xref: /freebsd/sys/kern/uipc_syscalls.c (revision 3fe8969a749c0e4a62ffdbf4f6883898027a9e19)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * sendfile(2) and related extensions:
6  * Copyright (c) 1998, David Greenman. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_syscalls.c	8.4 (Berkeley) 2/21/94
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_capsicum.h"
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_compat.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/capsicum.h>
47 #include <sys/condvar.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/sysproto.h>
52 #include <sys/malloc.h>
53 #include <sys/filedesc.h>
54 #include <sys/event.h>
55 #include <sys/proc.h>
56 #include <sys/fcntl.h>
57 #include <sys/file.h>
58 #include <sys/filio.h>
59 #include <sys/jail.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/rwlock.h>
65 #include <sys/sf_buf.h>
66 #include <sys/sf_sync.h>
67 #include <sys/sf_base.h>
68 #include <sys/sysent.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/signalvar.h>
72 #include <sys/syscallsubr.h>
73 #include <sys/sysctl.h>
74 #include <sys/uio.h>
75 #include <sys/vnode.h>
76 #ifdef KTRACE
77 #include <sys/ktrace.h>
78 #endif
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32_util.h>
81 #endif
82 
83 #include <net/vnet.h>
84 
85 #include <security/audit/audit.h>
86 #include <security/mac/mac_framework.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/uma.h>
96 
97 /*
98  * Flags for accept1() and kern_accept4(), in addition to SOCK_CLOEXEC
99  * and SOCK_NONBLOCK.
100  */
101 #define	ACCEPT4_INHERIT	0x1
102 #define	ACCEPT4_COMPAT	0x2
103 
104 static int sendit(struct thread *td, int s, struct msghdr *mp, int flags);
105 static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp);
106 
107 static int accept1(struct thread *td, int s, struct sockaddr *uname,
108 		   socklen_t *anamelen, int flags);
109 static int do_sendfile(struct thread *td, struct sendfile_args *uap,
110 		   int compat);
111 static int getsockname1(struct thread *td, struct getsockname_args *uap,
112 			int compat);
113 static int getpeername1(struct thread *td, struct getpeername_args *uap,
114 			int compat);
115 
116 counter_u64_t sfstat[sizeof(struct sfstat) / sizeof(uint64_t)];
117 
118 static int	filt_sfsync_attach(struct knote *kn);
119 static void	filt_sfsync_detach(struct knote *kn);
120 static int	filt_sfsync(struct knote *kn, long hint);
121 
122 /*
123  * sendfile(2)-related variables and associated sysctls
124  */
125 static SYSCTL_NODE(_kern_ipc, OID_AUTO, sendfile, CTLFLAG_RW, 0,
126     "sendfile(2) tunables");
127 static int sfreadahead = 1;
128 SYSCTL_INT(_kern_ipc_sendfile, OID_AUTO, readahead, CTLFLAG_RW,
129     &sfreadahead, 0, "Number of sendfile(2) read-ahead MAXBSIZE blocks");
130 
131 #ifdef	SFSYNC_DEBUG
132 static int sf_sync_debug = 0;
133 SYSCTL_INT(_debug, OID_AUTO, sf_sync_debug, CTLFLAG_RW,
134     &sf_sync_debug, 0, "Output debugging during sf_sync lifecycle");
135 #define	SFSYNC_DPRINTF(s, ...)				\
136 		do {					\
137 			if (sf_sync_debug)		\
138 				printf((s), ##__VA_ARGS__); \
139 		} while (0)
140 #else
141 #define	SFSYNC_DPRINTF(c, ...)
142 #endif
143 
144 static uma_zone_t	zone_sfsync;
145 
146 static struct filterops sendfile_filtops = {
147 	.f_isfd = 0,
148 	.f_attach = filt_sfsync_attach,
149 	.f_detach = filt_sfsync_detach,
150 	.f_event = filt_sfsync,
151 };
152 
153 static void
154 sfstat_init(const void *unused)
155 {
156 
157 	COUNTER_ARRAY_ALLOC(sfstat, sizeof(struct sfstat) / sizeof(uint64_t),
158 	    M_WAITOK);
159 }
160 SYSINIT(sfstat, SI_SUB_MBUF, SI_ORDER_FIRST, sfstat_init, NULL);
161 
162 static void
163 sf_sync_init(const void *unused)
164 {
165 
166 	zone_sfsync = uma_zcreate("sendfile_sync", sizeof(struct sendfile_sync),
167 	    NULL, NULL,
168 	    NULL, NULL,
169 	    UMA_ALIGN_CACHE,
170 	    0);
171 	kqueue_add_filteropts(EVFILT_SENDFILE, &sendfile_filtops);
172 }
173 SYSINIT(sf_sync, SI_SUB_MBUF, SI_ORDER_FIRST, sf_sync_init, NULL);
174 
175 static int
176 sfstat_sysctl(SYSCTL_HANDLER_ARGS)
177 {
178 	struct sfstat s;
179 
180 	COUNTER_ARRAY_COPY(sfstat, &s, sizeof(s) / sizeof(uint64_t));
181 	if (req->newptr)
182 		COUNTER_ARRAY_ZERO(sfstat, sizeof(s) / sizeof(uint64_t));
183 	return (SYSCTL_OUT(req, &s, sizeof(s)));
184 }
185 SYSCTL_PROC(_kern_ipc, OID_AUTO, sfstat, CTLTYPE_OPAQUE | CTLFLAG_RW,
186     NULL, 0, sfstat_sysctl, "I", "sendfile statistics");
187 
188 /*
189  * Convert a user file descriptor to a kernel file entry and check if required
190  * capability rights are present.
191  * A reference on the file entry is held upon returning.
192  */
193 int
194 getsock_cap(struct filedesc *fdp, int fd, cap_rights_t *rightsp,
195     struct file **fpp, u_int *fflagp)
196 {
197 	struct file *fp;
198 	int error;
199 
200 	error = fget_unlocked(fdp, fd, rightsp, 0, &fp, NULL);
201 	if (error != 0)
202 		return (error);
203 	if (fp->f_type != DTYPE_SOCKET) {
204 		fdrop(fp, curthread);
205 		return (ENOTSOCK);
206 	}
207 	if (fflagp != NULL)
208 		*fflagp = fp->f_flag;
209 	*fpp = fp;
210 	return (0);
211 }
212 
213 /*
214  * System call interface to the socket abstraction.
215  */
216 #if defined(COMPAT_43)
217 #define COMPAT_OLDSOCK
218 #endif
219 
220 int
221 sys_socket(td, uap)
222 	struct thread *td;
223 	struct socket_args /* {
224 		int	domain;
225 		int	type;
226 		int	protocol;
227 	} */ *uap;
228 {
229 	struct socket *so;
230 	struct file *fp;
231 	int fd, error, type, oflag, fflag;
232 
233 	AUDIT_ARG_SOCKET(uap->domain, uap->type, uap->protocol);
234 
235 	type = uap->type;
236 	oflag = 0;
237 	fflag = 0;
238 	if ((type & SOCK_CLOEXEC) != 0) {
239 		type &= ~SOCK_CLOEXEC;
240 		oflag |= O_CLOEXEC;
241 	}
242 	if ((type & SOCK_NONBLOCK) != 0) {
243 		type &= ~SOCK_NONBLOCK;
244 		fflag |= FNONBLOCK;
245 	}
246 
247 #ifdef MAC
248 	error = mac_socket_check_create(td->td_ucred, uap->domain, type,
249 	    uap->protocol);
250 	if (error != 0)
251 		return (error);
252 #endif
253 	error = falloc(td, &fp, &fd, oflag);
254 	if (error != 0)
255 		return (error);
256 	/* An extra reference on `fp' has been held for us by falloc(). */
257 	error = socreate(uap->domain, &so, type, uap->protocol,
258 	    td->td_ucred, td);
259 	if (error != 0) {
260 		fdclose(td->td_proc->p_fd, fp, fd, td);
261 	} else {
262 		finit(fp, FREAD | FWRITE | fflag, DTYPE_SOCKET, so, &socketops);
263 		if ((fflag & FNONBLOCK) != 0)
264 			(void) fo_ioctl(fp, FIONBIO, &fflag, td->td_ucred, td);
265 		td->td_retval[0] = fd;
266 	}
267 	fdrop(fp, td);
268 	return (error);
269 }
270 
271 /* ARGSUSED */
272 int
273 sys_bind(td, uap)
274 	struct thread *td;
275 	struct bind_args /* {
276 		int	s;
277 		caddr_t	name;
278 		int	namelen;
279 	} */ *uap;
280 {
281 	struct sockaddr *sa;
282 	int error;
283 
284 	error = getsockaddr(&sa, uap->name, uap->namelen);
285 	if (error == 0) {
286 		error = kern_bind(td, uap->s, sa);
287 		free(sa, M_SONAME);
288 	}
289 	return (error);
290 }
291 
292 static int
293 kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa)
294 {
295 	struct socket *so;
296 	struct file *fp;
297 	cap_rights_t rights;
298 	int error;
299 
300 	AUDIT_ARG_FD(fd);
301 	AUDIT_ARG_SOCKADDR(td, dirfd, sa);
302 	error = getsock_cap(td->td_proc->p_fd, fd,
303 	    cap_rights_init(&rights, CAP_BIND), &fp, NULL);
304 	if (error != 0)
305 		return (error);
306 	so = fp->f_data;
307 #ifdef KTRACE
308 	if (KTRPOINT(td, KTR_STRUCT))
309 		ktrsockaddr(sa);
310 #endif
311 #ifdef MAC
312 	error = mac_socket_check_bind(td->td_ucred, so, sa);
313 	if (error == 0) {
314 #endif
315 		if (dirfd == AT_FDCWD)
316 			error = sobind(so, sa, td);
317 		else
318 			error = sobindat(dirfd, so, sa, td);
319 #ifdef MAC
320 	}
321 #endif
322 	fdrop(fp, td);
323 	return (error);
324 }
325 
326 int
327 kern_bind(struct thread *td, int fd, struct sockaddr *sa)
328 {
329 
330 	return (kern_bindat(td, AT_FDCWD, fd, sa));
331 }
332 
333 /* ARGSUSED */
334 int
335 sys_bindat(td, uap)
336 	struct thread *td;
337 	struct bindat_args /* {
338 		int	fd;
339 		int	s;
340 		caddr_t	name;
341 		int	namelen;
342 	} */ *uap;
343 {
344 	struct sockaddr *sa;
345 	int error;
346 
347 	error = getsockaddr(&sa, uap->name, uap->namelen);
348 	if (error == 0) {
349 		error = kern_bindat(td, uap->fd, uap->s, sa);
350 		free(sa, M_SONAME);
351 	}
352 	return (error);
353 }
354 
355 /* ARGSUSED */
356 int
357 sys_listen(td, uap)
358 	struct thread *td;
359 	struct listen_args /* {
360 		int	s;
361 		int	backlog;
362 	} */ *uap;
363 {
364 	struct socket *so;
365 	struct file *fp;
366 	cap_rights_t rights;
367 	int error;
368 
369 	AUDIT_ARG_FD(uap->s);
370 	error = getsock_cap(td->td_proc->p_fd, uap->s,
371 	    cap_rights_init(&rights, CAP_LISTEN), &fp, NULL);
372 	if (error == 0) {
373 		so = fp->f_data;
374 #ifdef MAC
375 		error = mac_socket_check_listen(td->td_ucred, so);
376 		if (error == 0)
377 #endif
378 			error = solisten(so, uap->backlog, td);
379 		fdrop(fp, td);
380 	}
381 	return(error);
382 }
383 
384 /*
385  * accept1()
386  */
387 static int
388 accept1(td, s, uname, anamelen, flags)
389 	struct thread *td;
390 	int s;
391 	struct sockaddr *uname;
392 	socklen_t *anamelen;
393 	int flags;
394 {
395 	struct sockaddr *name;
396 	socklen_t namelen;
397 	struct file *fp;
398 	int error;
399 
400 	if (uname == NULL)
401 		return (kern_accept4(td, s, NULL, NULL, flags, NULL));
402 
403 	error = copyin(anamelen, &namelen, sizeof (namelen));
404 	if (error != 0)
405 		return (error);
406 
407 	error = kern_accept4(td, s, &name, &namelen, flags, &fp);
408 
409 	if (error != 0)
410 		return (error);
411 
412 	if (error == 0 && uname != NULL) {
413 #ifdef COMPAT_OLDSOCK
414 		if (flags & ACCEPT4_COMPAT)
415 			((struct osockaddr *)name)->sa_family =
416 			    name->sa_family;
417 #endif
418 		error = copyout(name, uname, namelen);
419 	}
420 	if (error == 0)
421 		error = copyout(&namelen, anamelen,
422 		    sizeof(namelen));
423 	if (error != 0)
424 		fdclose(td->td_proc->p_fd, fp, td->td_retval[0], td);
425 	fdrop(fp, td);
426 	free(name, M_SONAME);
427 	return (error);
428 }
429 
430 int
431 kern_accept(struct thread *td, int s, struct sockaddr **name,
432     socklen_t *namelen, struct file **fp)
433 {
434 	return (kern_accept4(td, s, name, namelen, ACCEPT4_INHERIT, fp));
435 }
436 
437 int
438 kern_accept4(struct thread *td, int s, struct sockaddr **name,
439     socklen_t *namelen, int flags, struct file **fp)
440 {
441 	struct filedesc *fdp;
442 	struct file *headfp, *nfp = NULL;
443 	struct sockaddr *sa = NULL;
444 	struct socket *head, *so;
445 	cap_rights_t rights;
446 	u_int fflag;
447 	pid_t pgid;
448 	int error, fd, tmp;
449 
450 	if (name != NULL)
451 		*name = NULL;
452 
453 	AUDIT_ARG_FD(s);
454 	fdp = td->td_proc->p_fd;
455 	error = getsock_cap(fdp, s, cap_rights_init(&rights, CAP_ACCEPT),
456 	    &headfp, &fflag);
457 	if (error != 0)
458 		return (error);
459 	head = headfp->f_data;
460 	if ((head->so_options & SO_ACCEPTCONN) == 0) {
461 		error = EINVAL;
462 		goto done;
463 	}
464 #ifdef MAC
465 	error = mac_socket_check_accept(td->td_ucred, head);
466 	if (error != 0)
467 		goto done;
468 #endif
469 	error = falloc(td, &nfp, &fd, (flags & SOCK_CLOEXEC) ? O_CLOEXEC : 0);
470 	if (error != 0)
471 		goto done;
472 	ACCEPT_LOCK();
473 	if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) {
474 		ACCEPT_UNLOCK();
475 		error = EWOULDBLOCK;
476 		goto noconnection;
477 	}
478 	while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) {
479 		if (head->so_rcv.sb_state & SBS_CANTRCVMORE) {
480 			head->so_error = ECONNABORTED;
481 			break;
482 		}
483 		error = msleep(&head->so_timeo, &accept_mtx, PSOCK | PCATCH,
484 		    "accept", 0);
485 		if (error != 0) {
486 			ACCEPT_UNLOCK();
487 			goto noconnection;
488 		}
489 	}
490 	if (head->so_error) {
491 		error = head->so_error;
492 		head->so_error = 0;
493 		ACCEPT_UNLOCK();
494 		goto noconnection;
495 	}
496 	so = TAILQ_FIRST(&head->so_comp);
497 	KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP"));
498 	KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP"));
499 
500 	/*
501 	 * Before changing the flags on the socket, we have to bump the
502 	 * reference count.  Otherwise, if the protocol calls sofree(),
503 	 * the socket will be released due to a zero refcount.
504 	 */
505 	SOCK_LOCK(so);			/* soref() and so_state update */
506 	soref(so);			/* file descriptor reference */
507 
508 	TAILQ_REMOVE(&head->so_comp, so, so_list);
509 	head->so_qlen--;
510 	if (flags & ACCEPT4_INHERIT)
511 		so->so_state |= (head->so_state & SS_NBIO);
512 	else
513 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
514 	so->so_qstate &= ~SQ_COMP;
515 	so->so_head = NULL;
516 
517 	SOCK_UNLOCK(so);
518 	ACCEPT_UNLOCK();
519 
520 	/* An extra reference on `nfp' has been held for us by falloc(). */
521 	td->td_retval[0] = fd;
522 
523 	/* connection has been removed from the listen queue */
524 	KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0);
525 
526 	if (flags & ACCEPT4_INHERIT) {
527 		pgid = fgetown(&head->so_sigio);
528 		if (pgid != 0)
529 			fsetown(pgid, &so->so_sigio);
530 	} else {
531 		fflag &= ~(FNONBLOCK | FASYNC);
532 		if (flags & SOCK_NONBLOCK)
533 			fflag |= FNONBLOCK;
534 	}
535 
536 	finit(nfp, fflag, DTYPE_SOCKET, so, &socketops);
537 	/* Sync socket nonblocking/async state with file flags */
538 	tmp = fflag & FNONBLOCK;
539 	(void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td);
540 	tmp = fflag & FASYNC;
541 	(void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td);
542 	sa = 0;
543 	error = soaccept(so, &sa);
544 	if (error != 0)
545 		goto noconnection;
546 	if (sa == NULL) {
547 		if (name)
548 			*namelen = 0;
549 		goto done;
550 	}
551 	AUDIT_ARG_SOCKADDR(td, AT_FDCWD, sa);
552 	if (name) {
553 		/* check sa_len before it is destroyed */
554 		if (*namelen > sa->sa_len)
555 			*namelen = sa->sa_len;
556 #ifdef KTRACE
557 		if (KTRPOINT(td, KTR_STRUCT))
558 			ktrsockaddr(sa);
559 #endif
560 		*name = sa;
561 		sa = NULL;
562 	}
563 noconnection:
564 	free(sa, M_SONAME);
565 
566 	/*
567 	 * close the new descriptor, assuming someone hasn't ripped it
568 	 * out from under us.
569 	 */
570 	if (error != 0)
571 		fdclose(fdp, nfp, fd, td);
572 
573 	/*
574 	 * Release explicitly held references before returning.  We return
575 	 * a reference on nfp to the caller on success if they request it.
576 	 */
577 done:
578 	if (fp != NULL) {
579 		if (error == 0) {
580 			*fp = nfp;
581 			nfp = NULL;
582 		} else
583 			*fp = NULL;
584 	}
585 	if (nfp != NULL)
586 		fdrop(nfp, td);
587 	fdrop(headfp, td);
588 	return (error);
589 }
590 
591 int
592 sys_accept(td, uap)
593 	struct thread *td;
594 	struct accept_args *uap;
595 {
596 
597 	return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT));
598 }
599 
600 int
601 sys_accept4(td, uap)
602 	struct thread *td;
603 	struct accept4_args *uap;
604 {
605 
606 	if (uap->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
607 		return (EINVAL);
608 
609 	return (accept1(td, uap->s, uap->name, uap->anamelen, uap->flags));
610 }
611 
612 #ifdef COMPAT_OLDSOCK
613 int
614 oaccept(td, uap)
615 	struct thread *td;
616 	struct accept_args *uap;
617 {
618 
619 	return (accept1(td, uap->s, uap->name, uap->anamelen,
620 	    ACCEPT4_INHERIT | ACCEPT4_COMPAT));
621 }
622 #endif /* COMPAT_OLDSOCK */
623 
624 /* ARGSUSED */
625 int
626 sys_connect(td, uap)
627 	struct thread *td;
628 	struct connect_args /* {
629 		int	s;
630 		caddr_t	name;
631 		int	namelen;
632 	} */ *uap;
633 {
634 	struct sockaddr *sa;
635 	int error;
636 
637 	error = getsockaddr(&sa, uap->name, uap->namelen);
638 	if (error == 0) {
639 		error = kern_connect(td, uap->s, sa);
640 		free(sa, M_SONAME);
641 	}
642 	return (error);
643 }
644 
645 static int
646 kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa)
647 {
648 	struct socket *so;
649 	struct file *fp;
650 	cap_rights_t rights;
651 	int error, interrupted = 0;
652 
653 	AUDIT_ARG_FD(fd);
654 	AUDIT_ARG_SOCKADDR(td, dirfd, sa);
655 	error = getsock_cap(td->td_proc->p_fd, fd,
656 	    cap_rights_init(&rights, CAP_CONNECT), &fp, NULL);
657 	if (error != 0)
658 		return (error);
659 	so = fp->f_data;
660 	if (so->so_state & SS_ISCONNECTING) {
661 		error = EALREADY;
662 		goto done1;
663 	}
664 #ifdef KTRACE
665 	if (KTRPOINT(td, KTR_STRUCT))
666 		ktrsockaddr(sa);
667 #endif
668 #ifdef MAC
669 	error = mac_socket_check_connect(td->td_ucred, so, sa);
670 	if (error != 0)
671 		goto bad;
672 #endif
673 	if (dirfd == AT_FDCWD)
674 		error = soconnect(so, sa, td);
675 	else
676 		error = soconnectat(dirfd, so, sa, td);
677 	if (error != 0)
678 		goto bad;
679 	if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
680 		error = EINPROGRESS;
681 		goto done1;
682 	}
683 	SOCK_LOCK(so);
684 	while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
685 		error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH,
686 		    "connec", 0);
687 		if (error != 0) {
688 			if (error == EINTR || error == ERESTART)
689 				interrupted = 1;
690 			break;
691 		}
692 	}
693 	if (error == 0) {
694 		error = so->so_error;
695 		so->so_error = 0;
696 	}
697 	SOCK_UNLOCK(so);
698 bad:
699 	if (!interrupted)
700 		so->so_state &= ~SS_ISCONNECTING;
701 	if (error == ERESTART)
702 		error = EINTR;
703 done1:
704 	fdrop(fp, td);
705 	return (error);
706 }
707 
708 int
709 kern_connect(struct thread *td, int fd, struct sockaddr *sa)
710 {
711 
712 	return (kern_connectat(td, AT_FDCWD, fd, sa));
713 }
714 
715 /* ARGSUSED */
716 int
717 sys_connectat(td, uap)
718 	struct thread *td;
719 	struct connectat_args /* {
720 		int	fd;
721 		int	s;
722 		caddr_t	name;
723 		int	namelen;
724 	} */ *uap;
725 {
726 	struct sockaddr *sa;
727 	int error;
728 
729 	error = getsockaddr(&sa, uap->name, uap->namelen);
730 	if (error == 0) {
731 		error = kern_connectat(td, uap->fd, uap->s, sa);
732 		free(sa, M_SONAME);
733 	}
734 	return (error);
735 }
736 
737 int
738 kern_socketpair(struct thread *td, int domain, int type, int protocol,
739     int *rsv)
740 {
741 	struct filedesc *fdp = td->td_proc->p_fd;
742 	struct file *fp1, *fp2;
743 	struct socket *so1, *so2;
744 	int fd, error, oflag, fflag;
745 
746 	AUDIT_ARG_SOCKET(domain, type, protocol);
747 
748 	oflag = 0;
749 	fflag = 0;
750 	if ((type & SOCK_CLOEXEC) != 0) {
751 		type &= ~SOCK_CLOEXEC;
752 		oflag |= O_CLOEXEC;
753 	}
754 	if ((type & SOCK_NONBLOCK) != 0) {
755 		type &= ~SOCK_NONBLOCK;
756 		fflag |= FNONBLOCK;
757 	}
758 #ifdef MAC
759 	/* We might want to have a separate check for socket pairs. */
760 	error = mac_socket_check_create(td->td_ucred, domain, type,
761 	    protocol);
762 	if (error != 0)
763 		return (error);
764 #endif
765 	error = socreate(domain, &so1, type, protocol, td->td_ucred, td);
766 	if (error != 0)
767 		return (error);
768 	error = socreate(domain, &so2, type, protocol, td->td_ucred, td);
769 	if (error != 0)
770 		goto free1;
771 	/* On success extra reference to `fp1' and 'fp2' is set by falloc. */
772 	error = falloc(td, &fp1, &fd, oflag);
773 	if (error != 0)
774 		goto free2;
775 	rsv[0] = fd;
776 	fp1->f_data = so1;	/* so1 already has ref count */
777 	error = falloc(td, &fp2, &fd, oflag);
778 	if (error != 0)
779 		goto free3;
780 	fp2->f_data = so2;	/* so2 already has ref count */
781 	rsv[1] = fd;
782 	error = soconnect2(so1, so2);
783 	if (error != 0)
784 		goto free4;
785 	if (type == SOCK_DGRAM) {
786 		/*
787 		 * Datagram socket connection is asymmetric.
788 		 */
789 		 error = soconnect2(so2, so1);
790 		 if (error != 0)
791 			goto free4;
792 	}
793 	finit(fp1, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp1->f_data,
794 	    &socketops);
795 	finit(fp2, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp2->f_data,
796 	    &socketops);
797 	if ((fflag & FNONBLOCK) != 0) {
798 		(void) fo_ioctl(fp1, FIONBIO, &fflag, td->td_ucred, td);
799 		(void) fo_ioctl(fp2, FIONBIO, &fflag, td->td_ucred, td);
800 	}
801 	fdrop(fp1, td);
802 	fdrop(fp2, td);
803 	return (0);
804 free4:
805 	fdclose(fdp, fp2, rsv[1], td);
806 	fdrop(fp2, td);
807 free3:
808 	fdclose(fdp, fp1, rsv[0], td);
809 	fdrop(fp1, td);
810 free2:
811 	if (so2 != NULL)
812 		(void)soclose(so2);
813 free1:
814 	if (so1 != NULL)
815 		(void)soclose(so1);
816 	return (error);
817 }
818 
819 int
820 sys_socketpair(struct thread *td, struct socketpair_args *uap)
821 {
822 	int error, sv[2];
823 
824 	error = kern_socketpair(td, uap->domain, uap->type,
825 	    uap->protocol, sv);
826 	if (error != 0)
827 		return (error);
828 	error = copyout(sv, uap->rsv, 2 * sizeof(int));
829 	if (error != 0) {
830 		(void)kern_close(td, sv[0]);
831 		(void)kern_close(td, sv[1]);
832 	}
833 	return (error);
834 }
835 
836 static int
837 sendit(td, s, mp, flags)
838 	struct thread *td;
839 	int s;
840 	struct msghdr *mp;
841 	int flags;
842 {
843 	struct mbuf *control;
844 	struct sockaddr *to;
845 	int error;
846 
847 #ifdef CAPABILITY_MODE
848 	if (IN_CAPABILITY_MODE(td) && (mp->msg_name != NULL))
849 		return (ECAPMODE);
850 #endif
851 
852 	if (mp->msg_name != NULL) {
853 		error = getsockaddr(&to, mp->msg_name, mp->msg_namelen);
854 		if (error != 0) {
855 			to = NULL;
856 			goto bad;
857 		}
858 		mp->msg_name = to;
859 	} else {
860 		to = NULL;
861 	}
862 
863 	if (mp->msg_control) {
864 		if (mp->msg_controllen < sizeof(struct cmsghdr)
865 #ifdef COMPAT_OLDSOCK
866 		    && mp->msg_flags != MSG_COMPAT
867 #endif
868 		) {
869 			error = EINVAL;
870 			goto bad;
871 		}
872 		error = sockargs(&control, mp->msg_control,
873 		    mp->msg_controllen, MT_CONTROL);
874 		if (error != 0)
875 			goto bad;
876 #ifdef COMPAT_OLDSOCK
877 		if (mp->msg_flags == MSG_COMPAT) {
878 			struct cmsghdr *cm;
879 
880 			M_PREPEND(control, sizeof(*cm), M_WAITOK);
881 			cm = mtod(control, struct cmsghdr *);
882 			cm->cmsg_len = control->m_len;
883 			cm->cmsg_level = SOL_SOCKET;
884 			cm->cmsg_type = SCM_RIGHTS;
885 		}
886 #endif
887 	} else {
888 		control = NULL;
889 	}
890 
891 	error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE);
892 
893 bad:
894 	free(to, M_SONAME);
895 	return (error);
896 }
897 
898 int
899 kern_sendit(td, s, mp, flags, control, segflg)
900 	struct thread *td;
901 	int s;
902 	struct msghdr *mp;
903 	int flags;
904 	struct mbuf *control;
905 	enum uio_seg segflg;
906 {
907 	struct file *fp;
908 	struct uio auio;
909 	struct iovec *iov;
910 	struct socket *so;
911 	cap_rights_t rights;
912 #ifdef KTRACE
913 	struct uio *ktruio = NULL;
914 #endif
915 	ssize_t len;
916 	int i, error;
917 
918 	AUDIT_ARG_FD(s);
919 	cap_rights_init(&rights, CAP_SEND);
920 	if (mp->msg_name != NULL) {
921 		AUDIT_ARG_SOCKADDR(td, AT_FDCWD, mp->msg_name);
922 		cap_rights_set(&rights, CAP_CONNECT);
923 	}
924 	error = getsock_cap(td->td_proc->p_fd, s, &rights, &fp, NULL);
925 	if (error != 0)
926 		return (error);
927 	so = (struct socket *)fp->f_data;
928 
929 #ifdef KTRACE
930 	if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT))
931 		ktrsockaddr(mp->msg_name);
932 #endif
933 #ifdef MAC
934 	if (mp->msg_name != NULL) {
935 		error = mac_socket_check_connect(td->td_ucred, so,
936 		    mp->msg_name);
937 		if (error != 0)
938 			goto bad;
939 	}
940 	error = mac_socket_check_send(td->td_ucred, so);
941 	if (error != 0)
942 		goto bad;
943 #endif
944 
945 	auio.uio_iov = mp->msg_iov;
946 	auio.uio_iovcnt = mp->msg_iovlen;
947 	auio.uio_segflg = segflg;
948 	auio.uio_rw = UIO_WRITE;
949 	auio.uio_td = td;
950 	auio.uio_offset = 0;			/* XXX */
951 	auio.uio_resid = 0;
952 	iov = mp->msg_iov;
953 	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
954 		if ((auio.uio_resid += iov->iov_len) < 0) {
955 			error = EINVAL;
956 			goto bad;
957 		}
958 	}
959 #ifdef KTRACE
960 	if (KTRPOINT(td, KTR_GENIO))
961 		ktruio = cloneuio(&auio);
962 #endif
963 	len = auio.uio_resid;
964 	error = sosend(so, mp->msg_name, &auio, 0, control, flags, td);
965 	if (error != 0) {
966 		if (auio.uio_resid != len && (error == ERESTART ||
967 		    error == EINTR || error == EWOULDBLOCK))
968 			error = 0;
969 		/* Generation of SIGPIPE can be controlled per socket */
970 		if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) &&
971 		    !(flags & MSG_NOSIGNAL)) {
972 			PROC_LOCK(td->td_proc);
973 			tdsignal(td, SIGPIPE);
974 			PROC_UNLOCK(td->td_proc);
975 		}
976 	}
977 	if (error == 0)
978 		td->td_retval[0] = len - auio.uio_resid;
979 #ifdef KTRACE
980 	if (ktruio != NULL) {
981 		ktruio->uio_resid = td->td_retval[0];
982 		ktrgenio(s, UIO_WRITE, ktruio, error);
983 	}
984 #endif
985 bad:
986 	fdrop(fp, td);
987 	return (error);
988 }
989 
990 int
991 sys_sendto(td, uap)
992 	struct thread *td;
993 	struct sendto_args /* {
994 		int	s;
995 		caddr_t	buf;
996 		size_t	len;
997 		int	flags;
998 		caddr_t	to;
999 		int	tolen;
1000 	} */ *uap;
1001 {
1002 	struct msghdr msg;
1003 	struct iovec aiov;
1004 
1005 	msg.msg_name = uap->to;
1006 	msg.msg_namelen = uap->tolen;
1007 	msg.msg_iov = &aiov;
1008 	msg.msg_iovlen = 1;
1009 	msg.msg_control = 0;
1010 #ifdef COMPAT_OLDSOCK
1011 	msg.msg_flags = 0;
1012 #endif
1013 	aiov.iov_base = uap->buf;
1014 	aiov.iov_len = uap->len;
1015 	return (sendit(td, uap->s, &msg, uap->flags));
1016 }
1017 
1018 #ifdef COMPAT_OLDSOCK
1019 int
1020 osend(td, uap)
1021 	struct thread *td;
1022 	struct osend_args /* {
1023 		int	s;
1024 		caddr_t	buf;
1025 		int	len;
1026 		int	flags;
1027 	} */ *uap;
1028 {
1029 	struct msghdr msg;
1030 	struct iovec aiov;
1031 
1032 	msg.msg_name = 0;
1033 	msg.msg_namelen = 0;
1034 	msg.msg_iov = &aiov;
1035 	msg.msg_iovlen = 1;
1036 	aiov.iov_base = uap->buf;
1037 	aiov.iov_len = uap->len;
1038 	msg.msg_control = 0;
1039 	msg.msg_flags = 0;
1040 	return (sendit(td, uap->s, &msg, uap->flags));
1041 }
1042 
1043 int
1044 osendmsg(td, uap)
1045 	struct thread *td;
1046 	struct osendmsg_args /* {
1047 		int	s;
1048 		caddr_t	msg;
1049 		int	flags;
1050 	} */ *uap;
1051 {
1052 	struct msghdr msg;
1053 	struct iovec *iov;
1054 	int error;
1055 
1056 	error = copyin(uap->msg, &msg, sizeof (struct omsghdr));
1057 	if (error != 0)
1058 		return (error);
1059 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
1060 	if (error != 0)
1061 		return (error);
1062 	msg.msg_iov = iov;
1063 	msg.msg_flags = MSG_COMPAT;
1064 	error = sendit(td, uap->s, &msg, uap->flags);
1065 	free(iov, M_IOV);
1066 	return (error);
1067 }
1068 #endif
1069 
1070 int
1071 sys_sendmsg(td, uap)
1072 	struct thread *td;
1073 	struct sendmsg_args /* {
1074 		int	s;
1075 		caddr_t	msg;
1076 		int	flags;
1077 	} */ *uap;
1078 {
1079 	struct msghdr msg;
1080 	struct iovec *iov;
1081 	int error;
1082 
1083 	error = copyin(uap->msg, &msg, sizeof (msg));
1084 	if (error != 0)
1085 		return (error);
1086 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
1087 	if (error != 0)
1088 		return (error);
1089 	msg.msg_iov = iov;
1090 #ifdef COMPAT_OLDSOCK
1091 	msg.msg_flags = 0;
1092 #endif
1093 	error = sendit(td, uap->s, &msg, uap->flags);
1094 	free(iov, M_IOV);
1095 	return (error);
1096 }
1097 
1098 int
1099 kern_recvit(td, s, mp, fromseg, controlp)
1100 	struct thread *td;
1101 	int s;
1102 	struct msghdr *mp;
1103 	enum uio_seg fromseg;
1104 	struct mbuf **controlp;
1105 {
1106 	struct uio auio;
1107 	struct iovec *iov;
1108 	struct mbuf *m, *control = NULL;
1109 	caddr_t ctlbuf;
1110 	struct file *fp;
1111 	struct socket *so;
1112 	struct sockaddr *fromsa = NULL;
1113 	cap_rights_t rights;
1114 #ifdef KTRACE
1115 	struct uio *ktruio = NULL;
1116 #endif
1117 	ssize_t len;
1118 	int error, i;
1119 
1120 	if (controlp != NULL)
1121 		*controlp = NULL;
1122 
1123 	AUDIT_ARG_FD(s);
1124 	error = getsock_cap(td->td_proc->p_fd, s,
1125 	    cap_rights_init(&rights, CAP_RECV), &fp, NULL);
1126 	if (error != 0)
1127 		return (error);
1128 	so = fp->f_data;
1129 
1130 #ifdef MAC
1131 	error = mac_socket_check_receive(td->td_ucred, so);
1132 	if (error != 0) {
1133 		fdrop(fp, td);
1134 		return (error);
1135 	}
1136 #endif
1137 
1138 	auio.uio_iov = mp->msg_iov;
1139 	auio.uio_iovcnt = mp->msg_iovlen;
1140 	auio.uio_segflg = UIO_USERSPACE;
1141 	auio.uio_rw = UIO_READ;
1142 	auio.uio_td = td;
1143 	auio.uio_offset = 0;			/* XXX */
1144 	auio.uio_resid = 0;
1145 	iov = mp->msg_iov;
1146 	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1147 		if ((auio.uio_resid += iov->iov_len) < 0) {
1148 			fdrop(fp, td);
1149 			return (EINVAL);
1150 		}
1151 	}
1152 #ifdef KTRACE
1153 	if (KTRPOINT(td, KTR_GENIO))
1154 		ktruio = cloneuio(&auio);
1155 #endif
1156 	len = auio.uio_resid;
1157 	error = soreceive(so, &fromsa, &auio, NULL,
1158 	    (mp->msg_control || controlp) ? &control : NULL,
1159 	    &mp->msg_flags);
1160 	if (error != 0) {
1161 		if (auio.uio_resid != len && (error == ERESTART ||
1162 		    error == EINTR || error == EWOULDBLOCK))
1163 			error = 0;
1164 	}
1165 	if (fromsa != NULL)
1166 		AUDIT_ARG_SOCKADDR(td, AT_FDCWD, fromsa);
1167 #ifdef KTRACE
1168 	if (ktruio != NULL) {
1169 		ktruio->uio_resid = len - auio.uio_resid;
1170 		ktrgenio(s, UIO_READ, ktruio, error);
1171 	}
1172 #endif
1173 	if (error != 0)
1174 		goto out;
1175 	td->td_retval[0] = len - auio.uio_resid;
1176 	if (mp->msg_name) {
1177 		len = mp->msg_namelen;
1178 		if (len <= 0 || fromsa == NULL)
1179 			len = 0;
1180 		else {
1181 			/* save sa_len before it is destroyed by MSG_COMPAT */
1182 			len = MIN(len, fromsa->sa_len);
1183 #ifdef COMPAT_OLDSOCK
1184 			if (mp->msg_flags & MSG_COMPAT)
1185 				((struct osockaddr *)fromsa)->sa_family =
1186 				    fromsa->sa_family;
1187 #endif
1188 			if (fromseg == UIO_USERSPACE) {
1189 				error = copyout(fromsa, mp->msg_name,
1190 				    (unsigned)len);
1191 				if (error != 0)
1192 					goto out;
1193 			} else
1194 				bcopy(fromsa, mp->msg_name, len);
1195 		}
1196 		mp->msg_namelen = len;
1197 	}
1198 	if (mp->msg_control && controlp == NULL) {
1199 #ifdef COMPAT_OLDSOCK
1200 		/*
1201 		 * We assume that old recvmsg calls won't receive access
1202 		 * rights and other control info, esp. as control info
1203 		 * is always optional and those options didn't exist in 4.3.
1204 		 * If we receive rights, trim the cmsghdr; anything else
1205 		 * is tossed.
1206 		 */
1207 		if (control && mp->msg_flags & MSG_COMPAT) {
1208 			if (mtod(control, struct cmsghdr *)->cmsg_level !=
1209 			    SOL_SOCKET ||
1210 			    mtod(control, struct cmsghdr *)->cmsg_type !=
1211 			    SCM_RIGHTS) {
1212 				mp->msg_controllen = 0;
1213 				goto out;
1214 			}
1215 			control->m_len -= sizeof (struct cmsghdr);
1216 			control->m_data += sizeof (struct cmsghdr);
1217 		}
1218 #endif
1219 		len = mp->msg_controllen;
1220 		m = control;
1221 		mp->msg_controllen = 0;
1222 		ctlbuf = mp->msg_control;
1223 
1224 		while (m && len > 0) {
1225 			unsigned int tocopy;
1226 
1227 			if (len >= m->m_len)
1228 				tocopy = m->m_len;
1229 			else {
1230 				mp->msg_flags |= MSG_CTRUNC;
1231 				tocopy = len;
1232 			}
1233 
1234 			if ((error = copyout(mtod(m, caddr_t),
1235 					ctlbuf, tocopy)) != 0)
1236 				goto out;
1237 
1238 			ctlbuf += tocopy;
1239 			len -= tocopy;
1240 			m = m->m_next;
1241 		}
1242 		mp->msg_controllen = ctlbuf - (caddr_t)mp->msg_control;
1243 	}
1244 out:
1245 	fdrop(fp, td);
1246 #ifdef KTRACE
1247 	if (fromsa && KTRPOINT(td, KTR_STRUCT))
1248 		ktrsockaddr(fromsa);
1249 #endif
1250 	free(fromsa, M_SONAME);
1251 
1252 	if (error == 0 && controlp != NULL)
1253 		*controlp = control;
1254 	else  if (control)
1255 		m_freem(control);
1256 
1257 	return (error);
1258 }
1259 
1260 static int
1261 recvit(td, s, mp, namelenp)
1262 	struct thread *td;
1263 	int s;
1264 	struct msghdr *mp;
1265 	void *namelenp;
1266 {
1267 	int error;
1268 
1269 	error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL);
1270 	if (error != 0)
1271 		return (error);
1272 	if (namelenp != NULL) {
1273 		error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t));
1274 #ifdef COMPAT_OLDSOCK
1275 		if (mp->msg_flags & MSG_COMPAT)
1276 			error = 0;	/* old recvfrom didn't check */
1277 #endif
1278 	}
1279 	return (error);
1280 }
1281 
1282 int
1283 sys_recvfrom(td, uap)
1284 	struct thread *td;
1285 	struct recvfrom_args /* {
1286 		int	s;
1287 		caddr_t	buf;
1288 		size_t	len;
1289 		int	flags;
1290 		struct sockaddr * __restrict	from;
1291 		socklen_t * __restrict fromlenaddr;
1292 	} */ *uap;
1293 {
1294 	struct msghdr msg;
1295 	struct iovec aiov;
1296 	int error;
1297 
1298 	if (uap->fromlenaddr) {
1299 		error = copyin(uap->fromlenaddr,
1300 		    &msg.msg_namelen, sizeof (msg.msg_namelen));
1301 		if (error != 0)
1302 			goto done2;
1303 	} else {
1304 		msg.msg_namelen = 0;
1305 	}
1306 	msg.msg_name = uap->from;
1307 	msg.msg_iov = &aiov;
1308 	msg.msg_iovlen = 1;
1309 	aiov.iov_base = uap->buf;
1310 	aiov.iov_len = uap->len;
1311 	msg.msg_control = 0;
1312 	msg.msg_flags = uap->flags;
1313 	error = recvit(td, uap->s, &msg, uap->fromlenaddr);
1314 done2:
1315 	return (error);
1316 }
1317 
1318 #ifdef COMPAT_OLDSOCK
1319 int
1320 orecvfrom(td, uap)
1321 	struct thread *td;
1322 	struct recvfrom_args *uap;
1323 {
1324 
1325 	uap->flags |= MSG_COMPAT;
1326 	return (sys_recvfrom(td, uap));
1327 }
1328 #endif
1329 
1330 #ifdef COMPAT_OLDSOCK
1331 int
1332 orecv(td, uap)
1333 	struct thread *td;
1334 	struct orecv_args /* {
1335 		int	s;
1336 		caddr_t	buf;
1337 		int	len;
1338 		int	flags;
1339 	} */ *uap;
1340 {
1341 	struct msghdr msg;
1342 	struct iovec aiov;
1343 
1344 	msg.msg_name = 0;
1345 	msg.msg_namelen = 0;
1346 	msg.msg_iov = &aiov;
1347 	msg.msg_iovlen = 1;
1348 	aiov.iov_base = uap->buf;
1349 	aiov.iov_len = uap->len;
1350 	msg.msg_control = 0;
1351 	msg.msg_flags = uap->flags;
1352 	return (recvit(td, uap->s, &msg, NULL));
1353 }
1354 
1355 /*
1356  * Old recvmsg.  This code takes advantage of the fact that the old msghdr
1357  * overlays the new one, missing only the flags, and with the (old) access
1358  * rights where the control fields are now.
1359  */
1360 int
1361 orecvmsg(td, uap)
1362 	struct thread *td;
1363 	struct orecvmsg_args /* {
1364 		int	s;
1365 		struct	omsghdr *msg;
1366 		int	flags;
1367 	} */ *uap;
1368 {
1369 	struct msghdr msg;
1370 	struct iovec *iov;
1371 	int error;
1372 
1373 	error = copyin(uap->msg, &msg, sizeof (struct omsghdr));
1374 	if (error != 0)
1375 		return (error);
1376 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
1377 	if (error != 0)
1378 		return (error);
1379 	msg.msg_flags = uap->flags | MSG_COMPAT;
1380 	msg.msg_iov = iov;
1381 	error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen);
1382 	if (msg.msg_controllen && error == 0)
1383 		error = copyout(&msg.msg_controllen,
1384 		    &uap->msg->msg_accrightslen, sizeof (int));
1385 	free(iov, M_IOV);
1386 	return (error);
1387 }
1388 #endif
1389 
1390 int
1391 sys_recvmsg(td, uap)
1392 	struct thread *td;
1393 	struct recvmsg_args /* {
1394 		int	s;
1395 		struct	msghdr *msg;
1396 		int	flags;
1397 	} */ *uap;
1398 {
1399 	struct msghdr msg;
1400 	struct iovec *uiov, *iov;
1401 	int error;
1402 
1403 	error = copyin(uap->msg, &msg, sizeof (msg));
1404 	if (error != 0)
1405 		return (error);
1406 	error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE);
1407 	if (error != 0)
1408 		return (error);
1409 	msg.msg_flags = uap->flags;
1410 #ifdef COMPAT_OLDSOCK
1411 	msg.msg_flags &= ~MSG_COMPAT;
1412 #endif
1413 	uiov = msg.msg_iov;
1414 	msg.msg_iov = iov;
1415 	error = recvit(td, uap->s, &msg, NULL);
1416 	if (error == 0) {
1417 		msg.msg_iov = uiov;
1418 		error = copyout(&msg, uap->msg, sizeof(msg));
1419 	}
1420 	free(iov, M_IOV);
1421 	return (error);
1422 }
1423 
1424 /* ARGSUSED */
1425 int
1426 sys_shutdown(td, uap)
1427 	struct thread *td;
1428 	struct shutdown_args /* {
1429 		int	s;
1430 		int	how;
1431 	} */ *uap;
1432 {
1433 	struct socket *so;
1434 	struct file *fp;
1435 	cap_rights_t rights;
1436 	int error;
1437 
1438 	AUDIT_ARG_FD(uap->s);
1439 	error = getsock_cap(td->td_proc->p_fd, uap->s,
1440 	    cap_rights_init(&rights, CAP_SHUTDOWN), &fp, NULL);
1441 	if (error == 0) {
1442 		so = fp->f_data;
1443 		error = soshutdown(so, uap->how);
1444 		fdrop(fp, td);
1445 	}
1446 	return (error);
1447 }
1448 
1449 /* ARGSUSED */
1450 int
1451 sys_setsockopt(td, uap)
1452 	struct thread *td;
1453 	struct setsockopt_args /* {
1454 		int	s;
1455 		int	level;
1456 		int	name;
1457 		caddr_t	val;
1458 		int	valsize;
1459 	} */ *uap;
1460 {
1461 
1462 	return (kern_setsockopt(td, uap->s, uap->level, uap->name,
1463 	    uap->val, UIO_USERSPACE, uap->valsize));
1464 }
1465 
1466 int
1467 kern_setsockopt(td, s, level, name, val, valseg, valsize)
1468 	struct thread *td;
1469 	int s;
1470 	int level;
1471 	int name;
1472 	void *val;
1473 	enum uio_seg valseg;
1474 	socklen_t valsize;
1475 {
1476 	struct socket *so;
1477 	struct file *fp;
1478 	struct sockopt sopt;
1479 	cap_rights_t rights;
1480 	int error;
1481 
1482 	if (val == NULL && valsize != 0)
1483 		return (EFAULT);
1484 	if ((int)valsize < 0)
1485 		return (EINVAL);
1486 
1487 	sopt.sopt_dir = SOPT_SET;
1488 	sopt.sopt_level = level;
1489 	sopt.sopt_name = name;
1490 	sopt.sopt_val = val;
1491 	sopt.sopt_valsize = valsize;
1492 	switch (valseg) {
1493 	case UIO_USERSPACE:
1494 		sopt.sopt_td = td;
1495 		break;
1496 	case UIO_SYSSPACE:
1497 		sopt.sopt_td = NULL;
1498 		break;
1499 	default:
1500 		panic("kern_setsockopt called with bad valseg");
1501 	}
1502 
1503 	AUDIT_ARG_FD(s);
1504 	error = getsock_cap(td->td_proc->p_fd, s,
1505 	    cap_rights_init(&rights, CAP_SETSOCKOPT), &fp, NULL);
1506 	if (error == 0) {
1507 		so = fp->f_data;
1508 		error = sosetopt(so, &sopt);
1509 		fdrop(fp, td);
1510 	}
1511 	return(error);
1512 }
1513 
1514 /* ARGSUSED */
1515 int
1516 sys_getsockopt(td, uap)
1517 	struct thread *td;
1518 	struct getsockopt_args /* {
1519 		int	s;
1520 		int	level;
1521 		int	name;
1522 		void * __restrict	val;
1523 		socklen_t * __restrict avalsize;
1524 	} */ *uap;
1525 {
1526 	socklen_t valsize;
1527 	int error;
1528 
1529 	if (uap->val) {
1530 		error = copyin(uap->avalsize, &valsize, sizeof (valsize));
1531 		if (error != 0)
1532 			return (error);
1533 	}
1534 
1535 	error = kern_getsockopt(td, uap->s, uap->level, uap->name,
1536 	    uap->val, UIO_USERSPACE, &valsize);
1537 
1538 	if (error == 0)
1539 		error = copyout(&valsize, uap->avalsize, sizeof (valsize));
1540 	return (error);
1541 }
1542 
1543 /*
1544  * Kernel version of getsockopt.
1545  * optval can be a userland or userspace. optlen is always a kernel pointer.
1546  */
1547 int
1548 kern_getsockopt(td, s, level, name, val, valseg, valsize)
1549 	struct thread *td;
1550 	int s;
1551 	int level;
1552 	int name;
1553 	void *val;
1554 	enum uio_seg valseg;
1555 	socklen_t *valsize;
1556 {
1557 	struct socket *so;
1558 	struct file *fp;
1559 	struct sockopt sopt;
1560 	cap_rights_t rights;
1561 	int error;
1562 
1563 	if (val == NULL)
1564 		*valsize = 0;
1565 	if ((int)*valsize < 0)
1566 		return (EINVAL);
1567 
1568 	sopt.sopt_dir = SOPT_GET;
1569 	sopt.sopt_level = level;
1570 	sopt.sopt_name = name;
1571 	sopt.sopt_val = val;
1572 	sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */
1573 	switch (valseg) {
1574 	case UIO_USERSPACE:
1575 		sopt.sopt_td = td;
1576 		break;
1577 	case UIO_SYSSPACE:
1578 		sopt.sopt_td = NULL;
1579 		break;
1580 	default:
1581 		panic("kern_getsockopt called with bad valseg");
1582 	}
1583 
1584 	AUDIT_ARG_FD(s);
1585 	error = getsock_cap(td->td_proc->p_fd, s,
1586 	    cap_rights_init(&rights, CAP_GETSOCKOPT), &fp, NULL);
1587 	if (error == 0) {
1588 		so = fp->f_data;
1589 		error = sogetopt(so, &sopt);
1590 		*valsize = sopt.sopt_valsize;
1591 		fdrop(fp, td);
1592 	}
1593 	return (error);
1594 }
1595 
1596 /*
1597  * getsockname1() - Get socket name.
1598  */
1599 /* ARGSUSED */
1600 static int
1601 getsockname1(td, uap, compat)
1602 	struct thread *td;
1603 	struct getsockname_args /* {
1604 		int	fdes;
1605 		struct sockaddr * __restrict asa;
1606 		socklen_t * __restrict alen;
1607 	} */ *uap;
1608 	int compat;
1609 {
1610 	struct sockaddr *sa;
1611 	socklen_t len;
1612 	int error;
1613 
1614 	error = copyin(uap->alen, &len, sizeof(len));
1615 	if (error != 0)
1616 		return (error);
1617 
1618 	error = kern_getsockname(td, uap->fdes, &sa, &len);
1619 	if (error != 0)
1620 		return (error);
1621 
1622 	if (len != 0) {
1623 #ifdef COMPAT_OLDSOCK
1624 		if (compat)
1625 			((struct osockaddr *)sa)->sa_family = sa->sa_family;
1626 #endif
1627 		error = copyout(sa, uap->asa, (u_int)len);
1628 	}
1629 	free(sa, M_SONAME);
1630 	if (error == 0)
1631 		error = copyout(&len, uap->alen, sizeof(len));
1632 	return (error);
1633 }
1634 
1635 int
1636 kern_getsockname(struct thread *td, int fd, struct sockaddr **sa,
1637     socklen_t *alen)
1638 {
1639 	struct socket *so;
1640 	struct file *fp;
1641 	cap_rights_t rights;
1642 	socklen_t len;
1643 	int error;
1644 
1645 	AUDIT_ARG_FD(fd);
1646 	error = getsock_cap(td->td_proc->p_fd, fd,
1647 	    cap_rights_init(&rights, CAP_GETSOCKNAME), &fp, NULL);
1648 	if (error != 0)
1649 		return (error);
1650 	so = fp->f_data;
1651 	*sa = NULL;
1652 	CURVNET_SET(so->so_vnet);
1653 	error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, sa);
1654 	CURVNET_RESTORE();
1655 	if (error != 0)
1656 		goto bad;
1657 	if (*sa == NULL)
1658 		len = 0;
1659 	else
1660 		len = MIN(*alen, (*sa)->sa_len);
1661 	*alen = len;
1662 #ifdef KTRACE
1663 	if (KTRPOINT(td, KTR_STRUCT))
1664 		ktrsockaddr(*sa);
1665 #endif
1666 bad:
1667 	fdrop(fp, td);
1668 	if (error != 0 && *sa != NULL) {
1669 		free(*sa, M_SONAME);
1670 		*sa = NULL;
1671 	}
1672 	return (error);
1673 }
1674 
1675 int
1676 sys_getsockname(td, uap)
1677 	struct thread *td;
1678 	struct getsockname_args *uap;
1679 {
1680 
1681 	return (getsockname1(td, uap, 0));
1682 }
1683 
1684 #ifdef COMPAT_OLDSOCK
1685 int
1686 ogetsockname(td, uap)
1687 	struct thread *td;
1688 	struct getsockname_args *uap;
1689 {
1690 
1691 	return (getsockname1(td, uap, 1));
1692 }
1693 #endif /* COMPAT_OLDSOCK */
1694 
1695 /*
1696  * getpeername1() - Get name of peer for connected socket.
1697  */
1698 /* ARGSUSED */
1699 static int
1700 getpeername1(td, uap, compat)
1701 	struct thread *td;
1702 	struct getpeername_args /* {
1703 		int	fdes;
1704 		struct sockaddr * __restrict	asa;
1705 		socklen_t * __restrict	alen;
1706 	} */ *uap;
1707 	int compat;
1708 {
1709 	struct sockaddr *sa;
1710 	socklen_t len;
1711 	int error;
1712 
1713 	error = copyin(uap->alen, &len, sizeof (len));
1714 	if (error != 0)
1715 		return (error);
1716 
1717 	error = kern_getpeername(td, uap->fdes, &sa, &len);
1718 	if (error != 0)
1719 		return (error);
1720 
1721 	if (len != 0) {
1722 #ifdef COMPAT_OLDSOCK
1723 		if (compat)
1724 			((struct osockaddr *)sa)->sa_family = sa->sa_family;
1725 #endif
1726 		error = copyout(sa, uap->asa, (u_int)len);
1727 	}
1728 	free(sa, M_SONAME);
1729 	if (error == 0)
1730 		error = copyout(&len, uap->alen, sizeof(len));
1731 	return (error);
1732 }
1733 
1734 int
1735 kern_getpeername(struct thread *td, int fd, struct sockaddr **sa,
1736     socklen_t *alen)
1737 {
1738 	struct socket *so;
1739 	struct file *fp;
1740 	cap_rights_t rights;
1741 	socklen_t len;
1742 	int error;
1743 
1744 	AUDIT_ARG_FD(fd);
1745 	error = getsock_cap(td->td_proc->p_fd, fd,
1746 	    cap_rights_init(&rights, CAP_GETPEERNAME), &fp, NULL);
1747 	if (error != 0)
1748 		return (error);
1749 	so = fp->f_data;
1750 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1751 		error = ENOTCONN;
1752 		goto done;
1753 	}
1754 	*sa = NULL;
1755 	CURVNET_SET(so->so_vnet);
1756 	error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, sa);
1757 	CURVNET_RESTORE();
1758 	if (error != 0)
1759 		goto bad;
1760 	if (*sa == NULL)
1761 		len = 0;
1762 	else
1763 		len = MIN(*alen, (*sa)->sa_len);
1764 	*alen = len;
1765 #ifdef KTRACE
1766 	if (KTRPOINT(td, KTR_STRUCT))
1767 		ktrsockaddr(*sa);
1768 #endif
1769 bad:
1770 	if (error != 0 && *sa != NULL) {
1771 		free(*sa, M_SONAME);
1772 		*sa = NULL;
1773 	}
1774 done:
1775 	fdrop(fp, td);
1776 	return (error);
1777 }
1778 
1779 int
1780 sys_getpeername(td, uap)
1781 	struct thread *td;
1782 	struct getpeername_args *uap;
1783 {
1784 
1785 	return (getpeername1(td, uap, 0));
1786 }
1787 
1788 #ifdef COMPAT_OLDSOCK
1789 int
1790 ogetpeername(td, uap)
1791 	struct thread *td;
1792 	struct ogetpeername_args *uap;
1793 {
1794 
1795 	/* XXX uap should have type `getpeername_args *' to begin with. */
1796 	return (getpeername1(td, (struct getpeername_args *)uap, 1));
1797 }
1798 #endif /* COMPAT_OLDSOCK */
1799 
1800 int
1801 sockargs(mp, buf, buflen, type)
1802 	struct mbuf **mp;
1803 	caddr_t buf;
1804 	int buflen, type;
1805 {
1806 	struct sockaddr *sa;
1807 	struct mbuf *m;
1808 	int error;
1809 
1810 	if (buflen > MLEN) {
1811 #ifdef COMPAT_OLDSOCK
1812 		if (type == MT_SONAME && buflen <= 112)
1813 			buflen = MLEN;		/* unix domain compat. hack */
1814 		else
1815 #endif
1816 			if (buflen > MCLBYTES)
1817 				return (EINVAL);
1818 	}
1819 	m = m_get2(buflen, M_WAITOK, type, 0);
1820 	m->m_len = buflen;
1821 	error = copyin(buf, mtod(m, caddr_t), (u_int)buflen);
1822 	if (error != 0)
1823 		(void) m_free(m);
1824 	else {
1825 		*mp = m;
1826 		if (type == MT_SONAME) {
1827 			sa = mtod(m, struct sockaddr *);
1828 
1829 #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
1830 			if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1831 				sa->sa_family = sa->sa_len;
1832 #endif
1833 			sa->sa_len = buflen;
1834 		}
1835 	}
1836 	return (error);
1837 }
1838 
1839 int
1840 getsockaddr(namp, uaddr, len)
1841 	struct sockaddr **namp;
1842 	caddr_t uaddr;
1843 	size_t len;
1844 {
1845 	struct sockaddr *sa;
1846 	int error;
1847 
1848 	if (len > SOCK_MAXADDRLEN)
1849 		return (ENAMETOOLONG);
1850 	if (len < offsetof(struct sockaddr, sa_data[0]))
1851 		return (EINVAL);
1852 	sa = malloc(len, M_SONAME, M_WAITOK);
1853 	error = copyin(uaddr, sa, len);
1854 	if (error != 0) {
1855 		free(sa, M_SONAME);
1856 	} else {
1857 #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN
1858 		if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1859 			sa->sa_family = sa->sa_len;
1860 #endif
1861 		sa->sa_len = len;
1862 		*namp = sa;
1863 	}
1864 	return (error);
1865 }
1866 
1867 static int
1868 filt_sfsync_attach(struct knote *kn)
1869 {
1870 	struct sendfile_sync *sfs = (struct sendfile_sync *) kn->kn_sdata;
1871 	struct knlist *knl = &sfs->klist;
1872 
1873 	SFSYNC_DPRINTF("%s: kn=%p, sfs=%p\n", __func__, kn, sfs);
1874 
1875 	/*
1876 	 * Validate that we actually received this via the kernel API.
1877 	 */
1878 	if ((kn->kn_flags & EV_FLAG1) == 0)
1879 		return (EPERM);
1880 
1881 	kn->kn_ptr.p_v = sfs;
1882 	kn->kn_flags &= ~EV_FLAG1;
1883 
1884 	knl->kl_lock(knl->kl_lockarg);
1885 	/*
1886 	 * If we're in the "freeing" state,
1887 	 * don't allow the add.  That way we don't
1888 	 * end up racing with some other thread that
1889 	 * is trying to finish some setup.
1890 	 */
1891 	if (sfs->state == SF_STATE_FREEING) {
1892 		knl->kl_unlock(knl->kl_lockarg);
1893 		return (EINVAL);
1894 	}
1895 	knlist_add(&sfs->klist, kn, 1);
1896 	knl->kl_unlock(knl->kl_lockarg);
1897 
1898 	return (0);
1899 }
1900 
1901 /*
1902  * Called when a knote is being detached.
1903  */
1904 static void
1905 filt_sfsync_detach(struct knote *kn)
1906 {
1907 	struct knlist *knl;
1908 	struct sendfile_sync *sfs;
1909 	int do_free = 0;
1910 
1911 	sfs = kn->kn_ptr.p_v;
1912 	knl = &sfs->klist;
1913 
1914 	SFSYNC_DPRINTF("%s: kn=%p, sfs=%p\n", __func__, kn, sfs);
1915 
1916 	knl->kl_lock(knl->kl_lockarg);
1917 	if (!knlist_empty(knl))
1918 		knlist_remove(knl, kn, 1);
1919 
1920 	/*
1921 	 * If the list is empty _AND_ the refcount is 0
1922 	 * _AND_ we've finished the setup phase and now
1923 	 * we're in the running phase, we can free the
1924 	 * underlying sendfile_sync.
1925 	 *
1926 	 * But we shouldn't do it before finishing the
1927 	 * underlying divorce from the knote.
1928 	 *
1929 	 * So, we have the sfsync lock held; transition
1930 	 * it to "freeing", then unlock, then free
1931 	 * normally.
1932 	 */
1933 	if (knlist_empty(knl)) {
1934 		if (sfs->state == SF_STATE_COMPLETED && sfs->count == 0) {
1935 			SFSYNC_DPRINTF("%s: (%llu) sfs=%p; completed, "
1936 			    "count==0, empty list: time to free!\n",
1937 			    __func__,
1938 			    (unsigned long long) curthread->td_tid,
1939 			    sfs);
1940 			sf_sync_set_state(sfs, SF_STATE_FREEING, 1);
1941 			do_free = 1;
1942 		}
1943 	}
1944 	knl->kl_unlock(knl->kl_lockarg);
1945 
1946 	/*
1947 	 * Only call free if we're the one who has transitioned things
1948 	 * to free.  Otherwise we could race with another thread that
1949 	 * is currently tearing things down.
1950 	 */
1951 	if (do_free == 1) {
1952 		SFSYNC_DPRINTF("%s: (%llu) sfs=%p, %s:%d\n",
1953 		    __func__,
1954 		    (unsigned long long) curthread->td_tid,
1955 		    sfs,
1956 		    __FILE__,
1957 		    __LINE__);
1958 		sf_sync_free(sfs);
1959 	}
1960 }
1961 
1962 static int
1963 filt_sfsync(struct knote *kn, long hint)
1964 {
1965 	struct sendfile_sync *sfs = (struct sendfile_sync *) kn->kn_ptr.p_v;
1966 	int ret;
1967 
1968 	SFSYNC_DPRINTF("%s: kn=%p, sfs=%p\n", __func__, kn, sfs);
1969 
1970 	/*
1971 	 * XXX add a lock assertion here!
1972 	 */
1973 	ret = (sfs->count == 0 && sfs->state == SF_STATE_COMPLETED);
1974 
1975 	return (ret);
1976 }
1977 
1978 /*
1979  * Add more references to a vm_page + sf_buf + sendfile_sync.
1980  */
1981 void
1982 sf_ext_ref(void *arg1, void *arg2)
1983 {
1984 	struct sf_buf *sf = arg1;
1985 	struct sendfile_sync *sfs = arg2;
1986 	vm_page_t pg = sf_buf_page(sf);
1987 
1988 	sf_buf_ref(sf);
1989 
1990 	vm_page_lock(pg);
1991 	vm_page_wire(pg);
1992 	vm_page_unlock(pg);
1993 
1994 	if (sfs != NULL) {
1995 		mtx_lock(&sfs->mtx);
1996 		KASSERT(sfs->count > 0, ("Sendfile sync botchup count == 0"));
1997 		sfs->count++;
1998 		mtx_unlock(&sfs->mtx);
1999 	}
2000 }
2001 
2002 /*
2003  * Detach mapped page and release resources back to the system.
2004  */
2005 void
2006 sf_ext_free(void *arg1, void *arg2)
2007 {
2008 	struct sf_buf *sf = arg1;
2009 	struct sendfile_sync *sfs = arg2;
2010 	vm_page_t pg = sf_buf_page(sf);
2011 
2012 	sf_buf_free(sf);
2013 
2014 	vm_page_lock(pg);
2015 	vm_page_unwire(pg, PQ_INACTIVE);
2016 	/*
2017 	 * Check for the object going away on us. This can
2018 	 * happen since we don't hold a reference to it.
2019 	 * If so, we're responsible for freeing the page.
2020 	 */
2021 	if (pg->wire_count == 0 && pg->object == NULL)
2022 		vm_page_free(pg);
2023 	vm_page_unlock(pg);
2024 
2025 	if (sfs != NULL)
2026 		sf_sync_deref(sfs);
2027 }
2028 
2029 /*
2030  * Called to remove a reference to a sf_sync object.
2031  *
2032  * This is generally done during the mbuf free path to signify
2033  * that one of the mbufs in the transaction has been completed.
2034  *
2035  * If we're doing SF_SYNC and the refcount is zero then we'll wake
2036  * up any waiters.
2037  *
2038  * IF we're doing SF_KQUEUE and the refcount is zero then we'll
2039  * fire off the knote.
2040  */
2041 void
2042 sf_sync_deref(struct sendfile_sync *sfs)
2043 {
2044 	int do_free = 0;
2045 
2046 	if (sfs == NULL)
2047 		return;
2048 
2049 	mtx_lock(&sfs->mtx);
2050 	KASSERT(sfs->count> 0, ("Sendfile sync botchup count == 0"));
2051 	sfs->count --;
2052 
2053 	/*
2054 	 * Only fire off the wakeup / kqueue notification if
2055 	 * we are in the running state.
2056 	 */
2057 	if (sfs->count == 0 && sfs->state == SF_STATE_COMPLETED) {
2058 		if (sfs->flags & SF_SYNC)
2059 			cv_signal(&sfs->cv);
2060 
2061 		if (sfs->flags & SF_KQUEUE) {
2062 			SFSYNC_DPRINTF("%s: (%llu) sfs=%p: knote!\n",
2063 			    __func__,
2064 			    (unsigned long long) curthread->td_tid,
2065 			    sfs);
2066 			KNOTE_LOCKED(&sfs->klist, 1);
2067 		}
2068 
2069 		/*
2070 		 * If we're not waiting around for a sync,
2071 		 * check if the knote list is empty.
2072 		 * If it is, we transition to free.
2073 		 *
2074 		 * XXX I think it's about time I added some state
2075 		 * or flag that says whether we're supposed to be
2076 		 * waiting around until we've done a signal.
2077 		 *
2078 		 * XXX Ie, the reason that I don't free it here
2079 		 * is because the caller will free the last reference,
2080 		 * not us.  That should be codified in some flag
2081 		 * that indicates "self-free" rather than checking
2082 		 * for SF_SYNC all the time.
2083 		 */
2084 		if ((sfs->flags & SF_SYNC) == 0 && knlist_empty(&sfs->klist)) {
2085 			SFSYNC_DPRINTF("%s: (%llu) sfs=%p; completed, "
2086 			    "count==0, empty list: time to free!\n",
2087 			    __func__,
2088 			    (unsigned long long) curthread->td_tid,
2089 			    sfs);
2090 			sf_sync_set_state(sfs, SF_STATE_FREEING, 1);
2091 			do_free = 1;
2092 		}
2093 
2094 	}
2095 	mtx_unlock(&sfs->mtx);
2096 
2097 	/*
2098 	 * Attempt to do a free here.
2099 	 *
2100 	 * We do this outside of the lock because it may destroy the
2101 	 * lock in question as it frees things.  We can optimise this
2102 	 * later.
2103 	 *
2104 	 * XXX yes, we should make it a requirement to hold the
2105 	 * lock across sf_sync_free().
2106 	 */
2107 	if (do_free == 1) {
2108 		SFSYNC_DPRINTF("%s: (%llu) sfs=%p\n",
2109 		    __func__,
2110 		    (unsigned long long) curthread->td_tid,
2111 		    sfs);
2112 		sf_sync_free(sfs);
2113 	}
2114 }
2115 
2116 /*
2117  * Allocate a sendfile_sync state structure.
2118  *
2119  * For now this only knows about the "sleep" sync, but later it will
2120  * grow various other personalities.
2121  */
2122 struct sendfile_sync *
2123 sf_sync_alloc(uint32_t flags)
2124 {
2125 	struct sendfile_sync *sfs;
2126 
2127 	sfs = uma_zalloc(zone_sfsync, M_WAITOK | M_ZERO);
2128 	mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF);
2129 	cv_init(&sfs->cv, "sendfile");
2130 	sfs->flags = flags;
2131 	sfs->state = SF_STATE_SETUP;
2132 	knlist_init_mtx(&sfs->klist, &sfs->mtx);
2133 
2134 	SFSYNC_DPRINTF("%s: sfs=%p, flags=0x%08x\n", __func__, sfs, sfs->flags);
2135 
2136 	return (sfs);
2137 }
2138 
2139 /*
2140  * Take a reference to a sfsync instance.
2141  *
2142  * This has to map 1:1 to free calls coming in via sf_ext_free(),
2143  * so typically this will be referenced once for each mbuf allocated.
2144  */
2145 void
2146 sf_sync_ref(struct sendfile_sync *sfs)
2147 {
2148 
2149 	if (sfs == NULL)
2150 		return;
2151 
2152 	mtx_lock(&sfs->mtx);
2153 	sfs->count++;
2154 	mtx_unlock(&sfs->mtx);
2155 }
2156 
2157 void
2158 sf_sync_syscall_wait(struct sendfile_sync *sfs)
2159 {
2160 
2161 	if (sfs == NULL)
2162 		return;
2163 
2164 	KASSERT(mtx_owned(&sfs->mtx), ("%s: sfs=%p: not locked but should be!",
2165 	    __func__,
2166 	    sfs));
2167 
2168 	/*
2169 	 * If we're not requested to wait during the syscall,
2170 	 * don't bother waiting.
2171 	 */
2172 	if ((sfs->flags & SF_SYNC) == 0)
2173 		goto out;
2174 
2175 	/*
2176 	 * This is a bit suboptimal and confusing, so bear with me.
2177 	 *
2178 	 * Ideally sf_sync_syscall_wait() will wait until
2179 	 * all pending mbuf transmit operations are done.
2180 	 * This means that when sendfile becomes async, it'll
2181 	 * run in the background and will transition from
2182 	 * RUNNING to COMPLETED when it's finished acquiring
2183 	 * new things to send.  Then, when the mbufs finish
2184 	 * sending, COMPLETED + sfs->count == 0 is enough to
2185 	 * know that no further work is being done.
2186 	 *
2187 	 * So, we will sleep on both RUNNING and COMPLETED.
2188 	 * It's up to the (in progress) async sendfile loop
2189 	 * to transition the sf_sync from RUNNING to
2190 	 * COMPLETED so the wakeup above will actually
2191 	 * do the cv_signal() call.
2192 	 */
2193 	if (sfs->state != SF_STATE_COMPLETED && sfs->state != SF_STATE_RUNNING)
2194 		goto out;
2195 
2196 	if (sfs->count != 0)
2197 		cv_wait(&sfs->cv, &sfs->mtx);
2198 	KASSERT(sfs->count == 0, ("sendfile sync still busy"));
2199 
2200 out:
2201 	return;
2202 }
2203 
2204 /*
2205  * Free an sf_sync if it's appropriate to.
2206  */
2207 void
2208 sf_sync_free(struct sendfile_sync *sfs)
2209 {
2210 
2211 	if (sfs == NULL)
2212 		return;
2213 
2214 	SFSYNC_DPRINTF("%s: (%lld) sfs=%p; called; state=%d, flags=0x%08x "
2215 	    "count=%d\n",
2216 	    __func__,
2217 	    (long long) curthread->td_tid,
2218 	    sfs,
2219 	    sfs->state,
2220 	    sfs->flags,
2221 	    sfs->count);
2222 
2223 	mtx_lock(&sfs->mtx);
2224 
2225 	/*
2226 	 * We keep the sf_sync around if the state is active,
2227 	 * we are doing kqueue notification and we have active
2228 	 * knotes.
2229 	 *
2230 	 * If the caller wants to free us right this second it
2231 	 * should transition this to the freeing state.
2232 	 *
2233 	 * So, complain loudly if they break this rule.
2234 	 */
2235 	if (sfs->state != SF_STATE_FREEING) {
2236 		printf("%s: (%llu) sfs=%p; not freeing; let's wait!\n",
2237 		    __func__,
2238 		    (unsigned long long) curthread->td_tid,
2239 		    sfs);
2240 		mtx_unlock(&sfs->mtx);
2241 		return;
2242 	}
2243 
2244 	KASSERT(sfs->count == 0, ("sendfile sync still busy"));
2245 	cv_destroy(&sfs->cv);
2246 	/*
2247 	 * This doesn't call knlist_detach() on each knote; it just frees
2248 	 * the entire list.
2249 	 */
2250 	knlist_delete(&sfs->klist, curthread, 1);
2251 	mtx_destroy(&sfs->mtx);
2252 	SFSYNC_DPRINTF("%s: (%llu) sfs=%p; freeing\n",
2253 	    __func__,
2254 	    (unsigned long long) curthread->td_tid,
2255 	    sfs);
2256 	uma_zfree(zone_sfsync, sfs);
2257 }
2258 
2259 /*
2260  * Setup a sf_sync to post a kqueue notification when things are complete.
2261  */
2262 int
2263 sf_sync_kqueue_setup(struct sendfile_sync *sfs, struct sf_hdtr_kq *sfkq)
2264 {
2265 	struct kevent kev;
2266 	int error;
2267 
2268 	sfs->flags |= SF_KQUEUE;
2269 
2270 	/* Check the flags are valid */
2271 	if ((sfkq->kq_flags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0)
2272 		return (EINVAL);
2273 
2274 	SFSYNC_DPRINTF("%s: sfs=%p: kqfd=%d, flags=0x%08x, ident=%p, udata=%p\n",
2275 	    __func__,
2276 	    sfs,
2277 	    sfkq->kq_fd,
2278 	    sfkq->kq_flags,
2279 	    (void *) sfkq->kq_ident,
2280 	    (void *) sfkq->kq_udata);
2281 
2282 	/* Setup and register a knote on the given kqfd. */
2283 	kev.ident = (uintptr_t) sfkq->kq_ident;
2284 	kev.filter = EVFILT_SENDFILE;
2285 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | sfkq->kq_flags;
2286 	kev.data = (intptr_t) sfs;
2287 	kev.udata = sfkq->kq_udata;
2288 
2289 	error = kqfd_register(sfkq->kq_fd, &kev, curthread, 1);
2290 	if (error != 0) {
2291 		SFSYNC_DPRINTF("%s: returned %d\n", __func__, error);
2292 	}
2293 	return (error);
2294 }
2295 
2296 void
2297 sf_sync_set_state(struct sendfile_sync *sfs, sendfile_sync_state_t state,
2298     int islocked)
2299 {
2300 	sendfile_sync_state_t old_state;
2301 
2302 	if (! islocked)
2303 		mtx_lock(&sfs->mtx);
2304 
2305 	/*
2306 	 * Update our current state.
2307 	 */
2308 	old_state = sfs->state;
2309 	sfs->state = state;
2310 	SFSYNC_DPRINTF("%s: (%llu) sfs=%p; going from %d to %d\n",
2311 	    __func__,
2312 	    (unsigned long long) curthread->td_tid,
2313 	    sfs,
2314 	    old_state,
2315 	    state);
2316 
2317 	/*
2318 	 * If we're transitioning from RUNNING to COMPLETED and the count is
2319 	 * zero, then post the knote.  The caller may have completed the
2320 	 * send before we updated the state to COMPLETED and we need to make
2321 	 * sure this is communicated.
2322 	 */
2323 	if (old_state == SF_STATE_RUNNING
2324 	    && state == SF_STATE_COMPLETED
2325 	    && sfs->count == 0
2326 	    && sfs->flags & SF_KQUEUE) {
2327 		SFSYNC_DPRINTF("%s: (%llu) sfs=%p: triggering knote!\n",
2328 		    __func__,
2329 		    (unsigned long long) curthread->td_tid,
2330 		    sfs);
2331 		KNOTE_LOCKED(&sfs->klist, 1);
2332 	}
2333 
2334 	if (! islocked)
2335 		mtx_unlock(&sfs->mtx);
2336 }
2337 
2338 /*
2339  * Set the retval/errno for the given transaction.
2340  *
2341  * This will eventually/ideally be used when the KNOTE is fired off
2342  * to signify the completion of this transaction.
2343  *
2344  * The sfsync lock should be held before entering this function.
2345  */
2346 void
2347 sf_sync_set_retval(struct sendfile_sync *sfs, off_t retval, int xerrno)
2348 {
2349 
2350 	KASSERT(mtx_owned(&sfs->mtx), ("%s: sfs=%p: not locked but should be!",
2351 	    __func__,
2352 	    sfs));
2353 
2354 	SFSYNC_DPRINTF("%s: (%llu) sfs=%p: errno=%d, retval=%jd\n",
2355 	    __func__,
2356 	    (unsigned long long) curthread->td_tid,
2357 	    sfs,
2358 	    xerrno,
2359 	    (intmax_t) retval);
2360 
2361 	sfs->retval = retval;
2362 	sfs->xerrno = xerrno;
2363 }
2364 
2365 /*
2366  * sendfile(2)
2367  *
2368  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
2369  *	 struct sf_hdtr *hdtr, off_t *sbytes, int flags)
2370  *
2371  * Send a file specified by 'fd' and starting at 'offset' to a socket
2372  * specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes ==
2373  * 0.  Optionally add a header and/or trailer to the socket output.  If
2374  * specified, write the total number of bytes sent into *sbytes.
2375  */
2376 int
2377 sys_sendfile(struct thread *td, struct sendfile_args *uap)
2378 {
2379 
2380 	return (do_sendfile(td, uap, 0));
2381 }
2382 
2383 int
2384 _do_sendfile(struct thread *td, int src_fd, int sock_fd, int flags,
2385     int compat, off_t offset, size_t nbytes, off_t *sbytes,
2386     struct uio *hdr_uio,
2387     struct uio *trl_uio, struct sf_hdtr_kq *hdtr_kq)
2388 {
2389 	cap_rights_t rights;
2390 	struct sendfile_sync *sfs = NULL;
2391 	struct file *fp;
2392 	int error;
2393 	int do_kqueue = 0;
2394 	int do_free = 0;
2395 
2396 	AUDIT_ARG_FD(src_fd);
2397 
2398 	if (hdtr_kq != NULL)
2399 		do_kqueue = 1;
2400 
2401 	/*
2402 	 * sendfile(2) can start at any offset within a file so we require
2403 	 * CAP_READ+CAP_SEEK = CAP_PREAD.
2404 	 */
2405 	if ((error = fget_read(td, src_fd,
2406 	    cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) {
2407 		goto out;
2408 	}
2409 
2410 	/*
2411 	 * IF SF_KQUEUE is set but we haven't copied in anything for
2412 	 * kqueue data, error out.
2413 	 */
2414 	if (flags & SF_KQUEUE && do_kqueue == 0) {
2415 		SFSYNC_DPRINTF("%s: SF_KQUEUE but no KQUEUE data!\n", __func__);
2416 		goto out;
2417 	}
2418 
2419 	/*
2420 	 * If we need to wait for completion, initialise the sfsync
2421 	 * state here.
2422 	 */
2423 	if (flags & (SF_SYNC | SF_KQUEUE))
2424 		sfs = sf_sync_alloc(flags & (SF_SYNC | SF_KQUEUE));
2425 
2426 	if (flags & SF_KQUEUE) {
2427 		error = sf_sync_kqueue_setup(sfs, hdtr_kq);
2428 		if (error) {
2429 			SFSYNC_DPRINTF("%s: (%llu) error; sfs=%p\n",
2430 			    __func__,
2431 			    (unsigned long long) curthread->td_tid,
2432 			    sfs);
2433 			sf_sync_set_state(sfs, SF_STATE_FREEING, 0);
2434 			sf_sync_free(sfs);
2435 			goto out;
2436 		}
2437 	}
2438 
2439 	/*
2440 	 * Do the sendfile call.
2441 	 *
2442 	 * If this fails, it'll free the mbuf chain which will free up the
2443 	 * sendfile_sync references.
2444 	 */
2445 	error = fo_sendfile(fp, sock_fd, hdr_uio, trl_uio, offset,
2446 	    nbytes, sbytes, flags, compat ? SFK_COMPAT : 0, sfs, td);
2447 
2448 	/*
2449 	 * If the sendfile call succeeded, transition the sf_sync state
2450 	 * to RUNNING, then COMPLETED.
2451 	 *
2452 	 * If the sendfile call failed, then the sendfile call may have
2453 	 * actually sent some data first - so we check to see whether
2454 	 * any data was sent.  If some data was queued (ie, count > 0)
2455 	 * then we can't call free; we have to wait until the partial
2456 	 * transaction completes before we continue along.
2457 	 *
2458 	 * This has the side effect of firing off the knote
2459 	 * if the refcount has hit zero by the time we get here.
2460 	 */
2461 	if (sfs != NULL) {
2462 		mtx_lock(&sfs->mtx);
2463 		if (error == 0 || sfs->count > 0) {
2464 			/*
2465 			 * When it's time to do async sendfile, the transition
2466 			 * to RUNNING signifies that we're actually actively
2467 			 * adding and completing mbufs.  When the last disk
2468 			 * buffer is read (ie, when we're not doing any
2469 			 * further read IO and all subsequent stuff is mbuf
2470 			 * transmissions) we'll transition to COMPLETED
2471 			 * and when the final mbuf is freed, the completion
2472 			 * will be signaled.
2473 			 */
2474 			sf_sync_set_state(sfs, SF_STATE_RUNNING, 1);
2475 
2476 			/*
2477 			 * Set the retval before we signal completed.
2478 			 * If we do it the other way around then transitioning to
2479 			 * COMPLETED may post the knote before you set the return
2480 			 * status!
2481 			 *
2482 			 * XXX for now, errno is always 0, as we don't post
2483 			 * knotes if sendfile failed.  Maybe that'll change later.
2484 			 */
2485 			sf_sync_set_retval(sfs, *sbytes, error);
2486 
2487 			/*
2488 			 * And now transition to completed, which will kick off
2489 			 * the knote if required.
2490 			 */
2491 			sf_sync_set_state(sfs, SF_STATE_COMPLETED, 1);
2492 		} else {
2493 			/*
2494 			 * Error isn't zero, sfs_count is zero, so we
2495 			 * won't have some other thing to wake things up.
2496 			 * Thus free.
2497 			 */
2498 			sf_sync_set_state(sfs, SF_STATE_FREEING, 1);
2499 			do_free = 1;
2500 		}
2501 
2502 		/*
2503 		 * Next - wait if appropriate.
2504 		 */
2505 		sf_sync_syscall_wait(sfs);
2506 
2507 		/*
2508 		 * If we're not doing kqueue notifications, we can
2509 		 * transition this immediately to the freeing state.
2510 		 */
2511 		if ((sfs->flags & SF_KQUEUE) == 0) {
2512 			sf_sync_set_state(sfs, SF_STATE_FREEING, 1);
2513 			do_free = 1;
2514 		}
2515 
2516 		mtx_unlock(&sfs->mtx);
2517 	}
2518 
2519 	/*
2520 	 * If do_free is set, free here.
2521 	 *
2522 	 * If we're doing no-kqueue notification and it's just sleep notification,
2523 	 * we also do free; it's the only chance we have.
2524 	 */
2525 	if (sfs != NULL && do_free == 1) {
2526 		sf_sync_free(sfs);
2527 	}
2528 
2529 	/*
2530 	 * XXX Should we wait until the send has completed before freeing the source
2531 	 * file handle? It's the previous behaviour, sure, but is it required?
2532 	 * We've wired down the page references after all.
2533 	 */
2534 	fdrop(fp, td);
2535 
2536 out:
2537 	/* Return error */
2538 	return (error);
2539 }
2540 
2541 
2542 static int
2543 do_sendfile(struct thread *td, struct sendfile_args *uap, int compat)
2544 {
2545 	struct sf_hdtr hdtr;
2546 	struct sf_hdtr_kq hdtr_kq;
2547 	struct uio *hdr_uio, *trl_uio;
2548 	int error;
2549 	off_t sbytes;
2550 	int do_kqueue = 0;
2551 
2552 	/*
2553 	 * File offset must be positive.  If it goes beyond EOF
2554 	 * we send only the header/trailer and no payload data.
2555 	 */
2556 	if (uap->offset < 0)
2557 		return (EINVAL);
2558 
2559 	hdr_uio = trl_uio = NULL;
2560 
2561 	if (uap->hdtr != NULL) {
2562 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
2563 		if (error != 0)
2564 			goto out;
2565 		if (hdtr.headers != NULL) {
2566 			error = copyinuio(hdtr.headers, hdtr.hdr_cnt, &hdr_uio);
2567 			if (error != 0)
2568 				goto out;
2569 		}
2570 		if (hdtr.trailers != NULL) {
2571 			error = copyinuio(hdtr.trailers, hdtr.trl_cnt, &trl_uio);
2572 			if (error != 0)
2573 				goto out;
2574 		}
2575 
2576 		/*
2577 		 * If SF_KQUEUE is set, then we need to also copy in
2578 		 * the kqueue data after the normal hdtr set and set
2579 		 * do_kqueue=1.
2580 		 */
2581 		if (uap->flags & SF_KQUEUE) {
2582 			error = copyin(((char *) uap->hdtr) + sizeof(hdtr),
2583 			    &hdtr_kq,
2584 			    sizeof(hdtr_kq));
2585 			if (error != 0)
2586 				goto out;
2587 			do_kqueue = 1;
2588 		}
2589 	}
2590 
2591 	/* Call sendfile */
2592 	error = _do_sendfile(td, uap->fd, uap->s, uap->flags, compat,
2593 	    uap->offset, uap->nbytes, &sbytes, hdr_uio, trl_uio, &hdtr_kq);
2594 
2595 	if (uap->sbytes != NULL) {
2596 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2597 	}
2598 out:
2599 	free(hdr_uio, M_IOV);
2600 	free(trl_uio, M_IOV);
2601 	return (error);
2602 }
2603 
2604 #ifdef COMPAT_FREEBSD4
2605 int
2606 freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap)
2607 {
2608 	struct sendfile_args args;
2609 
2610 	args.fd = uap->fd;
2611 	args.s = uap->s;
2612 	args.offset = uap->offset;
2613 	args.nbytes = uap->nbytes;
2614 	args.hdtr = uap->hdtr;
2615 	args.sbytes = uap->sbytes;
2616 	args.flags = uap->flags;
2617 
2618 	return (do_sendfile(td, &args, 1));
2619 }
2620 #endif /* COMPAT_FREEBSD4 */
2621 
2622 static int
2623 sendfile_readpage(vm_object_t obj, struct vnode *vp, int nd,
2624     off_t off, int xfsize, int bsize, struct thread *td, vm_page_t *res)
2625 {
2626 	vm_page_t m;
2627 	vm_pindex_t pindex;
2628 	ssize_t resid;
2629 	int error, readahead, rv;
2630 
2631 	pindex = OFF_TO_IDX(off);
2632 	VM_OBJECT_WLOCK(obj);
2633 	m = vm_page_grab(obj, pindex, (vp != NULL ? VM_ALLOC_NOBUSY |
2634 	    VM_ALLOC_IGN_SBUSY : 0) | VM_ALLOC_WIRED | VM_ALLOC_NORMAL);
2635 
2636 	/*
2637 	 * Check if page is valid for what we need, otherwise initiate I/O.
2638 	 *
2639 	 * The non-zero nd argument prevents disk I/O, instead we
2640 	 * return the caller what he specified in nd.  In particular,
2641 	 * if we already turned some pages into mbufs, nd == EAGAIN
2642 	 * and the main function send them the pages before we come
2643 	 * here again and block.
2644 	 */
2645 	if (m->valid != 0 && vm_page_is_valid(m, off & PAGE_MASK, xfsize)) {
2646 		if (vp == NULL)
2647 			vm_page_xunbusy(m);
2648 		VM_OBJECT_WUNLOCK(obj);
2649 		*res = m;
2650 		return (0);
2651 	} else if (nd != 0) {
2652 		if (vp == NULL)
2653 			vm_page_xunbusy(m);
2654 		error = nd;
2655 		goto free_page;
2656 	}
2657 
2658 	/*
2659 	 * Get the page from backing store.
2660 	 */
2661 	error = 0;
2662 	if (vp != NULL) {
2663 		VM_OBJECT_WUNLOCK(obj);
2664 		readahead = sfreadahead * MAXBSIZE;
2665 
2666 		/*
2667 		 * Use vn_rdwr() instead of the pager interface for
2668 		 * the vnode, to allow the read-ahead.
2669 		 *
2670 		 * XXXMAC: Because we don't have fp->f_cred here, we
2671 		 * pass in NOCRED.  This is probably wrong, but is
2672 		 * consistent with our original implementation.
2673 		 */
2674 		error = vn_rdwr(UIO_READ, vp, NULL, readahead, trunc_page(off),
2675 		    UIO_NOCOPY, IO_NODELOCKED | IO_VMIO | ((readahead /
2676 		    bsize) << IO_SEQSHIFT), td->td_ucred, NOCRED, &resid, td);
2677 		SFSTAT_INC(sf_iocnt);
2678 		VM_OBJECT_WLOCK(obj);
2679 	} else {
2680 		if (vm_pager_has_page(obj, pindex, NULL, NULL)) {
2681 			rv = vm_pager_get_pages(obj, &m, 1, 0);
2682 			SFSTAT_INC(sf_iocnt);
2683 			m = vm_page_lookup(obj, pindex);
2684 			if (m == NULL)
2685 				error = EIO;
2686 			else if (rv != VM_PAGER_OK) {
2687 				vm_page_lock(m);
2688 				vm_page_free(m);
2689 				vm_page_unlock(m);
2690 				m = NULL;
2691 				error = EIO;
2692 			}
2693 		} else {
2694 			pmap_zero_page(m);
2695 			m->valid = VM_PAGE_BITS_ALL;
2696 			m->dirty = 0;
2697 		}
2698 		if (m != NULL)
2699 			vm_page_xunbusy(m);
2700 	}
2701 	if (error == 0) {
2702 		*res = m;
2703 	} else if (m != NULL) {
2704 free_page:
2705 		vm_page_lock(m);
2706 		vm_page_unwire(m, PQ_INACTIVE);
2707 
2708 		/*
2709 		 * See if anyone else might know about this page.  If
2710 		 * not and it is not valid, then free it.
2711 		 */
2712 		if (m->wire_count == 0 && m->valid == 0 && !vm_page_busied(m))
2713 			vm_page_free(m);
2714 		vm_page_unlock(m);
2715 	}
2716 	KASSERT(error != 0 || (m->wire_count > 0 &&
2717 	    vm_page_is_valid(m, off & PAGE_MASK, xfsize)),
2718 	    ("wrong page state m %p off %#jx xfsize %d", m, (uintmax_t)off,
2719 	    xfsize));
2720 	VM_OBJECT_WUNLOCK(obj);
2721 	return (error);
2722 }
2723 
2724 static int
2725 sendfile_getobj(struct thread *td, struct file *fp, vm_object_t *obj_res,
2726     struct vnode **vp_res, struct shmfd **shmfd_res, off_t *obj_size,
2727     int *bsize)
2728 {
2729 	struct vattr va;
2730 	vm_object_t obj;
2731 	struct vnode *vp;
2732 	struct shmfd *shmfd;
2733 	int error;
2734 
2735 	vp = *vp_res = NULL;
2736 	obj = NULL;
2737 	shmfd = *shmfd_res = NULL;
2738 	*bsize = 0;
2739 
2740 	/*
2741 	 * The file descriptor must be a regular file and have a
2742 	 * backing VM object.
2743 	 */
2744 	if (fp->f_type == DTYPE_VNODE) {
2745 		vp = fp->f_vnode;
2746 		vn_lock(vp, LK_SHARED | LK_RETRY);
2747 		if (vp->v_type != VREG) {
2748 			error = EINVAL;
2749 			goto out;
2750 		}
2751 		*bsize = vp->v_mount->mnt_stat.f_iosize;
2752 		error = VOP_GETATTR(vp, &va, td->td_ucred);
2753 		if (error != 0)
2754 			goto out;
2755 		*obj_size = va.va_size;
2756 		obj = vp->v_object;
2757 		if (obj == NULL) {
2758 			error = EINVAL;
2759 			goto out;
2760 		}
2761 	} else if (fp->f_type == DTYPE_SHM) {
2762 		shmfd = fp->f_data;
2763 		obj = shmfd->shm_object;
2764 		*obj_size = shmfd->shm_size;
2765 	} else {
2766 		error = EINVAL;
2767 		goto out;
2768 	}
2769 
2770 	VM_OBJECT_WLOCK(obj);
2771 	if ((obj->flags & OBJ_DEAD) != 0) {
2772 		VM_OBJECT_WUNLOCK(obj);
2773 		error = EBADF;
2774 		goto out;
2775 	}
2776 
2777 	/*
2778 	 * Temporarily increase the backing VM object's reference
2779 	 * count so that a forced reclamation of its vnode does not
2780 	 * immediately destroy it.
2781 	 */
2782 	vm_object_reference_locked(obj);
2783 	VM_OBJECT_WUNLOCK(obj);
2784 	*obj_res = obj;
2785 	*vp_res = vp;
2786 	*shmfd_res = shmfd;
2787 
2788 out:
2789 	if (vp != NULL)
2790 		VOP_UNLOCK(vp, 0);
2791 	return (error);
2792 }
2793 
2794 static int
2795 kern_sendfile_getsock(struct thread *td, int s, struct file **sock_fp,
2796     struct socket **so)
2797 {
2798 	cap_rights_t rights;
2799 	int error;
2800 
2801 	*sock_fp = NULL;
2802 	*so = NULL;
2803 
2804 	/*
2805 	 * The socket must be a stream socket and connected.
2806 	 */
2807 	error = getsock_cap(td->td_proc->p_fd, s, cap_rights_init(&rights,
2808 	    CAP_SEND), sock_fp, NULL);
2809 	if (error != 0)
2810 		return (error);
2811 	*so = (*sock_fp)->f_data;
2812 	if ((*so)->so_type != SOCK_STREAM)
2813 		return (EINVAL);
2814 	if (((*so)->so_state & SS_ISCONNECTED) == 0)
2815 		return (ENOTCONN);
2816 	return (0);
2817 }
2818 
2819 int
2820 vn_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
2821     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
2822     int kflags, struct sendfile_sync *sfs, struct thread *td)
2823 {
2824 	struct file *sock_fp;
2825 	struct vnode *vp;
2826 	struct vm_object *obj;
2827 	struct socket *so;
2828 	struct mbuf *m;
2829 	struct sf_buf *sf;
2830 	struct vm_page *pg;
2831 	struct shmfd *shmfd;
2832 	struct vattr va;
2833 	off_t off, xfsize, fsbytes, sbytes, rem, obj_size;
2834 	int error, bsize, nd, hdrlen, mnw;
2835 
2836 	pg = NULL;
2837 	obj = NULL;
2838 	so = NULL;
2839 	m = NULL;
2840 	fsbytes = sbytes = 0;
2841 	hdrlen = mnw = 0;
2842 	rem = nbytes;
2843 	obj_size = 0;
2844 
2845 	error = sendfile_getobj(td, fp, &obj, &vp, &shmfd, &obj_size, &bsize);
2846 	if (error != 0)
2847 		return (error);
2848 	if (rem == 0)
2849 		rem = obj_size;
2850 
2851 	error = kern_sendfile_getsock(td, sockfd, &sock_fp, &so);
2852 	if (error != 0)
2853 		goto out;
2854 
2855 	/*
2856 	 * Do not wait on memory allocations but return ENOMEM for
2857 	 * caller to retry later.
2858 	 * XXX: Experimental.
2859 	 */
2860 	if (flags & SF_MNOWAIT)
2861 		mnw = 1;
2862 
2863 #ifdef MAC
2864 	error = mac_socket_check_send(td->td_ucred, so);
2865 	if (error != 0)
2866 		goto out;
2867 #endif
2868 
2869 	/* If headers are specified copy them into mbufs. */
2870 	if (hdr_uio != NULL) {
2871 		hdr_uio->uio_td = td;
2872 		hdr_uio->uio_rw = UIO_WRITE;
2873 		if (hdr_uio->uio_resid > 0) {
2874 			/*
2875 			 * In FBSD < 5.0 the nbytes to send also included
2876 			 * the header.  If compat is specified subtract the
2877 			 * header size from nbytes.
2878 			 */
2879 			if (kflags & SFK_COMPAT) {
2880 				if (nbytes > hdr_uio->uio_resid)
2881 					nbytes -= hdr_uio->uio_resid;
2882 				else
2883 					nbytes = 0;
2884 			}
2885 			m = m_uiotombuf(hdr_uio, (mnw ? M_NOWAIT : M_WAITOK),
2886 			    0, 0, 0);
2887 			if (m == NULL) {
2888 				error = mnw ? EAGAIN : ENOBUFS;
2889 				goto out;
2890 			}
2891 			hdrlen = m_length(m, NULL);
2892 		}
2893 	}
2894 
2895 	/*
2896 	 * Protect against multiple writers to the socket.
2897 	 *
2898 	 * XXXRW: Historically this has assumed non-interruptibility, so now
2899 	 * we implement that, but possibly shouldn't.
2900 	 */
2901 	(void)sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR);
2902 
2903 	/*
2904 	 * Loop through the pages of the file, starting with the requested
2905 	 * offset. Get a file page (do I/O if necessary), map the file page
2906 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
2907 	 * it on the socket.
2908 	 * This is done in two loops.  The inner loop turns as many pages
2909 	 * as it can, up to available socket buffer space, without blocking
2910 	 * into mbufs to have it bulk delivered into the socket send buffer.
2911 	 * The outer loop checks the state and available space of the socket
2912 	 * and takes care of the overall progress.
2913 	 */
2914 	for (off = offset; ; ) {
2915 		struct mbuf *mtail;
2916 		int loopbytes;
2917 		int space;
2918 		int done;
2919 
2920 		if ((nbytes != 0 && nbytes == fsbytes) ||
2921 		    (nbytes == 0 && obj_size == fsbytes))
2922 			break;
2923 
2924 		mtail = NULL;
2925 		loopbytes = 0;
2926 		space = 0;
2927 		done = 0;
2928 
2929 		/*
2930 		 * Check the socket state for ongoing connection,
2931 		 * no errors and space in socket buffer.
2932 		 * If space is low allow for the remainder of the
2933 		 * file to be processed if it fits the socket buffer.
2934 		 * Otherwise block in waiting for sufficient space
2935 		 * to proceed, or if the socket is nonblocking, return
2936 		 * to userland with EAGAIN while reporting how far
2937 		 * we've come.
2938 		 * We wait until the socket buffer has significant free
2939 		 * space to do bulk sends.  This makes good use of file
2940 		 * system read ahead and allows packet segmentation
2941 		 * offloading hardware to take over lots of work.  If
2942 		 * we were not careful here we would send off only one
2943 		 * sfbuf at a time.
2944 		 */
2945 		SOCKBUF_LOCK(&so->so_snd);
2946 		if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2)
2947 			so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2;
2948 retry_space:
2949 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2950 			error = EPIPE;
2951 			SOCKBUF_UNLOCK(&so->so_snd);
2952 			goto done;
2953 		} else if (so->so_error) {
2954 			error = so->so_error;
2955 			so->so_error = 0;
2956 			SOCKBUF_UNLOCK(&so->so_snd);
2957 			goto done;
2958 		}
2959 		space = sbspace(&so->so_snd);
2960 		if (space < rem &&
2961 		    (space <= 0 ||
2962 		     space < so->so_snd.sb_lowat)) {
2963 			if (so->so_state & SS_NBIO) {
2964 				SOCKBUF_UNLOCK(&so->so_snd);
2965 				error = EAGAIN;
2966 				goto done;
2967 			}
2968 			/*
2969 			 * sbwait drops the lock while sleeping.
2970 			 * When we loop back to retry_space the
2971 			 * state may have changed and we retest
2972 			 * for it.
2973 			 */
2974 			error = sbwait(&so->so_snd);
2975 			/*
2976 			 * An error from sbwait usually indicates that we've
2977 			 * been interrupted by a signal. If we've sent anything
2978 			 * then return bytes sent, otherwise return the error.
2979 			 */
2980 			if (error != 0) {
2981 				SOCKBUF_UNLOCK(&so->so_snd);
2982 				goto done;
2983 			}
2984 			goto retry_space;
2985 		}
2986 		SOCKBUF_UNLOCK(&so->so_snd);
2987 
2988 		/*
2989 		 * Reduce space in the socket buffer by the size of
2990 		 * the header mbuf chain.
2991 		 * hdrlen is set to 0 after the first loop.
2992 		 */
2993 		space -= hdrlen;
2994 
2995 		if (vp != NULL) {
2996 			error = vn_lock(vp, LK_SHARED);
2997 			if (error != 0)
2998 				goto done;
2999 			error = VOP_GETATTR(vp, &va, td->td_ucred);
3000 			if (error != 0 || off >= va.va_size) {
3001 				VOP_UNLOCK(vp, 0);
3002 				goto done;
3003 			}
3004 			obj_size = va.va_size;
3005 		}
3006 
3007 		/*
3008 		 * Loop and construct maximum sized mbuf chain to be bulk
3009 		 * dumped into socket buffer.
3010 		 */
3011 		while (space > loopbytes) {
3012 			vm_offset_t pgoff;
3013 			struct mbuf *m0;
3014 
3015 			/*
3016 			 * Calculate the amount to transfer.
3017 			 * Not to exceed a page, the EOF,
3018 			 * or the passed in nbytes.
3019 			 */
3020 			pgoff = (vm_offset_t)(off & PAGE_MASK);
3021 			rem = obj_size - offset;
3022 			if (nbytes != 0)
3023 				rem = omin(rem, nbytes);
3024 			rem -= fsbytes + loopbytes;
3025 			xfsize = omin(PAGE_SIZE - pgoff, rem);
3026 			xfsize = omin(space - loopbytes, xfsize);
3027 			if (xfsize <= 0) {
3028 				done = 1;		/* all data sent */
3029 				break;
3030 			}
3031 
3032 			/*
3033 			 * Attempt to look up the page.  Allocate
3034 			 * if not found or wait and loop if busy.
3035 			 */
3036 			if (m != NULL)
3037 				nd = EAGAIN; /* send what we already got */
3038 			else if ((flags & SF_NODISKIO) != 0)
3039 				nd = EBUSY;
3040 			else
3041 				nd = 0;
3042 			error = sendfile_readpage(obj, vp, nd, off,
3043 			    xfsize, bsize, td, &pg);
3044 			if (error != 0) {
3045 				if (error == EAGAIN)
3046 					error = 0;	/* not a real error */
3047 				break;
3048 			}
3049 
3050 			/*
3051 			 * Get a sendfile buf.  When allocating the
3052 			 * first buffer for mbuf chain, we usually
3053 			 * wait as long as necessary, but this wait
3054 			 * can be interrupted.  For consequent
3055 			 * buffers, do not sleep, since several
3056 			 * threads might exhaust the buffers and then
3057 			 * deadlock.
3058 			 */
3059 			sf = sf_buf_alloc(pg, (mnw || m != NULL) ? SFB_NOWAIT :
3060 			    SFB_CATCH);
3061 			if (sf == NULL) {
3062 				SFSTAT_INC(sf_allocfail);
3063 				vm_page_lock(pg);
3064 				vm_page_unwire(pg, PQ_INACTIVE);
3065 				KASSERT(pg->object != NULL,
3066 				    ("%s: object disappeared", __func__));
3067 				vm_page_unlock(pg);
3068 				if (m == NULL)
3069 					error = (mnw ? EAGAIN : EINTR);
3070 				break;
3071 			}
3072 
3073 			/*
3074 			 * Get an mbuf and set it up as having
3075 			 * external storage.
3076 			 */
3077 			m0 = m_get((mnw ? M_NOWAIT : M_WAITOK), MT_DATA);
3078 			if (m0 == NULL) {
3079 				error = (mnw ? EAGAIN : ENOBUFS);
3080 				sf_ext_free(sf, NULL);
3081 				break;
3082 			}
3083 			/*
3084 			 * Attach EXT_SFBUF external storage.
3085 			 */
3086 			m0->m_ext.ext_buf = (caddr_t )sf_buf_kva(sf);
3087 			m0->m_ext.ext_size = PAGE_SIZE;
3088 			m0->m_ext.ext_arg1 = sf;
3089 			m0->m_ext.ext_arg2 = sfs;
3090 			m0->m_ext.ext_type = EXT_SFBUF;
3091 			m0->m_ext.ext_flags = 0;
3092 			m0->m_flags |= (M_EXT|M_RDONLY);
3093 			m0->m_data = (char *)sf_buf_kva(sf) + pgoff;
3094 			m0->m_len = xfsize;
3095 
3096 			/* Append to mbuf chain. */
3097 			if (mtail != NULL)
3098 				mtail->m_next = m0;
3099 			else if (m != NULL)
3100 				m_last(m)->m_next = m0;
3101 			else
3102 				m = m0;
3103 			mtail = m0;
3104 
3105 			/* Keep track of bits processed. */
3106 			loopbytes += xfsize;
3107 			off += xfsize;
3108 
3109 			/*
3110 			 * XXX eventually this should be a sfsync
3111 			 * method call!
3112 			 */
3113 			if (sfs != NULL)
3114 				sf_sync_ref(sfs);
3115 		}
3116 
3117 		if (vp != NULL)
3118 			VOP_UNLOCK(vp, 0);
3119 
3120 		/* Add the buffer chain to the socket buffer. */
3121 		if (m != NULL) {
3122 			int mlen, err;
3123 
3124 			mlen = m_length(m, NULL);
3125 			SOCKBUF_LOCK(&so->so_snd);
3126 			if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3127 				error = EPIPE;
3128 				SOCKBUF_UNLOCK(&so->so_snd);
3129 				goto done;
3130 			}
3131 			SOCKBUF_UNLOCK(&so->so_snd);
3132 			CURVNET_SET(so->so_vnet);
3133 			/* Avoid error aliasing. */
3134 			err = (*so->so_proto->pr_usrreqs->pru_send)
3135 				    (so, 0, m, NULL, NULL, td);
3136 			CURVNET_RESTORE();
3137 			if (err == 0) {
3138 				/*
3139 				 * We need two counters to get the
3140 				 * file offset and nbytes to send
3141 				 * right:
3142 				 * - sbytes contains the total amount
3143 				 *   of bytes sent, including headers.
3144 				 * - fsbytes contains the total amount
3145 				 *   of bytes sent from the file.
3146 				 */
3147 				sbytes += mlen;
3148 				fsbytes += mlen;
3149 				if (hdrlen) {
3150 					fsbytes -= hdrlen;
3151 					hdrlen = 0;
3152 				}
3153 			} else if (error == 0)
3154 				error = err;
3155 			m = NULL;	/* pru_send always consumes */
3156 		}
3157 
3158 		/* Quit outer loop on error or when we're done. */
3159 		if (done)
3160 			break;
3161 		if (error != 0)
3162 			goto done;
3163 	}
3164 
3165 	/*
3166 	 * Send trailers. Wimp out and use writev(2).
3167 	 */
3168 	if (trl_uio != NULL) {
3169 		sbunlock(&so->so_snd);
3170 		error = kern_writev(td, sockfd, trl_uio);
3171 		if (error == 0)
3172 			sbytes += td->td_retval[0];
3173 		goto out;
3174 	}
3175 
3176 done:
3177 	sbunlock(&so->so_snd);
3178 out:
3179 	/*
3180 	 * If there was no error we have to clear td->td_retval[0]
3181 	 * because it may have been set by writev.
3182 	 */
3183 	if (error == 0) {
3184 		td->td_retval[0] = 0;
3185 	}
3186 	if (sent != NULL) {
3187 		(*sent) = sbytes;
3188 	}
3189 	if (obj != NULL)
3190 		vm_object_deallocate(obj);
3191 	if (so)
3192 		fdrop(sock_fp, td);
3193 	if (m)
3194 		m_freem(m);
3195 
3196 	if (error == ERESTART)
3197 		error = EINTR;
3198 
3199 	return (error);
3200 }
3201