1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called 99 * from a pre-set VNET context. sopoll_generic() currently does not need a 100 * VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 #include "opt_inet.h" 105 #include "opt_inet6.h" 106 #include "opt_kern_tls.h" 107 #include "opt_ktrace.h" 108 #include "opt_sctp.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/capsicum.h> 113 #include <sys/fcntl.h> 114 #include <sys/limits.h> 115 #include <sys/lock.h> 116 #include <sys/mac.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/domain.h> 121 #include <sys/file.h> /* for struct knote */ 122 #include <sys/hhook.h> 123 #include <sys/kernel.h> 124 #include <sys/khelp.h> 125 #include <sys/kthread.h> 126 #include <sys/ktls.h> 127 #include <sys/event.h> 128 #include <sys/eventhandler.h> 129 #include <sys/poll.h> 130 #include <sys/proc.h> 131 #include <sys/protosw.h> 132 #include <sys/sbuf.h> 133 #include <sys/socket.h> 134 #include <sys/socketvar.h> 135 #include <sys/resourcevar.h> 136 #include <net/route.h> 137 #include <sys/sched.h> 138 #include <sys/signalvar.h> 139 #include <sys/smp.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 #include <security/mac/mac_internal.h> 157 158 #include <vm/uma.h> 159 160 #ifdef COMPAT_FREEBSD32 161 #include <sys/mount.h> 162 #include <sys/sysent.h> 163 #include <compat/freebsd32/freebsd32.h> 164 #endif 165 166 static int soreceive_generic_locked(struct socket *so, 167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp, 168 struct mbuf **controlp, int *flagsp); 169 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 170 int flags); 171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb, 172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp, 173 struct mbuf **controlp, int flags); 174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr, 175 struct uio *uio, struct mbuf *top, struct mbuf *control, 176 int flags, struct thread *td); 177 static void so_rdknl_lock(void *); 178 static void so_rdknl_unlock(void *); 179 static void so_rdknl_assert_lock(void *, int); 180 static void so_wrknl_lock(void *); 181 static void so_wrknl_unlock(void *); 182 static void so_wrknl_assert_lock(void *, int); 183 184 static void filt_sordetach(struct knote *kn); 185 static int filt_soread(struct knote *kn, long hint); 186 static void filt_sowdetach(struct knote *kn); 187 static int filt_sowrite(struct knote *kn, long hint); 188 static int filt_soempty(struct knote *kn, long hint); 189 fo_kqfilter_t soo_kqfilter; 190 191 static const struct filterops soread_filtops = { 192 .f_isfd = 1, 193 .f_detach = filt_sordetach, 194 .f_event = filt_soread, 195 }; 196 static const struct filterops sowrite_filtops = { 197 .f_isfd = 1, 198 .f_detach = filt_sowdetach, 199 .f_event = filt_sowrite, 200 }; 201 static const struct filterops soempty_filtops = { 202 .f_isfd = 1, 203 .f_detach = filt_sowdetach, 204 .f_event = filt_soempty, 205 }; 206 207 so_gen_t so_gencnt; /* generation count for sockets */ 208 209 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 211 212 #define VNET_SO_ASSERT(so) \ 213 VNET_ASSERT(curvnet != NULL, \ 214 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 215 216 #ifdef SOCKET_HHOOK 217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 218 #define V_socket_hhh VNET(socket_hhh) 219 static inline int hhook_run_socket(struct socket *, void *, int32_t); 220 #endif 221 222 #ifdef COMPAT_FREEBSD32 223 #ifdef __amd64__ 224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */ 225 #define __splice32_packed __packed 226 #else 227 #define __splice32_packed 228 #endif 229 struct splice32 { 230 int32_t sp_fd; 231 int64_t sp_max; 232 struct timeval32 sp_idle; 233 } __splice32_packed; 234 #undef __splice32_packed 235 #endif 236 237 /* 238 * Limit on the number of connections in the listen queue waiting 239 * for accept(2). 240 * NB: The original sysctl somaxconn is still available but hidden 241 * to prevent confusion about the actual purpose of this number. 242 */ 243 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN; 244 #define V_somaxconn VNET(somaxconn) 245 246 static int 247 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 248 { 249 int error; 250 u_int val; 251 252 val = V_somaxconn; 253 error = sysctl_handle_int(oidp, &val, 0, req); 254 if (error || !req->newptr ) 255 return (error); 256 257 /* 258 * The purpose of the UINT_MAX / 3 limit, is so that the formula 259 * 3 * sol_qlimit / 2 260 * below, will not overflow. 261 */ 262 263 if (val < 1 || val > UINT_MAX / 3) 264 return (EINVAL); 265 266 V_somaxconn = val; 267 return (0); 268 } 269 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 270 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int), 271 sysctl_somaxconn, "IU", 272 "Maximum listen socket pending connection accept queue size"); 273 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 274 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, 275 sizeof(u_int), sysctl_somaxconn, "IU", 276 "Maximum listen socket pending connection accept queue size (compat)"); 277 278 static u_int numopensockets; 279 static int 280 sysctl_numopensockets(SYSCTL_HANDLER_ARGS) 281 { 282 u_int val; 283 284 #ifdef VIMAGE 285 if(!IS_DEFAULT_VNET(curvnet)) 286 val = curvnet->vnet_sockcnt; 287 else 288 #endif 289 val = numopensockets; 290 return (sysctl_handle_int(oidp, &val, 0, req)); 291 } 292 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets, 293 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int), 294 sysctl_numopensockets, "IU", "Number of open sockets"); 295 296 /* 297 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 298 * so_gencnt field. 299 */ 300 static struct mtx so_global_mtx; 301 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 302 303 /* 304 * General IPC sysctl name space, used by sockets and a variety of other IPC 305 * types. 306 */ 307 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 308 "IPC"); 309 310 /* 311 * Initialize the socket subsystem and set up the socket 312 * memory allocator. 313 */ 314 static uma_zone_t socket_zone; 315 int maxsockets; 316 317 static void 318 socket_zone_change(void *tag) 319 { 320 321 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 322 } 323 324 static int splice_init_state; 325 static struct sx splice_init_lock; 326 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init"); 327 328 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0, 329 "Settings relating to the SO_SPLICE socket option"); 330 331 static bool splice_receive_stream = true; 332 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN, 333 &splice_receive_stream, 0, 334 "Use soreceive_stream() for stream splices"); 335 336 static uma_zone_t splice_zone; 337 static struct proc *splice_proc; 338 struct splice_wq { 339 struct mtx mtx; 340 STAILQ_HEAD(, so_splice) head; 341 bool running; 342 } __aligned(CACHE_LINE_SIZE); 343 static struct splice_wq *splice_wq; 344 static uint32_t splice_index = 0; 345 346 static void so_splice_timeout(void *arg, int pending); 347 static void so_splice_xfer(struct so_splice *s); 348 static int so_unsplice(struct socket *so, bool timeout); 349 350 static void 351 splice_work_thread(void *ctx) 352 { 353 struct splice_wq *wq = ctx; 354 struct so_splice *s, *s_temp; 355 STAILQ_HEAD(, so_splice) local_head; 356 int cpu; 357 358 cpu = wq - splice_wq; 359 if (bootverbose) 360 printf("starting so_splice worker thread for CPU %d\n", cpu); 361 362 for (;;) { 363 mtx_lock(&wq->mtx); 364 while (STAILQ_EMPTY(&wq->head)) { 365 wq->running = false; 366 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 367 wq->running = true; 368 } 369 STAILQ_INIT(&local_head); 370 STAILQ_CONCAT(&local_head, &wq->head); 371 STAILQ_INIT(&wq->head); 372 mtx_unlock(&wq->mtx); 373 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) { 374 mtx_lock(&s->mtx); 375 CURVNET_SET(s->src->so_vnet); 376 so_splice_xfer(s); 377 CURVNET_RESTORE(); 378 } 379 } 380 } 381 382 static void 383 so_splice_dispatch_async(struct so_splice *sp) 384 { 385 struct splice_wq *wq; 386 bool running; 387 388 wq = &splice_wq[sp->wq_index]; 389 mtx_lock(&wq->mtx); 390 STAILQ_INSERT_TAIL(&wq->head, sp, next); 391 running = wq->running; 392 mtx_unlock(&wq->mtx); 393 if (!running) 394 wakeup(wq); 395 } 396 397 void 398 so_splice_dispatch(struct so_splice *sp) 399 { 400 mtx_assert(&sp->mtx, MA_OWNED); 401 402 if (sp->state != SPLICE_IDLE) { 403 mtx_unlock(&sp->mtx); 404 } else { 405 sp->state = SPLICE_QUEUED; 406 mtx_unlock(&sp->mtx); 407 so_splice_dispatch_async(sp); 408 } 409 } 410 411 static int 412 splice_zinit(void *mem, int size __unused, int flags __unused) 413 { 414 struct so_splice *s; 415 416 s = (struct so_splice *)mem; 417 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF); 418 return (0); 419 } 420 421 static void 422 splice_zfini(void *mem, int size) 423 { 424 struct so_splice *s; 425 426 s = (struct so_splice *)mem; 427 mtx_destroy(&s->mtx); 428 } 429 430 static int 431 splice_init(void) 432 { 433 struct thread *td; 434 int error, i, state; 435 436 state = atomic_load_acq_int(&splice_init_state); 437 if (__predict_true(state > 0)) 438 return (0); 439 if (state < 0) 440 return (ENXIO); 441 sx_xlock(&splice_init_lock); 442 if (splice_init_state != 0) { 443 sx_xunlock(&splice_init_lock); 444 return (0); 445 } 446 447 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL, 448 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0); 449 450 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP, 451 M_WAITOK | M_ZERO); 452 453 /* 454 * Initialize the workqueues to run the splice work. We create a 455 * work queue for each CPU. 456 */ 457 CPU_FOREACH(i) { 458 STAILQ_INIT(&splice_wq[i].head); 459 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF); 460 } 461 462 /* Start kthreads for each workqueue. */ 463 error = 0; 464 CPU_FOREACH(i) { 465 error = kproc_kthread_add(splice_work_thread, &splice_wq[i], 466 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i); 467 if (error) { 468 printf("Can't add so_splice thread %d error %d\n", 469 i, error); 470 break; 471 } 472 473 /* 474 * It's possible to create loops with SO_SPLICE; ensure that 475 * worker threads aren't able to starve the system too easily. 476 */ 477 thread_lock(td); 478 sched_prio(td, PUSER); 479 thread_unlock(td); 480 } 481 482 splice_init_state = error != 0 ? -1 : 1; 483 sx_xunlock(&splice_init_lock); 484 485 return (error); 486 } 487 488 /* 489 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding 490 * one lock in order to avoid potential deadlocks in case there is some other 491 * code path which acquires more than one I/O lock at a time. 492 */ 493 static void 494 splice_lock_pair(struct socket *so_src, struct socket *so_dst) 495 { 496 int error; 497 498 for (;;) { 499 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR); 500 KASSERT(error == 0, 501 ("%s: failed to lock send I/O lock: %d", __func__, error)); 502 error = SOCK_IO_RECV_LOCK(so_src, 0); 503 KASSERT(error == 0 || error == EWOULDBLOCK, 504 ("%s: failed to lock recv I/O lock: %d", __func__, error)); 505 if (error == 0) 506 break; 507 SOCK_IO_SEND_UNLOCK(so_dst); 508 509 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR); 510 KASSERT(error == 0, 511 ("%s: failed to lock recv I/O lock: %d", __func__, error)); 512 error = SOCK_IO_SEND_LOCK(so_dst, 0); 513 KASSERT(error == 0 || error == EWOULDBLOCK, 514 ("%s: failed to lock send I/O lock: %d", __func__, error)); 515 if (error == 0) 516 break; 517 SOCK_IO_RECV_UNLOCK(so_src); 518 } 519 } 520 521 static void 522 splice_unlock_pair(struct socket *so_src, struct socket *so_dst) 523 { 524 SOCK_IO_RECV_UNLOCK(so_src); 525 SOCK_IO_SEND_UNLOCK(so_dst); 526 } 527 528 /* 529 * Move data from the source to the sink. Assumes that both of the relevant 530 * socket I/O locks are held. 531 */ 532 static int 533 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max, 534 ssize_t *lenp) 535 { 536 struct uio uio; 537 struct mbuf *m; 538 struct sockbuf *sb_src, *sb_dst; 539 ssize_t len; 540 long space; 541 int error, flags; 542 543 SOCK_IO_RECV_ASSERT_LOCKED(so_src); 544 SOCK_IO_SEND_ASSERT_LOCKED(so_dst); 545 546 error = 0; 547 m = NULL; 548 memset(&uio, 0, sizeof(uio)); 549 550 sb_src = &so_src->so_rcv; 551 sb_dst = &so_dst->so_snd; 552 553 space = sbspace(sb_dst); 554 if (space < 0) 555 space = 0; 556 len = MIN(max, MIN(space, sbavail(sb_src))); 557 if (len == 0) { 558 SOCK_RECVBUF_LOCK(so_src); 559 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0) 560 error = EPIPE; 561 SOCK_RECVBUF_UNLOCK(so_src); 562 } else { 563 flags = MSG_DONTWAIT; 564 uio.uio_resid = len; 565 if (splice_receive_stream && sb_src->sb_tls_info == NULL) { 566 error = soreceive_stream_locked(so_src, sb_src, NULL, 567 &uio, &m, NULL, flags); 568 } else { 569 error = soreceive_generic_locked(so_src, NULL, 570 &uio, &m, NULL, &flags); 571 } 572 if (error != 0 && m != NULL) { 573 m_freem(m); 574 m = NULL; 575 } 576 } 577 if (m != NULL) { 578 len -= uio.uio_resid; 579 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL, 580 MSG_DONTWAIT, curthread); 581 } else if (error == 0) { 582 len = 0; 583 SOCK_SENDBUF_LOCK(so_dst); 584 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0) 585 error = EPIPE; 586 SOCK_SENDBUF_UNLOCK(so_dst); 587 } 588 if (error == 0) 589 *lenp = len; 590 return (error); 591 } 592 593 /* 594 * Transfer data from the source to the sink. 595 */ 596 static void 597 so_splice_xfer(struct so_splice *sp) 598 { 599 struct socket *so_src, *so_dst; 600 off_t max; 601 ssize_t len; 602 int error; 603 604 mtx_assert(&sp->mtx, MA_OWNED); 605 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING, 606 ("so_splice_xfer: invalid state %d", sp->state)); 607 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0")); 608 609 if (sp->state == SPLICE_CLOSING) { 610 /* Userspace asked us to close the splice. */ 611 goto closing; 612 } 613 614 sp->state = SPLICE_RUNNING; 615 so_src = sp->src; 616 so_dst = sp->dst; 617 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX; 618 if (max < 0) 619 max = 0; 620 621 /* 622 * Lock the sockets in order to block userspace from doing anything 623 * sneaky. If an error occurs or one of the sockets can no longer 624 * transfer data, we will automatically unsplice. 625 */ 626 mtx_unlock(&sp->mtx); 627 splice_lock_pair(so_src, so_dst); 628 629 error = so_splice_xfer_data(so_src, so_dst, max, &len); 630 631 mtx_lock(&sp->mtx); 632 633 /* 634 * Update our stats while still holding the socket locks. This 635 * synchronizes with getsockopt(SO_SPLICE), see the comment there. 636 */ 637 if (error == 0) { 638 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len)); 639 so_src->so_splice_sent += len; 640 } 641 splice_unlock_pair(so_src, so_dst); 642 643 switch (sp->state) { 644 case SPLICE_CLOSING: 645 closing: 646 sp->state = SPLICE_CLOSED; 647 wakeup(sp); 648 mtx_unlock(&sp->mtx); 649 break; 650 case SPLICE_RUNNING: 651 if (error != 0 || 652 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) { 653 sp->state = SPLICE_EXCEPTION; 654 soref(so_src); 655 mtx_unlock(&sp->mtx); 656 (void)so_unsplice(so_src, false); 657 sorele(so_src); 658 } else { 659 /* 660 * Locklessly check for additional bytes in the source's 661 * receive buffer and queue more work if possible. We 662 * may end up queuing needless work, but that's ok, and 663 * if we race with a thread inserting more data into the 664 * buffer and observe sbavail() == 0, the splice mutex 665 * ensures that splice_push() will queue more work for 666 * us. 667 */ 668 if (sbavail(&so_src->so_rcv) > 0 && 669 sbspace(&so_dst->so_snd) > 0) { 670 sp->state = SPLICE_QUEUED; 671 mtx_unlock(&sp->mtx); 672 so_splice_dispatch_async(sp); 673 } else { 674 sp->state = SPLICE_IDLE; 675 mtx_unlock(&sp->mtx); 676 } 677 } 678 break; 679 default: 680 __assert_unreachable(); 681 } 682 } 683 684 static void 685 socket_init(void *tag) 686 { 687 688 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 689 NULL, NULL, UMA_ALIGN_PTR, 0); 690 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 691 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 692 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 693 EVENTHANDLER_PRI_FIRST); 694 } 695 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 696 697 #ifdef SOCKET_HHOOK 698 static void 699 socket_hhook_register(int subtype) 700 { 701 702 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 703 &V_socket_hhh[subtype], 704 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 705 printf("%s: WARNING: unable to register hook\n", __func__); 706 } 707 708 static void 709 socket_hhook_deregister(int subtype) 710 { 711 712 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 713 printf("%s: WARNING: unable to deregister hook\n", __func__); 714 } 715 716 static void 717 socket_vnet_init(const void *unused __unused) 718 { 719 int i; 720 721 /* We expect a contiguous range */ 722 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 723 socket_hhook_register(i); 724 } 725 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 726 socket_vnet_init, NULL); 727 728 static void 729 socket_vnet_uninit(const void *unused __unused) 730 { 731 int i; 732 733 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 734 socket_hhook_deregister(i); 735 } 736 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 737 socket_vnet_uninit, NULL); 738 #endif /* SOCKET_HHOOK */ 739 740 /* 741 * Initialise maxsockets. This SYSINIT must be run after 742 * tunable_mbinit(). 743 */ 744 static void 745 init_maxsockets(void *ignored) 746 { 747 748 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 749 maxsockets = imax(maxsockets, maxfiles); 750 } 751 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 752 753 /* 754 * Sysctl to get and set the maximum global sockets limit. Notify protocols 755 * of the change so that they can update their dependent limits as required. 756 */ 757 static int 758 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 759 { 760 int error, newmaxsockets; 761 762 newmaxsockets = maxsockets; 763 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 764 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 765 if (newmaxsockets > maxsockets && 766 newmaxsockets <= maxfiles) { 767 maxsockets = newmaxsockets; 768 EVENTHANDLER_INVOKE(maxsockets_change); 769 } else 770 error = EINVAL; 771 } 772 return (error); 773 } 774 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 775 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 776 &maxsockets, 0, sysctl_maxsockets, "IU", 777 "Maximum number of sockets available"); 778 779 /* 780 * Socket operation routines. These routines are called by the routines in 781 * sys_socket.c or from a system process, and implement the semantics of 782 * socket operations by switching out to the protocol specific routines. 783 */ 784 785 /* 786 * Get a socket structure from our zone, and initialize it. Note that it 787 * would probably be better to allocate socket and PCB at the same time, but 788 * I'm not convinced that all the protocols can be easily modified to do 789 * this. 790 * 791 * soalloc() returns a socket with a ref count of 0. 792 */ 793 static struct socket * 794 soalloc(struct vnet *vnet) 795 { 796 struct socket *so; 797 798 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 799 if (so == NULL) 800 return (NULL); 801 #ifdef MAC 802 if (mac_socket_init(so, M_NOWAIT) != 0) { 803 uma_zfree(socket_zone, so); 804 return (NULL); 805 } 806 #endif 807 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 808 uma_zfree(socket_zone, so); 809 return (NULL); 810 } 811 812 /* 813 * The socket locking protocol allows to lock 2 sockets at a time, 814 * however, the first one must be a listening socket. WITNESS lacks 815 * a feature to change class of an existing lock, so we use DUPOK. 816 */ 817 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 818 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 819 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 820 so->so_rcv.sb_sel = &so->so_rdsel; 821 so->so_snd.sb_sel = &so->so_wrsel; 822 sx_init(&so->so_snd_sx, "so_snd_sx"); 823 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 824 TAILQ_INIT(&so->so_snd.sb_aiojobq); 825 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 826 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 827 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 828 #ifdef VIMAGE 829 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 830 __func__, __LINE__, so)); 831 so->so_vnet = vnet; 832 #endif 833 #ifdef SOCKET_HHOOK 834 /* We shouldn't need the so_global_mtx */ 835 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 836 /* Do we need more comprehensive error returns? */ 837 uma_zfree(socket_zone, so); 838 return (NULL); 839 } 840 #endif 841 mtx_lock(&so_global_mtx); 842 so->so_gencnt = ++so_gencnt; 843 ++numopensockets; 844 #ifdef VIMAGE 845 vnet->vnet_sockcnt++; 846 #endif 847 mtx_unlock(&so_global_mtx); 848 849 return (so); 850 } 851 852 /* 853 * Free the storage associated with a socket at the socket layer, tear down 854 * locks, labels, etc. All protocol state is assumed already to have been 855 * torn down (and possibly never set up) by the caller. 856 */ 857 void 858 sodealloc(struct socket *so) 859 { 860 861 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 862 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 863 864 mtx_lock(&so_global_mtx); 865 so->so_gencnt = ++so_gencnt; 866 --numopensockets; /* Could be below, but faster here. */ 867 #ifdef VIMAGE 868 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 869 __func__, __LINE__, so)); 870 so->so_vnet->vnet_sockcnt--; 871 #endif 872 mtx_unlock(&so_global_mtx); 873 #ifdef MAC 874 mac_socket_destroy(so); 875 #endif 876 #ifdef SOCKET_HHOOK 877 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 878 #endif 879 880 khelp_destroy_osd(&so->osd); 881 if (SOLISTENING(so)) { 882 if (so->sol_accept_filter != NULL) 883 accept_filt_setopt(so, NULL); 884 } else { 885 if (so->so_rcv.sb_hiwat) 886 (void)chgsbsize(so->so_cred->cr_uidinfo, 887 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 888 if (so->so_snd.sb_hiwat) 889 (void)chgsbsize(so->so_cred->cr_uidinfo, 890 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 891 sx_destroy(&so->so_snd_sx); 892 sx_destroy(&so->so_rcv_sx); 893 mtx_destroy(&so->so_snd_mtx); 894 mtx_destroy(&so->so_rcv_mtx); 895 } 896 crfree(so->so_cred); 897 mtx_destroy(&so->so_lock); 898 uma_zfree(socket_zone, so); 899 } 900 901 /* 902 * socreate returns a socket with a ref count of 1 and a file descriptor 903 * reference. The socket should be closed with soclose(). 904 */ 905 int 906 socreate(int dom, struct socket **aso, int type, int proto, 907 struct ucred *cred, struct thread *td) 908 { 909 struct protosw *prp; 910 struct socket *so; 911 int error; 912 913 /* 914 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 915 * shim until all applications have been updated. 916 */ 917 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 918 proto == IPPROTO_DIVERT)) { 919 dom = PF_DIVERT; 920 printf("%s uses obsolete way to create divert(4) socket\n", 921 td->td_proc->p_comm); 922 } 923 924 prp = pffindproto(dom, type, proto); 925 if (prp == NULL) { 926 /* No support for domain. */ 927 if (pffinddomain(dom) == NULL) 928 return (EAFNOSUPPORT); 929 /* No support for socket type. */ 930 if (proto == 0 && type != 0) 931 return (EPROTOTYPE); 932 return (EPROTONOSUPPORT); 933 } 934 935 MPASS(prp->pr_attach); 936 937 if ((prp->pr_flags & PR_CAPATTACH) == 0) { 938 if (CAP_TRACING(td)) 939 ktrcapfail(CAPFAIL_PROTO, &proto); 940 if (IN_CAPABILITY_MODE(td)) 941 return (ECAPMODE); 942 } 943 944 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 945 return (EPROTONOSUPPORT); 946 947 so = soalloc(CRED_TO_VNET(cred)); 948 if (so == NULL) 949 return (ENOBUFS); 950 951 so->so_type = type; 952 so->so_cred = crhold(cred); 953 if ((prp->pr_domain->dom_family == PF_INET) || 954 (prp->pr_domain->dom_family == PF_INET6) || 955 (prp->pr_domain->dom_family == PF_ROUTE)) 956 so->so_fibnum = td->td_proc->p_fibnum; 957 else 958 so->so_fibnum = 0; 959 so->so_proto = prp; 960 #ifdef MAC 961 mac_socket_create(cred, so); 962 #endif 963 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 964 so_rdknl_assert_lock); 965 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 966 so_wrknl_assert_lock); 967 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 968 so->so_snd.sb_mtx = &so->so_snd_mtx; 969 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 970 } 971 /* 972 * Auto-sizing of socket buffers is managed by the protocols and 973 * the appropriate flags must be set in the pru_attach function. 974 */ 975 CURVNET_SET(so->so_vnet); 976 error = prp->pr_attach(so, proto, td); 977 CURVNET_RESTORE(); 978 if (error) { 979 sodealloc(so); 980 return (error); 981 } 982 soref(so); 983 *aso = so; 984 return (0); 985 } 986 987 #ifdef REGRESSION 988 static int regression_sonewconn_earlytest = 1; 989 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 990 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 991 #endif 992 993 static int sooverprio = LOG_DEBUG; 994 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, 995 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); 996 997 static struct timeval overinterval = { 60, 0 }; 998 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 999 &overinterval, 1000 "Delay in seconds between warnings for listen socket overflows"); 1001 1002 /* 1003 * When an attempt at a new connection is noted on a socket which supports 1004 * accept(2), the protocol has two options: 1005 * 1) Call legacy sonewconn() function, which would call protocol attach 1006 * method, same as used for socket(2). 1007 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 1008 * and then call solisten_enqueue(). 1009 * 1010 * Note: the ref count on the socket is 0 on return. 1011 */ 1012 struct socket * 1013 solisten_clone(struct socket *head) 1014 { 1015 struct sbuf descrsb; 1016 struct socket *so; 1017 int len, overcount; 1018 u_int qlen; 1019 const char localprefix[] = "local:"; 1020 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 1021 #if defined(INET6) 1022 char addrbuf[INET6_ADDRSTRLEN]; 1023 #elif defined(INET) 1024 char addrbuf[INET_ADDRSTRLEN]; 1025 #endif 1026 bool dolog, over; 1027 1028 SOLISTEN_LOCK(head); 1029 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 1030 #ifdef REGRESSION 1031 if (regression_sonewconn_earlytest && over) { 1032 #else 1033 if (over) { 1034 #endif 1035 head->sol_overcount++; 1036 dolog = (sooverprio >= 0) && 1037 !!ratecheck(&head->sol_lastover, &overinterval); 1038 1039 /* 1040 * If we're going to log, copy the overflow count and queue 1041 * length from the listen socket before dropping the lock. 1042 * Also, reset the overflow count. 1043 */ 1044 if (dolog) { 1045 overcount = head->sol_overcount; 1046 head->sol_overcount = 0; 1047 qlen = head->sol_qlen; 1048 } 1049 SOLISTEN_UNLOCK(head); 1050 1051 if (dolog) { 1052 /* 1053 * Try to print something descriptive about the 1054 * socket for the error message. 1055 */ 1056 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 1057 SBUF_FIXEDLEN); 1058 switch (head->so_proto->pr_domain->dom_family) { 1059 #if defined(INET) || defined(INET6) 1060 #ifdef INET 1061 case AF_INET: 1062 #endif 1063 #ifdef INET6 1064 case AF_INET6: 1065 if (head->so_proto->pr_domain->dom_family == 1066 AF_INET6 || 1067 (sotoinpcb(head)->inp_inc.inc_flags & 1068 INC_ISIPV6)) { 1069 ip6_sprintf(addrbuf, 1070 &sotoinpcb(head)->inp_inc.inc6_laddr); 1071 sbuf_printf(&descrsb, "[%s]", addrbuf); 1072 } else 1073 #endif 1074 { 1075 #ifdef INET 1076 inet_ntoa_r( 1077 sotoinpcb(head)->inp_inc.inc_laddr, 1078 addrbuf); 1079 sbuf_cat(&descrsb, addrbuf); 1080 #endif 1081 } 1082 sbuf_printf(&descrsb, ":%hu (proto %u)", 1083 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 1084 head->so_proto->pr_protocol); 1085 break; 1086 #endif /* INET || INET6 */ 1087 case AF_UNIX: 1088 sbuf_cat(&descrsb, localprefix); 1089 if (sotounpcb(head)->unp_addr != NULL) 1090 len = 1091 sotounpcb(head)->unp_addr->sun_len - 1092 offsetof(struct sockaddr_un, 1093 sun_path); 1094 else 1095 len = 0; 1096 if (len > 0) 1097 sbuf_bcat(&descrsb, 1098 sotounpcb(head)->unp_addr->sun_path, 1099 len); 1100 else 1101 sbuf_cat(&descrsb, "(unknown)"); 1102 break; 1103 } 1104 1105 /* 1106 * If we can't print something more specific, at least 1107 * print the domain name. 1108 */ 1109 if (sbuf_finish(&descrsb) != 0 || 1110 sbuf_len(&descrsb) <= 0) { 1111 sbuf_clear(&descrsb); 1112 sbuf_cat(&descrsb, 1113 head->so_proto->pr_domain->dom_name ?: 1114 "unknown"); 1115 sbuf_finish(&descrsb); 1116 } 1117 KASSERT(sbuf_len(&descrsb) > 0, 1118 ("%s: sbuf creation failed", __func__)); 1119 /* 1120 * Preserve the historic listen queue overflow log 1121 * message, that starts with "sonewconn:". It has 1122 * been known to sysadmins for years and also test 1123 * sys/kern/sonewconn_overflow checks for it. 1124 */ 1125 if (head->so_cred == 0) { 1126 log(LOG_PRI(sooverprio), 1127 "sonewconn: pcb %p (%s): " 1128 "Listen queue overflow: %i already in " 1129 "queue awaiting acceptance (%d " 1130 "occurrences)\n", head->so_pcb, 1131 sbuf_data(&descrsb), 1132 qlen, overcount); 1133 } else { 1134 log(LOG_PRI(sooverprio), 1135 "sonewconn: pcb %p (%s): " 1136 "Listen queue overflow: " 1137 "%i already in queue awaiting acceptance " 1138 "(%d occurrences), euid %d, rgid %d, jail %s\n", 1139 head->so_pcb, sbuf_data(&descrsb), qlen, 1140 overcount, head->so_cred->cr_uid, 1141 head->so_cred->cr_rgid, 1142 head->so_cred->cr_prison ? 1143 head->so_cred->cr_prison->pr_name : 1144 "not_jailed"); 1145 } 1146 sbuf_delete(&descrsb); 1147 1148 overcount = 0; 1149 } 1150 1151 return (NULL); 1152 } 1153 SOLISTEN_UNLOCK(head); 1154 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 1155 __func__, head)); 1156 so = soalloc(head->so_vnet); 1157 if (so == NULL) { 1158 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 1159 "limit reached or out of memory\n", 1160 __func__, head->so_pcb); 1161 return (NULL); 1162 } 1163 so->so_listen = head; 1164 so->so_type = head->so_type; 1165 /* 1166 * POSIX is ambiguous on what options an accept(2)ed socket should 1167 * inherit from the listener. Words "create a new socket" may be 1168 * interpreted as not inheriting anything. Best programming practice 1169 * for application developers is to not rely on such inheritance. 1170 * FreeBSD had historically inherited all so_options excluding 1171 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, 1172 * including those completely irrelevant to a new born socket. For 1173 * compatibility with older versions we will inherit a list of 1174 * meaningful options. 1175 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present 1176 * in the child socket for soisconnected() promoting socket from the 1177 * incomplete queue to complete. It will be cleared before the child 1178 * gets available to accept(2). 1179 */ 1180 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE | 1181 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); 1182 so->so_linger = head->so_linger; 1183 so->so_state = head->so_state; 1184 so->so_fibnum = head->so_fibnum; 1185 so->so_proto = head->so_proto; 1186 so->so_cred = crhold(head->so_cred); 1187 #ifdef SOCKET_HHOOK 1188 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) { 1189 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) { 1190 sodealloc(so); 1191 log(LOG_DEBUG, "%s: hhook run failed\n", __func__); 1192 return (NULL); 1193 } 1194 } 1195 #endif 1196 #ifdef MAC 1197 mac_socket_newconn(head, so); 1198 #endif 1199 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 1200 so_rdknl_assert_lock); 1201 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 1202 so_wrknl_assert_lock); 1203 VNET_SO_ASSERT(head); 1204 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 1205 sodealloc(so); 1206 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 1207 __func__, head->so_pcb); 1208 return (NULL); 1209 } 1210 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 1211 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 1212 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 1213 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 1214 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 1215 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 1216 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 1217 so->so_snd.sb_mtx = &so->so_snd_mtx; 1218 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 1219 } 1220 1221 return (so); 1222 } 1223 1224 /* Connstatus may be 0 or SS_ISCONNECTED. */ 1225 struct socket * 1226 sonewconn(struct socket *head, int connstatus) 1227 { 1228 struct socket *so; 1229 1230 if ((so = solisten_clone(head)) == NULL) 1231 return (NULL); 1232 1233 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 1234 sodealloc(so); 1235 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 1236 __func__, head->so_pcb); 1237 return (NULL); 1238 } 1239 1240 (void)solisten_enqueue(so, connstatus); 1241 1242 return (so); 1243 } 1244 1245 /* 1246 * Enqueue socket cloned by solisten_clone() to the listen queue of the 1247 * listener it has been cloned from. 1248 * 1249 * Return 'true' if socket landed on complete queue, otherwise 'false'. 1250 */ 1251 bool 1252 solisten_enqueue(struct socket *so, int connstatus) 1253 { 1254 struct socket *head = so->so_listen; 1255 1256 MPASS(refcount_load(&so->so_count) == 0); 1257 refcount_init(&so->so_count, 1); 1258 1259 SOLISTEN_LOCK(head); 1260 if (head->sol_accept_filter != NULL) 1261 connstatus = 0; 1262 so->so_state |= connstatus; 1263 soref(head); /* A socket on (in)complete queue refs head. */ 1264 if (connstatus) { 1265 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 1266 so->so_qstate = SQ_COMP; 1267 head->sol_qlen++; 1268 solisten_wakeup(head); /* unlocks */ 1269 return (true); 1270 } else { 1271 /* 1272 * Keep removing sockets from the head until there's room for 1273 * us to insert on the tail. In pre-locking revisions, this 1274 * was a simple if(), but as we could be racing with other 1275 * threads and soabort() requires dropping locks, we must 1276 * loop waiting for the condition to be true. 1277 */ 1278 while (head->sol_incqlen > head->sol_qlimit) { 1279 struct socket *sp; 1280 1281 sp = TAILQ_FIRST(&head->sol_incomp); 1282 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 1283 head->sol_incqlen--; 1284 SOCK_LOCK(sp); 1285 sp->so_qstate = SQ_NONE; 1286 sp->so_listen = NULL; 1287 SOCK_UNLOCK(sp); 1288 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 1289 soabort(sp); 1290 SOLISTEN_LOCK(head); 1291 } 1292 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 1293 so->so_qstate = SQ_INCOMP; 1294 head->sol_incqlen++; 1295 SOLISTEN_UNLOCK(head); 1296 return (false); 1297 } 1298 } 1299 1300 #if defined(SCTP) || defined(SCTP_SUPPORT) 1301 /* 1302 * Socket part of sctp_peeloff(). Detach a new socket from an 1303 * association. The new socket is returned with a reference. 1304 * 1305 * XXXGL: reduce copy-paste with solisten_clone(). 1306 */ 1307 struct socket * 1308 sopeeloff(struct socket *head) 1309 { 1310 struct socket *so; 1311 1312 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 1313 __func__, __LINE__, head)); 1314 so = soalloc(head->so_vnet); 1315 if (so == NULL) { 1316 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 1317 "limit reached or out of memory\n", 1318 __func__, head->so_pcb); 1319 return (NULL); 1320 } 1321 so->so_type = head->so_type; 1322 so->so_options = head->so_options; 1323 so->so_linger = head->so_linger; 1324 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 1325 so->so_fibnum = head->so_fibnum; 1326 so->so_proto = head->so_proto; 1327 so->so_cred = crhold(head->so_cred); 1328 #ifdef MAC 1329 mac_socket_newconn(head, so); 1330 #endif 1331 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 1332 so_rdknl_assert_lock); 1333 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 1334 so_wrknl_assert_lock); 1335 VNET_SO_ASSERT(head); 1336 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 1337 sodealloc(so); 1338 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 1339 __func__, head->so_pcb); 1340 return (NULL); 1341 } 1342 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 1343 sodealloc(so); 1344 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 1345 __func__, head->so_pcb); 1346 return (NULL); 1347 } 1348 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 1349 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 1350 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 1351 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 1352 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 1353 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 1354 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 1355 so->so_snd.sb_mtx = &so->so_snd_mtx; 1356 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 1357 } 1358 1359 soref(so); 1360 1361 return (so); 1362 } 1363 #endif /* SCTP */ 1364 1365 int 1366 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 1367 { 1368 int error; 1369 1370 CURVNET_SET(so->so_vnet); 1371 error = so->so_proto->pr_bind(so, nam, td); 1372 CURVNET_RESTORE(); 1373 return (error); 1374 } 1375 1376 int 1377 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1378 { 1379 int error; 1380 1381 CURVNET_SET(so->so_vnet); 1382 error = so->so_proto->pr_bindat(fd, so, nam, td); 1383 CURVNET_RESTORE(); 1384 return (error); 1385 } 1386 1387 /* 1388 * solisten() transitions a socket from a non-listening state to a listening 1389 * state, but can also be used to update the listen queue depth on an 1390 * existing listen socket. The protocol will call back into the sockets 1391 * layer using solisten_proto_check() and solisten_proto() to check and set 1392 * socket-layer listen state. Call backs are used so that the protocol can 1393 * acquire both protocol and socket layer locks in whatever order is required 1394 * by the protocol. 1395 * 1396 * Protocol implementors are advised to hold the socket lock across the 1397 * socket-layer test and set to avoid races at the socket layer. 1398 */ 1399 int 1400 solisten(struct socket *so, int backlog, struct thread *td) 1401 { 1402 int error; 1403 1404 CURVNET_SET(so->so_vnet); 1405 error = so->so_proto->pr_listen(so, backlog, td); 1406 CURVNET_RESTORE(); 1407 return (error); 1408 } 1409 1410 /* 1411 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 1412 * order to interlock with socket I/O. 1413 */ 1414 int 1415 solisten_proto_check(struct socket *so) 1416 { 1417 SOCK_LOCK_ASSERT(so); 1418 1419 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1420 SS_ISDISCONNECTING)) != 0) 1421 return (EINVAL); 1422 1423 /* 1424 * Sleeping is not permitted here, so simply fail if userspace is 1425 * attempting to transmit or receive on the socket. This kind of 1426 * transient failure is not ideal, but it should occur only if userspace 1427 * is misusing the socket interfaces. 1428 */ 1429 if (!sx_try_xlock(&so->so_snd_sx)) 1430 return (EAGAIN); 1431 if (!sx_try_xlock(&so->so_rcv_sx)) { 1432 sx_xunlock(&so->so_snd_sx); 1433 return (EAGAIN); 1434 } 1435 mtx_lock(&so->so_snd_mtx); 1436 mtx_lock(&so->so_rcv_mtx); 1437 1438 /* Interlock with soo_aio_queue() and KTLS. */ 1439 if (!SOLISTENING(so)) { 1440 bool ktls; 1441 1442 #ifdef KERN_TLS 1443 ktls = so->so_snd.sb_tls_info != NULL || 1444 so->so_rcv.sb_tls_info != NULL; 1445 #else 1446 ktls = false; 1447 #endif 1448 if (ktls || 1449 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 1450 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 1451 solisten_proto_abort(so); 1452 return (EINVAL); 1453 } 1454 } 1455 1456 return (0); 1457 } 1458 1459 /* 1460 * Undo the setup done by solisten_proto_check(). 1461 */ 1462 void 1463 solisten_proto_abort(struct socket *so) 1464 { 1465 mtx_unlock(&so->so_snd_mtx); 1466 mtx_unlock(&so->so_rcv_mtx); 1467 sx_xunlock(&so->so_snd_sx); 1468 sx_xunlock(&so->so_rcv_sx); 1469 } 1470 1471 void 1472 solisten_proto(struct socket *so, int backlog) 1473 { 1474 int sbrcv_lowat, sbsnd_lowat; 1475 u_int sbrcv_hiwat, sbsnd_hiwat; 1476 short sbrcv_flags, sbsnd_flags; 1477 sbintime_t sbrcv_timeo, sbsnd_timeo; 1478 1479 SOCK_LOCK_ASSERT(so); 1480 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1481 SS_ISDISCONNECTING)) == 0, 1482 ("%s: bad socket state %p", __func__, so)); 1483 1484 if (SOLISTENING(so)) 1485 goto listening; 1486 1487 /* 1488 * Change this socket to listening state. 1489 */ 1490 sbrcv_lowat = so->so_rcv.sb_lowat; 1491 sbsnd_lowat = so->so_snd.sb_lowat; 1492 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1493 sbsnd_hiwat = so->so_snd.sb_hiwat; 1494 sbrcv_flags = so->so_rcv.sb_flags; 1495 sbsnd_flags = so->so_snd.sb_flags; 1496 sbrcv_timeo = so->so_rcv.sb_timeo; 1497 sbsnd_timeo = so->so_snd.sb_timeo; 1498 1499 #ifdef MAC 1500 mac_socketpeer_label_free(so->so_peerlabel); 1501 #endif 1502 1503 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) { 1504 sbdestroy(so, SO_SND); 1505 sbdestroy(so, SO_RCV); 1506 } 1507 1508 #ifdef INVARIANTS 1509 bzero(&so->so_rcv, 1510 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1511 #endif 1512 1513 so->sol_sbrcv_lowat = sbrcv_lowat; 1514 so->sol_sbsnd_lowat = sbsnd_lowat; 1515 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1516 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1517 so->sol_sbrcv_flags = sbrcv_flags; 1518 so->sol_sbsnd_flags = sbsnd_flags; 1519 so->sol_sbrcv_timeo = sbrcv_timeo; 1520 so->sol_sbsnd_timeo = sbsnd_timeo; 1521 1522 so->sol_qlen = so->sol_incqlen = 0; 1523 TAILQ_INIT(&so->sol_incomp); 1524 TAILQ_INIT(&so->sol_comp); 1525 1526 so->sol_accept_filter = NULL; 1527 so->sol_accept_filter_arg = NULL; 1528 so->sol_accept_filter_str = NULL; 1529 1530 so->sol_upcall = NULL; 1531 so->sol_upcallarg = NULL; 1532 1533 so->so_options |= SO_ACCEPTCONN; 1534 1535 listening: 1536 if (backlog < 0 || backlog > V_somaxconn) 1537 backlog = V_somaxconn; 1538 so->sol_qlimit = backlog; 1539 1540 mtx_unlock(&so->so_snd_mtx); 1541 mtx_unlock(&so->so_rcv_mtx); 1542 sx_xunlock(&so->so_snd_sx); 1543 sx_xunlock(&so->so_rcv_sx); 1544 } 1545 1546 /* 1547 * Wakeup listeners/subsystems once we have a complete connection. 1548 * Enters with lock, returns unlocked. 1549 */ 1550 void 1551 solisten_wakeup(struct socket *sol) 1552 { 1553 1554 if (sol->sol_upcall != NULL) 1555 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1556 else { 1557 selwakeuppri(&sol->so_rdsel, PSOCK); 1558 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1559 } 1560 SOLISTEN_UNLOCK(sol); 1561 wakeup_one(&sol->sol_comp); 1562 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1563 pgsigio(&sol->so_sigio, SIGIO, 0); 1564 } 1565 1566 /* 1567 * Return single connection off a listening socket queue. Main consumer of 1568 * the function is kern_accept4(). Some modules, that do their own accept 1569 * management also use the function. The socket reference held by the 1570 * listen queue is handed to the caller. 1571 * 1572 * Listening socket must be locked on entry and is returned unlocked on 1573 * return. 1574 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1575 */ 1576 int 1577 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1578 { 1579 struct socket *so; 1580 int error; 1581 1582 SOLISTEN_LOCK_ASSERT(head); 1583 1584 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1585 head->so_error == 0) { 1586 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1587 "accept", 0); 1588 if (error != 0) { 1589 SOLISTEN_UNLOCK(head); 1590 return (error); 1591 } 1592 } 1593 if (head->so_error) { 1594 error = head->so_error; 1595 head->so_error = 0; 1596 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1597 error = EWOULDBLOCK; 1598 else 1599 error = 0; 1600 if (error) { 1601 SOLISTEN_UNLOCK(head); 1602 return (error); 1603 } 1604 so = TAILQ_FIRST(&head->sol_comp); 1605 SOCK_LOCK(so); 1606 KASSERT(so->so_qstate == SQ_COMP, 1607 ("%s: so %p not SQ_COMP", __func__, so)); 1608 head->sol_qlen--; 1609 so->so_qstate = SQ_NONE; 1610 so->so_listen = NULL; 1611 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1612 if (flags & ACCEPT4_INHERIT) 1613 so->so_state |= (head->so_state & SS_NBIO); 1614 else 1615 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1616 SOCK_UNLOCK(so); 1617 sorele_locked(head); 1618 1619 *ret = so; 1620 return (0); 1621 } 1622 1623 static struct so_splice * 1624 so_splice_alloc(off_t max) 1625 { 1626 struct so_splice *sp; 1627 1628 sp = uma_zalloc(splice_zone, M_WAITOK); 1629 sp->src = NULL; 1630 sp->dst = NULL; 1631 sp->max = max > 0 ? max : -1; 1632 do { 1633 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) % 1634 (mp_maxid + 1); 1635 } while (CPU_ABSENT(sp->wq_index)); 1636 sp->state = SPLICE_INIT; 1637 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout, 1638 sp); 1639 return (sp); 1640 } 1641 1642 static void 1643 so_splice_free(struct so_splice *sp) 1644 { 1645 KASSERT(sp->state == SPLICE_CLOSED, 1646 ("so_splice_free: sp %p not closed", sp)); 1647 uma_zfree(splice_zone, sp); 1648 } 1649 1650 static void 1651 so_splice_timeout(void *arg, int pending __unused) 1652 { 1653 struct so_splice *sp; 1654 1655 sp = arg; 1656 (void)so_unsplice(sp->src, true); 1657 } 1658 1659 /* 1660 * Splice the output from so to the input of so2. 1661 */ 1662 static int 1663 so_splice(struct socket *so, struct socket *so2, struct splice *splice) 1664 { 1665 struct so_splice *sp; 1666 int error; 1667 1668 if (splice->sp_max < 0) 1669 return (EINVAL); 1670 /* Handle only TCP for now; TODO: other streaming protos */ 1671 if (so->so_proto->pr_protocol != IPPROTO_TCP || 1672 so2->so_proto->pr_protocol != IPPROTO_TCP) 1673 return (EPROTONOSUPPORT); 1674 if (so->so_vnet != so2->so_vnet) 1675 return (EINVAL); 1676 1677 /* so_splice_xfer() assumes that we're using these implementations. */ 1678 KASSERT(so->so_proto->pr_sosend == sosend_generic, 1679 ("so_splice: sosend not sosend_generic")); 1680 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic || 1681 so2->so_proto->pr_soreceive == soreceive_stream, 1682 ("so_splice: soreceive not soreceive_generic/stream")); 1683 1684 sp = so_splice_alloc(splice->sp_max); 1685 so->so_splice_sent = 0; 1686 sp->src = so; 1687 sp->dst = so2; 1688 1689 error = 0; 1690 SOCK_LOCK(so); 1691 if (SOLISTENING(so)) 1692 error = EINVAL; 1693 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0) 1694 error = ENOTCONN; 1695 else if (so->so_splice != NULL) 1696 error = EBUSY; 1697 if (error != 0) { 1698 SOCK_UNLOCK(so); 1699 uma_zfree(splice_zone, sp); 1700 return (error); 1701 } 1702 SOCK_RECVBUF_LOCK(so); 1703 if (so->so_rcv.sb_tls_info != NULL) { 1704 SOCK_RECVBUF_UNLOCK(so); 1705 SOCK_UNLOCK(so); 1706 uma_zfree(splice_zone, sp); 1707 return (EINVAL); 1708 } 1709 so->so_rcv.sb_flags |= SB_SPLICED; 1710 so->so_splice = sp; 1711 soref(so); 1712 SOCK_RECVBUF_UNLOCK(so); 1713 SOCK_UNLOCK(so); 1714 1715 error = 0; 1716 SOCK_LOCK(so2); 1717 if (SOLISTENING(so2)) 1718 error = EINVAL; 1719 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0) 1720 error = ENOTCONN; 1721 else if (so2->so_splice_back != NULL) 1722 error = EBUSY; 1723 if (error != 0) { 1724 SOCK_UNLOCK(so2); 1725 so_unsplice(so, false); 1726 return (error); 1727 } 1728 SOCK_SENDBUF_LOCK(so2); 1729 if (so->so_snd.sb_tls_info != NULL) { 1730 SOCK_SENDBUF_UNLOCK(so2); 1731 SOCK_UNLOCK(so2); 1732 so_unsplice(so, false); 1733 return (EINVAL); 1734 } 1735 so2->so_snd.sb_flags |= SB_SPLICED; 1736 so2->so_splice_back = sp; 1737 soref(so2); 1738 mtx_lock(&sp->mtx); 1739 SOCK_SENDBUF_UNLOCK(so2); 1740 SOCK_UNLOCK(so2); 1741 1742 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) { 1743 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout, 1744 tvtosbt(splice->sp_idle), 0, C_PREL(4)); 1745 } 1746 1747 /* 1748 * Transfer any data already present in the socket buffer. 1749 */ 1750 KASSERT(sp->state == SPLICE_INIT, 1751 ("so_splice: splice %p state %d", sp, sp->state)); 1752 sp->state = SPLICE_QUEUED; 1753 so_splice_xfer(sp); 1754 return (0); 1755 } 1756 1757 static int 1758 so_unsplice(struct socket *so, bool timeout) 1759 { 1760 struct socket *so2; 1761 struct so_splice *sp; 1762 bool drain, so2rele; 1763 1764 /* 1765 * First unset SB_SPLICED and hide the splice structure so that 1766 * wakeup routines will stop enqueuing work. This also ensures that 1767 * a only a single thread will proceed with the unsplice. 1768 */ 1769 SOCK_LOCK(so); 1770 if (SOLISTENING(so)) { 1771 SOCK_UNLOCK(so); 1772 return (EINVAL); 1773 } 1774 SOCK_RECVBUF_LOCK(so); 1775 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) { 1776 SOCK_RECVBUF_UNLOCK(so); 1777 SOCK_UNLOCK(so); 1778 return (ENOTCONN); 1779 } 1780 sp = so->so_splice; 1781 mtx_lock(&sp->mtx); 1782 if (sp->state == SPLICE_INIT) { 1783 /* 1784 * A splice is in the middle of being set up. 1785 */ 1786 mtx_unlock(&sp->mtx); 1787 SOCK_RECVBUF_UNLOCK(so); 1788 SOCK_UNLOCK(so); 1789 return (ENOTCONN); 1790 } 1791 mtx_unlock(&sp->mtx); 1792 so->so_rcv.sb_flags &= ~SB_SPLICED; 1793 so->so_splice = NULL; 1794 SOCK_RECVBUF_UNLOCK(so); 1795 SOCK_UNLOCK(so); 1796 1797 so2 = sp->dst; 1798 SOCK_LOCK(so2); 1799 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__)); 1800 SOCK_SENDBUF_LOCK(so2); 1801 KASSERT(sp->state == SPLICE_INIT || 1802 (so2->so_snd.sb_flags & SB_SPLICED) != 0, 1803 ("%s: so2 is not spliced", __func__)); 1804 KASSERT(sp->state == SPLICE_INIT || 1805 so2->so_splice_back == sp, 1806 ("%s: so_splice_back != sp", __func__)); 1807 so2->so_snd.sb_flags &= ~SB_SPLICED; 1808 so2rele = so2->so_splice_back != NULL; 1809 so2->so_splice_back = NULL; 1810 SOCK_SENDBUF_UNLOCK(so2); 1811 SOCK_UNLOCK(so2); 1812 1813 /* 1814 * No new work is being enqueued. The worker thread might be 1815 * splicing data right now, in which case we want to wait for it to 1816 * finish before proceeding. 1817 */ 1818 mtx_lock(&sp->mtx); 1819 switch (sp->state) { 1820 case SPLICE_QUEUED: 1821 case SPLICE_RUNNING: 1822 sp->state = SPLICE_CLOSING; 1823 while (sp->state == SPLICE_CLOSING) 1824 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0); 1825 break; 1826 case SPLICE_INIT: 1827 case SPLICE_IDLE: 1828 case SPLICE_EXCEPTION: 1829 sp->state = SPLICE_CLOSED; 1830 break; 1831 default: 1832 __assert_unreachable(); 1833 } 1834 if (!timeout) { 1835 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout, 1836 NULL) != 0; 1837 } else { 1838 drain = false; 1839 } 1840 mtx_unlock(&sp->mtx); 1841 if (drain) 1842 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout); 1843 1844 /* 1845 * Now we hold the sole reference to the splice structure. 1846 * Clean up: signal userspace and release socket references. 1847 */ 1848 sorwakeup(so); 1849 CURVNET_SET(so->so_vnet); 1850 sorele(so); 1851 sowwakeup(so2); 1852 if (so2rele) 1853 sorele(so2); 1854 CURVNET_RESTORE(); 1855 so_splice_free(sp); 1856 return (0); 1857 } 1858 1859 /* 1860 * Free socket upon release of the very last reference. 1861 */ 1862 static void 1863 sofree(struct socket *so) 1864 { 1865 struct protosw *pr = so->so_proto; 1866 1867 SOCK_LOCK_ASSERT(so); 1868 KASSERT(refcount_load(&so->so_count) == 0, 1869 ("%s: so %p has references", __func__, so)); 1870 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1871 ("%s: so %p is on listen queue", __func__, so)); 1872 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0, 1873 ("%s: so %p rcvbuf is spliced", __func__, so)); 1874 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0, 1875 ("%s: so %p sndbuf is spliced", __func__, so)); 1876 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL, 1877 ("%s: so %p has spliced data", __func__, so)); 1878 1879 SOCK_UNLOCK(so); 1880 1881 if (so->so_dtor != NULL) 1882 so->so_dtor(so); 1883 1884 VNET_SO_ASSERT(so); 1885 if (pr->pr_detach != NULL) 1886 pr->pr_detach(so); 1887 1888 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1889 /* 1890 * From this point on, we assume that no other references to 1891 * this socket exist anywhere else in the stack. Therefore, 1892 * no locks need to be acquired or held. 1893 */ 1894 #ifdef INVARIANTS 1895 SOCK_SENDBUF_LOCK(so); 1896 SOCK_RECVBUF_LOCK(so); 1897 #endif 1898 sbdestroy(so, SO_SND); 1899 sbdestroy(so, SO_RCV); 1900 #ifdef INVARIANTS 1901 SOCK_SENDBUF_UNLOCK(so); 1902 SOCK_RECVBUF_UNLOCK(so); 1903 #endif 1904 } 1905 seldrain(&so->so_rdsel); 1906 seldrain(&so->so_wrsel); 1907 knlist_destroy(&so->so_rdsel.si_note); 1908 knlist_destroy(&so->so_wrsel.si_note); 1909 sodealloc(so); 1910 } 1911 1912 /* 1913 * Release a reference on a socket while holding the socket lock. 1914 * Unlocks the socket lock before returning. 1915 */ 1916 void 1917 sorele_locked(struct socket *so) 1918 { 1919 SOCK_LOCK_ASSERT(so); 1920 if (refcount_release(&so->so_count)) 1921 sofree(so); 1922 else 1923 SOCK_UNLOCK(so); 1924 } 1925 1926 /* 1927 * Close a socket on last file table reference removal. Initiate disconnect 1928 * if connected. Free socket when disconnect complete. 1929 * 1930 * This function will sorele() the socket. Note that soclose() may be called 1931 * prior to the ref count reaching zero. The actual socket structure will 1932 * not be freed until the ref count reaches zero. 1933 */ 1934 int 1935 soclose(struct socket *so) 1936 { 1937 struct accept_queue lqueue; 1938 int error = 0; 1939 bool listening, last __diagused; 1940 1941 CURVNET_SET(so->so_vnet); 1942 funsetown(&so->so_sigio); 1943 if (so->so_state & SS_ISCONNECTED) { 1944 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1945 error = sodisconnect(so); 1946 if (error) { 1947 if (error == ENOTCONN) 1948 error = 0; 1949 goto drop; 1950 } 1951 } 1952 1953 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1954 if ((so->so_state & SS_ISDISCONNECTING) && 1955 (so->so_state & SS_NBIO)) 1956 goto drop; 1957 while (so->so_state & SS_ISCONNECTED) { 1958 error = tsleep(&so->so_timeo, 1959 PSOCK | PCATCH, "soclos", 1960 so->so_linger * hz); 1961 if (error) 1962 break; 1963 } 1964 } 1965 } 1966 1967 drop: 1968 if (so->so_proto->pr_close != NULL) 1969 so->so_proto->pr_close(so); 1970 1971 SOCK_LOCK(so); 1972 if ((listening = SOLISTENING(so))) { 1973 struct socket *sp; 1974 1975 TAILQ_INIT(&lqueue); 1976 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1977 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1978 1979 so->sol_qlen = so->sol_incqlen = 0; 1980 1981 TAILQ_FOREACH(sp, &lqueue, so_list) { 1982 SOCK_LOCK(sp); 1983 sp->so_qstate = SQ_NONE; 1984 sp->so_listen = NULL; 1985 SOCK_UNLOCK(sp); 1986 last = refcount_release(&so->so_count); 1987 KASSERT(!last, ("%s: released last reference for %p", 1988 __func__, so)); 1989 } 1990 } 1991 sorele_locked(so); 1992 if (listening) { 1993 struct socket *sp, *tsp; 1994 1995 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1996 soabort(sp); 1997 } 1998 CURVNET_RESTORE(); 1999 return (error); 2000 } 2001 2002 /* 2003 * soabort() is used to abruptly tear down a connection, such as when a 2004 * resource limit is reached (listen queue depth exceeded), or if a listen 2005 * socket is closed while there are sockets waiting to be accepted. 2006 * 2007 * This interface is tricky, because it is called on an unreferenced socket, 2008 * and must be called only by a thread that has actually removed the socket 2009 * from the listen queue it was on. Likely this thread holds the last 2010 * reference on the socket and soabort() will proceed with sofree(). But 2011 * it might be not the last, as the sockets on the listen queues are seen 2012 * from the protocol side. 2013 * 2014 * This interface will call into the protocol code, so must not be called 2015 * with any socket locks held. Protocols do call it while holding their own 2016 * recursible protocol mutexes, but this is something that should be subject 2017 * to review in the future. 2018 * 2019 * Usually socket should have a single reference left, but this is not a 2020 * requirement. In the past, when we have had named references for file 2021 * descriptor and protocol, we asserted that none of them are being held. 2022 */ 2023 void 2024 soabort(struct socket *so) 2025 { 2026 2027 VNET_SO_ASSERT(so); 2028 2029 if (so->so_proto->pr_abort != NULL) 2030 so->so_proto->pr_abort(so); 2031 SOCK_LOCK(so); 2032 sorele_locked(so); 2033 } 2034 2035 int 2036 soaccept(struct socket *so, struct sockaddr *sa) 2037 { 2038 #ifdef INVARIANTS 2039 u_char len = sa->sa_len; 2040 #endif 2041 int error; 2042 2043 CURVNET_SET(so->so_vnet); 2044 error = so->so_proto->pr_accept(so, sa); 2045 KASSERT(sa->sa_len <= len, 2046 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 2047 CURVNET_RESTORE(); 2048 return (error); 2049 } 2050 2051 int 2052 sopeeraddr(struct socket *so, struct sockaddr *sa) 2053 { 2054 #ifdef INVARIANTS 2055 u_char len = sa->sa_len; 2056 #endif 2057 int error; 2058 2059 CURVNET_ASSERT_SET(); 2060 2061 error = so->so_proto->pr_peeraddr(so, sa); 2062 KASSERT(sa->sa_len <= len, 2063 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 2064 2065 return (error); 2066 } 2067 2068 int 2069 sosockaddr(struct socket *so, struct sockaddr *sa) 2070 { 2071 #ifdef INVARIANTS 2072 u_char len = sa->sa_len; 2073 #endif 2074 int error; 2075 2076 CURVNET_SET(so->so_vnet); 2077 error = so->so_proto->pr_sockaddr(so, sa); 2078 KASSERT(sa->sa_len <= len, 2079 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 2080 CURVNET_RESTORE(); 2081 2082 return (error); 2083 } 2084 2085 int 2086 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 2087 { 2088 2089 return (soconnectat(AT_FDCWD, so, nam, td)); 2090 } 2091 2092 int 2093 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 2094 { 2095 int error; 2096 2097 CURVNET_SET(so->so_vnet); 2098 2099 /* 2100 * If protocol is connection-based, can only connect once. 2101 * Otherwise, if connected, try to disconnect first. This allows 2102 * user to disconnect by connecting to, e.g., a null address. 2103 * 2104 * Note, this check is racy and may need to be re-evaluated at the 2105 * protocol layer. 2106 */ 2107 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 2108 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 2109 (error = sodisconnect(so)))) { 2110 error = EISCONN; 2111 } else { 2112 /* 2113 * Prevent accumulated error from previous connection from 2114 * biting us. 2115 */ 2116 so->so_error = 0; 2117 if (fd == AT_FDCWD) { 2118 error = so->so_proto->pr_connect(so, nam, td); 2119 } else { 2120 error = so->so_proto->pr_connectat(fd, so, nam, td); 2121 } 2122 } 2123 CURVNET_RESTORE(); 2124 2125 return (error); 2126 } 2127 2128 int 2129 soconnect2(struct socket *so1, struct socket *so2) 2130 { 2131 int error; 2132 2133 CURVNET_SET(so1->so_vnet); 2134 error = so1->so_proto->pr_connect2(so1, so2); 2135 CURVNET_RESTORE(); 2136 return (error); 2137 } 2138 2139 int 2140 sodisconnect(struct socket *so) 2141 { 2142 int error; 2143 2144 if ((so->so_state & SS_ISCONNECTED) == 0) 2145 return (ENOTCONN); 2146 if (so->so_state & SS_ISDISCONNECTING) 2147 return (EALREADY); 2148 VNET_SO_ASSERT(so); 2149 error = so->so_proto->pr_disconnect(so); 2150 return (error); 2151 } 2152 2153 int 2154 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 2155 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2156 { 2157 long space; 2158 ssize_t resid; 2159 int clen = 0, error, dontroute; 2160 2161 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 2162 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 2163 ("sosend_dgram: !PR_ATOMIC")); 2164 2165 if (uio != NULL) 2166 resid = uio->uio_resid; 2167 else 2168 resid = top->m_pkthdr.len; 2169 /* 2170 * In theory resid should be unsigned. However, space must be 2171 * signed, as it might be less than 0 if we over-committed, and we 2172 * must use a signed comparison of space and resid. On the other 2173 * hand, a negative resid causes us to loop sending 0-length 2174 * segments to the protocol. 2175 */ 2176 if (resid < 0) { 2177 error = EINVAL; 2178 goto out; 2179 } 2180 2181 dontroute = 2182 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 2183 if (td != NULL) 2184 td->td_ru.ru_msgsnd++; 2185 if (control != NULL) 2186 clen = control->m_len; 2187 2188 SOCKBUF_LOCK(&so->so_snd); 2189 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2190 SOCKBUF_UNLOCK(&so->so_snd); 2191 error = EPIPE; 2192 goto out; 2193 } 2194 if (so->so_error) { 2195 error = so->so_error; 2196 so->so_error = 0; 2197 SOCKBUF_UNLOCK(&so->so_snd); 2198 goto out; 2199 } 2200 if ((so->so_state & SS_ISCONNECTED) == 0) { 2201 /* 2202 * `sendto' and `sendmsg' is allowed on a connection-based 2203 * socket if it supports implied connect. Return ENOTCONN if 2204 * not connected and no address is supplied. 2205 */ 2206 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 2207 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 2208 if (!(resid == 0 && clen != 0)) { 2209 SOCKBUF_UNLOCK(&so->so_snd); 2210 error = ENOTCONN; 2211 goto out; 2212 } 2213 } else if (addr == NULL) { 2214 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 2215 error = ENOTCONN; 2216 else 2217 error = EDESTADDRREQ; 2218 SOCKBUF_UNLOCK(&so->so_snd); 2219 goto out; 2220 } 2221 } 2222 2223 /* 2224 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 2225 * problem and need fixing. 2226 */ 2227 space = sbspace(&so->so_snd); 2228 if (flags & MSG_OOB) 2229 space += 1024; 2230 space -= clen; 2231 SOCKBUF_UNLOCK(&so->so_snd); 2232 if (resid > space) { 2233 error = EMSGSIZE; 2234 goto out; 2235 } 2236 if (uio == NULL) { 2237 resid = 0; 2238 if (flags & MSG_EOR) 2239 top->m_flags |= M_EOR; 2240 } else { 2241 /* 2242 * Copy the data from userland into a mbuf chain. 2243 * If no data is to be copied in, a single empty mbuf 2244 * is returned. 2245 */ 2246 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 2247 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 2248 if (top == NULL) { 2249 error = EFAULT; /* only possible error */ 2250 goto out; 2251 } 2252 space -= resid - uio->uio_resid; 2253 resid = uio->uio_resid; 2254 } 2255 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 2256 /* 2257 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 2258 * than with. 2259 */ 2260 if (dontroute) { 2261 SOCK_LOCK(so); 2262 so->so_options |= SO_DONTROUTE; 2263 SOCK_UNLOCK(so); 2264 } 2265 /* 2266 * XXX all the SBS_CANTSENDMORE checks previously done could be out 2267 * of date. We could have received a reset packet in an interrupt or 2268 * maybe we slept while doing page faults in uiomove() etc. We could 2269 * probably recheck again inside the locking protection here, but 2270 * there are probably other places that this also happens. We must 2271 * rethink this. 2272 */ 2273 VNET_SO_ASSERT(so); 2274 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 2275 /* 2276 * If the user set MSG_EOF, the protocol understands this flag and 2277 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 2278 */ 2279 ((flags & MSG_EOF) && 2280 (so->so_proto->pr_flags & PR_IMPLOPCL) && 2281 (resid <= 0)) ? 2282 PRUS_EOF : 2283 /* If there is more to send set PRUS_MORETOCOME */ 2284 (flags & MSG_MORETOCOME) || 2285 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 2286 top, addr, control, td); 2287 if (dontroute) { 2288 SOCK_LOCK(so); 2289 so->so_options &= ~SO_DONTROUTE; 2290 SOCK_UNLOCK(so); 2291 } 2292 clen = 0; 2293 control = NULL; 2294 top = NULL; 2295 out: 2296 if (top != NULL) 2297 m_freem(top); 2298 if (control != NULL) 2299 m_freem(control); 2300 return (error); 2301 } 2302 2303 /* 2304 * Send on a socket. If send must go all at once and message is larger than 2305 * send buffering, then hard error. Lock against other senders. If must go 2306 * all at once and not enough room now, then inform user that this would 2307 * block and do nothing. Otherwise, if nonblocking, send as much as 2308 * possible. The data to be sent is described by "uio" if nonzero, otherwise 2309 * by the mbuf chain "top" (which must be null if uio is not). Data provided 2310 * in mbuf chain must be small enough to send all at once. 2311 * 2312 * Returns nonzero on error, timeout or signal; callers must check for short 2313 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 2314 * on return. 2315 */ 2316 static int 2317 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio, 2318 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2319 { 2320 long space; 2321 ssize_t resid; 2322 int clen = 0, error, dontroute; 2323 int atomic = sosendallatonce(so) || top; 2324 int pr_send_flag; 2325 #ifdef KERN_TLS 2326 struct ktls_session *tls; 2327 int tls_enq_cnt, tls_send_flag; 2328 uint8_t tls_rtype; 2329 2330 tls = NULL; 2331 tls_rtype = TLS_RLTYPE_APP; 2332 #endif 2333 2334 SOCK_IO_SEND_ASSERT_LOCKED(so); 2335 2336 if (uio != NULL) 2337 resid = uio->uio_resid; 2338 else if ((top->m_flags & M_PKTHDR) != 0) 2339 resid = top->m_pkthdr.len; 2340 else 2341 resid = m_length(top, NULL); 2342 /* 2343 * In theory resid should be unsigned. However, space must be 2344 * signed, as it might be less than 0 if we over-committed, and we 2345 * must use a signed comparison of space and resid. On the other 2346 * hand, a negative resid causes us to loop sending 0-length 2347 * segments to the protocol. 2348 * 2349 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 2350 * type sockets since that's an error. 2351 */ 2352 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 2353 error = EINVAL; 2354 goto out; 2355 } 2356 2357 dontroute = 2358 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 2359 (so->so_proto->pr_flags & PR_ATOMIC); 2360 if (td != NULL) 2361 td->td_ru.ru_msgsnd++; 2362 if (control != NULL) 2363 clen = control->m_len; 2364 2365 #ifdef KERN_TLS 2366 tls_send_flag = 0; 2367 tls = ktls_hold(so->so_snd.sb_tls_info); 2368 if (tls != NULL) { 2369 if (tls->mode == TCP_TLS_MODE_SW) 2370 tls_send_flag = PRUS_NOTREADY; 2371 2372 if (control != NULL) { 2373 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2374 2375 if (clen >= sizeof(*cm) && 2376 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 2377 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 2378 clen = 0; 2379 m_freem(control); 2380 control = NULL; 2381 atomic = 1; 2382 } 2383 } 2384 2385 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 2386 error = EINVAL; 2387 goto out; 2388 } 2389 } 2390 #endif 2391 2392 restart: 2393 do { 2394 SOCKBUF_LOCK(&so->so_snd); 2395 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2396 SOCKBUF_UNLOCK(&so->so_snd); 2397 error = EPIPE; 2398 goto out; 2399 } 2400 if (so->so_error) { 2401 error = so->so_error; 2402 so->so_error = 0; 2403 SOCKBUF_UNLOCK(&so->so_snd); 2404 goto out; 2405 } 2406 if ((so->so_state & SS_ISCONNECTED) == 0) { 2407 /* 2408 * `sendto' and `sendmsg' is allowed on a connection- 2409 * based socket if it supports implied connect. 2410 * Return ENOTCONN if not connected and no address is 2411 * supplied. 2412 */ 2413 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 2414 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 2415 if (!(resid == 0 && clen != 0)) { 2416 SOCKBUF_UNLOCK(&so->so_snd); 2417 error = ENOTCONN; 2418 goto out; 2419 } 2420 } else if (addr == NULL) { 2421 SOCKBUF_UNLOCK(&so->so_snd); 2422 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 2423 error = ENOTCONN; 2424 else 2425 error = EDESTADDRREQ; 2426 goto out; 2427 } 2428 } 2429 space = sbspace(&so->so_snd); 2430 if (flags & MSG_OOB) 2431 space += 1024; 2432 if ((atomic && resid > so->so_snd.sb_hiwat) || 2433 clen > so->so_snd.sb_hiwat) { 2434 SOCKBUF_UNLOCK(&so->so_snd); 2435 error = EMSGSIZE; 2436 goto out; 2437 } 2438 if (space < resid + clen && 2439 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 2440 if ((so->so_state & SS_NBIO) || 2441 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 2442 SOCKBUF_UNLOCK(&so->so_snd); 2443 error = EWOULDBLOCK; 2444 goto out; 2445 } 2446 error = sbwait(so, SO_SND); 2447 SOCKBUF_UNLOCK(&so->so_snd); 2448 if (error) 2449 goto out; 2450 goto restart; 2451 } 2452 SOCKBUF_UNLOCK(&so->so_snd); 2453 space -= clen; 2454 do { 2455 if (uio == NULL) { 2456 resid = 0; 2457 if (flags & MSG_EOR) 2458 top->m_flags |= M_EOR; 2459 #ifdef KERN_TLS 2460 if (tls != NULL) { 2461 ktls_frame(top, tls, &tls_enq_cnt, 2462 tls_rtype); 2463 tls_rtype = TLS_RLTYPE_APP; 2464 } 2465 #endif 2466 } else { 2467 /* 2468 * Copy the data from userland into a mbuf 2469 * chain. If resid is 0, which can happen 2470 * only if we have control to send, then 2471 * a single empty mbuf is returned. This 2472 * is a workaround to prevent protocol send 2473 * methods to panic. 2474 */ 2475 #ifdef KERN_TLS 2476 if (tls != NULL) { 2477 top = m_uiotombuf(uio, M_WAITOK, space, 2478 tls->params.max_frame_len, 2479 M_EXTPG | 2480 ((flags & MSG_EOR) ? M_EOR : 0)); 2481 if (top != NULL) { 2482 ktls_frame(top, tls, 2483 &tls_enq_cnt, tls_rtype); 2484 } 2485 tls_rtype = TLS_RLTYPE_APP; 2486 } else 2487 #endif 2488 top = m_uiotombuf(uio, M_WAITOK, space, 2489 (atomic ? max_hdr : 0), 2490 (atomic ? M_PKTHDR : 0) | 2491 ((flags & MSG_EOR) ? M_EOR : 0)); 2492 if (top == NULL) { 2493 error = EFAULT; /* only possible error */ 2494 goto out; 2495 } 2496 space -= resid - uio->uio_resid; 2497 resid = uio->uio_resid; 2498 } 2499 if (dontroute) { 2500 SOCK_LOCK(so); 2501 so->so_options |= SO_DONTROUTE; 2502 SOCK_UNLOCK(so); 2503 } 2504 /* 2505 * XXX all the SBS_CANTSENDMORE checks previously 2506 * done could be out of date. We could have received 2507 * a reset packet in an interrupt or maybe we slept 2508 * while doing page faults in uiomove() etc. We 2509 * could probably recheck again inside the locking 2510 * protection here, but there are probably other 2511 * places that this also happens. We must rethink 2512 * this. 2513 */ 2514 VNET_SO_ASSERT(so); 2515 2516 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 2517 /* 2518 * If the user set MSG_EOF, the protocol understands 2519 * this flag and nothing left to send then use 2520 * PRU_SEND_EOF instead of PRU_SEND. 2521 */ 2522 ((flags & MSG_EOF) && 2523 (so->so_proto->pr_flags & PR_IMPLOPCL) && 2524 (resid <= 0)) ? 2525 PRUS_EOF : 2526 /* If there is more to send set PRUS_MORETOCOME. */ 2527 (flags & MSG_MORETOCOME) || 2528 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 2529 2530 #ifdef KERN_TLS 2531 pr_send_flag |= tls_send_flag; 2532 #endif 2533 2534 error = so->so_proto->pr_send(so, pr_send_flag, top, 2535 addr, control, td); 2536 2537 if (dontroute) { 2538 SOCK_LOCK(so); 2539 so->so_options &= ~SO_DONTROUTE; 2540 SOCK_UNLOCK(so); 2541 } 2542 2543 #ifdef KERN_TLS 2544 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 2545 if (error != 0) { 2546 m_freem(top); 2547 top = NULL; 2548 } else { 2549 soref(so); 2550 ktls_enqueue(top, so, tls_enq_cnt); 2551 } 2552 } 2553 #endif 2554 clen = 0; 2555 control = NULL; 2556 top = NULL; 2557 if (error) 2558 goto out; 2559 } while (resid && space > 0); 2560 } while (resid); 2561 2562 out: 2563 #ifdef KERN_TLS 2564 if (tls != NULL) 2565 ktls_free(tls); 2566 #endif 2567 if (top != NULL) 2568 m_freem(top); 2569 if (control != NULL) 2570 m_freem(control); 2571 return (error); 2572 } 2573 2574 int 2575 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 2576 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2577 { 2578 int error; 2579 2580 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 2581 if (error) 2582 return (error); 2583 error = sosend_generic_locked(so, addr, uio, top, control, flags, td); 2584 SOCK_IO_SEND_UNLOCK(so); 2585 return (error); 2586 } 2587 2588 /* 2589 * Send to a socket from a kernel thread. 2590 * 2591 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 2592 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 2593 * to be set at all. This function should just boil down to a static inline 2594 * calling the protocol method. 2595 */ 2596 int 2597 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 2598 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2599 { 2600 int error; 2601 2602 CURVNET_SET(so->so_vnet); 2603 error = so->so_proto->pr_sosend(so, addr, uio, 2604 top, control, flags, td); 2605 CURVNET_RESTORE(); 2606 return (error); 2607 } 2608 2609 /* 2610 * send(2), write(2) or aio_write(2) on a socket. 2611 */ 2612 int 2613 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 2614 struct mbuf *control, int flags, struct proc *userproc) 2615 { 2616 struct thread *td; 2617 ssize_t len; 2618 int error; 2619 2620 td = uio->uio_td; 2621 len = uio->uio_resid; 2622 CURVNET_SET(so->so_vnet); 2623 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 2624 td); 2625 CURVNET_RESTORE(); 2626 if (error != 0) { 2627 /* 2628 * Clear transient errors for stream protocols if they made 2629 * some progress. Make exclusion for aio(4) that would 2630 * schedule a new write in case of EWOULDBLOCK and clear 2631 * error itself. See soaio_process_job(). 2632 */ 2633 if (uio->uio_resid != len && 2634 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 2635 userproc == NULL && 2636 (error == ERESTART || error == EINTR || 2637 error == EWOULDBLOCK)) 2638 error = 0; 2639 /* Generation of SIGPIPE can be controlled per socket. */ 2640 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 2641 (flags & MSG_NOSIGNAL) == 0) { 2642 if (userproc != NULL) { 2643 /* aio(4) job */ 2644 PROC_LOCK(userproc); 2645 kern_psignal(userproc, SIGPIPE); 2646 PROC_UNLOCK(userproc); 2647 } else { 2648 PROC_LOCK(td->td_proc); 2649 tdsignal(td, SIGPIPE); 2650 PROC_UNLOCK(td->td_proc); 2651 } 2652 } 2653 } 2654 return (error); 2655 } 2656 2657 /* 2658 * The part of soreceive() that implements reading non-inline out-of-band 2659 * data from a socket. For more complete comments, see soreceive(), from 2660 * which this code originated. 2661 * 2662 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 2663 * unable to return an mbuf chain to the caller. 2664 */ 2665 static int 2666 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 2667 { 2668 struct protosw *pr = so->so_proto; 2669 struct mbuf *m; 2670 int error; 2671 2672 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 2673 VNET_SO_ASSERT(so); 2674 2675 m = m_get(M_WAITOK, MT_DATA); 2676 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 2677 if (error) 2678 goto bad; 2679 do { 2680 error = uiomove(mtod(m, void *), 2681 (int) min(uio->uio_resid, m->m_len), uio); 2682 m = m_free(m); 2683 } while (uio->uio_resid && error == 0 && m); 2684 bad: 2685 if (m != NULL) 2686 m_freem(m); 2687 return (error); 2688 } 2689 2690 /* 2691 * Following replacement or removal of the first mbuf on the first mbuf chain 2692 * of a socket buffer, push necessary state changes back into the socket 2693 * buffer so that other consumers see the values consistently. 'nextrecord' 2694 * is the callers locally stored value of the original value of 2695 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 2696 * NOTE: 'nextrecord' may be NULL. 2697 */ 2698 static __inline void 2699 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 2700 { 2701 2702 SOCKBUF_LOCK_ASSERT(sb); 2703 /* 2704 * First, update for the new value of nextrecord. If necessary, make 2705 * it the first record. 2706 */ 2707 if (sb->sb_mb != NULL) 2708 sb->sb_mb->m_nextpkt = nextrecord; 2709 else 2710 sb->sb_mb = nextrecord; 2711 2712 /* 2713 * Now update any dependent socket buffer fields to reflect the new 2714 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 2715 * addition of a second clause that takes care of the case where 2716 * sb_mb has been updated, but remains the last record. 2717 */ 2718 if (sb->sb_mb == NULL) { 2719 sb->sb_mbtail = NULL; 2720 sb->sb_lastrecord = NULL; 2721 } else if (sb->sb_mb->m_nextpkt == NULL) 2722 sb->sb_lastrecord = sb->sb_mb; 2723 } 2724 2725 /* 2726 * Implement receive operations on a socket. We depend on the way that 2727 * records are added to the sockbuf by sbappend. In particular, each record 2728 * (mbufs linked through m_next) must begin with an address if the protocol 2729 * so specifies, followed by an optional mbuf or mbufs containing ancillary 2730 * data, and then zero or more mbufs of data. In order to allow parallelism 2731 * between network receive and copying to user space, as well as avoid 2732 * sleeping with a mutex held, we release the socket buffer mutex during the 2733 * user space copy. Although the sockbuf is locked, new data may still be 2734 * appended, and thus we must maintain consistency of the sockbuf during that 2735 * time. 2736 * 2737 * The caller may receive the data as a single mbuf chain by supplying an 2738 * mbuf **mp0 for use in returning the chain. The uio is then used only for 2739 * the count in uio_resid. 2740 */ 2741 static int 2742 soreceive_generic_locked(struct socket *so, struct sockaddr **psa, 2743 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp) 2744 { 2745 struct mbuf *m; 2746 int flags, error, offset; 2747 ssize_t len; 2748 struct protosw *pr = so->so_proto; 2749 struct mbuf *nextrecord; 2750 int moff, type = 0; 2751 ssize_t orig_resid = uio->uio_resid; 2752 bool report_real_len = false; 2753 2754 SOCK_IO_RECV_ASSERT_LOCKED(so); 2755 2756 error = 0; 2757 if (flagsp != NULL) { 2758 report_real_len = *flagsp & MSG_TRUNC; 2759 *flagsp &= ~MSG_TRUNC; 2760 flags = *flagsp &~ MSG_EOR; 2761 } else 2762 flags = 0; 2763 2764 restart: 2765 SOCKBUF_LOCK(&so->so_rcv); 2766 m = so->so_rcv.sb_mb; 2767 /* 2768 * If we have less data than requested, block awaiting more (subject 2769 * to any timeout) if: 2770 * 1. the current count is less than the low water mark, or 2771 * 2. MSG_DONTWAIT is not set 2772 */ 2773 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2774 sbavail(&so->so_rcv) < uio->uio_resid) && 2775 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2776 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2777 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2778 ("receive: m == %p sbavail == %u", 2779 m, sbavail(&so->so_rcv))); 2780 if (so->so_error || so->so_rerror) { 2781 if (m != NULL) 2782 goto dontblock; 2783 if (so->so_error) 2784 error = so->so_error; 2785 else 2786 error = so->so_rerror; 2787 if ((flags & MSG_PEEK) == 0) { 2788 if (so->so_error) 2789 so->so_error = 0; 2790 else 2791 so->so_rerror = 0; 2792 } 2793 SOCKBUF_UNLOCK(&so->so_rcv); 2794 goto release; 2795 } 2796 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2797 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2798 if (m != NULL) 2799 goto dontblock; 2800 #ifdef KERN_TLS 2801 else if (so->so_rcv.sb_tlsdcc == 0 && 2802 so->so_rcv.sb_tlscc == 0) { 2803 #else 2804 else { 2805 #endif 2806 SOCKBUF_UNLOCK(&so->so_rcv); 2807 goto release; 2808 } 2809 } 2810 for (; m != NULL; m = m->m_next) 2811 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2812 m = so->so_rcv.sb_mb; 2813 goto dontblock; 2814 } 2815 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2816 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2817 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2818 SOCKBUF_UNLOCK(&so->so_rcv); 2819 error = ENOTCONN; 2820 goto release; 2821 } 2822 if (uio->uio_resid == 0 && !report_real_len) { 2823 SOCKBUF_UNLOCK(&so->so_rcv); 2824 goto release; 2825 } 2826 if ((so->so_state & SS_NBIO) || 2827 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2828 SOCKBUF_UNLOCK(&so->so_rcv); 2829 error = EWOULDBLOCK; 2830 goto release; 2831 } 2832 SBLASTRECORDCHK(&so->so_rcv); 2833 SBLASTMBUFCHK(&so->so_rcv); 2834 error = sbwait(so, SO_RCV); 2835 SOCKBUF_UNLOCK(&so->so_rcv); 2836 if (error) 2837 goto release; 2838 goto restart; 2839 } 2840 dontblock: 2841 /* 2842 * From this point onward, we maintain 'nextrecord' as a cache of the 2843 * pointer to the next record in the socket buffer. We must keep the 2844 * various socket buffer pointers and local stack versions of the 2845 * pointers in sync, pushing out modifications before dropping the 2846 * socket buffer mutex, and re-reading them when picking it up. 2847 * 2848 * Otherwise, we will race with the network stack appending new data 2849 * or records onto the socket buffer by using inconsistent/stale 2850 * versions of the field, possibly resulting in socket buffer 2851 * corruption. 2852 * 2853 * By holding the high-level sblock(), we prevent simultaneous 2854 * readers from pulling off the front of the socket buffer. 2855 */ 2856 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2857 if (uio->uio_td) 2858 uio->uio_td->td_ru.ru_msgrcv++; 2859 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2860 SBLASTRECORDCHK(&so->so_rcv); 2861 SBLASTMBUFCHK(&so->so_rcv); 2862 nextrecord = m->m_nextpkt; 2863 if (pr->pr_flags & PR_ADDR) { 2864 KASSERT(m->m_type == MT_SONAME, 2865 ("m->m_type == %d", m->m_type)); 2866 orig_resid = 0; 2867 if (psa != NULL) 2868 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2869 M_NOWAIT); 2870 if (flags & MSG_PEEK) { 2871 m = m->m_next; 2872 } else { 2873 sbfree(&so->so_rcv, m); 2874 so->so_rcv.sb_mb = m_free(m); 2875 m = so->so_rcv.sb_mb; 2876 sockbuf_pushsync(&so->so_rcv, nextrecord); 2877 } 2878 } 2879 2880 /* 2881 * Process one or more MT_CONTROL mbufs present before any data mbufs 2882 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2883 * just copy the data; if !MSG_PEEK, we call into the protocol to 2884 * perform externalization (or freeing if controlp == NULL). 2885 */ 2886 if (m != NULL && m->m_type == MT_CONTROL) { 2887 struct mbuf *cm = NULL, *cmn; 2888 struct mbuf **cme = &cm; 2889 #ifdef KERN_TLS 2890 struct cmsghdr *cmsg; 2891 struct tls_get_record tgr; 2892 2893 /* 2894 * For MSG_TLSAPPDATA, check for an alert record. 2895 * If found, return ENXIO without removing 2896 * it from the receive queue. This allows a subsequent 2897 * call without MSG_TLSAPPDATA to receive it. 2898 * Note that, for TLS, there should only be a single 2899 * control mbuf with the TLS_GET_RECORD message in it. 2900 */ 2901 if (flags & MSG_TLSAPPDATA) { 2902 cmsg = mtod(m, struct cmsghdr *); 2903 if (cmsg->cmsg_type == TLS_GET_RECORD && 2904 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2905 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2906 if (__predict_false(tgr.tls_type == 2907 TLS_RLTYPE_ALERT)) { 2908 SOCKBUF_UNLOCK(&so->so_rcv); 2909 error = ENXIO; 2910 goto release; 2911 } 2912 } 2913 } 2914 #endif 2915 2916 do { 2917 if (flags & MSG_PEEK) { 2918 if (controlp != NULL) { 2919 *controlp = m_copym(m, 0, m->m_len, 2920 M_NOWAIT); 2921 controlp = &(*controlp)->m_next; 2922 } 2923 m = m->m_next; 2924 } else { 2925 sbfree(&so->so_rcv, m); 2926 so->so_rcv.sb_mb = m->m_next; 2927 m->m_next = NULL; 2928 *cme = m; 2929 cme = &(*cme)->m_next; 2930 m = so->so_rcv.sb_mb; 2931 } 2932 } while (m != NULL && m->m_type == MT_CONTROL); 2933 if ((flags & MSG_PEEK) == 0) 2934 sockbuf_pushsync(&so->so_rcv, nextrecord); 2935 while (cm != NULL) { 2936 cmn = cm->m_next; 2937 cm->m_next = NULL; 2938 if (pr->pr_domain->dom_externalize != NULL) { 2939 SOCKBUF_UNLOCK(&so->so_rcv); 2940 VNET_SO_ASSERT(so); 2941 error = (*pr->pr_domain->dom_externalize) 2942 (cm, controlp, flags); 2943 SOCKBUF_LOCK(&so->so_rcv); 2944 } else if (controlp != NULL) 2945 *controlp = cm; 2946 else 2947 m_freem(cm); 2948 if (controlp != NULL) { 2949 while (*controlp != NULL) 2950 controlp = &(*controlp)->m_next; 2951 } 2952 cm = cmn; 2953 } 2954 if (m != NULL) 2955 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2956 else 2957 nextrecord = so->so_rcv.sb_mb; 2958 orig_resid = 0; 2959 } 2960 if (m != NULL) { 2961 if ((flags & MSG_PEEK) == 0) { 2962 KASSERT(m->m_nextpkt == nextrecord, 2963 ("soreceive: post-control, nextrecord !sync")); 2964 if (nextrecord == NULL) { 2965 KASSERT(so->so_rcv.sb_mb == m, 2966 ("soreceive: post-control, sb_mb!=m")); 2967 KASSERT(so->so_rcv.sb_lastrecord == m, 2968 ("soreceive: post-control, lastrecord!=m")); 2969 } 2970 } 2971 type = m->m_type; 2972 if (type == MT_OOBDATA) 2973 flags |= MSG_OOB; 2974 } else { 2975 if ((flags & MSG_PEEK) == 0) { 2976 KASSERT(so->so_rcv.sb_mb == nextrecord, 2977 ("soreceive: sb_mb != nextrecord")); 2978 if (so->so_rcv.sb_mb == NULL) { 2979 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2980 ("soreceive: sb_lastercord != NULL")); 2981 } 2982 } 2983 } 2984 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2985 SBLASTRECORDCHK(&so->so_rcv); 2986 SBLASTMBUFCHK(&so->so_rcv); 2987 2988 /* 2989 * Now continue to read any data mbufs off of the head of the socket 2990 * buffer until the read request is satisfied. Note that 'type' is 2991 * used to store the type of any mbuf reads that have happened so far 2992 * such that soreceive() can stop reading if the type changes, which 2993 * causes soreceive() to return only one of regular data and inline 2994 * out-of-band data in a single socket receive operation. 2995 */ 2996 moff = 0; 2997 offset = 0; 2998 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2999 && error == 0) { 3000 /* 3001 * If the type of mbuf has changed since the last mbuf 3002 * examined ('type'), end the receive operation. 3003 */ 3004 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3005 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 3006 if (type != m->m_type) 3007 break; 3008 } else if (type == MT_OOBDATA) 3009 break; 3010 else 3011 KASSERT(m->m_type == MT_DATA, 3012 ("m->m_type == %d", m->m_type)); 3013 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 3014 len = uio->uio_resid; 3015 if (so->so_oobmark && len > so->so_oobmark - offset) 3016 len = so->so_oobmark - offset; 3017 if (len > m->m_len - moff) 3018 len = m->m_len - moff; 3019 /* 3020 * If mp is set, just pass back the mbufs. Otherwise copy 3021 * them out via the uio, then free. Sockbuf must be 3022 * consistent here (points to current mbuf, it points to next 3023 * record) when we drop priority; we must note any additions 3024 * to the sockbuf when we block interrupts again. 3025 */ 3026 if (mp == NULL) { 3027 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3028 SBLASTRECORDCHK(&so->so_rcv); 3029 SBLASTMBUFCHK(&so->so_rcv); 3030 SOCKBUF_UNLOCK(&so->so_rcv); 3031 if ((m->m_flags & M_EXTPG) != 0) 3032 error = m_unmapped_uiomove(m, moff, uio, 3033 (int)len); 3034 else 3035 error = uiomove(mtod(m, char *) + moff, 3036 (int)len, uio); 3037 SOCKBUF_LOCK(&so->so_rcv); 3038 if (error) { 3039 /* 3040 * The MT_SONAME mbuf has already been removed 3041 * from the record, so it is necessary to 3042 * remove the data mbufs, if any, to preserve 3043 * the invariant in the case of PR_ADDR that 3044 * requires MT_SONAME mbufs at the head of 3045 * each record. 3046 */ 3047 if (pr->pr_flags & PR_ATOMIC && 3048 ((flags & MSG_PEEK) == 0)) 3049 (void)sbdroprecord_locked(&so->so_rcv); 3050 SOCKBUF_UNLOCK(&so->so_rcv); 3051 goto release; 3052 } 3053 } else 3054 uio->uio_resid -= len; 3055 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3056 if (len == m->m_len - moff) { 3057 if (m->m_flags & M_EOR) 3058 flags |= MSG_EOR; 3059 if (flags & MSG_PEEK) { 3060 m = m->m_next; 3061 moff = 0; 3062 } else { 3063 nextrecord = m->m_nextpkt; 3064 sbfree(&so->so_rcv, m); 3065 if (mp != NULL) { 3066 m->m_nextpkt = NULL; 3067 *mp = m; 3068 mp = &m->m_next; 3069 so->so_rcv.sb_mb = m = m->m_next; 3070 *mp = NULL; 3071 } else { 3072 so->so_rcv.sb_mb = m_free(m); 3073 m = so->so_rcv.sb_mb; 3074 } 3075 sockbuf_pushsync(&so->so_rcv, nextrecord); 3076 SBLASTRECORDCHK(&so->so_rcv); 3077 SBLASTMBUFCHK(&so->so_rcv); 3078 } 3079 } else { 3080 if (flags & MSG_PEEK) 3081 moff += len; 3082 else { 3083 if (mp != NULL) { 3084 if (flags & MSG_DONTWAIT) { 3085 *mp = m_copym(m, 0, len, 3086 M_NOWAIT); 3087 if (*mp == NULL) { 3088 /* 3089 * m_copym() couldn't 3090 * allocate an mbuf. 3091 * Adjust uio_resid back 3092 * (it was adjusted 3093 * down by len bytes, 3094 * which we didn't end 3095 * up "copying" over). 3096 */ 3097 uio->uio_resid += len; 3098 break; 3099 } 3100 } else { 3101 SOCKBUF_UNLOCK(&so->so_rcv); 3102 *mp = m_copym(m, 0, len, 3103 M_WAITOK); 3104 SOCKBUF_LOCK(&so->so_rcv); 3105 } 3106 } 3107 sbcut_locked(&so->so_rcv, len); 3108 } 3109 } 3110 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3111 if (so->so_oobmark) { 3112 if ((flags & MSG_PEEK) == 0) { 3113 so->so_oobmark -= len; 3114 if (so->so_oobmark == 0) { 3115 so->so_rcv.sb_state |= SBS_RCVATMARK; 3116 break; 3117 } 3118 } else { 3119 offset += len; 3120 if (offset == so->so_oobmark) 3121 break; 3122 } 3123 } 3124 if (flags & MSG_EOR) 3125 break; 3126 /* 3127 * If the MSG_WAITALL flag is set (for non-atomic socket), we 3128 * must not quit until "uio->uio_resid == 0" or an error 3129 * termination. If a signal/timeout occurs, return with a 3130 * short count but without error. Keep sockbuf locked 3131 * against other readers. 3132 */ 3133 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 3134 !sosendallatonce(so) && nextrecord == NULL) { 3135 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3136 if (so->so_error || so->so_rerror || 3137 so->so_rcv.sb_state & SBS_CANTRCVMORE) 3138 break; 3139 /* 3140 * Notify the protocol that some data has been 3141 * drained before blocking. 3142 */ 3143 if (pr->pr_flags & PR_WANTRCVD) { 3144 SOCKBUF_UNLOCK(&so->so_rcv); 3145 VNET_SO_ASSERT(so); 3146 pr->pr_rcvd(so, flags); 3147 SOCKBUF_LOCK(&so->so_rcv); 3148 if (__predict_false(so->so_rcv.sb_mb == NULL && 3149 (so->so_error || so->so_rerror || 3150 so->so_rcv.sb_state & SBS_CANTRCVMORE))) 3151 break; 3152 } 3153 SBLASTRECORDCHK(&so->so_rcv); 3154 SBLASTMBUFCHK(&so->so_rcv); 3155 /* 3156 * We could receive some data while was notifying 3157 * the protocol. Skip blocking in this case. 3158 */ 3159 if (so->so_rcv.sb_mb == NULL) { 3160 error = sbwait(so, SO_RCV); 3161 if (error) { 3162 SOCKBUF_UNLOCK(&so->so_rcv); 3163 goto release; 3164 } 3165 } 3166 m = so->so_rcv.sb_mb; 3167 if (m != NULL) 3168 nextrecord = m->m_nextpkt; 3169 } 3170 } 3171 3172 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3173 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 3174 if (report_real_len) 3175 uio->uio_resid -= m_length(m, NULL) - moff; 3176 flags |= MSG_TRUNC; 3177 if ((flags & MSG_PEEK) == 0) 3178 (void) sbdroprecord_locked(&so->so_rcv); 3179 } 3180 if ((flags & MSG_PEEK) == 0) { 3181 if (m == NULL) { 3182 /* 3183 * First part is an inline SB_EMPTY_FIXUP(). Second 3184 * part makes sure sb_lastrecord is up-to-date if 3185 * there is still data in the socket buffer. 3186 */ 3187 so->so_rcv.sb_mb = nextrecord; 3188 if (so->so_rcv.sb_mb == NULL) { 3189 so->so_rcv.sb_mbtail = NULL; 3190 so->so_rcv.sb_lastrecord = NULL; 3191 } else if (nextrecord->m_nextpkt == NULL) 3192 so->so_rcv.sb_lastrecord = nextrecord; 3193 } 3194 SBLASTRECORDCHK(&so->so_rcv); 3195 SBLASTMBUFCHK(&so->so_rcv); 3196 /* 3197 * If soreceive() is being done from the socket callback, 3198 * then don't need to generate ACK to peer to update window, 3199 * since ACK will be generated on return to TCP. 3200 */ 3201 if (!(flags & MSG_SOCALLBCK) && 3202 (pr->pr_flags & PR_WANTRCVD)) { 3203 SOCKBUF_UNLOCK(&so->so_rcv); 3204 VNET_SO_ASSERT(so); 3205 pr->pr_rcvd(so, flags); 3206 SOCKBUF_LOCK(&so->so_rcv); 3207 } 3208 } 3209 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3210 if (orig_resid == uio->uio_resid && orig_resid && 3211 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 3212 SOCKBUF_UNLOCK(&so->so_rcv); 3213 goto restart; 3214 } 3215 SOCKBUF_UNLOCK(&so->so_rcv); 3216 3217 if (flagsp != NULL) 3218 *flagsp |= flags; 3219 release: 3220 return (error); 3221 } 3222 3223 int 3224 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 3225 struct mbuf **mp, struct mbuf **controlp, int *flagsp) 3226 { 3227 int error, flags; 3228 3229 if (psa != NULL) 3230 *psa = NULL; 3231 if (controlp != NULL) 3232 *controlp = NULL; 3233 if (flagsp != NULL) { 3234 flags = *flagsp; 3235 if ((flags & MSG_OOB) != 0) 3236 return (soreceive_rcvoob(so, uio, flags)); 3237 } else { 3238 flags = 0; 3239 } 3240 if (mp != NULL) 3241 *mp = NULL; 3242 3243 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 3244 if (error) 3245 return (error); 3246 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp); 3247 SOCK_IO_RECV_UNLOCK(so); 3248 return (error); 3249 } 3250 3251 /* 3252 * Optimized version of soreceive() for stream (TCP) sockets. 3253 */ 3254 static int 3255 soreceive_stream_locked(struct socket *so, struct sockbuf *sb, 3256 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, 3257 struct mbuf **controlp, int flags) 3258 { 3259 int len = 0, error = 0, oresid; 3260 struct mbuf *m, *n = NULL; 3261 3262 SOCK_IO_RECV_ASSERT_LOCKED(so); 3263 3264 /* Easy one, no space to copyout anything. */ 3265 if (uio->uio_resid == 0) 3266 return (EINVAL); 3267 oresid = uio->uio_resid; 3268 3269 SOCKBUF_LOCK(sb); 3270 /* We will never ever get anything unless we are or were connected. */ 3271 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 3272 error = ENOTCONN; 3273 goto out; 3274 } 3275 3276 restart: 3277 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3278 3279 /* Abort if socket has reported problems. */ 3280 if (so->so_error) { 3281 if (sbavail(sb) > 0) 3282 goto deliver; 3283 if (oresid > uio->uio_resid) 3284 goto out; 3285 error = so->so_error; 3286 if (!(flags & MSG_PEEK)) 3287 so->so_error = 0; 3288 goto out; 3289 } 3290 3291 /* Door is closed. Deliver what is left, if any. */ 3292 if (sb->sb_state & SBS_CANTRCVMORE) { 3293 if (sbavail(sb) > 0) 3294 goto deliver; 3295 else 3296 goto out; 3297 } 3298 3299 /* Socket buffer is empty and we shall not block. */ 3300 if (sbavail(sb) == 0 && 3301 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 3302 error = EAGAIN; 3303 goto out; 3304 } 3305 3306 /* Socket buffer got some data that we shall deliver now. */ 3307 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 3308 ((so->so_state & SS_NBIO) || 3309 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 3310 sbavail(sb) >= sb->sb_lowat || 3311 sbavail(sb) >= uio->uio_resid || 3312 sbavail(sb) >= sb->sb_hiwat) ) { 3313 goto deliver; 3314 } 3315 3316 /* On MSG_WAITALL we must wait until all data or error arrives. */ 3317 if ((flags & MSG_WAITALL) && 3318 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 3319 goto deliver; 3320 3321 /* 3322 * Wait and block until (more) data comes in. 3323 * NB: Drops the sockbuf lock during wait. 3324 */ 3325 error = sbwait(so, SO_RCV); 3326 if (error) 3327 goto out; 3328 goto restart; 3329 3330 deliver: 3331 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3332 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 3333 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 3334 3335 /* Statistics. */ 3336 if (uio->uio_td) 3337 uio->uio_td->td_ru.ru_msgrcv++; 3338 3339 /* Fill uio until full or current end of socket buffer is reached. */ 3340 len = min(uio->uio_resid, sbavail(sb)); 3341 if (mp0 != NULL) { 3342 /* Dequeue as many mbufs as possible. */ 3343 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 3344 if (*mp0 == NULL) 3345 *mp0 = sb->sb_mb; 3346 else 3347 m_cat(*mp0, sb->sb_mb); 3348 for (m = sb->sb_mb; 3349 m != NULL && m->m_len <= len; 3350 m = m->m_next) { 3351 KASSERT(!(m->m_flags & M_NOTAVAIL), 3352 ("%s: m %p not available", __func__, m)); 3353 len -= m->m_len; 3354 uio->uio_resid -= m->m_len; 3355 sbfree(sb, m); 3356 n = m; 3357 } 3358 n->m_next = NULL; 3359 sb->sb_mb = m; 3360 sb->sb_lastrecord = sb->sb_mb; 3361 if (sb->sb_mb == NULL) 3362 SB_EMPTY_FIXUP(sb); 3363 } 3364 /* Copy the remainder. */ 3365 if (len > 0) { 3366 KASSERT(sb->sb_mb != NULL, 3367 ("%s: len > 0 && sb->sb_mb empty", __func__)); 3368 3369 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 3370 if (m == NULL) 3371 len = 0; /* Don't flush data from sockbuf. */ 3372 else 3373 uio->uio_resid -= len; 3374 if (*mp0 != NULL) 3375 m_cat(*mp0, m); 3376 else 3377 *mp0 = m; 3378 if (*mp0 == NULL) { 3379 error = ENOBUFS; 3380 goto out; 3381 } 3382 } 3383 } else { 3384 /* NB: Must unlock socket buffer as uiomove may sleep. */ 3385 SOCKBUF_UNLOCK(sb); 3386 error = m_mbuftouio(uio, sb->sb_mb, len); 3387 SOCKBUF_LOCK(sb); 3388 if (error) 3389 goto out; 3390 } 3391 SBLASTRECORDCHK(sb); 3392 SBLASTMBUFCHK(sb); 3393 3394 /* 3395 * Remove the delivered data from the socket buffer unless we 3396 * were only peeking. 3397 */ 3398 if (!(flags & MSG_PEEK)) { 3399 if (len > 0) 3400 sbdrop_locked(sb, len); 3401 3402 /* Notify protocol that we drained some data. */ 3403 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 3404 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 3405 !(flags & MSG_SOCALLBCK))) { 3406 SOCKBUF_UNLOCK(sb); 3407 VNET_SO_ASSERT(so); 3408 so->so_proto->pr_rcvd(so, flags); 3409 SOCKBUF_LOCK(sb); 3410 } 3411 } 3412 3413 /* 3414 * For MSG_WAITALL we may have to loop again and wait for 3415 * more data to come in. 3416 */ 3417 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 3418 goto restart; 3419 out: 3420 SBLASTRECORDCHK(sb); 3421 SBLASTMBUFCHK(sb); 3422 SOCKBUF_UNLOCK(sb); 3423 return (error); 3424 } 3425 3426 int 3427 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 3428 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3429 { 3430 struct sockbuf *sb; 3431 int error, flags; 3432 3433 sb = &so->so_rcv; 3434 3435 /* We only do stream sockets. */ 3436 if (so->so_type != SOCK_STREAM) 3437 return (EINVAL); 3438 if (psa != NULL) 3439 *psa = NULL; 3440 if (flagsp != NULL) 3441 flags = *flagsp & ~MSG_EOR; 3442 else 3443 flags = 0; 3444 if (controlp != NULL) 3445 *controlp = NULL; 3446 if (flags & MSG_OOB) 3447 return (soreceive_rcvoob(so, uio, flags)); 3448 if (mp0 != NULL) 3449 *mp0 = NULL; 3450 3451 #ifdef KERN_TLS 3452 /* 3453 * KTLS store TLS records as records with a control message to 3454 * describe the framing. 3455 * 3456 * We check once here before acquiring locks to optimize the 3457 * common case. 3458 */ 3459 if (sb->sb_tls_info != NULL) 3460 return (soreceive_generic(so, psa, uio, mp0, controlp, 3461 flagsp)); 3462 #endif 3463 3464 /* 3465 * Prevent other threads from reading from the socket. This lock may be 3466 * dropped in order to sleep waiting for data to arrive. 3467 */ 3468 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 3469 if (error) 3470 return (error); 3471 #ifdef KERN_TLS 3472 if (__predict_false(sb->sb_tls_info != NULL)) { 3473 SOCK_IO_RECV_UNLOCK(so); 3474 return (soreceive_generic(so, psa, uio, mp0, controlp, 3475 flagsp)); 3476 } 3477 #endif 3478 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags); 3479 SOCK_IO_RECV_UNLOCK(so); 3480 return (error); 3481 } 3482 3483 /* 3484 * Optimized version of soreceive() for simple datagram cases from userspace. 3485 * Unlike in the stream case, we're able to drop a datagram if copyout() 3486 * fails, and because we handle datagrams atomically, we don't need to use a 3487 * sleep lock to prevent I/O interlacing. 3488 */ 3489 int 3490 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 3491 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3492 { 3493 struct mbuf *m, *m2; 3494 int flags, error; 3495 ssize_t len; 3496 struct protosw *pr = so->so_proto; 3497 struct mbuf *nextrecord; 3498 3499 if (psa != NULL) 3500 *psa = NULL; 3501 if (controlp != NULL) 3502 *controlp = NULL; 3503 if (flagsp != NULL) 3504 flags = *flagsp &~ MSG_EOR; 3505 else 3506 flags = 0; 3507 3508 /* 3509 * For any complicated cases, fall back to the full 3510 * soreceive_generic(). 3511 */ 3512 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 3513 return (soreceive_generic(so, psa, uio, mp0, controlp, 3514 flagsp)); 3515 3516 /* 3517 * Enforce restrictions on use. 3518 */ 3519 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 3520 ("soreceive_dgram: wantrcvd")); 3521 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 3522 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 3523 ("soreceive_dgram: SBS_RCVATMARK")); 3524 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 3525 ("soreceive_dgram: P_CONNREQUIRED")); 3526 3527 /* 3528 * Loop blocking while waiting for a datagram. 3529 */ 3530 SOCKBUF_LOCK(&so->so_rcv); 3531 while ((m = so->so_rcv.sb_mb) == NULL) { 3532 KASSERT(sbavail(&so->so_rcv) == 0, 3533 ("soreceive_dgram: sb_mb NULL but sbavail %u", 3534 sbavail(&so->so_rcv))); 3535 if (so->so_error) { 3536 error = so->so_error; 3537 so->so_error = 0; 3538 SOCKBUF_UNLOCK(&so->so_rcv); 3539 return (error); 3540 } 3541 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 3542 uio->uio_resid == 0) { 3543 SOCKBUF_UNLOCK(&so->so_rcv); 3544 return (0); 3545 } 3546 if ((so->so_state & SS_NBIO) || 3547 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 3548 SOCKBUF_UNLOCK(&so->so_rcv); 3549 return (EWOULDBLOCK); 3550 } 3551 SBLASTRECORDCHK(&so->so_rcv); 3552 SBLASTMBUFCHK(&so->so_rcv); 3553 error = sbwait(so, SO_RCV); 3554 if (error) { 3555 SOCKBUF_UNLOCK(&so->so_rcv); 3556 return (error); 3557 } 3558 } 3559 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3560 3561 if (uio->uio_td) 3562 uio->uio_td->td_ru.ru_msgrcv++; 3563 SBLASTRECORDCHK(&so->so_rcv); 3564 SBLASTMBUFCHK(&so->so_rcv); 3565 nextrecord = m->m_nextpkt; 3566 if (nextrecord == NULL) { 3567 KASSERT(so->so_rcv.sb_lastrecord == m, 3568 ("soreceive_dgram: lastrecord != m")); 3569 } 3570 3571 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 3572 ("soreceive_dgram: m_nextpkt != nextrecord")); 3573 3574 /* 3575 * Pull 'm' and its chain off the front of the packet queue. 3576 */ 3577 so->so_rcv.sb_mb = NULL; 3578 sockbuf_pushsync(&so->so_rcv, nextrecord); 3579 3580 /* 3581 * Walk 'm's chain and free that many bytes from the socket buffer. 3582 */ 3583 for (m2 = m; m2 != NULL; m2 = m2->m_next) 3584 sbfree(&so->so_rcv, m2); 3585 3586 /* 3587 * Do a few last checks before we let go of the lock. 3588 */ 3589 SBLASTRECORDCHK(&so->so_rcv); 3590 SBLASTMBUFCHK(&so->so_rcv); 3591 SOCKBUF_UNLOCK(&so->so_rcv); 3592 3593 if (pr->pr_flags & PR_ADDR) { 3594 KASSERT(m->m_type == MT_SONAME, 3595 ("m->m_type == %d", m->m_type)); 3596 if (psa != NULL) 3597 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 3598 M_WAITOK); 3599 m = m_free(m); 3600 } 3601 KASSERT(m, ("%s: no data or control after soname", __func__)); 3602 3603 /* 3604 * Packet to copyout() is now in 'm' and it is disconnected from the 3605 * queue. 3606 * 3607 * Process one or more MT_CONTROL mbufs present before any data mbufs 3608 * in the first mbuf chain on the socket buffer. We call into the 3609 * protocol to perform externalization (or freeing if controlp == 3610 * NULL). In some cases there can be only MT_CONTROL mbufs without 3611 * MT_DATA mbufs. 3612 */ 3613 if (m->m_type == MT_CONTROL) { 3614 struct mbuf *cm = NULL, *cmn; 3615 struct mbuf **cme = &cm; 3616 3617 do { 3618 m2 = m->m_next; 3619 m->m_next = NULL; 3620 *cme = m; 3621 cme = &(*cme)->m_next; 3622 m = m2; 3623 } while (m != NULL && m->m_type == MT_CONTROL); 3624 while (cm != NULL) { 3625 cmn = cm->m_next; 3626 cm->m_next = NULL; 3627 if (pr->pr_domain->dom_externalize != NULL) { 3628 error = (*pr->pr_domain->dom_externalize) 3629 (cm, controlp, flags); 3630 } else if (controlp != NULL) 3631 *controlp = cm; 3632 else 3633 m_freem(cm); 3634 if (controlp != NULL) { 3635 while (*controlp != NULL) 3636 controlp = &(*controlp)->m_next; 3637 } 3638 cm = cmn; 3639 } 3640 } 3641 KASSERT(m == NULL || m->m_type == MT_DATA, 3642 ("soreceive_dgram: !data")); 3643 while (m != NULL && uio->uio_resid > 0) { 3644 len = uio->uio_resid; 3645 if (len > m->m_len) 3646 len = m->m_len; 3647 error = uiomove(mtod(m, char *), (int)len, uio); 3648 if (error) { 3649 m_freem(m); 3650 return (error); 3651 } 3652 if (len == m->m_len) 3653 m = m_free(m); 3654 else { 3655 m->m_data += len; 3656 m->m_len -= len; 3657 } 3658 } 3659 if (m != NULL) { 3660 flags |= MSG_TRUNC; 3661 m_freem(m); 3662 } 3663 if (flagsp != NULL) 3664 *flagsp |= flags; 3665 return (0); 3666 } 3667 3668 int 3669 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 3670 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3671 { 3672 int error; 3673 3674 CURVNET_SET(so->so_vnet); 3675 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 3676 CURVNET_RESTORE(); 3677 return (error); 3678 } 3679 3680 int 3681 soshutdown(struct socket *so, enum shutdown_how how) 3682 { 3683 int error; 3684 3685 CURVNET_SET(so->so_vnet); 3686 error = so->so_proto->pr_shutdown(so, how); 3687 CURVNET_RESTORE(); 3688 3689 return (error); 3690 } 3691 3692 /* 3693 * Used by several pr_shutdown implementations that use generic socket buffers. 3694 */ 3695 void 3696 sorflush(struct socket *so) 3697 { 3698 int error; 3699 3700 VNET_SO_ASSERT(so); 3701 3702 /* 3703 * Dislodge threads currently blocked in receive and wait to acquire 3704 * a lock against other simultaneous readers before clearing the 3705 * socket buffer. Don't let our acquire be interrupted by a signal 3706 * despite any existing socket disposition on interruptable waiting. 3707 * 3708 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive 3709 * methods that read the top of the socket buffer without acquisition 3710 * of the socket buffer mutex, assuming that top of the buffer 3711 * exclusively belongs to the read(2) syscall. This is handy when 3712 * performing MSG_PEEK. 3713 */ 3714 socantrcvmore(so); 3715 3716 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 3717 if (error != 0) { 3718 KASSERT(SOLISTENING(so), 3719 ("%s: soiolock(%p) failed", __func__, so)); 3720 return; 3721 } 3722 3723 sbrelease(so, SO_RCV); 3724 SOCK_IO_RECV_UNLOCK(so); 3725 3726 } 3727 3728 int 3729 sosetfib(struct socket *so, int fibnum) 3730 { 3731 if (fibnum < 0 || fibnum >= rt_numfibs) 3732 return (EINVAL); 3733 3734 SOCK_LOCK(so); 3735 so->so_fibnum = fibnum; 3736 SOCK_UNLOCK(so); 3737 3738 return (0); 3739 } 3740 3741 #ifdef SOCKET_HHOOK 3742 /* 3743 * Wrapper for Socket established helper hook. 3744 * Parameters: socket, context of the hook point, hook id. 3745 */ 3746 static inline int 3747 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3748 { 3749 struct socket_hhook_data hhook_data = { 3750 .so = so, 3751 .hctx = hctx, 3752 .m = NULL, 3753 .status = 0 3754 }; 3755 3756 CURVNET_SET(so->so_vnet); 3757 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3758 CURVNET_RESTORE(); 3759 3760 /* Ugly but needed, since hhooks return void for now */ 3761 return (hhook_data.status); 3762 } 3763 #endif 3764 3765 /* 3766 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3767 * additional variant to handle the case where the option value needs to be 3768 * some kind of integer, but not a specific size. In addition to their use 3769 * here, these functions are also called by the protocol-level pr_ctloutput() 3770 * routines. 3771 */ 3772 int 3773 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3774 { 3775 size_t valsize; 3776 3777 /* 3778 * If the user gives us more than we wanted, we ignore it, but if we 3779 * don't get the minimum length the caller wants, we return EINVAL. 3780 * On success, sopt->sopt_valsize is set to however much we actually 3781 * retrieved. 3782 */ 3783 if ((valsize = sopt->sopt_valsize) < minlen) 3784 return EINVAL; 3785 if (valsize > len) 3786 sopt->sopt_valsize = valsize = len; 3787 3788 if (sopt->sopt_td != NULL) 3789 return (copyin(sopt->sopt_val, buf, valsize)); 3790 3791 bcopy(sopt->sopt_val, buf, valsize); 3792 return (0); 3793 } 3794 3795 /* 3796 * Kernel version of setsockopt(2). 3797 * 3798 * XXX: optlen is size_t, not socklen_t 3799 */ 3800 int 3801 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3802 size_t optlen) 3803 { 3804 struct sockopt sopt; 3805 3806 sopt.sopt_level = level; 3807 sopt.sopt_name = optname; 3808 sopt.sopt_dir = SOPT_SET; 3809 sopt.sopt_val = optval; 3810 sopt.sopt_valsize = optlen; 3811 sopt.sopt_td = NULL; 3812 return (sosetopt(so, &sopt)); 3813 } 3814 3815 int 3816 sosetopt(struct socket *so, struct sockopt *sopt) 3817 { 3818 int error, optval; 3819 struct linger l; 3820 struct timeval tv; 3821 sbintime_t val, *valp; 3822 uint32_t val32; 3823 #ifdef MAC 3824 struct mac extmac; 3825 #endif 3826 3827 CURVNET_SET(so->so_vnet); 3828 error = 0; 3829 if (sopt->sopt_level != SOL_SOCKET) { 3830 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3831 } else { 3832 switch (sopt->sopt_name) { 3833 case SO_ACCEPTFILTER: 3834 error = accept_filt_setopt(so, sopt); 3835 if (error) 3836 goto bad; 3837 break; 3838 3839 case SO_LINGER: 3840 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3841 if (error) 3842 goto bad; 3843 if (l.l_linger < 0 || 3844 l.l_linger > USHRT_MAX || 3845 l.l_linger > (INT_MAX / hz)) { 3846 error = EDOM; 3847 goto bad; 3848 } 3849 SOCK_LOCK(so); 3850 so->so_linger = l.l_linger; 3851 if (l.l_onoff) 3852 so->so_options |= SO_LINGER; 3853 else 3854 so->so_options &= ~SO_LINGER; 3855 SOCK_UNLOCK(so); 3856 break; 3857 3858 case SO_DEBUG: 3859 case SO_KEEPALIVE: 3860 case SO_DONTROUTE: 3861 case SO_USELOOPBACK: 3862 case SO_BROADCAST: 3863 case SO_REUSEADDR: 3864 case SO_REUSEPORT: 3865 case SO_REUSEPORT_LB: 3866 case SO_OOBINLINE: 3867 case SO_TIMESTAMP: 3868 case SO_BINTIME: 3869 case SO_NOSIGPIPE: 3870 case SO_NO_DDP: 3871 case SO_NO_OFFLOAD: 3872 case SO_RERROR: 3873 error = sooptcopyin(sopt, &optval, sizeof optval, 3874 sizeof optval); 3875 if (error) 3876 goto bad; 3877 SOCK_LOCK(so); 3878 if (optval) 3879 so->so_options |= sopt->sopt_name; 3880 else 3881 so->so_options &= ~sopt->sopt_name; 3882 SOCK_UNLOCK(so); 3883 break; 3884 3885 case SO_SETFIB: 3886 error = so->so_proto->pr_ctloutput(so, sopt); 3887 break; 3888 3889 case SO_USER_COOKIE: 3890 error = sooptcopyin(sopt, &val32, sizeof val32, 3891 sizeof val32); 3892 if (error) 3893 goto bad; 3894 so->so_user_cookie = val32; 3895 break; 3896 3897 case SO_SNDBUF: 3898 case SO_RCVBUF: 3899 case SO_SNDLOWAT: 3900 case SO_RCVLOWAT: 3901 error = so->so_proto->pr_setsbopt(so, sopt); 3902 if (error) 3903 goto bad; 3904 break; 3905 3906 case SO_SNDTIMEO: 3907 case SO_RCVTIMEO: 3908 #ifdef COMPAT_FREEBSD32 3909 if (SV_CURPROC_FLAG(SV_ILP32)) { 3910 struct timeval32 tv32; 3911 3912 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3913 sizeof tv32); 3914 CP(tv32, tv, tv_sec); 3915 CP(tv32, tv, tv_usec); 3916 } else 3917 #endif 3918 error = sooptcopyin(sopt, &tv, sizeof tv, 3919 sizeof tv); 3920 if (error) 3921 goto bad; 3922 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3923 tv.tv_usec >= 1000000) { 3924 error = EDOM; 3925 goto bad; 3926 } 3927 if (tv.tv_sec > INT32_MAX) 3928 val = SBT_MAX; 3929 else 3930 val = tvtosbt(tv); 3931 SOCK_LOCK(so); 3932 valp = sopt->sopt_name == SO_SNDTIMEO ? 3933 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3934 &so->so_snd.sb_timeo) : 3935 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3936 &so->so_rcv.sb_timeo); 3937 *valp = val; 3938 SOCK_UNLOCK(so); 3939 break; 3940 3941 case SO_LABEL: 3942 #ifdef MAC 3943 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3944 sizeof extmac); 3945 if (error) 3946 goto bad; 3947 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3948 so, &extmac); 3949 #else 3950 error = EOPNOTSUPP; 3951 #endif 3952 break; 3953 3954 case SO_TS_CLOCK: 3955 error = sooptcopyin(sopt, &optval, sizeof optval, 3956 sizeof optval); 3957 if (error) 3958 goto bad; 3959 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3960 error = EINVAL; 3961 goto bad; 3962 } 3963 so->so_ts_clock = optval; 3964 break; 3965 3966 case SO_MAX_PACING_RATE: 3967 error = sooptcopyin(sopt, &val32, sizeof(val32), 3968 sizeof(val32)); 3969 if (error) 3970 goto bad; 3971 so->so_max_pacing_rate = val32; 3972 break; 3973 3974 case SO_SPLICE: { 3975 struct splice splice; 3976 3977 #ifdef COMPAT_FREEBSD32 3978 if (SV_CURPROC_FLAG(SV_ILP32)) { 3979 struct splice32 splice32; 3980 3981 error = sooptcopyin(sopt, &splice32, 3982 sizeof(splice32), sizeof(splice32)); 3983 if (error == 0) { 3984 splice.sp_fd = splice32.sp_fd; 3985 splice.sp_max = splice32.sp_max; 3986 CP(splice32.sp_idle, splice.sp_idle, 3987 tv_sec); 3988 CP(splice32.sp_idle, splice.sp_idle, 3989 tv_usec); 3990 } 3991 } else 3992 #endif 3993 { 3994 error = sooptcopyin(sopt, &splice, 3995 sizeof(splice), sizeof(splice)); 3996 } 3997 if (error) 3998 goto bad; 3999 #ifdef KTRACE 4000 if (KTRPOINT(curthread, KTR_STRUCT)) 4001 ktrsplice(&splice); 4002 #endif 4003 4004 error = splice_init(); 4005 if (error != 0) 4006 goto bad; 4007 4008 if (splice.sp_fd >= 0) { 4009 struct file *fp; 4010 struct socket *so2; 4011 4012 if (!cap_rights_contains(sopt->sopt_rights, 4013 &cap_recv_rights)) { 4014 error = ENOTCAPABLE; 4015 goto bad; 4016 } 4017 error = getsock(sopt->sopt_td, splice.sp_fd, 4018 &cap_send_rights, &fp); 4019 if (error != 0) 4020 goto bad; 4021 so2 = fp->f_data; 4022 4023 error = so_splice(so, so2, &splice); 4024 fdrop(fp, sopt->sopt_td); 4025 } else { 4026 error = so_unsplice(so, false); 4027 } 4028 break; 4029 } 4030 default: 4031 #ifdef SOCKET_HHOOK 4032 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 4033 error = hhook_run_socket(so, sopt, 4034 HHOOK_SOCKET_OPT); 4035 else 4036 #endif 4037 error = ENOPROTOOPT; 4038 break; 4039 } 4040 if (error == 0) 4041 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 4042 } 4043 bad: 4044 CURVNET_RESTORE(); 4045 return (error); 4046 } 4047 4048 /* 4049 * Helper routine for getsockopt. 4050 */ 4051 int 4052 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 4053 { 4054 int error; 4055 size_t valsize; 4056 4057 error = 0; 4058 4059 /* 4060 * Documented get behavior is that we always return a value, possibly 4061 * truncated to fit in the user's buffer. Traditional behavior is 4062 * that we always tell the user precisely how much we copied, rather 4063 * than something useful like the total amount we had available for 4064 * her. Note that this interface is not idempotent; the entire 4065 * answer must be generated ahead of time. 4066 */ 4067 valsize = min(len, sopt->sopt_valsize); 4068 sopt->sopt_valsize = valsize; 4069 if (sopt->sopt_val != NULL) { 4070 if (sopt->sopt_td != NULL) 4071 error = copyout(buf, sopt->sopt_val, valsize); 4072 else 4073 bcopy(buf, sopt->sopt_val, valsize); 4074 } 4075 return (error); 4076 } 4077 4078 int 4079 sogetopt(struct socket *so, struct sockopt *sopt) 4080 { 4081 int error, optval; 4082 struct linger l; 4083 struct timeval tv; 4084 #ifdef MAC 4085 struct mac extmac; 4086 #endif 4087 4088 CURVNET_SET(so->so_vnet); 4089 error = 0; 4090 if (sopt->sopt_level != SOL_SOCKET) { 4091 error = (*so->so_proto->pr_ctloutput)(so, sopt); 4092 CURVNET_RESTORE(); 4093 return (error); 4094 } else { 4095 switch (sopt->sopt_name) { 4096 case SO_ACCEPTFILTER: 4097 error = accept_filt_getopt(so, sopt); 4098 break; 4099 4100 case SO_LINGER: 4101 SOCK_LOCK(so); 4102 l.l_onoff = so->so_options & SO_LINGER; 4103 l.l_linger = so->so_linger; 4104 SOCK_UNLOCK(so); 4105 error = sooptcopyout(sopt, &l, sizeof l); 4106 break; 4107 4108 case SO_USELOOPBACK: 4109 case SO_DONTROUTE: 4110 case SO_DEBUG: 4111 case SO_KEEPALIVE: 4112 case SO_REUSEADDR: 4113 case SO_REUSEPORT: 4114 case SO_REUSEPORT_LB: 4115 case SO_BROADCAST: 4116 case SO_OOBINLINE: 4117 case SO_ACCEPTCONN: 4118 case SO_TIMESTAMP: 4119 case SO_BINTIME: 4120 case SO_NOSIGPIPE: 4121 case SO_NO_DDP: 4122 case SO_NO_OFFLOAD: 4123 case SO_RERROR: 4124 optval = so->so_options & sopt->sopt_name; 4125 integer: 4126 error = sooptcopyout(sopt, &optval, sizeof optval); 4127 break; 4128 4129 case SO_FIB: 4130 SOCK_LOCK(so); 4131 optval = so->so_fibnum; 4132 SOCK_UNLOCK(so); 4133 goto integer; 4134 4135 case SO_DOMAIN: 4136 optval = so->so_proto->pr_domain->dom_family; 4137 goto integer; 4138 4139 case SO_TYPE: 4140 optval = so->so_type; 4141 goto integer; 4142 4143 case SO_PROTOCOL: 4144 optval = so->so_proto->pr_protocol; 4145 goto integer; 4146 4147 case SO_ERROR: 4148 SOCK_LOCK(so); 4149 if (so->so_error) { 4150 optval = so->so_error; 4151 so->so_error = 0; 4152 } else { 4153 optval = so->so_rerror; 4154 so->so_rerror = 0; 4155 } 4156 SOCK_UNLOCK(so); 4157 goto integer; 4158 4159 case SO_SNDBUF: 4160 SOCK_LOCK(so); 4161 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 4162 so->so_snd.sb_hiwat; 4163 SOCK_UNLOCK(so); 4164 goto integer; 4165 4166 case SO_RCVBUF: 4167 SOCK_LOCK(so); 4168 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 4169 so->so_rcv.sb_hiwat; 4170 SOCK_UNLOCK(so); 4171 goto integer; 4172 4173 case SO_SNDLOWAT: 4174 SOCK_LOCK(so); 4175 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 4176 so->so_snd.sb_lowat; 4177 SOCK_UNLOCK(so); 4178 goto integer; 4179 4180 case SO_RCVLOWAT: 4181 SOCK_LOCK(so); 4182 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 4183 so->so_rcv.sb_lowat; 4184 SOCK_UNLOCK(so); 4185 goto integer; 4186 4187 case SO_SNDTIMEO: 4188 case SO_RCVTIMEO: 4189 SOCK_LOCK(so); 4190 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 4191 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 4192 so->so_snd.sb_timeo) : 4193 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 4194 so->so_rcv.sb_timeo)); 4195 SOCK_UNLOCK(so); 4196 #ifdef COMPAT_FREEBSD32 4197 if (SV_CURPROC_FLAG(SV_ILP32)) { 4198 struct timeval32 tv32; 4199 4200 CP(tv, tv32, tv_sec); 4201 CP(tv, tv32, tv_usec); 4202 error = sooptcopyout(sopt, &tv32, sizeof tv32); 4203 } else 4204 #endif 4205 error = sooptcopyout(sopt, &tv, sizeof tv); 4206 break; 4207 4208 case SO_LABEL: 4209 #ifdef MAC 4210 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 4211 sizeof(extmac)); 4212 if (error) 4213 goto bad; 4214 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 4215 so, &extmac); 4216 if (error) 4217 goto bad; 4218 /* Don't copy out extmac, it is unchanged. */ 4219 #else 4220 error = EOPNOTSUPP; 4221 #endif 4222 break; 4223 4224 case SO_PEERLABEL: 4225 #ifdef MAC 4226 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 4227 sizeof(extmac)); 4228 if (error) 4229 goto bad; 4230 error = mac_getsockopt_peerlabel( 4231 sopt->sopt_td->td_ucred, so, &extmac); 4232 if (error) 4233 goto bad; 4234 /* Don't copy out extmac, it is unchanged. */ 4235 #else 4236 error = EOPNOTSUPP; 4237 #endif 4238 break; 4239 4240 case SO_LISTENQLIMIT: 4241 SOCK_LOCK(so); 4242 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 4243 SOCK_UNLOCK(so); 4244 goto integer; 4245 4246 case SO_LISTENQLEN: 4247 SOCK_LOCK(so); 4248 optval = SOLISTENING(so) ? so->sol_qlen : 0; 4249 SOCK_UNLOCK(so); 4250 goto integer; 4251 4252 case SO_LISTENINCQLEN: 4253 SOCK_LOCK(so); 4254 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 4255 SOCK_UNLOCK(so); 4256 goto integer; 4257 4258 case SO_TS_CLOCK: 4259 optval = so->so_ts_clock; 4260 goto integer; 4261 4262 case SO_MAX_PACING_RATE: 4263 optval = so->so_max_pacing_rate; 4264 goto integer; 4265 4266 case SO_SPLICE: { 4267 off_t n; 4268 4269 /* 4270 * Acquire the I/O lock to serialize with 4271 * so_splice_xfer(). This is not required for 4272 * correctness, but makes testing simpler: once a byte 4273 * has been transmitted to the sink and observed (e.g., 4274 * by reading from the socket to which the sink is 4275 * connected), a subsequent getsockopt(SO_SPLICE) will 4276 * return an up-to-date value. 4277 */ 4278 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT); 4279 if (error != 0) 4280 goto bad; 4281 SOCK_LOCK(so); 4282 if (SOLISTENING(so)) { 4283 n = 0; 4284 } else { 4285 n = so->so_splice_sent; 4286 } 4287 SOCK_UNLOCK(so); 4288 SOCK_IO_RECV_UNLOCK(so); 4289 error = sooptcopyout(sopt, &n, sizeof(n)); 4290 break; 4291 } 4292 4293 default: 4294 #ifdef SOCKET_HHOOK 4295 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 4296 error = hhook_run_socket(so, sopt, 4297 HHOOK_SOCKET_OPT); 4298 else 4299 #endif 4300 error = ENOPROTOOPT; 4301 break; 4302 } 4303 } 4304 bad: 4305 CURVNET_RESTORE(); 4306 return (error); 4307 } 4308 4309 int 4310 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 4311 { 4312 struct mbuf *m, *m_prev; 4313 int sopt_size = sopt->sopt_valsize; 4314 4315 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 4316 if (m == NULL) 4317 return ENOBUFS; 4318 if (sopt_size > MLEN) { 4319 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 4320 if ((m->m_flags & M_EXT) == 0) { 4321 m_free(m); 4322 return ENOBUFS; 4323 } 4324 m->m_len = min(MCLBYTES, sopt_size); 4325 } else { 4326 m->m_len = min(MLEN, sopt_size); 4327 } 4328 sopt_size -= m->m_len; 4329 *mp = m; 4330 m_prev = m; 4331 4332 while (sopt_size) { 4333 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 4334 if (m == NULL) { 4335 m_freem(*mp); 4336 return ENOBUFS; 4337 } 4338 if (sopt_size > MLEN) { 4339 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 4340 M_NOWAIT); 4341 if ((m->m_flags & M_EXT) == 0) { 4342 m_freem(m); 4343 m_freem(*mp); 4344 return ENOBUFS; 4345 } 4346 m->m_len = min(MCLBYTES, sopt_size); 4347 } else { 4348 m->m_len = min(MLEN, sopt_size); 4349 } 4350 sopt_size -= m->m_len; 4351 m_prev->m_next = m; 4352 m_prev = m; 4353 } 4354 return (0); 4355 } 4356 4357 int 4358 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 4359 { 4360 struct mbuf *m0 = m; 4361 4362 if (sopt->sopt_val == NULL) 4363 return (0); 4364 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 4365 if (sopt->sopt_td != NULL) { 4366 int error; 4367 4368 error = copyin(sopt->sopt_val, mtod(m, char *), 4369 m->m_len); 4370 if (error != 0) { 4371 m_freem(m0); 4372 return(error); 4373 } 4374 } else 4375 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 4376 sopt->sopt_valsize -= m->m_len; 4377 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 4378 m = m->m_next; 4379 } 4380 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 4381 panic("ip6_sooptmcopyin"); 4382 return (0); 4383 } 4384 4385 int 4386 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 4387 { 4388 struct mbuf *m0 = m; 4389 size_t valsize = 0; 4390 4391 if (sopt->sopt_val == NULL) 4392 return (0); 4393 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 4394 if (sopt->sopt_td != NULL) { 4395 int error; 4396 4397 error = copyout(mtod(m, char *), sopt->sopt_val, 4398 m->m_len); 4399 if (error != 0) { 4400 m_freem(m0); 4401 return(error); 4402 } 4403 } else 4404 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 4405 sopt->sopt_valsize -= m->m_len; 4406 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 4407 valsize += m->m_len; 4408 m = m->m_next; 4409 } 4410 if (m != NULL) { 4411 /* enough soopt buffer should be given from user-land */ 4412 m_freem(m0); 4413 return(EINVAL); 4414 } 4415 sopt->sopt_valsize = valsize; 4416 return (0); 4417 } 4418 4419 /* 4420 * sohasoutofband(): protocol notifies socket layer of the arrival of new 4421 * out-of-band data, which will then notify socket consumers. 4422 */ 4423 void 4424 sohasoutofband(struct socket *so) 4425 { 4426 4427 if (so->so_sigio != NULL) 4428 pgsigio(&so->so_sigio, SIGURG, 0); 4429 selwakeuppri(&so->so_rdsel, PSOCK); 4430 } 4431 4432 int 4433 sopoll_generic(struct socket *so, int events, struct thread *td) 4434 { 4435 int revents; 4436 4437 SOCK_LOCK(so); 4438 if (SOLISTENING(so)) { 4439 if (!(events & (POLLIN | POLLRDNORM))) 4440 revents = 0; 4441 else if (!TAILQ_EMPTY(&so->sol_comp)) 4442 revents = events & (POLLIN | POLLRDNORM); 4443 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 4444 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 4445 else { 4446 selrecord(td, &so->so_rdsel); 4447 revents = 0; 4448 } 4449 } else { 4450 revents = 0; 4451 SOCK_SENDBUF_LOCK(so); 4452 SOCK_RECVBUF_LOCK(so); 4453 if (events & (POLLIN | POLLRDNORM)) 4454 if (soreadabledata(so) && !isspliced(so)) 4455 revents |= events & (POLLIN | POLLRDNORM); 4456 if (events & (POLLOUT | POLLWRNORM)) 4457 if (sowriteable(so) && !issplicedback(so)) 4458 revents |= events & (POLLOUT | POLLWRNORM); 4459 if (events & (POLLPRI | POLLRDBAND)) 4460 if (so->so_oobmark || 4461 (so->so_rcv.sb_state & SBS_RCVATMARK)) 4462 revents |= events & (POLLPRI | POLLRDBAND); 4463 if ((events & POLLINIGNEOF) == 0) { 4464 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 4465 revents |= events & (POLLIN | POLLRDNORM); 4466 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 4467 revents |= POLLHUP; 4468 } 4469 } 4470 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 4471 revents |= events & POLLRDHUP; 4472 if (revents == 0) { 4473 if (events & 4474 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 4475 selrecord(td, &so->so_rdsel); 4476 so->so_rcv.sb_flags |= SB_SEL; 4477 } 4478 if (events & (POLLOUT | POLLWRNORM)) { 4479 selrecord(td, &so->so_wrsel); 4480 so->so_snd.sb_flags |= SB_SEL; 4481 } 4482 } 4483 SOCK_RECVBUF_UNLOCK(so); 4484 SOCK_SENDBUF_UNLOCK(so); 4485 } 4486 SOCK_UNLOCK(so); 4487 return (revents); 4488 } 4489 4490 int 4491 soo_kqfilter(struct file *fp, struct knote *kn) 4492 { 4493 struct socket *so = kn->kn_fp->f_data; 4494 struct sockbuf *sb; 4495 sb_which which; 4496 struct knlist *knl; 4497 4498 switch (kn->kn_filter) { 4499 case EVFILT_READ: 4500 kn->kn_fop = &soread_filtops; 4501 knl = &so->so_rdsel.si_note; 4502 sb = &so->so_rcv; 4503 which = SO_RCV; 4504 break; 4505 case EVFILT_WRITE: 4506 kn->kn_fop = &sowrite_filtops; 4507 knl = &so->so_wrsel.si_note; 4508 sb = &so->so_snd; 4509 which = SO_SND; 4510 break; 4511 case EVFILT_EMPTY: 4512 kn->kn_fop = &soempty_filtops; 4513 knl = &so->so_wrsel.si_note; 4514 sb = &so->so_snd; 4515 which = SO_SND; 4516 break; 4517 default: 4518 return (EINVAL); 4519 } 4520 4521 SOCK_LOCK(so); 4522 if (SOLISTENING(so)) { 4523 knlist_add(knl, kn, 1); 4524 } else { 4525 SOCK_BUF_LOCK(so, which); 4526 knlist_add(knl, kn, 1); 4527 sb->sb_flags |= SB_KNOTE; 4528 SOCK_BUF_UNLOCK(so, which); 4529 } 4530 SOCK_UNLOCK(so); 4531 return (0); 4532 } 4533 4534 static void 4535 filt_sordetach(struct knote *kn) 4536 { 4537 struct socket *so = kn->kn_fp->f_data; 4538 4539 so_rdknl_lock(so); 4540 knlist_remove(&so->so_rdsel.si_note, kn, 1); 4541 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 4542 so->so_rcv.sb_flags &= ~SB_KNOTE; 4543 so_rdknl_unlock(so); 4544 } 4545 4546 /*ARGSUSED*/ 4547 static int 4548 filt_soread(struct knote *kn, long hint) 4549 { 4550 struct socket *so; 4551 4552 so = kn->kn_fp->f_data; 4553 4554 if (SOLISTENING(so)) { 4555 SOCK_LOCK_ASSERT(so); 4556 kn->kn_data = so->sol_qlen; 4557 if (so->so_error) { 4558 kn->kn_flags |= EV_EOF; 4559 kn->kn_fflags = so->so_error; 4560 return (1); 4561 } 4562 return (!TAILQ_EMPTY(&so->sol_comp)); 4563 } 4564 4565 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0) 4566 return (0); 4567 4568 SOCK_RECVBUF_LOCK_ASSERT(so); 4569 4570 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 4571 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 4572 kn->kn_flags |= EV_EOF; 4573 kn->kn_fflags = so->so_error; 4574 return (1); 4575 } else if (so->so_error || so->so_rerror) 4576 return (1); 4577 4578 if (kn->kn_sfflags & NOTE_LOWAT) { 4579 if (kn->kn_data >= kn->kn_sdata) 4580 return (1); 4581 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 4582 return (1); 4583 4584 #ifdef SOCKET_HHOOK 4585 /* This hook returning non-zero indicates an event, not error */ 4586 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 4587 #else 4588 return (0); 4589 #endif 4590 } 4591 4592 static void 4593 filt_sowdetach(struct knote *kn) 4594 { 4595 struct socket *so = kn->kn_fp->f_data; 4596 4597 so_wrknl_lock(so); 4598 knlist_remove(&so->so_wrsel.si_note, kn, 1); 4599 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 4600 so->so_snd.sb_flags &= ~SB_KNOTE; 4601 so_wrknl_unlock(so); 4602 } 4603 4604 /*ARGSUSED*/ 4605 static int 4606 filt_sowrite(struct knote *kn, long hint) 4607 { 4608 struct socket *so; 4609 4610 so = kn->kn_fp->f_data; 4611 4612 if (SOLISTENING(so)) 4613 return (0); 4614 4615 SOCK_SENDBUF_LOCK_ASSERT(so); 4616 kn->kn_data = sbspace(&so->so_snd); 4617 4618 #ifdef SOCKET_HHOOK 4619 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 4620 #endif 4621 4622 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 4623 kn->kn_flags |= EV_EOF; 4624 kn->kn_fflags = so->so_error; 4625 return (1); 4626 } else if (so->so_error) /* temporary udp error */ 4627 return (1); 4628 else if (((so->so_state & SS_ISCONNECTED) == 0) && 4629 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 4630 return (0); 4631 else if (kn->kn_sfflags & NOTE_LOWAT) 4632 return (kn->kn_data >= kn->kn_sdata); 4633 else 4634 return (kn->kn_data >= so->so_snd.sb_lowat); 4635 } 4636 4637 static int 4638 filt_soempty(struct knote *kn, long hint) 4639 { 4640 struct socket *so; 4641 4642 so = kn->kn_fp->f_data; 4643 4644 if (SOLISTENING(so)) 4645 return (1); 4646 4647 SOCK_SENDBUF_LOCK_ASSERT(so); 4648 kn->kn_data = sbused(&so->so_snd); 4649 4650 if (kn->kn_data == 0) 4651 return (1); 4652 else 4653 return (0); 4654 } 4655 4656 int 4657 socheckuid(struct socket *so, uid_t uid) 4658 { 4659 4660 if (so == NULL) 4661 return (EPERM); 4662 if (so->so_cred->cr_uid != uid) 4663 return (EPERM); 4664 return (0); 4665 } 4666 4667 /* 4668 * These functions are used by protocols to notify the socket layer (and its 4669 * consumers) of state changes in the sockets driven by protocol-side events. 4670 */ 4671 4672 /* 4673 * Procedures to manipulate state flags of socket and do appropriate wakeups. 4674 * 4675 * Normal sequence from the active (originating) side is that 4676 * soisconnecting() is called during processing of connect() call, resulting 4677 * in an eventual call to soisconnected() if/when the connection is 4678 * established. When the connection is torn down soisdisconnecting() is 4679 * called during processing of disconnect() call, and soisdisconnected() is 4680 * called when the connection to the peer is totally severed. The semantics 4681 * of these routines are such that connectionless protocols can call 4682 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4683 * calls when setting up a ``connection'' takes no time. 4684 * 4685 * From the passive side, a socket is created with two queues of sockets: 4686 * so_incomp for connections in progress and so_comp for connections already 4687 * made and awaiting user acceptance. As a protocol is preparing incoming 4688 * connections, it creates a socket structure queued on so_incomp by calling 4689 * sonewconn(). When the connection is established, soisconnected() is 4690 * called, and transfers the socket structure to so_comp, making it available 4691 * to accept(). 4692 * 4693 * If a socket is closed with sockets on either so_incomp or so_comp, these 4694 * sockets are dropped. 4695 * 4696 * If higher-level protocols are implemented in the kernel, the wakeups done 4697 * here will sometimes cause software-interrupt process scheduling. 4698 */ 4699 void 4700 soisconnecting(struct socket *so) 4701 { 4702 4703 SOCK_LOCK(so); 4704 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4705 so->so_state |= SS_ISCONNECTING; 4706 SOCK_UNLOCK(so); 4707 } 4708 4709 void 4710 soisconnected(struct socket *so) 4711 { 4712 bool last __diagused; 4713 4714 SOCK_LOCK(so); 4715 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 4716 so->so_state |= SS_ISCONNECTED; 4717 4718 if (so->so_qstate == SQ_INCOMP) { 4719 struct socket *head = so->so_listen; 4720 int ret; 4721 4722 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4723 /* 4724 * Promoting a socket from incomplete queue to complete, we 4725 * need to go through reverse order of locking. We first do 4726 * trylock, and if that doesn't succeed, we go the hard way 4727 * leaving a reference and rechecking consistency after proper 4728 * locking. 4729 */ 4730 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4731 soref(head); 4732 SOCK_UNLOCK(so); 4733 SOLISTEN_LOCK(head); 4734 SOCK_LOCK(so); 4735 if (__predict_false(head != so->so_listen)) { 4736 /* 4737 * The socket went off the listen queue, 4738 * should be lost race to close(2) of sol. 4739 * The socket is about to soabort(). 4740 */ 4741 SOCK_UNLOCK(so); 4742 sorele_locked(head); 4743 return; 4744 } 4745 last = refcount_release(&head->so_count); 4746 KASSERT(!last, ("%s: released last reference for %p", 4747 __func__, head)); 4748 } 4749 again: 4750 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4751 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4752 head->sol_incqlen--; 4753 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4754 head->sol_qlen++; 4755 so->so_qstate = SQ_COMP; 4756 SOCK_UNLOCK(so); 4757 solisten_wakeup(head); /* unlocks */ 4758 } else { 4759 SOCK_RECVBUF_LOCK(so); 4760 soupcall_set(so, SO_RCV, 4761 head->sol_accept_filter->accf_callback, 4762 head->sol_accept_filter_arg); 4763 so->so_options &= ~SO_ACCEPTFILTER; 4764 ret = head->sol_accept_filter->accf_callback(so, 4765 head->sol_accept_filter_arg, M_NOWAIT); 4766 if (ret == SU_ISCONNECTED) { 4767 soupcall_clear(so, SO_RCV); 4768 SOCK_RECVBUF_UNLOCK(so); 4769 goto again; 4770 } 4771 SOCK_RECVBUF_UNLOCK(so); 4772 SOCK_UNLOCK(so); 4773 SOLISTEN_UNLOCK(head); 4774 } 4775 return; 4776 } 4777 SOCK_UNLOCK(so); 4778 wakeup(&so->so_timeo); 4779 sorwakeup(so); 4780 sowwakeup(so); 4781 } 4782 4783 void 4784 soisdisconnecting(struct socket *so) 4785 { 4786 4787 SOCK_LOCK(so); 4788 so->so_state &= ~SS_ISCONNECTING; 4789 so->so_state |= SS_ISDISCONNECTING; 4790 4791 if (!SOLISTENING(so)) { 4792 SOCK_RECVBUF_LOCK(so); 4793 socantrcvmore_locked(so); 4794 SOCK_SENDBUF_LOCK(so); 4795 socantsendmore_locked(so); 4796 } 4797 SOCK_UNLOCK(so); 4798 wakeup(&so->so_timeo); 4799 } 4800 4801 void 4802 soisdisconnected(struct socket *so) 4803 { 4804 4805 SOCK_LOCK(so); 4806 4807 /* 4808 * There is at least one reader of so_state that does not 4809 * acquire socket lock, namely soreceive_generic(). Ensure 4810 * that it never sees all flags that track connection status 4811 * cleared, by ordering the update with a barrier semantic of 4812 * our release thread fence. 4813 */ 4814 so->so_state |= SS_ISDISCONNECTED; 4815 atomic_thread_fence_rel(); 4816 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4817 4818 if (!SOLISTENING(so)) { 4819 SOCK_UNLOCK(so); 4820 SOCK_RECVBUF_LOCK(so); 4821 socantrcvmore_locked(so); 4822 SOCK_SENDBUF_LOCK(so); 4823 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4824 socantsendmore_locked(so); 4825 } else 4826 SOCK_UNLOCK(so); 4827 wakeup(&so->so_timeo); 4828 } 4829 4830 int 4831 soiolock(struct socket *so, struct sx *sx, int flags) 4832 { 4833 int error; 4834 4835 KASSERT((flags & SBL_VALID) == flags, 4836 ("soiolock: invalid flags %#x", flags)); 4837 4838 if ((flags & SBL_WAIT) != 0) { 4839 if ((flags & SBL_NOINTR) != 0) { 4840 sx_xlock(sx); 4841 } else { 4842 error = sx_xlock_sig(sx); 4843 if (error != 0) 4844 return (error); 4845 } 4846 } else if (!sx_try_xlock(sx)) { 4847 return (EWOULDBLOCK); 4848 } 4849 4850 if (__predict_false(SOLISTENING(so))) { 4851 sx_xunlock(sx); 4852 return (ENOTCONN); 4853 } 4854 return (0); 4855 } 4856 4857 void 4858 soiounlock(struct sx *sx) 4859 { 4860 sx_xunlock(sx); 4861 } 4862 4863 /* 4864 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4865 */ 4866 struct sockaddr * 4867 sodupsockaddr(const struct sockaddr *sa, int mflags) 4868 { 4869 struct sockaddr *sa2; 4870 4871 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4872 if (sa2) 4873 bcopy(sa, sa2, sa->sa_len); 4874 return sa2; 4875 } 4876 4877 /* 4878 * Register per-socket destructor. 4879 */ 4880 void 4881 sodtor_set(struct socket *so, so_dtor_t *func) 4882 { 4883 4884 SOCK_LOCK_ASSERT(so); 4885 so->so_dtor = func; 4886 } 4887 4888 /* 4889 * Register per-socket buffer upcalls. 4890 */ 4891 void 4892 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4893 { 4894 struct sockbuf *sb; 4895 4896 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4897 4898 switch (which) { 4899 case SO_RCV: 4900 sb = &so->so_rcv; 4901 break; 4902 case SO_SND: 4903 sb = &so->so_snd; 4904 break; 4905 } 4906 SOCK_BUF_LOCK_ASSERT(so, which); 4907 sb->sb_upcall = func; 4908 sb->sb_upcallarg = arg; 4909 sb->sb_flags |= SB_UPCALL; 4910 } 4911 4912 void 4913 soupcall_clear(struct socket *so, sb_which which) 4914 { 4915 struct sockbuf *sb; 4916 4917 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4918 4919 switch (which) { 4920 case SO_RCV: 4921 sb = &so->so_rcv; 4922 break; 4923 case SO_SND: 4924 sb = &so->so_snd; 4925 break; 4926 } 4927 SOCK_BUF_LOCK_ASSERT(so, which); 4928 KASSERT(sb->sb_upcall != NULL, 4929 ("%s: so %p no upcall to clear", __func__, so)); 4930 sb->sb_upcall = NULL; 4931 sb->sb_upcallarg = NULL; 4932 sb->sb_flags &= ~SB_UPCALL; 4933 } 4934 4935 void 4936 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4937 { 4938 4939 SOLISTEN_LOCK_ASSERT(so); 4940 so->sol_upcall = func; 4941 so->sol_upcallarg = arg; 4942 } 4943 4944 static void 4945 so_rdknl_lock(void *arg) 4946 { 4947 struct socket *so = arg; 4948 4949 retry: 4950 if (SOLISTENING(so)) { 4951 SOLISTEN_LOCK(so); 4952 } else { 4953 SOCK_RECVBUF_LOCK(so); 4954 if (__predict_false(SOLISTENING(so))) { 4955 SOCK_RECVBUF_UNLOCK(so); 4956 goto retry; 4957 } 4958 } 4959 } 4960 4961 static void 4962 so_rdknl_unlock(void *arg) 4963 { 4964 struct socket *so = arg; 4965 4966 if (SOLISTENING(so)) 4967 SOLISTEN_UNLOCK(so); 4968 else 4969 SOCK_RECVBUF_UNLOCK(so); 4970 } 4971 4972 static void 4973 so_rdknl_assert_lock(void *arg, int what) 4974 { 4975 struct socket *so = arg; 4976 4977 if (what == LA_LOCKED) { 4978 if (SOLISTENING(so)) 4979 SOLISTEN_LOCK_ASSERT(so); 4980 else 4981 SOCK_RECVBUF_LOCK_ASSERT(so); 4982 } else { 4983 if (SOLISTENING(so)) 4984 SOLISTEN_UNLOCK_ASSERT(so); 4985 else 4986 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4987 } 4988 } 4989 4990 static void 4991 so_wrknl_lock(void *arg) 4992 { 4993 struct socket *so = arg; 4994 4995 retry: 4996 if (SOLISTENING(so)) { 4997 SOLISTEN_LOCK(so); 4998 } else { 4999 SOCK_SENDBUF_LOCK(so); 5000 if (__predict_false(SOLISTENING(so))) { 5001 SOCK_SENDBUF_UNLOCK(so); 5002 goto retry; 5003 } 5004 } 5005 } 5006 5007 static void 5008 so_wrknl_unlock(void *arg) 5009 { 5010 struct socket *so = arg; 5011 5012 if (SOLISTENING(so)) 5013 SOLISTEN_UNLOCK(so); 5014 else 5015 SOCK_SENDBUF_UNLOCK(so); 5016 } 5017 5018 static void 5019 so_wrknl_assert_lock(void *arg, int what) 5020 { 5021 struct socket *so = arg; 5022 5023 if (what == LA_LOCKED) { 5024 if (SOLISTENING(so)) 5025 SOLISTEN_LOCK_ASSERT(so); 5026 else 5027 SOCK_SENDBUF_LOCK_ASSERT(so); 5028 } else { 5029 if (SOLISTENING(so)) 5030 SOLISTEN_UNLOCK_ASSERT(so); 5031 else 5032 SOCK_SENDBUF_UNLOCK_ASSERT(so); 5033 } 5034 } 5035 5036 /* 5037 * Create an external-format (``xsocket'') structure using the information in 5038 * the kernel-format socket structure pointed to by so. This is done to 5039 * reduce the spew of irrelevant information over this interface, to isolate 5040 * user code from changes in the kernel structure, and potentially to provide 5041 * information-hiding if we decide that some of this information should be 5042 * hidden from users. 5043 */ 5044 void 5045 sotoxsocket(struct socket *so, struct xsocket *xso) 5046 { 5047 5048 bzero(xso, sizeof(*xso)); 5049 xso->xso_len = sizeof *xso; 5050 xso->xso_so = (uintptr_t)so; 5051 xso->so_type = so->so_type; 5052 xso->so_options = so->so_options; 5053 xso->so_linger = so->so_linger; 5054 xso->so_state = so->so_state; 5055 xso->so_pcb = (uintptr_t)so->so_pcb; 5056 xso->xso_protocol = so->so_proto->pr_protocol; 5057 xso->xso_family = so->so_proto->pr_domain->dom_family; 5058 xso->so_timeo = so->so_timeo; 5059 xso->so_error = so->so_error; 5060 xso->so_uid = so->so_cred->cr_uid; 5061 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 5062 SOCK_LOCK(so); 5063 xso->so_fibnum = so->so_fibnum; 5064 if (SOLISTENING(so)) { 5065 xso->so_qlen = so->sol_qlen; 5066 xso->so_incqlen = so->sol_incqlen; 5067 xso->so_qlimit = so->sol_qlimit; 5068 xso->so_oobmark = 0; 5069 } else { 5070 xso->so_state |= so->so_qstate; 5071 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 5072 xso->so_oobmark = so->so_oobmark; 5073 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 5074 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 5075 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0) 5076 xso->so_splice_so = (uintptr_t)so->so_splice->dst; 5077 } 5078 SOCK_UNLOCK(so); 5079 } 5080 5081 int 5082 so_options_get(const struct socket *so) 5083 { 5084 5085 return (so->so_options); 5086 } 5087 5088 void 5089 so_options_set(struct socket *so, int val) 5090 { 5091 5092 so->so_options = val; 5093 } 5094 5095 int 5096 so_error_get(const struct socket *so) 5097 { 5098 5099 return (so->so_error); 5100 } 5101 5102 void 5103 so_error_set(struct socket *so, int val) 5104 { 5105 5106 so->so_error = val; 5107 } 5108