1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2006 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 */ 96 97 #include <sys/cdefs.h> 98 __FBSDID("$FreeBSD$"); 99 100 #include "opt_inet.h" 101 #include "opt_mac.h" 102 #include "opt_zero.h" 103 #include "opt_compat.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/fcntl.h> 108 #include <sys/limits.h> 109 #include <sys/lock.h> 110 #include <sys/mac.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/mutex.h> 114 #include <sys/domain.h> 115 #include <sys/file.h> /* for struct knote */ 116 #include <sys/kernel.h> 117 #include <sys/event.h> 118 #include <sys/eventhandler.h> 119 #include <sys/poll.h> 120 #include <sys/proc.h> 121 #include <sys/protosw.h> 122 #include <sys/socket.h> 123 #include <sys/socketvar.h> 124 #include <sys/resourcevar.h> 125 #include <sys/signalvar.h> 126 #include <sys/sysctl.h> 127 #include <sys/uio.h> 128 #include <sys/jail.h> 129 130 #include <security/mac/mac_framework.h> 131 132 #include <vm/uma.h> 133 134 #ifdef COMPAT_IA32 135 #include <sys/mount.h> 136 #include <compat/freebsd32/freebsd32.h> 137 138 extern struct sysentvec ia32_freebsd_sysvec; 139 #endif 140 141 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 142 int flags); 143 144 static void filt_sordetach(struct knote *kn); 145 static int filt_soread(struct knote *kn, long hint); 146 static void filt_sowdetach(struct knote *kn); 147 static int filt_sowrite(struct knote *kn, long hint); 148 static int filt_solisten(struct knote *kn, long hint); 149 150 static struct filterops solisten_filtops = 151 { 1, NULL, filt_sordetach, filt_solisten }; 152 static struct filterops soread_filtops = 153 { 1, NULL, filt_sordetach, filt_soread }; 154 static struct filterops sowrite_filtops = 155 { 1, NULL, filt_sowdetach, filt_sowrite }; 156 157 uma_zone_t socket_zone; 158 so_gen_t so_gencnt; /* generation count for sockets */ 159 160 int maxsockets; 161 162 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 163 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 164 165 static int somaxconn = SOMAXCONN; 166 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 167 /* XXX: we dont have SYSCTL_USHORT */ 168 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 169 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 170 "queue size"); 171 static int numopensockets; 172 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 173 &numopensockets, 0, "Number of open sockets"); 174 #ifdef ZERO_COPY_SOCKETS 175 /* These aren't static because they're used in other files. */ 176 int so_zero_copy_send = 1; 177 int so_zero_copy_receive = 1; 178 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 179 "Zero copy controls"); 180 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 181 &so_zero_copy_receive, 0, "Enable zero copy receive"); 182 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 183 &so_zero_copy_send, 0, "Enable zero copy send"); 184 #endif /* ZERO_COPY_SOCKETS */ 185 186 /* 187 * accept_mtx locks down per-socket fields relating to accept queues. See 188 * socketvar.h for an annotation of the protected fields of struct socket. 189 */ 190 struct mtx accept_mtx; 191 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 192 193 /* 194 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 195 * so_gencnt field. 196 */ 197 static struct mtx so_global_mtx; 198 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 199 200 /* 201 * General IPC sysctl name space, used by sockets and a variety of other IPC 202 * types. 203 */ 204 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 205 206 /* 207 * Sysctl to get and set the maximum global sockets limit. Notify protocols 208 * of the change so that they can update their dependent limits as required. 209 */ 210 static int 211 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 212 { 213 int error, newmaxsockets; 214 215 newmaxsockets = maxsockets; 216 error = sysctl_handle_int(oidp, &newmaxsockets, sizeof(int), req); 217 if (error == 0 && req->newptr) { 218 if (newmaxsockets > maxsockets) { 219 maxsockets = newmaxsockets; 220 if (maxsockets > ((maxfiles / 4) * 3)) { 221 maxfiles = (maxsockets * 5) / 4; 222 maxfilesperproc = (maxfiles * 9) / 10; 223 } 224 EVENTHANDLER_INVOKE(maxsockets_change); 225 } else 226 error = EINVAL; 227 } 228 return (error); 229 } 230 231 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 232 &maxsockets, 0, sysctl_maxsockets, "IU", 233 "Maximum number of sockets avaliable"); 234 235 /* 236 * Initialise maxsockets. 237 */ 238 static void init_maxsockets(void *ignored) 239 { 240 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 241 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 242 } 243 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 244 245 /* 246 * Socket operation routines. These routines are called by the routines in 247 * sys_socket.c or from a system process, and implement the semantics of 248 * socket operations by switching out to the protocol specific routines. 249 */ 250 251 /* 252 * Get a socket structure from our zone, and initialize it. Note that it 253 * would probably be better to allocate socket and PCB at the same time, but 254 * I'm not convinced that all the protocols can be easily modified to do 255 * this. 256 * 257 * soalloc() returns a socket with a ref count of 0. 258 */ 259 static struct socket * 260 soalloc(void) 261 { 262 struct socket *so; 263 264 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 265 if (so == NULL) 266 return (NULL); 267 #ifdef MAC 268 if (mac_init_socket(so, M_NOWAIT) != 0) { 269 uma_zfree(socket_zone, so); 270 return (NULL); 271 } 272 #endif 273 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 274 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 275 TAILQ_INIT(&so->so_aiojobq); 276 mtx_lock(&so_global_mtx); 277 so->so_gencnt = ++so_gencnt; 278 ++numopensockets; 279 mtx_unlock(&so_global_mtx); 280 return (so); 281 } 282 283 /* 284 * Free the storage associated with a socket at the socket layer, tear down 285 * locks, labels, etc. All protocol state is assumed already to have been 286 * torn down (and possibly never set up) by the caller. 287 */ 288 static void 289 sodealloc(struct socket *so) 290 { 291 292 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 293 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 294 295 mtx_lock(&so_global_mtx); 296 so->so_gencnt = ++so_gencnt; 297 --numopensockets; /* Could be below, but faster here. */ 298 mtx_unlock(&so_global_mtx); 299 if (so->so_rcv.sb_hiwat) 300 (void)chgsbsize(so->so_cred->cr_uidinfo, 301 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 302 if (so->so_snd.sb_hiwat) 303 (void)chgsbsize(so->so_cred->cr_uidinfo, 304 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 305 #ifdef INET 306 /* remove acccept filter if one is present. */ 307 if (so->so_accf != NULL) 308 do_setopt_accept_filter(so, NULL); 309 #endif 310 #ifdef MAC 311 mac_destroy_socket(so); 312 #endif 313 crfree(so->so_cred); 314 SOCKBUF_LOCK_DESTROY(&so->so_snd); 315 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 316 uma_zfree(socket_zone, so); 317 } 318 319 /* 320 * socreate returns a socket with a ref count of 1. The socket should be 321 * closed with soclose(). 322 */ 323 int 324 socreate(dom, aso, type, proto, cred, td) 325 int dom; 326 struct socket **aso; 327 int type; 328 int proto; 329 struct ucred *cred; 330 struct thread *td; 331 { 332 struct protosw *prp; 333 struct socket *so; 334 int error; 335 336 if (proto) 337 prp = pffindproto(dom, proto, type); 338 else 339 prp = pffindtype(dom, type); 340 341 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 342 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 343 return (EPROTONOSUPPORT); 344 345 if (jailed(cred) && jail_socket_unixiproute_only && 346 prp->pr_domain->dom_family != PF_LOCAL && 347 prp->pr_domain->dom_family != PF_INET && 348 prp->pr_domain->dom_family != PF_ROUTE) { 349 return (EPROTONOSUPPORT); 350 } 351 352 if (prp->pr_type != type) 353 return (EPROTOTYPE); 354 so = soalloc(); 355 if (so == NULL) 356 return (ENOBUFS); 357 358 TAILQ_INIT(&so->so_incomp); 359 TAILQ_INIT(&so->so_comp); 360 so->so_type = type; 361 so->so_cred = crhold(cred); 362 so->so_proto = prp; 363 #ifdef MAC 364 mac_create_socket(cred, so); 365 #endif 366 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 367 NULL, NULL, NULL); 368 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 369 NULL, NULL, NULL); 370 so->so_count = 1; 371 /* 372 * Auto-sizing of socket buffers is managed by the protocols and 373 * the appropriate flags must be set in the pru_attach function. 374 */ 375 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 376 if (error) { 377 KASSERT(so->so_count == 1, ("socreate: so_count %d", 378 so->so_count)); 379 so->so_count = 0; 380 sodealloc(so); 381 return (error); 382 } 383 *aso = so; 384 return (0); 385 } 386 387 #ifdef REGRESSION 388 static int regression_sonewconn_earlytest = 1; 389 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 390 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 391 #endif 392 393 /* 394 * When an attempt at a new connection is noted on a socket which accepts 395 * connections, sonewconn is called. If the connection is possible (subject 396 * to space constraints, etc.) then we allocate a new structure, propoerly 397 * linked into the data structure of the original socket, and return this. 398 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 399 * 400 * Note: the ref count on the socket is 0 on return. 401 */ 402 struct socket * 403 sonewconn(head, connstatus) 404 register struct socket *head; 405 int connstatus; 406 { 407 register struct socket *so; 408 int over; 409 410 ACCEPT_LOCK(); 411 over = (head->so_qlen > 3 * head->so_qlimit / 2); 412 ACCEPT_UNLOCK(); 413 #ifdef REGRESSION 414 if (regression_sonewconn_earlytest && over) 415 #else 416 if (over) 417 #endif 418 return (NULL); 419 so = soalloc(); 420 if (so == NULL) 421 return (NULL); 422 if ((head->so_options & SO_ACCEPTFILTER) != 0) 423 connstatus = 0; 424 so->so_head = head; 425 so->so_type = head->so_type; 426 so->so_options = head->so_options &~ SO_ACCEPTCONN; 427 so->so_linger = head->so_linger; 428 so->so_state = head->so_state | SS_NOFDREF; 429 so->so_proto = head->so_proto; 430 so->so_cred = crhold(head->so_cred); 431 #ifdef MAC 432 SOCK_LOCK(head); 433 mac_create_socket_from_socket(head, so); 434 SOCK_UNLOCK(head); 435 #endif 436 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 437 NULL, NULL, NULL); 438 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 439 NULL, NULL, NULL); 440 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 441 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 442 sodealloc(so); 443 return (NULL); 444 } 445 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 446 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 447 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 448 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 449 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 450 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 451 so->so_state |= connstatus; 452 ACCEPT_LOCK(); 453 if (connstatus) { 454 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 455 so->so_qstate |= SQ_COMP; 456 head->so_qlen++; 457 } else { 458 /* 459 * Keep removing sockets from the head until there's room for 460 * us to insert on the tail. In pre-locking revisions, this 461 * was a simple if(), but as we could be racing with other 462 * threads and soabort() requires dropping locks, we must 463 * loop waiting for the condition to be true. 464 */ 465 while (head->so_incqlen > head->so_qlimit) { 466 struct socket *sp; 467 sp = TAILQ_FIRST(&head->so_incomp); 468 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 469 head->so_incqlen--; 470 sp->so_qstate &= ~SQ_INCOMP; 471 sp->so_head = NULL; 472 ACCEPT_UNLOCK(); 473 soabort(sp); 474 ACCEPT_LOCK(); 475 } 476 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 477 so->so_qstate |= SQ_INCOMP; 478 head->so_incqlen++; 479 } 480 ACCEPT_UNLOCK(); 481 if (connstatus) { 482 sorwakeup(head); 483 wakeup_one(&head->so_timeo); 484 } 485 return (so); 486 } 487 488 int 489 sobind(so, nam, td) 490 struct socket *so; 491 struct sockaddr *nam; 492 struct thread *td; 493 { 494 495 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 496 } 497 498 /* 499 * solisten() transitions a socket from a non-listening state to a listening 500 * state, but can also be used to update the listen queue depth on an 501 * existing listen socket. The protocol will call back into the sockets 502 * layer using solisten_proto_check() and solisten_proto() to check and set 503 * socket-layer listen state. Call backs are used so that the protocol can 504 * acquire both protocol and socket layer locks in whatever order is required 505 * by the protocol. 506 * 507 * Protocol implementors are advised to hold the socket lock across the 508 * socket-layer test and set to avoid races at the socket layer. 509 */ 510 int 511 solisten(so, backlog, td) 512 struct socket *so; 513 int backlog; 514 struct thread *td; 515 { 516 517 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 518 } 519 520 int 521 solisten_proto_check(so) 522 struct socket *so; 523 { 524 525 SOCK_LOCK_ASSERT(so); 526 527 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 528 SS_ISDISCONNECTING)) 529 return (EINVAL); 530 return (0); 531 } 532 533 void 534 solisten_proto(so, backlog) 535 struct socket *so; 536 int backlog; 537 { 538 539 SOCK_LOCK_ASSERT(so); 540 541 if (backlog < 0 || backlog > somaxconn) 542 backlog = somaxconn; 543 so->so_qlimit = backlog; 544 so->so_options |= SO_ACCEPTCONN; 545 } 546 547 /* 548 * Attempt to free a socket. This should really be sotryfree(). 549 * 550 * sofree() will succeed if: 551 * 552 * - There are no outstanding file descriptor references or related consumers 553 * (so_count == 0). 554 * 555 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 556 * 557 * - The protocol does not have an outstanding strong reference on the socket 558 * (SS_PROTOREF). 559 * 560 * - The socket is not in a completed connection queue, so a process has been 561 * notified that it is present. If it is removed, the user process may 562 * block in accept() despite select() saying the socket was ready. 563 * 564 * Otherwise, it will quietly abort so that a future call to sofree(), when 565 * conditions are right, can succeed. 566 */ 567 void 568 sofree(so) 569 struct socket *so; 570 { 571 struct protosw *pr = so->so_proto; 572 struct socket *head; 573 574 ACCEPT_LOCK_ASSERT(); 575 SOCK_LOCK_ASSERT(so); 576 577 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 578 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 579 SOCK_UNLOCK(so); 580 ACCEPT_UNLOCK(); 581 return; 582 } 583 584 head = so->so_head; 585 if (head != NULL) { 586 KASSERT((so->so_qstate & SQ_COMP) != 0 || 587 (so->so_qstate & SQ_INCOMP) != 0, 588 ("sofree: so_head != NULL, but neither SQ_COMP nor " 589 "SQ_INCOMP")); 590 KASSERT((so->so_qstate & SQ_COMP) == 0 || 591 (so->so_qstate & SQ_INCOMP) == 0, 592 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 593 TAILQ_REMOVE(&head->so_incomp, so, so_list); 594 head->so_incqlen--; 595 so->so_qstate &= ~SQ_INCOMP; 596 so->so_head = NULL; 597 } 598 KASSERT((so->so_qstate & SQ_COMP) == 0 && 599 (so->so_qstate & SQ_INCOMP) == 0, 600 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 601 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 602 if (so->so_options & SO_ACCEPTCONN) { 603 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 604 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 605 } 606 SOCK_UNLOCK(so); 607 ACCEPT_UNLOCK(); 608 609 /* 610 * From this point on, we assume that no other references to this 611 * socket exist anywhere else in the stack. Therefore, no locks need 612 * to be acquired or held. 613 * 614 * We used to do a lot of socket buffer and socket locking here, as 615 * well as invoke sorflush() and perform wakeups. The direct call to 616 * dom_dispose() and sbrelease_internal() are an inlining of what was 617 * necessary from sorflush(). 618 * 619 * Notice that the socket buffer and kqueue state are torn down 620 * before calling pru_detach. This means that protocols shold not 621 * assume they can perform socket wakeups, etc, in their detach 622 * code. 623 */ 624 KASSERT((so->so_snd.sb_flags & SB_LOCK) == 0, ("sofree: snd sblock")); 625 KASSERT((so->so_rcv.sb_flags & SB_LOCK) == 0, ("sofree: rcv sblock")); 626 sbdestroy(&so->so_snd, so); 627 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 628 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 629 sbdestroy(&so->so_rcv, so); 630 if (pr->pr_usrreqs->pru_detach != NULL) 631 (*pr->pr_usrreqs->pru_detach)(so); 632 knlist_destroy(&so->so_rcv.sb_sel.si_note); 633 knlist_destroy(&so->so_snd.sb_sel.si_note); 634 sodealloc(so); 635 } 636 637 /* 638 * Close a socket on last file table reference removal. Initiate disconnect 639 * if connected. Free socket when disconnect complete. 640 * 641 * This function will sorele() the socket. Note that soclose() may be called 642 * prior to the ref count reaching zero. The actual socket structure will 643 * not be freed until the ref count reaches zero. 644 */ 645 int 646 soclose(so) 647 struct socket *so; 648 { 649 int error = 0; 650 651 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 652 653 funsetown(&so->so_sigio); 654 if (so->so_state & SS_ISCONNECTED) { 655 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 656 error = sodisconnect(so); 657 if (error) 658 goto drop; 659 } 660 if (so->so_options & SO_LINGER) { 661 if ((so->so_state & SS_ISDISCONNECTING) && 662 (so->so_state & SS_NBIO)) 663 goto drop; 664 while (so->so_state & SS_ISCONNECTED) { 665 error = tsleep(&so->so_timeo, 666 PSOCK | PCATCH, "soclos", so->so_linger * hz); 667 if (error) 668 break; 669 } 670 } 671 } 672 673 drop: 674 if (so->so_proto->pr_usrreqs->pru_close != NULL) 675 (*so->so_proto->pr_usrreqs->pru_close)(so); 676 if (so->so_options & SO_ACCEPTCONN) { 677 struct socket *sp; 678 ACCEPT_LOCK(); 679 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 680 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 681 so->so_incqlen--; 682 sp->so_qstate &= ~SQ_INCOMP; 683 sp->so_head = NULL; 684 ACCEPT_UNLOCK(); 685 soabort(sp); 686 ACCEPT_LOCK(); 687 } 688 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 689 TAILQ_REMOVE(&so->so_comp, sp, so_list); 690 so->so_qlen--; 691 sp->so_qstate &= ~SQ_COMP; 692 sp->so_head = NULL; 693 ACCEPT_UNLOCK(); 694 soabort(sp); 695 ACCEPT_LOCK(); 696 } 697 ACCEPT_UNLOCK(); 698 } 699 ACCEPT_LOCK(); 700 SOCK_LOCK(so); 701 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 702 so->so_state |= SS_NOFDREF; 703 sorele(so); 704 return (error); 705 } 706 707 /* 708 * soabort() is used to abruptly tear down a connection, such as when a 709 * resource limit is reached (listen queue depth exceeded), or if a listen 710 * socket is closed while there are sockets waiting to be accepted. 711 * 712 * This interface is tricky, because it is called on an unreferenced socket, 713 * and must be called only by a thread that has actually removed the socket 714 * from the listen queue it was on, or races with other threads are risked. 715 * 716 * This interface will call into the protocol code, so must not be called 717 * with any socket locks held. Protocols do call it while holding their own 718 * recursible protocol mutexes, but this is something that should be subject 719 * to review in the future. 720 */ 721 void 722 soabort(so) 723 struct socket *so; 724 { 725 726 /* 727 * In as much as is possible, assert that no references to this 728 * socket are held. This is not quite the same as asserting that the 729 * current thread is responsible for arranging for no references, but 730 * is as close as we can get for now. 731 */ 732 KASSERT(so->so_count == 0, ("soabort: so_count")); 733 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 734 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 735 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 736 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 737 738 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 739 (*so->so_proto->pr_usrreqs->pru_abort)(so); 740 ACCEPT_LOCK(); 741 SOCK_LOCK(so); 742 sofree(so); 743 } 744 745 int 746 soaccept(so, nam) 747 struct socket *so; 748 struct sockaddr **nam; 749 { 750 int error; 751 752 SOCK_LOCK(so); 753 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 754 so->so_state &= ~SS_NOFDREF; 755 SOCK_UNLOCK(so); 756 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 757 return (error); 758 } 759 760 int 761 soconnect(so, nam, td) 762 struct socket *so; 763 struct sockaddr *nam; 764 struct thread *td; 765 { 766 int error; 767 768 if (so->so_options & SO_ACCEPTCONN) 769 return (EOPNOTSUPP); 770 /* 771 * If protocol is connection-based, can only connect once. 772 * Otherwise, if connected, try to disconnect first. This allows 773 * user to disconnect by connecting to, e.g., a null address. 774 */ 775 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 776 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 777 (error = sodisconnect(so)))) { 778 error = EISCONN; 779 } else { 780 /* 781 * Prevent accumulated error from previous connection from 782 * biting us. 783 */ 784 so->so_error = 0; 785 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 786 } 787 788 return (error); 789 } 790 791 int 792 soconnect2(so1, so2) 793 struct socket *so1; 794 struct socket *so2; 795 { 796 797 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 798 } 799 800 int 801 sodisconnect(so) 802 struct socket *so; 803 { 804 int error; 805 806 if ((so->so_state & SS_ISCONNECTED) == 0) 807 return (ENOTCONN); 808 if (so->so_state & SS_ISDISCONNECTING) 809 return (EALREADY); 810 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 811 return (error); 812 } 813 814 #ifdef ZERO_COPY_SOCKETS 815 struct so_zerocopy_stats{ 816 int size_ok; 817 int align_ok; 818 int found_ifp; 819 }; 820 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 821 #include <netinet/in.h> 822 #include <net/route.h> 823 #include <netinet/in_pcb.h> 824 #include <vm/vm.h> 825 #include <vm/vm_page.h> 826 #include <vm/vm_object.h> 827 828 /* 829 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 830 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 831 * 832 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 833 * all of the data referenced by the uio. If desired, it uses zero-copy. 834 * *space will be updated to reflect data copied in. 835 * 836 * NB: If atomic I/O is requested, the caller must already have checked that 837 * space can hold resid bytes. 838 * 839 * NB: In the event of an error, the caller may need to free the partial 840 * chain pointed to by *mpp. The contents of both *uio and *space may be 841 * modified even in the case of an error. 842 */ 843 static int 844 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 845 int flags) 846 { 847 struct mbuf *m, **mp, *top; 848 long len, resid; 849 int error; 850 #ifdef ZERO_COPY_SOCKETS 851 int cow_send; 852 #endif 853 854 *retmp = top = NULL; 855 mp = ⊤ 856 len = 0; 857 resid = uio->uio_resid; 858 error = 0; 859 do { 860 #ifdef ZERO_COPY_SOCKETS 861 cow_send = 0; 862 #endif /* ZERO_COPY_SOCKETS */ 863 if (resid >= MINCLSIZE) { 864 #ifdef ZERO_COPY_SOCKETS 865 if (top == NULL) { 866 m = m_gethdr(M_WAITOK, MT_DATA); 867 m->m_pkthdr.len = 0; 868 m->m_pkthdr.rcvif = NULL; 869 } else 870 m = m_get(M_WAITOK, MT_DATA); 871 if (so_zero_copy_send && 872 resid>=PAGE_SIZE && 873 *space>=PAGE_SIZE && 874 uio->uio_iov->iov_len>=PAGE_SIZE) { 875 so_zerocp_stats.size_ok++; 876 so_zerocp_stats.align_ok++; 877 cow_send = socow_setup(m, uio); 878 len = cow_send; 879 } 880 if (!cow_send) { 881 m_clget(m, M_WAITOK); 882 len = min(min(MCLBYTES, resid), *space); 883 } 884 #else /* ZERO_COPY_SOCKETS */ 885 if (top == NULL) { 886 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 887 m->m_pkthdr.len = 0; 888 m->m_pkthdr.rcvif = NULL; 889 } else 890 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 891 len = min(min(MCLBYTES, resid), *space); 892 #endif /* ZERO_COPY_SOCKETS */ 893 } else { 894 if (top == NULL) { 895 m = m_gethdr(M_TRYWAIT, MT_DATA); 896 m->m_pkthdr.len = 0; 897 m->m_pkthdr.rcvif = NULL; 898 899 len = min(min(MHLEN, resid), *space); 900 /* 901 * For datagram protocols, leave room 902 * for protocol headers in first mbuf. 903 */ 904 if (atomic && m && len < MHLEN) 905 MH_ALIGN(m, len); 906 } else { 907 m = m_get(M_TRYWAIT, MT_DATA); 908 len = min(min(MLEN, resid), *space); 909 } 910 } 911 if (m == NULL) { 912 error = ENOBUFS; 913 goto out; 914 } 915 916 *space -= len; 917 #ifdef ZERO_COPY_SOCKETS 918 if (cow_send) 919 error = 0; 920 else 921 #endif /* ZERO_COPY_SOCKETS */ 922 error = uiomove(mtod(m, void *), (int)len, uio); 923 resid = uio->uio_resid; 924 m->m_len = len; 925 *mp = m; 926 top->m_pkthdr.len += len; 927 if (error) 928 goto out; 929 mp = &m->m_next; 930 if (resid <= 0) { 931 if (flags & MSG_EOR) 932 top->m_flags |= M_EOR; 933 break; 934 } 935 } while (*space > 0 && atomic); 936 out: 937 *retmp = top; 938 return (error); 939 } 940 #endif /*ZERO_COPY_SOCKETS*/ 941 942 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 943 944 int 945 sosend_dgram(so, addr, uio, top, control, flags, td) 946 struct socket *so; 947 struct sockaddr *addr; 948 struct uio *uio; 949 struct mbuf *top; 950 struct mbuf *control; 951 int flags; 952 struct thread *td; 953 { 954 long space, resid; 955 int clen = 0, error, dontroute; 956 #ifdef ZERO_COPY_SOCKETS 957 int atomic = sosendallatonce(so) || top; 958 #endif 959 960 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 961 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 962 ("sodgram_send: !PR_ATOMIC")); 963 964 if (uio != NULL) 965 resid = uio->uio_resid; 966 else 967 resid = top->m_pkthdr.len; 968 /* 969 * In theory resid should be unsigned. However, space must be 970 * signed, as it might be less than 0 if we over-committed, and we 971 * must use a signed comparison of space and resid. On the other 972 * hand, a negative resid causes us to loop sending 0-length 973 * segments to the protocol. 974 * 975 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 976 * type sockets since that's an error. 977 */ 978 if (resid < 0) { 979 error = EINVAL; 980 goto out; 981 } 982 983 dontroute = 984 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 985 if (td != NULL) 986 td->td_proc->p_stats->p_ru.ru_msgsnd++; 987 if (control != NULL) 988 clen = control->m_len; 989 990 SOCKBUF_LOCK(&so->so_snd); 991 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 992 SOCKBUF_UNLOCK(&so->so_snd); 993 error = EPIPE; 994 goto out; 995 } 996 if (so->so_error) { 997 error = so->so_error; 998 so->so_error = 0; 999 SOCKBUF_UNLOCK(&so->so_snd); 1000 goto out; 1001 } 1002 if ((so->so_state & SS_ISCONNECTED) == 0) { 1003 /* 1004 * `sendto' and `sendmsg' is allowed on a connection-based 1005 * socket if it supports implied connect. Return ENOTCONN if 1006 * not connected and no address is supplied. 1007 */ 1008 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1009 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1010 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1011 !(resid == 0 && clen != 0)) { 1012 SOCKBUF_UNLOCK(&so->so_snd); 1013 error = ENOTCONN; 1014 goto out; 1015 } 1016 } else if (addr == NULL) { 1017 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1018 error = ENOTCONN; 1019 else 1020 error = EDESTADDRREQ; 1021 SOCKBUF_UNLOCK(&so->so_snd); 1022 goto out; 1023 } 1024 } 1025 1026 /* 1027 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1028 * problem and need fixing. 1029 */ 1030 space = sbspace(&so->so_snd); 1031 if (flags & MSG_OOB) 1032 space += 1024; 1033 space -= clen; 1034 SOCKBUF_UNLOCK(&so->so_snd); 1035 if (resid > space) { 1036 error = EMSGSIZE; 1037 goto out; 1038 } 1039 if (uio == NULL) { 1040 resid = 0; 1041 if (flags & MSG_EOR) 1042 top->m_flags |= M_EOR; 1043 } else { 1044 #ifdef ZERO_COPY_SOCKETS 1045 error = sosend_copyin(uio, &top, atomic, &space, flags); 1046 if (error) 1047 goto out; 1048 #else 1049 /* 1050 * Copy the data from userland into a mbuf chain. 1051 * If no data is to be copied in, a single empty mbuf 1052 * is returned. 1053 */ 1054 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1055 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1056 if (top == NULL) { 1057 error = EFAULT; /* only possible error */ 1058 goto out; 1059 } 1060 space -= resid - uio->uio_resid; 1061 #endif 1062 resid = uio->uio_resid; 1063 } 1064 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1065 /* 1066 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1067 * than with. 1068 */ 1069 if (dontroute) { 1070 SOCK_LOCK(so); 1071 so->so_options |= SO_DONTROUTE; 1072 SOCK_UNLOCK(so); 1073 } 1074 /* 1075 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1076 * of date. We could have recieved a reset packet in an interrupt or 1077 * maybe we slept while doing page faults in uiomove() etc. We could 1078 * probably recheck again inside the locking protection here, but 1079 * there are probably other places that this also happens. We must 1080 * rethink this. 1081 */ 1082 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1083 (flags & MSG_OOB) ? PRUS_OOB : 1084 /* 1085 * If the user set MSG_EOF, the protocol understands this flag and 1086 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1087 */ 1088 ((flags & MSG_EOF) && 1089 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1090 (resid <= 0)) ? 1091 PRUS_EOF : 1092 /* If there is more to send set PRUS_MORETOCOME */ 1093 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1094 top, addr, control, td); 1095 if (dontroute) { 1096 SOCK_LOCK(so); 1097 so->so_options &= ~SO_DONTROUTE; 1098 SOCK_UNLOCK(so); 1099 } 1100 clen = 0; 1101 control = NULL; 1102 top = NULL; 1103 out: 1104 if (top != NULL) 1105 m_freem(top); 1106 if (control != NULL) 1107 m_freem(control); 1108 return (error); 1109 } 1110 1111 /* 1112 * Send on a socket. If send must go all at once and message is larger than 1113 * send buffering, then hard error. Lock against other senders. If must go 1114 * all at once and not enough room now, then inform user that this would 1115 * block and do nothing. Otherwise, if nonblocking, send as much as 1116 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1117 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1118 * in mbuf chain must be small enough to send all at once. 1119 * 1120 * Returns nonzero on error, timeout or signal; callers must check for short 1121 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1122 * on return. 1123 */ 1124 #define snderr(errno) { error = (errno); goto release; } 1125 int 1126 sosend_generic(so, addr, uio, top, control, flags, td) 1127 struct socket *so; 1128 struct sockaddr *addr; 1129 struct uio *uio; 1130 struct mbuf *top; 1131 struct mbuf *control; 1132 int flags; 1133 struct thread *td; 1134 { 1135 long space, resid; 1136 int clen = 0, error, dontroute; 1137 int atomic = sosendallatonce(so) || top; 1138 1139 if (uio != NULL) 1140 resid = uio->uio_resid; 1141 else 1142 resid = top->m_pkthdr.len; 1143 /* 1144 * In theory resid should be unsigned. However, space must be 1145 * signed, as it might be less than 0 if we over-committed, and we 1146 * must use a signed comparison of space and resid. On the other 1147 * hand, a negative resid causes us to loop sending 0-length 1148 * segments to the protocol. 1149 * 1150 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1151 * type sockets since that's an error. 1152 */ 1153 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1154 error = EINVAL; 1155 goto out; 1156 } 1157 1158 dontroute = 1159 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1160 (so->so_proto->pr_flags & PR_ATOMIC); 1161 if (td != NULL) 1162 td->td_proc->p_stats->p_ru.ru_msgsnd++; 1163 if (control != NULL) 1164 clen = control->m_len; 1165 1166 SOCKBUF_LOCK(&so->so_snd); 1167 restart: 1168 SOCKBUF_LOCK_ASSERT(&so->so_snd); 1169 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1170 if (error) 1171 goto out_locked; 1172 do { 1173 SOCKBUF_LOCK_ASSERT(&so->so_snd); 1174 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 1175 snderr(EPIPE); 1176 if (so->so_error) { 1177 error = so->so_error; 1178 so->so_error = 0; 1179 goto release; 1180 } 1181 if ((so->so_state & SS_ISCONNECTED) == 0) { 1182 /* 1183 * `sendto' and `sendmsg' is allowed on a connection- 1184 * based socket if it supports implied connect. 1185 * Return ENOTCONN if not connected and no address is 1186 * supplied. 1187 */ 1188 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1189 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1190 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1191 !(resid == 0 && clen != 0)) 1192 snderr(ENOTCONN); 1193 } else if (addr == NULL) 1194 snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 1195 ENOTCONN : EDESTADDRREQ); 1196 } 1197 space = sbspace(&so->so_snd); 1198 if (flags & MSG_OOB) 1199 space += 1024; 1200 if ((atomic && resid > so->so_snd.sb_hiwat) || 1201 clen > so->so_snd.sb_hiwat) 1202 snderr(EMSGSIZE); 1203 if (space < resid + clen && 1204 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1205 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) 1206 snderr(EWOULDBLOCK); 1207 sbunlock(&so->so_snd); 1208 error = sbwait(&so->so_snd); 1209 if (error) 1210 goto out_locked; 1211 goto restart; 1212 } 1213 SOCKBUF_UNLOCK(&so->so_snd); 1214 space -= clen; 1215 do { 1216 if (uio == NULL) { 1217 resid = 0; 1218 if (flags & MSG_EOR) 1219 top->m_flags |= M_EOR; 1220 } else { 1221 #ifdef ZERO_COPY_SOCKETS 1222 error = sosend_copyin(uio, &top, atomic, 1223 &space, flags); 1224 if (error != 0) { 1225 SOCKBUF_LOCK(&so->so_snd); 1226 goto release; 1227 } 1228 #else 1229 /* 1230 * Copy the data from userland into a mbuf 1231 * chain. If no data is to be copied in, 1232 * a single empty mbuf is returned. 1233 */ 1234 top = m_uiotombuf(uio, M_WAITOK, space, 1235 (atomic ? max_hdr : 0), 1236 (atomic ? M_PKTHDR : 0) | 1237 ((flags & MSG_EOR) ? M_EOR : 0)); 1238 if (top == NULL) { 1239 SOCKBUF_LOCK(&so->so_snd); 1240 error = EFAULT; /* only possible error */ 1241 goto release; 1242 } 1243 space -= resid - uio->uio_resid; 1244 #endif 1245 resid = uio->uio_resid; 1246 } 1247 if (dontroute) { 1248 SOCK_LOCK(so); 1249 so->so_options |= SO_DONTROUTE; 1250 SOCK_UNLOCK(so); 1251 } 1252 /* 1253 * XXX all the SBS_CANTSENDMORE checks previously 1254 * done could be out of date. We could have recieved 1255 * a reset packet in an interrupt or maybe we slept 1256 * while doing page faults in uiomove() etc. We 1257 * could probably recheck again inside the locking 1258 * protection here, but there are probably other 1259 * places that this also happens. We must rethink 1260 * this. 1261 */ 1262 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1263 (flags & MSG_OOB) ? PRUS_OOB : 1264 /* 1265 * If the user set MSG_EOF, the protocol understands 1266 * this flag and nothing left to send then use 1267 * PRU_SEND_EOF instead of PRU_SEND. 1268 */ 1269 ((flags & MSG_EOF) && 1270 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1271 (resid <= 0)) ? 1272 PRUS_EOF : 1273 /* If there is more to send set PRUS_MORETOCOME. */ 1274 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1275 top, addr, control, td); 1276 if (dontroute) { 1277 SOCK_LOCK(so); 1278 so->so_options &= ~SO_DONTROUTE; 1279 SOCK_UNLOCK(so); 1280 } 1281 clen = 0; 1282 control = NULL; 1283 top = NULL; 1284 if (error) { 1285 SOCKBUF_LOCK(&so->so_snd); 1286 goto release; 1287 } 1288 } while (resid && space > 0); 1289 SOCKBUF_LOCK(&so->so_snd); 1290 } while (resid); 1291 1292 release: 1293 SOCKBUF_LOCK_ASSERT(&so->so_snd); 1294 sbunlock(&so->so_snd); 1295 out_locked: 1296 SOCKBUF_LOCK_ASSERT(&so->so_snd); 1297 SOCKBUF_UNLOCK(&so->so_snd); 1298 out: 1299 if (top != NULL) 1300 m_freem(top); 1301 if (control != NULL) 1302 m_freem(control); 1303 return (error); 1304 } 1305 #undef snderr 1306 1307 int 1308 sosend(so, addr, uio, top, control, flags, td) 1309 struct socket *so; 1310 struct sockaddr *addr; 1311 struct uio *uio; 1312 struct mbuf *top; 1313 struct mbuf *control; 1314 int flags; 1315 struct thread *td; 1316 { 1317 1318 /* XXXRW: Temporary debugging. */ 1319 KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend, 1320 ("sosend: protocol calls sosend")); 1321 1322 return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1323 control, flags, td)); 1324 } 1325 1326 /* 1327 * The part of soreceive() that implements reading non-inline out-of-band 1328 * data from a socket. For more complete comments, see soreceive(), from 1329 * which this code originated. 1330 * 1331 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1332 * unable to return an mbuf chain to the caller. 1333 */ 1334 static int 1335 soreceive_rcvoob(so, uio, flags) 1336 struct socket *so; 1337 struct uio *uio; 1338 int flags; 1339 { 1340 struct protosw *pr = so->so_proto; 1341 struct mbuf *m; 1342 int error; 1343 1344 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1345 1346 m = m_get(M_TRYWAIT, MT_DATA); 1347 if (m == NULL) 1348 return (ENOBUFS); 1349 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1350 if (error) 1351 goto bad; 1352 do { 1353 #ifdef ZERO_COPY_SOCKETS 1354 if (so_zero_copy_receive) { 1355 int disposable; 1356 1357 if ((m->m_flags & M_EXT) 1358 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1359 disposable = 1; 1360 else 1361 disposable = 0; 1362 1363 error = uiomoveco(mtod(m, void *), 1364 min(uio->uio_resid, m->m_len), 1365 uio, disposable); 1366 } else 1367 #endif /* ZERO_COPY_SOCKETS */ 1368 error = uiomove(mtod(m, void *), 1369 (int) min(uio->uio_resid, m->m_len), uio); 1370 m = m_free(m); 1371 } while (uio->uio_resid && error == 0 && m); 1372 bad: 1373 if (m != NULL) 1374 m_freem(m); 1375 return (error); 1376 } 1377 1378 /* 1379 * Following replacement or removal of the first mbuf on the first mbuf chain 1380 * of a socket buffer, push necessary state changes back into the socket 1381 * buffer so that other consumers see the values consistently. 'nextrecord' 1382 * is the callers locally stored value of the original value of 1383 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1384 * NOTE: 'nextrecord' may be NULL. 1385 */ 1386 static __inline void 1387 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1388 { 1389 1390 SOCKBUF_LOCK_ASSERT(sb); 1391 /* 1392 * First, update for the new value of nextrecord. If necessary, make 1393 * it the first record. 1394 */ 1395 if (sb->sb_mb != NULL) 1396 sb->sb_mb->m_nextpkt = nextrecord; 1397 else 1398 sb->sb_mb = nextrecord; 1399 1400 /* 1401 * Now update any dependent socket buffer fields to reflect the new 1402 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1403 * addition of a second clause that takes care of the case where 1404 * sb_mb has been updated, but remains the last record. 1405 */ 1406 if (sb->sb_mb == NULL) { 1407 sb->sb_mbtail = NULL; 1408 sb->sb_lastrecord = NULL; 1409 } else if (sb->sb_mb->m_nextpkt == NULL) 1410 sb->sb_lastrecord = sb->sb_mb; 1411 } 1412 1413 1414 /* 1415 * Implement receive operations on a socket. We depend on the way that 1416 * records are added to the sockbuf by sbappend. In particular, each record 1417 * (mbufs linked through m_next) must begin with an address if the protocol 1418 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1419 * data, and then zero or more mbufs of data. In order to allow parallelism 1420 * between network receive and copying to user space, as well as avoid 1421 * sleeping with a mutex held, we release the socket buffer mutex during the 1422 * user space copy. Although the sockbuf is locked, new data may still be 1423 * appended, and thus we must maintain consistency of the sockbuf during that 1424 * time. 1425 * 1426 * The caller may receive the data as a single mbuf chain by supplying an 1427 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1428 * the count in uio_resid. 1429 */ 1430 int 1431 soreceive_generic(so, psa, uio, mp0, controlp, flagsp) 1432 struct socket *so; 1433 struct sockaddr **psa; 1434 struct uio *uio; 1435 struct mbuf **mp0; 1436 struct mbuf **controlp; 1437 int *flagsp; 1438 { 1439 struct mbuf *m, **mp; 1440 int flags, len, error, offset; 1441 struct protosw *pr = so->so_proto; 1442 struct mbuf *nextrecord; 1443 int moff, type = 0; 1444 int orig_resid = uio->uio_resid; 1445 1446 mp = mp0; 1447 if (psa != NULL) 1448 *psa = NULL; 1449 if (controlp != NULL) 1450 *controlp = NULL; 1451 if (flagsp != NULL) 1452 flags = *flagsp &~ MSG_EOR; 1453 else 1454 flags = 0; 1455 if (flags & MSG_OOB) 1456 return (soreceive_rcvoob(so, uio, flags)); 1457 if (mp != NULL) 1458 *mp = NULL; 1459 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1460 && uio->uio_resid) 1461 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1462 1463 SOCKBUF_LOCK(&so->so_rcv); 1464 restart: 1465 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1466 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1467 if (error) 1468 goto out; 1469 1470 m = so->so_rcv.sb_mb; 1471 /* 1472 * If we have less data than requested, block awaiting more (subject 1473 * to any timeout) if: 1474 * 1. the current count is less than the low water mark, or 1475 * 2. MSG_WAITALL is set, and it is possible to do the entire 1476 * receive operation at once if we block (resid <= hiwat). 1477 * 3. MSG_DONTWAIT is not set 1478 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1479 * we have to do the receive in sections, and thus risk returning a 1480 * short count if a timeout or signal occurs after we start. 1481 */ 1482 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1483 so->so_rcv.sb_cc < uio->uio_resid) && 1484 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1485 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1486 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1487 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1488 ("receive: m == %p so->so_rcv.sb_cc == %u", 1489 m, so->so_rcv.sb_cc)); 1490 if (so->so_error) { 1491 if (m != NULL) 1492 goto dontblock; 1493 error = so->so_error; 1494 if ((flags & MSG_PEEK) == 0) 1495 so->so_error = 0; 1496 goto release; 1497 } 1498 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1499 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1500 if (m) 1501 goto dontblock; 1502 else 1503 goto release; 1504 } 1505 for (; m != NULL; m = m->m_next) 1506 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1507 m = so->so_rcv.sb_mb; 1508 goto dontblock; 1509 } 1510 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1511 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1512 error = ENOTCONN; 1513 goto release; 1514 } 1515 if (uio->uio_resid == 0) 1516 goto release; 1517 if ((so->so_state & SS_NBIO) || 1518 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1519 error = EWOULDBLOCK; 1520 goto release; 1521 } 1522 SBLASTRECORDCHK(&so->so_rcv); 1523 SBLASTMBUFCHK(&so->so_rcv); 1524 sbunlock(&so->so_rcv); 1525 error = sbwait(&so->so_rcv); 1526 if (error) 1527 goto out; 1528 goto restart; 1529 } 1530 dontblock: 1531 /* 1532 * From this point onward, we maintain 'nextrecord' as a cache of the 1533 * pointer to the next record in the socket buffer. We must keep the 1534 * various socket buffer pointers and local stack versions of the 1535 * pointers in sync, pushing out modifications before dropping the 1536 * socket buffer mutex, and re-reading them when picking it up. 1537 * 1538 * Otherwise, we will race with the network stack appending new data 1539 * or records onto the socket buffer by using inconsistent/stale 1540 * versions of the field, possibly resulting in socket buffer 1541 * corruption. 1542 * 1543 * By holding the high-level sblock(), we prevent simultaneous 1544 * readers from pulling off the front of the socket buffer. 1545 */ 1546 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1547 if (uio->uio_td) 1548 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 1549 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1550 SBLASTRECORDCHK(&so->so_rcv); 1551 SBLASTMBUFCHK(&so->so_rcv); 1552 nextrecord = m->m_nextpkt; 1553 if (pr->pr_flags & PR_ADDR) { 1554 KASSERT(m->m_type == MT_SONAME, 1555 ("m->m_type == %d", m->m_type)); 1556 orig_resid = 0; 1557 if (psa != NULL) 1558 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1559 M_NOWAIT); 1560 if (flags & MSG_PEEK) { 1561 m = m->m_next; 1562 } else { 1563 sbfree(&so->so_rcv, m); 1564 so->so_rcv.sb_mb = m_free(m); 1565 m = so->so_rcv.sb_mb; 1566 sockbuf_pushsync(&so->so_rcv, nextrecord); 1567 } 1568 } 1569 1570 /* 1571 * Process one or more MT_CONTROL mbufs present before any data mbufs 1572 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1573 * just copy the data; if !MSG_PEEK, we call into the protocol to 1574 * perform externalization (or freeing if controlp == NULL). 1575 */ 1576 if (m != NULL && m->m_type == MT_CONTROL) { 1577 struct mbuf *cm = NULL, *cmn; 1578 struct mbuf **cme = &cm; 1579 1580 do { 1581 if (flags & MSG_PEEK) { 1582 if (controlp != NULL) { 1583 *controlp = m_copy(m, 0, m->m_len); 1584 controlp = &(*controlp)->m_next; 1585 } 1586 m = m->m_next; 1587 } else { 1588 sbfree(&so->so_rcv, m); 1589 so->so_rcv.sb_mb = m->m_next; 1590 m->m_next = NULL; 1591 *cme = m; 1592 cme = &(*cme)->m_next; 1593 m = so->so_rcv.sb_mb; 1594 } 1595 } while (m != NULL && m->m_type == MT_CONTROL); 1596 if ((flags & MSG_PEEK) == 0) 1597 sockbuf_pushsync(&so->so_rcv, nextrecord); 1598 while (cm != NULL) { 1599 cmn = cm->m_next; 1600 cm->m_next = NULL; 1601 if (pr->pr_domain->dom_externalize != NULL) { 1602 SOCKBUF_UNLOCK(&so->so_rcv); 1603 error = (*pr->pr_domain->dom_externalize) 1604 (cm, controlp); 1605 SOCKBUF_LOCK(&so->so_rcv); 1606 } else if (controlp != NULL) 1607 *controlp = cm; 1608 else 1609 m_freem(cm); 1610 if (controlp != NULL) { 1611 orig_resid = 0; 1612 while (*controlp != NULL) 1613 controlp = &(*controlp)->m_next; 1614 } 1615 cm = cmn; 1616 } 1617 if (m != NULL) 1618 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1619 else 1620 nextrecord = so->so_rcv.sb_mb; 1621 orig_resid = 0; 1622 } 1623 if (m != NULL) { 1624 if ((flags & MSG_PEEK) == 0) { 1625 KASSERT(m->m_nextpkt == nextrecord, 1626 ("soreceive: post-control, nextrecord !sync")); 1627 if (nextrecord == NULL) { 1628 KASSERT(so->so_rcv.sb_mb == m, 1629 ("soreceive: post-control, sb_mb!=m")); 1630 KASSERT(so->so_rcv.sb_lastrecord == m, 1631 ("soreceive: post-control, lastrecord!=m")); 1632 } 1633 } 1634 type = m->m_type; 1635 if (type == MT_OOBDATA) 1636 flags |= MSG_OOB; 1637 } else { 1638 if ((flags & MSG_PEEK) == 0) { 1639 KASSERT(so->so_rcv.sb_mb == nextrecord, 1640 ("soreceive: sb_mb != nextrecord")); 1641 if (so->so_rcv.sb_mb == NULL) { 1642 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1643 ("soreceive: sb_lastercord != NULL")); 1644 } 1645 } 1646 } 1647 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1648 SBLASTRECORDCHK(&so->so_rcv); 1649 SBLASTMBUFCHK(&so->so_rcv); 1650 1651 /* 1652 * Now continue to read any data mbufs off of the head of the socket 1653 * buffer until the read request is satisfied. Note that 'type' is 1654 * used to store the type of any mbuf reads that have happened so far 1655 * such that soreceive() can stop reading if the type changes, which 1656 * causes soreceive() to return only one of regular data and inline 1657 * out-of-band data in a single socket receive operation. 1658 */ 1659 moff = 0; 1660 offset = 0; 1661 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1662 /* 1663 * If the type of mbuf has changed since the last mbuf 1664 * examined ('type'), end the receive operation. 1665 */ 1666 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1667 if (m->m_type == MT_OOBDATA) { 1668 if (type != MT_OOBDATA) 1669 break; 1670 } else if (type == MT_OOBDATA) 1671 break; 1672 else 1673 KASSERT(m->m_type == MT_DATA, 1674 ("m->m_type == %d", m->m_type)); 1675 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1676 len = uio->uio_resid; 1677 if (so->so_oobmark && len > so->so_oobmark - offset) 1678 len = so->so_oobmark - offset; 1679 if (len > m->m_len - moff) 1680 len = m->m_len - moff; 1681 /* 1682 * If mp is set, just pass back the mbufs. Otherwise copy 1683 * them out via the uio, then free. Sockbuf must be 1684 * consistent here (points to current mbuf, it points to next 1685 * record) when we drop priority; we must note any additions 1686 * to the sockbuf when we block interrupts again. 1687 */ 1688 if (mp == NULL) { 1689 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1690 SBLASTRECORDCHK(&so->so_rcv); 1691 SBLASTMBUFCHK(&so->so_rcv); 1692 SOCKBUF_UNLOCK(&so->so_rcv); 1693 #ifdef ZERO_COPY_SOCKETS 1694 if (so_zero_copy_receive) { 1695 int disposable; 1696 1697 if ((m->m_flags & M_EXT) 1698 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1699 disposable = 1; 1700 else 1701 disposable = 0; 1702 1703 error = uiomoveco(mtod(m, char *) + moff, 1704 (int)len, uio, 1705 disposable); 1706 } else 1707 #endif /* ZERO_COPY_SOCKETS */ 1708 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1709 SOCKBUF_LOCK(&so->so_rcv); 1710 if (error) { 1711 /* 1712 * The MT_SONAME mbuf has already been removed 1713 * from the record, so it is necessary to 1714 * remove the data mbufs, if any, to preserve 1715 * the invariant in the case of PR_ADDR that 1716 * requires MT_SONAME mbufs at the head of 1717 * each record. 1718 */ 1719 if (m && pr->pr_flags & PR_ATOMIC && 1720 ((flags & MSG_PEEK) == 0)) 1721 (void)sbdroprecord_locked(&so->so_rcv); 1722 goto release; 1723 } 1724 } else 1725 uio->uio_resid -= len; 1726 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1727 if (len == m->m_len - moff) { 1728 if (m->m_flags & M_EOR) 1729 flags |= MSG_EOR; 1730 if (flags & MSG_PEEK) { 1731 m = m->m_next; 1732 moff = 0; 1733 } else { 1734 nextrecord = m->m_nextpkt; 1735 sbfree(&so->so_rcv, m); 1736 if (mp != NULL) { 1737 *mp = m; 1738 mp = &m->m_next; 1739 so->so_rcv.sb_mb = m = m->m_next; 1740 *mp = NULL; 1741 } else { 1742 so->so_rcv.sb_mb = m_free(m); 1743 m = so->so_rcv.sb_mb; 1744 } 1745 sockbuf_pushsync(&so->so_rcv, nextrecord); 1746 SBLASTRECORDCHK(&so->so_rcv); 1747 SBLASTMBUFCHK(&so->so_rcv); 1748 } 1749 } else { 1750 if (flags & MSG_PEEK) 1751 moff += len; 1752 else { 1753 if (mp != NULL) { 1754 int copy_flag; 1755 1756 if (flags & MSG_DONTWAIT) 1757 copy_flag = M_DONTWAIT; 1758 else 1759 copy_flag = M_TRYWAIT; 1760 if (copy_flag == M_TRYWAIT) 1761 SOCKBUF_UNLOCK(&so->so_rcv); 1762 *mp = m_copym(m, 0, len, copy_flag); 1763 if (copy_flag == M_TRYWAIT) 1764 SOCKBUF_LOCK(&so->so_rcv); 1765 if (*mp == NULL) { 1766 /* 1767 * m_copym() couldn't 1768 * allocate an mbuf. Adjust 1769 * uio_resid back (it was 1770 * adjusted down by len 1771 * bytes, which we didn't end 1772 * up "copying" over). 1773 */ 1774 uio->uio_resid += len; 1775 break; 1776 } 1777 } 1778 m->m_data += len; 1779 m->m_len -= len; 1780 so->so_rcv.sb_cc -= len; 1781 } 1782 } 1783 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1784 if (so->so_oobmark) { 1785 if ((flags & MSG_PEEK) == 0) { 1786 so->so_oobmark -= len; 1787 if (so->so_oobmark == 0) { 1788 so->so_rcv.sb_state |= SBS_RCVATMARK; 1789 break; 1790 } 1791 } else { 1792 offset += len; 1793 if (offset == so->so_oobmark) 1794 break; 1795 } 1796 } 1797 if (flags & MSG_EOR) 1798 break; 1799 /* 1800 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1801 * must not quit until "uio->uio_resid == 0" or an error 1802 * termination. If a signal/timeout occurs, return with a 1803 * short count but without error. Keep sockbuf locked 1804 * against other readers. 1805 */ 1806 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1807 !sosendallatonce(so) && nextrecord == NULL) { 1808 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1809 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1810 break; 1811 /* 1812 * Notify the protocol that some data has been 1813 * drained before blocking. 1814 */ 1815 if (pr->pr_flags & PR_WANTRCVD) { 1816 SOCKBUF_UNLOCK(&so->so_rcv); 1817 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1818 SOCKBUF_LOCK(&so->so_rcv); 1819 } 1820 SBLASTRECORDCHK(&so->so_rcv); 1821 SBLASTMBUFCHK(&so->so_rcv); 1822 error = sbwait(&so->so_rcv); 1823 if (error) 1824 goto release; 1825 m = so->so_rcv.sb_mb; 1826 if (m != NULL) 1827 nextrecord = m->m_nextpkt; 1828 } 1829 } 1830 1831 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1832 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1833 flags |= MSG_TRUNC; 1834 if ((flags & MSG_PEEK) == 0) 1835 (void) sbdroprecord_locked(&so->so_rcv); 1836 } 1837 if ((flags & MSG_PEEK) == 0) { 1838 if (m == NULL) { 1839 /* 1840 * First part is an inline SB_EMPTY_FIXUP(). Second 1841 * part makes sure sb_lastrecord is up-to-date if 1842 * there is still data in the socket buffer. 1843 */ 1844 so->so_rcv.sb_mb = nextrecord; 1845 if (so->so_rcv.sb_mb == NULL) { 1846 so->so_rcv.sb_mbtail = NULL; 1847 so->so_rcv.sb_lastrecord = NULL; 1848 } else if (nextrecord->m_nextpkt == NULL) 1849 so->so_rcv.sb_lastrecord = nextrecord; 1850 } 1851 SBLASTRECORDCHK(&so->so_rcv); 1852 SBLASTMBUFCHK(&so->so_rcv); 1853 /* 1854 * If soreceive() is being done from the socket callback, 1855 * then don't need to generate ACK to peer to update window, 1856 * since ACK will be generated on return to TCP. 1857 */ 1858 if (!(flags & MSG_SOCALLBCK) && 1859 (pr->pr_flags & PR_WANTRCVD)) { 1860 SOCKBUF_UNLOCK(&so->so_rcv); 1861 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1862 SOCKBUF_LOCK(&so->so_rcv); 1863 } 1864 } 1865 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1866 if (orig_resid == uio->uio_resid && orig_resid && 1867 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1868 sbunlock(&so->so_rcv); 1869 goto restart; 1870 } 1871 1872 if (flagsp != NULL) 1873 *flagsp |= flags; 1874 release: 1875 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1876 sbunlock(&so->so_rcv); 1877 out: 1878 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1879 SOCKBUF_UNLOCK(&so->so_rcv); 1880 return (error); 1881 } 1882 1883 int 1884 soreceive(so, psa, uio, mp0, controlp, flagsp) 1885 struct socket *so; 1886 struct sockaddr **psa; 1887 struct uio *uio; 1888 struct mbuf **mp0; 1889 struct mbuf **controlp; 1890 int *flagsp; 1891 { 1892 1893 /* XXXRW: Temporary debugging. */ 1894 KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive, 1895 ("soreceive: protocol calls soreceive")); 1896 1897 return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 1898 controlp, flagsp)); 1899 } 1900 1901 int 1902 soshutdown(so, how) 1903 struct socket *so; 1904 int how; 1905 { 1906 struct protosw *pr = so->so_proto; 1907 1908 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1909 return (EINVAL); 1910 1911 if (how != SHUT_WR) 1912 sorflush(so); 1913 if (how != SHUT_RD) 1914 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1915 return (0); 1916 } 1917 1918 void 1919 sorflush(so) 1920 struct socket *so; 1921 { 1922 struct sockbuf *sb = &so->so_rcv; 1923 struct protosw *pr = so->so_proto; 1924 struct sockbuf asb; 1925 1926 /* 1927 * XXXRW: This is quite ugly. Previously, this code made a copy of 1928 * the socket buffer, then zero'd the original to clear the buffer 1929 * fields. However, with mutexes in the socket buffer, this causes 1930 * problems. We only clear the zeroable bits of the original; 1931 * however, we have to initialize and destroy the mutex in the copy 1932 * so that dom_dispose() and sbrelease() can lock t as needed. 1933 */ 1934 SOCKBUF_LOCK(sb); 1935 sb->sb_flags |= SB_NOINTR; 1936 (void) sblock(sb, M_WAITOK); 1937 /* 1938 * socantrcvmore_locked() drops the socket buffer mutex so that it 1939 * can safely perform wakeups. Re-acquire the mutex before 1940 * continuing. 1941 */ 1942 socantrcvmore_locked(so); 1943 SOCKBUF_LOCK(sb); 1944 sbunlock(sb); 1945 /* 1946 * Invalidate/clear most of the sockbuf structure, but leave selinfo 1947 * and mutex data unchanged. 1948 */ 1949 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1950 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1951 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1952 bzero(&sb->sb_startzero, 1953 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1954 SOCKBUF_UNLOCK(sb); 1955 1956 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1957 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1958 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1959 sbrelease(&asb, so); 1960 SOCKBUF_LOCK_DESTROY(&asb); 1961 } 1962 1963 /* 1964 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 1965 * additional variant to handle the case where the option value needs to be 1966 * some kind of integer, but not a specific size. In addition to their use 1967 * here, these functions are also called by the protocol-level pr_ctloutput() 1968 * routines. 1969 */ 1970 int 1971 sooptcopyin(sopt, buf, len, minlen) 1972 struct sockopt *sopt; 1973 void *buf; 1974 size_t len; 1975 size_t minlen; 1976 { 1977 size_t valsize; 1978 1979 /* 1980 * If the user gives us more than we wanted, we ignore it, but if we 1981 * don't get the minimum length the caller wants, we return EINVAL. 1982 * On success, sopt->sopt_valsize is set to however much we actually 1983 * retrieved. 1984 */ 1985 if ((valsize = sopt->sopt_valsize) < minlen) 1986 return EINVAL; 1987 if (valsize > len) 1988 sopt->sopt_valsize = valsize = len; 1989 1990 if (sopt->sopt_td != NULL) 1991 return (copyin(sopt->sopt_val, buf, valsize)); 1992 1993 bcopy(sopt->sopt_val, buf, valsize); 1994 return (0); 1995 } 1996 1997 /* 1998 * Kernel version of setsockopt(2). 1999 * 2000 * XXX: optlen is size_t, not socklen_t 2001 */ 2002 int 2003 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2004 size_t optlen) 2005 { 2006 struct sockopt sopt; 2007 2008 sopt.sopt_level = level; 2009 sopt.sopt_name = optname; 2010 sopt.sopt_dir = SOPT_SET; 2011 sopt.sopt_val = optval; 2012 sopt.sopt_valsize = optlen; 2013 sopt.sopt_td = NULL; 2014 return (sosetopt(so, &sopt)); 2015 } 2016 2017 int 2018 sosetopt(so, sopt) 2019 struct socket *so; 2020 struct sockopt *sopt; 2021 { 2022 int error, optval; 2023 struct linger l; 2024 struct timeval tv; 2025 u_long val; 2026 #ifdef MAC 2027 struct mac extmac; 2028 #endif 2029 2030 error = 0; 2031 if (sopt->sopt_level != SOL_SOCKET) { 2032 if (so->so_proto && so->so_proto->pr_ctloutput) 2033 return ((*so->so_proto->pr_ctloutput) 2034 (so, sopt)); 2035 error = ENOPROTOOPT; 2036 } else { 2037 switch (sopt->sopt_name) { 2038 #ifdef INET 2039 case SO_ACCEPTFILTER: 2040 error = do_setopt_accept_filter(so, sopt); 2041 if (error) 2042 goto bad; 2043 break; 2044 #endif 2045 case SO_LINGER: 2046 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2047 if (error) 2048 goto bad; 2049 2050 SOCK_LOCK(so); 2051 so->so_linger = l.l_linger; 2052 if (l.l_onoff) 2053 so->so_options |= SO_LINGER; 2054 else 2055 so->so_options &= ~SO_LINGER; 2056 SOCK_UNLOCK(so); 2057 break; 2058 2059 case SO_DEBUG: 2060 case SO_KEEPALIVE: 2061 case SO_DONTROUTE: 2062 case SO_USELOOPBACK: 2063 case SO_BROADCAST: 2064 case SO_REUSEADDR: 2065 case SO_REUSEPORT: 2066 case SO_OOBINLINE: 2067 case SO_TIMESTAMP: 2068 case SO_BINTIME: 2069 case SO_NOSIGPIPE: 2070 error = sooptcopyin(sopt, &optval, sizeof optval, 2071 sizeof optval); 2072 if (error) 2073 goto bad; 2074 SOCK_LOCK(so); 2075 if (optval) 2076 so->so_options |= sopt->sopt_name; 2077 else 2078 so->so_options &= ~sopt->sopt_name; 2079 SOCK_UNLOCK(so); 2080 break; 2081 2082 case SO_SNDBUF: 2083 case SO_RCVBUF: 2084 case SO_SNDLOWAT: 2085 case SO_RCVLOWAT: 2086 error = sooptcopyin(sopt, &optval, sizeof optval, 2087 sizeof optval); 2088 if (error) 2089 goto bad; 2090 2091 /* 2092 * Values < 1 make no sense for any of these options, 2093 * so disallow them. 2094 */ 2095 if (optval < 1) { 2096 error = EINVAL; 2097 goto bad; 2098 } 2099 2100 switch (sopt->sopt_name) { 2101 case SO_SNDBUF: 2102 case SO_RCVBUF: 2103 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2104 &so->so_snd : &so->so_rcv, (u_long)optval, 2105 so, curthread) == 0) { 2106 error = ENOBUFS; 2107 goto bad; 2108 } 2109 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2110 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2111 break; 2112 2113 /* 2114 * Make sure the low-water is never greater than the 2115 * high-water. 2116 */ 2117 case SO_SNDLOWAT: 2118 SOCKBUF_LOCK(&so->so_snd); 2119 so->so_snd.sb_lowat = 2120 (optval > so->so_snd.sb_hiwat) ? 2121 so->so_snd.sb_hiwat : optval; 2122 SOCKBUF_UNLOCK(&so->so_snd); 2123 break; 2124 case SO_RCVLOWAT: 2125 SOCKBUF_LOCK(&so->so_rcv); 2126 so->so_rcv.sb_lowat = 2127 (optval > so->so_rcv.sb_hiwat) ? 2128 so->so_rcv.sb_hiwat : optval; 2129 SOCKBUF_UNLOCK(&so->so_rcv); 2130 break; 2131 } 2132 break; 2133 2134 case SO_SNDTIMEO: 2135 case SO_RCVTIMEO: 2136 #ifdef COMPAT_IA32 2137 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { 2138 struct timeval32 tv32; 2139 2140 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2141 sizeof tv32); 2142 CP(tv32, tv, tv_sec); 2143 CP(tv32, tv, tv_usec); 2144 } else 2145 #endif 2146 error = sooptcopyin(sopt, &tv, sizeof tv, 2147 sizeof tv); 2148 if (error) 2149 goto bad; 2150 2151 /* assert(hz > 0); */ 2152 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2153 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2154 error = EDOM; 2155 goto bad; 2156 } 2157 /* assert(tick > 0); */ 2158 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2159 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2160 if (val > INT_MAX) { 2161 error = EDOM; 2162 goto bad; 2163 } 2164 if (val == 0 && tv.tv_usec != 0) 2165 val = 1; 2166 2167 switch (sopt->sopt_name) { 2168 case SO_SNDTIMEO: 2169 so->so_snd.sb_timeo = val; 2170 break; 2171 case SO_RCVTIMEO: 2172 so->so_rcv.sb_timeo = val; 2173 break; 2174 } 2175 break; 2176 2177 case SO_LABEL: 2178 #ifdef MAC 2179 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2180 sizeof extmac); 2181 if (error) 2182 goto bad; 2183 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2184 so, &extmac); 2185 #else 2186 error = EOPNOTSUPP; 2187 #endif 2188 break; 2189 2190 default: 2191 error = ENOPROTOOPT; 2192 break; 2193 } 2194 if (error == 0 && so->so_proto != NULL && 2195 so->so_proto->pr_ctloutput != NULL) { 2196 (void) ((*so->so_proto->pr_ctloutput) 2197 (so, sopt)); 2198 } 2199 } 2200 bad: 2201 return (error); 2202 } 2203 2204 /* 2205 * Helper routine for getsockopt. 2206 */ 2207 int 2208 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2209 { 2210 int error; 2211 size_t valsize; 2212 2213 error = 0; 2214 2215 /* 2216 * Documented get behavior is that we always return a value, possibly 2217 * truncated to fit in the user's buffer. Traditional behavior is 2218 * that we always tell the user precisely how much we copied, rather 2219 * than something useful like the total amount we had available for 2220 * her. Note that this interface is not idempotent; the entire 2221 * answer must generated ahead of time. 2222 */ 2223 valsize = min(len, sopt->sopt_valsize); 2224 sopt->sopt_valsize = valsize; 2225 if (sopt->sopt_val != NULL) { 2226 if (sopt->sopt_td != NULL) 2227 error = copyout(buf, sopt->sopt_val, valsize); 2228 else 2229 bcopy(buf, sopt->sopt_val, valsize); 2230 } 2231 return (error); 2232 } 2233 2234 int 2235 sogetopt(so, sopt) 2236 struct socket *so; 2237 struct sockopt *sopt; 2238 { 2239 int error, optval; 2240 struct linger l; 2241 struct timeval tv; 2242 #ifdef MAC 2243 struct mac extmac; 2244 #endif 2245 2246 error = 0; 2247 if (sopt->sopt_level != SOL_SOCKET) { 2248 if (so->so_proto && so->so_proto->pr_ctloutput) { 2249 return ((*so->so_proto->pr_ctloutput) 2250 (so, sopt)); 2251 } else 2252 return (ENOPROTOOPT); 2253 } else { 2254 switch (sopt->sopt_name) { 2255 #ifdef INET 2256 case SO_ACCEPTFILTER: 2257 error = do_getopt_accept_filter(so, sopt); 2258 break; 2259 #endif 2260 case SO_LINGER: 2261 SOCK_LOCK(so); 2262 l.l_onoff = so->so_options & SO_LINGER; 2263 l.l_linger = so->so_linger; 2264 SOCK_UNLOCK(so); 2265 error = sooptcopyout(sopt, &l, sizeof l); 2266 break; 2267 2268 case SO_USELOOPBACK: 2269 case SO_DONTROUTE: 2270 case SO_DEBUG: 2271 case SO_KEEPALIVE: 2272 case SO_REUSEADDR: 2273 case SO_REUSEPORT: 2274 case SO_BROADCAST: 2275 case SO_OOBINLINE: 2276 case SO_ACCEPTCONN: 2277 case SO_TIMESTAMP: 2278 case SO_BINTIME: 2279 case SO_NOSIGPIPE: 2280 optval = so->so_options & sopt->sopt_name; 2281 integer: 2282 error = sooptcopyout(sopt, &optval, sizeof optval); 2283 break; 2284 2285 case SO_TYPE: 2286 optval = so->so_type; 2287 goto integer; 2288 2289 case SO_ERROR: 2290 SOCK_LOCK(so); 2291 optval = so->so_error; 2292 so->so_error = 0; 2293 SOCK_UNLOCK(so); 2294 goto integer; 2295 2296 case SO_SNDBUF: 2297 optval = so->so_snd.sb_hiwat; 2298 goto integer; 2299 2300 case SO_RCVBUF: 2301 optval = so->so_rcv.sb_hiwat; 2302 goto integer; 2303 2304 case SO_SNDLOWAT: 2305 optval = so->so_snd.sb_lowat; 2306 goto integer; 2307 2308 case SO_RCVLOWAT: 2309 optval = so->so_rcv.sb_lowat; 2310 goto integer; 2311 2312 case SO_SNDTIMEO: 2313 case SO_RCVTIMEO: 2314 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2315 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2316 2317 tv.tv_sec = optval / hz; 2318 tv.tv_usec = (optval % hz) * tick; 2319 #ifdef COMPAT_IA32 2320 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { 2321 struct timeval32 tv32; 2322 2323 CP(tv, tv32, tv_sec); 2324 CP(tv, tv32, tv_usec); 2325 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2326 } else 2327 #endif 2328 error = sooptcopyout(sopt, &tv, sizeof tv); 2329 break; 2330 2331 case SO_LABEL: 2332 #ifdef MAC 2333 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2334 sizeof(extmac)); 2335 if (error) 2336 return (error); 2337 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2338 so, &extmac); 2339 if (error) 2340 return (error); 2341 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2342 #else 2343 error = EOPNOTSUPP; 2344 #endif 2345 break; 2346 2347 case SO_PEERLABEL: 2348 #ifdef MAC 2349 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2350 sizeof(extmac)); 2351 if (error) 2352 return (error); 2353 error = mac_getsockopt_peerlabel( 2354 sopt->sopt_td->td_ucred, so, &extmac); 2355 if (error) 2356 return (error); 2357 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2358 #else 2359 error = EOPNOTSUPP; 2360 #endif 2361 break; 2362 2363 case SO_LISTENQLIMIT: 2364 optval = so->so_qlimit; 2365 goto integer; 2366 2367 case SO_LISTENQLEN: 2368 optval = so->so_qlen; 2369 goto integer; 2370 2371 case SO_LISTENINCQLEN: 2372 optval = so->so_incqlen; 2373 goto integer; 2374 2375 default: 2376 error = ENOPROTOOPT; 2377 break; 2378 } 2379 return (error); 2380 } 2381 } 2382 2383 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 2384 int 2385 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2386 { 2387 struct mbuf *m, *m_prev; 2388 int sopt_size = sopt->sopt_valsize; 2389 2390 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 2391 if (m == NULL) 2392 return ENOBUFS; 2393 if (sopt_size > MLEN) { 2394 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 2395 if ((m->m_flags & M_EXT) == 0) { 2396 m_free(m); 2397 return ENOBUFS; 2398 } 2399 m->m_len = min(MCLBYTES, sopt_size); 2400 } else { 2401 m->m_len = min(MLEN, sopt_size); 2402 } 2403 sopt_size -= m->m_len; 2404 *mp = m; 2405 m_prev = m; 2406 2407 while (sopt_size) { 2408 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 2409 if (m == NULL) { 2410 m_freem(*mp); 2411 return ENOBUFS; 2412 } 2413 if (sopt_size > MLEN) { 2414 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 2415 M_DONTWAIT); 2416 if ((m->m_flags & M_EXT) == 0) { 2417 m_freem(m); 2418 m_freem(*mp); 2419 return ENOBUFS; 2420 } 2421 m->m_len = min(MCLBYTES, sopt_size); 2422 } else { 2423 m->m_len = min(MLEN, sopt_size); 2424 } 2425 sopt_size -= m->m_len; 2426 m_prev->m_next = m; 2427 m_prev = m; 2428 } 2429 return (0); 2430 } 2431 2432 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2433 int 2434 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2435 { 2436 struct mbuf *m0 = m; 2437 2438 if (sopt->sopt_val == NULL) 2439 return (0); 2440 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2441 if (sopt->sopt_td != NULL) { 2442 int error; 2443 2444 error = copyin(sopt->sopt_val, mtod(m, char *), 2445 m->m_len); 2446 if (error != 0) { 2447 m_freem(m0); 2448 return(error); 2449 } 2450 } else 2451 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2452 sopt->sopt_valsize -= m->m_len; 2453 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2454 m = m->m_next; 2455 } 2456 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2457 panic("ip6_sooptmcopyin"); 2458 return (0); 2459 } 2460 2461 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2462 int 2463 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2464 { 2465 struct mbuf *m0 = m; 2466 size_t valsize = 0; 2467 2468 if (sopt->sopt_val == NULL) 2469 return (0); 2470 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2471 if (sopt->sopt_td != NULL) { 2472 int error; 2473 2474 error = copyout(mtod(m, char *), sopt->sopt_val, 2475 m->m_len); 2476 if (error != 0) { 2477 m_freem(m0); 2478 return(error); 2479 } 2480 } else 2481 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2482 sopt->sopt_valsize -= m->m_len; 2483 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2484 valsize += m->m_len; 2485 m = m->m_next; 2486 } 2487 if (m != NULL) { 2488 /* enough soopt buffer should be given from user-land */ 2489 m_freem(m0); 2490 return(EINVAL); 2491 } 2492 sopt->sopt_valsize = valsize; 2493 return (0); 2494 } 2495 2496 /* 2497 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2498 * out-of-band data, which will then notify socket consumers. 2499 */ 2500 void 2501 sohasoutofband(so) 2502 struct socket *so; 2503 { 2504 if (so->so_sigio != NULL) 2505 pgsigio(&so->so_sigio, SIGURG, 0); 2506 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2507 } 2508 2509 int 2510 sopoll(struct socket *so, int events, struct ucred *active_cred, 2511 struct thread *td) 2512 { 2513 2514 /* XXXRW: Temporary debugging. */ 2515 KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll, 2516 ("sopoll: protocol calls sopoll")); 2517 2518 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2519 td)); 2520 } 2521 2522 int 2523 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2524 struct thread *td) 2525 { 2526 int revents = 0; 2527 2528 SOCKBUF_LOCK(&so->so_snd); 2529 SOCKBUF_LOCK(&so->so_rcv); 2530 if (events & (POLLIN | POLLRDNORM)) 2531 if (soreadable(so)) 2532 revents |= events & (POLLIN | POLLRDNORM); 2533 2534 if (events & POLLINIGNEOF) 2535 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2536 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2537 revents |= POLLINIGNEOF; 2538 2539 if (events & (POLLOUT | POLLWRNORM)) 2540 if (sowriteable(so)) 2541 revents |= events & (POLLOUT | POLLWRNORM); 2542 2543 if (events & (POLLPRI | POLLRDBAND)) 2544 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2545 revents |= events & (POLLPRI | POLLRDBAND); 2546 2547 if (revents == 0) { 2548 if (events & 2549 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2550 POLLRDBAND)) { 2551 selrecord(td, &so->so_rcv.sb_sel); 2552 so->so_rcv.sb_flags |= SB_SEL; 2553 } 2554 2555 if (events & (POLLOUT | POLLWRNORM)) { 2556 selrecord(td, &so->so_snd.sb_sel); 2557 so->so_snd.sb_flags |= SB_SEL; 2558 } 2559 } 2560 2561 SOCKBUF_UNLOCK(&so->so_rcv); 2562 SOCKBUF_UNLOCK(&so->so_snd); 2563 return (revents); 2564 } 2565 2566 int 2567 soo_kqfilter(struct file *fp, struct knote *kn) 2568 { 2569 struct socket *so = kn->kn_fp->f_data; 2570 struct sockbuf *sb; 2571 2572 switch (kn->kn_filter) { 2573 case EVFILT_READ: 2574 if (so->so_options & SO_ACCEPTCONN) 2575 kn->kn_fop = &solisten_filtops; 2576 else 2577 kn->kn_fop = &soread_filtops; 2578 sb = &so->so_rcv; 2579 break; 2580 case EVFILT_WRITE: 2581 kn->kn_fop = &sowrite_filtops; 2582 sb = &so->so_snd; 2583 break; 2584 default: 2585 return (EINVAL); 2586 } 2587 2588 SOCKBUF_LOCK(sb); 2589 knlist_add(&sb->sb_sel.si_note, kn, 1); 2590 sb->sb_flags |= SB_KNOTE; 2591 SOCKBUF_UNLOCK(sb); 2592 return (0); 2593 } 2594 2595 static void 2596 filt_sordetach(struct knote *kn) 2597 { 2598 struct socket *so = kn->kn_fp->f_data; 2599 2600 SOCKBUF_LOCK(&so->so_rcv); 2601 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2602 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2603 so->so_rcv.sb_flags &= ~SB_KNOTE; 2604 SOCKBUF_UNLOCK(&so->so_rcv); 2605 } 2606 2607 /*ARGSUSED*/ 2608 static int 2609 filt_soread(struct knote *kn, long hint) 2610 { 2611 struct socket *so; 2612 2613 so = kn->kn_fp->f_data; 2614 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2615 2616 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2617 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2618 kn->kn_flags |= EV_EOF; 2619 kn->kn_fflags = so->so_error; 2620 return (1); 2621 } else if (so->so_error) /* temporary udp error */ 2622 return (1); 2623 else if (kn->kn_sfflags & NOTE_LOWAT) 2624 return (kn->kn_data >= kn->kn_sdata); 2625 else 2626 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2627 } 2628 2629 static void 2630 filt_sowdetach(struct knote *kn) 2631 { 2632 struct socket *so = kn->kn_fp->f_data; 2633 2634 SOCKBUF_LOCK(&so->so_snd); 2635 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2636 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2637 so->so_snd.sb_flags &= ~SB_KNOTE; 2638 SOCKBUF_UNLOCK(&so->so_snd); 2639 } 2640 2641 /*ARGSUSED*/ 2642 static int 2643 filt_sowrite(struct knote *kn, long hint) 2644 { 2645 struct socket *so; 2646 2647 so = kn->kn_fp->f_data; 2648 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2649 kn->kn_data = sbspace(&so->so_snd); 2650 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2651 kn->kn_flags |= EV_EOF; 2652 kn->kn_fflags = so->so_error; 2653 return (1); 2654 } else if (so->so_error) /* temporary udp error */ 2655 return (1); 2656 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2657 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2658 return (0); 2659 else if (kn->kn_sfflags & NOTE_LOWAT) 2660 return (kn->kn_data >= kn->kn_sdata); 2661 else 2662 return (kn->kn_data >= so->so_snd.sb_lowat); 2663 } 2664 2665 /*ARGSUSED*/ 2666 static int 2667 filt_solisten(struct knote *kn, long hint) 2668 { 2669 struct socket *so = kn->kn_fp->f_data; 2670 2671 kn->kn_data = so->so_qlen; 2672 return (! TAILQ_EMPTY(&so->so_comp)); 2673 } 2674 2675 int 2676 socheckuid(struct socket *so, uid_t uid) 2677 { 2678 2679 if (so == NULL) 2680 return (EPERM); 2681 if (so->so_cred->cr_uid != uid) 2682 return (EPERM); 2683 return (0); 2684 } 2685 2686 static int 2687 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 2688 { 2689 int error; 2690 int val; 2691 2692 val = somaxconn; 2693 error = sysctl_handle_int(oidp, &val, sizeof(int), req); 2694 if (error || !req->newptr ) 2695 return (error); 2696 2697 if (val < 1 || val > USHRT_MAX) 2698 return (EINVAL); 2699 2700 somaxconn = val; 2701 return (0); 2702 } 2703