xref: /freebsd/sys/kern/uipc_socket.c (revision f6c0136c7fb87ab8277221a306291e386fe944fb)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2006 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_mac.h"
102 #include "opt_zero.h"
103 #include "opt_compat.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/fcntl.h>
108 #include <sys/limits.h>
109 #include <sys/lock.h>
110 #include <sys/mac.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/domain.h>
115 #include <sys/file.h>			/* for struct knote */
116 #include <sys/kernel.h>
117 #include <sys/event.h>
118 #include <sys/eventhandler.h>
119 #include <sys/poll.h>
120 #include <sys/proc.h>
121 #include <sys/protosw.h>
122 #include <sys/socket.h>
123 #include <sys/socketvar.h>
124 #include <sys/resourcevar.h>
125 #include <sys/signalvar.h>
126 #include <sys/sysctl.h>
127 #include <sys/uio.h>
128 #include <sys/jail.h>
129 
130 #include <security/mac/mac_framework.h>
131 
132 #include <vm/uma.h>
133 
134 #ifdef COMPAT_IA32
135 #include <sys/mount.h>
136 #include <compat/freebsd32/freebsd32.h>
137 
138 extern struct sysentvec ia32_freebsd_sysvec;
139 #endif
140 
141 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
142 		    int flags);
143 
144 static void	filt_sordetach(struct knote *kn);
145 static int	filt_soread(struct knote *kn, long hint);
146 static void	filt_sowdetach(struct knote *kn);
147 static int	filt_sowrite(struct knote *kn, long hint);
148 static int	filt_solisten(struct knote *kn, long hint);
149 
150 static struct filterops solisten_filtops =
151 	{ 1, NULL, filt_sordetach, filt_solisten };
152 static struct filterops soread_filtops =
153 	{ 1, NULL, filt_sordetach, filt_soread };
154 static struct filterops sowrite_filtops =
155 	{ 1, NULL, filt_sowdetach, filt_sowrite };
156 
157 uma_zone_t socket_zone;
158 so_gen_t	so_gencnt;	/* generation count for sockets */
159 
160 int	maxsockets;
161 
162 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
163 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
164 
165 static int somaxconn = SOMAXCONN;
166 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
167 /* XXX: we dont have SYSCTL_USHORT */
168 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
169     0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
170     "queue size");
171 static int numopensockets;
172 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
173     &numopensockets, 0, "Number of open sockets");
174 #ifdef ZERO_COPY_SOCKETS
175 /* These aren't static because they're used in other files. */
176 int so_zero_copy_send = 1;
177 int so_zero_copy_receive = 1;
178 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
179     "Zero copy controls");
180 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
181     &so_zero_copy_receive, 0, "Enable zero copy receive");
182 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
183     &so_zero_copy_send, 0, "Enable zero copy send");
184 #endif /* ZERO_COPY_SOCKETS */
185 
186 /*
187  * accept_mtx locks down per-socket fields relating to accept queues.  See
188  * socketvar.h for an annotation of the protected fields of struct socket.
189  */
190 struct mtx accept_mtx;
191 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
192 
193 /*
194  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
195  * so_gencnt field.
196  */
197 static struct mtx so_global_mtx;
198 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
199 
200 /*
201  * General IPC sysctl name space, used by sockets and a variety of other IPC
202  * types.
203  */
204 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
205 
206 /*
207  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
208  * of the change so that they can update their dependent limits as required.
209  */
210 static int
211 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
212 {
213 	int error, newmaxsockets;
214 
215 	newmaxsockets = maxsockets;
216 	error = sysctl_handle_int(oidp, &newmaxsockets, sizeof(int), req);
217 	if (error == 0 && req->newptr) {
218 		if (newmaxsockets > maxsockets) {
219 			maxsockets = newmaxsockets;
220 			if (maxsockets > ((maxfiles / 4) * 3)) {
221 				maxfiles = (maxsockets * 5) / 4;
222 				maxfilesperproc = (maxfiles * 9) / 10;
223 			}
224 			EVENTHANDLER_INVOKE(maxsockets_change);
225 		} else
226 			error = EINVAL;
227 	}
228 	return (error);
229 }
230 
231 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
232     &maxsockets, 0, sysctl_maxsockets, "IU",
233     "Maximum number of sockets avaliable");
234 
235 /*
236  * Initialise maxsockets.
237  */
238 static void init_maxsockets(void *ignored)
239 {
240 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
241 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
242 }
243 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
244 
245 /*
246  * Socket operation routines.  These routines are called by the routines in
247  * sys_socket.c or from a system process, and implement the semantics of
248  * socket operations by switching out to the protocol specific routines.
249  */
250 
251 /*
252  * Get a socket structure from our zone, and initialize it.  Note that it
253  * would probably be better to allocate socket and PCB at the same time, but
254  * I'm not convinced that all the protocols can be easily modified to do
255  * this.
256  *
257  * soalloc() returns a socket with a ref count of 0.
258  */
259 static struct socket *
260 soalloc(void)
261 {
262 	struct socket *so;
263 
264 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
265 	if (so == NULL)
266 		return (NULL);
267 #ifdef MAC
268 	if (mac_init_socket(so, M_NOWAIT) != 0) {
269 		uma_zfree(socket_zone, so);
270 		return (NULL);
271 	}
272 #endif
273 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
274 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
275 	TAILQ_INIT(&so->so_aiojobq);
276 	mtx_lock(&so_global_mtx);
277 	so->so_gencnt = ++so_gencnt;
278 	++numopensockets;
279 	mtx_unlock(&so_global_mtx);
280 	return (so);
281 }
282 
283 /*
284  * Free the storage associated with a socket at the socket layer, tear down
285  * locks, labels, etc.  All protocol state is assumed already to have been
286  * torn down (and possibly never set up) by the caller.
287  */
288 static void
289 sodealloc(struct socket *so)
290 {
291 
292 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
293 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
294 
295 	mtx_lock(&so_global_mtx);
296 	so->so_gencnt = ++so_gencnt;
297 	--numopensockets;	/* Could be below, but faster here. */
298 	mtx_unlock(&so_global_mtx);
299 	if (so->so_rcv.sb_hiwat)
300 		(void)chgsbsize(so->so_cred->cr_uidinfo,
301 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
302 	if (so->so_snd.sb_hiwat)
303 		(void)chgsbsize(so->so_cred->cr_uidinfo,
304 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
305 #ifdef INET
306 	/* remove acccept filter if one is present. */
307 	if (so->so_accf != NULL)
308 		do_setopt_accept_filter(so, NULL);
309 #endif
310 #ifdef MAC
311 	mac_destroy_socket(so);
312 #endif
313 	crfree(so->so_cred);
314 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
315 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
316 	uma_zfree(socket_zone, so);
317 }
318 
319 /*
320  * socreate returns a socket with a ref count of 1.  The socket should be
321  * closed with soclose().
322  */
323 int
324 socreate(dom, aso, type, proto, cred, td)
325 	int dom;
326 	struct socket **aso;
327 	int type;
328 	int proto;
329 	struct ucred *cred;
330 	struct thread *td;
331 {
332 	struct protosw *prp;
333 	struct socket *so;
334 	int error;
335 
336 	if (proto)
337 		prp = pffindproto(dom, proto, type);
338 	else
339 		prp = pffindtype(dom, type);
340 
341 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
342 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
343 		return (EPROTONOSUPPORT);
344 
345 	if (jailed(cred) && jail_socket_unixiproute_only &&
346 	    prp->pr_domain->dom_family != PF_LOCAL &&
347 	    prp->pr_domain->dom_family != PF_INET &&
348 	    prp->pr_domain->dom_family != PF_ROUTE) {
349 		return (EPROTONOSUPPORT);
350 	}
351 
352 	if (prp->pr_type != type)
353 		return (EPROTOTYPE);
354 	so = soalloc();
355 	if (so == NULL)
356 		return (ENOBUFS);
357 
358 	TAILQ_INIT(&so->so_incomp);
359 	TAILQ_INIT(&so->so_comp);
360 	so->so_type = type;
361 	so->so_cred = crhold(cred);
362 	so->so_proto = prp;
363 #ifdef MAC
364 	mac_create_socket(cred, so);
365 #endif
366 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
367 	    NULL, NULL, NULL);
368 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
369 	    NULL, NULL, NULL);
370 	so->so_count = 1;
371 	/*
372 	 * Auto-sizing of socket buffers is managed by the protocols and
373 	 * the appropriate flags must be set in the pru_attach function.
374 	 */
375 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
376 	if (error) {
377 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
378 		    so->so_count));
379 		so->so_count = 0;
380 		sodealloc(so);
381 		return (error);
382 	}
383 	*aso = so;
384 	return (0);
385 }
386 
387 #ifdef REGRESSION
388 static int regression_sonewconn_earlytest = 1;
389 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
390     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
391 #endif
392 
393 /*
394  * When an attempt at a new connection is noted on a socket which accepts
395  * connections, sonewconn is called.  If the connection is possible (subject
396  * to space constraints, etc.) then we allocate a new structure, propoerly
397  * linked into the data structure of the original socket, and return this.
398  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
399  *
400  * Note: the ref count on the socket is 0 on return.
401  */
402 struct socket *
403 sonewconn(head, connstatus)
404 	register struct socket *head;
405 	int connstatus;
406 {
407 	register struct socket *so;
408 	int over;
409 
410 	ACCEPT_LOCK();
411 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
412 	ACCEPT_UNLOCK();
413 #ifdef REGRESSION
414 	if (regression_sonewconn_earlytest && over)
415 #else
416 	if (over)
417 #endif
418 		return (NULL);
419 	so = soalloc();
420 	if (so == NULL)
421 		return (NULL);
422 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
423 		connstatus = 0;
424 	so->so_head = head;
425 	so->so_type = head->so_type;
426 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
427 	so->so_linger = head->so_linger;
428 	so->so_state = head->so_state | SS_NOFDREF;
429 	so->so_proto = head->so_proto;
430 	so->so_cred = crhold(head->so_cred);
431 #ifdef MAC
432 	SOCK_LOCK(head);
433 	mac_create_socket_from_socket(head, so);
434 	SOCK_UNLOCK(head);
435 #endif
436 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
437 	    NULL, NULL, NULL);
438 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
439 	    NULL, NULL, NULL);
440 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
441 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
442 		sodealloc(so);
443 		return (NULL);
444 	}
445 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
446 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
447 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
448 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
449 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
450 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
451 	so->so_state |= connstatus;
452 	ACCEPT_LOCK();
453 	if (connstatus) {
454 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
455 		so->so_qstate |= SQ_COMP;
456 		head->so_qlen++;
457 	} else {
458 		/*
459 		 * Keep removing sockets from the head until there's room for
460 		 * us to insert on the tail.  In pre-locking revisions, this
461 		 * was a simple if(), but as we could be racing with other
462 		 * threads and soabort() requires dropping locks, we must
463 		 * loop waiting for the condition to be true.
464 		 */
465 		while (head->so_incqlen > head->so_qlimit) {
466 			struct socket *sp;
467 			sp = TAILQ_FIRST(&head->so_incomp);
468 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
469 			head->so_incqlen--;
470 			sp->so_qstate &= ~SQ_INCOMP;
471 			sp->so_head = NULL;
472 			ACCEPT_UNLOCK();
473 			soabort(sp);
474 			ACCEPT_LOCK();
475 		}
476 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
477 		so->so_qstate |= SQ_INCOMP;
478 		head->so_incqlen++;
479 	}
480 	ACCEPT_UNLOCK();
481 	if (connstatus) {
482 		sorwakeup(head);
483 		wakeup_one(&head->so_timeo);
484 	}
485 	return (so);
486 }
487 
488 int
489 sobind(so, nam, td)
490 	struct socket *so;
491 	struct sockaddr *nam;
492 	struct thread *td;
493 {
494 
495 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
496 }
497 
498 /*
499  * solisten() transitions a socket from a non-listening state to a listening
500  * state, but can also be used to update the listen queue depth on an
501  * existing listen socket.  The protocol will call back into the sockets
502  * layer using solisten_proto_check() and solisten_proto() to check and set
503  * socket-layer listen state.  Call backs are used so that the protocol can
504  * acquire both protocol and socket layer locks in whatever order is required
505  * by the protocol.
506  *
507  * Protocol implementors are advised to hold the socket lock across the
508  * socket-layer test and set to avoid races at the socket layer.
509  */
510 int
511 solisten(so, backlog, td)
512 	struct socket *so;
513 	int backlog;
514 	struct thread *td;
515 {
516 
517 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
518 }
519 
520 int
521 solisten_proto_check(so)
522 	struct socket *so;
523 {
524 
525 	SOCK_LOCK_ASSERT(so);
526 
527 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
528 	    SS_ISDISCONNECTING))
529 		return (EINVAL);
530 	return (0);
531 }
532 
533 void
534 solisten_proto(so, backlog)
535 	struct socket *so;
536 	int backlog;
537 {
538 
539 	SOCK_LOCK_ASSERT(so);
540 
541 	if (backlog < 0 || backlog > somaxconn)
542 		backlog = somaxconn;
543 	so->so_qlimit = backlog;
544 	so->so_options |= SO_ACCEPTCONN;
545 }
546 
547 /*
548  * Attempt to free a socket.  This should really be sotryfree().
549  *
550  * sofree() will succeed if:
551  *
552  * - There are no outstanding file descriptor references or related consumers
553  *   (so_count == 0).
554  *
555  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
556  *
557  * - The protocol does not have an outstanding strong reference on the socket
558  *   (SS_PROTOREF).
559  *
560  * - The socket is not in a completed connection queue, so a process has been
561  *   notified that it is present.  If it is removed, the user process may
562  *   block in accept() despite select() saying the socket was ready.
563  *
564  * Otherwise, it will quietly abort so that a future call to sofree(), when
565  * conditions are right, can succeed.
566  */
567 void
568 sofree(so)
569 	struct socket *so;
570 {
571 	struct protosw *pr = so->so_proto;
572 	struct socket *head;
573 
574 	ACCEPT_LOCK_ASSERT();
575 	SOCK_LOCK_ASSERT(so);
576 
577 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
578 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
579 		SOCK_UNLOCK(so);
580 		ACCEPT_UNLOCK();
581 		return;
582 	}
583 
584 	head = so->so_head;
585 	if (head != NULL) {
586 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
587 		    (so->so_qstate & SQ_INCOMP) != 0,
588 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
589 		    "SQ_INCOMP"));
590 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
591 		    (so->so_qstate & SQ_INCOMP) == 0,
592 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
593 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
594 		head->so_incqlen--;
595 		so->so_qstate &= ~SQ_INCOMP;
596 		so->so_head = NULL;
597 	}
598 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
599 	    (so->so_qstate & SQ_INCOMP) == 0,
600 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
601 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
602 	if (so->so_options & SO_ACCEPTCONN) {
603 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
604 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
605 	}
606 	SOCK_UNLOCK(so);
607 	ACCEPT_UNLOCK();
608 
609 	/*
610 	 * From this point on, we assume that no other references to this
611 	 * socket exist anywhere else in the stack.  Therefore, no locks need
612 	 * to be acquired or held.
613 	 *
614 	 * We used to do a lot of socket buffer and socket locking here, as
615 	 * well as invoke sorflush() and perform wakeups.  The direct call to
616 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
617 	 * necessary from sorflush().
618 	 *
619 	 * Notice that the socket buffer and kqueue state are torn down
620 	 * before calling pru_detach.  This means that protocols shold not
621 	 * assume they can perform socket wakeups, etc, in their detach
622 	 * code.
623 	 */
624 	KASSERT((so->so_snd.sb_flags & SB_LOCK) == 0, ("sofree: snd sblock"));
625 	KASSERT((so->so_rcv.sb_flags & SB_LOCK) == 0, ("sofree: rcv sblock"));
626 	sbdestroy(&so->so_snd, so);
627 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
628 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
629 	sbdestroy(&so->so_rcv, so);
630 	if (pr->pr_usrreqs->pru_detach != NULL)
631 		(*pr->pr_usrreqs->pru_detach)(so);
632 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
633 	knlist_destroy(&so->so_snd.sb_sel.si_note);
634 	sodealloc(so);
635 }
636 
637 /*
638  * Close a socket on last file table reference removal.  Initiate disconnect
639  * if connected.  Free socket when disconnect complete.
640  *
641  * This function will sorele() the socket.  Note that soclose() may be called
642  * prior to the ref count reaching zero.  The actual socket structure will
643  * not be freed until the ref count reaches zero.
644  */
645 int
646 soclose(so)
647 	struct socket *so;
648 {
649 	int error = 0;
650 
651 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
652 
653 	funsetown(&so->so_sigio);
654 	if (so->so_state & SS_ISCONNECTED) {
655 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
656 			error = sodisconnect(so);
657 			if (error)
658 				goto drop;
659 		}
660 		if (so->so_options & SO_LINGER) {
661 			if ((so->so_state & SS_ISDISCONNECTING) &&
662 			    (so->so_state & SS_NBIO))
663 				goto drop;
664 			while (so->so_state & SS_ISCONNECTED) {
665 				error = tsleep(&so->so_timeo,
666 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
667 				if (error)
668 					break;
669 			}
670 		}
671 	}
672 
673 drop:
674 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
675 		(*so->so_proto->pr_usrreqs->pru_close)(so);
676 	if (so->so_options & SO_ACCEPTCONN) {
677 		struct socket *sp;
678 		ACCEPT_LOCK();
679 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
680 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
681 			so->so_incqlen--;
682 			sp->so_qstate &= ~SQ_INCOMP;
683 			sp->so_head = NULL;
684 			ACCEPT_UNLOCK();
685 			soabort(sp);
686 			ACCEPT_LOCK();
687 		}
688 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
689 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
690 			so->so_qlen--;
691 			sp->so_qstate &= ~SQ_COMP;
692 			sp->so_head = NULL;
693 			ACCEPT_UNLOCK();
694 			soabort(sp);
695 			ACCEPT_LOCK();
696 		}
697 		ACCEPT_UNLOCK();
698 	}
699 	ACCEPT_LOCK();
700 	SOCK_LOCK(so);
701 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
702 	so->so_state |= SS_NOFDREF;
703 	sorele(so);
704 	return (error);
705 }
706 
707 /*
708  * soabort() is used to abruptly tear down a connection, such as when a
709  * resource limit is reached (listen queue depth exceeded), or if a listen
710  * socket is closed while there are sockets waiting to be accepted.
711  *
712  * This interface is tricky, because it is called on an unreferenced socket,
713  * and must be called only by a thread that has actually removed the socket
714  * from the listen queue it was on, or races with other threads are risked.
715  *
716  * This interface will call into the protocol code, so must not be called
717  * with any socket locks held.  Protocols do call it while holding their own
718  * recursible protocol mutexes, but this is something that should be subject
719  * to review in the future.
720  */
721 void
722 soabort(so)
723 	struct socket *so;
724 {
725 
726 	/*
727 	 * In as much as is possible, assert that no references to this
728 	 * socket are held.  This is not quite the same as asserting that the
729 	 * current thread is responsible for arranging for no references, but
730 	 * is as close as we can get for now.
731 	 */
732 	KASSERT(so->so_count == 0, ("soabort: so_count"));
733 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
734 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
735 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
736 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
737 
738 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
739 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
740 	ACCEPT_LOCK();
741 	SOCK_LOCK(so);
742 	sofree(so);
743 }
744 
745 int
746 soaccept(so, nam)
747 	struct socket *so;
748 	struct sockaddr **nam;
749 {
750 	int error;
751 
752 	SOCK_LOCK(so);
753 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
754 	so->so_state &= ~SS_NOFDREF;
755 	SOCK_UNLOCK(so);
756 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
757 	return (error);
758 }
759 
760 int
761 soconnect(so, nam, td)
762 	struct socket *so;
763 	struct sockaddr *nam;
764 	struct thread *td;
765 {
766 	int error;
767 
768 	if (so->so_options & SO_ACCEPTCONN)
769 		return (EOPNOTSUPP);
770 	/*
771 	 * If protocol is connection-based, can only connect once.
772 	 * Otherwise, if connected, try to disconnect first.  This allows
773 	 * user to disconnect by connecting to, e.g., a null address.
774 	 */
775 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
776 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
777 	    (error = sodisconnect(so)))) {
778 		error = EISCONN;
779 	} else {
780 		/*
781 		 * Prevent accumulated error from previous connection from
782 		 * biting us.
783 		 */
784 		so->so_error = 0;
785 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
786 	}
787 
788 	return (error);
789 }
790 
791 int
792 soconnect2(so1, so2)
793 	struct socket *so1;
794 	struct socket *so2;
795 {
796 
797 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
798 }
799 
800 int
801 sodisconnect(so)
802 	struct socket *so;
803 {
804 	int error;
805 
806 	if ((so->so_state & SS_ISCONNECTED) == 0)
807 		return (ENOTCONN);
808 	if (so->so_state & SS_ISDISCONNECTING)
809 		return (EALREADY);
810 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
811 	return (error);
812 }
813 
814 #ifdef ZERO_COPY_SOCKETS
815 struct so_zerocopy_stats{
816 	int size_ok;
817 	int align_ok;
818 	int found_ifp;
819 };
820 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
821 #include <netinet/in.h>
822 #include <net/route.h>
823 #include <netinet/in_pcb.h>
824 #include <vm/vm.h>
825 #include <vm/vm_page.h>
826 #include <vm/vm_object.h>
827 
828 /*
829  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
830  * sosend_dgram() and sosend_generic() use m_uiotombuf().
831  *
832  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
833  * all of the data referenced by the uio.  If desired, it uses zero-copy.
834  * *space will be updated to reflect data copied in.
835  *
836  * NB: If atomic I/O is requested, the caller must already have checked that
837  * space can hold resid bytes.
838  *
839  * NB: In the event of an error, the caller may need to free the partial
840  * chain pointed to by *mpp.  The contents of both *uio and *space may be
841  * modified even in the case of an error.
842  */
843 static int
844 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
845     int flags)
846 {
847 	struct mbuf *m, **mp, *top;
848 	long len, resid;
849 	int error;
850 #ifdef ZERO_COPY_SOCKETS
851 	int cow_send;
852 #endif
853 
854 	*retmp = top = NULL;
855 	mp = &top;
856 	len = 0;
857 	resid = uio->uio_resid;
858 	error = 0;
859 	do {
860 #ifdef ZERO_COPY_SOCKETS
861 		cow_send = 0;
862 #endif /* ZERO_COPY_SOCKETS */
863 		if (resid >= MINCLSIZE) {
864 #ifdef ZERO_COPY_SOCKETS
865 			if (top == NULL) {
866 				m = m_gethdr(M_WAITOK, MT_DATA);
867 				m->m_pkthdr.len = 0;
868 				m->m_pkthdr.rcvif = NULL;
869 			} else
870 				m = m_get(M_WAITOK, MT_DATA);
871 			if (so_zero_copy_send &&
872 			    resid>=PAGE_SIZE &&
873 			    *space>=PAGE_SIZE &&
874 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
875 				so_zerocp_stats.size_ok++;
876 				so_zerocp_stats.align_ok++;
877 				cow_send = socow_setup(m, uio);
878 				len = cow_send;
879 			}
880 			if (!cow_send) {
881 				m_clget(m, M_WAITOK);
882 				len = min(min(MCLBYTES, resid), *space);
883 			}
884 #else /* ZERO_COPY_SOCKETS */
885 			if (top == NULL) {
886 				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
887 				m->m_pkthdr.len = 0;
888 				m->m_pkthdr.rcvif = NULL;
889 			} else
890 				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
891 			len = min(min(MCLBYTES, resid), *space);
892 #endif /* ZERO_COPY_SOCKETS */
893 		} else {
894 			if (top == NULL) {
895 				m = m_gethdr(M_TRYWAIT, MT_DATA);
896 				m->m_pkthdr.len = 0;
897 				m->m_pkthdr.rcvif = NULL;
898 
899 				len = min(min(MHLEN, resid), *space);
900 				/*
901 				 * For datagram protocols, leave room
902 				 * for protocol headers in first mbuf.
903 				 */
904 				if (atomic && m && len < MHLEN)
905 					MH_ALIGN(m, len);
906 			} else {
907 				m = m_get(M_TRYWAIT, MT_DATA);
908 				len = min(min(MLEN, resid), *space);
909 			}
910 		}
911 		if (m == NULL) {
912 			error = ENOBUFS;
913 			goto out;
914 		}
915 
916 		*space -= len;
917 #ifdef ZERO_COPY_SOCKETS
918 		if (cow_send)
919 			error = 0;
920 		else
921 #endif /* ZERO_COPY_SOCKETS */
922 		error = uiomove(mtod(m, void *), (int)len, uio);
923 		resid = uio->uio_resid;
924 		m->m_len = len;
925 		*mp = m;
926 		top->m_pkthdr.len += len;
927 		if (error)
928 			goto out;
929 		mp = &m->m_next;
930 		if (resid <= 0) {
931 			if (flags & MSG_EOR)
932 				top->m_flags |= M_EOR;
933 			break;
934 		}
935 	} while (*space > 0 && atomic);
936 out:
937 	*retmp = top;
938 	return (error);
939 }
940 #endif /*ZERO_COPY_SOCKETS*/
941 
942 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
943 
944 int
945 sosend_dgram(so, addr, uio, top, control, flags, td)
946 	struct socket *so;
947 	struct sockaddr *addr;
948 	struct uio *uio;
949 	struct mbuf *top;
950 	struct mbuf *control;
951 	int flags;
952 	struct thread *td;
953 {
954 	long space, resid;
955 	int clen = 0, error, dontroute;
956 #ifdef ZERO_COPY_SOCKETS
957 	int atomic = sosendallatonce(so) || top;
958 #endif
959 
960 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
961 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
962 	    ("sodgram_send: !PR_ATOMIC"));
963 
964 	if (uio != NULL)
965 		resid = uio->uio_resid;
966 	else
967 		resid = top->m_pkthdr.len;
968 	/*
969 	 * In theory resid should be unsigned.  However, space must be
970 	 * signed, as it might be less than 0 if we over-committed, and we
971 	 * must use a signed comparison of space and resid.  On the other
972 	 * hand, a negative resid causes us to loop sending 0-length
973 	 * segments to the protocol.
974 	 *
975 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
976 	 * type sockets since that's an error.
977 	 */
978 	if (resid < 0) {
979 		error = EINVAL;
980 		goto out;
981 	}
982 
983 	dontroute =
984 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
985 	if (td != NULL)
986 		td->td_proc->p_stats->p_ru.ru_msgsnd++;
987 	if (control != NULL)
988 		clen = control->m_len;
989 
990 	SOCKBUF_LOCK(&so->so_snd);
991 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
992 		SOCKBUF_UNLOCK(&so->so_snd);
993 		error = EPIPE;
994 		goto out;
995 	}
996 	if (so->so_error) {
997 		error = so->so_error;
998 		so->so_error = 0;
999 		SOCKBUF_UNLOCK(&so->so_snd);
1000 		goto out;
1001 	}
1002 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1003 		/*
1004 		 * `sendto' and `sendmsg' is allowed on a connection-based
1005 		 * socket if it supports implied connect.  Return ENOTCONN if
1006 		 * not connected and no address is supplied.
1007 		 */
1008 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1009 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1010 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1011 			    !(resid == 0 && clen != 0)) {
1012 				SOCKBUF_UNLOCK(&so->so_snd);
1013 				error = ENOTCONN;
1014 				goto out;
1015 			}
1016 		} else if (addr == NULL) {
1017 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1018 				error = ENOTCONN;
1019 			else
1020 				error = EDESTADDRREQ;
1021 			SOCKBUF_UNLOCK(&so->so_snd);
1022 			goto out;
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1028 	 * problem and need fixing.
1029 	 */
1030 	space = sbspace(&so->so_snd);
1031 	if (flags & MSG_OOB)
1032 		space += 1024;
1033 	space -= clen;
1034 	SOCKBUF_UNLOCK(&so->so_snd);
1035 	if (resid > space) {
1036 		error = EMSGSIZE;
1037 		goto out;
1038 	}
1039 	if (uio == NULL) {
1040 		resid = 0;
1041 		if (flags & MSG_EOR)
1042 			top->m_flags |= M_EOR;
1043 	} else {
1044 #ifdef ZERO_COPY_SOCKETS
1045 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1046 		if (error)
1047 			goto out;
1048 #else
1049 		/*
1050 		 * Copy the data from userland into a mbuf chain.
1051 		 * If no data is to be copied in, a single empty mbuf
1052 		 * is returned.
1053 		 */
1054 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1055 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1056 		if (top == NULL) {
1057 			error = EFAULT;	/* only possible error */
1058 			goto out;
1059 		}
1060 		space -= resid - uio->uio_resid;
1061 #endif
1062 		resid = uio->uio_resid;
1063 	}
1064 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1065 	/*
1066 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1067 	 * than with.
1068 	 */
1069 	if (dontroute) {
1070 		SOCK_LOCK(so);
1071 		so->so_options |= SO_DONTROUTE;
1072 		SOCK_UNLOCK(so);
1073 	}
1074 	/*
1075 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1076 	 * of date.  We could have recieved a reset packet in an interrupt or
1077 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1078 	 * probably recheck again inside the locking protection here, but
1079 	 * there are probably other places that this also happens.  We must
1080 	 * rethink this.
1081 	 */
1082 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1083 	    (flags & MSG_OOB) ? PRUS_OOB :
1084 	/*
1085 	 * If the user set MSG_EOF, the protocol understands this flag and
1086 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1087 	 */
1088 	    ((flags & MSG_EOF) &&
1089 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1090 	     (resid <= 0)) ?
1091 		PRUS_EOF :
1092 		/* If there is more to send set PRUS_MORETOCOME */
1093 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1094 		top, addr, control, td);
1095 	if (dontroute) {
1096 		SOCK_LOCK(so);
1097 		so->so_options &= ~SO_DONTROUTE;
1098 		SOCK_UNLOCK(so);
1099 	}
1100 	clen = 0;
1101 	control = NULL;
1102 	top = NULL;
1103 out:
1104 	if (top != NULL)
1105 		m_freem(top);
1106 	if (control != NULL)
1107 		m_freem(control);
1108 	return (error);
1109 }
1110 
1111 /*
1112  * Send on a socket.  If send must go all at once and message is larger than
1113  * send buffering, then hard error.  Lock against other senders.  If must go
1114  * all at once and not enough room now, then inform user that this would
1115  * block and do nothing.  Otherwise, if nonblocking, send as much as
1116  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1117  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1118  * in mbuf chain must be small enough to send all at once.
1119  *
1120  * Returns nonzero on error, timeout or signal; callers must check for short
1121  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1122  * on return.
1123  */
1124 #define	snderr(errno)	{ error = (errno); goto release; }
1125 int
1126 sosend_generic(so, addr, uio, top, control, flags, td)
1127 	struct socket *so;
1128 	struct sockaddr *addr;
1129 	struct uio *uio;
1130 	struct mbuf *top;
1131 	struct mbuf *control;
1132 	int flags;
1133 	struct thread *td;
1134 {
1135 	long space, resid;
1136 	int clen = 0, error, dontroute;
1137 	int atomic = sosendallatonce(so) || top;
1138 
1139 	if (uio != NULL)
1140 		resid = uio->uio_resid;
1141 	else
1142 		resid = top->m_pkthdr.len;
1143 	/*
1144 	 * In theory resid should be unsigned.  However, space must be
1145 	 * signed, as it might be less than 0 if we over-committed, and we
1146 	 * must use a signed comparison of space and resid.  On the other
1147 	 * hand, a negative resid causes us to loop sending 0-length
1148 	 * segments to the protocol.
1149 	 *
1150 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1151 	 * type sockets since that's an error.
1152 	 */
1153 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1154 		error = EINVAL;
1155 		goto out;
1156 	}
1157 
1158 	dontroute =
1159 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1160 	    (so->so_proto->pr_flags & PR_ATOMIC);
1161 	if (td != NULL)
1162 		td->td_proc->p_stats->p_ru.ru_msgsnd++;
1163 	if (control != NULL)
1164 		clen = control->m_len;
1165 
1166 	SOCKBUF_LOCK(&so->so_snd);
1167 restart:
1168 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1169 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1170 	if (error)
1171 		goto out_locked;
1172 	do {
1173 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
1174 		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
1175 			snderr(EPIPE);
1176 		if (so->so_error) {
1177 			error = so->so_error;
1178 			so->so_error = 0;
1179 			goto release;
1180 		}
1181 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1182 			/*
1183 			 * `sendto' and `sendmsg' is allowed on a connection-
1184 			 * based socket if it supports implied connect.
1185 			 * Return ENOTCONN if not connected and no address is
1186 			 * supplied.
1187 			 */
1188 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1189 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1190 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1191 				    !(resid == 0 && clen != 0))
1192 					snderr(ENOTCONN);
1193 			} else if (addr == NULL)
1194 			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
1195 				   ENOTCONN : EDESTADDRREQ);
1196 		}
1197 		space = sbspace(&so->so_snd);
1198 		if (flags & MSG_OOB)
1199 			space += 1024;
1200 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1201 		    clen > so->so_snd.sb_hiwat)
1202 			snderr(EMSGSIZE);
1203 		if (space < resid + clen &&
1204 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1205 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
1206 				snderr(EWOULDBLOCK);
1207 			sbunlock(&so->so_snd);
1208 			error = sbwait(&so->so_snd);
1209 			if (error)
1210 				goto out_locked;
1211 			goto restart;
1212 		}
1213 		SOCKBUF_UNLOCK(&so->so_snd);
1214 		space -= clen;
1215 		do {
1216 			if (uio == NULL) {
1217 				resid = 0;
1218 				if (flags & MSG_EOR)
1219 					top->m_flags |= M_EOR;
1220 			} else {
1221 #ifdef ZERO_COPY_SOCKETS
1222 				error = sosend_copyin(uio, &top, atomic,
1223 				    &space, flags);
1224 				if (error != 0) {
1225 					SOCKBUF_LOCK(&so->so_snd);
1226 					goto release;
1227 				}
1228 #else
1229 				/*
1230 				 * Copy the data from userland into a mbuf
1231 				 * chain.  If no data is to be copied in,
1232 				 * a single empty mbuf is returned.
1233 				 */
1234 				top = m_uiotombuf(uio, M_WAITOK, space,
1235 				    (atomic ? max_hdr : 0),
1236 				    (atomic ? M_PKTHDR : 0) |
1237 				    ((flags & MSG_EOR) ? M_EOR : 0));
1238 				if (top == NULL) {
1239 					SOCKBUF_LOCK(&so->so_snd);
1240 					error = EFAULT; /* only possible error */
1241 					goto release;
1242 				}
1243 				space -= resid - uio->uio_resid;
1244 #endif
1245 				resid = uio->uio_resid;
1246 			}
1247 			if (dontroute) {
1248 				SOCK_LOCK(so);
1249 				so->so_options |= SO_DONTROUTE;
1250 				SOCK_UNLOCK(so);
1251 			}
1252 			/*
1253 			 * XXX all the SBS_CANTSENDMORE checks previously
1254 			 * done could be out of date.  We could have recieved
1255 			 * a reset packet in an interrupt or maybe we slept
1256 			 * while doing page faults in uiomove() etc.  We
1257 			 * could probably recheck again inside the locking
1258 			 * protection here, but there are probably other
1259 			 * places that this also happens.  We must rethink
1260 			 * this.
1261 			 */
1262 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1263 			    (flags & MSG_OOB) ? PRUS_OOB :
1264 			/*
1265 			 * If the user set MSG_EOF, the protocol understands
1266 			 * this flag and nothing left to send then use
1267 			 * PRU_SEND_EOF instead of PRU_SEND.
1268 			 */
1269 			    ((flags & MSG_EOF) &&
1270 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1271 			     (resid <= 0)) ?
1272 				PRUS_EOF :
1273 			/* If there is more to send set PRUS_MORETOCOME. */
1274 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1275 			    top, addr, control, td);
1276 			if (dontroute) {
1277 				SOCK_LOCK(so);
1278 				so->so_options &= ~SO_DONTROUTE;
1279 				SOCK_UNLOCK(so);
1280 			}
1281 			clen = 0;
1282 			control = NULL;
1283 			top = NULL;
1284 			if (error) {
1285 				SOCKBUF_LOCK(&so->so_snd);
1286 				goto release;
1287 			}
1288 		} while (resid && space > 0);
1289 		SOCKBUF_LOCK(&so->so_snd);
1290 	} while (resid);
1291 
1292 release:
1293 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1294 	sbunlock(&so->so_snd);
1295 out_locked:
1296 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1297 	SOCKBUF_UNLOCK(&so->so_snd);
1298 out:
1299 	if (top != NULL)
1300 		m_freem(top);
1301 	if (control != NULL)
1302 		m_freem(control);
1303 	return (error);
1304 }
1305 #undef snderr
1306 
1307 int
1308 sosend(so, addr, uio, top, control, flags, td)
1309 	struct socket *so;
1310 	struct sockaddr *addr;
1311 	struct uio *uio;
1312 	struct mbuf *top;
1313 	struct mbuf *control;
1314 	int flags;
1315 	struct thread *td;
1316 {
1317 
1318 	/* XXXRW: Temporary debugging. */
1319 	KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend,
1320 	    ("sosend: protocol calls sosend"));
1321 
1322 	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1323 	    control, flags, td));
1324 }
1325 
1326 /*
1327  * The part of soreceive() that implements reading non-inline out-of-band
1328  * data from a socket.  For more complete comments, see soreceive(), from
1329  * which this code originated.
1330  *
1331  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1332  * unable to return an mbuf chain to the caller.
1333  */
1334 static int
1335 soreceive_rcvoob(so, uio, flags)
1336 	struct socket *so;
1337 	struct uio *uio;
1338 	int flags;
1339 {
1340 	struct protosw *pr = so->so_proto;
1341 	struct mbuf *m;
1342 	int error;
1343 
1344 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1345 
1346 	m = m_get(M_TRYWAIT, MT_DATA);
1347 	if (m == NULL)
1348 		return (ENOBUFS);
1349 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1350 	if (error)
1351 		goto bad;
1352 	do {
1353 #ifdef ZERO_COPY_SOCKETS
1354 		if (so_zero_copy_receive) {
1355 			int disposable;
1356 
1357 			if ((m->m_flags & M_EXT)
1358 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1359 				disposable = 1;
1360 			else
1361 				disposable = 0;
1362 
1363 			error = uiomoveco(mtod(m, void *),
1364 					  min(uio->uio_resid, m->m_len),
1365 					  uio, disposable);
1366 		} else
1367 #endif /* ZERO_COPY_SOCKETS */
1368 		error = uiomove(mtod(m, void *),
1369 		    (int) min(uio->uio_resid, m->m_len), uio);
1370 		m = m_free(m);
1371 	} while (uio->uio_resid && error == 0 && m);
1372 bad:
1373 	if (m != NULL)
1374 		m_freem(m);
1375 	return (error);
1376 }
1377 
1378 /*
1379  * Following replacement or removal of the first mbuf on the first mbuf chain
1380  * of a socket buffer, push necessary state changes back into the socket
1381  * buffer so that other consumers see the values consistently.  'nextrecord'
1382  * is the callers locally stored value of the original value of
1383  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1384  * NOTE: 'nextrecord' may be NULL.
1385  */
1386 static __inline void
1387 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1388 {
1389 
1390 	SOCKBUF_LOCK_ASSERT(sb);
1391 	/*
1392 	 * First, update for the new value of nextrecord.  If necessary, make
1393 	 * it the first record.
1394 	 */
1395 	if (sb->sb_mb != NULL)
1396 		sb->sb_mb->m_nextpkt = nextrecord;
1397 	else
1398 		sb->sb_mb = nextrecord;
1399 
1400         /*
1401          * Now update any dependent socket buffer fields to reflect the new
1402          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1403 	 * addition of a second clause that takes care of the case where
1404 	 * sb_mb has been updated, but remains the last record.
1405          */
1406         if (sb->sb_mb == NULL) {
1407                 sb->sb_mbtail = NULL;
1408                 sb->sb_lastrecord = NULL;
1409         } else if (sb->sb_mb->m_nextpkt == NULL)
1410                 sb->sb_lastrecord = sb->sb_mb;
1411 }
1412 
1413 
1414 /*
1415  * Implement receive operations on a socket.  We depend on the way that
1416  * records are added to the sockbuf by sbappend.  In particular, each record
1417  * (mbufs linked through m_next) must begin with an address if the protocol
1418  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1419  * data, and then zero or more mbufs of data.  In order to allow parallelism
1420  * between network receive and copying to user space, as well as avoid
1421  * sleeping with a mutex held, we release the socket buffer mutex during the
1422  * user space copy.  Although the sockbuf is locked, new data may still be
1423  * appended, and thus we must maintain consistency of the sockbuf during that
1424  * time.
1425  *
1426  * The caller may receive the data as a single mbuf chain by supplying an
1427  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1428  * the count in uio_resid.
1429  */
1430 int
1431 soreceive_generic(so, psa, uio, mp0, controlp, flagsp)
1432 	struct socket *so;
1433 	struct sockaddr **psa;
1434 	struct uio *uio;
1435 	struct mbuf **mp0;
1436 	struct mbuf **controlp;
1437 	int *flagsp;
1438 {
1439 	struct mbuf *m, **mp;
1440 	int flags, len, error, offset;
1441 	struct protosw *pr = so->so_proto;
1442 	struct mbuf *nextrecord;
1443 	int moff, type = 0;
1444 	int orig_resid = uio->uio_resid;
1445 
1446 	mp = mp0;
1447 	if (psa != NULL)
1448 		*psa = NULL;
1449 	if (controlp != NULL)
1450 		*controlp = NULL;
1451 	if (flagsp != NULL)
1452 		flags = *flagsp &~ MSG_EOR;
1453 	else
1454 		flags = 0;
1455 	if (flags & MSG_OOB)
1456 		return (soreceive_rcvoob(so, uio, flags));
1457 	if (mp != NULL)
1458 		*mp = NULL;
1459 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1460 	    && uio->uio_resid)
1461 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1462 
1463 	SOCKBUF_LOCK(&so->so_rcv);
1464 restart:
1465 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1466 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1467 	if (error)
1468 		goto out;
1469 
1470 	m = so->so_rcv.sb_mb;
1471 	/*
1472 	 * If we have less data than requested, block awaiting more (subject
1473 	 * to any timeout) if:
1474 	 *   1. the current count is less than the low water mark, or
1475 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1476 	 *	receive operation at once if we block (resid <= hiwat).
1477 	 *   3. MSG_DONTWAIT is not set
1478 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1479 	 * we have to do the receive in sections, and thus risk returning a
1480 	 * short count if a timeout or signal occurs after we start.
1481 	 */
1482 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1483 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1484 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1485 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1486 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1487 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1488 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1489 		    m, so->so_rcv.sb_cc));
1490 		if (so->so_error) {
1491 			if (m != NULL)
1492 				goto dontblock;
1493 			error = so->so_error;
1494 			if ((flags & MSG_PEEK) == 0)
1495 				so->so_error = 0;
1496 			goto release;
1497 		}
1498 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1499 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1500 			if (m)
1501 				goto dontblock;
1502 			else
1503 				goto release;
1504 		}
1505 		for (; m != NULL; m = m->m_next)
1506 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1507 				m = so->so_rcv.sb_mb;
1508 				goto dontblock;
1509 			}
1510 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1511 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1512 			error = ENOTCONN;
1513 			goto release;
1514 		}
1515 		if (uio->uio_resid == 0)
1516 			goto release;
1517 		if ((so->so_state & SS_NBIO) ||
1518 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1519 			error = EWOULDBLOCK;
1520 			goto release;
1521 		}
1522 		SBLASTRECORDCHK(&so->so_rcv);
1523 		SBLASTMBUFCHK(&so->so_rcv);
1524 		sbunlock(&so->so_rcv);
1525 		error = sbwait(&so->so_rcv);
1526 		if (error)
1527 			goto out;
1528 		goto restart;
1529 	}
1530 dontblock:
1531 	/*
1532 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1533 	 * pointer to the next record in the socket buffer.  We must keep the
1534 	 * various socket buffer pointers and local stack versions of the
1535 	 * pointers in sync, pushing out modifications before dropping the
1536 	 * socket buffer mutex, and re-reading them when picking it up.
1537 	 *
1538 	 * Otherwise, we will race with the network stack appending new data
1539 	 * or records onto the socket buffer by using inconsistent/stale
1540 	 * versions of the field, possibly resulting in socket buffer
1541 	 * corruption.
1542 	 *
1543 	 * By holding the high-level sblock(), we prevent simultaneous
1544 	 * readers from pulling off the front of the socket buffer.
1545 	 */
1546 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1547 	if (uio->uio_td)
1548 		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1549 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1550 	SBLASTRECORDCHK(&so->so_rcv);
1551 	SBLASTMBUFCHK(&so->so_rcv);
1552 	nextrecord = m->m_nextpkt;
1553 	if (pr->pr_flags & PR_ADDR) {
1554 		KASSERT(m->m_type == MT_SONAME,
1555 		    ("m->m_type == %d", m->m_type));
1556 		orig_resid = 0;
1557 		if (psa != NULL)
1558 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1559 			    M_NOWAIT);
1560 		if (flags & MSG_PEEK) {
1561 			m = m->m_next;
1562 		} else {
1563 			sbfree(&so->so_rcv, m);
1564 			so->so_rcv.sb_mb = m_free(m);
1565 			m = so->so_rcv.sb_mb;
1566 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1572 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1573 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1574 	 * perform externalization (or freeing if controlp == NULL).
1575 	 */
1576 	if (m != NULL && m->m_type == MT_CONTROL) {
1577 		struct mbuf *cm = NULL, *cmn;
1578 		struct mbuf **cme = &cm;
1579 
1580 		do {
1581 			if (flags & MSG_PEEK) {
1582 				if (controlp != NULL) {
1583 					*controlp = m_copy(m, 0, m->m_len);
1584 					controlp = &(*controlp)->m_next;
1585 				}
1586 				m = m->m_next;
1587 			} else {
1588 				sbfree(&so->so_rcv, m);
1589 				so->so_rcv.sb_mb = m->m_next;
1590 				m->m_next = NULL;
1591 				*cme = m;
1592 				cme = &(*cme)->m_next;
1593 				m = so->so_rcv.sb_mb;
1594 			}
1595 		} while (m != NULL && m->m_type == MT_CONTROL);
1596 		if ((flags & MSG_PEEK) == 0)
1597 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1598 		while (cm != NULL) {
1599 			cmn = cm->m_next;
1600 			cm->m_next = NULL;
1601 			if (pr->pr_domain->dom_externalize != NULL) {
1602 				SOCKBUF_UNLOCK(&so->so_rcv);
1603 				error = (*pr->pr_domain->dom_externalize)
1604 				    (cm, controlp);
1605 				SOCKBUF_LOCK(&so->so_rcv);
1606 			} else if (controlp != NULL)
1607 				*controlp = cm;
1608 			else
1609 				m_freem(cm);
1610 			if (controlp != NULL) {
1611 				orig_resid = 0;
1612 				while (*controlp != NULL)
1613 					controlp = &(*controlp)->m_next;
1614 			}
1615 			cm = cmn;
1616 		}
1617 		if (m != NULL)
1618 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1619 		else
1620 			nextrecord = so->so_rcv.sb_mb;
1621 		orig_resid = 0;
1622 	}
1623 	if (m != NULL) {
1624 		if ((flags & MSG_PEEK) == 0) {
1625 			KASSERT(m->m_nextpkt == nextrecord,
1626 			    ("soreceive: post-control, nextrecord !sync"));
1627 			if (nextrecord == NULL) {
1628 				KASSERT(so->so_rcv.sb_mb == m,
1629 				    ("soreceive: post-control, sb_mb!=m"));
1630 				KASSERT(so->so_rcv.sb_lastrecord == m,
1631 				    ("soreceive: post-control, lastrecord!=m"));
1632 			}
1633 		}
1634 		type = m->m_type;
1635 		if (type == MT_OOBDATA)
1636 			flags |= MSG_OOB;
1637 	} else {
1638 		if ((flags & MSG_PEEK) == 0) {
1639 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1640 			    ("soreceive: sb_mb != nextrecord"));
1641 			if (so->so_rcv.sb_mb == NULL) {
1642 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1643 				    ("soreceive: sb_lastercord != NULL"));
1644 			}
1645 		}
1646 	}
1647 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1648 	SBLASTRECORDCHK(&so->so_rcv);
1649 	SBLASTMBUFCHK(&so->so_rcv);
1650 
1651 	/*
1652 	 * Now continue to read any data mbufs off of the head of the socket
1653 	 * buffer until the read request is satisfied.  Note that 'type' is
1654 	 * used to store the type of any mbuf reads that have happened so far
1655 	 * such that soreceive() can stop reading if the type changes, which
1656 	 * causes soreceive() to return only one of regular data and inline
1657 	 * out-of-band data in a single socket receive operation.
1658 	 */
1659 	moff = 0;
1660 	offset = 0;
1661 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1662 		/*
1663 		 * If the type of mbuf has changed since the last mbuf
1664 		 * examined ('type'), end the receive operation.
1665 	 	 */
1666 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1667 		if (m->m_type == MT_OOBDATA) {
1668 			if (type != MT_OOBDATA)
1669 				break;
1670 		} else if (type == MT_OOBDATA)
1671 			break;
1672 		else
1673 		    KASSERT(m->m_type == MT_DATA,
1674 			("m->m_type == %d", m->m_type));
1675 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1676 		len = uio->uio_resid;
1677 		if (so->so_oobmark && len > so->so_oobmark - offset)
1678 			len = so->so_oobmark - offset;
1679 		if (len > m->m_len - moff)
1680 			len = m->m_len - moff;
1681 		/*
1682 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1683 		 * them out via the uio, then free.  Sockbuf must be
1684 		 * consistent here (points to current mbuf, it points to next
1685 		 * record) when we drop priority; we must note any additions
1686 		 * to the sockbuf when we block interrupts again.
1687 		 */
1688 		if (mp == NULL) {
1689 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1690 			SBLASTRECORDCHK(&so->so_rcv);
1691 			SBLASTMBUFCHK(&so->so_rcv);
1692 			SOCKBUF_UNLOCK(&so->so_rcv);
1693 #ifdef ZERO_COPY_SOCKETS
1694 			if (so_zero_copy_receive) {
1695 				int disposable;
1696 
1697 				if ((m->m_flags & M_EXT)
1698 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1699 					disposable = 1;
1700 				else
1701 					disposable = 0;
1702 
1703 				error = uiomoveco(mtod(m, char *) + moff,
1704 						  (int)len, uio,
1705 						  disposable);
1706 			} else
1707 #endif /* ZERO_COPY_SOCKETS */
1708 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1709 			SOCKBUF_LOCK(&so->so_rcv);
1710 			if (error) {
1711 				/*
1712 				 * The MT_SONAME mbuf has already been removed
1713 				 * from the record, so it is necessary to
1714 				 * remove the data mbufs, if any, to preserve
1715 				 * the invariant in the case of PR_ADDR that
1716 				 * requires MT_SONAME mbufs at the head of
1717 				 * each record.
1718 				 */
1719 				if (m && pr->pr_flags & PR_ATOMIC &&
1720 				    ((flags & MSG_PEEK) == 0))
1721 					(void)sbdroprecord_locked(&so->so_rcv);
1722 				goto release;
1723 			}
1724 		} else
1725 			uio->uio_resid -= len;
1726 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1727 		if (len == m->m_len - moff) {
1728 			if (m->m_flags & M_EOR)
1729 				flags |= MSG_EOR;
1730 			if (flags & MSG_PEEK) {
1731 				m = m->m_next;
1732 				moff = 0;
1733 			} else {
1734 				nextrecord = m->m_nextpkt;
1735 				sbfree(&so->so_rcv, m);
1736 				if (mp != NULL) {
1737 					*mp = m;
1738 					mp = &m->m_next;
1739 					so->so_rcv.sb_mb = m = m->m_next;
1740 					*mp = NULL;
1741 				} else {
1742 					so->so_rcv.sb_mb = m_free(m);
1743 					m = so->so_rcv.sb_mb;
1744 				}
1745 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1746 				SBLASTRECORDCHK(&so->so_rcv);
1747 				SBLASTMBUFCHK(&so->so_rcv);
1748 			}
1749 		} else {
1750 			if (flags & MSG_PEEK)
1751 				moff += len;
1752 			else {
1753 				if (mp != NULL) {
1754 					int copy_flag;
1755 
1756 					if (flags & MSG_DONTWAIT)
1757 						copy_flag = M_DONTWAIT;
1758 					else
1759 						copy_flag = M_TRYWAIT;
1760 					if (copy_flag == M_TRYWAIT)
1761 						SOCKBUF_UNLOCK(&so->so_rcv);
1762 					*mp = m_copym(m, 0, len, copy_flag);
1763 					if (copy_flag == M_TRYWAIT)
1764 						SOCKBUF_LOCK(&so->so_rcv);
1765  					if (*mp == NULL) {
1766  						/*
1767  						 * m_copym() couldn't
1768 						 * allocate an mbuf.  Adjust
1769 						 * uio_resid back (it was
1770 						 * adjusted down by len
1771 						 * bytes, which we didn't end
1772 						 * up "copying" over).
1773  						 */
1774  						uio->uio_resid += len;
1775  						break;
1776  					}
1777 				}
1778 				m->m_data += len;
1779 				m->m_len -= len;
1780 				so->so_rcv.sb_cc -= len;
1781 			}
1782 		}
1783 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1784 		if (so->so_oobmark) {
1785 			if ((flags & MSG_PEEK) == 0) {
1786 				so->so_oobmark -= len;
1787 				if (so->so_oobmark == 0) {
1788 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1789 					break;
1790 				}
1791 			} else {
1792 				offset += len;
1793 				if (offset == so->so_oobmark)
1794 					break;
1795 			}
1796 		}
1797 		if (flags & MSG_EOR)
1798 			break;
1799 		/*
1800 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1801 		 * must not quit until "uio->uio_resid == 0" or an error
1802 		 * termination.  If a signal/timeout occurs, return with a
1803 		 * short count but without error.  Keep sockbuf locked
1804 		 * against other readers.
1805 		 */
1806 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1807 		    !sosendallatonce(so) && nextrecord == NULL) {
1808 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1809 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1810 				break;
1811 			/*
1812 			 * Notify the protocol that some data has been
1813 			 * drained before blocking.
1814 			 */
1815 			if (pr->pr_flags & PR_WANTRCVD) {
1816 				SOCKBUF_UNLOCK(&so->so_rcv);
1817 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1818 				SOCKBUF_LOCK(&so->so_rcv);
1819 			}
1820 			SBLASTRECORDCHK(&so->so_rcv);
1821 			SBLASTMBUFCHK(&so->so_rcv);
1822 			error = sbwait(&so->so_rcv);
1823 			if (error)
1824 				goto release;
1825 			m = so->so_rcv.sb_mb;
1826 			if (m != NULL)
1827 				nextrecord = m->m_nextpkt;
1828 		}
1829 	}
1830 
1831 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1832 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1833 		flags |= MSG_TRUNC;
1834 		if ((flags & MSG_PEEK) == 0)
1835 			(void) sbdroprecord_locked(&so->so_rcv);
1836 	}
1837 	if ((flags & MSG_PEEK) == 0) {
1838 		if (m == NULL) {
1839 			/*
1840 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1841 			 * part makes sure sb_lastrecord is up-to-date if
1842 			 * there is still data in the socket buffer.
1843 			 */
1844 			so->so_rcv.sb_mb = nextrecord;
1845 			if (so->so_rcv.sb_mb == NULL) {
1846 				so->so_rcv.sb_mbtail = NULL;
1847 				so->so_rcv.sb_lastrecord = NULL;
1848 			} else if (nextrecord->m_nextpkt == NULL)
1849 				so->so_rcv.sb_lastrecord = nextrecord;
1850 		}
1851 		SBLASTRECORDCHK(&so->so_rcv);
1852 		SBLASTMBUFCHK(&so->so_rcv);
1853 		/*
1854 		 * If soreceive() is being done from the socket callback,
1855 		 * then don't need to generate ACK to peer to update window,
1856 		 * since ACK will be generated on return to TCP.
1857 		 */
1858 		if (!(flags & MSG_SOCALLBCK) &&
1859 		    (pr->pr_flags & PR_WANTRCVD)) {
1860 			SOCKBUF_UNLOCK(&so->so_rcv);
1861 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1862 			SOCKBUF_LOCK(&so->so_rcv);
1863 		}
1864 	}
1865 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1866 	if (orig_resid == uio->uio_resid && orig_resid &&
1867 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1868 		sbunlock(&so->so_rcv);
1869 		goto restart;
1870 	}
1871 
1872 	if (flagsp != NULL)
1873 		*flagsp |= flags;
1874 release:
1875 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1876 	sbunlock(&so->so_rcv);
1877 out:
1878 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1879 	SOCKBUF_UNLOCK(&so->so_rcv);
1880 	return (error);
1881 }
1882 
1883 int
1884 soreceive(so, psa, uio, mp0, controlp, flagsp)
1885 	struct socket *so;
1886 	struct sockaddr **psa;
1887 	struct uio *uio;
1888 	struct mbuf **mp0;
1889 	struct mbuf **controlp;
1890 	int *flagsp;
1891 {
1892 
1893 	/* XXXRW: Temporary debugging. */
1894 	KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive,
1895 	    ("soreceive: protocol calls soreceive"));
1896 
1897 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
1898 	    controlp, flagsp));
1899 }
1900 
1901 int
1902 soshutdown(so, how)
1903 	struct socket *so;
1904 	int how;
1905 {
1906 	struct protosw *pr = so->so_proto;
1907 
1908 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1909 		return (EINVAL);
1910 
1911 	if (how != SHUT_WR)
1912 		sorflush(so);
1913 	if (how != SHUT_RD)
1914 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1915 	return (0);
1916 }
1917 
1918 void
1919 sorflush(so)
1920 	struct socket *so;
1921 {
1922 	struct sockbuf *sb = &so->so_rcv;
1923 	struct protosw *pr = so->so_proto;
1924 	struct sockbuf asb;
1925 
1926 	/*
1927 	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1928 	 * the socket buffer, then zero'd the original to clear the buffer
1929 	 * fields.  However, with mutexes in the socket buffer, this causes
1930 	 * problems.  We only clear the zeroable bits of the original;
1931 	 * however, we have to initialize and destroy the mutex in the copy
1932 	 * so that dom_dispose() and sbrelease() can lock t as needed.
1933 	 */
1934 	SOCKBUF_LOCK(sb);
1935 	sb->sb_flags |= SB_NOINTR;
1936 	(void) sblock(sb, M_WAITOK);
1937 	/*
1938 	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1939 	 * can safely perform wakeups.  Re-acquire the mutex before
1940 	 * continuing.
1941 	 */
1942 	socantrcvmore_locked(so);
1943 	SOCKBUF_LOCK(sb);
1944 	sbunlock(sb);
1945 	/*
1946 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
1947 	 * and mutex data unchanged.
1948 	 */
1949 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1950 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1951 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1952 	bzero(&sb->sb_startzero,
1953 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1954 	SOCKBUF_UNLOCK(sb);
1955 
1956 	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1957 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1958 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1959 	sbrelease(&asb, so);
1960 	SOCKBUF_LOCK_DESTROY(&asb);
1961 }
1962 
1963 /*
1964  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
1965  * additional variant to handle the case where the option value needs to be
1966  * some kind of integer, but not a specific size.  In addition to their use
1967  * here, these functions are also called by the protocol-level pr_ctloutput()
1968  * routines.
1969  */
1970 int
1971 sooptcopyin(sopt, buf, len, minlen)
1972 	struct	sockopt *sopt;
1973 	void	*buf;
1974 	size_t	len;
1975 	size_t	minlen;
1976 {
1977 	size_t	valsize;
1978 
1979 	/*
1980 	 * If the user gives us more than we wanted, we ignore it, but if we
1981 	 * don't get the minimum length the caller wants, we return EINVAL.
1982 	 * On success, sopt->sopt_valsize is set to however much we actually
1983 	 * retrieved.
1984 	 */
1985 	if ((valsize = sopt->sopt_valsize) < minlen)
1986 		return EINVAL;
1987 	if (valsize > len)
1988 		sopt->sopt_valsize = valsize = len;
1989 
1990 	if (sopt->sopt_td != NULL)
1991 		return (copyin(sopt->sopt_val, buf, valsize));
1992 
1993 	bcopy(sopt->sopt_val, buf, valsize);
1994 	return (0);
1995 }
1996 
1997 /*
1998  * Kernel version of setsockopt(2).
1999  *
2000  * XXX: optlen is size_t, not socklen_t
2001  */
2002 int
2003 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2004     size_t optlen)
2005 {
2006 	struct sockopt sopt;
2007 
2008 	sopt.sopt_level = level;
2009 	sopt.sopt_name = optname;
2010 	sopt.sopt_dir = SOPT_SET;
2011 	sopt.sopt_val = optval;
2012 	sopt.sopt_valsize = optlen;
2013 	sopt.sopt_td = NULL;
2014 	return (sosetopt(so, &sopt));
2015 }
2016 
2017 int
2018 sosetopt(so, sopt)
2019 	struct socket *so;
2020 	struct sockopt *sopt;
2021 {
2022 	int	error, optval;
2023 	struct	linger l;
2024 	struct	timeval tv;
2025 	u_long  val;
2026 #ifdef MAC
2027 	struct mac extmac;
2028 #endif
2029 
2030 	error = 0;
2031 	if (sopt->sopt_level != SOL_SOCKET) {
2032 		if (so->so_proto && so->so_proto->pr_ctloutput)
2033 			return ((*so->so_proto->pr_ctloutput)
2034 				  (so, sopt));
2035 		error = ENOPROTOOPT;
2036 	} else {
2037 		switch (sopt->sopt_name) {
2038 #ifdef INET
2039 		case SO_ACCEPTFILTER:
2040 			error = do_setopt_accept_filter(so, sopt);
2041 			if (error)
2042 				goto bad;
2043 			break;
2044 #endif
2045 		case SO_LINGER:
2046 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2047 			if (error)
2048 				goto bad;
2049 
2050 			SOCK_LOCK(so);
2051 			so->so_linger = l.l_linger;
2052 			if (l.l_onoff)
2053 				so->so_options |= SO_LINGER;
2054 			else
2055 				so->so_options &= ~SO_LINGER;
2056 			SOCK_UNLOCK(so);
2057 			break;
2058 
2059 		case SO_DEBUG:
2060 		case SO_KEEPALIVE:
2061 		case SO_DONTROUTE:
2062 		case SO_USELOOPBACK:
2063 		case SO_BROADCAST:
2064 		case SO_REUSEADDR:
2065 		case SO_REUSEPORT:
2066 		case SO_OOBINLINE:
2067 		case SO_TIMESTAMP:
2068 		case SO_BINTIME:
2069 		case SO_NOSIGPIPE:
2070 			error = sooptcopyin(sopt, &optval, sizeof optval,
2071 					    sizeof optval);
2072 			if (error)
2073 				goto bad;
2074 			SOCK_LOCK(so);
2075 			if (optval)
2076 				so->so_options |= sopt->sopt_name;
2077 			else
2078 				so->so_options &= ~sopt->sopt_name;
2079 			SOCK_UNLOCK(so);
2080 			break;
2081 
2082 		case SO_SNDBUF:
2083 		case SO_RCVBUF:
2084 		case SO_SNDLOWAT:
2085 		case SO_RCVLOWAT:
2086 			error = sooptcopyin(sopt, &optval, sizeof optval,
2087 					    sizeof optval);
2088 			if (error)
2089 				goto bad;
2090 
2091 			/*
2092 			 * Values < 1 make no sense for any of these options,
2093 			 * so disallow them.
2094 			 */
2095 			if (optval < 1) {
2096 				error = EINVAL;
2097 				goto bad;
2098 			}
2099 
2100 			switch (sopt->sopt_name) {
2101 			case SO_SNDBUF:
2102 			case SO_RCVBUF:
2103 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2104 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2105 				    so, curthread) == 0) {
2106 					error = ENOBUFS;
2107 					goto bad;
2108 				}
2109 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2110 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2111 				break;
2112 
2113 			/*
2114 			 * Make sure the low-water is never greater than the
2115 			 * high-water.
2116 			 */
2117 			case SO_SNDLOWAT:
2118 				SOCKBUF_LOCK(&so->so_snd);
2119 				so->so_snd.sb_lowat =
2120 				    (optval > so->so_snd.sb_hiwat) ?
2121 				    so->so_snd.sb_hiwat : optval;
2122 				SOCKBUF_UNLOCK(&so->so_snd);
2123 				break;
2124 			case SO_RCVLOWAT:
2125 				SOCKBUF_LOCK(&so->so_rcv);
2126 				so->so_rcv.sb_lowat =
2127 				    (optval > so->so_rcv.sb_hiwat) ?
2128 				    so->so_rcv.sb_hiwat : optval;
2129 				SOCKBUF_UNLOCK(&so->so_rcv);
2130 				break;
2131 			}
2132 			break;
2133 
2134 		case SO_SNDTIMEO:
2135 		case SO_RCVTIMEO:
2136 #ifdef COMPAT_IA32
2137 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2138 				struct timeval32 tv32;
2139 
2140 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2141 				    sizeof tv32);
2142 				CP(tv32, tv, tv_sec);
2143 				CP(tv32, tv, tv_usec);
2144 			} else
2145 #endif
2146 				error = sooptcopyin(sopt, &tv, sizeof tv,
2147 				    sizeof tv);
2148 			if (error)
2149 				goto bad;
2150 
2151 			/* assert(hz > 0); */
2152 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2153 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2154 				error = EDOM;
2155 				goto bad;
2156 			}
2157 			/* assert(tick > 0); */
2158 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2159 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2160 			if (val > INT_MAX) {
2161 				error = EDOM;
2162 				goto bad;
2163 			}
2164 			if (val == 0 && tv.tv_usec != 0)
2165 				val = 1;
2166 
2167 			switch (sopt->sopt_name) {
2168 			case SO_SNDTIMEO:
2169 				so->so_snd.sb_timeo = val;
2170 				break;
2171 			case SO_RCVTIMEO:
2172 				so->so_rcv.sb_timeo = val;
2173 				break;
2174 			}
2175 			break;
2176 
2177 		case SO_LABEL:
2178 #ifdef MAC
2179 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2180 			    sizeof extmac);
2181 			if (error)
2182 				goto bad;
2183 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2184 			    so, &extmac);
2185 #else
2186 			error = EOPNOTSUPP;
2187 #endif
2188 			break;
2189 
2190 		default:
2191 			error = ENOPROTOOPT;
2192 			break;
2193 		}
2194 		if (error == 0 && so->so_proto != NULL &&
2195 		    so->so_proto->pr_ctloutput != NULL) {
2196 			(void) ((*so->so_proto->pr_ctloutput)
2197 				  (so, sopt));
2198 		}
2199 	}
2200 bad:
2201 	return (error);
2202 }
2203 
2204 /*
2205  * Helper routine for getsockopt.
2206  */
2207 int
2208 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2209 {
2210 	int	error;
2211 	size_t	valsize;
2212 
2213 	error = 0;
2214 
2215 	/*
2216 	 * Documented get behavior is that we always return a value, possibly
2217 	 * truncated to fit in the user's buffer.  Traditional behavior is
2218 	 * that we always tell the user precisely how much we copied, rather
2219 	 * than something useful like the total amount we had available for
2220 	 * her.  Note that this interface is not idempotent; the entire
2221 	 * answer must generated ahead of time.
2222 	 */
2223 	valsize = min(len, sopt->sopt_valsize);
2224 	sopt->sopt_valsize = valsize;
2225 	if (sopt->sopt_val != NULL) {
2226 		if (sopt->sopt_td != NULL)
2227 			error = copyout(buf, sopt->sopt_val, valsize);
2228 		else
2229 			bcopy(buf, sopt->sopt_val, valsize);
2230 	}
2231 	return (error);
2232 }
2233 
2234 int
2235 sogetopt(so, sopt)
2236 	struct socket *so;
2237 	struct sockopt *sopt;
2238 {
2239 	int	error, optval;
2240 	struct	linger l;
2241 	struct	timeval tv;
2242 #ifdef MAC
2243 	struct mac extmac;
2244 #endif
2245 
2246 	error = 0;
2247 	if (sopt->sopt_level != SOL_SOCKET) {
2248 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2249 			return ((*so->so_proto->pr_ctloutput)
2250 				  (so, sopt));
2251 		} else
2252 			return (ENOPROTOOPT);
2253 	} else {
2254 		switch (sopt->sopt_name) {
2255 #ifdef INET
2256 		case SO_ACCEPTFILTER:
2257 			error = do_getopt_accept_filter(so, sopt);
2258 			break;
2259 #endif
2260 		case SO_LINGER:
2261 			SOCK_LOCK(so);
2262 			l.l_onoff = so->so_options & SO_LINGER;
2263 			l.l_linger = so->so_linger;
2264 			SOCK_UNLOCK(so);
2265 			error = sooptcopyout(sopt, &l, sizeof l);
2266 			break;
2267 
2268 		case SO_USELOOPBACK:
2269 		case SO_DONTROUTE:
2270 		case SO_DEBUG:
2271 		case SO_KEEPALIVE:
2272 		case SO_REUSEADDR:
2273 		case SO_REUSEPORT:
2274 		case SO_BROADCAST:
2275 		case SO_OOBINLINE:
2276 		case SO_ACCEPTCONN:
2277 		case SO_TIMESTAMP:
2278 		case SO_BINTIME:
2279 		case SO_NOSIGPIPE:
2280 			optval = so->so_options & sopt->sopt_name;
2281 integer:
2282 			error = sooptcopyout(sopt, &optval, sizeof optval);
2283 			break;
2284 
2285 		case SO_TYPE:
2286 			optval = so->so_type;
2287 			goto integer;
2288 
2289 		case SO_ERROR:
2290 			SOCK_LOCK(so);
2291 			optval = so->so_error;
2292 			so->so_error = 0;
2293 			SOCK_UNLOCK(so);
2294 			goto integer;
2295 
2296 		case SO_SNDBUF:
2297 			optval = so->so_snd.sb_hiwat;
2298 			goto integer;
2299 
2300 		case SO_RCVBUF:
2301 			optval = so->so_rcv.sb_hiwat;
2302 			goto integer;
2303 
2304 		case SO_SNDLOWAT:
2305 			optval = so->so_snd.sb_lowat;
2306 			goto integer;
2307 
2308 		case SO_RCVLOWAT:
2309 			optval = so->so_rcv.sb_lowat;
2310 			goto integer;
2311 
2312 		case SO_SNDTIMEO:
2313 		case SO_RCVTIMEO:
2314 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2315 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2316 
2317 			tv.tv_sec = optval / hz;
2318 			tv.tv_usec = (optval % hz) * tick;
2319 #ifdef COMPAT_IA32
2320 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2321 				struct timeval32 tv32;
2322 
2323 				CP(tv, tv32, tv_sec);
2324 				CP(tv, tv32, tv_usec);
2325 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2326 			} else
2327 #endif
2328 				error = sooptcopyout(sopt, &tv, sizeof tv);
2329 			break;
2330 
2331 		case SO_LABEL:
2332 #ifdef MAC
2333 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2334 			    sizeof(extmac));
2335 			if (error)
2336 				return (error);
2337 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2338 			    so, &extmac);
2339 			if (error)
2340 				return (error);
2341 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2342 #else
2343 			error = EOPNOTSUPP;
2344 #endif
2345 			break;
2346 
2347 		case SO_PEERLABEL:
2348 #ifdef MAC
2349 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2350 			    sizeof(extmac));
2351 			if (error)
2352 				return (error);
2353 			error = mac_getsockopt_peerlabel(
2354 			    sopt->sopt_td->td_ucred, so, &extmac);
2355 			if (error)
2356 				return (error);
2357 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2358 #else
2359 			error = EOPNOTSUPP;
2360 #endif
2361 			break;
2362 
2363 		case SO_LISTENQLIMIT:
2364 			optval = so->so_qlimit;
2365 			goto integer;
2366 
2367 		case SO_LISTENQLEN:
2368 			optval = so->so_qlen;
2369 			goto integer;
2370 
2371 		case SO_LISTENINCQLEN:
2372 			optval = so->so_incqlen;
2373 			goto integer;
2374 
2375 		default:
2376 			error = ENOPROTOOPT;
2377 			break;
2378 		}
2379 		return (error);
2380 	}
2381 }
2382 
2383 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2384 int
2385 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2386 {
2387 	struct mbuf *m, *m_prev;
2388 	int sopt_size = sopt->sopt_valsize;
2389 
2390 	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2391 	if (m == NULL)
2392 		return ENOBUFS;
2393 	if (sopt_size > MLEN) {
2394 		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
2395 		if ((m->m_flags & M_EXT) == 0) {
2396 			m_free(m);
2397 			return ENOBUFS;
2398 		}
2399 		m->m_len = min(MCLBYTES, sopt_size);
2400 	} else {
2401 		m->m_len = min(MLEN, sopt_size);
2402 	}
2403 	sopt_size -= m->m_len;
2404 	*mp = m;
2405 	m_prev = m;
2406 
2407 	while (sopt_size) {
2408 		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2409 		if (m == NULL) {
2410 			m_freem(*mp);
2411 			return ENOBUFS;
2412 		}
2413 		if (sopt_size > MLEN) {
2414 			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
2415 			    M_DONTWAIT);
2416 			if ((m->m_flags & M_EXT) == 0) {
2417 				m_freem(m);
2418 				m_freem(*mp);
2419 				return ENOBUFS;
2420 			}
2421 			m->m_len = min(MCLBYTES, sopt_size);
2422 		} else {
2423 			m->m_len = min(MLEN, sopt_size);
2424 		}
2425 		sopt_size -= m->m_len;
2426 		m_prev->m_next = m;
2427 		m_prev = m;
2428 	}
2429 	return (0);
2430 }
2431 
2432 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2433 int
2434 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2435 {
2436 	struct mbuf *m0 = m;
2437 
2438 	if (sopt->sopt_val == NULL)
2439 		return (0);
2440 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2441 		if (sopt->sopt_td != NULL) {
2442 			int error;
2443 
2444 			error = copyin(sopt->sopt_val, mtod(m, char *),
2445 				       m->m_len);
2446 			if (error != 0) {
2447 				m_freem(m0);
2448 				return(error);
2449 			}
2450 		} else
2451 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2452 		sopt->sopt_valsize -= m->m_len;
2453 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2454 		m = m->m_next;
2455 	}
2456 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2457 		panic("ip6_sooptmcopyin");
2458 	return (0);
2459 }
2460 
2461 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2462 int
2463 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2464 {
2465 	struct mbuf *m0 = m;
2466 	size_t valsize = 0;
2467 
2468 	if (sopt->sopt_val == NULL)
2469 		return (0);
2470 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2471 		if (sopt->sopt_td != NULL) {
2472 			int error;
2473 
2474 			error = copyout(mtod(m, char *), sopt->sopt_val,
2475 				       m->m_len);
2476 			if (error != 0) {
2477 				m_freem(m0);
2478 				return(error);
2479 			}
2480 		} else
2481 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2482 	       sopt->sopt_valsize -= m->m_len;
2483 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2484 	       valsize += m->m_len;
2485 	       m = m->m_next;
2486 	}
2487 	if (m != NULL) {
2488 		/* enough soopt buffer should be given from user-land */
2489 		m_freem(m0);
2490 		return(EINVAL);
2491 	}
2492 	sopt->sopt_valsize = valsize;
2493 	return (0);
2494 }
2495 
2496 /*
2497  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2498  * out-of-band data, which will then notify socket consumers.
2499  */
2500 void
2501 sohasoutofband(so)
2502 	struct socket *so;
2503 {
2504 	if (so->so_sigio != NULL)
2505 		pgsigio(&so->so_sigio, SIGURG, 0);
2506 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2507 }
2508 
2509 int
2510 sopoll(struct socket *so, int events, struct ucred *active_cred,
2511     struct thread *td)
2512 {
2513 
2514 	/* XXXRW: Temporary debugging. */
2515 	KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll,
2516 	    ("sopoll: protocol calls sopoll"));
2517 
2518 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2519 	    td));
2520 }
2521 
2522 int
2523 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2524     struct thread *td)
2525 {
2526 	int revents = 0;
2527 
2528 	SOCKBUF_LOCK(&so->so_snd);
2529 	SOCKBUF_LOCK(&so->so_rcv);
2530 	if (events & (POLLIN | POLLRDNORM))
2531 		if (soreadable(so))
2532 			revents |= events & (POLLIN | POLLRDNORM);
2533 
2534 	if (events & POLLINIGNEOF)
2535 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2536 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2537 			revents |= POLLINIGNEOF;
2538 
2539 	if (events & (POLLOUT | POLLWRNORM))
2540 		if (sowriteable(so))
2541 			revents |= events & (POLLOUT | POLLWRNORM);
2542 
2543 	if (events & (POLLPRI | POLLRDBAND))
2544 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2545 			revents |= events & (POLLPRI | POLLRDBAND);
2546 
2547 	if (revents == 0) {
2548 		if (events &
2549 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2550 		     POLLRDBAND)) {
2551 			selrecord(td, &so->so_rcv.sb_sel);
2552 			so->so_rcv.sb_flags |= SB_SEL;
2553 		}
2554 
2555 		if (events & (POLLOUT | POLLWRNORM)) {
2556 			selrecord(td, &so->so_snd.sb_sel);
2557 			so->so_snd.sb_flags |= SB_SEL;
2558 		}
2559 	}
2560 
2561 	SOCKBUF_UNLOCK(&so->so_rcv);
2562 	SOCKBUF_UNLOCK(&so->so_snd);
2563 	return (revents);
2564 }
2565 
2566 int
2567 soo_kqfilter(struct file *fp, struct knote *kn)
2568 {
2569 	struct socket *so = kn->kn_fp->f_data;
2570 	struct sockbuf *sb;
2571 
2572 	switch (kn->kn_filter) {
2573 	case EVFILT_READ:
2574 		if (so->so_options & SO_ACCEPTCONN)
2575 			kn->kn_fop = &solisten_filtops;
2576 		else
2577 			kn->kn_fop = &soread_filtops;
2578 		sb = &so->so_rcv;
2579 		break;
2580 	case EVFILT_WRITE:
2581 		kn->kn_fop = &sowrite_filtops;
2582 		sb = &so->so_snd;
2583 		break;
2584 	default:
2585 		return (EINVAL);
2586 	}
2587 
2588 	SOCKBUF_LOCK(sb);
2589 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2590 	sb->sb_flags |= SB_KNOTE;
2591 	SOCKBUF_UNLOCK(sb);
2592 	return (0);
2593 }
2594 
2595 static void
2596 filt_sordetach(struct knote *kn)
2597 {
2598 	struct socket *so = kn->kn_fp->f_data;
2599 
2600 	SOCKBUF_LOCK(&so->so_rcv);
2601 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2602 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2603 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2604 	SOCKBUF_UNLOCK(&so->so_rcv);
2605 }
2606 
2607 /*ARGSUSED*/
2608 static int
2609 filt_soread(struct knote *kn, long hint)
2610 {
2611 	struct socket *so;
2612 
2613 	so = kn->kn_fp->f_data;
2614 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2615 
2616 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2617 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2618 		kn->kn_flags |= EV_EOF;
2619 		kn->kn_fflags = so->so_error;
2620 		return (1);
2621 	} else if (so->so_error)	/* temporary udp error */
2622 		return (1);
2623 	else if (kn->kn_sfflags & NOTE_LOWAT)
2624 		return (kn->kn_data >= kn->kn_sdata);
2625 	else
2626 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2627 }
2628 
2629 static void
2630 filt_sowdetach(struct knote *kn)
2631 {
2632 	struct socket *so = kn->kn_fp->f_data;
2633 
2634 	SOCKBUF_LOCK(&so->so_snd);
2635 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2636 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2637 		so->so_snd.sb_flags &= ~SB_KNOTE;
2638 	SOCKBUF_UNLOCK(&so->so_snd);
2639 }
2640 
2641 /*ARGSUSED*/
2642 static int
2643 filt_sowrite(struct knote *kn, long hint)
2644 {
2645 	struct socket *so;
2646 
2647 	so = kn->kn_fp->f_data;
2648 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2649 	kn->kn_data = sbspace(&so->so_snd);
2650 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2651 		kn->kn_flags |= EV_EOF;
2652 		kn->kn_fflags = so->so_error;
2653 		return (1);
2654 	} else if (so->so_error)	/* temporary udp error */
2655 		return (1);
2656 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2657 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2658 		return (0);
2659 	else if (kn->kn_sfflags & NOTE_LOWAT)
2660 		return (kn->kn_data >= kn->kn_sdata);
2661 	else
2662 		return (kn->kn_data >= so->so_snd.sb_lowat);
2663 }
2664 
2665 /*ARGSUSED*/
2666 static int
2667 filt_solisten(struct knote *kn, long hint)
2668 {
2669 	struct socket *so = kn->kn_fp->f_data;
2670 
2671 	kn->kn_data = so->so_qlen;
2672 	return (! TAILQ_EMPTY(&so->so_comp));
2673 }
2674 
2675 int
2676 socheckuid(struct socket *so, uid_t uid)
2677 {
2678 
2679 	if (so == NULL)
2680 		return (EPERM);
2681 	if (so->so_cred->cr_uid != uid)
2682 		return (EPERM);
2683 	return (0);
2684 }
2685 
2686 static int
2687 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2688 {
2689 	int error;
2690 	int val;
2691 
2692 	val = somaxconn;
2693 	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2694 	if (error || !req->newptr )
2695 		return (error);
2696 
2697 	if (val < 1 || val > USHRT_MAX)
2698 		return (EINVAL);
2699 
2700 	somaxconn = val;
2701 	return (0);
2702 }
2703