xref: /freebsd/sys/kern/uipc_syscalls.c (revision fafb1ee7bdc5d8a7d07cd03b2fb0bbb76f7a9d7c)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_capsicum.h"
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_compat.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/capsicum.h>
47 #include <sys/condvar.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/sysproto.h>
52 #include <sys/malloc.h>
53 #include <sys/filedesc.h>
54 #include <sys/event.h>
55 #include <sys/proc.h>
56 #include <sys/fcntl.h>
57 #include <sys/file.h>
58 #include <sys/filio.h>
59 #include <sys/jail.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/rwlock.h>
65 #include <sys/sf_buf.h>
66 #include <sys/sysent.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/signalvar.h>
70 #include <sys/syscallsubr.h>
71 #include <sys/sysctl.h>
72 #include <sys/uio.h>
73 #include <sys/vnode.h>
74 #ifdef KTRACE
75 #include <sys/ktrace.h>
76 #endif
77 #ifdef COMPAT_FREEBSD32
78 #include <compat/freebsd32/freebsd32_util.h>
79 #endif
80 
81 #include <net/vnet.h>
82 
83 #include <security/audit/audit.h>
84 #include <security/mac/mac_framework.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94 
95 /*
96  * Flags for accept1() and kern_accept4(), in addition to SOCK_CLOEXEC
97  * and SOCK_NONBLOCK.
98  */
99 #define	ACCEPT4_INHERIT	0x1
100 #define	ACCEPT4_COMPAT	0x2
101 
102 static int sendit(struct thread *td, int s, struct msghdr *mp, int flags);
103 static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp);
104 
105 static int accept1(struct thread *td, int s, struct sockaddr *uname,
106 		   socklen_t *anamelen, int flags);
107 static int do_sendfile(struct thread *td, struct sendfile_args *uap,
108 		   int compat);
109 static int getsockname1(struct thread *td, struct getsockname_args *uap,
110 			int compat);
111 static int getpeername1(struct thread *td, struct getpeername_args *uap,
112 			int compat);
113 
114 counter_u64_t sfstat[sizeof(struct sfstat) / sizeof(uint64_t)];
115 
116 static void
117 sfstat_init(const void *unused)
118 {
119 
120 	COUNTER_ARRAY_ALLOC(sfstat, sizeof(struct sfstat) / sizeof(uint64_t),
121 	    M_WAITOK);
122 }
123 SYSINIT(sfstat, SI_SUB_MBUF, SI_ORDER_FIRST, sfstat_init, NULL);
124 
125 static int
126 sfstat_sysctl(SYSCTL_HANDLER_ARGS)
127 {
128 	struct sfstat s;
129 
130 	COUNTER_ARRAY_COPY(sfstat, &s, sizeof(s) / sizeof(uint64_t));
131 	if (req->newptr)
132 		COUNTER_ARRAY_ZERO(sfstat, sizeof(s) / sizeof(uint64_t));
133 	return (SYSCTL_OUT(req, &s, sizeof(s)));
134 }
135 SYSCTL_PROC(_kern_ipc, OID_AUTO, sfstat, CTLTYPE_OPAQUE | CTLFLAG_RW,
136     NULL, 0, sfstat_sysctl, "I", "sendfile statistics");
137 
138 /*
139  * Convert a user file descriptor to a kernel file entry and check if required
140  * capability rights are present.
141  * A reference on the file entry is held upon returning.
142  */
143 int
144 getsock_cap(struct thread *td, int fd, cap_rights_t *rightsp,
145     struct file **fpp, u_int *fflagp)
146 {
147 	struct file *fp;
148 	int error;
149 
150 	error = fget_unlocked(td->td_proc->p_fd, fd, rightsp, &fp, NULL);
151 	if (error != 0)
152 		return (error);
153 	if (fp->f_type != DTYPE_SOCKET) {
154 		fdrop(fp, td);
155 		return (ENOTSOCK);
156 	}
157 	if (fflagp != NULL)
158 		*fflagp = fp->f_flag;
159 	*fpp = fp;
160 	return (0);
161 }
162 
163 /*
164  * System call interface to the socket abstraction.
165  */
166 #if defined(COMPAT_43)
167 #define COMPAT_OLDSOCK
168 #endif
169 
170 int
171 sys_socket(td, uap)
172 	struct thread *td;
173 	struct socket_args /* {
174 		int	domain;
175 		int	type;
176 		int	protocol;
177 	} */ *uap;
178 {
179 	struct socket *so;
180 	struct file *fp;
181 	int fd, error, type, oflag, fflag;
182 
183 	AUDIT_ARG_SOCKET(uap->domain, uap->type, uap->protocol);
184 
185 	type = uap->type;
186 	oflag = 0;
187 	fflag = 0;
188 	if ((type & SOCK_CLOEXEC) != 0) {
189 		type &= ~SOCK_CLOEXEC;
190 		oflag |= O_CLOEXEC;
191 	}
192 	if ((type & SOCK_NONBLOCK) != 0) {
193 		type &= ~SOCK_NONBLOCK;
194 		fflag |= FNONBLOCK;
195 	}
196 
197 #ifdef MAC
198 	error = mac_socket_check_create(td->td_ucred, uap->domain, type,
199 	    uap->protocol);
200 	if (error != 0)
201 		return (error);
202 #endif
203 	error = falloc(td, &fp, &fd, oflag);
204 	if (error != 0)
205 		return (error);
206 	/* An extra reference on `fp' has been held for us by falloc(). */
207 	error = socreate(uap->domain, &so, type, uap->protocol,
208 	    td->td_ucred, td);
209 	if (error != 0) {
210 		fdclose(td, fp, fd);
211 	} else {
212 		finit(fp, FREAD | FWRITE | fflag, DTYPE_SOCKET, so, &socketops);
213 		if ((fflag & FNONBLOCK) != 0)
214 			(void) fo_ioctl(fp, FIONBIO, &fflag, td->td_ucred, td);
215 		td->td_retval[0] = fd;
216 	}
217 	fdrop(fp, td);
218 	return (error);
219 }
220 
221 /* ARGSUSED */
222 int
223 sys_bind(td, uap)
224 	struct thread *td;
225 	struct bind_args /* {
226 		int	s;
227 		caddr_t	name;
228 		int	namelen;
229 	} */ *uap;
230 {
231 	struct sockaddr *sa;
232 	int error;
233 
234 	error = getsockaddr(&sa, uap->name, uap->namelen);
235 	if (error == 0) {
236 		error = kern_bindat(td, AT_FDCWD, uap->s, sa);
237 		free(sa, M_SONAME);
238 	}
239 	return (error);
240 }
241 
242 int
243 kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa)
244 {
245 	struct socket *so;
246 	struct file *fp;
247 	cap_rights_t rights;
248 	int error;
249 
250 	AUDIT_ARG_FD(fd);
251 	AUDIT_ARG_SOCKADDR(td, dirfd, sa);
252 	error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_BIND),
253 	    &fp, NULL);
254 	if (error != 0)
255 		return (error);
256 	so = fp->f_data;
257 #ifdef KTRACE
258 	if (KTRPOINT(td, KTR_STRUCT))
259 		ktrsockaddr(sa);
260 #endif
261 #ifdef MAC
262 	error = mac_socket_check_bind(td->td_ucred, so, sa);
263 	if (error == 0) {
264 #endif
265 		if (dirfd == AT_FDCWD)
266 			error = sobind(so, sa, td);
267 		else
268 			error = sobindat(dirfd, so, sa, td);
269 #ifdef MAC
270 	}
271 #endif
272 	fdrop(fp, td);
273 	return (error);
274 }
275 
276 /* ARGSUSED */
277 int
278 sys_bindat(td, uap)
279 	struct thread *td;
280 	struct bindat_args /* {
281 		int	fd;
282 		int	s;
283 		caddr_t	name;
284 		int	namelen;
285 	} */ *uap;
286 {
287 	struct sockaddr *sa;
288 	int error;
289 
290 	error = getsockaddr(&sa, uap->name, uap->namelen);
291 	if (error == 0) {
292 		error = kern_bindat(td, uap->fd, uap->s, sa);
293 		free(sa, M_SONAME);
294 	}
295 	return (error);
296 }
297 
298 /* ARGSUSED */
299 int
300 sys_listen(td, uap)
301 	struct thread *td;
302 	struct listen_args /* {
303 		int	s;
304 		int	backlog;
305 	} */ *uap;
306 {
307 	struct socket *so;
308 	struct file *fp;
309 	cap_rights_t rights;
310 	int error;
311 
312 	AUDIT_ARG_FD(uap->s);
313 	error = getsock_cap(td, uap->s, cap_rights_init(&rights, CAP_LISTEN),
314 	    &fp, NULL);
315 	if (error == 0) {
316 		so = fp->f_data;
317 #ifdef MAC
318 		error = mac_socket_check_listen(td->td_ucred, so);
319 		if (error == 0)
320 #endif
321 			error = solisten(so, uap->backlog, td);
322 		fdrop(fp, td);
323 	}
324 	return(error);
325 }
326 
327 /*
328  * accept1()
329  */
330 static int
331 accept1(td, s, uname, anamelen, flags)
332 	struct thread *td;
333 	int s;
334 	struct sockaddr *uname;
335 	socklen_t *anamelen;
336 	int flags;
337 {
338 	struct sockaddr *name;
339 	socklen_t namelen;
340 	struct file *fp;
341 	int error;
342 
343 	if (uname == NULL)
344 		return (kern_accept4(td, s, NULL, NULL, flags, NULL));
345 
346 	error = copyin(anamelen, &namelen, sizeof (namelen));
347 	if (error != 0)
348 		return (error);
349 
350 	error = kern_accept4(td, s, &name, &namelen, flags, &fp);
351 
352 	if (error != 0)
353 		return (error);
354 
355 	if (error == 0 && uname != NULL) {
356 #ifdef COMPAT_OLDSOCK
357 		if (flags & ACCEPT4_COMPAT)
358 			((struct osockaddr *)name)->sa_family =
359 			    name->sa_family;
360 #endif
361 		error = copyout(name, uname, namelen);
362 	}
363 	if (error == 0)
364 		error = copyout(&namelen, anamelen,
365 		    sizeof(namelen));
366 	if (error != 0)
367 		fdclose(td, fp, td->td_retval[0]);
368 	fdrop(fp, td);
369 	free(name, M_SONAME);
370 	return (error);
371 }
372 
373 int
374 kern_accept(struct thread *td, int s, struct sockaddr **name,
375     socklen_t *namelen, struct file **fp)
376 {
377 	return (kern_accept4(td, s, name, namelen, ACCEPT4_INHERIT, fp));
378 }
379 
380 int
381 kern_accept4(struct thread *td, int s, struct sockaddr **name,
382     socklen_t *namelen, int flags, struct file **fp)
383 {
384 	struct file *headfp, *nfp = NULL;
385 	struct sockaddr *sa = NULL;
386 	struct socket *head, *so;
387 	cap_rights_t rights;
388 	u_int fflag;
389 	pid_t pgid;
390 	int error, fd, tmp;
391 
392 	if (name != NULL)
393 		*name = NULL;
394 
395 	AUDIT_ARG_FD(s);
396 	error = getsock_cap(td, s, cap_rights_init(&rights, CAP_ACCEPT),
397 	    &headfp, &fflag);
398 	if (error != 0)
399 		return (error);
400 	head = headfp->f_data;
401 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
402 		error = EINVAL;
403 		goto done;
404 	}
405 #ifdef MAC
406 	error = mac_socket_check_accept(td->td_ucred, head);
407 	if (error != 0)
408 		goto done;
409 #endif
410 	error = falloc(td, &nfp, &fd, (flags & SOCK_CLOEXEC) ? O_CLOEXEC : 0);
411 	if (error != 0)
412 		goto done;
413 	ACCEPT_LOCK();
414 	if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) {
415 		ACCEPT_UNLOCK();
416 		error = EWOULDBLOCK;
417 		goto noconnection;
418 	}
419 	while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) {
420 		if (head->so_rcv.sb_state & SBS_CANTRCVMORE) {
421 			head->so_error = ECONNABORTED;
422 			break;
423 		}
424 		error = msleep(&head->so_timeo, &accept_mtx, PSOCK | PCATCH,
425 		    "accept", 0);
426 		if (error != 0) {
427 			ACCEPT_UNLOCK();
428 			goto noconnection;
429 		}
430 	}
431 	if (head->so_error) {
432 		error = head->so_error;
433 		head->so_error = 0;
434 		ACCEPT_UNLOCK();
435 		goto noconnection;
436 	}
437 	so = TAILQ_FIRST(&head->so_comp);
438 	KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP"));
439 	KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP"));
440 
441 	/*
442 	 * Before changing the flags on the socket, we have to bump the
443 	 * reference count.  Otherwise, if the protocol calls sofree(),
444 	 * the socket will be released due to a zero refcount.
445 	 */
446 	SOCK_LOCK(so);			/* soref() and so_state update */
447 	soref(so);			/* file descriptor reference */
448 
449 	TAILQ_REMOVE(&head->so_comp, so, so_list);
450 	head->so_qlen--;
451 	if (flags & ACCEPT4_INHERIT)
452 		so->so_state |= (head->so_state & SS_NBIO);
453 	else
454 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
455 	so->so_qstate &= ~SQ_COMP;
456 	so->so_head = NULL;
457 
458 	SOCK_UNLOCK(so);
459 	ACCEPT_UNLOCK();
460 
461 	/* An extra reference on `nfp' has been held for us by falloc(). */
462 	td->td_retval[0] = fd;
463 
464 	/* connection has been removed from the listen queue */
465 	KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0);
466 
467 	if (flags & ACCEPT4_INHERIT) {
468 		pgid = fgetown(&head->so_sigio);
469 		if (pgid != 0)
470 			fsetown(pgid, &so->so_sigio);
471 	} else {
472 		fflag &= ~(FNONBLOCK | FASYNC);
473 		if (flags & SOCK_NONBLOCK)
474 			fflag |= FNONBLOCK;
475 	}
476 
477 	finit(nfp, fflag, DTYPE_SOCKET, so, &socketops);
478 	/* Sync socket nonblocking/async state with file flags */
479 	tmp = fflag & FNONBLOCK;
480 	(void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td);
481 	tmp = fflag & FASYNC;
482 	(void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td);
483 	sa = 0;
484 	error = soaccept(so, &sa);
485 	if (error != 0)
486 		goto noconnection;
487 	if (sa == NULL) {
488 		if (name)
489 			*namelen = 0;
490 		goto done;
491 	}
492 	AUDIT_ARG_SOCKADDR(td, AT_FDCWD, sa);
493 	if (name) {
494 		/* check sa_len before it is destroyed */
495 		if (*namelen > sa->sa_len)
496 			*namelen = sa->sa_len;
497 #ifdef KTRACE
498 		if (KTRPOINT(td, KTR_STRUCT))
499 			ktrsockaddr(sa);
500 #endif
501 		*name = sa;
502 		sa = NULL;
503 	}
504 noconnection:
505 	free(sa, M_SONAME);
506 
507 	/*
508 	 * close the new descriptor, assuming someone hasn't ripped it
509 	 * out from under us.
510 	 */
511 	if (error != 0)
512 		fdclose(td, nfp, fd);
513 
514 	/*
515 	 * Release explicitly held references before returning.  We return
516 	 * a reference on nfp to the caller on success if they request it.
517 	 */
518 done:
519 	if (fp != NULL) {
520 		if (error == 0) {
521 			*fp = nfp;
522 			nfp = NULL;
523 		} else
524 			*fp = NULL;
525 	}
526 	if (nfp != NULL)
527 		fdrop(nfp, td);
528 	fdrop(headfp, td);
529 	return (error);
530 }
531 
532 int
533 sys_accept(td, uap)
534 	struct thread *td;
535 	struct accept_args *uap;
536 {
537 
538 	return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT));
539 }
540 
541 int
542 sys_accept4(td, uap)
543 	struct thread *td;
544 	struct accept4_args *uap;
545 {
546 
547 	if (uap->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
548 		return (EINVAL);
549 
550 	return (accept1(td, uap->s, uap->name, uap->anamelen, uap->flags));
551 }
552 
553 #ifdef COMPAT_OLDSOCK
554 int
555 oaccept(td, uap)
556 	struct thread *td;
557 	struct accept_args *uap;
558 {
559 
560 	return (accept1(td, uap->s, uap->name, uap->anamelen,
561 	    ACCEPT4_INHERIT | ACCEPT4_COMPAT));
562 }
563 #endif /* COMPAT_OLDSOCK */
564 
565 /* ARGSUSED */
566 int
567 sys_connect(td, uap)
568 	struct thread *td;
569 	struct connect_args /* {
570 		int	s;
571 		caddr_t	name;
572 		int	namelen;
573 	} */ *uap;
574 {
575 	struct sockaddr *sa;
576 	int error;
577 
578 	error = getsockaddr(&sa, uap->name, uap->namelen);
579 	if (error == 0) {
580 		error = kern_connectat(td, AT_FDCWD, uap->s, sa);
581 		free(sa, M_SONAME);
582 	}
583 	return (error);
584 }
585 
586 int
587 kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa)
588 {
589 	struct socket *so;
590 	struct file *fp;
591 	cap_rights_t rights;
592 	int error, interrupted = 0;
593 
594 	AUDIT_ARG_FD(fd);
595 	AUDIT_ARG_SOCKADDR(td, dirfd, sa);
596 	error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_CONNECT),
597 	    &fp, NULL);
598 	if (error != 0)
599 		return (error);
600 	so = fp->f_data;
601 	if (so->so_state & SS_ISCONNECTING) {
602 		error = EALREADY;
603 		goto done1;
604 	}
605 #ifdef KTRACE
606 	if (KTRPOINT(td, KTR_STRUCT))
607 		ktrsockaddr(sa);
608 #endif
609 #ifdef MAC
610 	error = mac_socket_check_connect(td->td_ucred, so, sa);
611 	if (error != 0)
612 		goto bad;
613 #endif
614 	if (dirfd == AT_FDCWD)
615 		error = soconnect(so, sa, td);
616 	else
617 		error = soconnectat(dirfd, so, sa, td);
618 	if (error != 0)
619 		goto bad;
620 	if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
621 		error = EINPROGRESS;
622 		goto done1;
623 	}
624 	SOCK_LOCK(so);
625 	while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
626 		error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH,
627 		    "connec", 0);
628 		if (error != 0) {
629 			if (error == EINTR || error == ERESTART)
630 				interrupted = 1;
631 			break;
632 		}
633 	}
634 	if (error == 0) {
635 		error = so->so_error;
636 		so->so_error = 0;
637 	}
638 	SOCK_UNLOCK(so);
639 bad:
640 	if (!interrupted)
641 		so->so_state &= ~SS_ISCONNECTING;
642 	if (error == ERESTART)
643 		error = EINTR;
644 done1:
645 	fdrop(fp, td);
646 	return (error);
647 }
648 
649 /* ARGSUSED */
650 int
651 sys_connectat(td, uap)
652 	struct thread *td;
653 	struct connectat_args /* {
654 		int	fd;
655 		int	s;
656 		caddr_t	name;
657 		int	namelen;
658 	} */ *uap;
659 {
660 	struct sockaddr *sa;
661 	int error;
662 
663 	error = getsockaddr(&sa, uap->name, uap->namelen);
664 	if (error == 0) {
665 		error = kern_connectat(td, uap->fd, uap->s, sa);
666 		free(sa, M_SONAME);
667 	}
668 	return (error);
669 }
670 
671 int
672 kern_socketpair(struct thread *td, int domain, int type, int protocol,
673     int *rsv)
674 {
675 	struct file *fp1, *fp2;
676 	struct socket *so1, *so2;
677 	int fd, error, oflag, fflag;
678 
679 	AUDIT_ARG_SOCKET(domain, type, protocol);
680 
681 	oflag = 0;
682 	fflag = 0;
683 	if ((type & SOCK_CLOEXEC) != 0) {
684 		type &= ~SOCK_CLOEXEC;
685 		oflag |= O_CLOEXEC;
686 	}
687 	if ((type & SOCK_NONBLOCK) != 0) {
688 		type &= ~SOCK_NONBLOCK;
689 		fflag |= FNONBLOCK;
690 	}
691 #ifdef MAC
692 	/* We might want to have a separate check for socket pairs. */
693 	error = mac_socket_check_create(td->td_ucred, domain, type,
694 	    protocol);
695 	if (error != 0)
696 		return (error);
697 #endif
698 	error = socreate(domain, &so1, type, protocol, td->td_ucred, td);
699 	if (error != 0)
700 		return (error);
701 	error = socreate(domain, &so2, type, protocol, td->td_ucred, td);
702 	if (error != 0)
703 		goto free1;
704 	/* On success extra reference to `fp1' and 'fp2' is set by falloc. */
705 	error = falloc(td, &fp1, &fd, oflag);
706 	if (error != 0)
707 		goto free2;
708 	rsv[0] = fd;
709 	fp1->f_data = so1;	/* so1 already has ref count */
710 	error = falloc(td, &fp2, &fd, oflag);
711 	if (error != 0)
712 		goto free3;
713 	fp2->f_data = so2;	/* so2 already has ref count */
714 	rsv[1] = fd;
715 	error = soconnect2(so1, so2);
716 	if (error != 0)
717 		goto free4;
718 	if (type == SOCK_DGRAM) {
719 		/*
720 		 * Datagram socket connection is asymmetric.
721 		 */
722 		 error = soconnect2(so2, so1);
723 		 if (error != 0)
724 			goto free4;
725 	}
726 	finit(fp1, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp1->f_data,
727 	    &socketops);
728 	finit(fp2, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp2->f_data,
729 	    &socketops);
730 	if ((fflag & FNONBLOCK) != 0) {
731 		(void) fo_ioctl(fp1, FIONBIO, &fflag, td->td_ucred, td);
732 		(void) fo_ioctl(fp2, FIONBIO, &fflag, td->td_ucred, td);
733 	}
734 	fdrop(fp1, td);
735 	fdrop(fp2, td);
736 	return (0);
737 free4:
738 	fdclose(td, fp2, rsv[1]);
739 	fdrop(fp2, td);
740 free3:
741 	fdclose(td, fp1, rsv[0]);
742 	fdrop(fp1, td);
743 free2:
744 	if (so2 != NULL)
745 		(void)soclose(so2);
746 free1:
747 	if (so1 != NULL)
748 		(void)soclose(so1);
749 	return (error);
750 }
751 
752 int
753 sys_socketpair(struct thread *td, struct socketpair_args *uap)
754 {
755 	int error, sv[2];
756 
757 	error = kern_socketpair(td, uap->domain, uap->type,
758 	    uap->protocol, sv);
759 	if (error != 0)
760 		return (error);
761 	error = copyout(sv, uap->rsv, 2 * sizeof(int));
762 	if (error != 0) {
763 		(void)kern_close(td, sv[0]);
764 		(void)kern_close(td, sv[1]);
765 	}
766 	return (error);
767 }
768 
769 static int
770 sendit(td, s, mp, flags)
771 	struct thread *td;
772 	int s;
773 	struct msghdr *mp;
774 	int flags;
775 {
776 	struct mbuf *control;
777 	struct sockaddr *to;
778 	int error;
779 
780 #ifdef CAPABILITY_MODE
781 	if (IN_CAPABILITY_MODE(td) && (mp->msg_name != NULL))
782 		return (ECAPMODE);
783 #endif
784 
785 	if (mp->msg_name != NULL) {
786 		error = getsockaddr(&to, mp->msg_name, mp->msg_namelen);
787 		if (error != 0) {
788 			to = NULL;
789 			goto bad;
790 		}
791 		mp->msg_name = to;
792 	} else {
793 		to = NULL;
794 	}
795 
796 	if (mp->msg_control) {
797 		if (mp->msg_controllen < sizeof(struct cmsghdr)
798 #ifdef COMPAT_OLDSOCK
799 		    && mp->msg_flags != MSG_COMPAT
800 #endif
801 		) {
802 			error = EINVAL;
803 			goto bad;
804 		}
805 		error = sockargs(&control, mp->msg_control,
806 		    mp->msg_controllen, MT_CONTROL);
807 		if (error != 0)
808 			goto bad;
809 #ifdef COMPAT_OLDSOCK
810 		if (mp->msg_flags == MSG_COMPAT) {
811 			struct cmsghdr *cm;
812 
813 			M_PREPEND(control, sizeof(*cm), M_WAITOK);
814 			cm = mtod(control, struct cmsghdr *);
815 			cm->cmsg_len = control->m_len;
816 			cm->cmsg_level = SOL_SOCKET;
817 			cm->cmsg_type = SCM_RIGHTS;
818 		}
819 #endif
820 	} else {
821 		control = NULL;
822 	}
823 
824 	error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE);
825 
826 bad:
827 	free(to, M_SONAME);
828 	return (error);
829 }
830 
831 int
832 kern_sendit(td, s, mp, flags, control, segflg)
833 	struct thread *td;
834 	int s;
835 	struct msghdr *mp;
836 	int flags;
837 	struct mbuf *control;
838 	enum uio_seg segflg;
839 {
840 	struct file *fp;
841 	struct uio auio;
842 	struct iovec *iov;
843 	struct socket *so;
844 	cap_rights_t rights;
845 #ifdef KTRACE
846 	struct uio *ktruio = NULL;
847 #endif
848 	ssize_t len;
849 	int i, error;
850 
851 	AUDIT_ARG_FD(s);
852 	cap_rights_init(&rights, CAP_SEND);
853 	if (mp->msg_name != NULL) {
854 		AUDIT_ARG_SOCKADDR(td, AT_FDCWD, mp->msg_name);
855 		cap_rights_set(&rights, CAP_CONNECT);
856 	}
857 	error = getsock_cap(td, s, &rights, &fp, NULL);
858 	if (error != 0)
859 		return (error);
860 	so = (struct socket *)fp->f_data;
861 
862 #ifdef KTRACE
863 	if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT))
864 		ktrsockaddr(mp->msg_name);
865 #endif
866 #ifdef MAC
867 	if (mp->msg_name != NULL) {
868 		error = mac_socket_check_connect(td->td_ucred, so,
869 		    mp->msg_name);
870 		if (error != 0)
871 			goto bad;
872 	}
873 	error = mac_socket_check_send(td->td_ucred, so);
874 	if (error != 0)
875 		goto bad;
876 #endif
877 
878 	auio.uio_iov = mp->msg_iov;
879 	auio.uio_iovcnt = mp->msg_iovlen;
880 	auio.uio_segflg = segflg;
881 	auio.uio_rw = UIO_WRITE;
882 	auio.uio_td = td;
883 	auio.uio_offset = 0;			/* XXX */
884 	auio.uio_resid = 0;
885 	iov = mp->msg_iov;
886 	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
887 		if ((auio.uio_resid += iov->iov_len) < 0) {
888 			error = EINVAL;
889 			goto bad;
890 		}
891 	}
892 #ifdef KTRACE
893 	if (KTRPOINT(td, KTR_GENIO))
894 		ktruio = cloneuio(&auio);
895 #endif
896 	len = auio.uio_resid;
897 	error = sosend(so, mp->msg_name, &auio, 0, control, flags, td);
898 	if (error != 0) {
899 		if (auio.uio_resid != len && (error == ERESTART ||
900 		    error == EINTR || error == EWOULDBLOCK))
901 			error = 0;
902 		/* Generation of SIGPIPE can be controlled per socket */
903 		if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) &&
904 		    !(flags & MSG_NOSIGNAL)) {
905 			PROC_LOCK(td->td_proc);
906 			tdsignal(td, SIGPIPE);
907 			PROC_UNLOCK(td->td_proc);
908 		}
909 	}
910 	if (error == 0)
911 		td->td_retval[0] = len - auio.uio_resid;
912 #ifdef KTRACE
913 	if (ktruio != NULL) {
914 		ktruio->uio_resid = td->td_retval[0];
915 		ktrgenio(s, UIO_WRITE, ktruio, error);
916 	}
917 #endif
918 bad:
919 	fdrop(fp, td);
920 	return (error);
921 }
922 
923 int
924 sys_sendto(td, uap)
925 	struct thread *td;
926 	struct sendto_args /* {
927 		int	s;
928 		caddr_t	buf;
929 		size_t	len;
930 		int	flags;
931 		caddr_t	to;
932 		int	tolen;
933 	} */ *uap;
934 {
935 	struct msghdr msg;
936 	struct iovec aiov;
937 
938 	msg.msg_name = uap->to;
939 	msg.msg_namelen = uap->tolen;
940 	msg.msg_iov = &aiov;
941 	msg.msg_iovlen = 1;
942 	msg.msg_control = 0;
943 #ifdef COMPAT_OLDSOCK
944 	msg.msg_flags = 0;
945 #endif
946 	aiov.iov_base = uap->buf;
947 	aiov.iov_len = uap->len;
948 	return (sendit(td, uap->s, &msg, uap->flags));
949 }
950 
951 #ifdef COMPAT_OLDSOCK
952 int
953 osend(td, uap)
954 	struct thread *td;
955 	struct osend_args /* {
956 		int	s;
957 		caddr_t	buf;
958 		int	len;
959 		int	flags;
960 	} */ *uap;
961 {
962 	struct msghdr msg;
963 	struct iovec aiov;
964 
965 	msg.msg_name = 0;
966 	msg.msg_namelen = 0;
967 	msg.msg_iov = &aiov;
968 	msg.msg_iovlen = 1;
969 	aiov.iov_base = uap->buf;
970 	aiov.iov_len = uap->len;
971 	msg.msg_control = 0;
972 	msg.msg_flags = 0;
973 	return (sendit(td, uap->s, &msg, uap->flags));
974 }
975 
976 int
977 osendmsg(td, uap)
978 	struct thread *td;
979 	struct osendmsg_args /* {
980 		int	s;
981 		caddr_t	msg;
982 		int	flags;
983 	} */ *uap;
984 {
985 	struct msghdr msg;
986 	struct iovec *iov;
987 	int error;
988 
989 	error = copyin(uap->msg, &msg, sizeof (struct omsghdr));
990 	if (error != 0)
991 		return (error);
992 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
993 	if (error != 0)
994 		return (error);
995 	msg.msg_iov = iov;
996 	msg.msg_flags = MSG_COMPAT;
997 	error = sendit(td, uap->s, &msg, uap->flags);
998 	free(iov, M_IOV);
999 	return (error);
1000 }
1001 #endif
1002 
1003 int
1004 sys_sendmsg(td, uap)
1005 	struct thread *td;
1006 	struct sendmsg_args /* {
1007 		int	s;
1008 		caddr_t	msg;
1009 		int	flags;
1010 	} */ *uap;
1011 {
1012 	struct msghdr msg;
1013 	struct iovec *iov;
1014 	int error;
1015 
1016 	error = copyin(uap->msg, &msg, sizeof (msg));
1017 	if (error != 0)
1018 		return (error);
1019 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
1020 	if (error != 0)
1021 		return (error);
1022 	msg.msg_iov = iov;
1023 #ifdef COMPAT_OLDSOCK
1024 	msg.msg_flags = 0;
1025 #endif
1026 	error = sendit(td, uap->s, &msg, uap->flags);
1027 	free(iov, M_IOV);
1028 	return (error);
1029 }
1030 
1031 int
1032 kern_recvit(td, s, mp, fromseg, controlp)
1033 	struct thread *td;
1034 	int s;
1035 	struct msghdr *mp;
1036 	enum uio_seg fromseg;
1037 	struct mbuf **controlp;
1038 {
1039 	struct uio auio;
1040 	struct iovec *iov;
1041 	struct mbuf *m, *control = NULL;
1042 	caddr_t ctlbuf;
1043 	struct file *fp;
1044 	struct socket *so;
1045 	struct sockaddr *fromsa = NULL;
1046 	cap_rights_t rights;
1047 #ifdef KTRACE
1048 	struct uio *ktruio = NULL;
1049 #endif
1050 	ssize_t len;
1051 	int error, i;
1052 
1053 	if (controlp != NULL)
1054 		*controlp = NULL;
1055 
1056 	AUDIT_ARG_FD(s);
1057 	error = getsock_cap(td, s, cap_rights_init(&rights, CAP_RECV),
1058 	    &fp, NULL);
1059 	if (error != 0)
1060 		return (error);
1061 	so = fp->f_data;
1062 
1063 #ifdef MAC
1064 	error = mac_socket_check_receive(td->td_ucred, so);
1065 	if (error != 0) {
1066 		fdrop(fp, td);
1067 		return (error);
1068 	}
1069 #endif
1070 
1071 	auio.uio_iov = mp->msg_iov;
1072 	auio.uio_iovcnt = mp->msg_iovlen;
1073 	auio.uio_segflg = UIO_USERSPACE;
1074 	auio.uio_rw = UIO_READ;
1075 	auio.uio_td = td;
1076 	auio.uio_offset = 0;			/* XXX */
1077 	auio.uio_resid = 0;
1078 	iov = mp->msg_iov;
1079 	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1080 		if ((auio.uio_resid += iov->iov_len) < 0) {
1081 			fdrop(fp, td);
1082 			return (EINVAL);
1083 		}
1084 	}
1085 #ifdef KTRACE
1086 	if (KTRPOINT(td, KTR_GENIO))
1087 		ktruio = cloneuio(&auio);
1088 #endif
1089 	len = auio.uio_resid;
1090 	error = soreceive(so, &fromsa, &auio, NULL,
1091 	    (mp->msg_control || controlp) ? &control : NULL,
1092 	    &mp->msg_flags);
1093 	if (error != 0) {
1094 		if (auio.uio_resid != len && (error == ERESTART ||
1095 		    error == EINTR || error == EWOULDBLOCK))
1096 			error = 0;
1097 	}
1098 	if (fromsa != NULL)
1099 		AUDIT_ARG_SOCKADDR(td, AT_FDCWD, fromsa);
1100 #ifdef KTRACE
1101 	if (ktruio != NULL) {
1102 		ktruio->uio_resid = len - auio.uio_resid;
1103 		ktrgenio(s, UIO_READ, ktruio, error);
1104 	}
1105 #endif
1106 	if (error != 0)
1107 		goto out;
1108 	td->td_retval[0] = len - auio.uio_resid;
1109 	if (mp->msg_name) {
1110 		len = mp->msg_namelen;
1111 		if (len <= 0 || fromsa == NULL)
1112 			len = 0;
1113 		else {
1114 			/* save sa_len before it is destroyed by MSG_COMPAT */
1115 			len = MIN(len, fromsa->sa_len);
1116 #ifdef COMPAT_OLDSOCK
1117 			if (mp->msg_flags & MSG_COMPAT)
1118 				((struct osockaddr *)fromsa)->sa_family =
1119 				    fromsa->sa_family;
1120 #endif
1121 			if (fromseg == UIO_USERSPACE) {
1122 				error = copyout(fromsa, mp->msg_name,
1123 				    (unsigned)len);
1124 				if (error != 0)
1125 					goto out;
1126 			} else
1127 				bcopy(fromsa, mp->msg_name, len);
1128 		}
1129 		mp->msg_namelen = len;
1130 	}
1131 	if (mp->msg_control && controlp == NULL) {
1132 #ifdef COMPAT_OLDSOCK
1133 		/*
1134 		 * We assume that old recvmsg calls won't receive access
1135 		 * rights and other control info, esp. as control info
1136 		 * is always optional and those options didn't exist in 4.3.
1137 		 * If we receive rights, trim the cmsghdr; anything else
1138 		 * is tossed.
1139 		 */
1140 		if (control && mp->msg_flags & MSG_COMPAT) {
1141 			if (mtod(control, struct cmsghdr *)->cmsg_level !=
1142 			    SOL_SOCKET ||
1143 			    mtod(control, struct cmsghdr *)->cmsg_type !=
1144 			    SCM_RIGHTS) {
1145 				mp->msg_controllen = 0;
1146 				goto out;
1147 			}
1148 			control->m_len -= sizeof (struct cmsghdr);
1149 			control->m_data += sizeof (struct cmsghdr);
1150 		}
1151 #endif
1152 		len = mp->msg_controllen;
1153 		m = control;
1154 		mp->msg_controllen = 0;
1155 		ctlbuf = mp->msg_control;
1156 
1157 		while (m && len > 0) {
1158 			unsigned int tocopy;
1159 
1160 			if (len >= m->m_len)
1161 				tocopy = m->m_len;
1162 			else {
1163 				mp->msg_flags |= MSG_CTRUNC;
1164 				tocopy = len;
1165 			}
1166 
1167 			if ((error = copyout(mtod(m, caddr_t),
1168 					ctlbuf, tocopy)) != 0)
1169 				goto out;
1170 
1171 			ctlbuf += tocopy;
1172 			len -= tocopy;
1173 			m = m->m_next;
1174 		}
1175 		mp->msg_controllen = ctlbuf - (caddr_t)mp->msg_control;
1176 	}
1177 out:
1178 	fdrop(fp, td);
1179 #ifdef KTRACE
1180 	if (fromsa && KTRPOINT(td, KTR_STRUCT))
1181 		ktrsockaddr(fromsa);
1182 #endif
1183 	free(fromsa, M_SONAME);
1184 
1185 	if (error == 0 && controlp != NULL)
1186 		*controlp = control;
1187 	else  if (control)
1188 		m_freem(control);
1189 
1190 	return (error);
1191 }
1192 
1193 static int
1194 recvit(td, s, mp, namelenp)
1195 	struct thread *td;
1196 	int s;
1197 	struct msghdr *mp;
1198 	void *namelenp;
1199 {
1200 	int error;
1201 
1202 	error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL);
1203 	if (error != 0)
1204 		return (error);
1205 	if (namelenp != NULL) {
1206 		error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t));
1207 #ifdef COMPAT_OLDSOCK
1208 		if (mp->msg_flags & MSG_COMPAT)
1209 			error = 0;	/* old recvfrom didn't check */
1210 #endif
1211 	}
1212 	return (error);
1213 }
1214 
1215 int
1216 sys_recvfrom(td, uap)
1217 	struct thread *td;
1218 	struct recvfrom_args /* {
1219 		int	s;
1220 		caddr_t	buf;
1221 		size_t	len;
1222 		int	flags;
1223 		struct sockaddr * __restrict	from;
1224 		socklen_t * __restrict fromlenaddr;
1225 	} */ *uap;
1226 {
1227 	struct msghdr msg;
1228 	struct iovec aiov;
1229 	int error;
1230 
1231 	if (uap->fromlenaddr) {
1232 		error = copyin(uap->fromlenaddr,
1233 		    &msg.msg_namelen, sizeof (msg.msg_namelen));
1234 		if (error != 0)
1235 			goto done2;
1236 	} else {
1237 		msg.msg_namelen = 0;
1238 	}
1239 	msg.msg_name = uap->from;
1240 	msg.msg_iov = &aiov;
1241 	msg.msg_iovlen = 1;
1242 	aiov.iov_base = uap->buf;
1243 	aiov.iov_len = uap->len;
1244 	msg.msg_control = 0;
1245 	msg.msg_flags = uap->flags;
1246 	error = recvit(td, uap->s, &msg, uap->fromlenaddr);
1247 done2:
1248 	return (error);
1249 }
1250 
1251 #ifdef COMPAT_OLDSOCK
1252 int
1253 orecvfrom(td, uap)
1254 	struct thread *td;
1255 	struct recvfrom_args *uap;
1256 {
1257 
1258 	uap->flags |= MSG_COMPAT;
1259 	return (sys_recvfrom(td, uap));
1260 }
1261 #endif
1262 
1263 #ifdef COMPAT_OLDSOCK
1264 int
1265 orecv(td, uap)
1266 	struct thread *td;
1267 	struct orecv_args /* {
1268 		int	s;
1269 		caddr_t	buf;
1270 		int	len;
1271 		int	flags;
1272 	} */ *uap;
1273 {
1274 	struct msghdr msg;
1275 	struct iovec aiov;
1276 
1277 	msg.msg_name = 0;
1278 	msg.msg_namelen = 0;
1279 	msg.msg_iov = &aiov;
1280 	msg.msg_iovlen = 1;
1281 	aiov.iov_base = uap->buf;
1282 	aiov.iov_len = uap->len;
1283 	msg.msg_control = 0;
1284 	msg.msg_flags = uap->flags;
1285 	return (recvit(td, uap->s, &msg, NULL));
1286 }
1287 
1288 /*
1289  * Old recvmsg.  This code takes advantage of the fact that the old msghdr
1290  * overlays the new one, missing only the flags, and with the (old) access
1291  * rights where the control fields are now.
1292  */
1293 int
1294 orecvmsg(td, uap)
1295 	struct thread *td;
1296 	struct orecvmsg_args /* {
1297 		int	s;
1298 		struct	omsghdr *msg;
1299 		int	flags;
1300 	} */ *uap;
1301 {
1302 	struct msghdr msg;
1303 	struct iovec *iov;
1304 	int error;
1305 
1306 	error = copyin(uap->msg, &msg, sizeof (struct omsghdr));
1307 	if (error != 0)
1308 		return (error);
1309 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
1310 	if (error != 0)
1311 		return (error);
1312 	msg.msg_flags = uap->flags | MSG_COMPAT;
1313 	msg.msg_iov = iov;
1314 	error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen);
1315 	if (msg.msg_controllen && error == 0)
1316 		error = copyout(&msg.msg_controllen,
1317 		    &uap->msg->msg_accrightslen, sizeof (int));
1318 	free(iov, M_IOV);
1319 	return (error);
1320 }
1321 #endif
1322 
1323 int
1324 sys_recvmsg(td, uap)
1325 	struct thread *td;
1326 	struct recvmsg_args /* {
1327 		int	s;
1328 		struct	msghdr *msg;
1329 		int	flags;
1330 	} */ *uap;
1331 {
1332 	struct msghdr msg;
1333 	struct iovec *uiov, *iov;
1334 	int error;
1335 
1336 	error = copyin(uap->msg, &msg, sizeof (msg));
1337 	if (error != 0)
1338 		return (error);
1339 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
1340 	if (error != 0)
1341 		return (error);
1342 	msg.msg_flags = uap->flags;
1343 #ifdef COMPAT_OLDSOCK
1344 	msg.msg_flags &= ~MSG_COMPAT;
1345 #endif
1346 	uiov = msg.msg_iov;
1347 	msg.msg_iov = iov;
1348 	error = recvit(td, uap->s, &msg, NULL);
1349 	if (error == 0) {
1350 		msg.msg_iov = uiov;
1351 		error = copyout(&msg, uap->msg, sizeof(msg));
1352 	}
1353 	free(iov, M_IOV);
1354 	return (error);
1355 }
1356 
1357 /* ARGSUSED */
1358 int
1359 sys_shutdown(td, uap)
1360 	struct thread *td;
1361 	struct shutdown_args /* {
1362 		int	s;
1363 		int	how;
1364 	} */ *uap;
1365 {
1366 	struct socket *so;
1367 	struct file *fp;
1368 	cap_rights_t rights;
1369 	int error;
1370 
1371 	AUDIT_ARG_FD(uap->s);
1372 	error = getsock_cap(td, uap->s, cap_rights_init(&rights, CAP_SHUTDOWN),
1373 	    &fp, NULL);
1374 	if (error == 0) {
1375 		so = fp->f_data;
1376 		error = soshutdown(so, uap->how);
1377 		/*
1378 		 * Previous versions did not return ENOTCONN, but 0 in
1379 		 * case the socket was not connected. Some important
1380 		 * programs like syslogd up to r279016, 2015-02-19,
1381 		 * still depend on this behavior.
1382 		 */
1383 		if (error == ENOTCONN &&
1384 		    td->td_proc->p_osrel < P_OSREL_SHUTDOWN_ENOTCONN)
1385 			error = 0;
1386 		fdrop(fp, td);
1387 	}
1388 	return (error);
1389 }
1390 
1391 /* ARGSUSED */
1392 int
1393 sys_setsockopt(td, uap)
1394 	struct thread *td;
1395 	struct setsockopt_args /* {
1396 		int	s;
1397 		int	level;
1398 		int	name;
1399 		caddr_t	val;
1400 		int	valsize;
1401 	} */ *uap;
1402 {
1403 
1404 	return (kern_setsockopt(td, uap->s, uap->level, uap->name,
1405 	    uap->val, UIO_USERSPACE, uap->valsize));
1406 }
1407 
1408 int
1409 kern_setsockopt(td, s, level, name, val, valseg, valsize)
1410 	struct thread *td;
1411 	int s;
1412 	int level;
1413 	int name;
1414 	void *val;
1415 	enum uio_seg valseg;
1416 	socklen_t valsize;
1417 {
1418 	struct socket *so;
1419 	struct file *fp;
1420 	struct sockopt sopt;
1421 	cap_rights_t rights;
1422 	int error;
1423 
1424 	if (val == NULL && valsize != 0)
1425 		return (EFAULT);
1426 	if ((int)valsize < 0)
1427 		return (EINVAL);
1428 
1429 	sopt.sopt_dir = SOPT_SET;
1430 	sopt.sopt_level = level;
1431 	sopt.sopt_name = name;
1432 	sopt.sopt_val = val;
1433 	sopt.sopt_valsize = valsize;
1434 	switch (valseg) {
1435 	case UIO_USERSPACE:
1436 		sopt.sopt_td = td;
1437 		break;
1438 	case UIO_SYSSPACE:
1439 		sopt.sopt_td = NULL;
1440 		break;
1441 	default:
1442 		panic("kern_setsockopt called with bad valseg");
1443 	}
1444 
1445 	AUDIT_ARG_FD(s);
1446 	error = getsock_cap(td, s, cap_rights_init(&rights, CAP_SETSOCKOPT),
1447 	    &fp, NULL);
1448 	if (error == 0) {
1449 		so = fp->f_data;
1450 		error = sosetopt(so, &sopt);
1451 		fdrop(fp, td);
1452 	}
1453 	return(error);
1454 }
1455 
1456 /* ARGSUSED */
1457 int
1458 sys_getsockopt(td, uap)
1459 	struct thread *td;
1460 	struct getsockopt_args /* {
1461 		int	s;
1462 		int	level;
1463 		int	name;
1464 		void * __restrict	val;
1465 		socklen_t * __restrict avalsize;
1466 	} */ *uap;
1467 {
1468 	socklen_t valsize;
1469 	int error;
1470 
1471 	if (uap->val) {
1472 		error = copyin(uap->avalsize, &valsize, sizeof (valsize));
1473 		if (error != 0)
1474 			return (error);
1475 	}
1476 
1477 	error = kern_getsockopt(td, uap->s, uap->level, uap->name,
1478 	    uap->val, UIO_USERSPACE, &valsize);
1479 
1480 	if (error == 0)
1481 		error = copyout(&valsize, uap->avalsize, sizeof (valsize));
1482 	return (error);
1483 }
1484 
1485 /*
1486  * Kernel version of getsockopt.
1487  * optval can be a userland or userspace. optlen is always a kernel pointer.
1488  */
1489 int
1490 kern_getsockopt(td, s, level, name, val, valseg, valsize)
1491 	struct thread *td;
1492 	int s;
1493 	int level;
1494 	int name;
1495 	void *val;
1496 	enum uio_seg valseg;
1497 	socklen_t *valsize;
1498 {
1499 	struct socket *so;
1500 	struct file *fp;
1501 	struct sockopt sopt;
1502 	cap_rights_t rights;
1503 	int error;
1504 
1505 	if (val == NULL)
1506 		*valsize = 0;
1507 	if ((int)*valsize < 0)
1508 		return (EINVAL);
1509 
1510 	sopt.sopt_dir = SOPT_GET;
1511 	sopt.sopt_level = level;
1512 	sopt.sopt_name = name;
1513 	sopt.sopt_val = val;
1514 	sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */
1515 	switch (valseg) {
1516 	case UIO_USERSPACE:
1517 		sopt.sopt_td = td;
1518 		break;
1519 	case UIO_SYSSPACE:
1520 		sopt.sopt_td = NULL;
1521 		break;
1522 	default:
1523 		panic("kern_getsockopt called with bad valseg");
1524 	}
1525 
1526 	AUDIT_ARG_FD(s);
1527 	error = getsock_cap(td, s, cap_rights_init(&rights, CAP_GETSOCKOPT),
1528 	    &fp, NULL);
1529 	if (error == 0) {
1530 		so = fp->f_data;
1531 		error = sogetopt(so, &sopt);
1532 		*valsize = sopt.sopt_valsize;
1533 		fdrop(fp, td);
1534 	}
1535 	return (error);
1536 }
1537 
1538 /*
1539  * getsockname1() - Get socket name.
1540  */
1541 /* ARGSUSED */
1542 static int
1543 getsockname1(td, uap, compat)
1544 	struct thread *td;
1545 	struct getsockname_args /* {
1546 		int	fdes;
1547 		struct sockaddr * __restrict asa;
1548 		socklen_t * __restrict alen;
1549 	} */ *uap;
1550 	int compat;
1551 {
1552 	struct sockaddr *sa;
1553 	socklen_t len;
1554 	int error;
1555 
1556 	error = copyin(uap->alen, &len, sizeof(len));
1557 	if (error != 0)
1558 		return (error);
1559 
1560 	error = kern_getsockname(td, uap->fdes, &sa, &len);
1561 	if (error != 0)
1562 		return (error);
1563 
1564 	if (len != 0) {
1565 #ifdef COMPAT_OLDSOCK
1566 		if (compat)
1567 			((struct osockaddr *)sa)->sa_family = sa->sa_family;
1568 #endif
1569 		error = copyout(sa, uap->asa, (u_int)len);
1570 	}
1571 	free(sa, M_SONAME);
1572 	if (error == 0)
1573 		error = copyout(&len, uap->alen, sizeof(len));
1574 	return (error);
1575 }
1576 
1577 int
1578 kern_getsockname(struct thread *td, int fd, struct sockaddr **sa,
1579     socklen_t *alen)
1580 {
1581 	struct socket *so;
1582 	struct file *fp;
1583 	cap_rights_t rights;
1584 	socklen_t len;
1585 	int error;
1586 
1587 	AUDIT_ARG_FD(fd);
1588 	error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_GETSOCKNAME),
1589 	    &fp, NULL);
1590 	if (error != 0)
1591 		return (error);
1592 	so = fp->f_data;
1593 	*sa = NULL;
1594 	CURVNET_SET(so->so_vnet);
1595 	error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, sa);
1596 	CURVNET_RESTORE();
1597 	if (error != 0)
1598 		goto bad;
1599 	if (*sa == NULL)
1600 		len = 0;
1601 	else
1602 		len = MIN(*alen, (*sa)->sa_len);
1603 	*alen = len;
1604 #ifdef KTRACE
1605 	if (KTRPOINT(td, KTR_STRUCT))
1606 		ktrsockaddr(*sa);
1607 #endif
1608 bad:
1609 	fdrop(fp, td);
1610 	if (error != 0 && *sa != NULL) {
1611 		free(*sa, M_SONAME);
1612 		*sa = NULL;
1613 	}
1614 	return (error);
1615 }
1616 
1617 int
1618 sys_getsockname(td, uap)
1619 	struct thread *td;
1620 	struct getsockname_args *uap;
1621 {
1622 
1623 	return (getsockname1(td, uap, 0));
1624 }
1625 
1626 #ifdef COMPAT_OLDSOCK
1627 int
1628 ogetsockname(td, uap)
1629 	struct thread *td;
1630 	struct getsockname_args *uap;
1631 {
1632 
1633 	return (getsockname1(td, uap, 1));
1634 }
1635 #endif /* COMPAT_OLDSOCK */
1636 
1637 /*
1638  * getpeername1() - Get name of peer for connected socket.
1639  */
1640 /* ARGSUSED */
1641 static int
1642 getpeername1(td, uap, compat)
1643 	struct thread *td;
1644 	struct getpeername_args /* {
1645 		int	fdes;
1646 		struct sockaddr * __restrict	asa;
1647 		socklen_t * __restrict	alen;
1648 	} */ *uap;
1649 	int compat;
1650 {
1651 	struct sockaddr *sa;
1652 	socklen_t len;
1653 	int error;
1654 
1655 	error = copyin(uap->alen, &len, sizeof (len));
1656 	if (error != 0)
1657 		return (error);
1658 
1659 	error = kern_getpeername(td, uap->fdes, &sa, &len);
1660 	if (error != 0)
1661 		return (error);
1662 
1663 	if (len != 0) {
1664 #ifdef COMPAT_OLDSOCK
1665 		if (compat)
1666 			((struct osockaddr *)sa)->sa_family = sa->sa_family;
1667 #endif
1668 		error = copyout(sa, uap->asa, (u_int)len);
1669 	}
1670 	free(sa, M_SONAME);
1671 	if (error == 0)
1672 		error = copyout(&len, uap->alen, sizeof(len));
1673 	return (error);
1674 }
1675 
1676 int
1677 kern_getpeername(struct thread *td, int fd, struct sockaddr **sa,
1678     socklen_t *alen)
1679 {
1680 	struct socket *so;
1681 	struct file *fp;
1682 	cap_rights_t rights;
1683 	socklen_t len;
1684 	int error;
1685 
1686 	AUDIT_ARG_FD(fd);
1687 	error = getsock_cap(td, fd, cap_rights_init(&rights, CAP_GETPEERNAME),
1688 	    &fp, NULL);
1689 	if (error != 0)
1690 		return (error);
1691 	so = fp->f_data;
1692 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1693 		error = ENOTCONN;
1694 		goto done;
1695 	}
1696 	*sa = NULL;
1697 	CURVNET_SET(so->so_vnet);
1698 	error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, sa);
1699 	CURVNET_RESTORE();
1700 	if (error != 0)
1701 		goto bad;
1702 	if (*sa == NULL)
1703 		len = 0;
1704 	else
1705 		len = MIN(*alen, (*sa)->sa_len);
1706 	*alen = len;
1707 #ifdef KTRACE
1708 	if (KTRPOINT(td, KTR_STRUCT))
1709 		ktrsockaddr(*sa);
1710 #endif
1711 bad:
1712 	if (error != 0 && *sa != NULL) {
1713 		free(*sa, M_SONAME);
1714 		*sa = NULL;
1715 	}
1716 done:
1717 	fdrop(fp, td);
1718 	return (error);
1719 }
1720 
1721 int
1722 sys_getpeername(td, uap)
1723 	struct thread *td;
1724 	struct getpeername_args *uap;
1725 {
1726 
1727 	return (getpeername1(td, uap, 0));
1728 }
1729 
1730 #ifdef COMPAT_OLDSOCK
1731 int
1732 ogetpeername(td, uap)
1733 	struct thread *td;
1734 	struct ogetpeername_args *uap;
1735 {
1736 
1737 	/* XXX uap should have type `getpeername_args *' to begin with. */
1738 	return (getpeername1(td, (struct getpeername_args *)uap, 1));
1739 }
1740 #endif /* COMPAT_OLDSOCK */
1741 
1742 int
1743 sockargs(mp, buf, buflen, type)
1744 	struct mbuf **mp;
1745 	caddr_t buf;
1746 	int buflen, type;
1747 {
1748 	struct sockaddr *sa;
1749 	struct mbuf *m;
1750 	int error;
1751 
1752 	if (buflen > MLEN) {
1753 #ifdef COMPAT_OLDSOCK
1754 		if (type == MT_SONAME && buflen <= 112)
1755 			buflen = MLEN;		/* unix domain compat. hack */
1756 		else
1757 #endif
1758 			if (buflen > MCLBYTES)
1759 				return (EINVAL);
1760 	}
1761 	m = m_get2(buflen, M_WAITOK, type, 0);
1762 	m->m_len = buflen;
1763 	error = copyin(buf, mtod(m, caddr_t), (u_int)buflen);
1764 	if (error != 0)
1765 		(void) m_free(m);
1766 	else {
1767 		*mp = m;
1768 		if (type == MT_SONAME) {
1769 			sa = mtod(m, struct sockaddr *);
1770 
1771 #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
1772 			if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1773 				sa->sa_family = sa->sa_len;
1774 #endif
1775 			sa->sa_len = buflen;
1776 		}
1777 	}
1778 	return (error);
1779 }
1780 
1781 int
1782 getsockaddr(namp, uaddr, len)
1783 	struct sockaddr **namp;
1784 	caddr_t uaddr;
1785 	size_t len;
1786 {
1787 	struct sockaddr *sa;
1788 	int error;
1789 
1790 	if (len > SOCK_MAXADDRLEN)
1791 		return (ENAMETOOLONG);
1792 	if (len < offsetof(struct sockaddr, sa_data[0]))
1793 		return (EINVAL);
1794 	sa = malloc(len, M_SONAME, M_WAITOK);
1795 	error = copyin(uaddr, sa, len);
1796 	if (error != 0) {
1797 		free(sa, M_SONAME);
1798 	} else {
1799 #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
1800 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1801 			sa->sa_family = sa->sa_len;
1802 #endif
1803 		sa->sa_len = len;
1804 		*namp = sa;
1805 	}
1806 	return (error);
1807 }
1808 
1809 struct sendfile_sync {
1810 	struct mtx	mtx;
1811 	struct cv	cv;
1812 	unsigned	count;
1813 };
1814 
1815 /*
1816  * Add more references to a vm_page + sf_buf + sendfile_sync.
1817  */
1818 void
1819 sf_ext_ref(void *arg1, void *arg2)
1820 {
1821 	struct sf_buf *sf = arg1;
1822 	struct sendfile_sync *sfs = arg2;
1823 	vm_page_t pg = sf_buf_page(sf);
1824 
1825 	sf_buf_ref(sf);
1826 
1827 	vm_page_lock(pg);
1828 	vm_page_wire(pg);
1829 	vm_page_unlock(pg);
1830 
1831 	if (sfs != NULL) {
1832 		mtx_lock(&sfs->mtx);
1833 		KASSERT(sfs->count > 0, ("Sendfile sync botchup count == 0"));
1834 		sfs->count++;
1835 		mtx_unlock(&sfs->mtx);
1836 	}
1837 }
1838 
1839 /*
1840  * Detach mapped page and release resources back to the system.
1841  */
1842 void
1843 sf_ext_free(void *arg1, void *arg2)
1844 {
1845 	struct sf_buf *sf = arg1;
1846 	struct sendfile_sync *sfs = arg2;
1847 	vm_page_t pg = sf_buf_page(sf);
1848 
1849 	sf_buf_free(sf);
1850 
1851 	vm_page_lock(pg);
1852 	/*
1853 	 * Check for the object going away on us. This can
1854 	 * happen since we don't hold a reference to it.
1855 	 * If so, we're responsible for freeing the page.
1856 	 */
1857 	if (vm_page_unwire(pg, PQ_INACTIVE) && pg->object == NULL)
1858 		vm_page_free(pg);
1859 	vm_page_unlock(pg);
1860 
1861 	if (sfs != NULL) {
1862 		mtx_lock(&sfs->mtx);
1863 		KASSERT(sfs->count > 0, ("Sendfile sync botchup count == 0"));
1864 		if (--sfs->count == 0)
1865 			cv_signal(&sfs->cv);
1866 		mtx_unlock(&sfs->mtx);
1867 	}
1868 }
1869 
1870 /*
1871  * Same as above, but forces the page to be detached from the object
1872  * and go into free pool.
1873  */
1874 void
1875 sf_ext_free_nocache(void *arg1, void *arg2)
1876 {
1877 	struct sf_buf *sf = arg1;
1878 	struct sendfile_sync *sfs = arg2;
1879 	vm_page_t pg = sf_buf_page(sf);
1880 
1881 	sf_buf_free(sf);
1882 
1883 	vm_page_lock(pg);
1884 	if (vm_page_unwire(pg, PQ_NONE)) {
1885 		vm_object_t obj;
1886 
1887 		/* Try to free the page, but only if it is cheap to. */
1888 		if ((obj = pg->object) == NULL)
1889 			vm_page_free(pg);
1890 		else if (!vm_page_xbusied(pg) && VM_OBJECT_TRYWLOCK(obj)) {
1891 			vm_page_free(pg);
1892 			VM_OBJECT_WUNLOCK(obj);
1893 		} else
1894 			vm_page_deactivate(pg);
1895 	}
1896 	vm_page_unlock(pg);
1897 
1898 	if (sfs != NULL) {
1899 		mtx_lock(&sfs->mtx);
1900 		KASSERT(sfs->count > 0, ("Sendfile sync botchup count == 0"));
1901 		if (--sfs->count == 0)
1902 			cv_signal(&sfs->cv);
1903 		mtx_unlock(&sfs->mtx);
1904 	}
1905 }
1906 
1907 /*
1908  * sendfile(2)
1909  *
1910  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1911  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1912  *
1913  * Send a file specified by 'fd' and starting at 'offset' to a socket
1914  * specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes ==
1915  * 0.  Optionally add a header and/or trailer to the socket output.  If
1916  * specified, write the total number of bytes sent into *sbytes.
1917  */
1918 int
1919 sys_sendfile(struct thread *td, struct sendfile_args *uap)
1920 {
1921 
1922 	return (do_sendfile(td, uap, 0));
1923 }
1924 
1925 static int
1926 do_sendfile(struct thread *td, struct sendfile_args *uap, int compat)
1927 {
1928 	struct sf_hdtr hdtr;
1929 	struct uio *hdr_uio, *trl_uio;
1930 	struct file *fp;
1931 	cap_rights_t rights;
1932 	off_t sbytes;
1933 	int error;
1934 
1935 	/*
1936 	 * File offset must be positive.  If it goes beyond EOF
1937 	 * we send only the header/trailer and no payload data.
1938 	 */
1939 	if (uap->offset < 0)
1940 		return (EINVAL);
1941 
1942 	hdr_uio = trl_uio = NULL;
1943 
1944 	if (uap->hdtr != NULL) {
1945 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1946 		if (error != 0)
1947 			goto out;
1948 		if (hdtr.headers != NULL) {
1949 			error = copyinuio(hdtr.headers, hdtr.hdr_cnt,
1950 			    &hdr_uio);
1951 			if (error != 0)
1952 				goto out;
1953 		}
1954 		if (hdtr.trailers != NULL) {
1955 			error = copyinuio(hdtr.trailers, hdtr.trl_cnt,
1956 			    &trl_uio);
1957 			if (error != 0)
1958 				goto out;
1959 		}
1960 	}
1961 
1962 	AUDIT_ARG_FD(uap->fd);
1963 
1964 	/*
1965 	 * sendfile(2) can start at any offset within a file so we require
1966 	 * CAP_READ+CAP_SEEK = CAP_PREAD.
1967 	 */
1968 	if ((error = fget_read(td, uap->fd,
1969 	    cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) {
1970 		goto out;
1971 	}
1972 
1973 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, uap->offset,
1974 	    uap->nbytes, &sbytes, uap->flags, compat ? SFK_COMPAT : 0, td);
1975 	fdrop(fp, td);
1976 
1977 	if (uap->sbytes != NULL)
1978 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1979 
1980 out:
1981 	free(hdr_uio, M_IOV);
1982 	free(trl_uio, M_IOV);
1983 	return (error);
1984 }
1985 
1986 #ifdef COMPAT_FREEBSD4
1987 int
1988 freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap)
1989 {
1990 	struct sendfile_args args;
1991 
1992 	args.fd = uap->fd;
1993 	args.s = uap->s;
1994 	args.offset = uap->offset;
1995 	args.nbytes = uap->nbytes;
1996 	args.hdtr = uap->hdtr;
1997 	args.sbytes = uap->sbytes;
1998 	args.flags = uap->flags;
1999 
2000 	return (do_sendfile(td, &args, 1));
2001 }
2002 #endif /* COMPAT_FREEBSD4 */
2003 
2004  /*
2005   * How much data to put into page i of n.
2006   * Only first and last pages are special.
2007   */
2008 static inline off_t
2009 xfsize(int i, int n, off_t off, off_t len)
2010 {
2011 
2012 	if (i == 0)
2013 		return (omin(PAGE_SIZE - (off & PAGE_MASK), len));
2014 
2015 	if (i == n - 1 && ((off + len) & PAGE_MASK) > 0)
2016 		return ((off + len) & PAGE_MASK);
2017 
2018 	return (PAGE_SIZE);
2019 }
2020 
2021 /*
2022  * Offset within object for i page.
2023  */
2024 static inline vm_offset_t
2025 vmoff(int i, off_t off)
2026 {
2027 
2028 	if (i == 0)
2029 		return ((vm_offset_t)off);
2030 
2031 	return (trunc_page(off + i * PAGE_SIZE));
2032 }
2033 
2034 /*
2035  * Pretend as if we don't have enough space, subtract xfsize() of
2036  * all pages that failed.
2037  */
2038 static inline void
2039 fixspace(int old, int new, off_t off, int *space)
2040 {
2041 
2042 	KASSERT(old > new, ("%s: old %d new %d", __func__, old, new));
2043 
2044 	/* Subtract last one. */
2045 	*space -= xfsize(old - 1, old, off, *space);
2046 	old--;
2047 
2048 	if (new == old)
2049 		/* There was only one page. */
2050 		return;
2051 
2052 	/* Subtract first one. */
2053 	if (new == 0) {
2054 		*space -= xfsize(0, old, off, *space);
2055 		new++;
2056 	}
2057 
2058 	/* Rest of pages are full sized. */
2059 	*space -= (old - new) * PAGE_SIZE;
2060 
2061 	KASSERT(*space >= 0, ("%s: space went backwards", __func__));
2062 }
2063 
2064 /*
2065  * Structure describing a single sendfile(2) I/O, which may consist of
2066  * several underlying pager I/Os.
2067  *
2068  * The syscall context allocates the structure and initializes 'nios'
2069  * to 1.  As sendfile_swapin() runs through pages and starts asynchronous
2070  * paging operations, it increments 'nios'.
2071  *
2072  * Every I/O completion calls sf_iodone(), which decrements the 'nios', and
2073  * the syscall also calls sf_iodone() after allocating all mbufs, linking them
2074  * and sending to socket.  Whoever reaches zero 'nios' is responsible to
2075  * call pru_ready on the socket, to notify it of readyness of the data.
2076  */
2077 struct sf_io {
2078 	volatile u_int	nios;
2079 	u_int		error;
2080 	int		npages;
2081 	struct file	*sock_fp;
2082 	struct mbuf	*m;
2083 	vm_page_t	pa[];
2084 };
2085 
2086 static void
2087 sf_iodone(void *arg, vm_page_t *pg, int count, int error)
2088 {
2089 	struct sf_io *sfio = arg;
2090 	struct socket *so;
2091 
2092 	for (int i = 0; i < count; i++)
2093 		vm_page_xunbusy(pg[i]);
2094 
2095 	if (error)
2096 		sfio->error = error;
2097 
2098 	if (!refcount_release(&sfio->nios))
2099 		return;
2100 
2101 	so = sfio->sock_fp->f_data;
2102 
2103 	if (sfio->error) {
2104 		struct mbuf *m;
2105 
2106 		/*
2107 		 * I/O operation failed.  The state of data in the socket
2108 		 * is now inconsistent, and all what we can do is to tear
2109 		 * it down. Protocol abort method would tear down protocol
2110 		 * state, free all ready mbufs and detach not ready ones.
2111 		 * We will free the mbufs corresponding to this I/O manually.
2112 		 *
2113 		 * The socket would be marked with EIO and made available
2114 		 * for read, so that application receives EIO on next
2115 		 * syscall and eventually closes the socket.
2116 		 */
2117 		so->so_proto->pr_usrreqs->pru_abort(so);
2118 		so->so_error = EIO;
2119 
2120 		m = sfio->m;
2121 		for (int i = 0; i < sfio->npages; i++)
2122 			m = m_free(m);
2123 	} else {
2124 		CURVNET_SET(so->so_vnet);
2125 		(void )(so->so_proto->pr_usrreqs->pru_ready)(so, sfio->m,
2126 		    sfio->npages);
2127 		CURVNET_RESTORE();
2128 	}
2129 
2130 	/* XXXGL: curthread */
2131 	fdrop(sfio->sock_fp, curthread);
2132 	free(sfio, M_TEMP);
2133 }
2134 
2135 /*
2136  * Iterate through pages vector and request paging for non-valid pages.
2137  */
2138 static int
2139 sendfile_swapin(vm_object_t obj, struct sf_io *sfio, off_t off, off_t len,
2140     int npages, int rhpages, int flags)
2141 {
2142 	vm_page_t *pa = sfio->pa;
2143 	int nios;
2144 
2145 	nios = 0;
2146 	flags = (flags & SF_NODISKIO) ? VM_ALLOC_NOWAIT : 0;
2147 
2148 	/*
2149 	 * First grab all the pages and wire them.  Note that we grab
2150 	 * only required pages.  Readahead pages are dealt with later.
2151 	 */
2152 	VM_OBJECT_WLOCK(obj);
2153 	for (int i = 0; i < npages; i++) {
2154 		pa[i] = vm_page_grab(obj, OFF_TO_IDX(vmoff(i, off)),
2155 		    VM_ALLOC_WIRED | VM_ALLOC_NORMAL | flags);
2156 		if (pa[i] == NULL) {
2157 			npages = i;
2158 			rhpages = 0;
2159 			break;
2160 		}
2161 	}
2162 
2163 	for (int i = 0; i < npages;) {
2164 		int j, a, count, rv;
2165 
2166 		/* Skip valid pages. */
2167 		if (vm_page_is_valid(pa[i], vmoff(i, off) & PAGE_MASK,
2168 		    xfsize(i, npages, off, len))) {
2169 			vm_page_xunbusy(pa[i]);
2170 			SFSTAT_INC(sf_pages_valid);
2171 			i++;
2172 			continue;
2173 		}
2174 
2175 		/*
2176 		 * Now 'i' points to first invalid page, iterate further
2177 		 * to make 'j' point at first valid after a bunch of
2178 		 * invalid ones.
2179 		 */
2180 		for (j = i + 1; j < npages; j++)
2181 			if (vm_page_is_valid(pa[j], vmoff(j, off) & PAGE_MASK,
2182 			    xfsize(j, npages, off, len))) {
2183 				SFSTAT_INC(sf_pages_valid);
2184 				break;
2185 			}
2186 
2187 		/*
2188 		 * Now we got region of invalid pages between 'i' and 'j'.
2189 		 * Check that they belong to pager.  They may not be there,
2190 		 * which is a regular situation for shmem pager.  For vnode
2191 		 * pager this happens only in case of sparse file.
2192 		 *
2193 		 * Important feature of vm_pager_has_page() is the hint
2194 		 * stored in 'a', about how many pages we can pagein after
2195 		 * this page in a single I/O.
2196 		 */
2197 		while (!vm_pager_has_page(obj, OFF_TO_IDX(vmoff(i, off)),
2198 		    NULL, &a) && i < j) {
2199 			pmap_zero_page(pa[i]);
2200 			pa[i]->valid = VM_PAGE_BITS_ALL;
2201 			pa[i]->dirty = 0;
2202 			vm_page_xunbusy(pa[i]);
2203 			i++;
2204 		}
2205 		if (i == j)
2206 			continue;
2207 
2208 		/*
2209 		 * We want to pagein as many pages as possible, limited only
2210 		 * by the 'a' hint and actual request.
2211 		 *
2212 		 * We should not pagein into already valid page, thus if
2213 		 * 'j' didn't reach last page, trim by that page.
2214 		 *
2215 		 * When the pagein fulfils the request, also specify readahead.
2216 		 */
2217 		if (j < npages)
2218 			a = min(a, j - i - 1);
2219 		count = min(a + 1, npages - i);
2220 
2221 		refcount_acquire(&sfio->nios);
2222 		rv = vm_pager_get_pages_async(obj, pa + i, count, NULL,
2223 		    i + count == npages ? &rhpages : NULL,
2224 		    &sf_iodone, sfio);
2225 		KASSERT(rv == VM_PAGER_OK, ("%s: pager fail obj %p page %p",
2226 		    __func__, obj, pa[i]));
2227 
2228 		SFSTAT_INC(sf_iocnt);
2229 		SFSTAT_ADD(sf_pages_read, count);
2230 		if (i + count == npages)
2231 			SFSTAT_ADD(sf_rhpages_read, rhpages);
2232 
2233 #ifdef INVARIANTS
2234 		for (j = i; j < i + count && j < npages; j++)
2235 			KASSERT(pa[j] == vm_page_lookup(obj,
2236 			    OFF_TO_IDX(vmoff(j, off))),
2237 			    ("pa[j] %p lookup %p\n", pa[j],
2238 			    vm_page_lookup(obj, OFF_TO_IDX(vmoff(j, off)))));
2239 #endif
2240 		i += count;
2241 		nios++;
2242 	}
2243 
2244 	VM_OBJECT_WUNLOCK(obj);
2245 
2246 	if (nios == 0 && npages != 0)
2247 		SFSTAT_INC(sf_noiocnt);
2248 
2249 	return (nios);
2250 }
2251 
2252 static int
2253 sendfile_getobj(struct thread *td, struct file *fp, vm_object_t *obj_res,
2254     struct vnode **vp_res, struct shmfd **shmfd_res, off_t *obj_size,
2255     int *bsize)
2256 {
2257 	struct vattr va;
2258 	vm_object_t obj;
2259 	struct vnode *vp;
2260 	struct shmfd *shmfd;
2261 	int error;
2262 
2263 	vp = *vp_res = NULL;
2264 	obj = NULL;
2265 	shmfd = *shmfd_res = NULL;
2266 	*bsize = 0;
2267 
2268 	/*
2269 	 * The file descriptor must be a regular file and have a
2270 	 * backing VM object.
2271 	 */
2272 	if (fp->f_type == DTYPE_VNODE) {
2273 		vp = fp->f_vnode;
2274 		vn_lock(vp, LK_SHARED | LK_RETRY);
2275 		if (vp->v_type != VREG) {
2276 			error = EINVAL;
2277 			goto out;
2278 		}
2279 		*bsize = vp->v_mount->mnt_stat.f_iosize;
2280 		error = VOP_GETATTR(vp, &va, td->td_ucred);
2281 		if (error != 0)
2282 			goto out;
2283 		*obj_size = va.va_size;
2284 		obj = vp->v_object;
2285 		if (obj == NULL) {
2286 			error = EINVAL;
2287 			goto out;
2288 		}
2289 	} else if (fp->f_type == DTYPE_SHM) {
2290 		error = 0;
2291 		shmfd = fp->f_data;
2292 		obj = shmfd->shm_object;
2293 		*obj_size = shmfd->shm_size;
2294 	} else {
2295 		error = EINVAL;
2296 		goto out;
2297 	}
2298 
2299 	VM_OBJECT_WLOCK(obj);
2300 	if ((obj->flags & OBJ_DEAD) != 0) {
2301 		VM_OBJECT_WUNLOCK(obj);
2302 		error = EBADF;
2303 		goto out;
2304 	}
2305 
2306 	/*
2307 	 * Temporarily increase the backing VM object's reference
2308 	 * count so that a forced reclamation of its vnode does not
2309 	 * immediately destroy it.
2310 	 */
2311 	vm_object_reference_locked(obj);
2312 	VM_OBJECT_WUNLOCK(obj);
2313 	*obj_res = obj;
2314 	*vp_res = vp;
2315 	*shmfd_res = shmfd;
2316 
2317 out:
2318 	if (vp != NULL)
2319 		VOP_UNLOCK(vp, 0);
2320 	return (error);
2321 }
2322 
2323 static int
2324 kern_sendfile_getsock(struct thread *td, int s, struct file **sock_fp,
2325     struct socket **so)
2326 {
2327 	cap_rights_t rights;
2328 	int error;
2329 
2330 	*sock_fp = NULL;
2331 	*so = NULL;
2332 
2333 	/*
2334 	 * The socket must be a stream socket and connected.
2335 	 */
2336 	error = getsock_cap(td, s, cap_rights_init(&rights, CAP_SEND),
2337 	    sock_fp, NULL);
2338 	if (error != 0)
2339 		return (error);
2340 	*so = (*sock_fp)->f_data;
2341 	if ((*so)->so_type != SOCK_STREAM)
2342 		return (EINVAL);
2343 	if (((*so)->so_state & SS_ISCONNECTED) == 0)
2344 		return (ENOTCONN);
2345 	return (0);
2346 }
2347 
2348 int
2349 vn_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
2350     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
2351     int kflags, struct thread *td)
2352 {
2353 	struct file *sock_fp;
2354 	struct vnode *vp;
2355 	struct vm_object *obj;
2356 	struct socket *so;
2357 	struct mbuf *m, *mh, *mhtail;
2358 	struct sf_buf *sf;
2359 	struct shmfd *shmfd;
2360 	struct sendfile_sync *sfs;
2361 	struct vattr va;
2362 	off_t off, sbytes, rem, obj_size;
2363 	int error, softerr, bsize, hdrlen;
2364 
2365 	obj = NULL;
2366 	so = NULL;
2367 	m = mh = NULL;
2368 	sfs = NULL;
2369 	sbytes = 0;
2370 	softerr = 0;
2371 
2372 	error = sendfile_getobj(td, fp, &obj, &vp, &shmfd, &obj_size, &bsize);
2373 	if (error != 0)
2374 		return (error);
2375 
2376 	error = kern_sendfile_getsock(td, sockfd, &sock_fp, &so);
2377 	if (error != 0)
2378 		goto out;
2379 
2380 #ifdef MAC
2381 	error = mac_socket_check_send(td->td_ucred, so);
2382 	if (error != 0)
2383 		goto out;
2384 #endif
2385 
2386 	SFSTAT_INC(sf_syscalls);
2387 	SFSTAT_ADD(sf_rhpages_requested, SF_READAHEAD(flags));
2388 
2389 	if (flags & SF_SYNC) {
2390 		sfs = malloc(sizeof *sfs, M_TEMP, M_WAITOK | M_ZERO);
2391 		mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF);
2392 		cv_init(&sfs->cv, "sendfile");
2393 	}
2394 
2395 	/* If headers are specified copy them into mbufs. */
2396 	if (hdr_uio != NULL && hdr_uio->uio_resid > 0) {
2397 		hdr_uio->uio_td = td;
2398 		hdr_uio->uio_rw = UIO_WRITE;
2399 		/*
2400 		 * In FBSD < 5.0 the nbytes to send also included
2401 		 * the header.  If compat is specified subtract the
2402 		 * header size from nbytes.
2403 		 */
2404 		if (kflags & SFK_COMPAT) {
2405 			if (nbytes > hdr_uio->uio_resid)
2406 				nbytes -= hdr_uio->uio_resid;
2407 			else
2408 				nbytes = 0;
2409 		}
2410 		mh = m_uiotombuf(hdr_uio, M_WAITOK, 0, 0, 0);
2411 		hdrlen = m_length(mh, &mhtail);
2412 	} else
2413 		hdrlen = 0;
2414 
2415 	rem = nbytes ? omin(nbytes, obj_size - offset) : obj_size - offset;
2416 
2417 	/*
2418 	 * Protect against multiple writers to the socket.
2419 	 *
2420 	 * XXXRW: Historically this has assumed non-interruptibility, so now
2421 	 * we implement that, but possibly shouldn't.
2422 	 */
2423 	(void)sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR);
2424 
2425 	/*
2426 	 * Loop through the pages of the file, starting with the requested
2427 	 * offset. Get a file page (do I/O if necessary), map the file page
2428 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
2429 	 * it on the socket.
2430 	 * This is done in two loops.  The inner loop turns as many pages
2431 	 * as it can, up to available socket buffer space, without blocking
2432 	 * into mbufs to have it bulk delivered into the socket send buffer.
2433 	 * The outer loop checks the state and available space of the socket
2434 	 * and takes care of the overall progress.
2435 	 */
2436 	for (off = offset; rem > 0; ) {
2437 		struct sf_io *sfio;
2438 		vm_page_t *pa;
2439 		struct mbuf *mtail;
2440 		int nios, space, npages, rhpages;
2441 
2442 		mtail = NULL;
2443 		/*
2444 		 * Check the socket state for ongoing connection,
2445 		 * no errors and space in socket buffer.
2446 		 * If space is low allow for the remainder of the
2447 		 * file to be processed if it fits the socket buffer.
2448 		 * Otherwise block in waiting for sufficient space
2449 		 * to proceed, or if the socket is nonblocking, return
2450 		 * to userland with EAGAIN while reporting how far
2451 		 * we've come.
2452 		 * We wait until the socket buffer has significant free
2453 		 * space to do bulk sends.  This makes good use of file
2454 		 * system read ahead and allows packet segmentation
2455 		 * offloading hardware to take over lots of work.  If
2456 		 * we were not careful here we would send off only one
2457 		 * sfbuf at a time.
2458 		 */
2459 		SOCKBUF_LOCK(&so->so_snd);
2460 		if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2)
2461 			so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2;
2462 retry_space:
2463 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2464 			error = EPIPE;
2465 			SOCKBUF_UNLOCK(&so->so_snd);
2466 			goto done;
2467 		} else if (so->so_error) {
2468 			error = so->so_error;
2469 			so->so_error = 0;
2470 			SOCKBUF_UNLOCK(&so->so_snd);
2471 			goto done;
2472 		}
2473 		space = sbspace(&so->so_snd);
2474 		if (space < rem &&
2475 		    (space <= 0 ||
2476 		     space < so->so_snd.sb_lowat)) {
2477 			if (so->so_state & SS_NBIO) {
2478 				SOCKBUF_UNLOCK(&so->so_snd);
2479 				error = EAGAIN;
2480 				goto done;
2481 			}
2482 			/*
2483 			 * sbwait drops the lock while sleeping.
2484 			 * When we loop back to retry_space the
2485 			 * state may have changed and we retest
2486 			 * for it.
2487 			 */
2488 			error = sbwait(&so->so_snd);
2489 			/*
2490 			 * An error from sbwait usually indicates that we've
2491 			 * been interrupted by a signal. If we've sent anything
2492 			 * then return bytes sent, otherwise return the error.
2493 			 */
2494 			if (error != 0) {
2495 				SOCKBUF_UNLOCK(&so->so_snd);
2496 				goto done;
2497 			}
2498 			goto retry_space;
2499 		}
2500 		SOCKBUF_UNLOCK(&so->so_snd);
2501 
2502 		/*
2503 		 * Reduce space in the socket buffer by the size of
2504 		 * the header mbuf chain.
2505 		 * hdrlen is set to 0 after the first loop.
2506 		 */
2507 		space -= hdrlen;
2508 
2509 		if (vp != NULL) {
2510 			error = vn_lock(vp, LK_SHARED);
2511 			if (error != 0)
2512 				goto done;
2513 			error = VOP_GETATTR(vp, &va, td->td_ucred);
2514 			if (error != 0 || off >= va.va_size) {
2515 				VOP_UNLOCK(vp, 0);
2516 				goto done;
2517 			}
2518 			if (va.va_size != obj_size) {
2519 				if (nbytes == 0)
2520 					rem += va.va_size - obj_size;
2521 				else if (offset + nbytes > va.va_size)
2522 					rem -= (offset + nbytes - va.va_size);
2523 				obj_size = va.va_size;
2524 			}
2525 		}
2526 
2527 		if (space > rem)
2528 			space = rem;
2529 
2530 		npages = howmany(space + (off & PAGE_MASK), PAGE_SIZE);
2531 
2532 		/*
2533 		 * Calculate maximum allowed number of pages for readahead
2534 		 * at this iteration.  First, we allow readahead up to "rem".
2535 		 * If application wants more, let it be, but there is no
2536 		 * reason to go above MAXPHYS.  Also check against "obj_size",
2537 		 * since vm_pager_has_page() can hint beyond EOF.
2538 		 */
2539 		rhpages = howmany(rem + (off & PAGE_MASK), PAGE_SIZE) - npages;
2540 		rhpages += SF_READAHEAD(flags);
2541 		rhpages = min(howmany(MAXPHYS, PAGE_SIZE), rhpages);
2542 		rhpages = min(howmany(obj_size - trunc_page(off), PAGE_SIZE) -
2543 		    npages, rhpages);
2544 
2545 		sfio = malloc(sizeof(struct sf_io) +
2546 		    npages * sizeof(vm_page_t), M_TEMP, M_WAITOK);
2547 		refcount_init(&sfio->nios, 1);
2548 		sfio->error = 0;
2549 
2550 		nios = sendfile_swapin(obj, sfio, off, space, npages, rhpages,
2551 		    flags);
2552 
2553 		/*
2554 		 * Loop and construct maximum sized mbuf chain to be bulk
2555 		 * dumped into socket buffer.
2556 		 */
2557 		pa = sfio->pa;
2558 		for (int i = 0; i < npages; i++) {
2559 			struct mbuf *m0;
2560 
2561 			/*
2562 			 * If a page wasn't grabbed successfully, then
2563 			 * trim the array. Can happen only with SF_NODISKIO.
2564 			 */
2565 			if (pa[i] == NULL) {
2566 				SFSTAT_INC(sf_busy);
2567 				fixspace(npages, i, off, &space);
2568 				npages = i;
2569 				softerr = EBUSY;
2570 				break;
2571 			}
2572 
2573 			/*
2574 			 * Get a sendfile buf.  When allocating the
2575 			 * first buffer for mbuf chain, we usually
2576 			 * wait as long as necessary, but this wait
2577 			 * can be interrupted.  For consequent
2578 			 * buffers, do not sleep, since several
2579 			 * threads might exhaust the buffers and then
2580 			 * deadlock.
2581 			 */
2582 			sf = sf_buf_alloc(pa[i],
2583 			    m != NULL ? SFB_NOWAIT : SFB_CATCH);
2584 			if (sf == NULL) {
2585 				SFSTAT_INC(sf_allocfail);
2586 				for (int j = i; j < npages; j++) {
2587 					vm_page_lock(pa[j]);
2588 					vm_page_unwire(pa[j], PQ_INACTIVE);
2589 					vm_page_unlock(pa[j]);
2590 				}
2591 				if (m == NULL)
2592 					softerr = ENOBUFS;
2593 				fixspace(npages, i, off, &space);
2594 				npages = i;
2595 				break;
2596 			}
2597 
2598 			m0 = m_get(M_WAITOK, MT_DATA);
2599 			m0->m_ext.ext_buf = (char *)sf_buf_kva(sf);
2600 			m0->m_ext.ext_size = PAGE_SIZE;
2601 			m0->m_ext.ext_arg1 = sf;
2602 			m0->m_ext.ext_arg2 = sfs;
2603 			/*
2604 			 * SF_NOCACHE sets the page as being freed upon send.
2605 			 * However, we ignore it for the last page in 'space',
2606 			 * if the page is truncated, and we got more data to
2607 			 * send (rem > space), or if we have readahead
2608 			 * configured (rhpages > 0).
2609 			 */
2610 			if ((flags & SF_NOCACHE) == 0 ||
2611 			    (i == npages - 1 &&
2612 			    ((off + space) & PAGE_MASK) &&
2613 			    (rem > space || rhpages > 0)))
2614 				m0->m_ext.ext_type = EXT_SFBUF;
2615 			else
2616 				m0->m_ext.ext_type = EXT_SFBUF_NOCACHE;
2617 			m0->m_ext.ext_flags = 0;
2618 			m0->m_flags |= (M_EXT | M_RDONLY);
2619 			if (nios)
2620 				m0->m_flags |= M_NOTREADY;
2621 			m0->m_data = (char *)sf_buf_kva(sf) +
2622 			    (vmoff(i, off) & PAGE_MASK);
2623 			m0->m_len = xfsize(i, npages, off, space);
2624 
2625 			if (i == 0)
2626 				sfio->m = m0;
2627 
2628 			/* Append to mbuf chain. */
2629 			if (mtail != NULL)
2630 				mtail->m_next = m0;
2631 			else
2632 				m = m0;
2633 			mtail = m0;
2634 
2635 			if (sfs != NULL) {
2636 				mtx_lock(&sfs->mtx);
2637 				sfs->count++;
2638 				mtx_unlock(&sfs->mtx);
2639 			}
2640 		}
2641 
2642 		if (vp != NULL)
2643 			VOP_UNLOCK(vp, 0);
2644 
2645 		/* Keep track of bytes processed. */
2646 		off += space;
2647 		rem -= space;
2648 
2649 		/* Prepend header, if any. */
2650 		if (hdrlen) {
2651 			mhtail->m_next = m;
2652 			m = mh;
2653 			mh = NULL;
2654 		}
2655 
2656 		if (m == NULL) {
2657 			KASSERT(softerr, ("%s: m NULL, no error", __func__));
2658 			error = softerr;
2659 			free(sfio, M_TEMP);
2660 			goto done;
2661 		}
2662 
2663 		/* Add the buffer chain to the socket buffer. */
2664 		KASSERT(m_length(m, NULL) == space + hdrlen,
2665 		    ("%s: mlen %u space %d hdrlen %d",
2666 		    __func__, m_length(m, NULL), space, hdrlen));
2667 
2668 		CURVNET_SET(so->so_vnet);
2669 		if (nios == 0) {
2670 			/*
2671 			 * If sendfile_swapin() didn't initiate any I/Os,
2672 			 * which happens if all data is cached in VM, then
2673 			 * we can send data right now without the
2674 			 * PRUS_NOTREADY flag.
2675 			 */
2676 			free(sfio, M_TEMP);
2677 			error = (*so->so_proto->pr_usrreqs->pru_send)
2678 			    (so, 0, m, NULL, NULL, td);
2679 		} else {
2680 			sfio->sock_fp = sock_fp;
2681 			sfio->npages = npages;
2682 			fhold(sock_fp);
2683 			error = (*so->so_proto->pr_usrreqs->pru_send)
2684 			    (so, PRUS_NOTREADY, m, NULL, NULL, td);
2685 			sf_iodone(sfio, NULL, 0, 0);
2686 		}
2687 		CURVNET_RESTORE();
2688 
2689 		m = NULL;	/* pru_send always consumes */
2690 		if (error)
2691 			goto done;
2692 		sbytes += space + hdrlen;
2693 		if (hdrlen)
2694 			hdrlen = 0;
2695 		if (softerr) {
2696 			error = softerr;
2697 			goto done;
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * Send trailers. Wimp out and use writev(2).
2703 	 */
2704 	if (trl_uio != NULL) {
2705 		sbunlock(&so->so_snd);
2706 		error = kern_writev(td, sockfd, trl_uio);
2707 		if (error == 0)
2708 			sbytes += td->td_retval[0];
2709 		goto out;
2710 	}
2711 
2712 done:
2713 	sbunlock(&so->so_snd);
2714 out:
2715 	/*
2716 	 * If there was no error we have to clear td->td_retval[0]
2717 	 * because it may have been set by writev.
2718 	 */
2719 	if (error == 0) {
2720 		td->td_retval[0] = 0;
2721 	}
2722 	if (sent != NULL) {
2723 		(*sent) = sbytes;
2724 	}
2725 	if (obj != NULL)
2726 		vm_object_deallocate(obj);
2727 	if (so)
2728 		fdrop(sock_fp, td);
2729 	if (m)
2730 		m_freem(m);
2731 	if (mh)
2732 		m_freem(mh);
2733 
2734 	if (sfs != NULL) {
2735 		mtx_lock(&sfs->mtx);
2736 		if (sfs->count != 0)
2737 			cv_wait(&sfs->cv, &sfs->mtx);
2738 		KASSERT(sfs->count == 0, ("sendfile sync still busy"));
2739 		cv_destroy(&sfs->cv);
2740 		mtx_destroy(&sfs->mtx);
2741 		free(sfs, M_TEMP);
2742 	}
2743 
2744 	if (error == ERESTART)
2745 		error = EINTR;
2746 
2747 	return (error);
2748 }
2749