1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_zero.h" 109 #include "opt_compat.h" 110 111 #include <sys/param.h> 112 #include <sys/systm.h> 113 #include <sys/fcntl.h> 114 #include <sys/limits.h> 115 #include <sys/lock.h> 116 #include <sys/mac.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/domain.h> 121 #include <sys/file.h> /* for struct knote */ 122 #include <sys/kernel.h> 123 #include <sys/event.h> 124 #include <sys/eventhandler.h> 125 #include <sys/poll.h> 126 #include <sys/proc.h> 127 #include <sys/protosw.h> 128 #include <sys/socket.h> 129 #include <sys/socketvar.h> 130 #include <sys/resourcevar.h> 131 #include <net/route.h> 132 #include <sys/signalvar.h> 133 #include <sys/stat.h> 134 #include <sys/sx.h> 135 #include <sys/sysctl.h> 136 #include <sys/uio.h> 137 #include <sys/jail.h> 138 #include <sys/syslog.h> 139 140 #include <net/vnet.h> 141 142 #include <security/mac/mac_framework.h> 143 144 #include <vm/uma.h> 145 146 #ifdef COMPAT_FREEBSD32 147 #include <sys/mount.h> 148 #include <sys/sysent.h> 149 #include <compat/freebsd32/freebsd32.h> 150 #endif 151 152 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 153 int flags); 154 155 static void filt_sordetach(struct knote *kn); 156 static int filt_soread(struct knote *kn, long hint); 157 static void filt_sowdetach(struct knote *kn); 158 static int filt_sowrite(struct knote *kn, long hint); 159 static int filt_solisten(struct knote *kn, long hint); 160 161 static struct filterops solisten_filtops = { 162 .f_isfd = 1, 163 .f_detach = filt_sordetach, 164 .f_event = filt_solisten, 165 }; 166 static struct filterops soread_filtops = { 167 .f_isfd = 1, 168 .f_detach = filt_sordetach, 169 .f_event = filt_soread, 170 }; 171 static struct filterops sowrite_filtops = { 172 .f_isfd = 1, 173 .f_detach = filt_sowdetach, 174 .f_event = filt_sowrite, 175 }; 176 177 so_gen_t so_gencnt; /* generation count for sockets */ 178 179 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 180 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 181 182 #define VNET_SO_ASSERT(so) \ 183 VNET_ASSERT(curvnet != NULL, \ 184 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 185 186 /* 187 * Limit on the number of connections in the listen queue waiting 188 * for accept(2). 189 * NB: The orginal sysctl somaxconn is still available but hidden 190 * to prevent confusion about the actual purpose of this number. 191 */ 192 static int somaxconn = SOMAXCONN; 193 194 static int 195 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 196 { 197 int error; 198 int val; 199 200 val = somaxconn; 201 error = sysctl_handle_int(oidp, &val, 0, req); 202 if (error || !req->newptr ) 203 return (error); 204 205 if (val < 1 || val > USHRT_MAX) 206 return (EINVAL); 207 208 somaxconn = val; 209 return (0); 210 } 211 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 212 0, sizeof(int), sysctl_somaxconn, "I", 213 "Maximum listen socket pending connection accept queue size"); 214 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 215 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 216 0, sizeof(int), sysctl_somaxconn, "I", 217 "Maximum listen socket pending connection accept queue size (compat)"); 218 219 static int numopensockets; 220 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 221 &numopensockets, 0, "Number of open sockets"); 222 223 #if defined(SOCKET_SEND_COW) || defined(SOCKET_RECV_PFLIP) 224 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 225 "Zero copy controls"); 226 #ifdef SOCKET_RECV_PFLIP 227 int so_zero_copy_receive = 1; 228 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 229 &so_zero_copy_receive, 0, "Enable zero copy receive"); 230 #endif 231 #ifdef SOCKET_SEND_COW 232 int so_zero_copy_send = 1; 233 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 234 &so_zero_copy_send, 0, "Enable zero copy send"); 235 #endif /* SOCKET_SEND_COW */ 236 #endif /* SOCKET_SEND_COW || SOCKET_RECV_PFLIP */ 237 238 /* 239 * accept_mtx locks down per-socket fields relating to accept queues. See 240 * socketvar.h for an annotation of the protected fields of struct socket. 241 */ 242 struct mtx accept_mtx; 243 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 244 245 /* 246 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 247 * so_gencnt field. 248 */ 249 static struct mtx so_global_mtx; 250 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 251 252 /* 253 * General IPC sysctl name space, used by sockets and a variety of other IPC 254 * types. 255 */ 256 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 257 258 /* 259 * Initialize the socket subsystem and set up the socket 260 * memory allocator. 261 */ 262 static uma_zone_t socket_zone; 263 int maxsockets; 264 265 static void 266 socket_zone_change(void *tag) 267 { 268 269 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 270 } 271 272 static void 273 socket_init(void *tag) 274 { 275 276 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 277 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 278 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 279 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 280 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 281 EVENTHANDLER_PRI_FIRST); 282 } 283 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 284 285 /* 286 * Initialise maxsockets. This SYSINIT must be run after 287 * tunable_mbinit(). 288 */ 289 static void 290 init_maxsockets(void *ignored) 291 { 292 293 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 294 maxsockets = imax(maxsockets, maxfiles); 295 } 296 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 297 298 /* 299 * Sysctl to get and set the maximum global sockets limit. Notify protocols 300 * of the change so that they can update their dependent limits as required. 301 */ 302 static int 303 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 304 { 305 int error, newmaxsockets; 306 307 newmaxsockets = maxsockets; 308 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 309 if (error == 0 && req->newptr) { 310 if (newmaxsockets > maxsockets && 311 newmaxsockets <= maxfiles) { 312 maxsockets = newmaxsockets; 313 EVENTHANDLER_INVOKE(maxsockets_change); 314 } else 315 error = EINVAL; 316 } 317 return (error); 318 } 319 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 320 &maxsockets, 0, sysctl_maxsockets, "IU", 321 "Maximum number of sockets avaliable"); 322 323 /* 324 * Socket operation routines. These routines are called by the routines in 325 * sys_socket.c or from a system process, and implement the semantics of 326 * socket operations by switching out to the protocol specific routines. 327 */ 328 329 /* 330 * Get a socket structure from our zone, and initialize it. Note that it 331 * would probably be better to allocate socket and PCB at the same time, but 332 * I'm not convinced that all the protocols can be easily modified to do 333 * this. 334 * 335 * soalloc() returns a socket with a ref count of 0. 336 */ 337 static struct socket * 338 soalloc(struct vnet *vnet) 339 { 340 struct socket *so; 341 342 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 343 if (so == NULL) 344 return (NULL); 345 #ifdef MAC 346 if (mac_socket_init(so, M_NOWAIT) != 0) { 347 uma_zfree(socket_zone, so); 348 return (NULL); 349 } 350 #endif 351 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 352 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 353 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 354 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 355 TAILQ_INIT(&so->so_aiojobq); 356 mtx_lock(&so_global_mtx); 357 so->so_gencnt = ++so_gencnt; 358 ++numopensockets; 359 #ifdef VIMAGE 360 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 361 __func__, __LINE__, so)); 362 vnet->vnet_sockcnt++; 363 so->so_vnet = vnet; 364 #endif 365 mtx_unlock(&so_global_mtx); 366 return (so); 367 } 368 369 /* 370 * Free the storage associated with a socket at the socket layer, tear down 371 * locks, labels, etc. All protocol state is assumed already to have been 372 * torn down (and possibly never set up) by the caller. 373 */ 374 static void 375 sodealloc(struct socket *so) 376 { 377 378 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 379 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 380 381 mtx_lock(&so_global_mtx); 382 so->so_gencnt = ++so_gencnt; 383 --numopensockets; /* Could be below, but faster here. */ 384 #ifdef VIMAGE 385 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 386 __func__, __LINE__, so)); 387 so->so_vnet->vnet_sockcnt--; 388 #endif 389 mtx_unlock(&so_global_mtx); 390 if (so->so_rcv.sb_hiwat) 391 (void)chgsbsize(so->so_cred->cr_uidinfo, 392 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 393 if (so->so_snd.sb_hiwat) 394 (void)chgsbsize(so->so_cred->cr_uidinfo, 395 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 396 #ifdef INET 397 /* remove acccept filter if one is present. */ 398 if (so->so_accf != NULL) 399 do_setopt_accept_filter(so, NULL); 400 #endif 401 #ifdef MAC 402 mac_socket_destroy(so); 403 #endif 404 crfree(so->so_cred); 405 sx_destroy(&so->so_snd.sb_sx); 406 sx_destroy(&so->so_rcv.sb_sx); 407 SOCKBUF_LOCK_DESTROY(&so->so_snd); 408 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 409 uma_zfree(socket_zone, so); 410 } 411 412 /* 413 * socreate returns a socket with a ref count of 1. The socket should be 414 * closed with soclose(). 415 */ 416 int 417 socreate(int dom, struct socket **aso, int type, int proto, 418 struct ucred *cred, struct thread *td) 419 { 420 struct protosw *prp; 421 struct socket *so; 422 int error; 423 424 if (proto) 425 prp = pffindproto(dom, proto, type); 426 else 427 prp = pffindtype(dom, type); 428 429 if (prp == NULL) { 430 /* No support for domain. */ 431 if (pffinddomain(dom) == NULL) 432 return (EAFNOSUPPORT); 433 /* No support for socket type. */ 434 if (proto == 0 && type != 0) 435 return (EPROTOTYPE); 436 return (EPROTONOSUPPORT); 437 } 438 if (prp->pr_usrreqs->pru_attach == NULL || 439 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 440 return (EPROTONOSUPPORT); 441 442 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 443 return (EPROTONOSUPPORT); 444 445 if (prp->pr_type != type) 446 return (EPROTOTYPE); 447 so = soalloc(CRED_TO_VNET(cred)); 448 if (so == NULL) 449 return (ENOBUFS); 450 451 TAILQ_INIT(&so->so_incomp); 452 TAILQ_INIT(&so->so_comp); 453 so->so_type = type; 454 so->so_cred = crhold(cred); 455 if ((prp->pr_domain->dom_family == PF_INET) || 456 (prp->pr_domain->dom_family == PF_INET6) || 457 (prp->pr_domain->dom_family == PF_ROUTE)) 458 so->so_fibnum = td->td_proc->p_fibnum; 459 else 460 so->so_fibnum = 0; 461 so->so_proto = prp; 462 #ifdef MAC 463 mac_socket_create(cred, so); 464 #endif 465 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 466 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 467 so->so_count = 1; 468 /* 469 * Auto-sizing of socket buffers is managed by the protocols and 470 * the appropriate flags must be set in the pru_attach function. 471 */ 472 CURVNET_SET(so->so_vnet); 473 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 474 CURVNET_RESTORE(); 475 if (error) { 476 KASSERT(so->so_count == 1, ("socreate: so_count %d", 477 so->so_count)); 478 so->so_count = 0; 479 sodealloc(so); 480 return (error); 481 } 482 *aso = so; 483 return (0); 484 } 485 486 #ifdef REGRESSION 487 static int regression_sonewconn_earlytest = 1; 488 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 489 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 490 #endif 491 492 /* 493 * When an attempt at a new connection is noted on a socket which accepts 494 * connections, sonewconn is called. If the connection is possible (subject 495 * to space constraints, etc.) then we allocate a new structure, propoerly 496 * linked into the data structure of the original socket, and return this. 497 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 498 * 499 * Note: the ref count on the socket is 0 on return. 500 */ 501 struct socket * 502 sonewconn(struct socket *head, int connstatus) 503 { 504 struct socket *so; 505 int over; 506 507 ACCEPT_LOCK(); 508 over = (head->so_qlen > 3 * head->so_qlimit / 2); 509 ACCEPT_UNLOCK(); 510 #ifdef REGRESSION 511 if (regression_sonewconn_earlytest && over) { 512 #else 513 if (over) { 514 #endif 515 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 516 "%i already in queue awaiting acceptance\n", 517 __func__, head->so_pcb, over); 518 return (NULL); 519 } 520 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 521 __func__, __LINE__, head)); 522 so = soalloc(head->so_vnet); 523 if (so == NULL) { 524 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 525 "limit reached or out of memory\n", 526 __func__, head->so_pcb); 527 return (NULL); 528 } 529 if ((head->so_options & SO_ACCEPTFILTER) != 0) 530 connstatus = 0; 531 so->so_head = head; 532 so->so_type = head->so_type; 533 so->so_options = head->so_options &~ SO_ACCEPTCONN; 534 so->so_linger = head->so_linger; 535 so->so_state = head->so_state | SS_NOFDREF; 536 so->so_fibnum = head->so_fibnum; 537 so->so_proto = head->so_proto; 538 so->so_cred = crhold(head->so_cred); 539 #ifdef MAC 540 mac_socket_newconn(head, so); 541 #endif 542 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 543 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 544 VNET_SO_ASSERT(head); 545 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 546 sodealloc(so); 547 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 548 __func__, head->so_pcb); 549 return (NULL); 550 } 551 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 552 sodealloc(so); 553 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 554 __func__, head->so_pcb); 555 return (NULL); 556 } 557 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 558 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 559 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 560 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 561 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 562 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 563 so->so_state |= connstatus; 564 ACCEPT_LOCK(); 565 /* 566 * The accept socket may be tearing down but we just 567 * won a race on the ACCEPT_LOCK. 568 */ 569 if (!(head->so_options & SO_ACCEPTCONN)) { 570 SOCK_LOCK(so); 571 so->so_head = NULL; 572 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 573 return (NULL); 574 } 575 if (connstatus) { 576 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 577 so->so_qstate |= SQ_COMP; 578 head->so_qlen++; 579 } else { 580 /* 581 * Keep removing sockets from the head until there's room for 582 * us to insert on the tail. In pre-locking revisions, this 583 * was a simple if(), but as we could be racing with other 584 * threads and soabort() requires dropping locks, we must 585 * loop waiting for the condition to be true. 586 */ 587 while (head->so_incqlen > head->so_qlimit) { 588 struct socket *sp; 589 sp = TAILQ_FIRST(&head->so_incomp); 590 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 591 head->so_incqlen--; 592 sp->so_qstate &= ~SQ_INCOMP; 593 sp->so_head = NULL; 594 ACCEPT_UNLOCK(); 595 soabort(sp); 596 ACCEPT_LOCK(); 597 } 598 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 599 so->so_qstate |= SQ_INCOMP; 600 head->so_incqlen++; 601 } 602 ACCEPT_UNLOCK(); 603 if (connstatus) { 604 sorwakeup(head); 605 wakeup_one(&head->so_timeo); 606 } 607 return (so); 608 } 609 610 int 611 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 612 { 613 int error; 614 615 CURVNET_SET(so->so_vnet); 616 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 617 CURVNET_RESTORE(); 618 return error; 619 } 620 621 /* 622 * solisten() transitions a socket from a non-listening state to a listening 623 * state, but can also be used to update the listen queue depth on an 624 * existing listen socket. The protocol will call back into the sockets 625 * layer using solisten_proto_check() and solisten_proto() to check and set 626 * socket-layer listen state. Call backs are used so that the protocol can 627 * acquire both protocol and socket layer locks in whatever order is required 628 * by the protocol. 629 * 630 * Protocol implementors are advised to hold the socket lock across the 631 * socket-layer test and set to avoid races at the socket layer. 632 */ 633 int 634 solisten(struct socket *so, int backlog, struct thread *td) 635 { 636 int error; 637 638 CURVNET_SET(so->so_vnet); 639 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 640 CURVNET_RESTORE(); 641 return error; 642 } 643 644 int 645 solisten_proto_check(struct socket *so) 646 { 647 648 SOCK_LOCK_ASSERT(so); 649 650 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 651 SS_ISDISCONNECTING)) 652 return (EINVAL); 653 return (0); 654 } 655 656 void 657 solisten_proto(struct socket *so, int backlog) 658 { 659 660 SOCK_LOCK_ASSERT(so); 661 662 if (backlog < 0 || backlog > somaxconn) 663 backlog = somaxconn; 664 so->so_qlimit = backlog; 665 so->so_options |= SO_ACCEPTCONN; 666 } 667 668 /* 669 * Evaluate the reference count and named references on a socket; if no 670 * references remain, free it. This should be called whenever a reference is 671 * released, such as in sorele(), but also when named reference flags are 672 * cleared in socket or protocol code. 673 * 674 * sofree() will free the socket if: 675 * 676 * - There are no outstanding file descriptor references or related consumers 677 * (so_count == 0). 678 * 679 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 680 * 681 * - The protocol does not have an outstanding strong reference on the socket 682 * (SS_PROTOREF). 683 * 684 * - The socket is not in a completed connection queue, so a process has been 685 * notified that it is present. If it is removed, the user process may 686 * block in accept() despite select() saying the socket was ready. 687 */ 688 void 689 sofree(struct socket *so) 690 { 691 struct protosw *pr = so->so_proto; 692 struct socket *head; 693 694 ACCEPT_LOCK_ASSERT(); 695 SOCK_LOCK_ASSERT(so); 696 697 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 698 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 699 SOCK_UNLOCK(so); 700 ACCEPT_UNLOCK(); 701 return; 702 } 703 704 head = so->so_head; 705 if (head != NULL) { 706 KASSERT((so->so_qstate & SQ_COMP) != 0 || 707 (so->so_qstate & SQ_INCOMP) != 0, 708 ("sofree: so_head != NULL, but neither SQ_COMP nor " 709 "SQ_INCOMP")); 710 KASSERT((so->so_qstate & SQ_COMP) == 0 || 711 (so->so_qstate & SQ_INCOMP) == 0, 712 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 713 TAILQ_REMOVE(&head->so_incomp, so, so_list); 714 head->so_incqlen--; 715 so->so_qstate &= ~SQ_INCOMP; 716 so->so_head = NULL; 717 } 718 KASSERT((so->so_qstate & SQ_COMP) == 0 && 719 (so->so_qstate & SQ_INCOMP) == 0, 720 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 721 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 722 if (so->so_options & SO_ACCEPTCONN) { 723 KASSERT((TAILQ_EMPTY(&so->so_comp)), 724 ("sofree: so_comp populated")); 725 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 726 ("sofree: so_incomp populated")); 727 } 728 SOCK_UNLOCK(so); 729 ACCEPT_UNLOCK(); 730 731 VNET_SO_ASSERT(so); 732 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 733 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 734 if (pr->pr_usrreqs->pru_detach != NULL) 735 (*pr->pr_usrreqs->pru_detach)(so); 736 737 /* 738 * From this point on, we assume that no other references to this 739 * socket exist anywhere else in the stack. Therefore, no locks need 740 * to be acquired or held. 741 * 742 * We used to do a lot of socket buffer and socket locking here, as 743 * well as invoke sorflush() and perform wakeups. The direct call to 744 * dom_dispose() and sbrelease_internal() are an inlining of what was 745 * necessary from sorflush(). 746 * 747 * Notice that the socket buffer and kqueue state are torn down 748 * before calling pru_detach. This means that protocols shold not 749 * assume they can perform socket wakeups, etc, in their detach code. 750 */ 751 sbdestroy(&so->so_snd, so); 752 sbdestroy(&so->so_rcv, so); 753 seldrain(&so->so_snd.sb_sel); 754 seldrain(&so->so_rcv.sb_sel); 755 knlist_destroy(&so->so_rcv.sb_sel.si_note); 756 knlist_destroy(&so->so_snd.sb_sel.si_note); 757 sodealloc(so); 758 } 759 760 /* 761 * Close a socket on last file table reference removal. Initiate disconnect 762 * if connected. Free socket when disconnect complete. 763 * 764 * This function will sorele() the socket. Note that soclose() may be called 765 * prior to the ref count reaching zero. The actual socket structure will 766 * not be freed until the ref count reaches zero. 767 */ 768 int 769 soclose(struct socket *so) 770 { 771 int error = 0; 772 773 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 774 775 CURVNET_SET(so->so_vnet); 776 funsetown(&so->so_sigio); 777 if (so->so_state & SS_ISCONNECTED) { 778 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 779 error = sodisconnect(so); 780 if (error) { 781 if (error == ENOTCONN) 782 error = 0; 783 goto drop; 784 } 785 } 786 if (so->so_options & SO_LINGER) { 787 if ((so->so_state & SS_ISDISCONNECTING) && 788 (so->so_state & SS_NBIO)) 789 goto drop; 790 while (so->so_state & SS_ISCONNECTED) { 791 error = tsleep(&so->so_timeo, 792 PSOCK | PCATCH, "soclos", 793 so->so_linger * hz); 794 if (error) 795 break; 796 } 797 } 798 } 799 800 drop: 801 if (so->so_proto->pr_usrreqs->pru_close != NULL) 802 (*so->so_proto->pr_usrreqs->pru_close)(so); 803 ACCEPT_LOCK(); 804 if (so->so_options & SO_ACCEPTCONN) { 805 struct socket *sp; 806 /* 807 * Prevent new additions to the accept queues due 808 * to ACCEPT_LOCK races while we are draining them. 809 */ 810 so->so_options &= ~SO_ACCEPTCONN; 811 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 812 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 813 so->so_incqlen--; 814 sp->so_qstate &= ~SQ_INCOMP; 815 sp->so_head = NULL; 816 ACCEPT_UNLOCK(); 817 soabort(sp); 818 ACCEPT_LOCK(); 819 } 820 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 821 TAILQ_REMOVE(&so->so_comp, sp, so_list); 822 so->so_qlen--; 823 sp->so_qstate &= ~SQ_COMP; 824 sp->so_head = NULL; 825 ACCEPT_UNLOCK(); 826 soabort(sp); 827 ACCEPT_LOCK(); 828 } 829 KASSERT((TAILQ_EMPTY(&so->so_comp)), 830 ("%s: so_comp populated", __func__)); 831 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 832 ("%s: so_incomp populated", __func__)); 833 } 834 SOCK_LOCK(so); 835 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 836 so->so_state |= SS_NOFDREF; 837 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 838 CURVNET_RESTORE(); 839 return (error); 840 } 841 842 /* 843 * soabort() is used to abruptly tear down a connection, such as when a 844 * resource limit is reached (listen queue depth exceeded), or if a listen 845 * socket is closed while there are sockets waiting to be accepted. 846 * 847 * This interface is tricky, because it is called on an unreferenced socket, 848 * and must be called only by a thread that has actually removed the socket 849 * from the listen queue it was on, or races with other threads are risked. 850 * 851 * This interface will call into the protocol code, so must not be called 852 * with any socket locks held. Protocols do call it while holding their own 853 * recursible protocol mutexes, but this is something that should be subject 854 * to review in the future. 855 */ 856 void 857 soabort(struct socket *so) 858 { 859 860 /* 861 * In as much as is possible, assert that no references to this 862 * socket are held. This is not quite the same as asserting that the 863 * current thread is responsible for arranging for no references, but 864 * is as close as we can get for now. 865 */ 866 KASSERT(so->so_count == 0, ("soabort: so_count")); 867 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 868 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 869 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 870 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 871 VNET_SO_ASSERT(so); 872 873 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 874 (*so->so_proto->pr_usrreqs->pru_abort)(so); 875 ACCEPT_LOCK(); 876 SOCK_LOCK(so); 877 sofree(so); 878 } 879 880 int 881 soaccept(struct socket *so, struct sockaddr **nam) 882 { 883 int error; 884 885 SOCK_LOCK(so); 886 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 887 so->so_state &= ~SS_NOFDREF; 888 SOCK_UNLOCK(so); 889 890 CURVNET_SET(so->so_vnet); 891 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 892 CURVNET_RESTORE(); 893 return (error); 894 } 895 896 int 897 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 898 { 899 int error; 900 901 if (so->so_options & SO_ACCEPTCONN) 902 return (EOPNOTSUPP); 903 904 CURVNET_SET(so->so_vnet); 905 /* 906 * If protocol is connection-based, can only connect once. 907 * Otherwise, if connected, try to disconnect first. This allows 908 * user to disconnect by connecting to, e.g., a null address. 909 */ 910 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 911 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 912 (error = sodisconnect(so)))) { 913 error = EISCONN; 914 } else { 915 /* 916 * Prevent accumulated error from previous connection from 917 * biting us. 918 */ 919 so->so_error = 0; 920 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 921 } 922 CURVNET_RESTORE(); 923 924 return (error); 925 } 926 927 int 928 soconnect2(struct socket *so1, struct socket *so2) 929 { 930 int error; 931 932 CURVNET_SET(so1->so_vnet); 933 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 934 CURVNET_RESTORE(); 935 return (error); 936 } 937 938 int 939 sodisconnect(struct socket *so) 940 { 941 int error; 942 943 if ((so->so_state & SS_ISCONNECTED) == 0) 944 return (ENOTCONN); 945 if (so->so_state & SS_ISDISCONNECTING) 946 return (EALREADY); 947 VNET_SO_ASSERT(so); 948 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 949 return (error); 950 } 951 952 #ifdef SOCKET_SEND_COW 953 struct so_zerocopy_stats{ 954 int size_ok; 955 int align_ok; 956 int found_ifp; 957 }; 958 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 959 960 /* 961 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 962 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 963 * 964 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 965 * all of the data referenced by the uio. If desired, it uses zero-copy. 966 * *space will be updated to reflect data copied in. 967 * 968 * NB: If atomic I/O is requested, the caller must already have checked that 969 * space can hold resid bytes. 970 * 971 * NB: In the event of an error, the caller may need to free the partial 972 * chain pointed to by *mpp. The contents of both *uio and *space may be 973 * modified even in the case of an error. 974 */ 975 static int 976 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 977 int flags) 978 { 979 struct mbuf *m, **mp, *top; 980 long len; 981 ssize_t resid; 982 int error; 983 int cow_send; 984 985 *retmp = top = NULL; 986 mp = ⊤ 987 len = 0; 988 resid = uio->uio_resid; 989 error = 0; 990 do { 991 cow_send = 0; 992 if (resid >= MINCLSIZE) { 993 if (top == NULL) { 994 m = m_gethdr(M_WAITOK, MT_DATA); 995 m->m_pkthdr.len = 0; 996 m->m_pkthdr.rcvif = NULL; 997 } else 998 m = m_get(M_WAITOK, MT_DATA); 999 if (so_zero_copy_send && 1000 resid >= PAGE_SIZE && 1001 *space >= PAGE_SIZE && 1002 uio->uio_iov->iov_len >= PAGE_SIZE) { 1003 so_zerocp_stats.size_ok++; 1004 so_zerocp_stats.align_ok++; 1005 cow_send = socow_setup(m, uio); 1006 len = cow_send; 1007 } 1008 if (!cow_send) { 1009 m_clget(m, M_WAITOK); 1010 len = min(min(MCLBYTES, resid), *space); 1011 } 1012 } else { 1013 if (top == NULL) { 1014 m = m_gethdr(M_WAITOK, MT_DATA); 1015 m->m_pkthdr.len = 0; 1016 m->m_pkthdr.rcvif = NULL; 1017 1018 len = min(min(MHLEN, resid), *space); 1019 /* 1020 * For datagram protocols, leave room 1021 * for protocol headers in first mbuf. 1022 */ 1023 if (atomic && m && len < MHLEN) 1024 MH_ALIGN(m, len); 1025 } else { 1026 m = m_get(M_WAITOK, MT_DATA); 1027 len = min(min(MLEN, resid), *space); 1028 } 1029 } 1030 if (m == NULL) { 1031 error = ENOBUFS; 1032 goto out; 1033 } 1034 1035 *space -= len; 1036 if (cow_send) 1037 error = 0; 1038 else 1039 error = uiomove(mtod(m, void *), (int)len, uio); 1040 resid = uio->uio_resid; 1041 m->m_len = len; 1042 *mp = m; 1043 top->m_pkthdr.len += len; 1044 if (error) 1045 goto out; 1046 mp = &m->m_next; 1047 if (resid <= 0) { 1048 if (flags & MSG_EOR) 1049 top->m_flags |= M_EOR; 1050 break; 1051 } 1052 } while (*space > 0 && atomic); 1053 out: 1054 *retmp = top; 1055 return (error); 1056 } 1057 #endif /* SOCKET_SEND_COW */ 1058 1059 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1060 1061 int 1062 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1063 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1064 { 1065 long space; 1066 ssize_t resid; 1067 int clen = 0, error, dontroute; 1068 #ifdef SOCKET_SEND_COW 1069 int atomic = sosendallatonce(so) || top; 1070 #endif 1071 1072 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1073 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1074 ("sosend_dgram: !PR_ATOMIC")); 1075 1076 if (uio != NULL) 1077 resid = uio->uio_resid; 1078 else 1079 resid = top->m_pkthdr.len; 1080 /* 1081 * In theory resid should be unsigned. However, space must be 1082 * signed, as it might be less than 0 if we over-committed, and we 1083 * must use a signed comparison of space and resid. On the other 1084 * hand, a negative resid causes us to loop sending 0-length 1085 * segments to the protocol. 1086 */ 1087 if (resid < 0) { 1088 error = EINVAL; 1089 goto out; 1090 } 1091 1092 dontroute = 1093 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1094 if (td != NULL) 1095 td->td_ru.ru_msgsnd++; 1096 if (control != NULL) 1097 clen = control->m_len; 1098 1099 SOCKBUF_LOCK(&so->so_snd); 1100 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1101 SOCKBUF_UNLOCK(&so->so_snd); 1102 error = EPIPE; 1103 goto out; 1104 } 1105 if (so->so_error) { 1106 error = so->so_error; 1107 so->so_error = 0; 1108 SOCKBUF_UNLOCK(&so->so_snd); 1109 goto out; 1110 } 1111 if ((so->so_state & SS_ISCONNECTED) == 0) { 1112 /* 1113 * `sendto' and `sendmsg' is allowed on a connection-based 1114 * socket if it supports implied connect. Return ENOTCONN if 1115 * not connected and no address is supplied. 1116 */ 1117 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1118 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1119 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1120 !(resid == 0 && clen != 0)) { 1121 SOCKBUF_UNLOCK(&so->so_snd); 1122 error = ENOTCONN; 1123 goto out; 1124 } 1125 } else if (addr == NULL) { 1126 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1127 error = ENOTCONN; 1128 else 1129 error = EDESTADDRREQ; 1130 SOCKBUF_UNLOCK(&so->so_snd); 1131 goto out; 1132 } 1133 } 1134 1135 /* 1136 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1137 * problem and need fixing. 1138 */ 1139 space = sbspace(&so->so_snd); 1140 if (flags & MSG_OOB) 1141 space += 1024; 1142 space -= clen; 1143 SOCKBUF_UNLOCK(&so->so_snd); 1144 if (resid > space) { 1145 error = EMSGSIZE; 1146 goto out; 1147 } 1148 if (uio == NULL) { 1149 resid = 0; 1150 if (flags & MSG_EOR) 1151 top->m_flags |= M_EOR; 1152 } else { 1153 #ifdef SOCKET_SEND_COW 1154 error = sosend_copyin(uio, &top, atomic, &space, flags); 1155 if (error) 1156 goto out; 1157 #else 1158 /* 1159 * Copy the data from userland into a mbuf chain. 1160 * If no data is to be copied in, a single empty mbuf 1161 * is returned. 1162 */ 1163 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1164 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1165 if (top == NULL) { 1166 error = EFAULT; /* only possible error */ 1167 goto out; 1168 } 1169 space -= resid - uio->uio_resid; 1170 #endif /* SOCKET_SEND_COW */ 1171 resid = uio->uio_resid; 1172 } 1173 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1174 /* 1175 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1176 * than with. 1177 */ 1178 if (dontroute) { 1179 SOCK_LOCK(so); 1180 so->so_options |= SO_DONTROUTE; 1181 SOCK_UNLOCK(so); 1182 } 1183 /* 1184 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1185 * of date. We could have recieved a reset packet in an interrupt or 1186 * maybe we slept while doing page faults in uiomove() etc. We could 1187 * probably recheck again inside the locking protection here, but 1188 * there are probably other places that this also happens. We must 1189 * rethink this. 1190 */ 1191 VNET_SO_ASSERT(so); 1192 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1193 (flags & MSG_OOB) ? PRUS_OOB : 1194 /* 1195 * If the user set MSG_EOF, the protocol understands this flag and 1196 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1197 */ 1198 ((flags & MSG_EOF) && 1199 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1200 (resid <= 0)) ? 1201 PRUS_EOF : 1202 /* If there is more to send set PRUS_MORETOCOME */ 1203 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1204 top, addr, control, td); 1205 if (dontroute) { 1206 SOCK_LOCK(so); 1207 so->so_options &= ~SO_DONTROUTE; 1208 SOCK_UNLOCK(so); 1209 } 1210 clen = 0; 1211 control = NULL; 1212 top = NULL; 1213 out: 1214 if (top != NULL) 1215 m_freem(top); 1216 if (control != NULL) 1217 m_freem(control); 1218 return (error); 1219 } 1220 1221 /* 1222 * Send on a socket. If send must go all at once and message is larger than 1223 * send buffering, then hard error. Lock against other senders. If must go 1224 * all at once and not enough room now, then inform user that this would 1225 * block and do nothing. Otherwise, if nonblocking, send as much as 1226 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1227 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1228 * in mbuf chain must be small enough to send all at once. 1229 * 1230 * Returns nonzero on error, timeout or signal; callers must check for short 1231 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1232 * on return. 1233 */ 1234 int 1235 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1236 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1237 { 1238 long space; 1239 ssize_t resid; 1240 int clen = 0, error, dontroute; 1241 int atomic = sosendallatonce(so) || top; 1242 1243 if (uio != NULL) 1244 resid = uio->uio_resid; 1245 else 1246 resid = top->m_pkthdr.len; 1247 /* 1248 * In theory resid should be unsigned. However, space must be 1249 * signed, as it might be less than 0 if we over-committed, and we 1250 * must use a signed comparison of space and resid. On the other 1251 * hand, a negative resid causes us to loop sending 0-length 1252 * segments to the protocol. 1253 * 1254 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1255 * type sockets since that's an error. 1256 */ 1257 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1258 error = EINVAL; 1259 goto out; 1260 } 1261 1262 dontroute = 1263 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1264 (so->so_proto->pr_flags & PR_ATOMIC); 1265 if (td != NULL) 1266 td->td_ru.ru_msgsnd++; 1267 if (control != NULL) 1268 clen = control->m_len; 1269 1270 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1271 if (error) 1272 goto out; 1273 1274 restart: 1275 do { 1276 SOCKBUF_LOCK(&so->so_snd); 1277 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1278 SOCKBUF_UNLOCK(&so->so_snd); 1279 error = EPIPE; 1280 goto release; 1281 } 1282 if (so->so_error) { 1283 error = so->so_error; 1284 so->so_error = 0; 1285 SOCKBUF_UNLOCK(&so->so_snd); 1286 goto release; 1287 } 1288 if ((so->so_state & SS_ISCONNECTED) == 0) { 1289 /* 1290 * `sendto' and `sendmsg' is allowed on a connection- 1291 * based socket if it supports implied connect. 1292 * Return ENOTCONN if not connected and no address is 1293 * supplied. 1294 */ 1295 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1296 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1297 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1298 !(resid == 0 && clen != 0)) { 1299 SOCKBUF_UNLOCK(&so->so_snd); 1300 error = ENOTCONN; 1301 goto release; 1302 } 1303 } else if (addr == NULL) { 1304 SOCKBUF_UNLOCK(&so->so_snd); 1305 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1306 error = ENOTCONN; 1307 else 1308 error = EDESTADDRREQ; 1309 goto release; 1310 } 1311 } 1312 space = sbspace(&so->so_snd); 1313 if (flags & MSG_OOB) 1314 space += 1024; 1315 if ((atomic && resid > so->so_snd.sb_hiwat) || 1316 clen > so->so_snd.sb_hiwat) { 1317 SOCKBUF_UNLOCK(&so->so_snd); 1318 error = EMSGSIZE; 1319 goto release; 1320 } 1321 if (space < resid + clen && 1322 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1323 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1324 SOCKBUF_UNLOCK(&so->so_snd); 1325 error = EWOULDBLOCK; 1326 goto release; 1327 } 1328 error = sbwait(&so->so_snd); 1329 SOCKBUF_UNLOCK(&so->so_snd); 1330 if (error) 1331 goto release; 1332 goto restart; 1333 } 1334 SOCKBUF_UNLOCK(&so->so_snd); 1335 space -= clen; 1336 do { 1337 if (uio == NULL) { 1338 resid = 0; 1339 if (flags & MSG_EOR) 1340 top->m_flags |= M_EOR; 1341 } else { 1342 #ifdef SOCKET_SEND_COW 1343 error = sosend_copyin(uio, &top, atomic, 1344 &space, flags); 1345 if (error != 0) 1346 goto release; 1347 #else 1348 /* 1349 * Copy the data from userland into a mbuf 1350 * chain. If no data is to be copied in, 1351 * a single empty mbuf is returned. 1352 */ 1353 top = m_uiotombuf(uio, M_WAITOK, space, 1354 (atomic ? max_hdr : 0), 1355 (atomic ? M_PKTHDR : 0) | 1356 ((flags & MSG_EOR) ? M_EOR : 0)); 1357 if (top == NULL) { 1358 error = EFAULT; /* only possible error */ 1359 goto release; 1360 } 1361 space -= resid - uio->uio_resid; 1362 #endif /* SOCKET_SEND_COW */ 1363 resid = uio->uio_resid; 1364 } 1365 if (dontroute) { 1366 SOCK_LOCK(so); 1367 so->so_options |= SO_DONTROUTE; 1368 SOCK_UNLOCK(so); 1369 } 1370 /* 1371 * XXX all the SBS_CANTSENDMORE checks previously 1372 * done could be out of date. We could have recieved 1373 * a reset packet in an interrupt or maybe we slept 1374 * while doing page faults in uiomove() etc. We 1375 * could probably recheck again inside the locking 1376 * protection here, but there are probably other 1377 * places that this also happens. We must rethink 1378 * this. 1379 */ 1380 VNET_SO_ASSERT(so); 1381 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1382 (flags & MSG_OOB) ? PRUS_OOB : 1383 /* 1384 * If the user set MSG_EOF, the protocol understands 1385 * this flag and nothing left to send then use 1386 * PRU_SEND_EOF instead of PRU_SEND. 1387 */ 1388 ((flags & MSG_EOF) && 1389 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1390 (resid <= 0)) ? 1391 PRUS_EOF : 1392 /* If there is more to send set PRUS_MORETOCOME. */ 1393 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1394 top, addr, control, td); 1395 if (dontroute) { 1396 SOCK_LOCK(so); 1397 so->so_options &= ~SO_DONTROUTE; 1398 SOCK_UNLOCK(so); 1399 } 1400 clen = 0; 1401 control = NULL; 1402 top = NULL; 1403 if (error) 1404 goto release; 1405 } while (resid && space > 0); 1406 } while (resid); 1407 1408 release: 1409 sbunlock(&so->so_snd); 1410 out: 1411 if (top != NULL) 1412 m_freem(top); 1413 if (control != NULL) 1414 m_freem(control); 1415 return (error); 1416 } 1417 1418 int 1419 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1420 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1421 { 1422 int error; 1423 1424 CURVNET_SET(so->so_vnet); 1425 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1426 control, flags, td); 1427 CURVNET_RESTORE(); 1428 return (error); 1429 } 1430 1431 /* 1432 * The part of soreceive() that implements reading non-inline out-of-band 1433 * data from a socket. For more complete comments, see soreceive(), from 1434 * which this code originated. 1435 * 1436 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1437 * unable to return an mbuf chain to the caller. 1438 */ 1439 static int 1440 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1441 { 1442 struct protosw *pr = so->so_proto; 1443 struct mbuf *m; 1444 int error; 1445 1446 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1447 VNET_SO_ASSERT(so); 1448 1449 m = m_get(M_WAITOK, MT_DATA); 1450 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1451 if (error) 1452 goto bad; 1453 do { 1454 #ifdef SOCKET_RECV_PFLIP 1455 if (so_zero_copy_receive) { 1456 int disposable; 1457 1458 if ((m->m_flags & M_EXT) 1459 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1460 disposable = 1; 1461 else 1462 disposable = 0; 1463 1464 error = uiomoveco(mtod(m, void *), 1465 min(uio->uio_resid, m->m_len), uio, disposable); 1466 } else 1467 #endif /* SOCKET_RECV_PFLIP */ 1468 error = uiomove(mtod(m, void *), 1469 (int) min(uio->uio_resid, m->m_len), uio); 1470 m = m_free(m); 1471 } while (uio->uio_resid && error == 0 && m); 1472 bad: 1473 if (m != NULL) 1474 m_freem(m); 1475 return (error); 1476 } 1477 1478 /* 1479 * Following replacement or removal of the first mbuf on the first mbuf chain 1480 * of a socket buffer, push necessary state changes back into the socket 1481 * buffer so that other consumers see the values consistently. 'nextrecord' 1482 * is the callers locally stored value of the original value of 1483 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1484 * NOTE: 'nextrecord' may be NULL. 1485 */ 1486 static __inline void 1487 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1488 { 1489 1490 SOCKBUF_LOCK_ASSERT(sb); 1491 /* 1492 * First, update for the new value of nextrecord. If necessary, make 1493 * it the first record. 1494 */ 1495 if (sb->sb_mb != NULL) 1496 sb->sb_mb->m_nextpkt = nextrecord; 1497 else 1498 sb->sb_mb = nextrecord; 1499 1500 /* 1501 * Now update any dependent socket buffer fields to reflect the new 1502 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1503 * addition of a second clause that takes care of the case where 1504 * sb_mb has been updated, but remains the last record. 1505 */ 1506 if (sb->sb_mb == NULL) { 1507 sb->sb_mbtail = NULL; 1508 sb->sb_lastrecord = NULL; 1509 } else if (sb->sb_mb->m_nextpkt == NULL) 1510 sb->sb_lastrecord = sb->sb_mb; 1511 } 1512 1513 /* 1514 * Implement receive operations on a socket. We depend on the way that 1515 * records are added to the sockbuf by sbappend. In particular, each record 1516 * (mbufs linked through m_next) must begin with an address if the protocol 1517 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1518 * data, and then zero or more mbufs of data. In order to allow parallelism 1519 * between network receive and copying to user space, as well as avoid 1520 * sleeping with a mutex held, we release the socket buffer mutex during the 1521 * user space copy. Although the sockbuf is locked, new data may still be 1522 * appended, and thus we must maintain consistency of the sockbuf during that 1523 * time. 1524 * 1525 * The caller may receive the data as a single mbuf chain by supplying an 1526 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1527 * the count in uio_resid. 1528 */ 1529 int 1530 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1531 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1532 { 1533 struct mbuf *m, **mp; 1534 int flags, error, offset; 1535 ssize_t len; 1536 struct protosw *pr = so->so_proto; 1537 struct mbuf *nextrecord; 1538 int moff, type = 0; 1539 ssize_t orig_resid = uio->uio_resid; 1540 1541 mp = mp0; 1542 if (psa != NULL) 1543 *psa = NULL; 1544 if (controlp != NULL) 1545 *controlp = NULL; 1546 if (flagsp != NULL) 1547 flags = *flagsp &~ MSG_EOR; 1548 else 1549 flags = 0; 1550 if (flags & MSG_OOB) 1551 return (soreceive_rcvoob(so, uio, flags)); 1552 if (mp != NULL) 1553 *mp = NULL; 1554 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1555 && uio->uio_resid) { 1556 VNET_SO_ASSERT(so); 1557 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1558 } 1559 1560 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1561 if (error) 1562 return (error); 1563 1564 restart: 1565 SOCKBUF_LOCK(&so->so_rcv); 1566 m = so->so_rcv.sb_mb; 1567 /* 1568 * If we have less data than requested, block awaiting more (subject 1569 * to any timeout) if: 1570 * 1. the current count is less than the low water mark, or 1571 * 2. MSG_DONTWAIT is not set 1572 */ 1573 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1574 so->so_rcv.sb_cc < uio->uio_resid) && 1575 so->so_rcv.sb_cc < so->so_rcv.sb_lowat && 1576 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1577 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1578 ("receive: m == %p so->so_rcv.sb_cc == %u", 1579 m, so->so_rcv.sb_cc)); 1580 if (so->so_error) { 1581 if (m != NULL) 1582 goto dontblock; 1583 error = so->so_error; 1584 if ((flags & MSG_PEEK) == 0) 1585 so->so_error = 0; 1586 SOCKBUF_UNLOCK(&so->so_rcv); 1587 goto release; 1588 } 1589 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1590 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1591 if (m == NULL) { 1592 SOCKBUF_UNLOCK(&so->so_rcv); 1593 goto release; 1594 } else 1595 goto dontblock; 1596 } 1597 for (; m != NULL; m = m->m_next) 1598 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1599 m = so->so_rcv.sb_mb; 1600 goto dontblock; 1601 } 1602 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1603 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1604 SOCKBUF_UNLOCK(&so->so_rcv); 1605 error = ENOTCONN; 1606 goto release; 1607 } 1608 if (uio->uio_resid == 0) { 1609 SOCKBUF_UNLOCK(&so->so_rcv); 1610 goto release; 1611 } 1612 if ((so->so_state & SS_NBIO) || 1613 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1614 SOCKBUF_UNLOCK(&so->so_rcv); 1615 error = EWOULDBLOCK; 1616 goto release; 1617 } 1618 SBLASTRECORDCHK(&so->so_rcv); 1619 SBLASTMBUFCHK(&so->so_rcv); 1620 error = sbwait(&so->so_rcv); 1621 SOCKBUF_UNLOCK(&so->so_rcv); 1622 if (error) 1623 goto release; 1624 goto restart; 1625 } 1626 dontblock: 1627 /* 1628 * From this point onward, we maintain 'nextrecord' as a cache of the 1629 * pointer to the next record in the socket buffer. We must keep the 1630 * various socket buffer pointers and local stack versions of the 1631 * pointers in sync, pushing out modifications before dropping the 1632 * socket buffer mutex, and re-reading them when picking it up. 1633 * 1634 * Otherwise, we will race with the network stack appending new data 1635 * or records onto the socket buffer by using inconsistent/stale 1636 * versions of the field, possibly resulting in socket buffer 1637 * corruption. 1638 * 1639 * By holding the high-level sblock(), we prevent simultaneous 1640 * readers from pulling off the front of the socket buffer. 1641 */ 1642 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1643 if (uio->uio_td) 1644 uio->uio_td->td_ru.ru_msgrcv++; 1645 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1646 SBLASTRECORDCHK(&so->so_rcv); 1647 SBLASTMBUFCHK(&so->so_rcv); 1648 nextrecord = m->m_nextpkt; 1649 if (pr->pr_flags & PR_ADDR) { 1650 KASSERT(m->m_type == MT_SONAME, 1651 ("m->m_type == %d", m->m_type)); 1652 orig_resid = 0; 1653 if (psa != NULL) 1654 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1655 M_NOWAIT); 1656 if (flags & MSG_PEEK) { 1657 m = m->m_next; 1658 } else { 1659 sbfree(&so->so_rcv, m); 1660 so->so_rcv.sb_mb = m_free(m); 1661 m = so->so_rcv.sb_mb; 1662 sockbuf_pushsync(&so->so_rcv, nextrecord); 1663 } 1664 } 1665 1666 /* 1667 * Process one or more MT_CONTROL mbufs present before any data mbufs 1668 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1669 * just copy the data; if !MSG_PEEK, we call into the protocol to 1670 * perform externalization (or freeing if controlp == NULL). 1671 */ 1672 if (m != NULL && m->m_type == MT_CONTROL) { 1673 struct mbuf *cm = NULL, *cmn; 1674 struct mbuf **cme = &cm; 1675 1676 do { 1677 if (flags & MSG_PEEK) { 1678 if (controlp != NULL) { 1679 *controlp = m_copy(m, 0, m->m_len); 1680 controlp = &(*controlp)->m_next; 1681 } 1682 m = m->m_next; 1683 } else { 1684 sbfree(&so->so_rcv, m); 1685 so->so_rcv.sb_mb = m->m_next; 1686 m->m_next = NULL; 1687 *cme = m; 1688 cme = &(*cme)->m_next; 1689 m = so->so_rcv.sb_mb; 1690 } 1691 } while (m != NULL && m->m_type == MT_CONTROL); 1692 if ((flags & MSG_PEEK) == 0) 1693 sockbuf_pushsync(&so->so_rcv, nextrecord); 1694 while (cm != NULL) { 1695 cmn = cm->m_next; 1696 cm->m_next = NULL; 1697 if (pr->pr_domain->dom_externalize != NULL) { 1698 SOCKBUF_UNLOCK(&so->so_rcv); 1699 VNET_SO_ASSERT(so); 1700 error = (*pr->pr_domain->dom_externalize) 1701 (cm, controlp); 1702 SOCKBUF_LOCK(&so->so_rcv); 1703 } else if (controlp != NULL) 1704 *controlp = cm; 1705 else 1706 m_freem(cm); 1707 if (controlp != NULL) { 1708 orig_resid = 0; 1709 while (*controlp != NULL) 1710 controlp = &(*controlp)->m_next; 1711 } 1712 cm = cmn; 1713 } 1714 if (m != NULL) 1715 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1716 else 1717 nextrecord = so->so_rcv.sb_mb; 1718 orig_resid = 0; 1719 } 1720 if (m != NULL) { 1721 if ((flags & MSG_PEEK) == 0) { 1722 KASSERT(m->m_nextpkt == nextrecord, 1723 ("soreceive: post-control, nextrecord !sync")); 1724 if (nextrecord == NULL) { 1725 KASSERT(so->so_rcv.sb_mb == m, 1726 ("soreceive: post-control, sb_mb!=m")); 1727 KASSERT(so->so_rcv.sb_lastrecord == m, 1728 ("soreceive: post-control, lastrecord!=m")); 1729 } 1730 } 1731 type = m->m_type; 1732 if (type == MT_OOBDATA) 1733 flags |= MSG_OOB; 1734 } else { 1735 if ((flags & MSG_PEEK) == 0) { 1736 KASSERT(so->so_rcv.sb_mb == nextrecord, 1737 ("soreceive: sb_mb != nextrecord")); 1738 if (so->so_rcv.sb_mb == NULL) { 1739 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1740 ("soreceive: sb_lastercord != NULL")); 1741 } 1742 } 1743 } 1744 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1745 SBLASTRECORDCHK(&so->so_rcv); 1746 SBLASTMBUFCHK(&so->so_rcv); 1747 1748 /* 1749 * Now continue to read any data mbufs off of the head of the socket 1750 * buffer until the read request is satisfied. Note that 'type' is 1751 * used to store the type of any mbuf reads that have happened so far 1752 * such that soreceive() can stop reading if the type changes, which 1753 * causes soreceive() to return only one of regular data and inline 1754 * out-of-band data in a single socket receive operation. 1755 */ 1756 moff = 0; 1757 offset = 0; 1758 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1759 /* 1760 * If the type of mbuf has changed since the last mbuf 1761 * examined ('type'), end the receive operation. 1762 */ 1763 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1764 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1765 if (type != m->m_type) 1766 break; 1767 } else if (type == MT_OOBDATA) 1768 break; 1769 else 1770 KASSERT(m->m_type == MT_DATA, 1771 ("m->m_type == %d", m->m_type)); 1772 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1773 len = uio->uio_resid; 1774 if (so->so_oobmark && len > so->so_oobmark - offset) 1775 len = so->so_oobmark - offset; 1776 if (len > m->m_len - moff) 1777 len = m->m_len - moff; 1778 /* 1779 * If mp is set, just pass back the mbufs. Otherwise copy 1780 * them out via the uio, then free. Sockbuf must be 1781 * consistent here (points to current mbuf, it points to next 1782 * record) when we drop priority; we must note any additions 1783 * to the sockbuf when we block interrupts again. 1784 */ 1785 if (mp == NULL) { 1786 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1787 SBLASTRECORDCHK(&so->so_rcv); 1788 SBLASTMBUFCHK(&so->so_rcv); 1789 SOCKBUF_UNLOCK(&so->so_rcv); 1790 #ifdef SOCKET_RECV_PFLIP 1791 if (so_zero_copy_receive) { 1792 int disposable; 1793 1794 if ((m->m_flags & M_EXT) 1795 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1796 disposable = 1; 1797 else 1798 disposable = 0; 1799 1800 error = uiomoveco(mtod(m, char *) + moff, 1801 (int)len, uio, disposable); 1802 } else 1803 #endif /* SOCKET_RECV_PFLIP */ 1804 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1805 SOCKBUF_LOCK(&so->so_rcv); 1806 if (error) { 1807 /* 1808 * The MT_SONAME mbuf has already been removed 1809 * from the record, so it is necessary to 1810 * remove the data mbufs, if any, to preserve 1811 * the invariant in the case of PR_ADDR that 1812 * requires MT_SONAME mbufs at the head of 1813 * each record. 1814 */ 1815 if (m && pr->pr_flags & PR_ATOMIC && 1816 ((flags & MSG_PEEK) == 0)) 1817 (void)sbdroprecord_locked(&so->so_rcv); 1818 SOCKBUF_UNLOCK(&so->so_rcv); 1819 goto release; 1820 } 1821 } else 1822 uio->uio_resid -= len; 1823 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1824 if (len == m->m_len - moff) { 1825 if (m->m_flags & M_EOR) 1826 flags |= MSG_EOR; 1827 if (flags & MSG_PEEK) { 1828 m = m->m_next; 1829 moff = 0; 1830 } else { 1831 nextrecord = m->m_nextpkt; 1832 sbfree(&so->so_rcv, m); 1833 if (mp != NULL) { 1834 *mp = m; 1835 mp = &m->m_next; 1836 so->so_rcv.sb_mb = m = m->m_next; 1837 *mp = NULL; 1838 } else { 1839 so->so_rcv.sb_mb = m_free(m); 1840 m = so->so_rcv.sb_mb; 1841 } 1842 sockbuf_pushsync(&so->so_rcv, nextrecord); 1843 SBLASTRECORDCHK(&so->so_rcv); 1844 SBLASTMBUFCHK(&so->so_rcv); 1845 } 1846 } else { 1847 if (flags & MSG_PEEK) 1848 moff += len; 1849 else { 1850 if (mp != NULL) { 1851 int copy_flag; 1852 1853 if (flags & MSG_DONTWAIT) 1854 copy_flag = M_NOWAIT; 1855 else 1856 copy_flag = M_WAIT; 1857 if (copy_flag == M_WAITOK) 1858 SOCKBUF_UNLOCK(&so->so_rcv); 1859 *mp = m_copym(m, 0, len, copy_flag); 1860 if (copy_flag == M_WAITOK) 1861 SOCKBUF_LOCK(&so->so_rcv); 1862 if (*mp == NULL) { 1863 /* 1864 * m_copym() couldn't 1865 * allocate an mbuf. Adjust 1866 * uio_resid back (it was 1867 * adjusted down by len 1868 * bytes, which we didn't end 1869 * up "copying" over). 1870 */ 1871 uio->uio_resid += len; 1872 break; 1873 } 1874 } 1875 m->m_data += len; 1876 m->m_len -= len; 1877 so->so_rcv.sb_cc -= len; 1878 } 1879 } 1880 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1881 if (so->so_oobmark) { 1882 if ((flags & MSG_PEEK) == 0) { 1883 so->so_oobmark -= len; 1884 if (so->so_oobmark == 0) { 1885 so->so_rcv.sb_state |= SBS_RCVATMARK; 1886 break; 1887 } 1888 } else { 1889 offset += len; 1890 if (offset == so->so_oobmark) 1891 break; 1892 } 1893 } 1894 if (flags & MSG_EOR) 1895 break; 1896 /* 1897 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1898 * must not quit until "uio->uio_resid == 0" or an error 1899 * termination. If a signal/timeout occurs, return with a 1900 * short count but without error. Keep sockbuf locked 1901 * against other readers. 1902 */ 1903 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1904 !sosendallatonce(so) && nextrecord == NULL) { 1905 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1906 if (so->so_error || 1907 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1908 break; 1909 /* 1910 * Notify the protocol that some data has been 1911 * drained before blocking. 1912 */ 1913 if (pr->pr_flags & PR_WANTRCVD) { 1914 SOCKBUF_UNLOCK(&so->so_rcv); 1915 VNET_SO_ASSERT(so); 1916 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1917 SOCKBUF_LOCK(&so->so_rcv); 1918 } 1919 SBLASTRECORDCHK(&so->so_rcv); 1920 SBLASTMBUFCHK(&so->so_rcv); 1921 /* 1922 * We could receive some data while was notifying 1923 * the protocol. Skip blocking in this case. 1924 */ 1925 if (so->so_rcv.sb_mb == NULL) { 1926 error = sbwait(&so->so_rcv); 1927 if (error) { 1928 SOCKBUF_UNLOCK(&so->so_rcv); 1929 goto release; 1930 } 1931 } 1932 m = so->so_rcv.sb_mb; 1933 if (m != NULL) 1934 nextrecord = m->m_nextpkt; 1935 } 1936 } 1937 1938 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1939 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1940 flags |= MSG_TRUNC; 1941 if ((flags & MSG_PEEK) == 0) 1942 (void) sbdroprecord_locked(&so->so_rcv); 1943 } 1944 if ((flags & MSG_PEEK) == 0) { 1945 if (m == NULL) { 1946 /* 1947 * First part is an inline SB_EMPTY_FIXUP(). Second 1948 * part makes sure sb_lastrecord is up-to-date if 1949 * there is still data in the socket buffer. 1950 */ 1951 so->so_rcv.sb_mb = nextrecord; 1952 if (so->so_rcv.sb_mb == NULL) { 1953 so->so_rcv.sb_mbtail = NULL; 1954 so->so_rcv.sb_lastrecord = NULL; 1955 } else if (nextrecord->m_nextpkt == NULL) 1956 so->so_rcv.sb_lastrecord = nextrecord; 1957 } 1958 SBLASTRECORDCHK(&so->so_rcv); 1959 SBLASTMBUFCHK(&so->so_rcv); 1960 /* 1961 * If soreceive() is being done from the socket callback, 1962 * then don't need to generate ACK to peer to update window, 1963 * since ACK will be generated on return to TCP. 1964 */ 1965 if (!(flags & MSG_SOCALLBCK) && 1966 (pr->pr_flags & PR_WANTRCVD)) { 1967 SOCKBUF_UNLOCK(&so->so_rcv); 1968 VNET_SO_ASSERT(so); 1969 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1970 SOCKBUF_LOCK(&so->so_rcv); 1971 } 1972 } 1973 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1974 if (orig_resid == uio->uio_resid && orig_resid && 1975 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1976 SOCKBUF_UNLOCK(&so->so_rcv); 1977 goto restart; 1978 } 1979 SOCKBUF_UNLOCK(&so->so_rcv); 1980 1981 if (flagsp != NULL) 1982 *flagsp |= flags; 1983 release: 1984 sbunlock(&so->so_rcv); 1985 return (error); 1986 } 1987 1988 /* 1989 * Optimized version of soreceive() for stream (TCP) sockets. 1990 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1991 */ 1992 int 1993 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1994 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1995 { 1996 int len = 0, error = 0, flags, oresid; 1997 struct sockbuf *sb; 1998 struct mbuf *m, *n = NULL; 1999 2000 /* We only do stream sockets. */ 2001 if (so->so_type != SOCK_STREAM) 2002 return (EINVAL); 2003 if (psa != NULL) 2004 *psa = NULL; 2005 if (controlp != NULL) 2006 return (EINVAL); 2007 if (flagsp != NULL) 2008 flags = *flagsp &~ MSG_EOR; 2009 else 2010 flags = 0; 2011 if (flags & MSG_OOB) 2012 return (soreceive_rcvoob(so, uio, flags)); 2013 if (mp0 != NULL) 2014 *mp0 = NULL; 2015 2016 sb = &so->so_rcv; 2017 2018 /* Prevent other readers from entering the socket. */ 2019 error = sblock(sb, SBLOCKWAIT(flags)); 2020 if (error) 2021 goto out; 2022 SOCKBUF_LOCK(sb); 2023 2024 /* Easy one, no space to copyout anything. */ 2025 if (uio->uio_resid == 0) { 2026 error = EINVAL; 2027 goto out; 2028 } 2029 oresid = uio->uio_resid; 2030 2031 /* We will never ever get anything unless we are or were connected. */ 2032 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2033 error = ENOTCONN; 2034 goto out; 2035 } 2036 2037 restart: 2038 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2039 2040 /* Abort if socket has reported problems. */ 2041 if (so->so_error) { 2042 if (sb->sb_cc > 0) 2043 goto deliver; 2044 if (oresid > uio->uio_resid) 2045 goto out; 2046 error = so->so_error; 2047 if (!(flags & MSG_PEEK)) 2048 so->so_error = 0; 2049 goto out; 2050 } 2051 2052 /* Door is closed. Deliver what is left, if any. */ 2053 if (sb->sb_state & SBS_CANTRCVMORE) { 2054 if (sb->sb_cc > 0) 2055 goto deliver; 2056 else 2057 goto out; 2058 } 2059 2060 /* Socket buffer is empty and we shall not block. */ 2061 if (sb->sb_cc == 0 && 2062 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2063 error = EAGAIN; 2064 goto out; 2065 } 2066 2067 /* Socket buffer got some data that we shall deliver now. */ 2068 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 2069 ((sb->sb_flags & SS_NBIO) || 2070 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2071 sb->sb_cc >= sb->sb_lowat || 2072 sb->sb_cc >= uio->uio_resid || 2073 sb->sb_cc >= sb->sb_hiwat) ) { 2074 goto deliver; 2075 } 2076 2077 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2078 if ((flags & MSG_WAITALL) && 2079 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat)) 2080 goto deliver; 2081 2082 /* 2083 * Wait and block until (more) data comes in. 2084 * NB: Drops the sockbuf lock during wait. 2085 */ 2086 error = sbwait(sb); 2087 if (error) 2088 goto out; 2089 goto restart; 2090 2091 deliver: 2092 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2093 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 2094 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2095 2096 /* Statistics. */ 2097 if (uio->uio_td) 2098 uio->uio_td->td_ru.ru_msgrcv++; 2099 2100 /* Fill uio until full or current end of socket buffer is reached. */ 2101 len = min(uio->uio_resid, sb->sb_cc); 2102 if (mp0 != NULL) { 2103 /* Dequeue as many mbufs as possible. */ 2104 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2105 if (*mp0 == NULL) 2106 *mp0 = sb->sb_mb; 2107 else 2108 m_cat(*mp0, sb->sb_mb); 2109 for (m = sb->sb_mb; 2110 m != NULL && m->m_len <= len; 2111 m = m->m_next) { 2112 len -= m->m_len; 2113 uio->uio_resid -= m->m_len; 2114 sbfree(sb, m); 2115 n = m; 2116 } 2117 n->m_next = NULL; 2118 sb->sb_mb = m; 2119 sb->sb_lastrecord = sb->sb_mb; 2120 if (sb->sb_mb == NULL) 2121 SB_EMPTY_FIXUP(sb); 2122 } 2123 /* Copy the remainder. */ 2124 if (len > 0) { 2125 KASSERT(sb->sb_mb != NULL, 2126 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2127 2128 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2129 if (m == NULL) 2130 len = 0; /* Don't flush data from sockbuf. */ 2131 else 2132 uio->uio_resid -= len; 2133 if (*mp0 != NULL) 2134 m_cat(*mp0, m); 2135 else 2136 *mp0 = m; 2137 if (*mp0 == NULL) { 2138 error = ENOBUFS; 2139 goto out; 2140 } 2141 } 2142 } else { 2143 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2144 SOCKBUF_UNLOCK(sb); 2145 error = m_mbuftouio(uio, sb->sb_mb, len); 2146 SOCKBUF_LOCK(sb); 2147 if (error) 2148 goto out; 2149 } 2150 SBLASTRECORDCHK(sb); 2151 SBLASTMBUFCHK(sb); 2152 2153 /* 2154 * Remove the delivered data from the socket buffer unless we 2155 * were only peeking. 2156 */ 2157 if (!(flags & MSG_PEEK)) { 2158 if (len > 0) 2159 sbdrop_locked(sb, len); 2160 2161 /* Notify protocol that we drained some data. */ 2162 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2163 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2164 !(flags & MSG_SOCALLBCK))) { 2165 SOCKBUF_UNLOCK(sb); 2166 VNET_SO_ASSERT(so); 2167 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2168 SOCKBUF_LOCK(sb); 2169 } 2170 } 2171 2172 /* 2173 * For MSG_WAITALL we may have to loop again and wait for 2174 * more data to come in. 2175 */ 2176 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2177 goto restart; 2178 out: 2179 SOCKBUF_LOCK_ASSERT(sb); 2180 SBLASTRECORDCHK(sb); 2181 SBLASTMBUFCHK(sb); 2182 SOCKBUF_UNLOCK(sb); 2183 sbunlock(sb); 2184 return (error); 2185 } 2186 2187 /* 2188 * Optimized version of soreceive() for simple datagram cases from userspace. 2189 * Unlike in the stream case, we're able to drop a datagram if copyout() 2190 * fails, and because we handle datagrams atomically, we don't need to use a 2191 * sleep lock to prevent I/O interlacing. 2192 */ 2193 int 2194 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2195 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2196 { 2197 struct mbuf *m, *m2; 2198 int flags, error; 2199 ssize_t len; 2200 struct protosw *pr = so->so_proto; 2201 struct mbuf *nextrecord; 2202 2203 if (psa != NULL) 2204 *psa = NULL; 2205 if (controlp != NULL) 2206 *controlp = NULL; 2207 if (flagsp != NULL) 2208 flags = *flagsp &~ MSG_EOR; 2209 else 2210 flags = 0; 2211 2212 /* 2213 * For any complicated cases, fall back to the full 2214 * soreceive_generic(). 2215 */ 2216 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2217 return (soreceive_generic(so, psa, uio, mp0, controlp, 2218 flagsp)); 2219 2220 /* 2221 * Enforce restrictions on use. 2222 */ 2223 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2224 ("soreceive_dgram: wantrcvd")); 2225 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2226 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2227 ("soreceive_dgram: SBS_RCVATMARK")); 2228 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2229 ("soreceive_dgram: P_CONNREQUIRED")); 2230 2231 /* 2232 * Loop blocking while waiting for a datagram. 2233 */ 2234 SOCKBUF_LOCK(&so->so_rcv); 2235 while ((m = so->so_rcv.sb_mb) == NULL) { 2236 KASSERT(so->so_rcv.sb_cc == 0, 2237 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2238 so->so_rcv.sb_cc)); 2239 if (so->so_error) { 2240 error = so->so_error; 2241 so->so_error = 0; 2242 SOCKBUF_UNLOCK(&so->so_rcv); 2243 return (error); 2244 } 2245 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2246 uio->uio_resid == 0) { 2247 SOCKBUF_UNLOCK(&so->so_rcv); 2248 return (0); 2249 } 2250 if ((so->so_state & SS_NBIO) || 2251 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2252 SOCKBUF_UNLOCK(&so->so_rcv); 2253 return (EWOULDBLOCK); 2254 } 2255 SBLASTRECORDCHK(&so->so_rcv); 2256 SBLASTMBUFCHK(&so->so_rcv); 2257 error = sbwait(&so->so_rcv); 2258 if (error) { 2259 SOCKBUF_UNLOCK(&so->so_rcv); 2260 return (error); 2261 } 2262 } 2263 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2264 2265 if (uio->uio_td) 2266 uio->uio_td->td_ru.ru_msgrcv++; 2267 SBLASTRECORDCHK(&so->so_rcv); 2268 SBLASTMBUFCHK(&so->so_rcv); 2269 nextrecord = m->m_nextpkt; 2270 if (nextrecord == NULL) { 2271 KASSERT(so->so_rcv.sb_lastrecord == m, 2272 ("soreceive_dgram: lastrecord != m")); 2273 } 2274 2275 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2276 ("soreceive_dgram: m_nextpkt != nextrecord")); 2277 2278 /* 2279 * Pull 'm' and its chain off the front of the packet queue. 2280 */ 2281 so->so_rcv.sb_mb = NULL; 2282 sockbuf_pushsync(&so->so_rcv, nextrecord); 2283 2284 /* 2285 * Walk 'm's chain and free that many bytes from the socket buffer. 2286 */ 2287 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2288 sbfree(&so->so_rcv, m2); 2289 2290 /* 2291 * Do a few last checks before we let go of the lock. 2292 */ 2293 SBLASTRECORDCHK(&so->so_rcv); 2294 SBLASTMBUFCHK(&so->so_rcv); 2295 SOCKBUF_UNLOCK(&so->so_rcv); 2296 2297 if (pr->pr_flags & PR_ADDR) { 2298 KASSERT(m->m_type == MT_SONAME, 2299 ("m->m_type == %d", m->m_type)); 2300 if (psa != NULL) 2301 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2302 M_NOWAIT); 2303 m = m_free(m); 2304 } 2305 if (m == NULL) { 2306 /* XXXRW: Can this happen? */ 2307 return (0); 2308 } 2309 2310 /* 2311 * Packet to copyout() is now in 'm' and it is disconnected from the 2312 * queue. 2313 * 2314 * Process one or more MT_CONTROL mbufs present before any data mbufs 2315 * in the first mbuf chain on the socket buffer. We call into the 2316 * protocol to perform externalization (or freeing if controlp == 2317 * NULL). 2318 */ 2319 if (m->m_type == MT_CONTROL) { 2320 struct mbuf *cm = NULL, *cmn; 2321 struct mbuf **cme = &cm; 2322 2323 do { 2324 m2 = m->m_next; 2325 m->m_next = NULL; 2326 *cme = m; 2327 cme = &(*cme)->m_next; 2328 m = m2; 2329 } while (m != NULL && m->m_type == MT_CONTROL); 2330 while (cm != NULL) { 2331 cmn = cm->m_next; 2332 cm->m_next = NULL; 2333 if (pr->pr_domain->dom_externalize != NULL) { 2334 error = (*pr->pr_domain->dom_externalize) 2335 (cm, controlp); 2336 } else if (controlp != NULL) 2337 *controlp = cm; 2338 else 2339 m_freem(cm); 2340 if (controlp != NULL) { 2341 while (*controlp != NULL) 2342 controlp = &(*controlp)->m_next; 2343 } 2344 cm = cmn; 2345 } 2346 } 2347 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2348 2349 while (m != NULL && uio->uio_resid > 0) { 2350 len = uio->uio_resid; 2351 if (len > m->m_len) 2352 len = m->m_len; 2353 error = uiomove(mtod(m, char *), (int)len, uio); 2354 if (error) { 2355 m_freem(m); 2356 return (error); 2357 } 2358 if (len == m->m_len) 2359 m = m_free(m); 2360 else { 2361 m->m_data += len; 2362 m->m_len -= len; 2363 } 2364 } 2365 if (m != NULL) 2366 flags |= MSG_TRUNC; 2367 m_freem(m); 2368 if (flagsp != NULL) 2369 *flagsp |= flags; 2370 return (0); 2371 } 2372 2373 int 2374 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2375 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2376 { 2377 int error; 2378 2379 CURVNET_SET(so->so_vnet); 2380 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2381 controlp, flagsp)); 2382 CURVNET_RESTORE(); 2383 return (error); 2384 } 2385 2386 int 2387 soshutdown(struct socket *so, int how) 2388 { 2389 struct protosw *pr = so->so_proto; 2390 int error; 2391 2392 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2393 return (EINVAL); 2394 2395 CURVNET_SET(so->so_vnet); 2396 if (pr->pr_usrreqs->pru_flush != NULL) 2397 (*pr->pr_usrreqs->pru_flush)(so, how); 2398 if (how != SHUT_WR) 2399 sorflush(so); 2400 if (how != SHUT_RD) { 2401 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2402 CURVNET_RESTORE(); 2403 return (error); 2404 } 2405 CURVNET_RESTORE(); 2406 return (0); 2407 } 2408 2409 void 2410 sorflush(struct socket *so) 2411 { 2412 struct sockbuf *sb = &so->so_rcv; 2413 struct protosw *pr = so->so_proto; 2414 struct sockbuf asb; 2415 2416 VNET_SO_ASSERT(so); 2417 2418 /* 2419 * In order to avoid calling dom_dispose with the socket buffer mutex 2420 * held, and in order to generally avoid holding the lock for a long 2421 * time, we make a copy of the socket buffer and clear the original 2422 * (except locks, state). The new socket buffer copy won't have 2423 * initialized locks so we can only call routines that won't use or 2424 * assert those locks. 2425 * 2426 * Dislodge threads currently blocked in receive and wait to acquire 2427 * a lock against other simultaneous readers before clearing the 2428 * socket buffer. Don't let our acquire be interrupted by a signal 2429 * despite any existing socket disposition on interruptable waiting. 2430 */ 2431 socantrcvmore(so); 2432 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2433 2434 /* 2435 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2436 * and mutex data unchanged. 2437 */ 2438 SOCKBUF_LOCK(sb); 2439 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2440 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2441 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2442 bzero(&sb->sb_startzero, 2443 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2444 SOCKBUF_UNLOCK(sb); 2445 sbunlock(sb); 2446 2447 /* 2448 * Dispose of special rights and flush the socket buffer. Don't call 2449 * any unsafe routines (that rely on locks being initialized) on asb. 2450 */ 2451 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2452 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2453 sbrelease_internal(&asb, so); 2454 } 2455 2456 /* 2457 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2458 * additional variant to handle the case where the option value needs to be 2459 * some kind of integer, but not a specific size. In addition to their use 2460 * here, these functions are also called by the protocol-level pr_ctloutput() 2461 * routines. 2462 */ 2463 int 2464 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2465 { 2466 size_t valsize; 2467 2468 /* 2469 * If the user gives us more than we wanted, we ignore it, but if we 2470 * don't get the minimum length the caller wants, we return EINVAL. 2471 * On success, sopt->sopt_valsize is set to however much we actually 2472 * retrieved. 2473 */ 2474 if ((valsize = sopt->sopt_valsize) < minlen) 2475 return EINVAL; 2476 if (valsize > len) 2477 sopt->sopt_valsize = valsize = len; 2478 2479 if (sopt->sopt_td != NULL) 2480 return (copyin(sopt->sopt_val, buf, valsize)); 2481 2482 bcopy(sopt->sopt_val, buf, valsize); 2483 return (0); 2484 } 2485 2486 /* 2487 * Kernel version of setsockopt(2). 2488 * 2489 * XXX: optlen is size_t, not socklen_t 2490 */ 2491 int 2492 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2493 size_t optlen) 2494 { 2495 struct sockopt sopt; 2496 2497 sopt.sopt_level = level; 2498 sopt.sopt_name = optname; 2499 sopt.sopt_dir = SOPT_SET; 2500 sopt.sopt_val = optval; 2501 sopt.sopt_valsize = optlen; 2502 sopt.sopt_td = NULL; 2503 return (sosetopt(so, &sopt)); 2504 } 2505 2506 int 2507 sosetopt(struct socket *so, struct sockopt *sopt) 2508 { 2509 int error, optval; 2510 struct linger l; 2511 struct timeval tv; 2512 u_long val; 2513 uint32_t val32; 2514 #ifdef MAC 2515 struct mac extmac; 2516 #endif 2517 2518 CURVNET_SET(so->so_vnet); 2519 error = 0; 2520 if (sopt->sopt_level != SOL_SOCKET) { 2521 if (so->so_proto->pr_ctloutput != NULL) { 2522 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2523 CURVNET_RESTORE(); 2524 return (error); 2525 } 2526 error = ENOPROTOOPT; 2527 } else { 2528 switch (sopt->sopt_name) { 2529 #ifdef INET 2530 case SO_ACCEPTFILTER: 2531 error = do_setopt_accept_filter(so, sopt); 2532 if (error) 2533 goto bad; 2534 break; 2535 #endif 2536 case SO_LINGER: 2537 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2538 if (error) 2539 goto bad; 2540 2541 SOCK_LOCK(so); 2542 so->so_linger = l.l_linger; 2543 if (l.l_onoff) 2544 so->so_options |= SO_LINGER; 2545 else 2546 so->so_options &= ~SO_LINGER; 2547 SOCK_UNLOCK(so); 2548 break; 2549 2550 case SO_DEBUG: 2551 case SO_KEEPALIVE: 2552 case SO_DONTROUTE: 2553 case SO_USELOOPBACK: 2554 case SO_BROADCAST: 2555 case SO_REUSEADDR: 2556 case SO_REUSEPORT: 2557 case SO_OOBINLINE: 2558 case SO_TIMESTAMP: 2559 case SO_BINTIME: 2560 case SO_NOSIGPIPE: 2561 case SO_NO_DDP: 2562 case SO_NO_OFFLOAD: 2563 error = sooptcopyin(sopt, &optval, sizeof optval, 2564 sizeof optval); 2565 if (error) 2566 goto bad; 2567 SOCK_LOCK(so); 2568 if (optval) 2569 so->so_options |= sopt->sopt_name; 2570 else 2571 so->so_options &= ~sopt->sopt_name; 2572 SOCK_UNLOCK(so); 2573 break; 2574 2575 case SO_SETFIB: 2576 error = sooptcopyin(sopt, &optval, sizeof optval, 2577 sizeof optval); 2578 if (error) 2579 goto bad; 2580 2581 if (optval < 0 || optval >= rt_numfibs) { 2582 error = EINVAL; 2583 goto bad; 2584 } 2585 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2586 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2587 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2588 so->so_fibnum = optval; 2589 else 2590 so->so_fibnum = 0; 2591 break; 2592 2593 case SO_USER_COOKIE: 2594 error = sooptcopyin(sopt, &val32, sizeof val32, 2595 sizeof val32); 2596 if (error) 2597 goto bad; 2598 so->so_user_cookie = val32; 2599 break; 2600 2601 case SO_SNDBUF: 2602 case SO_RCVBUF: 2603 case SO_SNDLOWAT: 2604 case SO_RCVLOWAT: 2605 error = sooptcopyin(sopt, &optval, sizeof optval, 2606 sizeof optval); 2607 if (error) 2608 goto bad; 2609 2610 /* 2611 * Values < 1 make no sense for any of these options, 2612 * so disallow them. 2613 */ 2614 if (optval < 1) { 2615 error = EINVAL; 2616 goto bad; 2617 } 2618 2619 switch (sopt->sopt_name) { 2620 case SO_SNDBUF: 2621 case SO_RCVBUF: 2622 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2623 &so->so_snd : &so->so_rcv, (u_long)optval, 2624 so, curthread) == 0) { 2625 error = ENOBUFS; 2626 goto bad; 2627 } 2628 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2629 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2630 break; 2631 2632 /* 2633 * Make sure the low-water is never greater than the 2634 * high-water. 2635 */ 2636 case SO_SNDLOWAT: 2637 SOCKBUF_LOCK(&so->so_snd); 2638 so->so_snd.sb_lowat = 2639 (optval > so->so_snd.sb_hiwat) ? 2640 so->so_snd.sb_hiwat : optval; 2641 SOCKBUF_UNLOCK(&so->so_snd); 2642 break; 2643 case SO_RCVLOWAT: 2644 SOCKBUF_LOCK(&so->so_rcv); 2645 so->so_rcv.sb_lowat = 2646 (optval > so->so_rcv.sb_hiwat) ? 2647 so->so_rcv.sb_hiwat : optval; 2648 SOCKBUF_UNLOCK(&so->so_rcv); 2649 break; 2650 } 2651 break; 2652 2653 case SO_SNDTIMEO: 2654 case SO_RCVTIMEO: 2655 #ifdef COMPAT_FREEBSD32 2656 if (SV_CURPROC_FLAG(SV_ILP32)) { 2657 struct timeval32 tv32; 2658 2659 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2660 sizeof tv32); 2661 CP(tv32, tv, tv_sec); 2662 CP(tv32, tv, tv_usec); 2663 } else 2664 #endif 2665 error = sooptcopyin(sopt, &tv, sizeof tv, 2666 sizeof tv); 2667 if (error) 2668 goto bad; 2669 2670 /* assert(hz > 0); */ 2671 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2672 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2673 error = EDOM; 2674 goto bad; 2675 } 2676 /* assert(tick > 0); */ 2677 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2678 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2679 if (val > INT_MAX) { 2680 error = EDOM; 2681 goto bad; 2682 } 2683 if (val == 0 && tv.tv_usec != 0) 2684 val = 1; 2685 2686 switch (sopt->sopt_name) { 2687 case SO_SNDTIMEO: 2688 so->so_snd.sb_timeo = val; 2689 break; 2690 case SO_RCVTIMEO: 2691 so->so_rcv.sb_timeo = val; 2692 break; 2693 } 2694 break; 2695 2696 case SO_LABEL: 2697 #ifdef MAC 2698 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2699 sizeof extmac); 2700 if (error) 2701 goto bad; 2702 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2703 so, &extmac); 2704 #else 2705 error = EOPNOTSUPP; 2706 #endif 2707 break; 2708 2709 default: 2710 error = ENOPROTOOPT; 2711 break; 2712 } 2713 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2714 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2715 } 2716 bad: 2717 CURVNET_RESTORE(); 2718 return (error); 2719 } 2720 2721 /* 2722 * Helper routine for getsockopt. 2723 */ 2724 int 2725 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2726 { 2727 int error; 2728 size_t valsize; 2729 2730 error = 0; 2731 2732 /* 2733 * Documented get behavior is that we always return a value, possibly 2734 * truncated to fit in the user's buffer. Traditional behavior is 2735 * that we always tell the user precisely how much we copied, rather 2736 * than something useful like the total amount we had available for 2737 * her. Note that this interface is not idempotent; the entire 2738 * answer must generated ahead of time. 2739 */ 2740 valsize = min(len, sopt->sopt_valsize); 2741 sopt->sopt_valsize = valsize; 2742 if (sopt->sopt_val != NULL) { 2743 if (sopt->sopt_td != NULL) 2744 error = copyout(buf, sopt->sopt_val, valsize); 2745 else 2746 bcopy(buf, sopt->sopt_val, valsize); 2747 } 2748 return (error); 2749 } 2750 2751 int 2752 sogetopt(struct socket *so, struct sockopt *sopt) 2753 { 2754 int error, optval; 2755 struct linger l; 2756 struct timeval tv; 2757 #ifdef MAC 2758 struct mac extmac; 2759 #endif 2760 2761 CURVNET_SET(so->so_vnet); 2762 error = 0; 2763 if (sopt->sopt_level != SOL_SOCKET) { 2764 if (so->so_proto->pr_ctloutput != NULL) 2765 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2766 else 2767 error = ENOPROTOOPT; 2768 CURVNET_RESTORE(); 2769 return (error); 2770 } else { 2771 switch (sopt->sopt_name) { 2772 #ifdef INET 2773 case SO_ACCEPTFILTER: 2774 error = do_getopt_accept_filter(so, sopt); 2775 break; 2776 #endif 2777 case SO_LINGER: 2778 SOCK_LOCK(so); 2779 l.l_onoff = so->so_options & SO_LINGER; 2780 l.l_linger = so->so_linger; 2781 SOCK_UNLOCK(so); 2782 error = sooptcopyout(sopt, &l, sizeof l); 2783 break; 2784 2785 case SO_USELOOPBACK: 2786 case SO_DONTROUTE: 2787 case SO_DEBUG: 2788 case SO_KEEPALIVE: 2789 case SO_REUSEADDR: 2790 case SO_REUSEPORT: 2791 case SO_BROADCAST: 2792 case SO_OOBINLINE: 2793 case SO_ACCEPTCONN: 2794 case SO_TIMESTAMP: 2795 case SO_BINTIME: 2796 case SO_NOSIGPIPE: 2797 optval = so->so_options & sopt->sopt_name; 2798 integer: 2799 error = sooptcopyout(sopt, &optval, sizeof optval); 2800 break; 2801 2802 case SO_TYPE: 2803 optval = so->so_type; 2804 goto integer; 2805 2806 case SO_PROTOCOL: 2807 optval = so->so_proto->pr_protocol; 2808 goto integer; 2809 2810 case SO_ERROR: 2811 SOCK_LOCK(so); 2812 optval = so->so_error; 2813 so->so_error = 0; 2814 SOCK_UNLOCK(so); 2815 goto integer; 2816 2817 case SO_SNDBUF: 2818 optval = so->so_snd.sb_hiwat; 2819 goto integer; 2820 2821 case SO_RCVBUF: 2822 optval = so->so_rcv.sb_hiwat; 2823 goto integer; 2824 2825 case SO_SNDLOWAT: 2826 optval = so->so_snd.sb_lowat; 2827 goto integer; 2828 2829 case SO_RCVLOWAT: 2830 optval = so->so_rcv.sb_lowat; 2831 goto integer; 2832 2833 case SO_SNDTIMEO: 2834 case SO_RCVTIMEO: 2835 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2836 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2837 2838 tv.tv_sec = optval / hz; 2839 tv.tv_usec = (optval % hz) * tick; 2840 #ifdef COMPAT_FREEBSD32 2841 if (SV_CURPROC_FLAG(SV_ILP32)) { 2842 struct timeval32 tv32; 2843 2844 CP(tv, tv32, tv_sec); 2845 CP(tv, tv32, tv_usec); 2846 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2847 } else 2848 #endif 2849 error = sooptcopyout(sopt, &tv, sizeof tv); 2850 break; 2851 2852 case SO_LABEL: 2853 #ifdef MAC 2854 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2855 sizeof(extmac)); 2856 if (error) 2857 goto bad; 2858 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2859 so, &extmac); 2860 if (error) 2861 goto bad; 2862 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2863 #else 2864 error = EOPNOTSUPP; 2865 #endif 2866 break; 2867 2868 case SO_PEERLABEL: 2869 #ifdef MAC 2870 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2871 sizeof(extmac)); 2872 if (error) 2873 goto bad; 2874 error = mac_getsockopt_peerlabel( 2875 sopt->sopt_td->td_ucred, so, &extmac); 2876 if (error) 2877 goto bad; 2878 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2879 #else 2880 error = EOPNOTSUPP; 2881 #endif 2882 break; 2883 2884 case SO_LISTENQLIMIT: 2885 optval = so->so_qlimit; 2886 goto integer; 2887 2888 case SO_LISTENQLEN: 2889 optval = so->so_qlen; 2890 goto integer; 2891 2892 case SO_LISTENINCQLEN: 2893 optval = so->so_incqlen; 2894 goto integer; 2895 2896 default: 2897 error = ENOPROTOOPT; 2898 break; 2899 } 2900 } 2901 #ifdef MAC 2902 bad: 2903 #endif 2904 CURVNET_RESTORE(); 2905 return (error); 2906 } 2907 2908 int 2909 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2910 { 2911 struct mbuf *m, *m_prev; 2912 int sopt_size = sopt->sopt_valsize; 2913 2914 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2915 if (m == NULL) 2916 return ENOBUFS; 2917 if (sopt_size > MLEN) { 2918 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2919 if ((m->m_flags & M_EXT) == 0) { 2920 m_free(m); 2921 return ENOBUFS; 2922 } 2923 m->m_len = min(MCLBYTES, sopt_size); 2924 } else { 2925 m->m_len = min(MLEN, sopt_size); 2926 } 2927 sopt_size -= m->m_len; 2928 *mp = m; 2929 m_prev = m; 2930 2931 while (sopt_size) { 2932 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2933 if (m == NULL) { 2934 m_freem(*mp); 2935 return ENOBUFS; 2936 } 2937 if (sopt_size > MLEN) { 2938 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2939 M_NOWAIT); 2940 if ((m->m_flags & M_EXT) == 0) { 2941 m_freem(m); 2942 m_freem(*mp); 2943 return ENOBUFS; 2944 } 2945 m->m_len = min(MCLBYTES, sopt_size); 2946 } else { 2947 m->m_len = min(MLEN, sopt_size); 2948 } 2949 sopt_size -= m->m_len; 2950 m_prev->m_next = m; 2951 m_prev = m; 2952 } 2953 return (0); 2954 } 2955 2956 int 2957 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2958 { 2959 struct mbuf *m0 = m; 2960 2961 if (sopt->sopt_val == NULL) 2962 return (0); 2963 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2964 if (sopt->sopt_td != NULL) { 2965 int error; 2966 2967 error = copyin(sopt->sopt_val, mtod(m, char *), 2968 m->m_len); 2969 if (error != 0) { 2970 m_freem(m0); 2971 return(error); 2972 } 2973 } else 2974 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2975 sopt->sopt_valsize -= m->m_len; 2976 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2977 m = m->m_next; 2978 } 2979 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2980 panic("ip6_sooptmcopyin"); 2981 return (0); 2982 } 2983 2984 int 2985 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2986 { 2987 struct mbuf *m0 = m; 2988 size_t valsize = 0; 2989 2990 if (sopt->sopt_val == NULL) 2991 return (0); 2992 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2993 if (sopt->sopt_td != NULL) { 2994 int error; 2995 2996 error = copyout(mtod(m, char *), sopt->sopt_val, 2997 m->m_len); 2998 if (error != 0) { 2999 m_freem(m0); 3000 return(error); 3001 } 3002 } else 3003 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3004 sopt->sopt_valsize -= m->m_len; 3005 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3006 valsize += m->m_len; 3007 m = m->m_next; 3008 } 3009 if (m != NULL) { 3010 /* enough soopt buffer should be given from user-land */ 3011 m_freem(m0); 3012 return(EINVAL); 3013 } 3014 sopt->sopt_valsize = valsize; 3015 return (0); 3016 } 3017 3018 /* 3019 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3020 * out-of-band data, which will then notify socket consumers. 3021 */ 3022 void 3023 sohasoutofband(struct socket *so) 3024 { 3025 3026 if (so->so_sigio != NULL) 3027 pgsigio(&so->so_sigio, SIGURG, 0); 3028 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 3029 } 3030 3031 int 3032 sopoll(struct socket *so, int events, struct ucred *active_cred, 3033 struct thread *td) 3034 { 3035 3036 /* 3037 * We do not need to set or assert curvnet as long as everyone uses 3038 * sopoll_generic(). 3039 */ 3040 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3041 td)); 3042 } 3043 3044 int 3045 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3046 struct thread *td) 3047 { 3048 int revents = 0; 3049 3050 SOCKBUF_LOCK(&so->so_snd); 3051 SOCKBUF_LOCK(&so->so_rcv); 3052 if (events & (POLLIN | POLLRDNORM)) 3053 if (soreadabledata(so)) 3054 revents |= events & (POLLIN | POLLRDNORM); 3055 3056 if (events & (POLLOUT | POLLWRNORM)) 3057 if (sowriteable(so)) 3058 revents |= events & (POLLOUT | POLLWRNORM); 3059 3060 if (events & (POLLPRI | POLLRDBAND)) 3061 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 3062 revents |= events & (POLLPRI | POLLRDBAND); 3063 3064 if ((events & POLLINIGNEOF) == 0) { 3065 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3066 revents |= events & (POLLIN | POLLRDNORM); 3067 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3068 revents |= POLLHUP; 3069 } 3070 } 3071 3072 if (revents == 0) { 3073 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3074 selrecord(td, &so->so_rcv.sb_sel); 3075 so->so_rcv.sb_flags |= SB_SEL; 3076 } 3077 3078 if (events & (POLLOUT | POLLWRNORM)) { 3079 selrecord(td, &so->so_snd.sb_sel); 3080 so->so_snd.sb_flags |= SB_SEL; 3081 } 3082 } 3083 3084 SOCKBUF_UNLOCK(&so->so_rcv); 3085 SOCKBUF_UNLOCK(&so->so_snd); 3086 return (revents); 3087 } 3088 3089 int 3090 soo_kqfilter(struct file *fp, struct knote *kn) 3091 { 3092 struct socket *so = kn->kn_fp->f_data; 3093 struct sockbuf *sb; 3094 3095 switch (kn->kn_filter) { 3096 case EVFILT_READ: 3097 if (so->so_options & SO_ACCEPTCONN) 3098 kn->kn_fop = &solisten_filtops; 3099 else 3100 kn->kn_fop = &soread_filtops; 3101 sb = &so->so_rcv; 3102 break; 3103 case EVFILT_WRITE: 3104 kn->kn_fop = &sowrite_filtops; 3105 sb = &so->so_snd; 3106 break; 3107 default: 3108 return (EINVAL); 3109 } 3110 3111 SOCKBUF_LOCK(sb); 3112 knlist_add(&sb->sb_sel.si_note, kn, 1); 3113 sb->sb_flags |= SB_KNOTE; 3114 SOCKBUF_UNLOCK(sb); 3115 return (0); 3116 } 3117 3118 /* 3119 * Some routines that return EOPNOTSUPP for entry points that are not 3120 * supported by a protocol. Fill in as needed. 3121 */ 3122 int 3123 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3124 { 3125 3126 return EOPNOTSUPP; 3127 } 3128 3129 int 3130 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3131 { 3132 3133 return EOPNOTSUPP; 3134 } 3135 3136 int 3137 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3138 { 3139 3140 return EOPNOTSUPP; 3141 } 3142 3143 int 3144 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3145 { 3146 3147 return EOPNOTSUPP; 3148 } 3149 3150 int 3151 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3152 { 3153 3154 return EOPNOTSUPP; 3155 } 3156 3157 int 3158 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3159 struct ifnet *ifp, struct thread *td) 3160 { 3161 3162 return EOPNOTSUPP; 3163 } 3164 3165 int 3166 pru_disconnect_notsupp(struct socket *so) 3167 { 3168 3169 return EOPNOTSUPP; 3170 } 3171 3172 int 3173 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3174 { 3175 3176 return EOPNOTSUPP; 3177 } 3178 3179 int 3180 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3181 { 3182 3183 return EOPNOTSUPP; 3184 } 3185 3186 int 3187 pru_rcvd_notsupp(struct socket *so, int flags) 3188 { 3189 3190 return EOPNOTSUPP; 3191 } 3192 3193 int 3194 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3195 { 3196 3197 return EOPNOTSUPP; 3198 } 3199 3200 int 3201 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3202 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3203 { 3204 3205 return EOPNOTSUPP; 3206 } 3207 3208 /* 3209 * This isn't really a ``null'' operation, but it's the default one and 3210 * doesn't do anything destructive. 3211 */ 3212 int 3213 pru_sense_null(struct socket *so, struct stat *sb) 3214 { 3215 3216 sb->st_blksize = so->so_snd.sb_hiwat; 3217 return 0; 3218 } 3219 3220 int 3221 pru_shutdown_notsupp(struct socket *so) 3222 { 3223 3224 return EOPNOTSUPP; 3225 } 3226 3227 int 3228 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3229 { 3230 3231 return EOPNOTSUPP; 3232 } 3233 3234 int 3235 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3236 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3237 { 3238 3239 return EOPNOTSUPP; 3240 } 3241 3242 int 3243 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3244 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3245 { 3246 3247 return EOPNOTSUPP; 3248 } 3249 3250 int 3251 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3252 struct thread *td) 3253 { 3254 3255 return EOPNOTSUPP; 3256 } 3257 3258 static void 3259 filt_sordetach(struct knote *kn) 3260 { 3261 struct socket *so = kn->kn_fp->f_data; 3262 3263 SOCKBUF_LOCK(&so->so_rcv); 3264 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3265 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3266 so->so_rcv.sb_flags &= ~SB_KNOTE; 3267 SOCKBUF_UNLOCK(&so->so_rcv); 3268 } 3269 3270 /*ARGSUSED*/ 3271 static int 3272 filt_soread(struct knote *kn, long hint) 3273 { 3274 struct socket *so; 3275 3276 so = kn->kn_fp->f_data; 3277 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3278 3279 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3280 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3281 kn->kn_flags |= EV_EOF; 3282 kn->kn_fflags = so->so_error; 3283 return (1); 3284 } else if (so->so_error) /* temporary udp error */ 3285 return (1); 3286 else if (kn->kn_sfflags & NOTE_LOWAT) 3287 return (kn->kn_data >= kn->kn_sdata); 3288 else 3289 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 3290 } 3291 3292 static void 3293 filt_sowdetach(struct knote *kn) 3294 { 3295 struct socket *so = kn->kn_fp->f_data; 3296 3297 SOCKBUF_LOCK(&so->so_snd); 3298 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3299 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3300 so->so_snd.sb_flags &= ~SB_KNOTE; 3301 SOCKBUF_UNLOCK(&so->so_snd); 3302 } 3303 3304 /*ARGSUSED*/ 3305 static int 3306 filt_sowrite(struct knote *kn, long hint) 3307 { 3308 struct socket *so; 3309 3310 so = kn->kn_fp->f_data; 3311 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3312 kn->kn_data = sbspace(&so->so_snd); 3313 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3314 kn->kn_flags |= EV_EOF; 3315 kn->kn_fflags = so->so_error; 3316 return (1); 3317 } else if (so->so_error) /* temporary udp error */ 3318 return (1); 3319 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3320 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3321 return (0); 3322 else if (kn->kn_sfflags & NOTE_LOWAT) 3323 return (kn->kn_data >= kn->kn_sdata); 3324 else 3325 return (kn->kn_data >= so->so_snd.sb_lowat); 3326 } 3327 3328 /*ARGSUSED*/ 3329 static int 3330 filt_solisten(struct knote *kn, long hint) 3331 { 3332 struct socket *so = kn->kn_fp->f_data; 3333 3334 kn->kn_data = so->so_qlen; 3335 return (!TAILQ_EMPTY(&so->so_comp)); 3336 } 3337 3338 int 3339 socheckuid(struct socket *so, uid_t uid) 3340 { 3341 3342 if (so == NULL) 3343 return (EPERM); 3344 if (so->so_cred->cr_uid != uid) 3345 return (EPERM); 3346 return (0); 3347 } 3348 3349 /* 3350 * These functions are used by protocols to notify the socket layer (and its 3351 * consumers) of state changes in the sockets driven by protocol-side events. 3352 */ 3353 3354 /* 3355 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3356 * 3357 * Normal sequence from the active (originating) side is that 3358 * soisconnecting() is called during processing of connect() call, resulting 3359 * in an eventual call to soisconnected() if/when the connection is 3360 * established. When the connection is torn down soisdisconnecting() is 3361 * called during processing of disconnect() call, and soisdisconnected() is 3362 * called when the connection to the peer is totally severed. The semantics 3363 * of these routines are such that connectionless protocols can call 3364 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3365 * calls when setting up a ``connection'' takes no time. 3366 * 3367 * From the passive side, a socket is created with two queues of sockets: 3368 * so_incomp for connections in progress and so_comp for connections already 3369 * made and awaiting user acceptance. As a protocol is preparing incoming 3370 * connections, it creates a socket structure queued on so_incomp by calling 3371 * sonewconn(). When the connection is established, soisconnected() is 3372 * called, and transfers the socket structure to so_comp, making it available 3373 * to accept(). 3374 * 3375 * If a socket is closed with sockets on either so_incomp or so_comp, these 3376 * sockets are dropped. 3377 * 3378 * If higher-level protocols are implemented in the kernel, the wakeups done 3379 * here will sometimes cause software-interrupt process scheduling. 3380 */ 3381 void 3382 soisconnecting(struct socket *so) 3383 { 3384 3385 SOCK_LOCK(so); 3386 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3387 so->so_state |= SS_ISCONNECTING; 3388 SOCK_UNLOCK(so); 3389 } 3390 3391 void 3392 soisconnected(struct socket *so) 3393 { 3394 struct socket *head; 3395 int ret; 3396 3397 restart: 3398 ACCEPT_LOCK(); 3399 SOCK_LOCK(so); 3400 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3401 so->so_state |= SS_ISCONNECTED; 3402 head = so->so_head; 3403 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3404 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3405 SOCK_UNLOCK(so); 3406 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3407 head->so_incqlen--; 3408 so->so_qstate &= ~SQ_INCOMP; 3409 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3410 head->so_qlen++; 3411 so->so_qstate |= SQ_COMP; 3412 ACCEPT_UNLOCK(); 3413 sorwakeup(head); 3414 wakeup_one(&head->so_timeo); 3415 } else { 3416 ACCEPT_UNLOCK(); 3417 soupcall_set(so, SO_RCV, 3418 head->so_accf->so_accept_filter->accf_callback, 3419 head->so_accf->so_accept_filter_arg); 3420 so->so_options &= ~SO_ACCEPTFILTER; 3421 ret = head->so_accf->so_accept_filter->accf_callback(so, 3422 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3423 if (ret == SU_ISCONNECTED) 3424 soupcall_clear(so, SO_RCV); 3425 SOCK_UNLOCK(so); 3426 if (ret == SU_ISCONNECTED) 3427 goto restart; 3428 } 3429 return; 3430 } 3431 SOCK_UNLOCK(so); 3432 ACCEPT_UNLOCK(); 3433 wakeup(&so->so_timeo); 3434 sorwakeup(so); 3435 sowwakeup(so); 3436 } 3437 3438 void 3439 soisdisconnecting(struct socket *so) 3440 { 3441 3442 /* 3443 * Note: This code assumes that SOCK_LOCK(so) and 3444 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3445 */ 3446 SOCKBUF_LOCK(&so->so_rcv); 3447 so->so_state &= ~SS_ISCONNECTING; 3448 so->so_state |= SS_ISDISCONNECTING; 3449 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3450 sorwakeup_locked(so); 3451 SOCKBUF_LOCK(&so->so_snd); 3452 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3453 sowwakeup_locked(so); 3454 wakeup(&so->so_timeo); 3455 } 3456 3457 void 3458 soisdisconnected(struct socket *so) 3459 { 3460 3461 /* 3462 * Note: This code assumes that SOCK_LOCK(so) and 3463 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3464 */ 3465 SOCKBUF_LOCK(&so->so_rcv); 3466 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3467 so->so_state |= SS_ISDISCONNECTED; 3468 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3469 sorwakeup_locked(so); 3470 SOCKBUF_LOCK(&so->so_snd); 3471 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3472 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3473 sowwakeup_locked(so); 3474 wakeup(&so->so_timeo); 3475 } 3476 3477 /* 3478 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3479 */ 3480 struct sockaddr * 3481 sodupsockaddr(const struct sockaddr *sa, int mflags) 3482 { 3483 struct sockaddr *sa2; 3484 3485 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3486 if (sa2) 3487 bcopy(sa, sa2, sa->sa_len); 3488 return sa2; 3489 } 3490 3491 /* 3492 * Register per-socket buffer upcalls. 3493 */ 3494 void 3495 soupcall_set(struct socket *so, int which, 3496 int (*func)(struct socket *, void *, int), void *arg) 3497 { 3498 struct sockbuf *sb; 3499 3500 switch (which) { 3501 case SO_RCV: 3502 sb = &so->so_rcv; 3503 break; 3504 case SO_SND: 3505 sb = &so->so_snd; 3506 break; 3507 default: 3508 panic("soupcall_set: bad which"); 3509 } 3510 SOCKBUF_LOCK_ASSERT(sb); 3511 #if 0 3512 /* XXX: accf_http actually wants to do this on purpose. */ 3513 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3514 #endif 3515 sb->sb_upcall = func; 3516 sb->sb_upcallarg = arg; 3517 sb->sb_flags |= SB_UPCALL; 3518 } 3519 3520 void 3521 soupcall_clear(struct socket *so, int which) 3522 { 3523 struct sockbuf *sb; 3524 3525 switch (which) { 3526 case SO_RCV: 3527 sb = &so->so_rcv; 3528 break; 3529 case SO_SND: 3530 sb = &so->so_snd; 3531 break; 3532 default: 3533 panic("soupcall_clear: bad which"); 3534 } 3535 SOCKBUF_LOCK_ASSERT(sb); 3536 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3537 sb->sb_upcall = NULL; 3538 sb->sb_upcallarg = NULL; 3539 sb->sb_flags &= ~SB_UPCALL; 3540 } 3541 3542 /* 3543 * Create an external-format (``xsocket'') structure using the information in 3544 * the kernel-format socket structure pointed to by so. This is done to 3545 * reduce the spew of irrelevant information over this interface, to isolate 3546 * user code from changes in the kernel structure, and potentially to provide 3547 * information-hiding if we decide that some of this information should be 3548 * hidden from users. 3549 */ 3550 void 3551 sotoxsocket(struct socket *so, struct xsocket *xso) 3552 { 3553 3554 xso->xso_len = sizeof *xso; 3555 xso->xso_so = so; 3556 xso->so_type = so->so_type; 3557 xso->so_options = so->so_options; 3558 xso->so_linger = so->so_linger; 3559 xso->so_state = so->so_state; 3560 xso->so_pcb = so->so_pcb; 3561 xso->xso_protocol = so->so_proto->pr_protocol; 3562 xso->xso_family = so->so_proto->pr_domain->dom_family; 3563 xso->so_qlen = so->so_qlen; 3564 xso->so_incqlen = so->so_incqlen; 3565 xso->so_qlimit = so->so_qlimit; 3566 xso->so_timeo = so->so_timeo; 3567 xso->so_error = so->so_error; 3568 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3569 xso->so_oobmark = so->so_oobmark; 3570 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3571 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3572 xso->so_uid = so->so_cred->cr_uid; 3573 } 3574 3575 3576 /* 3577 * Socket accessor functions to provide external consumers with 3578 * a safe interface to socket state 3579 * 3580 */ 3581 3582 void 3583 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3584 void *arg) 3585 { 3586 3587 TAILQ_FOREACH(so, &so->so_comp, so_list) 3588 func(so, arg); 3589 } 3590 3591 struct sockbuf * 3592 so_sockbuf_rcv(struct socket *so) 3593 { 3594 3595 return (&so->so_rcv); 3596 } 3597 3598 struct sockbuf * 3599 so_sockbuf_snd(struct socket *so) 3600 { 3601 3602 return (&so->so_snd); 3603 } 3604 3605 int 3606 so_state_get(const struct socket *so) 3607 { 3608 3609 return (so->so_state); 3610 } 3611 3612 void 3613 so_state_set(struct socket *so, int val) 3614 { 3615 3616 so->so_state = val; 3617 } 3618 3619 int 3620 so_options_get(const struct socket *so) 3621 { 3622 3623 return (so->so_options); 3624 } 3625 3626 void 3627 so_options_set(struct socket *so, int val) 3628 { 3629 3630 so->so_options = val; 3631 } 3632 3633 int 3634 so_error_get(const struct socket *so) 3635 { 3636 3637 return (so->so_error); 3638 } 3639 3640 void 3641 so_error_set(struct socket *so, int val) 3642 { 3643 3644 so->so_error = val; 3645 } 3646 3647 int 3648 so_linger_get(const struct socket *so) 3649 { 3650 3651 return (so->so_linger); 3652 } 3653 3654 void 3655 so_linger_set(struct socket *so, int val) 3656 { 3657 3658 so->so_linger = val; 3659 } 3660 3661 struct protosw * 3662 so_protosw_get(const struct socket *so) 3663 { 3664 3665 return (so->so_proto); 3666 } 3667 3668 void 3669 so_protosw_set(struct socket *so, struct protosw *val) 3670 { 3671 3672 so->so_proto = val; 3673 } 3674 3675 void 3676 so_sorwakeup(struct socket *so) 3677 { 3678 3679 sorwakeup(so); 3680 } 3681 3682 void 3683 so_sowwakeup(struct socket *so) 3684 { 3685 3686 sowwakeup(so); 3687 } 3688 3689 void 3690 so_sorwakeup_locked(struct socket *so) 3691 { 3692 3693 sorwakeup_locked(so); 3694 } 3695 3696 void 3697 so_sowwakeup_locked(struct socket *so) 3698 { 3699 3700 sowwakeup_locked(so); 3701 } 3702 3703 void 3704 so_lock(struct socket *so) 3705 { 3706 3707 SOCK_LOCK(so); 3708 } 3709 3710 void 3711 so_unlock(struct socket *so) 3712 { 3713 3714 SOCK_UNLOCK(so); 3715 } 3716