4252 * referenced by the I/O thread. 4253 */ 4254 if (sb->uxst_fnrdy != NULL) { 4255 struct mbuf *n, *prev; 4256 4257 while (m != NULL && m->m_flags & M_NOTREADY) 4258 m = m->m_next; 4259 for (prev = n = m; n != NULL; n = n->m_next) { 4260 if (n->m_flags & M_NOTREADY) 4261 prev->m_next = n->m_next; 4262 else 4263 prev = n; 4264 } 4265 sb->uxst_fnrdy = NULL; 4266 } 4267 break; 4268 } 4269 /* 4270 * Mark sb with SBS_CANTRCVMORE. This is needed to prevent 4271 * uipc_sosend_*() or unp_disconnect() adding more data to the socket. 4272 * We came here either through shutdown(2) or from the final sofree(). 4273 * The sofree() case is simple as it guarantees that no more sends will 4274 * happen, however we can race with unp_disconnect() from our peer. 4275 * The shutdown(2) case is more exotic. It would call into 4276 * unp_dispose() only if socket is SS_ISCONNECTED. This is possible if 4277 * we did connect(2) on this socket and we also had it bound with 4278 * bind(2) and receive connections from other sockets. Because 4279 * uipc_shutdown() violates POSIX (see comment there) this applies to 4280 * SOCK_DGRAM as well. For SOCK_DGRAM this SBS_CANTRCVMORE will have 4281 * affect not only on the peer we connect(2)ed to, but also on all of 4282 * the peers who had connect(2)ed to us. Their sends would end up 4283 * with ENOBUFS. 4284 */ 4285 sb->sb_state |= SBS_CANTRCVMORE; 4286 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 4287 RLIM_INFINITY); 4288 SOCK_RECVBUF_UNLOCK(so); 4289 SOCK_IO_RECV_UNLOCK(so); 4290 4291 if (m != NULL) { 4292 unp_scan(m, unp_freerights); 4293 m_freemp(m); 4294 } 4295 } 4296 4297 static void 4298 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) 4299 { 4300 struct mbuf *m; 4301 struct cmsghdr *cm; 4302 void *data; 4303 socklen_t clen, datalen; 4304 4305 while (m0 != NULL) { 4306 for (m = m0; m; m = m->m_next) { 4307 if (m->m_type != MT_CONTROL) 4308 continue; 4309 4310 cm = mtod(m, struct cmsghdr *); 4311 clen = m->m_len; 4312 4313 while (cm != NULL) { 4314 if (sizeof(*cm) > clen || cm->cmsg_len > clen) 4315 break; 4316 4317 data = CMSG_DATA(cm); 4318 datalen = (caddr_t)cm + cm->cmsg_len 4319 - (caddr_t)data; 4320 4321 if (cm->cmsg_level == SOL_SOCKET && 4322 cm->cmsg_type == SCM_RIGHTS) { 4323 (*op)(data, datalen / 4324 sizeof(struct filedescent *)); 4325 } 4326 4327 if (CMSG_SPACE(datalen) < clen) { 4328 clen -= CMSG_SPACE(datalen); 4329 cm = (struct cmsghdr *) 4330 ((caddr_t)cm + CMSG_SPACE(datalen)); 4331 } else { 4332 clen = 0; 4333 cm = NULL; 4334 } 4335 } 4336 } 4337 m0 = m0->m_nextpkt; 4338 } 4339 } 4340 4341 /* 4342 * Definitions of protocols supported in the LOCAL domain. 4343 */ 4344 static struct protosw streamproto = { 4345 .pr_type = SOCK_STREAM, 4346 .pr_flags = PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF, 4347 .pr_ctloutput = &uipc_ctloutput, 4348 .pr_abort = uipc_abort, 4349 .pr_accept = uipc_peeraddr, 4350 .pr_attach = uipc_attach, 4351 .pr_bind = uipc_bind, 4352 .pr_bindat = uipc_bindat, 4353 .pr_connect = uipc_connect, 4354 .pr_connectat = uipc_connectat, 4355 .pr_connect2 = uipc_connect2, 4356 .pr_detach = uipc_detach, 4357 .pr_disconnect = uipc_disconnect, 4358 .pr_listen = uipc_listen, 4359 .pr_peeraddr = uipc_peeraddr, 4360 .pr_send = uipc_sendfile, 4361 .pr_sendfile_wait = uipc_sendfile_wait, 4362 .pr_ready = uipc_ready, 4363 .pr_sense = uipc_sense, 4364 .pr_shutdown = uipc_shutdown, 4365 .pr_sockaddr = uipc_sockaddr, 4366 .pr_sosend = uipc_sosend_stream_or_seqpacket, 4367 .pr_soreceive = uipc_soreceive_stream_or_seqpacket, 4368 .pr_sopoll = uipc_sopoll_stream_or_seqpacket, 4369 .pr_kqfilter = uipc_kqfilter_stream_or_seqpacket, 4370 .pr_close = uipc_close, 4371 .pr_chmod = uipc_chmod, 4372 }; 4373 4374 static struct protosw dgramproto = { 4375 .pr_type = SOCK_DGRAM, 4376 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF, 4377 .pr_ctloutput = &uipc_ctloutput, 4378 .pr_abort = uipc_abort, 4379 .pr_accept = uipc_peeraddr, 4380 .pr_attach = uipc_attach, 4381 .pr_bind = uipc_bind, 4382 .pr_bindat = uipc_bindat, 4383 .pr_connect = uipc_connect, 4384 .pr_connectat = uipc_connectat, 4385 .pr_connect2 = uipc_connect2, 4386 .pr_detach = uipc_detach, 4387 .pr_disconnect = uipc_disconnect, 4388 .pr_peeraddr = uipc_peeraddr, 4389 .pr_sosend = uipc_sosend_dgram, 4390 .pr_sense = uipc_sense, 4391 .pr_shutdown = uipc_shutdown, 4392 .pr_sockaddr = uipc_sockaddr, 4393 .pr_soreceive = uipc_soreceive_dgram, 4394 .pr_close = uipc_close, 4395 .pr_chmod = uipc_chmod, 4396 }; 4397 4398 static struct protosw seqpacketproto = { 4399 .pr_type = SOCK_SEQPACKET, 4400 .pr_flags = PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF, 4401 .pr_ctloutput = &uipc_ctloutput, 4402 .pr_abort = uipc_abort, 4403 .pr_accept = uipc_peeraddr, 4404 .pr_attach = uipc_attach, 4405 .pr_bind = uipc_bind, 4406 .pr_bindat = uipc_bindat, 4407 .pr_connect = uipc_connect, 4408 .pr_connectat = uipc_connectat, 4409 .pr_connect2 = uipc_connect2, 4410 .pr_detach = uipc_detach, 4411 .pr_disconnect = uipc_disconnect, 4412 .pr_listen = uipc_listen, 4413 .pr_peeraddr = uipc_peeraddr, 4414 .pr_sense = uipc_sense, 4415 .pr_shutdown = uipc_shutdown, 4416 .pr_sockaddr = uipc_sockaddr, 4417 .pr_sosend = uipc_sosend_stream_or_seqpacket, 4418 .pr_soreceive = uipc_soreceive_stream_or_seqpacket, 4419 .pr_sopoll = uipc_sopoll_stream_or_seqpacket, 4420 .pr_kqfilter = uipc_kqfilter_stream_or_seqpacket, 4421 .pr_close = uipc_close, 4422 .pr_chmod = uipc_chmod, 4423 }; 4424 4425 static struct domain localdomain = { 4426 .dom_family = AF_LOCAL, 4427 .dom_name = "local", 4428 .dom_nprotosw = 3, 4429 .dom_protosw = { 4430 &streamproto, 4431 &dgramproto, 4432 &seqpacketproto, 4433 } 4434 }; 4435 DOMAIN_SET(local); 4436 4437 /* 4438 * A helper function called by VFS before socket-type vnode reclamation. 4439 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode 4440 * use count. 4441 */ 4442 void 4443 vfs_unp_reclaim(struct vnode *vp) 4444 { 4445 struct unpcb *unp; 4446 int active; 4447 struct mtx *vplock; 4448 4449 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); 4450 KASSERT(vp->v_type == VSOCK, 4451 ("vfs_unp_reclaim: vp->v_type != VSOCK")); 4452 4453 active = 0; 4454 vplock = mtx_pool_find(unp_vp_mtxpool, vp); 4455 mtx_lock(vplock); 4456 VOP_UNP_CONNECT(vp, &unp); 4457 if (unp == NULL) 4458 goto done; 4459 UNP_PCB_LOCK(unp); 4460 if (unp->unp_vnode == vp) { 4461 VOP_UNP_DETACH(vp); 4462 unp->unp_vnode = NULL; 4463 active = 1; 4464 } 4465 UNP_PCB_UNLOCK(unp); 4466 done: 4467 mtx_unlock(vplock); 4468 if (active) 4469 vunref(vp); 4470 } 4471 4472 #ifdef DDB 4473 static void 4474 db_print_indent(int indent) 4475 { 4476 int i; 4477 4478 for (i = 0; i < indent; i++) 4479 db_printf(" "); 4480 } 4481 4482 static void 4483 db_print_unpflags(int unp_flags) 4484 { 4485 int comma; 4486 4487 comma = 0; 4488 if (unp_flags & UNP_HAVEPC) { 4489 db_printf("%sUNP_HAVEPC", comma ? ", " : ""); 4490 comma = 1; 4491 } 4492 if (unp_flags & UNP_WANTCRED_ALWAYS) { 4493 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : ""); 4494 comma = 1; 4495 } 4496 if (unp_flags & UNP_WANTCRED_ONESHOT) { 4497 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : ""); 4498 comma = 1; 4499 } 4500 if (unp_flags & UNP_CONNECTING) { 4501 db_printf("%sUNP_CONNECTING", comma ? ", " : ""); 4502 comma = 1; 4503 } 4504 if (unp_flags & UNP_BINDING) { 4505 db_printf("%sUNP_BINDING", comma ? ", " : ""); 4506 comma = 1; 4507 } 4508 } 4509 4510 static void 4511 db_print_xucred(int indent, struct xucred *xu) 4512 { 4513 int comma, i; 4514 4515 db_print_indent(indent); 4516 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n", 4517 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups); 4518 db_print_indent(indent); 4519 db_printf("cr_groups: "); 4520 comma = 0; 4521 for (i = 0; i < xu->cr_ngroups; i++) { 4522 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); 4523 comma = 1; 4524 } 4525 db_printf("\n"); 4526 } 4527 4528 static void 4529 db_print_unprefs(int indent, struct unp_head *uh) 4530 { 4531 struct unpcb *unp; 4532 int counter; 4533 4534 counter = 0; 4535 LIST_FOREACH(unp, uh, unp_reflink) { 4536 if (counter % 4 == 0) 4537 db_print_indent(indent); 4538 db_printf("%p ", unp); 4539 if (counter % 4 == 3) 4540 db_printf("\n"); 4541 counter++; 4542 } 4543 if (counter != 0 && counter % 4 != 0) 4544 db_printf("\n"); 4545 } 4546 4547 DB_SHOW_COMMAND(unpcb, db_show_unpcb) 4548 { 4549 struct unpcb *unp; 4550 4551 if (!have_addr) { 4552 db_printf("usage: show unpcb <addr>\n"); 4553 return; 4554 } 4555 unp = (struct unpcb *)addr; 4556 4557 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, 4558 unp->unp_vnode); 4559 4560 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, 4561 unp->unp_conn); 4562 4563 db_printf("unp_refs:\n"); 4564 db_print_unprefs(2, &unp->unp_refs); 4565 4566 /* XXXRW: Would be nice to print the full address, if any. */ 4567 db_printf("unp_addr: %p\n", unp->unp_addr); 4568 4569 db_printf("unp_gencnt: %llu\n", 4570 (unsigned long long)unp->unp_gencnt); 4571 4572 db_printf("unp_flags: %x (", unp->unp_flags); 4573 db_print_unpflags(unp->unp_flags); 4574 db_printf(")\n"); 4575 4576 db_printf("unp_peercred:\n"); 4577 db_print_xucred(2, &unp->unp_peercred); 4578 4579 db_printf("unp_refcount: %u\n", unp->unp_refcount); 4580 } 4581 #endif 4582