xref: /freebsd/sys/kern/uipc_socket.c (revision fae39d8da9d5ddf4239fc2143522340c941f6612)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99  * from a pre-set VNET context.  sopoll() currently does not need a VNET
100  * context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_sctp.h"
108 
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/capsicum.h>
112 #include <sys/fcntl.h>
113 #include <sys/limits.h>
114 #include <sys/lock.h>
115 #include <sys/mac.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/domain.h>
120 #include <sys/file.h>			/* for struct knote */
121 #include <sys/hhook.h>
122 #include <sys/kernel.h>
123 #include <sys/khelp.h>
124 #include <sys/ktls.h>
125 #include <sys/event.h>
126 #include <sys/eventhandler.h>
127 #include <sys/poll.h>
128 #include <sys/proc.h>
129 #include <sys/protosw.h>
130 #include <sys/sbuf.h>
131 #include <sys/socket.h>
132 #include <sys/socketvar.h>
133 #include <sys/resourcevar.h>
134 #include <net/route.h>
135 #include <sys/signalvar.h>
136 #include <sys/stat.h>
137 #include <sys/sx.h>
138 #include <sys/sysctl.h>
139 #include <sys/taskqueue.h>
140 #include <sys/uio.h>
141 #include <sys/un.h>
142 #include <sys/unpcb.h>
143 #include <sys/jail.h>
144 #include <sys/syslog.h>
145 #include <netinet/in.h>
146 #include <netinet/in_pcb.h>
147 #include <netinet/tcp.h>
148 
149 #include <net/vnet.h>
150 
151 #include <security/mac/mac_framework.h>
152 
153 #include <vm/uma.h>
154 
155 #ifdef COMPAT_FREEBSD32
156 #include <sys/mount.h>
157 #include <sys/sysent.h>
158 #include <compat/freebsd32/freebsd32.h>
159 #endif
160 
161 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
162 		    int flags);
163 static void	so_rdknl_lock(void *);
164 static void	so_rdknl_unlock(void *);
165 static void	so_rdknl_assert_lock(void *, int);
166 static void	so_wrknl_lock(void *);
167 static void	so_wrknl_unlock(void *);
168 static void	so_wrknl_assert_lock(void *, int);
169 
170 static void	filt_sordetach(struct knote *kn);
171 static int	filt_soread(struct knote *kn, long hint);
172 static void	filt_sowdetach(struct knote *kn);
173 static int	filt_sowrite(struct knote *kn, long hint);
174 static int	filt_soempty(struct knote *kn, long hint);
175 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
176 fo_kqfilter_t	soo_kqfilter;
177 
178 static struct filterops soread_filtops = {
179 	.f_isfd = 1,
180 	.f_detach = filt_sordetach,
181 	.f_event = filt_soread,
182 };
183 static struct filterops sowrite_filtops = {
184 	.f_isfd = 1,
185 	.f_detach = filt_sowdetach,
186 	.f_event = filt_sowrite,
187 };
188 static struct filterops soempty_filtops = {
189 	.f_isfd = 1,
190 	.f_detach = filt_sowdetach,
191 	.f_event = filt_soempty,
192 };
193 
194 so_gen_t	so_gencnt;	/* generation count for sockets */
195 
196 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
197 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
198 
199 #define	VNET_SO_ASSERT(so)						\
200 	VNET_ASSERT(curvnet != NULL,					\
201 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
202 
203 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
204 #define	V_socket_hhh		VNET(socket_hhh)
205 
206 /*
207  * Limit on the number of connections in the listen queue waiting
208  * for accept(2).
209  * NB: The original sysctl somaxconn is still available but hidden
210  * to prevent confusion about the actual purpose of this number.
211  */
212 static u_int somaxconn = SOMAXCONN;
213 
214 static int
215 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
216 {
217 	int error;
218 	int val;
219 
220 	val = somaxconn;
221 	error = sysctl_handle_int(oidp, &val, 0, req);
222 	if (error || !req->newptr )
223 		return (error);
224 
225 	/*
226 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
227 	 *   3 * so_qlimit / 2
228 	 * below, will not overflow.
229          */
230 
231 	if (val < 1 || val > UINT_MAX / 3)
232 		return (EINVAL);
233 
234 	somaxconn = val;
235 	return (0);
236 }
237 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
238     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
239     sysctl_somaxconn, "I",
240     "Maximum listen socket pending connection accept queue size");
241 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
243     sizeof(int), sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size (compat)");
245 
246 static int numopensockets;
247 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
248     &numopensockets, 0, "Number of open sockets");
249 
250 /*
251  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
252  * so_gencnt field.
253  */
254 static struct mtx so_global_mtx;
255 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
256 
257 /*
258  * General IPC sysctl name space, used by sockets and a variety of other IPC
259  * types.
260  */
261 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
262     "IPC");
263 
264 /*
265  * Initialize the socket subsystem and set up the socket
266  * memory allocator.
267  */
268 static uma_zone_t socket_zone;
269 int	maxsockets;
270 
271 static void
272 socket_zone_change(void *tag)
273 {
274 
275 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
276 }
277 
278 static void
279 socket_hhook_register(int subtype)
280 {
281 
282 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
283 	    &V_socket_hhh[subtype],
284 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
285 		printf("%s: WARNING: unable to register hook\n", __func__);
286 }
287 
288 static void
289 socket_hhook_deregister(int subtype)
290 {
291 
292 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
293 		printf("%s: WARNING: unable to deregister hook\n", __func__);
294 }
295 
296 static void
297 socket_init(void *tag)
298 {
299 
300 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
301 	    NULL, NULL, UMA_ALIGN_PTR, 0);
302 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
303 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
304 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
305 	    EVENTHANDLER_PRI_FIRST);
306 }
307 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
308 
309 static void
310 socket_vnet_init(const void *unused __unused)
311 {
312 	int i;
313 
314 	/* We expect a contiguous range */
315 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
316 		socket_hhook_register(i);
317 }
318 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
319     socket_vnet_init, NULL);
320 
321 static void
322 socket_vnet_uninit(const void *unused __unused)
323 {
324 	int i;
325 
326 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
327 		socket_hhook_deregister(i);
328 }
329 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
330     socket_vnet_uninit, NULL);
331 
332 /*
333  * Initialise maxsockets.  This SYSINIT must be run after
334  * tunable_mbinit().
335  */
336 static void
337 init_maxsockets(void *ignored)
338 {
339 
340 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
341 	maxsockets = imax(maxsockets, maxfiles);
342 }
343 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
344 
345 /*
346  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
347  * of the change so that they can update their dependent limits as required.
348  */
349 static int
350 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
351 {
352 	int error, newmaxsockets;
353 
354 	newmaxsockets = maxsockets;
355 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
356 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
357 		if (newmaxsockets > maxsockets &&
358 		    newmaxsockets <= maxfiles) {
359 			maxsockets = newmaxsockets;
360 			EVENTHANDLER_INVOKE(maxsockets_change);
361 		} else
362 			error = EINVAL;
363 	}
364 	return (error);
365 }
366 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
367     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
368     &maxsockets, 0, sysctl_maxsockets, "IU",
369     "Maximum number of sockets available");
370 
371 /*
372  * Socket operation routines.  These routines are called by the routines in
373  * sys_socket.c or from a system process, and implement the semantics of
374  * socket operations by switching out to the protocol specific routines.
375  */
376 
377 /*
378  * Get a socket structure from our zone, and initialize it.  Note that it
379  * would probably be better to allocate socket and PCB at the same time, but
380  * I'm not convinced that all the protocols can be easily modified to do
381  * this.
382  *
383  * soalloc() returns a socket with a ref count of 0.
384  */
385 static struct socket *
386 soalloc(struct vnet *vnet)
387 {
388 	struct socket *so;
389 
390 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
391 	if (so == NULL)
392 		return (NULL);
393 #ifdef MAC
394 	if (mac_socket_init(so, M_NOWAIT) != 0) {
395 		uma_zfree(socket_zone, so);
396 		return (NULL);
397 	}
398 #endif
399 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
400 		uma_zfree(socket_zone, so);
401 		return (NULL);
402 	}
403 
404 	/*
405 	 * The socket locking protocol allows to lock 2 sockets at a time,
406 	 * however, the first one must be a listening socket.  WITNESS lacks
407 	 * a feature to change class of an existing lock, so we use DUPOK.
408 	 */
409 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
410 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
411 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
412 	so->so_rcv.sb_sel = &so->so_rdsel;
413 	so->so_snd.sb_sel = &so->so_wrsel;
414 	sx_init(&so->so_snd_sx, "so_snd_sx");
415 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
416 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
417 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
418 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
419 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
420 #ifdef VIMAGE
421 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
422 	    __func__, __LINE__, so));
423 	so->so_vnet = vnet;
424 #endif
425 	/* We shouldn't need the so_global_mtx */
426 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
427 		/* Do we need more comprehensive error returns? */
428 		uma_zfree(socket_zone, so);
429 		return (NULL);
430 	}
431 	mtx_lock(&so_global_mtx);
432 	so->so_gencnt = ++so_gencnt;
433 	++numopensockets;
434 #ifdef VIMAGE
435 	vnet->vnet_sockcnt++;
436 #endif
437 	mtx_unlock(&so_global_mtx);
438 
439 	return (so);
440 }
441 
442 /*
443  * Free the storage associated with a socket at the socket layer, tear down
444  * locks, labels, etc.  All protocol state is assumed already to have been
445  * torn down (and possibly never set up) by the caller.
446  */
447 void
448 sodealloc(struct socket *so)
449 {
450 
451 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
452 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
453 
454 	mtx_lock(&so_global_mtx);
455 	so->so_gencnt = ++so_gencnt;
456 	--numopensockets;	/* Could be below, but faster here. */
457 #ifdef VIMAGE
458 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
459 	    __func__, __LINE__, so));
460 	so->so_vnet->vnet_sockcnt--;
461 #endif
462 	mtx_unlock(&so_global_mtx);
463 #ifdef MAC
464 	mac_socket_destroy(so);
465 #endif
466 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
467 
468 	khelp_destroy_osd(&so->osd);
469 	if (SOLISTENING(so)) {
470 		if (so->sol_accept_filter != NULL)
471 			accept_filt_setopt(so, NULL);
472 	} else {
473 		if (so->so_rcv.sb_hiwat)
474 			(void)chgsbsize(so->so_cred->cr_uidinfo,
475 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
476 		if (so->so_snd.sb_hiwat)
477 			(void)chgsbsize(so->so_cred->cr_uidinfo,
478 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
479 		sx_destroy(&so->so_snd_sx);
480 		sx_destroy(&so->so_rcv_sx);
481 		mtx_destroy(&so->so_snd_mtx);
482 		mtx_destroy(&so->so_rcv_mtx);
483 	}
484 	crfree(so->so_cred);
485 	mtx_destroy(&so->so_lock);
486 	uma_zfree(socket_zone, so);
487 }
488 
489 /*
490  * socreate returns a socket with a ref count of 1 and a file descriptor
491  * reference.  The socket should be closed with soclose().
492  */
493 int
494 socreate(int dom, struct socket **aso, int type, int proto,
495     struct ucred *cred, struct thread *td)
496 {
497 	struct protosw *prp;
498 	struct socket *so;
499 	int error;
500 
501 	/*
502 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
503 	 * shim until all applications have been updated.
504 	 */
505 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
506 	    proto == IPPROTO_DIVERT)) {
507 		dom = PF_DIVERT;
508 		printf("%s uses obsolete way to create divert(4) socket\n",
509 		    td->td_proc->p_comm);
510 	}
511 
512 	prp = pffindproto(dom, type, proto);
513 	if (prp == NULL) {
514 		/* No support for domain. */
515 		if (pffinddomain(dom) == NULL)
516 			return (EAFNOSUPPORT);
517 		/* No support for socket type. */
518 		if (proto == 0 && type != 0)
519 			return (EPROTOTYPE);
520 		return (EPROTONOSUPPORT);
521 	}
522 
523 	MPASS(prp->pr_attach);
524 
525 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
526 		return (ECAPMODE);
527 
528 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
529 		return (EPROTONOSUPPORT);
530 
531 	so = soalloc(CRED_TO_VNET(cred));
532 	if (so == NULL)
533 		return (ENOBUFS);
534 
535 	so->so_type = type;
536 	so->so_cred = crhold(cred);
537 	if ((prp->pr_domain->dom_family == PF_INET) ||
538 	    (prp->pr_domain->dom_family == PF_INET6) ||
539 	    (prp->pr_domain->dom_family == PF_ROUTE))
540 		so->so_fibnum = td->td_proc->p_fibnum;
541 	else
542 		so->so_fibnum = 0;
543 	so->so_proto = prp;
544 #ifdef MAC
545 	mac_socket_create(cred, so);
546 #endif
547 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
548 	    so_rdknl_assert_lock);
549 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
550 	    so_wrknl_assert_lock);
551 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
552 		so->so_snd.sb_mtx = &so->so_snd_mtx;
553 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
554 	}
555 	/*
556 	 * Auto-sizing of socket buffers is managed by the protocols and
557 	 * the appropriate flags must be set in the pru_attach function.
558 	 */
559 	CURVNET_SET(so->so_vnet);
560 	error = prp->pr_attach(so, proto, td);
561 	CURVNET_RESTORE();
562 	if (error) {
563 		sodealloc(so);
564 		return (error);
565 	}
566 	soref(so);
567 	*aso = so;
568 	return (0);
569 }
570 
571 #ifdef REGRESSION
572 static int regression_sonewconn_earlytest = 1;
573 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
574     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
575 #endif
576 
577 static int sooverprio = LOG_DEBUG;
578 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
579     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
580 
581 static struct timeval overinterval = { 60, 0 };
582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
583     &overinterval,
584     "Delay in seconds between warnings for listen socket overflows");
585 
586 /*
587  * When an attempt at a new connection is noted on a socket which supports
588  * accept(2), the protocol has two options:
589  * 1) Call legacy sonewconn() function, which would call protocol attach
590  *    method, same as used for socket(2).
591  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
592  *    and then call solisten_enqueue().
593  *
594  * Note: the ref count on the socket is 0 on return.
595  */
596 struct socket *
597 solisten_clone(struct socket *head)
598 {
599 	struct sbuf descrsb;
600 	struct socket *so;
601 	int len, overcount;
602 	u_int qlen;
603 	const char localprefix[] = "local:";
604 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
605 #if defined(INET6)
606 	char addrbuf[INET6_ADDRSTRLEN];
607 #elif defined(INET)
608 	char addrbuf[INET_ADDRSTRLEN];
609 #endif
610 	bool dolog, over;
611 
612 	SOLISTEN_LOCK(head);
613 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
614 #ifdef REGRESSION
615 	if (regression_sonewconn_earlytest && over) {
616 #else
617 	if (over) {
618 #endif
619 		head->sol_overcount++;
620 		dolog = (sooverprio >= 0) &&
621 			!!ratecheck(&head->sol_lastover, &overinterval);
622 
623 		/*
624 		 * If we're going to log, copy the overflow count and queue
625 		 * length from the listen socket before dropping the lock.
626 		 * Also, reset the overflow count.
627 		 */
628 		if (dolog) {
629 			overcount = head->sol_overcount;
630 			head->sol_overcount = 0;
631 			qlen = head->sol_qlen;
632 		}
633 		SOLISTEN_UNLOCK(head);
634 
635 		if (dolog) {
636 			/*
637 			 * Try to print something descriptive about the
638 			 * socket for the error message.
639 			 */
640 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
641 			    SBUF_FIXEDLEN);
642 			switch (head->so_proto->pr_domain->dom_family) {
643 #if defined(INET) || defined(INET6)
644 #ifdef INET
645 			case AF_INET:
646 #endif
647 #ifdef INET6
648 			case AF_INET6:
649 				if (head->so_proto->pr_domain->dom_family ==
650 				    AF_INET6 ||
651 				    (sotoinpcb(head)->inp_inc.inc_flags &
652 				    INC_ISIPV6)) {
653 					ip6_sprintf(addrbuf,
654 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
655 					sbuf_printf(&descrsb, "[%s]", addrbuf);
656 				} else
657 #endif
658 				{
659 #ifdef INET
660 					inet_ntoa_r(
661 					    sotoinpcb(head)->inp_inc.inc_laddr,
662 					    addrbuf);
663 					sbuf_cat(&descrsb, addrbuf);
664 #endif
665 				}
666 				sbuf_printf(&descrsb, ":%hu (proto %u)",
667 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
668 				    head->so_proto->pr_protocol);
669 				break;
670 #endif /* INET || INET6 */
671 			case AF_UNIX:
672 				sbuf_cat(&descrsb, localprefix);
673 				if (sotounpcb(head)->unp_addr != NULL)
674 					len =
675 					    sotounpcb(head)->unp_addr->sun_len -
676 					    offsetof(struct sockaddr_un,
677 					    sun_path);
678 				else
679 					len = 0;
680 				if (len > 0)
681 					sbuf_bcat(&descrsb,
682 					    sotounpcb(head)->unp_addr->sun_path,
683 					    len);
684 				else
685 					sbuf_cat(&descrsb, "(unknown)");
686 				break;
687 			}
688 
689 			/*
690 			 * If we can't print something more specific, at least
691 			 * print the domain name.
692 			 */
693 			if (sbuf_finish(&descrsb) != 0 ||
694 			    sbuf_len(&descrsb) <= 0) {
695 				sbuf_clear(&descrsb);
696 				sbuf_cat(&descrsb,
697 				    head->so_proto->pr_domain->dom_name ?:
698 				    "unknown");
699 				sbuf_finish(&descrsb);
700 			}
701 			KASSERT(sbuf_len(&descrsb) > 0,
702 			    ("%s: sbuf creation failed", __func__));
703 			/*
704 			 * Preserve the historic listen queue overflow log
705 			 * message, that starts with "sonewconn:".  It has
706 			 * been known to sysadmins for years and also test
707 			 * sys/kern/sonewconn_overflow checks for it.
708 			 */
709 			if (head->so_cred == 0) {
710 				log(LOG_PRI(sooverprio),
711 				    "sonewconn: pcb %p (%s): "
712 				    "Listen queue overflow: %i already in "
713 				    "queue awaiting acceptance (%d "
714 				    "occurrences)\n", head->so_pcb,
715 				    sbuf_data(&descrsb),
716 			    	qlen, overcount);
717 			} else {
718 				log(LOG_PRI(sooverprio),
719 				    "sonewconn: pcb %p (%s): "
720 				    "Listen queue overflow: "
721 				    "%i already in queue awaiting acceptance "
722 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
723 				    head->so_pcb, sbuf_data(&descrsb), qlen,
724 				    overcount, head->so_cred->cr_uid,
725 				    head->so_cred->cr_rgid,
726 				    head->so_cred->cr_prison ?
727 					head->so_cred->cr_prison->pr_name :
728 					"not_jailed");
729 			}
730 			sbuf_delete(&descrsb);
731 
732 			overcount = 0;
733 		}
734 
735 		return (NULL);
736 	}
737 	SOLISTEN_UNLOCK(head);
738 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
739 	    __func__, head));
740 	so = soalloc(head->so_vnet);
741 	if (so == NULL) {
742 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
743 		    "limit reached or out of memory\n",
744 		    __func__, head->so_pcb);
745 		return (NULL);
746 	}
747 	so->so_listen = head;
748 	so->so_type = head->so_type;
749 	/*
750 	 * POSIX is ambiguous on what options an accept(2)ed socket should
751 	 * inherit from the listener.  Words "create a new socket" may be
752 	 * interpreted as not inheriting anything.  Best programming practice
753 	 * for application developers is to not rely on such inheritance.
754 	 * FreeBSD had historically inherited all so_options excluding
755 	 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
756 	 * including those completely irrelevant to a new born socket.  For
757 	 * compatibility with older versions we will inherit a list of
758 	 * meaningful options.
759 	 */
760 	so->so_options = head->so_options & (SO_KEEPALIVE | SO_DONTROUTE |
761 	    SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
762 	so->so_linger = head->so_linger;
763 	so->so_state = head->so_state;
764 	so->so_fibnum = head->so_fibnum;
765 	so->so_proto = head->so_proto;
766 	so->so_cred = crhold(head->so_cred);
767 #ifdef MAC
768 	mac_socket_newconn(head, so);
769 #endif
770 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
771 	    so_rdknl_assert_lock);
772 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
773 	    so_wrknl_assert_lock);
774 	VNET_SO_ASSERT(head);
775 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
776 		sodealloc(so);
777 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
778 		    __func__, head->so_pcb);
779 		return (NULL);
780 	}
781 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
782 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
783 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
784 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
785 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
786 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
787 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
788 		so->so_snd.sb_mtx = &so->so_snd_mtx;
789 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
790 	}
791 
792 	return (so);
793 }
794 
795 /* Connstatus may be 0 or SS_ISCONNECTED. */
796 struct socket *
797 sonewconn(struct socket *head, int connstatus)
798 {
799 	struct socket *so;
800 
801 	if ((so = solisten_clone(head)) == NULL)
802 		return (NULL);
803 
804 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
805 		sodealloc(so);
806 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
807 		    __func__, head->so_pcb);
808 		return (NULL);
809 	}
810 
811 	(void)solisten_enqueue(so, connstatus);
812 
813 	return (so);
814 }
815 
816 /*
817  * Enqueue socket cloned by solisten_clone() to the listen queue of the
818  * listener it has been cloned from.
819  *
820  * Return 'true' if socket landed on complete queue, otherwise 'false'.
821  */
822 bool
823 solisten_enqueue(struct socket *so, int connstatus)
824 {
825 	struct socket *head = so->so_listen;
826 
827 	MPASS(refcount_load(&so->so_count) == 0);
828 	refcount_init(&so->so_count, 1);
829 
830 	SOLISTEN_LOCK(head);
831 	if (head->sol_accept_filter != NULL)
832 		connstatus = 0;
833 	so->so_state |= connstatus;
834 	soref(head); /* A socket on (in)complete queue refs head. */
835 	if (connstatus) {
836 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
837 		so->so_qstate = SQ_COMP;
838 		head->sol_qlen++;
839 		solisten_wakeup(head);	/* unlocks */
840 		return (true);
841 	} else {
842 		/*
843 		 * Keep removing sockets from the head until there's room for
844 		 * us to insert on the tail.  In pre-locking revisions, this
845 		 * was a simple if(), but as we could be racing with other
846 		 * threads and soabort() requires dropping locks, we must
847 		 * loop waiting for the condition to be true.
848 		 */
849 		while (head->sol_incqlen > head->sol_qlimit) {
850 			struct socket *sp;
851 
852 			sp = TAILQ_FIRST(&head->sol_incomp);
853 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
854 			head->sol_incqlen--;
855 			SOCK_LOCK(sp);
856 			sp->so_qstate = SQ_NONE;
857 			sp->so_listen = NULL;
858 			SOCK_UNLOCK(sp);
859 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
860 			soabort(sp);
861 			SOLISTEN_LOCK(head);
862 		}
863 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
864 		so->so_qstate = SQ_INCOMP;
865 		head->sol_incqlen++;
866 		SOLISTEN_UNLOCK(head);
867 		return (false);
868 	}
869 }
870 
871 #if defined(SCTP) || defined(SCTP_SUPPORT)
872 /*
873  * Socket part of sctp_peeloff().  Detach a new socket from an
874  * association.  The new socket is returned with a reference.
875  *
876  * XXXGL: reduce copy-paste with solisten_clone().
877  */
878 struct socket *
879 sopeeloff(struct socket *head)
880 {
881 	struct socket *so;
882 
883 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
884 	    __func__, __LINE__, head));
885 	so = soalloc(head->so_vnet);
886 	if (so == NULL) {
887 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
888 		    "limit reached or out of memory\n",
889 		    __func__, head->so_pcb);
890 		return (NULL);
891 	}
892 	so->so_type = head->so_type;
893 	so->so_options = head->so_options;
894 	so->so_linger = head->so_linger;
895 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
896 	so->so_fibnum = head->so_fibnum;
897 	so->so_proto = head->so_proto;
898 	so->so_cred = crhold(head->so_cred);
899 #ifdef MAC
900 	mac_socket_newconn(head, so);
901 #endif
902 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
903 	    so_rdknl_assert_lock);
904 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
905 	    so_wrknl_assert_lock);
906 	VNET_SO_ASSERT(head);
907 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
908 		sodealloc(so);
909 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
910 		    __func__, head->so_pcb);
911 		return (NULL);
912 	}
913 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
914 		sodealloc(so);
915 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
916 		    __func__, head->so_pcb);
917 		return (NULL);
918 	}
919 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
920 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
921 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
922 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
923 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
924 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
925 
926 	soref(so);
927 
928 	return (so);
929 }
930 #endif	/* SCTP */
931 
932 int
933 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
934 {
935 	int error;
936 
937 	CURVNET_SET(so->so_vnet);
938 	error = so->so_proto->pr_bind(so, nam, td);
939 	CURVNET_RESTORE();
940 	return (error);
941 }
942 
943 int
944 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
945 {
946 	int error;
947 
948 	CURVNET_SET(so->so_vnet);
949 	error = so->so_proto->pr_bindat(fd, so, nam, td);
950 	CURVNET_RESTORE();
951 	return (error);
952 }
953 
954 /*
955  * solisten() transitions a socket from a non-listening state to a listening
956  * state, but can also be used to update the listen queue depth on an
957  * existing listen socket.  The protocol will call back into the sockets
958  * layer using solisten_proto_check() and solisten_proto() to check and set
959  * socket-layer listen state.  Call backs are used so that the protocol can
960  * acquire both protocol and socket layer locks in whatever order is required
961  * by the protocol.
962  *
963  * Protocol implementors are advised to hold the socket lock across the
964  * socket-layer test and set to avoid races at the socket layer.
965  */
966 int
967 solisten(struct socket *so, int backlog, struct thread *td)
968 {
969 	int error;
970 
971 	CURVNET_SET(so->so_vnet);
972 	error = so->so_proto->pr_listen(so, backlog, td);
973 	CURVNET_RESTORE();
974 	return (error);
975 }
976 
977 /*
978  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
979  * order to interlock with socket I/O.
980  */
981 int
982 solisten_proto_check(struct socket *so)
983 {
984 	SOCK_LOCK_ASSERT(so);
985 
986 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
987 	    SS_ISDISCONNECTING)) != 0)
988 		return (EINVAL);
989 
990 	/*
991 	 * Sleeping is not permitted here, so simply fail if userspace is
992 	 * attempting to transmit or receive on the socket.  This kind of
993 	 * transient failure is not ideal, but it should occur only if userspace
994 	 * is misusing the socket interfaces.
995 	 */
996 	if (!sx_try_xlock(&so->so_snd_sx))
997 		return (EAGAIN);
998 	if (!sx_try_xlock(&so->so_rcv_sx)) {
999 		sx_xunlock(&so->so_snd_sx);
1000 		return (EAGAIN);
1001 	}
1002 	mtx_lock(&so->so_snd_mtx);
1003 	mtx_lock(&so->so_rcv_mtx);
1004 
1005 	/* Interlock with soo_aio_queue() and KTLS. */
1006 	if (!SOLISTENING(so)) {
1007 		bool ktls;
1008 
1009 #ifdef KERN_TLS
1010 		ktls = so->so_snd.sb_tls_info != NULL ||
1011 		    so->so_rcv.sb_tls_info != NULL;
1012 #else
1013 		ktls = false;
1014 #endif
1015 		if (ktls ||
1016 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1017 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1018 			solisten_proto_abort(so);
1019 			return (EINVAL);
1020 		}
1021 	}
1022 
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Undo the setup done by solisten_proto_check().
1028  */
1029 void
1030 solisten_proto_abort(struct socket *so)
1031 {
1032 	mtx_unlock(&so->so_snd_mtx);
1033 	mtx_unlock(&so->so_rcv_mtx);
1034 	sx_xunlock(&so->so_snd_sx);
1035 	sx_xunlock(&so->so_rcv_sx);
1036 }
1037 
1038 void
1039 solisten_proto(struct socket *so, int backlog)
1040 {
1041 	int sbrcv_lowat, sbsnd_lowat;
1042 	u_int sbrcv_hiwat, sbsnd_hiwat;
1043 	short sbrcv_flags, sbsnd_flags;
1044 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1045 
1046 	SOCK_LOCK_ASSERT(so);
1047 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1048 	    SS_ISDISCONNECTING)) == 0,
1049 	    ("%s: bad socket state %p", __func__, so));
1050 
1051 	if (SOLISTENING(so))
1052 		goto listening;
1053 
1054 	/*
1055 	 * Change this socket to listening state.
1056 	 */
1057 	sbrcv_lowat = so->so_rcv.sb_lowat;
1058 	sbsnd_lowat = so->so_snd.sb_lowat;
1059 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1060 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1061 	sbrcv_flags = so->so_rcv.sb_flags;
1062 	sbsnd_flags = so->so_snd.sb_flags;
1063 	sbrcv_timeo = so->so_rcv.sb_timeo;
1064 	sbsnd_timeo = so->so_snd.sb_timeo;
1065 
1066 	sbdestroy(so, SO_SND);
1067 	sbdestroy(so, SO_RCV);
1068 
1069 #ifdef INVARIANTS
1070 	bzero(&so->so_rcv,
1071 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1072 #endif
1073 
1074 	so->sol_sbrcv_lowat = sbrcv_lowat;
1075 	so->sol_sbsnd_lowat = sbsnd_lowat;
1076 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1077 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1078 	so->sol_sbrcv_flags = sbrcv_flags;
1079 	so->sol_sbsnd_flags = sbsnd_flags;
1080 	so->sol_sbrcv_timeo = sbrcv_timeo;
1081 	so->sol_sbsnd_timeo = sbsnd_timeo;
1082 
1083 	so->sol_qlen = so->sol_incqlen = 0;
1084 	TAILQ_INIT(&so->sol_incomp);
1085 	TAILQ_INIT(&so->sol_comp);
1086 
1087 	so->sol_accept_filter = NULL;
1088 	so->sol_accept_filter_arg = NULL;
1089 	so->sol_accept_filter_str = NULL;
1090 
1091 	so->sol_upcall = NULL;
1092 	so->sol_upcallarg = NULL;
1093 
1094 	so->so_options |= SO_ACCEPTCONN;
1095 
1096 listening:
1097 	if (backlog < 0 || backlog > somaxconn)
1098 		backlog = somaxconn;
1099 	so->sol_qlimit = backlog;
1100 
1101 	mtx_unlock(&so->so_snd_mtx);
1102 	mtx_unlock(&so->so_rcv_mtx);
1103 	sx_xunlock(&so->so_snd_sx);
1104 	sx_xunlock(&so->so_rcv_sx);
1105 }
1106 
1107 /*
1108  * Wakeup listeners/subsystems once we have a complete connection.
1109  * Enters with lock, returns unlocked.
1110  */
1111 void
1112 solisten_wakeup(struct socket *sol)
1113 {
1114 
1115 	if (sol->sol_upcall != NULL)
1116 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1117 	else {
1118 		selwakeuppri(&sol->so_rdsel, PSOCK);
1119 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1120 	}
1121 	SOLISTEN_UNLOCK(sol);
1122 	wakeup_one(&sol->sol_comp);
1123 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1124 		pgsigio(&sol->so_sigio, SIGIO, 0);
1125 }
1126 
1127 /*
1128  * Return single connection off a listening socket queue.  Main consumer of
1129  * the function is kern_accept4().  Some modules, that do their own accept
1130  * management also use the function.  The socket reference held by the
1131  * listen queue is handed to the caller.
1132  *
1133  * Listening socket must be locked on entry and is returned unlocked on
1134  * return.
1135  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1136  */
1137 int
1138 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1139 {
1140 	struct socket *so;
1141 	int error;
1142 
1143 	SOLISTEN_LOCK_ASSERT(head);
1144 
1145 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1146 	    head->so_error == 0) {
1147 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1148 		    "accept", 0);
1149 		if (error != 0) {
1150 			SOLISTEN_UNLOCK(head);
1151 			return (error);
1152 		}
1153 	}
1154 	if (head->so_error) {
1155 		error = head->so_error;
1156 		head->so_error = 0;
1157 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1158 		error = EWOULDBLOCK;
1159 	else
1160 		error = 0;
1161 	if (error) {
1162 		SOLISTEN_UNLOCK(head);
1163 		return (error);
1164 	}
1165 	so = TAILQ_FIRST(&head->sol_comp);
1166 	SOCK_LOCK(so);
1167 	KASSERT(so->so_qstate == SQ_COMP,
1168 	    ("%s: so %p not SQ_COMP", __func__, so));
1169 	head->sol_qlen--;
1170 	so->so_qstate = SQ_NONE;
1171 	so->so_listen = NULL;
1172 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1173 	if (flags & ACCEPT4_INHERIT)
1174 		so->so_state |= (head->so_state & SS_NBIO);
1175 	else
1176 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1177 	SOCK_UNLOCK(so);
1178 	sorele_locked(head);
1179 
1180 	*ret = so;
1181 	return (0);
1182 }
1183 
1184 /*
1185  * Free socket upon release of the very last reference.
1186  */
1187 static void
1188 sofree(struct socket *so)
1189 {
1190 	struct protosw *pr = so->so_proto;
1191 
1192 	SOCK_LOCK_ASSERT(so);
1193 	KASSERT(refcount_load(&so->so_count) == 0,
1194 	    ("%s: so %p has references", __func__, so));
1195 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1196 	    ("%s: so %p is on listen queue", __func__, so));
1197 
1198 	SOCK_UNLOCK(so);
1199 
1200 	if (so->so_dtor != NULL)
1201 		so->so_dtor(so);
1202 
1203 	VNET_SO_ASSERT(so);
1204 	if (pr->pr_detach != NULL)
1205 		pr->pr_detach(so);
1206 
1207 	/*
1208 	 * From this point on, we assume that no other references to this
1209 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1210 	 * to be acquired or held.
1211 	 */
1212 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1213 		sbdestroy(so, SO_SND);
1214 		sbdestroy(so, SO_RCV);
1215 	}
1216 	seldrain(&so->so_rdsel);
1217 	seldrain(&so->so_wrsel);
1218 	knlist_destroy(&so->so_rdsel.si_note);
1219 	knlist_destroy(&so->so_wrsel.si_note);
1220 	sodealloc(so);
1221 }
1222 
1223 /*
1224  * Release a reference on a socket while holding the socket lock.
1225  * Unlocks the socket lock before returning.
1226  */
1227 void
1228 sorele_locked(struct socket *so)
1229 {
1230 	SOCK_LOCK_ASSERT(so);
1231 	if (refcount_release(&so->so_count))
1232 		sofree(so);
1233 	else
1234 		SOCK_UNLOCK(so);
1235 }
1236 
1237 /*
1238  * Close a socket on last file table reference removal.  Initiate disconnect
1239  * if connected.  Free socket when disconnect complete.
1240  *
1241  * This function will sorele() the socket.  Note that soclose() may be called
1242  * prior to the ref count reaching zero.  The actual socket structure will
1243  * not be freed until the ref count reaches zero.
1244  */
1245 int
1246 soclose(struct socket *so)
1247 {
1248 	struct accept_queue lqueue;
1249 	int error = 0;
1250 	bool listening, last __diagused;
1251 
1252 	CURVNET_SET(so->so_vnet);
1253 	funsetown(&so->so_sigio);
1254 	if (so->so_state & SS_ISCONNECTED) {
1255 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1256 			error = sodisconnect(so);
1257 			if (error) {
1258 				if (error == ENOTCONN)
1259 					error = 0;
1260 				goto drop;
1261 			}
1262 		}
1263 
1264 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1265 			if ((so->so_state & SS_ISDISCONNECTING) &&
1266 			    (so->so_state & SS_NBIO))
1267 				goto drop;
1268 			while (so->so_state & SS_ISCONNECTED) {
1269 				error = tsleep(&so->so_timeo,
1270 				    PSOCK | PCATCH, "soclos",
1271 				    so->so_linger * hz);
1272 				if (error)
1273 					break;
1274 			}
1275 		}
1276 	}
1277 
1278 drop:
1279 	if (so->so_proto->pr_close != NULL)
1280 		so->so_proto->pr_close(so);
1281 
1282 	SOCK_LOCK(so);
1283 	if ((listening = SOLISTENING(so))) {
1284 		struct socket *sp;
1285 
1286 		TAILQ_INIT(&lqueue);
1287 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1288 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1289 
1290 		so->sol_qlen = so->sol_incqlen = 0;
1291 
1292 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1293 			SOCK_LOCK(sp);
1294 			sp->so_qstate = SQ_NONE;
1295 			sp->so_listen = NULL;
1296 			SOCK_UNLOCK(sp);
1297 			last = refcount_release(&so->so_count);
1298 			KASSERT(!last, ("%s: released last reference for %p",
1299 			    __func__, so));
1300 		}
1301 	}
1302 	sorele_locked(so);
1303 	if (listening) {
1304 		struct socket *sp, *tsp;
1305 
1306 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1307 			soabort(sp);
1308 	}
1309 	CURVNET_RESTORE();
1310 	return (error);
1311 }
1312 
1313 /*
1314  * soabort() is used to abruptly tear down a connection, such as when a
1315  * resource limit is reached (listen queue depth exceeded), or if a listen
1316  * socket is closed while there are sockets waiting to be accepted.
1317  *
1318  * This interface is tricky, because it is called on an unreferenced socket,
1319  * and must be called only by a thread that has actually removed the socket
1320  * from the listen queue it was on.  Likely this thread holds the last
1321  * reference on the socket and soabort() will proceed with sofree().  But
1322  * it might be not the last, as the sockets on the listen queues are seen
1323  * from the protocol side.
1324  *
1325  * This interface will call into the protocol code, so must not be called
1326  * with any socket locks held.  Protocols do call it while holding their own
1327  * recursible protocol mutexes, but this is something that should be subject
1328  * to review in the future.
1329  *
1330  * Usually socket should have a single reference left, but this is not a
1331  * requirement.  In the past, when we have had named references for file
1332  * descriptor and protocol, we asserted that none of them are being held.
1333  */
1334 void
1335 soabort(struct socket *so)
1336 {
1337 
1338 	VNET_SO_ASSERT(so);
1339 
1340 	if (so->so_proto->pr_abort != NULL)
1341 		so->so_proto->pr_abort(so);
1342 	SOCK_LOCK(so);
1343 	sorele_locked(so);
1344 }
1345 
1346 int
1347 soaccept(struct socket *so, struct sockaddr *sa)
1348 {
1349 #ifdef INVARIANTS
1350 	u_char len = sa->sa_len;
1351 #endif
1352 	int error;
1353 
1354 	CURVNET_SET(so->so_vnet);
1355 	error = so->so_proto->pr_accept(so, sa);
1356 	KASSERT(sa->sa_len <= len,
1357 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
1358 	CURVNET_RESTORE();
1359 	return (error);
1360 }
1361 
1362 int
1363 sopeeraddr(struct socket *so, struct sockaddr *sa)
1364 {
1365 #ifdef INVARIANTS
1366 	u_char len = sa->sa_len;
1367 #endif
1368 	int error;
1369 
1370 	CURVNET_SET(so->so_vnet);
1371 	error = so->so_proto->pr_peeraddr(so, sa);
1372 	KASSERT(sa->sa_len <= len,
1373 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
1374 	CURVNET_RESTORE();
1375 
1376 	return (error);
1377 }
1378 
1379 int
1380 sosockaddr(struct socket *so, struct sockaddr *sa)
1381 {
1382 #ifdef INVARIANTS
1383 	u_char len = sa->sa_len;
1384 #endif
1385 	int error;
1386 
1387 	CURVNET_SET(so->so_vnet);
1388 	error = so->so_proto->pr_sockaddr(so, sa);
1389 	KASSERT(sa->sa_len <= len,
1390 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
1391 	CURVNET_RESTORE();
1392 
1393 	return (error);
1394 }
1395 
1396 int
1397 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1398 {
1399 
1400 	return (soconnectat(AT_FDCWD, so, nam, td));
1401 }
1402 
1403 int
1404 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1405 {
1406 	int error;
1407 
1408 	CURVNET_SET(so->so_vnet);
1409 
1410 	/*
1411 	 * If protocol is connection-based, can only connect once.
1412 	 * Otherwise, if connected, try to disconnect first.  This allows
1413 	 * user to disconnect by connecting to, e.g., a null address.
1414 	 *
1415 	 * Note, this check is racy and may need to be re-evaluated at the
1416 	 * protocol layer.
1417 	 */
1418 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1419 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1420 	    (error = sodisconnect(so)))) {
1421 		error = EISCONN;
1422 	} else {
1423 		/*
1424 		 * Prevent accumulated error from previous connection from
1425 		 * biting us.
1426 		 */
1427 		so->so_error = 0;
1428 		if (fd == AT_FDCWD) {
1429 			error = so->so_proto->pr_connect(so, nam, td);
1430 		} else {
1431 			error = so->so_proto->pr_connectat(fd, so, nam, td);
1432 		}
1433 	}
1434 	CURVNET_RESTORE();
1435 
1436 	return (error);
1437 }
1438 
1439 int
1440 soconnect2(struct socket *so1, struct socket *so2)
1441 {
1442 	int error;
1443 
1444 	CURVNET_SET(so1->so_vnet);
1445 	error = so1->so_proto->pr_connect2(so1, so2);
1446 	CURVNET_RESTORE();
1447 	return (error);
1448 }
1449 
1450 int
1451 sodisconnect(struct socket *so)
1452 {
1453 	int error;
1454 
1455 	if ((so->so_state & SS_ISCONNECTED) == 0)
1456 		return (ENOTCONN);
1457 	if (so->so_state & SS_ISDISCONNECTING)
1458 		return (EALREADY);
1459 	VNET_SO_ASSERT(so);
1460 	error = so->so_proto->pr_disconnect(so);
1461 	return (error);
1462 }
1463 
1464 int
1465 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1466     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1467 {
1468 	long space;
1469 	ssize_t resid;
1470 	int clen = 0, error, dontroute;
1471 
1472 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1473 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1474 	    ("sosend_dgram: !PR_ATOMIC"));
1475 
1476 	if (uio != NULL)
1477 		resid = uio->uio_resid;
1478 	else
1479 		resid = top->m_pkthdr.len;
1480 	/*
1481 	 * In theory resid should be unsigned.  However, space must be
1482 	 * signed, as it might be less than 0 if we over-committed, and we
1483 	 * must use a signed comparison of space and resid.  On the other
1484 	 * hand, a negative resid causes us to loop sending 0-length
1485 	 * segments to the protocol.
1486 	 */
1487 	if (resid < 0) {
1488 		error = EINVAL;
1489 		goto out;
1490 	}
1491 
1492 	dontroute =
1493 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1494 	if (td != NULL)
1495 		td->td_ru.ru_msgsnd++;
1496 	if (control != NULL)
1497 		clen = control->m_len;
1498 
1499 	SOCKBUF_LOCK(&so->so_snd);
1500 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1501 		SOCKBUF_UNLOCK(&so->so_snd);
1502 		error = EPIPE;
1503 		goto out;
1504 	}
1505 	if (so->so_error) {
1506 		error = so->so_error;
1507 		so->so_error = 0;
1508 		SOCKBUF_UNLOCK(&so->so_snd);
1509 		goto out;
1510 	}
1511 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1512 		/*
1513 		 * `sendto' and `sendmsg' is allowed on a connection-based
1514 		 * socket if it supports implied connect.  Return ENOTCONN if
1515 		 * not connected and no address is supplied.
1516 		 */
1517 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1518 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1519 			if (!(resid == 0 && clen != 0)) {
1520 				SOCKBUF_UNLOCK(&so->so_snd);
1521 				error = ENOTCONN;
1522 				goto out;
1523 			}
1524 		} else if (addr == NULL) {
1525 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1526 				error = ENOTCONN;
1527 			else
1528 				error = EDESTADDRREQ;
1529 			SOCKBUF_UNLOCK(&so->so_snd);
1530 			goto out;
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1536 	 * problem and need fixing.
1537 	 */
1538 	space = sbspace(&so->so_snd);
1539 	if (flags & MSG_OOB)
1540 		space += 1024;
1541 	space -= clen;
1542 	SOCKBUF_UNLOCK(&so->so_snd);
1543 	if (resid > space) {
1544 		error = EMSGSIZE;
1545 		goto out;
1546 	}
1547 	if (uio == NULL) {
1548 		resid = 0;
1549 		if (flags & MSG_EOR)
1550 			top->m_flags |= M_EOR;
1551 	} else {
1552 		/*
1553 		 * Copy the data from userland into a mbuf chain.
1554 		 * If no data is to be copied in, a single empty mbuf
1555 		 * is returned.
1556 		 */
1557 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1558 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1559 		if (top == NULL) {
1560 			error = EFAULT;	/* only possible error */
1561 			goto out;
1562 		}
1563 		space -= resid - uio->uio_resid;
1564 		resid = uio->uio_resid;
1565 	}
1566 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1567 	/*
1568 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1569 	 * than with.
1570 	 */
1571 	if (dontroute) {
1572 		SOCK_LOCK(so);
1573 		so->so_options |= SO_DONTROUTE;
1574 		SOCK_UNLOCK(so);
1575 	}
1576 	/*
1577 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1578 	 * of date.  We could have received a reset packet in an interrupt or
1579 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1580 	 * probably recheck again inside the locking protection here, but
1581 	 * there are probably other places that this also happens.  We must
1582 	 * rethink this.
1583 	 */
1584 	VNET_SO_ASSERT(so);
1585 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
1586 	/*
1587 	 * If the user set MSG_EOF, the protocol understands this flag and
1588 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1589 	 */
1590 	    ((flags & MSG_EOF) &&
1591 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1592 	     (resid <= 0)) ?
1593 		PRUS_EOF :
1594 		/* If there is more to send set PRUS_MORETOCOME */
1595 		(flags & MSG_MORETOCOME) ||
1596 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1597 		top, addr, control, td);
1598 	if (dontroute) {
1599 		SOCK_LOCK(so);
1600 		so->so_options &= ~SO_DONTROUTE;
1601 		SOCK_UNLOCK(so);
1602 	}
1603 	clen = 0;
1604 	control = NULL;
1605 	top = NULL;
1606 out:
1607 	if (top != NULL)
1608 		m_freem(top);
1609 	if (control != NULL)
1610 		m_freem(control);
1611 	return (error);
1612 }
1613 
1614 /*
1615  * Send on a socket.  If send must go all at once and message is larger than
1616  * send buffering, then hard error.  Lock against other senders.  If must go
1617  * all at once and not enough room now, then inform user that this would
1618  * block and do nothing.  Otherwise, if nonblocking, send as much as
1619  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1620  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1621  * in mbuf chain must be small enough to send all at once.
1622  *
1623  * Returns nonzero on error, timeout or signal; callers must check for short
1624  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1625  * on return.
1626  */
1627 int
1628 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1629     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1630 {
1631 	long space;
1632 	ssize_t resid;
1633 	int clen = 0, error, dontroute;
1634 	int atomic = sosendallatonce(so) || top;
1635 	int pr_send_flag;
1636 #ifdef KERN_TLS
1637 	struct ktls_session *tls;
1638 	int tls_enq_cnt, tls_send_flag;
1639 	uint8_t tls_rtype;
1640 
1641 	tls = NULL;
1642 	tls_rtype = TLS_RLTYPE_APP;
1643 #endif
1644 	if (uio != NULL)
1645 		resid = uio->uio_resid;
1646 	else if ((top->m_flags & M_PKTHDR) != 0)
1647 		resid = top->m_pkthdr.len;
1648 	else
1649 		resid = m_length(top, NULL);
1650 	/*
1651 	 * In theory resid should be unsigned.  However, space must be
1652 	 * signed, as it might be less than 0 if we over-committed, and we
1653 	 * must use a signed comparison of space and resid.  On the other
1654 	 * hand, a negative resid causes us to loop sending 0-length
1655 	 * segments to the protocol.
1656 	 *
1657 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1658 	 * type sockets since that's an error.
1659 	 */
1660 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1661 		error = EINVAL;
1662 		goto out;
1663 	}
1664 
1665 	dontroute =
1666 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1667 	    (so->so_proto->pr_flags & PR_ATOMIC);
1668 	if (td != NULL)
1669 		td->td_ru.ru_msgsnd++;
1670 	if (control != NULL)
1671 		clen = control->m_len;
1672 
1673 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1674 	if (error)
1675 		goto out;
1676 
1677 #ifdef KERN_TLS
1678 	tls_send_flag = 0;
1679 	tls = ktls_hold(so->so_snd.sb_tls_info);
1680 	if (tls != NULL) {
1681 		if (tls->mode == TCP_TLS_MODE_SW)
1682 			tls_send_flag = PRUS_NOTREADY;
1683 
1684 		if (control != NULL) {
1685 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1686 
1687 			if (clen >= sizeof(*cm) &&
1688 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1689 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1690 				clen = 0;
1691 				m_freem(control);
1692 				control = NULL;
1693 				atomic = 1;
1694 			}
1695 		}
1696 
1697 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1698 			error = EINVAL;
1699 			goto release;
1700 		}
1701 	}
1702 #endif
1703 
1704 restart:
1705 	do {
1706 		SOCKBUF_LOCK(&so->so_snd);
1707 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1708 			SOCKBUF_UNLOCK(&so->so_snd);
1709 			error = EPIPE;
1710 			goto release;
1711 		}
1712 		if (so->so_error) {
1713 			error = so->so_error;
1714 			so->so_error = 0;
1715 			SOCKBUF_UNLOCK(&so->so_snd);
1716 			goto release;
1717 		}
1718 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1719 			/*
1720 			 * `sendto' and `sendmsg' is allowed on a connection-
1721 			 * based socket if it supports implied connect.
1722 			 * Return ENOTCONN if not connected and no address is
1723 			 * supplied.
1724 			 */
1725 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1726 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1727 				if (!(resid == 0 && clen != 0)) {
1728 					SOCKBUF_UNLOCK(&so->so_snd);
1729 					error = ENOTCONN;
1730 					goto release;
1731 				}
1732 			} else if (addr == NULL) {
1733 				SOCKBUF_UNLOCK(&so->so_snd);
1734 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1735 					error = ENOTCONN;
1736 				else
1737 					error = EDESTADDRREQ;
1738 				goto release;
1739 			}
1740 		}
1741 		space = sbspace(&so->so_snd);
1742 		if (flags & MSG_OOB)
1743 			space += 1024;
1744 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1745 		    clen > so->so_snd.sb_hiwat) {
1746 			SOCKBUF_UNLOCK(&so->so_snd);
1747 			error = EMSGSIZE;
1748 			goto release;
1749 		}
1750 		if (space < resid + clen &&
1751 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1752 			if ((so->so_state & SS_NBIO) ||
1753 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1754 				SOCKBUF_UNLOCK(&so->so_snd);
1755 				error = EWOULDBLOCK;
1756 				goto release;
1757 			}
1758 			error = sbwait(so, SO_SND);
1759 			SOCKBUF_UNLOCK(&so->so_snd);
1760 			if (error)
1761 				goto release;
1762 			goto restart;
1763 		}
1764 		SOCKBUF_UNLOCK(&so->so_snd);
1765 		space -= clen;
1766 		do {
1767 			if (uio == NULL) {
1768 				resid = 0;
1769 				if (flags & MSG_EOR)
1770 					top->m_flags |= M_EOR;
1771 #ifdef KERN_TLS
1772 				if (tls != NULL) {
1773 					ktls_frame(top, tls, &tls_enq_cnt,
1774 					    tls_rtype);
1775 					tls_rtype = TLS_RLTYPE_APP;
1776 				}
1777 #endif
1778 			} else {
1779 				/*
1780 				 * Copy the data from userland into a mbuf
1781 				 * chain.  If resid is 0, which can happen
1782 				 * only if we have control to send, then
1783 				 * a single empty mbuf is returned.  This
1784 				 * is a workaround to prevent protocol send
1785 				 * methods to panic.
1786 				 */
1787 #ifdef KERN_TLS
1788 				if (tls != NULL) {
1789 					top = m_uiotombuf(uio, M_WAITOK, space,
1790 					    tls->params.max_frame_len,
1791 					    M_EXTPG |
1792 					    ((flags & MSG_EOR) ? M_EOR : 0));
1793 					if (top != NULL) {
1794 						ktls_frame(top, tls,
1795 						    &tls_enq_cnt, tls_rtype);
1796 					}
1797 					tls_rtype = TLS_RLTYPE_APP;
1798 				} else
1799 #endif
1800 					top = m_uiotombuf(uio, M_WAITOK, space,
1801 					    (atomic ? max_hdr : 0),
1802 					    (atomic ? M_PKTHDR : 0) |
1803 					    ((flags & MSG_EOR) ? M_EOR : 0));
1804 				if (top == NULL) {
1805 					error = EFAULT; /* only possible error */
1806 					goto release;
1807 				}
1808 				space -= resid - uio->uio_resid;
1809 				resid = uio->uio_resid;
1810 			}
1811 			if (dontroute) {
1812 				SOCK_LOCK(so);
1813 				so->so_options |= SO_DONTROUTE;
1814 				SOCK_UNLOCK(so);
1815 			}
1816 			/*
1817 			 * XXX all the SBS_CANTSENDMORE checks previously
1818 			 * done could be out of date.  We could have received
1819 			 * a reset packet in an interrupt or maybe we slept
1820 			 * while doing page faults in uiomove() etc.  We
1821 			 * could probably recheck again inside the locking
1822 			 * protection here, but there are probably other
1823 			 * places that this also happens.  We must rethink
1824 			 * this.
1825 			 */
1826 			VNET_SO_ASSERT(so);
1827 
1828 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
1829 			/*
1830 			 * If the user set MSG_EOF, the protocol understands
1831 			 * this flag and nothing left to send then use
1832 			 * PRU_SEND_EOF instead of PRU_SEND.
1833 			 */
1834 			    ((flags & MSG_EOF) &&
1835 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1836 			     (resid <= 0)) ?
1837 				PRUS_EOF :
1838 			/* If there is more to send set PRUS_MORETOCOME. */
1839 			    (flags & MSG_MORETOCOME) ||
1840 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1841 
1842 #ifdef KERN_TLS
1843 			pr_send_flag |= tls_send_flag;
1844 #endif
1845 
1846 			error = so->so_proto->pr_send(so, pr_send_flag, top,
1847 			    addr, control, td);
1848 
1849 			if (dontroute) {
1850 				SOCK_LOCK(so);
1851 				so->so_options &= ~SO_DONTROUTE;
1852 				SOCK_UNLOCK(so);
1853 			}
1854 
1855 #ifdef KERN_TLS
1856 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1857 				if (error != 0) {
1858 					m_freem(top);
1859 					top = NULL;
1860 				} else {
1861 					soref(so);
1862 					ktls_enqueue(top, so, tls_enq_cnt);
1863 				}
1864 			}
1865 #endif
1866 			clen = 0;
1867 			control = NULL;
1868 			top = NULL;
1869 			if (error)
1870 				goto release;
1871 		} while (resid && space > 0);
1872 	} while (resid);
1873 
1874 release:
1875 	SOCK_IO_SEND_UNLOCK(so);
1876 out:
1877 #ifdef KERN_TLS
1878 	if (tls != NULL)
1879 		ktls_free(tls);
1880 #endif
1881 	if (top != NULL)
1882 		m_freem(top);
1883 	if (control != NULL)
1884 		m_freem(control);
1885 	return (error);
1886 }
1887 
1888 /*
1889  * Send to a socket from a kernel thread.
1890  *
1891  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
1892  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
1893  * to be set at all.  This function should just boil down to a static inline
1894  * calling the protocol method.
1895  */
1896 int
1897 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1898     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1899 {
1900 	int error;
1901 
1902 	CURVNET_SET(so->so_vnet);
1903 	error = so->so_proto->pr_sosend(so, addr, uio,
1904 	    top, control, flags, td);
1905 	CURVNET_RESTORE();
1906 	return (error);
1907 }
1908 
1909 /*
1910  * send(2), write(2) or aio_write(2) on a socket.
1911  */
1912 int
1913 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1914     struct mbuf *control, int flags, struct proc *userproc)
1915 {
1916 	struct thread *td;
1917 	ssize_t len;
1918 	int error;
1919 
1920 	td = uio->uio_td;
1921 	len = uio->uio_resid;
1922 	CURVNET_SET(so->so_vnet);
1923 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
1924 	    td);
1925 	CURVNET_RESTORE();
1926 	if (error != 0) {
1927 		/*
1928 		 * Clear transient errors for stream protocols if they made
1929 		 * some progress.  Make exclusion for aio(4) that would
1930 		 * schedule a new write in case of EWOULDBLOCK and clear
1931 		 * error itself.  See soaio_process_job().
1932 		 */
1933 		if (uio->uio_resid != len &&
1934 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
1935 		    userproc == NULL &&
1936 		    (error == ERESTART || error == EINTR ||
1937 		    error == EWOULDBLOCK))
1938 			error = 0;
1939 		/* Generation of SIGPIPE can be controlled per socket. */
1940 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
1941 		    (flags & MSG_NOSIGNAL) == 0) {
1942 			if (userproc != NULL) {
1943 				/* aio(4) job */
1944 				PROC_LOCK(userproc);
1945 				kern_psignal(userproc, SIGPIPE);
1946 				PROC_UNLOCK(userproc);
1947 			} else {
1948 				PROC_LOCK(td->td_proc);
1949 				tdsignal(td, SIGPIPE);
1950 				PROC_UNLOCK(td->td_proc);
1951 			}
1952 		}
1953 	}
1954 	return (error);
1955 }
1956 
1957 /*
1958  * The part of soreceive() that implements reading non-inline out-of-band
1959  * data from a socket.  For more complete comments, see soreceive(), from
1960  * which this code originated.
1961  *
1962  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1963  * unable to return an mbuf chain to the caller.
1964  */
1965 static int
1966 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1967 {
1968 	struct protosw *pr = so->so_proto;
1969 	struct mbuf *m;
1970 	int error;
1971 
1972 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1973 	VNET_SO_ASSERT(so);
1974 
1975 	m = m_get(M_WAITOK, MT_DATA);
1976 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
1977 	if (error)
1978 		goto bad;
1979 	do {
1980 		error = uiomove(mtod(m, void *),
1981 		    (int) min(uio->uio_resid, m->m_len), uio);
1982 		m = m_free(m);
1983 	} while (uio->uio_resid && error == 0 && m);
1984 bad:
1985 	if (m != NULL)
1986 		m_freem(m);
1987 	return (error);
1988 }
1989 
1990 /*
1991  * Following replacement or removal of the first mbuf on the first mbuf chain
1992  * of a socket buffer, push necessary state changes back into the socket
1993  * buffer so that other consumers see the values consistently.  'nextrecord'
1994  * is the callers locally stored value of the original value of
1995  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1996  * NOTE: 'nextrecord' may be NULL.
1997  */
1998 static __inline void
1999 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2000 {
2001 
2002 	SOCKBUF_LOCK_ASSERT(sb);
2003 	/*
2004 	 * First, update for the new value of nextrecord.  If necessary, make
2005 	 * it the first record.
2006 	 */
2007 	if (sb->sb_mb != NULL)
2008 		sb->sb_mb->m_nextpkt = nextrecord;
2009 	else
2010 		sb->sb_mb = nextrecord;
2011 
2012 	/*
2013 	 * Now update any dependent socket buffer fields to reflect the new
2014 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
2015 	 * addition of a second clause that takes care of the case where
2016 	 * sb_mb has been updated, but remains the last record.
2017 	 */
2018 	if (sb->sb_mb == NULL) {
2019 		sb->sb_mbtail = NULL;
2020 		sb->sb_lastrecord = NULL;
2021 	} else if (sb->sb_mb->m_nextpkt == NULL)
2022 		sb->sb_lastrecord = sb->sb_mb;
2023 }
2024 
2025 /*
2026  * Implement receive operations on a socket.  We depend on the way that
2027  * records are added to the sockbuf by sbappend.  In particular, each record
2028  * (mbufs linked through m_next) must begin with an address if the protocol
2029  * so specifies, followed by an optional mbuf or mbufs containing ancillary
2030  * data, and then zero or more mbufs of data.  In order to allow parallelism
2031  * between network receive and copying to user space, as well as avoid
2032  * sleeping with a mutex held, we release the socket buffer mutex during the
2033  * user space copy.  Although the sockbuf is locked, new data may still be
2034  * appended, and thus we must maintain consistency of the sockbuf during that
2035  * time.
2036  *
2037  * The caller may receive the data as a single mbuf chain by supplying an
2038  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
2039  * the count in uio_resid.
2040  */
2041 int
2042 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
2043     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2044 {
2045 	struct mbuf *m, **mp;
2046 	int flags, error, offset;
2047 	ssize_t len;
2048 	struct protosw *pr = so->so_proto;
2049 	struct mbuf *nextrecord;
2050 	int moff, type = 0;
2051 	ssize_t orig_resid = uio->uio_resid;
2052 	bool report_real_len = false;
2053 
2054 	mp = mp0;
2055 	if (psa != NULL)
2056 		*psa = NULL;
2057 	if (controlp != NULL)
2058 		*controlp = NULL;
2059 	if (flagsp != NULL) {
2060 		report_real_len = *flagsp & MSG_TRUNC;
2061 		*flagsp &= ~MSG_TRUNC;
2062 		flags = *flagsp &~ MSG_EOR;
2063 	} else
2064 		flags = 0;
2065 	if (flags & MSG_OOB)
2066 		return (soreceive_rcvoob(so, uio, flags));
2067 	if (mp != NULL)
2068 		*mp = NULL;
2069 
2070 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2071 	if (error)
2072 		return (error);
2073 
2074 restart:
2075 	SOCKBUF_LOCK(&so->so_rcv);
2076 	m = so->so_rcv.sb_mb;
2077 	/*
2078 	 * If we have less data than requested, block awaiting more (subject
2079 	 * to any timeout) if:
2080 	 *   1. the current count is less than the low water mark, or
2081 	 *   2. MSG_DONTWAIT is not set
2082 	 */
2083 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2084 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2085 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2086 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2087 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2088 		    ("receive: m == %p sbavail == %u",
2089 		    m, sbavail(&so->so_rcv)));
2090 		if (so->so_error || so->so_rerror) {
2091 			if (m != NULL)
2092 				goto dontblock;
2093 			if (so->so_error)
2094 				error = so->so_error;
2095 			else
2096 				error = so->so_rerror;
2097 			if ((flags & MSG_PEEK) == 0) {
2098 				if (so->so_error)
2099 					so->so_error = 0;
2100 				else
2101 					so->so_rerror = 0;
2102 			}
2103 			SOCKBUF_UNLOCK(&so->so_rcv);
2104 			goto release;
2105 		}
2106 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2107 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2108 			if (m != NULL)
2109 				goto dontblock;
2110 #ifdef KERN_TLS
2111 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2112 			    so->so_rcv.sb_tlscc == 0) {
2113 #else
2114 			else {
2115 #endif
2116 				SOCKBUF_UNLOCK(&so->so_rcv);
2117 				goto release;
2118 			}
2119 		}
2120 		for (; m != NULL; m = m->m_next)
2121 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2122 				m = so->so_rcv.sb_mb;
2123 				goto dontblock;
2124 			}
2125 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2126 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2127 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2128 			SOCKBUF_UNLOCK(&so->so_rcv);
2129 			error = ENOTCONN;
2130 			goto release;
2131 		}
2132 		if (uio->uio_resid == 0 && !report_real_len) {
2133 			SOCKBUF_UNLOCK(&so->so_rcv);
2134 			goto release;
2135 		}
2136 		if ((so->so_state & SS_NBIO) ||
2137 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2138 			SOCKBUF_UNLOCK(&so->so_rcv);
2139 			error = EWOULDBLOCK;
2140 			goto release;
2141 		}
2142 		SBLASTRECORDCHK(&so->so_rcv);
2143 		SBLASTMBUFCHK(&so->so_rcv);
2144 		error = sbwait(so, SO_RCV);
2145 		SOCKBUF_UNLOCK(&so->so_rcv);
2146 		if (error)
2147 			goto release;
2148 		goto restart;
2149 	}
2150 dontblock:
2151 	/*
2152 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2153 	 * pointer to the next record in the socket buffer.  We must keep the
2154 	 * various socket buffer pointers and local stack versions of the
2155 	 * pointers in sync, pushing out modifications before dropping the
2156 	 * socket buffer mutex, and re-reading them when picking it up.
2157 	 *
2158 	 * Otherwise, we will race with the network stack appending new data
2159 	 * or records onto the socket buffer by using inconsistent/stale
2160 	 * versions of the field, possibly resulting in socket buffer
2161 	 * corruption.
2162 	 *
2163 	 * By holding the high-level sblock(), we prevent simultaneous
2164 	 * readers from pulling off the front of the socket buffer.
2165 	 */
2166 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2167 	if (uio->uio_td)
2168 		uio->uio_td->td_ru.ru_msgrcv++;
2169 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2170 	SBLASTRECORDCHK(&so->so_rcv);
2171 	SBLASTMBUFCHK(&so->so_rcv);
2172 	nextrecord = m->m_nextpkt;
2173 	if (pr->pr_flags & PR_ADDR) {
2174 		KASSERT(m->m_type == MT_SONAME,
2175 		    ("m->m_type == %d", m->m_type));
2176 		orig_resid = 0;
2177 		if (psa != NULL)
2178 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2179 			    M_NOWAIT);
2180 		if (flags & MSG_PEEK) {
2181 			m = m->m_next;
2182 		} else {
2183 			sbfree(&so->so_rcv, m);
2184 			so->so_rcv.sb_mb = m_free(m);
2185 			m = so->so_rcv.sb_mb;
2186 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2187 		}
2188 	}
2189 
2190 	/*
2191 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2192 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2193 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2194 	 * perform externalization (or freeing if controlp == NULL).
2195 	 */
2196 	if (m != NULL && m->m_type == MT_CONTROL) {
2197 		struct mbuf *cm = NULL, *cmn;
2198 		struct mbuf **cme = &cm;
2199 #ifdef KERN_TLS
2200 		struct cmsghdr *cmsg;
2201 		struct tls_get_record tgr;
2202 
2203 		/*
2204 		 * For MSG_TLSAPPDATA, check for an alert record.
2205 		 * If found, return ENXIO without removing
2206 		 * it from the receive queue.  This allows a subsequent
2207 		 * call without MSG_TLSAPPDATA to receive it.
2208 		 * Note that, for TLS, there should only be a single
2209 		 * control mbuf with the TLS_GET_RECORD message in it.
2210 		 */
2211 		if (flags & MSG_TLSAPPDATA) {
2212 			cmsg = mtod(m, struct cmsghdr *);
2213 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2214 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2215 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2216 				if (__predict_false(tgr.tls_type ==
2217 				    TLS_RLTYPE_ALERT)) {
2218 					SOCKBUF_UNLOCK(&so->so_rcv);
2219 					error = ENXIO;
2220 					goto release;
2221 				}
2222 			}
2223 		}
2224 #endif
2225 
2226 		do {
2227 			if (flags & MSG_PEEK) {
2228 				if (controlp != NULL) {
2229 					*controlp = m_copym(m, 0, m->m_len,
2230 					    M_NOWAIT);
2231 					controlp = &(*controlp)->m_next;
2232 				}
2233 				m = m->m_next;
2234 			} else {
2235 				sbfree(&so->so_rcv, m);
2236 				so->so_rcv.sb_mb = m->m_next;
2237 				m->m_next = NULL;
2238 				*cme = m;
2239 				cme = &(*cme)->m_next;
2240 				m = so->so_rcv.sb_mb;
2241 			}
2242 		} while (m != NULL && m->m_type == MT_CONTROL);
2243 		if ((flags & MSG_PEEK) == 0)
2244 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2245 		while (cm != NULL) {
2246 			cmn = cm->m_next;
2247 			cm->m_next = NULL;
2248 			if (pr->pr_domain->dom_externalize != NULL) {
2249 				SOCKBUF_UNLOCK(&so->so_rcv);
2250 				VNET_SO_ASSERT(so);
2251 				error = (*pr->pr_domain->dom_externalize)
2252 				    (cm, controlp, flags);
2253 				SOCKBUF_LOCK(&so->so_rcv);
2254 			} else if (controlp != NULL)
2255 				*controlp = cm;
2256 			else
2257 				m_freem(cm);
2258 			if (controlp != NULL) {
2259 				while (*controlp != NULL)
2260 					controlp = &(*controlp)->m_next;
2261 			}
2262 			cm = cmn;
2263 		}
2264 		if (m != NULL)
2265 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2266 		else
2267 			nextrecord = so->so_rcv.sb_mb;
2268 		orig_resid = 0;
2269 	}
2270 	if (m != NULL) {
2271 		if ((flags & MSG_PEEK) == 0) {
2272 			KASSERT(m->m_nextpkt == nextrecord,
2273 			    ("soreceive: post-control, nextrecord !sync"));
2274 			if (nextrecord == NULL) {
2275 				KASSERT(so->so_rcv.sb_mb == m,
2276 				    ("soreceive: post-control, sb_mb!=m"));
2277 				KASSERT(so->so_rcv.sb_lastrecord == m,
2278 				    ("soreceive: post-control, lastrecord!=m"));
2279 			}
2280 		}
2281 		type = m->m_type;
2282 		if (type == MT_OOBDATA)
2283 			flags |= MSG_OOB;
2284 	} else {
2285 		if ((flags & MSG_PEEK) == 0) {
2286 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2287 			    ("soreceive: sb_mb != nextrecord"));
2288 			if (so->so_rcv.sb_mb == NULL) {
2289 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2290 				    ("soreceive: sb_lastercord != NULL"));
2291 			}
2292 		}
2293 	}
2294 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2295 	SBLASTRECORDCHK(&so->so_rcv);
2296 	SBLASTMBUFCHK(&so->so_rcv);
2297 
2298 	/*
2299 	 * Now continue to read any data mbufs off of the head of the socket
2300 	 * buffer until the read request is satisfied.  Note that 'type' is
2301 	 * used to store the type of any mbuf reads that have happened so far
2302 	 * such that soreceive() can stop reading if the type changes, which
2303 	 * causes soreceive() to return only one of regular data and inline
2304 	 * out-of-band data in a single socket receive operation.
2305 	 */
2306 	moff = 0;
2307 	offset = 0;
2308 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2309 	    && error == 0) {
2310 		/*
2311 		 * If the type of mbuf has changed since the last mbuf
2312 		 * examined ('type'), end the receive operation.
2313 		 */
2314 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2315 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2316 			if (type != m->m_type)
2317 				break;
2318 		} else if (type == MT_OOBDATA)
2319 			break;
2320 		else
2321 		    KASSERT(m->m_type == MT_DATA,
2322 			("m->m_type == %d", m->m_type));
2323 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2324 		len = uio->uio_resid;
2325 		if (so->so_oobmark && len > so->so_oobmark - offset)
2326 			len = so->so_oobmark - offset;
2327 		if (len > m->m_len - moff)
2328 			len = m->m_len - moff;
2329 		/*
2330 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2331 		 * them out via the uio, then free.  Sockbuf must be
2332 		 * consistent here (points to current mbuf, it points to next
2333 		 * record) when we drop priority; we must note any additions
2334 		 * to the sockbuf when we block interrupts again.
2335 		 */
2336 		if (mp == NULL) {
2337 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2338 			SBLASTRECORDCHK(&so->so_rcv);
2339 			SBLASTMBUFCHK(&so->so_rcv);
2340 			SOCKBUF_UNLOCK(&so->so_rcv);
2341 			if ((m->m_flags & M_EXTPG) != 0)
2342 				error = m_unmapped_uiomove(m, moff, uio,
2343 				    (int)len);
2344 			else
2345 				error = uiomove(mtod(m, char *) + moff,
2346 				    (int)len, uio);
2347 			SOCKBUF_LOCK(&so->so_rcv);
2348 			if (error) {
2349 				/*
2350 				 * The MT_SONAME mbuf has already been removed
2351 				 * from the record, so it is necessary to
2352 				 * remove the data mbufs, if any, to preserve
2353 				 * the invariant in the case of PR_ADDR that
2354 				 * requires MT_SONAME mbufs at the head of
2355 				 * each record.
2356 				 */
2357 				if (pr->pr_flags & PR_ATOMIC &&
2358 				    ((flags & MSG_PEEK) == 0))
2359 					(void)sbdroprecord_locked(&so->so_rcv);
2360 				SOCKBUF_UNLOCK(&so->so_rcv);
2361 				goto release;
2362 			}
2363 		} else
2364 			uio->uio_resid -= len;
2365 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2366 		if (len == m->m_len - moff) {
2367 			if (m->m_flags & M_EOR)
2368 				flags |= MSG_EOR;
2369 			if (flags & MSG_PEEK) {
2370 				m = m->m_next;
2371 				moff = 0;
2372 			} else {
2373 				nextrecord = m->m_nextpkt;
2374 				sbfree(&so->so_rcv, m);
2375 				if (mp != NULL) {
2376 					m->m_nextpkt = NULL;
2377 					*mp = m;
2378 					mp = &m->m_next;
2379 					so->so_rcv.sb_mb = m = m->m_next;
2380 					*mp = NULL;
2381 				} else {
2382 					so->so_rcv.sb_mb = m_free(m);
2383 					m = so->so_rcv.sb_mb;
2384 				}
2385 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2386 				SBLASTRECORDCHK(&so->so_rcv);
2387 				SBLASTMBUFCHK(&so->so_rcv);
2388 			}
2389 		} else {
2390 			if (flags & MSG_PEEK)
2391 				moff += len;
2392 			else {
2393 				if (mp != NULL) {
2394 					if (flags & MSG_DONTWAIT) {
2395 						*mp = m_copym(m, 0, len,
2396 						    M_NOWAIT);
2397 						if (*mp == NULL) {
2398 							/*
2399 							 * m_copym() couldn't
2400 							 * allocate an mbuf.
2401 							 * Adjust uio_resid back
2402 							 * (it was adjusted
2403 							 * down by len bytes,
2404 							 * which we didn't end
2405 							 * up "copying" over).
2406 							 */
2407 							uio->uio_resid += len;
2408 							break;
2409 						}
2410 					} else {
2411 						SOCKBUF_UNLOCK(&so->so_rcv);
2412 						*mp = m_copym(m, 0, len,
2413 						    M_WAITOK);
2414 						SOCKBUF_LOCK(&so->so_rcv);
2415 					}
2416 				}
2417 				sbcut_locked(&so->so_rcv, len);
2418 			}
2419 		}
2420 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2421 		if (so->so_oobmark) {
2422 			if ((flags & MSG_PEEK) == 0) {
2423 				so->so_oobmark -= len;
2424 				if (so->so_oobmark == 0) {
2425 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2426 					break;
2427 				}
2428 			} else {
2429 				offset += len;
2430 				if (offset == so->so_oobmark)
2431 					break;
2432 			}
2433 		}
2434 		if (flags & MSG_EOR)
2435 			break;
2436 		/*
2437 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2438 		 * must not quit until "uio->uio_resid == 0" or an error
2439 		 * termination.  If a signal/timeout occurs, return with a
2440 		 * short count but without error.  Keep sockbuf locked
2441 		 * against other readers.
2442 		 */
2443 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2444 		    !sosendallatonce(so) && nextrecord == NULL) {
2445 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2446 			if (so->so_error || so->so_rerror ||
2447 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2448 				break;
2449 			/*
2450 			 * Notify the protocol that some data has been
2451 			 * drained before blocking.
2452 			 */
2453 			if (pr->pr_flags & PR_WANTRCVD) {
2454 				SOCKBUF_UNLOCK(&so->so_rcv);
2455 				VNET_SO_ASSERT(so);
2456 				pr->pr_rcvd(so, flags);
2457 				SOCKBUF_LOCK(&so->so_rcv);
2458 				if (__predict_false(so->so_rcv.sb_mb == NULL &&
2459 				    (so->so_error || so->so_rerror ||
2460 				    so->so_rcv.sb_state & SBS_CANTRCVMORE)))
2461 					break;
2462 			}
2463 			SBLASTRECORDCHK(&so->so_rcv);
2464 			SBLASTMBUFCHK(&so->so_rcv);
2465 			/*
2466 			 * We could receive some data while was notifying
2467 			 * the protocol. Skip blocking in this case.
2468 			 */
2469 			if (so->so_rcv.sb_mb == NULL) {
2470 				error = sbwait(so, SO_RCV);
2471 				if (error) {
2472 					SOCKBUF_UNLOCK(&so->so_rcv);
2473 					goto release;
2474 				}
2475 			}
2476 			m = so->so_rcv.sb_mb;
2477 			if (m != NULL)
2478 				nextrecord = m->m_nextpkt;
2479 		}
2480 	}
2481 
2482 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2483 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2484 		if (report_real_len)
2485 			uio->uio_resid -= m_length(m, NULL) - moff;
2486 		flags |= MSG_TRUNC;
2487 		if ((flags & MSG_PEEK) == 0)
2488 			(void) sbdroprecord_locked(&so->so_rcv);
2489 	}
2490 	if ((flags & MSG_PEEK) == 0) {
2491 		if (m == NULL) {
2492 			/*
2493 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2494 			 * part makes sure sb_lastrecord is up-to-date if
2495 			 * there is still data in the socket buffer.
2496 			 */
2497 			so->so_rcv.sb_mb = nextrecord;
2498 			if (so->so_rcv.sb_mb == NULL) {
2499 				so->so_rcv.sb_mbtail = NULL;
2500 				so->so_rcv.sb_lastrecord = NULL;
2501 			} else if (nextrecord->m_nextpkt == NULL)
2502 				so->so_rcv.sb_lastrecord = nextrecord;
2503 		}
2504 		SBLASTRECORDCHK(&so->so_rcv);
2505 		SBLASTMBUFCHK(&so->so_rcv);
2506 		/*
2507 		 * If soreceive() is being done from the socket callback,
2508 		 * then don't need to generate ACK to peer to update window,
2509 		 * since ACK will be generated on return to TCP.
2510 		 */
2511 		if (!(flags & MSG_SOCALLBCK) &&
2512 		    (pr->pr_flags & PR_WANTRCVD)) {
2513 			SOCKBUF_UNLOCK(&so->so_rcv);
2514 			VNET_SO_ASSERT(so);
2515 			pr->pr_rcvd(so, flags);
2516 			SOCKBUF_LOCK(&so->so_rcv);
2517 		}
2518 	}
2519 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2520 	if (orig_resid == uio->uio_resid && orig_resid &&
2521 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2522 		SOCKBUF_UNLOCK(&so->so_rcv);
2523 		goto restart;
2524 	}
2525 	SOCKBUF_UNLOCK(&so->so_rcv);
2526 
2527 	if (flagsp != NULL)
2528 		*flagsp |= flags;
2529 release:
2530 	SOCK_IO_RECV_UNLOCK(so);
2531 	return (error);
2532 }
2533 
2534 /*
2535  * Optimized version of soreceive() for stream (TCP) sockets.
2536  */
2537 int
2538 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2539     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2540 {
2541 	int len = 0, error = 0, flags, oresid;
2542 	struct sockbuf *sb;
2543 	struct mbuf *m, *n = NULL;
2544 
2545 	/* We only do stream sockets. */
2546 	if (so->so_type != SOCK_STREAM)
2547 		return (EINVAL);
2548 	if (psa != NULL)
2549 		*psa = NULL;
2550 	if (flagsp != NULL)
2551 		flags = *flagsp &~ MSG_EOR;
2552 	else
2553 		flags = 0;
2554 	if (controlp != NULL)
2555 		*controlp = NULL;
2556 	if (flags & MSG_OOB)
2557 		return (soreceive_rcvoob(so, uio, flags));
2558 	if (mp0 != NULL)
2559 		*mp0 = NULL;
2560 
2561 	sb = &so->so_rcv;
2562 
2563 #ifdef KERN_TLS
2564 	/*
2565 	 * KTLS store TLS records as records with a control message to
2566 	 * describe the framing.
2567 	 *
2568 	 * We check once here before acquiring locks to optimize the
2569 	 * common case.
2570 	 */
2571 	if (sb->sb_tls_info != NULL)
2572 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2573 		    flagsp));
2574 #endif
2575 
2576 	/* Prevent other readers from entering the socket. */
2577 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2578 	if (error)
2579 		return (error);
2580 	SOCKBUF_LOCK(sb);
2581 
2582 #ifdef KERN_TLS
2583 	if (sb->sb_tls_info != NULL) {
2584 		SOCKBUF_UNLOCK(sb);
2585 		SOCK_IO_RECV_UNLOCK(so);
2586 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2587 		    flagsp));
2588 	}
2589 #endif
2590 
2591 	/* Easy one, no space to copyout anything. */
2592 	if (uio->uio_resid == 0) {
2593 		error = EINVAL;
2594 		goto out;
2595 	}
2596 	oresid = uio->uio_resid;
2597 
2598 	/* We will never ever get anything unless we are or were connected. */
2599 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2600 		error = ENOTCONN;
2601 		goto out;
2602 	}
2603 
2604 restart:
2605 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2606 
2607 	/* Abort if socket has reported problems. */
2608 	if (so->so_error) {
2609 		if (sbavail(sb) > 0)
2610 			goto deliver;
2611 		if (oresid > uio->uio_resid)
2612 			goto out;
2613 		error = so->so_error;
2614 		if (!(flags & MSG_PEEK))
2615 			so->so_error = 0;
2616 		goto out;
2617 	}
2618 
2619 	/* Door is closed.  Deliver what is left, if any. */
2620 	if (sb->sb_state & SBS_CANTRCVMORE) {
2621 		if (sbavail(sb) > 0)
2622 			goto deliver;
2623 		else
2624 			goto out;
2625 	}
2626 
2627 	/* Socket buffer is empty and we shall not block. */
2628 	if (sbavail(sb) == 0 &&
2629 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2630 		error = EAGAIN;
2631 		goto out;
2632 	}
2633 
2634 	/* Socket buffer got some data that we shall deliver now. */
2635 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2636 	    ((so->so_state & SS_NBIO) ||
2637 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2638 	     sbavail(sb) >= sb->sb_lowat ||
2639 	     sbavail(sb) >= uio->uio_resid ||
2640 	     sbavail(sb) >= sb->sb_hiwat) ) {
2641 		goto deliver;
2642 	}
2643 
2644 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2645 	if ((flags & MSG_WAITALL) &&
2646 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2647 		goto deliver;
2648 
2649 	/*
2650 	 * Wait and block until (more) data comes in.
2651 	 * NB: Drops the sockbuf lock during wait.
2652 	 */
2653 	error = sbwait(so, SO_RCV);
2654 	if (error)
2655 		goto out;
2656 	goto restart;
2657 
2658 deliver:
2659 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2660 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2661 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2662 
2663 	/* Statistics. */
2664 	if (uio->uio_td)
2665 		uio->uio_td->td_ru.ru_msgrcv++;
2666 
2667 	/* Fill uio until full or current end of socket buffer is reached. */
2668 	len = min(uio->uio_resid, sbavail(sb));
2669 	if (mp0 != NULL) {
2670 		/* Dequeue as many mbufs as possible. */
2671 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2672 			if (*mp0 == NULL)
2673 				*mp0 = sb->sb_mb;
2674 			else
2675 				m_cat(*mp0, sb->sb_mb);
2676 			for (m = sb->sb_mb;
2677 			     m != NULL && m->m_len <= len;
2678 			     m = m->m_next) {
2679 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2680 				    ("%s: m %p not available", __func__, m));
2681 				len -= m->m_len;
2682 				uio->uio_resid -= m->m_len;
2683 				sbfree(sb, m);
2684 				n = m;
2685 			}
2686 			n->m_next = NULL;
2687 			sb->sb_mb = m;
2688 			sb->sb_lastrecord = sb->sb_mb;
2689 			if (sb->sb_mb == NULL)
2690 				SB_EMPTY_FIXUP(sb);
2691 		}
2692 		/* Copy the remainder. */
2693 		if (len > 0) {
2694 			KASSERT(sb->sb_mb != NULL,
2695 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2696 
2697 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2698 			if (m == NULL)
2699 				len = 0;	/* Don't flush data from sockbuf. */
2700 			else
2701 				uio->uio_resid -= len;
2702 			if (*mp0 != NULL)
2703 				m_cat(*mp0, m);
2704 			else
2705 				*mp0 = m;
2706 			if (*mp0 == NULL) {
2707 				error = ENOBUFS;
2708 				goto out;
2709 			}
2710 		}
2711 	} else {
2712 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2713 		SOCKBUF_UNLOCK(sb);
2714 		error = m_mbuftouio(uio, sb->sb_mb, len);
2715 		SOCKBUF_LOCK(sb);
2716 		if (error)
2717 			goto out;
2718 	}
2719 	SBLASTRECORDCHK(sb);
2720 	SBLASTMBUFCHK(sb);
2721 
2722 	/*
2723 	 * Remove the delivered data from the socket buffer unless we
2724 	 * were only peeking.
2725 	 */
2726 	if (!(flags & MSG_PEEK)) {
2727 		if (len > 0)
2728 			sbdrop_locked(sb, len);
2729 
2730 		/* Notify protocol that we drained some data. */
2731 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2732 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2733 		     !(flags & MSG_SOCALLBCK))) {
2734 			SOCKBUF_UNLOCK(sb);
2735 			VNET_SO_ASSERT(so);
2736 			so->so_proto->pr_rcvd(so, flags);
2737 			SOCKBUF_LOCK(sb);
2738 		}
2739 	}
2740 
2741 	/*
2742 	 * For MSG_WAITALL we may have to loop again and wait for
2743 	 * more data to come in.
2744 	 */
2745 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2746 		goto restart;
2747 out:
2748 	SBLASTRECORDCHK(sb);
2749 	SBLASTMBUFCHK(sb);
2750 	SOCKBUF_UNLOCK(sb);
2751 	SOCK_IO_RECV_UNLOCK(so);
2752 	return (error);
2753 }
2754 
2755 /*
2756  * Optimized version of soreceive() for simple datagram cases from userspace.
2757  * Unlike in the stream case, we're able to drop a datagram if copyout()
2758  * fails, and because we handle datagrams atomically, we don't need to use a
2759  * sleep lock to prevent I/O interlacing.
2760  */
2761 int
2762 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2763     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2764 {
2765 	struct mbuf *m, *m2;
2766 	int flags, error;
2767 	ssize_t len;
2768 	struct protosw *pr = so->so_proto;
2769 	struct mbuf *nextrecord;
2770 
2771 	if (psa != NULL)
2772 		*psa = NULL;
2773 	if (controlp != NULL)
2774 		*controlp = NULL;
2775 	if (flagsp != NULL)
2776 		flags = *flagsp &~ MSG_EOR;
2777 	else
2778 		flags = 0;
2779 
2780 	/*
2781 	 * For any complicated cases, fall back to the full
2782 	 * soreceive_generic().
2783 	 */
2784 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2785 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2786 		    flagsp));
2787 
2788 	/*
2789 	 * Enforce restrictions on use.
2790 	 */
2791 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2792 	    ("soreceive_dgram: wantrcvd"));
2793 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2794 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2795 	    ("soreceive_dgram: SBS_RCVATMARK"));
2796 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2797 	    ("soreceive_dgram: P_CONNREQUIRED"));
2798 
2799 	/*
2800 	 * Loop blocking while waiting for a datagram.
2801 	 */
2802 	SOCKBUF_LOCK(&so->so_rcv);
2803 	while ((m = so->so_rcv.sb_mb) == NULL) {
2804 		KASSERT(sbavail(&so->so_rcv) == 0,
2805 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2806 		    sbavail(&so->so_rcv)));
2807 		if (so->so_error) {
2808 			error = so->so_error;
2809 			so->so_error = 0;
2810 			SOCKBUF_UNLOCK(&so->so_rcv);
2811 			return (error);
2812 		}
2813 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2814 		    uio->uio_resid == 0) {
2815 			SOCKBUF_UNLOCK(&so->so_rcv);
2816 			return (0);
2817 		}
2818 		if ((so->so_state & SS_NBIO) ||
2819 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2820 			SOCKBUF_UNLOCK(&so->so_rcv);
2821 			return (EWOULDBLOCK);
2822 		}
2823 		SBLASTRECORDCHK(&so->so_rcv);
2824 		SBLASTMBUFCHK(&so->so_rcv);
2825 		error = sbwait(so, SO_RCV);
2826 		if (error) {
2827 			SOCKBUF_UNLOCK(&so->so_rcv);
2828 			return (error);
2829 		}
2830 	}
2831 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2832 
2833 	if (uio->uio_td)
2834 		uio->uio_td->td_ru.ru_msgrcv++;
2835 	SBLASTRECORDCHK(&so->so_rcv);
2836 	SBLASTMBUFCHK(&so->so_rcv);
2837 	nextrecord = m->m_nextpkt;
2838 	if (nextrecord == NULL) {
2839 		KASSERT(so->so_rcv.sb_lastrecord == m,
2840 		    ("soreceive_dgram: lastrecord != m"));
2841 	}
2842 
2843 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2844 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2845 
2846 	/*
2847 	 * Pull 'm' and its chain off the front of the packet queue.
2848 	 */
2849 	so->so_rcv.sb_mb = NULL;
2850 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2851 
2852 	/*
2853 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2854 	 */
2855 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2856 		sbfree(&so->so_rcv, m2);
2857 
2858 	/*
2859 	 * Do a few last checks before we let go of the lock.
2860 	 */
2861 	SBLASTRECORDCHK(&so->so_rcv);
2862 	SBLASTMBUFCHK(&so->so_rcv);
2863 	SOCKBUF_UNLOCK(&so->so_rcv);
2864 
2865 	if (pr->pr_flags & PR_ADDR) {
2866 		KASSERT(m->m_type == MT_SONAME,
2867 		    ("m->m_type == %d", m->m_type));
2868 		if (psa != NULL)
2869 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2870 			    M_NOWAIT);
2871 		m = m_free(m);
2872 	}
2873 	if (m == NULL) {
2874 		/* XXXRW: Can this happen? */
2875 		return (0);
2876 	}
2877 
2878 	/*
2879 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2880 	 * queue.
2881 	 *
2882 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2883 	 * in the first mbuf chain on the socket buffer.  We call into the
2884 	 * protocol to perform externalization (or freeing if controlp ==
2885 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2886 	 * MT_DATA mbufs.
2887 	 */
2888 	if (m->m_type == MT_CONTROL) {
2889 		struct mbuf *cm = NULL, *cmn;
2890 		struct mbuf **cme = &cm;
2891 
2892 		do {
2893 			m2 = m->m_next;
2894 			m->m_next = NULL;
2895 			*cme = m;
2896 			cme = &(*cme)->m_next;
2897 			m = m2;
2898 		} while (m != NULL && m->m_type == MT_CONTROL);
2899 		while (cm != NULL) {
2900 			cmn = cm->m_next;
2901 			cm->m_next = NULL;
2902 			if (pr->pr_domain->dom_externalize != NULL) {
2903 				error = (*pr->pr_domain->dom_externalize)
2904 				    (cm, controlp, flags);
2905 			} else if (controlp != NULL)
2906 				*controlp = cm;
2907 			else
2908 				m_freem(cm);
2909 			if (controlp != NULL) {
2910 				while (*controlp != NULL)
2911 					controlp = &(*controlp)->m_next;
2912 			}
2913 			cm = cmn;
2914 		}
2915 	}
2916 	KASSERT(m == NULL || m->m_type == MT_DATA,
2917 	    ("soreceive_dgram: !data"));
2918 	while (m != NULL && uio->uio_resid > 0) {
2919 		len = uio->uio_resid;
2920 		if (len > m->m_len)
2921 			len = m->m_len;
2922 		error = uiomove(mtod(m, char *), (int)len, uio);
2923 		if (error) {
2924 			m_freem(m);
2925 			return (error);
2926 		}
2927 		if (len == m->m_len)
2928 			m = m_free(m);
2929 		else {
2930 			m->m_data += len;
2931 			m->m_len -= len;
2932 		}
2933 	}
2934 	if (m != NULL) {
2935 		flags |= MSG_TRUNC;
2936 		m_freem(m);
2937 	}
2938 	if (flagsp != NULL)
2939 		*flagsp |= flags;
2940 	return (0);
2941 }
2942 
2943 int
2944 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2945     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2946 {
2947 	int error;
2948 
2949 	CURVNET_SET(so->so_vnet);
2950 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
2951 	CURVNET_RESTORE();
2952 	return (error);
2953 }
2954 
2955 int
2956 soshutdown(struct socket *so, enum shutdown_how how)
2957 {
2958 	int error;
2959 
2960 	CURVNET_SET(so->so_vnet);
2961 	error = so->so_proto->pr_shutdown(so, how);
2962 	CURVNET_RESTORE();
2963 
2964 	return (error);
2965 }
2966 
2967 /*
2968  * Used by several pr_shutdown implementations that use generic socket buffers.
2969  */
2970 void
2971 sorflush(struct socket *so)
2972 {
2973 	int error;
2974 
2975 	VNET_SO_ASSERT(so);
2976 
2977 	/*
2978 	 * Dislodge threads currently blocked in receive and wait to acquire
2979 	 * a lock against other simultaneous readers before clearing the
2980 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2981 	 * despite any existing socket disposition on interruptable waiting.
2982 	 *
2983 	 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
2984 	 * methods that read the top of the socket buffer without acquisition
2985 	 * of the socket buffer mutex, assuming that top of the buffer
2986 	 * exclusively belongs to the read(2) syscall.  This is handy when
2987 	 * performing MSG_PEEK.
2988 	 */
2989 	socantrcvmore(so);
2990 
2991 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
2992 	if (error != 0) {
2993 		KASSERT(SOLISTENING(so),
2994 		    ("%s: soiolock(%p) failed", __func__, so));
2995 		return;
2996 	}
2997 
2998 	sbrelease(so, SO_RCV);
2999 	SOCK_IO_RECV_UNLOCK(so);
3000 
3001 }
3002 
3003 /*
3004  * Wrapper for Socket established helper hook.
3005  * Parameters: socket, context of the hook point, hook id.
3006  */
3007 static int inline
3008 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3009 {
3010 	struct socket_hhook_data hhook_data = {
3011 		.so = so,
3012 		.hctx = hctx,
3013 		.m = NULL,
3014 		.status = 0
3015 	};
3016 
3017 	CURVNET_SET(so->so_vnet);
3018 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3019 	CURVNET_RESTORE();
3020 
3021 	/* Ugly but needed, since hhooks return void for now */
3022 	return (hhook_data.status);
3023 }
3024 
3025 /*
3026  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3027  * additional variant to handle the case where the option value needs to be
3028  * some kind of integer, but not a specific size.  In addition to their use
3029  * here, these functions are also called by the protocol-level pr_ctloutput()
3030  * routines.
3031  */
3032 int
3033 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3034 {
3035 	size_t	valsize;
3036 
3037 	/*
3038 	 * If the user gives us more than we wanted, we ignore it, but if we
3039 	 * don't get the minimum length the caller wants, we return EINVAL.
3040 	 * On success, sopt->sopt_valsize is set to however much we actually
3041 	 * retrieved.
3042 	 */
3043 	if ((valsize = sopt->sopt_valsize) < minlen)
3044 		return EINVAL;
3045 	if (valsize > len)
3046 		sopt->sopt_valsize = valsize = len;
3047 
3048 	if (sopt->sopt_td != NULL)
3049 		return (copyin(sopt->sopt_val, buf, valsize));
3050 
3051 	bcopy(sopt->sopt_val, buf, valsize);
3052 	return (0);
3053 }
3054 
3055 /*
3056  * Kernel version of setsockopt(2).
3057  *
3058  * XXX: optlen is size_t, not socklen_t
3059  */
3060 int
3061 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3062     size_t optlen)
3063 {
3064 	struct sockopt sopt;
3065 
3066 	sopt.sopt_level = level;
3067 	sopt.sopt_name = optname;
3068 	sopt.sopt_dir = SOPT_SET;
3069 	sopt.sopt_val = optval;
3070 	sopt.sopt_valsize = optlen;
3071 	sopt.sopt_td = NULL;
3072 	return (sosetopt(so, &sopt));
3073 }
3074 
3075 int
3076 sosetopt(struct socket *so, struct sockopt *sopt)
3077 {
3078 	int	error, optval;
3079 	struct	linger l;
3080 	struct	timeval tv;
3081 	sbintime_t val, *valp;
3082 	uint32_t val32;
3083 #ifdef MAC
3084 	struct mac extmac;
3085 #endif
3086 
3087 	CURVNET_SET(so->so_vnet);
3088 	error = 0;
3089 	if (sopt->sopt_level != SOL_SOCKET) {
3090 		if (so->so_proto->pr_ctloutput != NULL)
3091 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3092 		else
3093 			error = ENOPROTOOPT;
3094 	} else {
3095 		switch (sopt->sopt_name) {
3096 		case SO_ACCEPTFILTER:
3097 			error = accept_filt_setopt(so, sopt);
3098 			if (error)
3099 				goto bad;
3100 			break;
3101 
3102 		case SO_LINGER:
3103 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3104 			if (error)
3105 				goto bad;
3106 			if (l.l_linger < 0 ||
3107 			    l.l_linger > USHRT_MAX ||
3108 			    l.l_linger > (INT_MAX / hz)) {
3109 				error = EDOM;
3110 				goto bad;
3111 			}
3112 			SOCK_LOCK(so);
3113 			so->so_linger = l.l_linger;
3114 			if (l.l_onoff)
3115 				so->so_options |= SO_LINGER;
3116 			else
3117 				so->so_options &= ~SO_LINGER;
3118 			SOCK_UNLOCK(so);
3119 			break;
3120 
3121 		case SO_DEBUG:
3122 		case SO_KEEPALIVE:
3123 		case SO_DONTROUTE:
3124 		case SO_USELOOPBACK:
3125 		case SO_BROADCAST:
3126 		case SO_REUSEADDR:
3127 		case SO_REUSEPORT:
3128 		case SO_REUSEPORT_LB:
3129 		case SO_OOBINLINE:
3130 		case SO_TIMESTAMP:
3131 		case SO_BINTIME:
3132 		case SO_NOSIGPIPE:
3133 		case SO_NO_DDP:
3134 		case SO_NO_OFFLOAD:
3135 		case SO_RERROR:
3136 			error = sooptcopyin(sopt, &optval, sizeof optval,
3137 			    sizeof optval);
3138 			if (error)
3139 				goto bad;
3140 			SOCK_LOCK(so);
3141 			if (optval)
3142 				so->so_options |= sopt->sopt_name;
3143 			else
3144 				so->so_options &= ~sopt->sopt_name;
3145 			SOCK_UNLOCK(so);
3146 			break;
3147 
3148 		case SO_SETFIB:
3149 			error = sooptcopyin(sopt, &optval, sizeof optval,
3150 			    sizeof optval);
3151 			if (error)
3152 				goto bad;
3153 
3154 			if (optval < 0 || optval >= rt_numfibs) {
3155 				error = EINVAL;
3156 				goto bad;
3157 			}
3158 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3159 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3160 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3161 				so->so_fibnum = optval;
3162 			else
3163 				so->so_fibnum = 0;
3164 			break;
3165 
3166 		case SO_USER_COOKIE:
3167 			error = sooptcopyin(sopt, &val32, sizeof val32,
3168 			    sizeof val32);
3169 			if (error)
3170 				goto bad;
3171 			so->so_user_cookie = val32;
3172 			break;
3173 
3174 		case SO_SNDBUF:
3175 		case SO_RCVBUF:
3176 		case SO_SNDLOWAT:
3177 		case SO_RCVLOWAT:
3178 			error = so->so_proto->pr_setsbopt(so, sopt);
3179 			if (error)
3180 				goto bad;
3181 			break;
3182 
3183 		case SO_SNDTIMEO:
3184 		case SO_RCVTIMEO:
3185 #ifdef COMPAT_FREEBSD32
3186 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3187 				struct timeval32 tv32;
3188 
3189 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3190 				    sizeof tv32);
3191 				CP(tv32, tv, tv_sec);
3192 				CP(tv32, tv, tv_usec);
3193 			} else
3194 #endif
3195 				error = sooptcopyin(sopt, &tv, sizeof tv,
3196 				    sizeof tv);
3197 			if (error)
3198 				goto bad;
3199 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3200 			    tv.tv_usec >= 1000000) {
3201 				error = EDOM;
3202 				goto bad;
3203 			}
3204 			if (tv.tv_sec > INT32_MAX)
3205 				val = SBT_MAX;
3206 			else
3207 				val = tvtosbt(tv);
3208 			SOCK_LOCK(so);
3209 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3210 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3211 			    &so->so_snd.sb_timeo) :
3212 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3213 			    &so->so_rcv.sb_timeo);
3214 			*valp = val;
3215 			SOCK_UNLOCK(so);
3216 			break;
3217 
3218 		case SO_LABEL:
3219 #ifdef MAC
3220 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3221 			    sizeof extmac);
3222 			if (error)
3223 				goto bad;
3224 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3225 			    so, &extmac);
3226 #else
3227 			error = EOPNOTSUPP;
3228 #endif
3229 			break;
3230 
3231 		case SO_TS_CLOCK:
3232 			error = sooptcopyin(sopt, &optval, sizeof optval,
3233 			    sizeof optval);
3234 			if (error)
3235 				goto bad;
3236 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3237 				error = EINVAL;
3238 				goto bad;
3239 			}
3240 			so->so_ts_clock = optval;
3241 			break;
3242 
3243 		case SO_MAX_PACING_RATE:
3244 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3245 			    sizeof(val32));
3246 			if (error)
3247 				goto bad;
3248 			so->so_max_pacing_rate = val32;
3249 			break;
3250 
3251 		default:
3252 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3253 				error = hhook_run_socket(so, sopt,
3254 				    HHOOK_SOCKET_OPT);
3255 			else
3256 				error = ENOPROTOOPT;
3257 			break;
3258 		}
3259 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3260 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3261 	}
3262 bad:
3263 	CURVNET_RESTORE();
3264 	return (error);
3265 }
3266 
3267 /*
3268  * Helper routine for getsockopt.
3269  */
3270 int
3271 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3272 {
3273 	int	error;
3274 	size_t	valsize;
3275 
3276 	error = 0;
3277 
3278 	/*
3279 	 * Documented get behavior is that we always return a value, possibly
3280 	 * truncated to fit in the user's buffer.  Traditional behavior is
3281 	 * that we always tell the user precisely how much we copied, rather
3282 	 * than something useful like the total amount we had available for
3283 	 * her.  Note that this interface is not idempotent; the entire
3284 	 * answer must be generated ahead of time.
3285 	 */
3286 	valsize = min(len, sopt->sopt_valsize);
3287 	sopt->sopt_valsize = valsize;
3288 	if (sopt->sopt_val != NULL) {
3289 		if (sopt->sopt_td != NULL)
3290 			error = copyout(buf, sopt->sopt_val, valsize);
3291 		else
3292 			bcopy(buf, sopt->sopt_val, valsize);
3293 	}
3294 	return (error);
3295 }
3296 
3297 int
3298 sogetopt(struct socket *so, struct sockopt *sopt)
3299 {
3300 	int	error, optval;
3301 	struct	linger l;
3302 	struct	timeval tv;
3303 #ifdef MAC
3304 	struct mac extmac;
3305 #endif
3306 
3307 	CURVNET_SET(so->so_vnet);
3308 	error = 0;
3309 	if (sopt->sopt_level != SOL_SOCKET) {
3310 		if (so->so_proto->pr_ctloutput != NULL)
3311 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3312 		else
3313 			error = ENOPROTOOPT;
3314 		CURVNET_RESTORE();
3315 		return (error);
3316 	} else {
3317 		switch (sopt->sopt_name) {
3318 		case SO_ACCEPTFILTER:
3319 			error = accept_filt_getopt(so, sopt);
3320 			break;
3321 
3322 		case SO_LINGER:
3323 			SOCK_LOCK(so);
3324 			l.l_onoff = so->so_options & SO_LINGER;
3325 			l.l_linger = so->so_linger;
3326 			SOCK_UNLOCK(so);
3327 			error = sooptcopyout(sopt, &l, sizeof l);
3328 			break;
3329 
3330 		case SO_USELOOPBACK:
3331 		case SO_DONTROUTE:
3332 		case SO_DEBUG:
3333 		case SO_KEEPALIVE:
3334 		case SO_REUSEADDR:
3335 		case SO_REUSEPORT:
3336 		case SO_REUSEPORT_LB:
3337 		case SO_BROADCAST:
3338 		case SO_OOBINLINE:
3339 		case SO_ACCEPTCONN:
3340 		case SO_TIMESTAMP:
3341 		case SO_BINTIME:
3342 		case SO_NOSIGPIPE:
3343 		case SO_NO_DDP:
3344 		case SO_NO_OFFLOAD:
3345 		case SO_RERROR:
3346 			optval = so->so_options & sopt->sopt_name;
3347 integer:
3348 			error = sooptcopyout(sopt, &optval, sizeof optval);
3349 			break;
3350 
3351 		case SO_DOMAIN:
3352 			optval = so->so_proto->pr_domain->dom_family;
3353 			goto integer;
3354 
3355 		case SO_TYPE:
3356 			optval = so->so_type;
3357 			goto integer;
3358 
3359 		case SO_PROTOCOL:
3360 			optval = so->so_proto->pr_protocol;
3361 			goto integer;
3362 
3363 		case SO_ERROR:
3364 			SOCK_LOCK(so);
3365 			if (so->so_error) {
3366 				optval = so->so_error;
3367 				so->so_error = 0;
3368 			} else {
3369 				optval = so->so_rerror;
3370 				so->so_rerror = 0;
3371 			}
3372 			SOCK_UNLOCK(so);
3373 			goto integer;
3374 
3375 		case SO_SNDBUF:
3376 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3377 			    so->so_snd.sb_hiwat;
3378 			goto integer;
3379 
3380 		case SO_RCVBUF:
3381 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3382 			    so->so_rcv.sb_hiwat;
3383 			goto integer;
3384 
3385 		case SO_SNDLOWAT:
3386 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3387 			    so->so_snd.sb_lowat;
3388 			goto integer;
3389 
3390 		case SO_RCVLOWAT:
3391 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3392 			    so->so_rcv.sb_lowat;
3393 			goto integer;
3394 
3395 		case SO_SNDTIMEO:
3396 		case SO_RCVTIMEO:
3397 			SOCK_LOCK(so);
3398 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3399 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3400 			    so->so_snd.sb_timeo) :
3401 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3402 			    so->so_rcv.sb_timeo));
3403 			SOCK_UNLOCK(so);
3404 #ifdef COMPAT_FREEBSD32
3405 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3406 				struct timeval32 tv32;
3407 
3408 				CP(tv, tv32, tv_sec);
3409 				CP(tv, tv32, tv_usec);
3410 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3411 			} else
3412 #endif
3413 				error = sooptcopyout(sopt, &tv, sizeof tv);
3414 			break;
3415 
3416 		case SO_LABEL:
3417 #ifdef MAC
3418 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3419 			    sizeof(extmac));
3420 			if (error)
3421 				goto bad;
3422 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3423 			    so, &extmac);
3424 			if (error)
3425 				goto bad;
3426 			/* Don't copy out extmac, it is unchanged. */
3427 #else
3428 			error = EOPNOTSUPP;
3429 #endif
3430 			break;
3431 
3432 		case SO_PEERLABEL:
3433 #ifdef MAC
3434 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3435 			    sizeof(extmac));
3436 			if (error)
3437 				goto bad;
3438 			error = mac_getsockopt_peerlabel(
3439 			    sopt->sopt_td->td_ucred, so, &extmac);
3440 			if (error)
3441 				goto bad;
3442 			/* Don't copy out extmac, it is unchanged. */
3443 #else
3444 			error = EOPNOTSUPP;
3445 #endif
3446 			break;
3447 
3448 		case SO_LISTENQLIMIT:
3449 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3450 			goto integer;
3451 
3452 		case SO_LISTENQLEN:
3453 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3454 			goto integer;
3455 
3456 		case SO_LISTENINCQLEN:
3457 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3458 			goto integer;
3459 
3460 		case SO_TS_CLOCK:
3461 			optval = so->so_ts_clock;
3462 			goto integer;
3463 
3464 		case SO_MAX_PACING_RATE:
3465 			optval = so->so_max_pacing_rate;
3466 			goto integer;
3467 
3468 		default:
3469 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3470 				error = hhook_run_socket(so, sopt,
3471 				    HHOOK_SOCKET_OPT);
3472 			else
3473 				error = ENOPROTOOPT;
3474 			break;
3475 		}
3476 	}
3477 #ifdef MAC
3478 bad:
3479 #endif
3480 	CURVNET_RESTORE();
3481 	return (error);
3482 }
3483 
3484 int
3485 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3486 {
3487 	struct mbuf *m, *m_prev;
3488 	int sopt_size = sopt->sopt_valsize;
3489 
3490 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3491 	if (m == NULL)
3492 		return ENOBUFS;
3493 	if (sopt_size > MLEN) {
3494 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3495 		if ((m->m_flags & M_EXT) == 0) {
3496 			m_free(m);
3497 			return ENOBUFS;
3498 		}
3499 		m->m_len = min(MCLBYTES, sopt_size);
3500 	} else {
3501 		m->m_len = min(MLEN, sopt_size);
3502 	}
3503 	sopt_size -= m->m_len;
3504 	*mp = m;
3505 	m_prev = m;
3506 
3507 	while (sopt_size) {
3508 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3509 		if (m == NULL) {
3510 			m_freem(*mp);
3511 			return ENOBUFS;
3512 		}
3513 		if (sopt_size > MLEN) {
3514 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3515 			    M_NOWAIT);
3516 			if ((m->m_flags & M_EXT) == 0) {
3517 				m_freem(m);
3518 				m_freem(*mp);
3519 				return ENOBUFS;
3520 			}
3521 			m->m_len = min(MCLBYTES, sopt_size);
3522 		} else {
3523 			m->m_len = min(MLEN, sopt_size);
3524 		}
3525 		sopt_size -= m->m_len;
3526 		m_prev->m_next = m;
3527 		m_prev = m;
3528 	}
3529 	return (0);
3530 }
3531 
3532 int
3533 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3534 {
3535 	struct mbuf *m0 = m;
3536 
3537 	if (sopt->sopt_val == NULL)
3538 		return (0);
3539 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3540 		if (sopt->sopt_td != NULL) {
3541 			int error;
3542 
3543 			error = copyin(sopt->sopt_val, mtod(m, char *),
3544 			    m->m_len);
3545 			if (error != 0) {
3546 				m_freem(m0);
3547 				return(error);
3548 			}
3549 		} else
3550 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3551 		sopt->sopt_valsize -= m->m_len;
3552 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3553 		m = m->m_next;
3554 	}
3555 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3556 		panic("ip6_sooptmcopyin");
3557 	return (0);
3558 }
3559 
3560 int
3561 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3562 {
3563 	struct mbuf *m0 = m;
3564 	size_t valsize = 0;
3565 
3566 	if (sopt->sopt_val == NULL)
3567 		return (0);
3568 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3569 		if (sopt->sopt_td != NULL) {
3570 			int error;
3571 
3572 			error = copyout(mtod(m, char *), sopt->sopt_val,
3573 			    m->m_len);
3574 			if (error != 0) {
3575 				m_freem(m0);
3576 				return(error);
3577 			}
3578 		} else
3579 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3580 		sopt->sopt_valsize -= m->m_len;
3581 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3582 		valsize += m->m_len;
3583 		m = m->m_next;
3584 	}
3585 	if (m != NULL) {
3586 		/* enough soopt buffer should be given from user-land */
3587 		m_freem(m0);
3588 		return(EINVAL);
3589 	}
3590 	sopt->sopt_valsize = valsize;
3591 	return (0);
3592 }
3593 
3594 /*
3595  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3596  * out-of-band data, which will then notify socket consumers.
3597  */
3598 void
3599 sohasoutofband(struct socket *so)
3600 {
3601 
3602 	if (so->so_sigio != NULL)
3603 		pgsigio(&so->so_sigio, SIGURG, 0);
3604 	selwakeuppri(&so->so_rdsel, PSOCK);
3605 }
3606 
3607 int
3608 sopoll(struct socket *so, int events, struct ucred *active_cred,
3609     struct thread *td)
3610 {
3611 
3612 	/*
3613 	 * We do not need to set or assert curvnet as long as everyone uses
3614 	 * sopoll_generic().
3615 	 */
3616 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
3617 }
3618 
3619 int
3620 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3621     struct thread *td)
3622 {
3623 	int revents;
3624 
3625 	SOCK_LOCK(so);
3626 	if (SOLISTENING(so)) {
3627 		if (!(events & (POLLIN | POLLRDNORM)))
3628 			revents = 0;
3629 		else if (!TAILQ_EMPTY(&so->sol_comp))
3630 			revents = events & (POLLIN | POLLRDNORM);
3631 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3632 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3633 		else {
3634 			selrecord(td, &so->so_rdsel);
3635 			revents = 0;
3636 		}
3637 	} else {
3638 		revents = 0;
3639 		SOCK_SENDBUF_LOCK(so);
3640 		SOCK_RECVBUF_LOCK(so);
3641 		if (events & (POLLIN | POLLRDNORM))
3642 			if (soreadabledata(so))
3643 				revents |= events & (POLLIN | POLLRDNORM);
3644 		if (events & (POLLOUT | POLLWRNORM))
3645 			if (sowriteable(so))
3646 				revents |= events & (POLLOUT | POLLWRNORM);
3647 		if (events & (POLLPRI | POLLRDBAND))
3648 			if (so->so_oobmark ||
3649 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3650 				revents |= events & (POLLPRI | POLLRDBAND);
3651 		if ((events & POLLINIGNEOF) == 0) {
3652 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3653 				revents |= events & (POLLIN | POLLRDNORM);
3654 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3655 					revents |= POLLHUP;
3656 			}
3657 		}
3658 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3659 			revents |= events & POLLRDHUP;
3660 		if (revents == 0) {
3661 			if (events &
3662 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3663 				selrecord(td, &so->so_rdsel);
3664 				so->so_rcv.sb_flags |= SB_SEL;
3665 			}
3666 			if (events & (POLLOUT | POLLWRNORM)) {
3667 				selrecord(td, &so->so_wrsel);
3668 				so->so_snd.sb_flags |= SB_SEL;
3669 			}
3670 		}
3671 		SOCK_RECVBUF_UNLOCK(so);
3672 		SOCK_SENDBUF_UNLOCK(so);
3673 	}
3674 	SOCK_UNLOCK(so);
3675 	return (revents);
3676 }
3677 
3678 int
3679 soo_kqfilter(struct file *fp, struct knote *kn)
3680 {
3681 	struct socket *so = kn->kn_fp->f_data;
3682 	struct sockbuf *sb;
3683 	sb_which which;
3684 	struct knlist *knl;
3685 
3686 	switch (kn->kn_filter) {
3687 	case EVFILT_READ:
3688 		kn->kn_fop = &soread_filtops;
3689 		knl = &so->so_rdsel.si_note;
3690 		sb = &so->so_rcv;
3691 		which = SO_RCV;
3692 		break;
3693 	case EVFILT_WRITE:
3694 		kn->kn_fop = &sowrite_filtops;
3695 		knl = &so->so_wrsel.si_note;
3696 		sb = &so->so_snd;
3697 		which = SO_SND;
3698 		break;
3699 	case EVFILT_EMPTY:
3700 		kn->kn_fop = &soempty_filtops;
3701 		knl = &so->so_wrsel.si_note;
3702 		sb = &so->so_snd;
3703 		which = SO_SND;
3704 		break;
3705 	default:
3706 		return (EINVAL);
3707 	}
3708 
3709 	SOCK_LOCK(so);
3710 	if (SOLISTENING(so)) {
3711 		knlist_add(knl, kn, 1);
3712 	} else {
3713 		SOCK_BUF_LOCK(so, which);
3714 		knlist_add(knl, kn, 1);
3715 		sb->sb_flags |= SB_KNOTE;
3716 		SOCK_BUF_UNLOCK(so, which);
3717 	}
3718 	SOCK_UNLOCK(so);
3719 	return (0);
3720 }
3721 
3722 static void
3723 filt_sordetach(struct knote *kn)
3724 {
3725 	struct socket *so = kn->kn_fp->f_data;
3726 
3727 	so_rdknl_lock(so);
3728 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3729 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3730 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3731 	so_rdknl_unlock(so);
3732 }
3733 
3734 /*ARGSUSED*/
3735 static int
3736 filt_soread(struct knote *kn, long hint)
3737 {
3738 	struct socket *so;
3739 
3740 	so = kn->kn_fp->f_data;
3741 
3742 	if (SOLISTENING(so)) {
3743 		SOCK_LOCK_ASSERT(so);
3744 		kn->kn_data = so->sol_qlen;
3745 		if (so->so_error) {
3746 			kn->kn_flags |= EV_EOF;
3747 			kn->kn_fflags = so->so_error;
3748 			return (1);
3749 		}
3750 		return (!TAILQ_EMPTY(&so->sol_comp));
3751 	}
3752 
3753 	SOCK_RECVBUF_LOCK_ASSERT(so);
3754 
3755 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3756 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3757 		kn->kn_flags |= EV_EOF;
3758 		kn->kn_fflags = so->so_error;
3759 		return (1);
3760 	} else if (so->so_error || so->so_rerror)
3761 		return (1);
3762 
3763 	if (kn->kn_sfflags & NOTE_LOWAT) {
3764 		if (kn->kn_data >= kn->kn_sdata)
3765 			return (1);
3766 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3767 		return (1);
3768 
3769 	/* This hook returning non-zero indicates an event, not error */
3770 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3771 }
3772 
3773 static void
3774 filt_sowdetach(struct knote *kn)
3775 {
3776 	struct socket *so = kn->kn_fp->f_data;
3777 
3778 	so_wrknl_lock(so);
3779 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3780 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3781 		so->so_snd.sb_flags &= ~SB_KNOTE;
3782 	so_wrknl_unlock(so);
3783 }
3784 
3785 /*ARGSUSED*/
3786 static int
3787 filt_sowrite(struct knote *kn, long hint)
3788 {
3789 	struct socket *so;
3790 
3791 	so = kn->kn_fp->f_data;
3792 
3793 	if (SOLISTENING(so))
3794 		return (0);
3795 
3796 	SOCK_SENDBUF_LOCK_ASSERT(so);
3797 	kn->kn_data = sbspace(&so->so_snd);
3798 
3799 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3800 
3801 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3802 		kn->kn_flags |= EV_EOF;
3803 		kn->kn_fflags = so->so_error;
3804 		return (1);
3805 	} else if (so->so_error)	/* temporary udp error */
3806 		return (1);
3807 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3808 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3809 		return (0);
3810 	else if (kn->kn_sfflags & NOTE_LOWAT)
3811 		return (kn->kn_data >= kn->kn_sdata);
3812 	else
3813 		return (kn->kn_data >= so->so_snd.sb_lowat);
3814 }
3815 
3816 static int
3817 filt_soempty(struct knote *kn, long hint)
3818 {
3819 	struct socket *so;
3820 
3821 	so = kn->kn_fp->f_data;
3822 
3823 	if (SOLISTENING(so))
3824 		return (1);
3825 
3826 	SOCK_SENDBUF_LOCK_ASSERT(so);
3827 	kn->kn_data = sbused(&so->so_snd);
3828 
3829 	if (kn->kn_data == 0)
3830 		return (1);
3831 	else
3832 		return (0);
3833 }
3834 
3835 int
3836 socheckuid(struct socket *so, uid_t uid)
3837 {
3838 
3839 	if (so == NULL)
3840 		return (EPERM);
3841 	if (so->so_cred->cr_uid != uid)
3842 		return (EPERM);
3843 	return (0);
3844 }
3845 
3846 /*
3847  * These functions are used by protocols to notify the socket layer (and its
3848  * consumers) of state changes in the sockets driven by protocol-side events.
3849  */
3850 
3851 /*
3852  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3853  *
3854  * Normal sequence from the active (originating) side is that
3855  * soisconnecting() is called during processing of connect() call, resulting
3856  * in an eventual call to soisconnected() if/when the connection is
3857  * established.  When the connection is torn down soisdisconnecting() is
3858  * called during processing of disconnect() call, and soisdisconnected() is
3859  * called when the connection to the peer is totally severed.  The semantics
3860  * of these routines are such that connectionless protocols can call
3861  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3862  * calls when setting up a ``connection'' takes no time.
3863  *
3864  * From the passive side, a socket is created with two queues of sockets:
3865  * so_incomp for connections in progress and so_comp for connections already
3866  * made and awaiting user acceptance.  As a protocol is preparing incoming
3867  * connections, it creates a socket structure queued on so_incomp by calling
3868  * sonewconn().  When the connection is established, soisconnected() is
3869  * called, and transfers the socket structure to so_comp, making it available
3870  * to accept().
3871  *
3872  * If a socket is closed with sockets on either so_incomp or so_comp, these
3873  * sockets are dropped.
3874  *
3875  * If higher-level protocols are implemented in the kernel, the wakeups done
3876  * here will sometimes cause software-interrupt process scheduling.
3877  */
3878 void
3879 soisconnecting(struct socket *so)
3880 {
3881 
3882 	SOCK_LOCK(so);
3883 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3884 	so->so_state |= SS_ISCONNECTING;
3885 	SOCK_UNLOCK(so);
3886 }
3887 
3888 void
3889 soisconnected(struct socket *so)
3890 {
3891 	bool last __diagused;
3892 
3893 	SOCK_LOCK(so);
3894 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
3895 	so->so_state |= SS_ISCONNECTED;
3896 
3897 	if (so->so_qstate == SQ_INCOMP) {
3898 		struct socket *head = so->so_listen;
3899 		int ret;
3900 
3901 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3902 		/*
3903 		 * Promoting a socket from incomplete queue to complete, we
3904 		 * need to go through reverse order of locking.  We first do
3905 		 * trylock, and if that doesn't succeed, we go the hard way
3906 		 * leaving a reference and rechecking consistency after proper
3907 		 * locking.
3908 		 */
3909 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3910 			soref(head);
3911 			SOCK_UNLOCK(so);
3912 			SOLISTEN_LOCK(head);
3913 			SOCK_LOCK(so);
3914 			if (__predict_false(head != so->so_listen)) {
3915 				/*
3916 				 * The socket went off the listen queue,
3917 				 * should be lost race to close(2) of sol.
3918 				 * The socket is about to soabort().
3919 				 */
3920 				SOCK_UNLOCK(so);
3921 				sorele_locked(head);
3922 				return;
3923 			}
3924 			last = refcount_release(&head->so_count);
3925 			KASSERT(!last, ("%s: released last reference for %p",
3926 			    __func__, head));
3927 		}
3928 again:
3929 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3930 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3931 			head->sol_incqlen--;
3932 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3933 			head->sol_qlen++;
3934 			so->so_qstate = SQ_COMP;
3935 			SOCK_UNLOCK(so);
3936 			solisten_wakeup(head);	/* unlocks */
3937 		} else {
3938 			SOCK_RECVBUF_LOCK(so);
3939 			soupcall_set(so, SO_RCV,
3940 			    head->sol_accept_filter->accf_callback,
3941 			    head->sol_accept_filter_arg);
3942 			so->so_options &= ~SO_ACCEPTFILTER;
3943 			ret = head->sol_accept_filter->accf_callback(so,
3944 			    head->sol_accept_filter_arg, M_NOWAIT);
3945 			if (ret == SU_ISCONNECTED) {
3946 				soupcall_clear(so, SO_RCV);
3947 				SOCK_RECVBUF_UNLOCK(so);
3948 				goto again;
3949 			}
3950 			SOCK_RECVBUF_UNLOCK(so);
3951 			SOCK_UNLOCK(so);
3952 			SOLISTEN_UNLOCK(head);
3953 		}
3954 		return;
3955 	}
3956 	SOCK_UNLOCK(so);
3957 	wakeup(&so->so_timeo);
3958 	sorwakeup(so);
3959 	sowwakeup(so);
3960 }
3961 
3962 void
3963 soisdisconnecting(struct socket *so)
3964 {
3965 
3966 	SOCK_LOCK(so);
3967 	so->so_state &= ~SS_ISCONNECTING;
3968 	so->so_state |= SS_ISDISCONNECTING;
3969 
3970 	if (!SOLISTENING(so)) {
3971 		SOCK_RECVBUF_LOCK(so);
3972 		socantrcvmore_locked(so);
3973 		SOCK_SENDBUF_LOCK(so);
3974 		socantsendmore_locked(so);
3975 	}
3976 	SOCK_UNLOCK(so);
3977 	wakeup(&so->so_timeo);
3978 }
3979 
3980 void
3981 soisdisconnected(struct socket *so)
3982 {
3983 
3984 	SOCK_LOCK(so);
3985 
3986 	/*
3987 	 * There is at least one reader of so_state that does not
3988 	 * acquire socket lock, namely soreceive_generic().  Ensure
3989 	 * that it never sees all flags that track connection status
3990 	 * cleared, by ordering the update with a barrier semantic of
3991 	 * our release thread fence.
3992 	 */
3993 	so->so_state |= SS_ISDISCONNECTED;
3994 	atomic_thread_fence_rel();
3995 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3996 
3997 	if (!SOLISTENING(so)) {
3998 		SOCK_UNLOCK(so);
3999 		SOCK_RECVBUF_LOCK(so);
4000 		socantrcvmore_locked(so);
4001 		SOCK_SENDBUF_LOCK(so);
4002 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4003 		socantsendmore_locked(so);
4004 	} else
4005 		SOCK_UNLOCK(so);
4006 	wakeup(&so->so_timeo);
4007 }
4008 
4009 int
4010 soiolock(struct socket *so, struct sx *sx, int flags)
4011 {
4012 	int error;
4013 
4014 	KASSERT((flags & SBL_VALID) == flags,
4015 	    ("soiolock: invalid flags %#x", flags));
4016 
4017 	if ((flags & SBL_WAIT) != 0) {
4018 		if ((flags & SBL_NOINTR) != 0) {
4019 			sx_xlock(sx);
4020 		} else {
4021 			error = sx_xlock_sig(sx);
4022 			if (error != 0)
4023 				return (error);
4024 		}
4025 	} else if (!sx_try_xlock(sx)) {
4026 		return (EWOULDBLOCK);
4027 	}
4028 
4029 	if (__predict_false(SOLISTENING(so))) {
4030 		sx_xunlock(sx);
4031 		return (ENOTCONN);
4032 	}
4033 	return (0);
4034 }
4035 
4036 void
4037 soiounlock(struct sx *sx)
4038 {
4039 	sx_xunlock(sx);
4040 }
4041 
4042 /*
4043  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4044  */
4045 struct sockaddr *
4046 sodupsockaddr(const struct sockaddr *sa, int mflags)
4047 {
4048 	struct sockaddr *sa2;
4049 
4050 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4051 	if (sa2)
4052 		bcopy(sa, sa2, sa->sa_len);
4053 	return sa2;
4054 }
4055 
4056 /*
4057  * Register per-socket destructor.
4058  */
4059 void
4060 sodtor_set(struct socket *so, so_dtor_t *func)
4061 {
4062 
4063 	SOCK_LOCK_ASSERT(so);
4064 	so->so_dtor = func;
4065 }
4066 
4067 /*
4068  * Register per-socket buffer upcalls.
4069  */
4070 void
4071 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4072 {
4073 	struct sockbuf *sb;
4074 
4075 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4076 
4077 	switch (which) {
4078 	case SO_RCV:
4079 		sb = &so->so_rcv;
4080 		break;
4081 	case SO_SND:
4082 		sb = &so->so_snd;
4083 		break;
4084 	}
4085 	SOCK_BUF_LOCK_ASSERT(so, which);
4086 	sb->sb_upcall = func;
4087 	sb->sb_upcallarg = arg;
4088 	sb->sb_flags |= SB_UPCALL;
4089 }
4090 
4091 void
4092 soupcall_clear(struct socket *so, sb_which which)
4093 {
4094 	struct sockbuf *sb;
4095 
4096 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4097 
4098 	switch (which) {
4099 	case SO_RCV:
4100 		sb = &so->so_rcv;
4101 		break;
4102 	case SO_SND:
4103 		sb = &so->so_snd;
4104 		break;
4105 	}
4106 	SOCK_BUF_LOCK_ASSERT(so, which);
4107 	KASSERT(sb->sb_upcall != NULL,
4108 	    ("%s: so %p no upcall to clear", __func__, so));
4109 	sb->sb_upcall = NULL;
4110 	sb->sb_upcallarg = NULL;
4111 	sb->sb_flags &= ~SB_UPCALL;
4112 }
4113 
4114 void
4115 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4116 {
4117 
4118 	SOLISTEN_LOCK_ASSERT(so);
4119 	so->sol_upcall = func;
4120 	so->sol_upcallarg = arg;
4121 }
4122 
4123 static void
4124 so_rdknl_lock(void *arg)
4125 {
4126 	struct socket *so = arg;
4127 
4128 retry:
4129 	if (SOLISTENING(so)) {
4130 		SOLISTEN_LOCK(so);
4131 	} else {
4132 		SOCK_RECVBUF_LOCK(so);
4133 		if (__predict_false(SOLISTENING(so))) {
4134 			SOCK_RECVBUF_UNLOCK(so);
4135 			goto retry;
4136 		}
4137 	}
4138 }
4139 
4140 static void
4141 so_rdknl_unlock(void *arg)
4142 {
4143 	struct socket *so = arg;
4144 
4145 	if (SOLISTENING(so))
4146 		SOLISTEN_UNLOCK(so);
4147 	else
4148 		SOCK_RECVBUF_UNLOCK(so);
4149 }
4150 
4151 static void
4152 so_rdknl_assert_lock(void *arg, int what)
4153 {
4154 	struct socket *so = arg;
4155 
4156 	if (what == LA_LOCKED) {
4157 		if (SOLISTENING(so))
4158 			SOLISTEN_LOCK_ASSERT(so);
4159 		else
4160 			SOCK_RECVBUF_LOCK_ASSERT(so);
4161 	} else {
4162 		if (SOLISTENING(so))
4163 			SOLISTEN_UNLOCK_ASSERT(so);
4164 		else
4165 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4166 	}
4167 }
4168 
4169 static void
4170 so_wrknl_lock(void *arg)
4171 {
4172 	struct socket *so = arg;
4173 
4174 retry:
4175 	if (SOLISTENING(so)) {
4176 		SOLISTEN_LOCK(so);
4177 	} else {
4178 		SOCK_SENDBUF_LOCK(so);
4179 		if (__predict_false(SOLISTENING(so))) {
4180 			SOCK_SENDBUF_UNLOCK(so);
4181 			goto retry;
4182 		}
4183 	}
4184 }
4185 
4186 static void
4187 so_wrknl_unlock(void *arg)
4188 {
4189 	struct socket *so = arg;
4190 
4191 	if (SOLISTENING(so))
4192 		SOLISTEN_UNLOCK(so);
4193 	else
4194 		SOCK_SENDBUF_UNLOCK(so);
4195 }
4196 
4197 static void
4198 so_wrknl_assert_lock(void *arg, int what)
4199 {
4200 	struct socket *so = arg;
4201 
4202 	if (what == LA_LOCKED) {
4203 		if (SOLISTENING(so))
4204 			SOLISTEN_LOCK_ASSERT(so);
4205 		else
4206 			SOCK_SENDBUF_LOCK_ASSERT(so);
4207 	} else {
4208 		if (SOLISTENING(so))
4209 			SOLISTEN_UNLOCK_ASSERT(so);
4210 		else
4211 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4212 	}
4213 }
4214 
4215 /*
4216  * Create an external-format (``xsocket'') structure using the information in
4217  * the kernel-format socket structure pointed to by so.  This is done to
4218  * reduce the spew of irrelevant information over this interface, to isolate
4219  * user code from changes in the kernel structure, and potentially to provide
4220  * information-hiding if we decide that some of this information should be
4221  * hidden from users.
4222  */
4223 void
4224 sotoxsocket(struct socket *so, struct xsocket *xso)
4225 {
4226 
4227 	bzero(xso, sizeof(*xso));
4228 	xso->xso_len = sizeof *xso;
4229 	xso->xso_so = (uintptr_t)so;
4230 	xso->so_type = so->so_type;
4231 	xso->so_options = so->so_options;
4232 	xso->so_linger = so->so_linger;
4233 	xso->so_state = so->so_state;
4234 	xso->so_pcb = (uintptr_t)so->so_pcb;
4235 	xso->xso_protocol = so->so_proto->pr_protocol;
4236 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4237 	xso->so_timeo = so->so_timeo;
4238 	xso->so_error = so->so_error;
4239 	xso->so_uid = so->so_cred->cr_uid;
4240 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4241 	if (SOLISTENING(so)) {
4242 		xso->so_qlen = so->sol_qlen;
4243 		xso->so_incqlen = so->sol_incqlen;
4244 		xso->so_qlimit = so->sol_qlimit;
4245 		xso->so_oobmark = 0;
4246 	} else {
4247 		xso->so_state |= so->so_qstate;
4248 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4249 		xso->so_oobmark = so->so_oobmark;
4250 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4251 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4252 	}
4253 }
4254 
4255 struct sockbuf *
4256 so_sockbuf_rcv(struct socket *so)
4257 {
4258 
4259 	return (&so->so_rcv);
4260 }
4261 
4262 struct sockbuf *
4263 so_sockbuf_snd(struct socket *so)
4264 {
4265 
4266 	return (&so->so_snd);
4267 }
4268 
4269 int
4270 so_state_get(const struct socket *so)
4271 {
4272 
4273 	return (so->so_state);
4274 }
4275 
4276 void
4277 so_state_set(struct socket *so, int val)
4278 {
4279 
4280 	so->so_state = val;
4281 }
4282 
4283 int
4284 so_options_get(const struct socket *so)
4285 {
4286 
4287 	return (so->so_options);
4288 }
4289 
4290 void
4291 so_options_set(struct socket *so, int val)
4292 {
4293 
4294 	so->so_options = val;
4295 }
4296 
4297 int
4298 so_error_get(const struct socket *so)
4299 {
4300 
4301 	return (so->so_error);
4302 }
4303 
4304 void
4305 so_error_set(struct socket *so, int val)
4306 {
4307 
4308 	so->so_error = val;
4309 }
4310 
4311 int
4312 so_linger_get(const struct socket *so)
4313 {
4314 
4315 	return (so->so_linger);
4316 }
4317 
4318 void
4319 so_linger_set(struct socket *so, int val)
4320 {
4321 
4322 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4323 	    ("%s: val %d out of range", __func__, val));
4324 
4325 	so->so_linger = val;
4326 }
4327 
4328 struct protosw *
4329 so_protosw_get(const struct socket *so)
4330 {
4331 
4332 	return (so->so_proto);
4333 }
4334 
4335 void
4336 so_protosw_set(struct socket *so, struct protosw *val)
4337 {
4338 
4339 	so->so_proto = val;
4340 }
4341 
4342 void
4343 so_sorwakeup(struct socket *so)
4344 {
4345 
4346 	sorwakeup(so);
4347 }
4348 
4349 void
4350 so_sowwakeup(struct socket *so)
4351 {
4352 
4353 	sowwakeup(so);
4354 }
4355 
4356 void
4357 so_sorwakeup_locked(struct socket *so)
4358 {
4359 
4360 	sorwakeup_locked(so);
4361 }
4362 
4363 void
4364 so_sowwakeup_locked(struct socket *so)
4365 {
4366 
4367 	sowwakeup_locked(so);
4368 }
4369 
4370 void
4371 so_lock(struct socket *so)
4372 {
4373 
4374 	SOCK_LOCK(so);
4375 }
4376 
4377 void
4378 so_unlock(struct socket *so)
4379 {
4380 
4381 	SOCK_UNLOCK(so);
4382 }
4383