1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/fcntl.h> 116 #include <sys/limits.h> 117 #include <sys/lock.h> 118 #include <sys/mac.h> 119 #include <sys/malloc.h> 120 #include <sys/mbuf.h> 121 #include <sys/mutex.h> 122 #include <sys/domain.h> 123 #include <sys/file.h> /* for struct knote */ 124 #include <sys/hhook.h> 125 #include <sys/kernel.h> 126 #include <sys/khelp.h> 127 #include <sys/ktls.h> 128 #include <sys/event.h> 129 #include <sys/eventhandler.h> 130 #include <sys/poll.h> 131 #include <sys/proc.h> 132 #include <sys/protosw.h> 133 #include <sys/sbuf.h> 134 #include <sys/socket.h> 135 #include <sys/socketvar.h> 136 #include <sys/resourcevar.h> 137 #include <net/route.h> 138 #include <sys/signalvar.h> 139 #include <sys/stat.h> 140 #include <sys/sx.h> 141 #include <sys/sysctl.h> 142 #include <sys/taskqueue.h> 143 #include <sys/uio.h> 144 #include <sys/un.h> 145 #include <sys/unpcb.h> 146 #include <sys/jail.h> 147 #include <sys/syslog.h> 148 #include <netinet/in.h> 149 #include <netinet/in_pcb.h> 150 #include <netinet/tcp.h> 151 152 #include <net/vnet.h> 153 154 #include <security/mac/mac_framework.h> 155 156 #include <vm/uma.h> 157 158 #ifdef COMPAT_FREEBSD32 159 #include <sys/mount.h> 160 #include <sys/sysent.h> 161 #include <compat/freebsd32/freebsd32.h> 162 #endif 163 164 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 165 int flags); 166 static void so_rdknl_lock(void *); 167 static void so_rdknl_unlock(void *); 168 static void so_rdknl_assert_lock(void *, int); 169 static void so_wrknl_lock(void *); 170 static void so_wrknl_unlock(void *); 171 static void so_wrknl_assert_lock(void *, int); 172 173 static void filt_sordetach(struct knote *kn); 174 static int filt_soread(struct knote *kn, long hint); 175 static void filt_sowdetach(struct knote *kn); 176 static int filt_sowrite(struct knote *kn, long hint); 177 static int filt_soempty(struct knote *kn, long hint); 178 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 179 fo_kqfilter_t soo_kqfilter; 180 181 static struct filterops soread_filtops = { 182 .f_isfd = 1, 183 .f_detach = filt_sordetach, 184 .f_event = filt_soread, 185 }; 186 static struct filterops sowrite_filtops = { 187 .f_isfd = 1, 188 .f_detach = filt_sowdetach, 189 .f_event = filt_sowrite, 190 }; 191 static struct filterops soempty_filtops = { 192 .f_isfd = 1, 193 .f_detach = filt_sowdetach, 194 .f_event = filt_soempty, 195 }; 196 197 so_gen_t so_gencnt; /* generation count for sockets */ 198 199 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 200 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 201 202 #define VNET_SO_ASSERT(so) \ 203 VNET_ASSERT(curvnet != NULL, \ 204 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 205 206 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 207 #define V_socket_hhh VNET(socket_hhh) 208 209 /* 210 * Limit on the number of connections in the listen queue waiting 211 * for accept(2). 212 * NB: The original sysctl somaxconn is still available but hidden 213 * to prevent confusion about the actual purpose of this number. 214 */ 215 static u_int somaxconn = SOMAXCONN; 216 217 static int 218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 219 { 220 int error; 221 int val; 222 223 val = somaxconn; 224 error = sysctl_handle_int(oidp, &val, 0, req); 225 if (error || !req->newptr ) 226 return (error); 227 228 /* 229 * The purpose of the UINT_MAX / 3 limit, is so that the formula 230 * 3 * so_qlimit / 2 231 * below, will not overflow. 232 */ 233 234 if (val < 1 || val > UINT_MAX / 3) 235 return (EINVAL); 236 237 somaxconn = val; 238 return (0); 239 } 240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 241 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 242 sysctl_somaxconn, "I", 243 "Maximum listen socket pending connection accept queue size"); 244 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 245 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 246 sizeof(int), sysctl_somaxconn, "I", 247 "Maximum listen socket pending connection accept queue size (compat)"); 248 249 static int numopensockets; 250 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 251 &numopensockets, 0, "Number of open sockets"); 252 253 /* 254 * accept_mtx locks down per-socket fields relating to accept queues. See 255 * socketvar.h for an annotation of the protected fields of struct socket. 256 */ 257 struct mtx accept_mtx; 258 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 259 260 /* 261 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 262 * so_gencnt field. 263 */ 264 static struct mtx so_global_mtx; 265 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 266 267 /* 268 * General IPC sysctl name space, used by sockets and a variety of other IPC 269 * types. 270 */ 271 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 272 "IPC"); 273 274 /* 275 * Initialize the socket subsystem and set up the socket 276 * memory allocator. 277 */ 278 static uma_zone_t socket_zone; 279 int maxsockets; 280 281 static void 282 socket_zone_change(void *tag) 283 { 284 285 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 286 } 287 288 static void 289 socket_hhook_register(int subtype) 290 { 291 292 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 293 &V_socket_hhh[subtype], 294 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 295 printf("%s: WARNING: unable to register hook\n", __func__); 296 } 297 298 static void 299 socket_hhook_deregister(int subtype) 300 { 301 302 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 303 printf("%s: WARNING: unable to deregister hook\n", __func__); 304 } 305 306 static void 307 socket_init(void *tag) 308 { 309 310 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 311 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 312 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 313 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 314 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 315 EVENTHANDLER_PRI_FIRST); 316 } 317 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 318 319 static void 320 socket_vnet_init(const void *unused __unused) 321 { 322 int i; 323 324 /* We expect a contiguous range */ 325 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 326 socket_hhook_register(i); 327 } 328 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 329 socket_vnet_init, NULL); 330 331 static void 332 socket_vnet_uninit(const void *unused __unused) 333 { 334 int i; 335 336 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 337 socket_hhook_deregister(i); 338 } 339 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 340 socket_vnet_uninit, NULL); 341 342 /* 343 * Initialise maxsockets. This SYSINIT must be run after 344 * tunable_mbinit(). 345 */ 346 static void 347 init_maxsockets(void *ignored) 348 { 349 350 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 351 maxsockets = imax(maxsockets, maxfiles); 352 } 353 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 354 355 /* 356 * Sysctl to get and set the maximum global sockets limit. Notify protocols 357 * of the change so that they can update their dependent limits as required. 358 */ 359 static int 360 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 361 { 362 int error, newmaxsockets; 363 364 newmaxsockets = maxsockets; 365 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 366 if (error == 0 && req->newptr) { 367 if (newmaxsockets > maxsockets && 368 newmaxsockets <= maxfiles) { 369 maxsockets = newmaxsockets; 370 EVENTHANDLER_INVOKE(maxsockets_change); 371 } else 372 error = EINVAL; 373 } 374 return (error); 375 } 376 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 377 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 378 sysctl_maxsockets, "IU", 379 "Maximum number of sockets available"); 380 381 /* 382 * Socket operation routines. These routines are called by the routines in 383 * sys_socket.c or from a system process, and implement the semantics of 384 * socket operations by switching out to the protocol specific routines. 385 */ 386 387 /* 388 * Get a socket structure from our zone, and initialize it. Note that it 389 * would probably be better to allocate socket and PCB at the same time, but 390 * I'm not convinced that all the protocols can be easily modified to do 391 * this. 392 * 393 * soalloc() returns a socket with a ref count of 0. 394 */ 395 static struct socket * 396 soalloc(struct vnet *vnet) 397 { 398 struct socket *so; 399 400 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 401 if (so == NULL) 402 return (NULL); 403 #ifdef MAC 404 if (mac_socket_init(so, M_NOWAIT) != 0) { 405 uma_zfree(socket_zone, so); 406 return (NULL); 407 } 408 #endif 409 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 410 uma_zfree(socket_zone, so); 411 return (NULL); 412 } 413 414 /* 415 * The socket locking protocol allows to lock 2 sockets at a time, 416 * however, the first one must be a listening socket. WITNESS lacks 417 * a feature to change class of an existing lock, so we use DUPOK. 418 */ 419 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 420 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 421 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 422 so->so_rcv.sb_sel = &so->so_rdsel; 423 so->so_snd.sb_sel = &so->so_wrsel; 424 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 425 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 426 TAILQ_INIT(&so->so_snd.sb_aiojobq); 427 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 428 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 429 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 430 #ifdef VIMAGE 431 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 432 __func__, __LINE__, so)); 433 so->so_vnet = vnet; 434 #endif 435 /* We shouldn't need the so_global_mtx */ 436 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 437 /* Do we need more comprehensive error returns? */ 438 uma_zfree(socket_zone, so); 439 return (NULL); 440 } 441 mtx_lock(&so_global_mtx); 442 so->so_gencnt = ++so_gencnt; 443 ++numopensockets; 444 #ifdef VIMAGE 445 vnet->vnet_sockcnt++; 446 #endif 447 mtx_unlock(&so_global_mtx); 448 449 return (so); 450 } 451 452 /* 453 * Free the storage associated with a socket at the socket layer, tear down 454 * locks, labels, etc. All protocol state is assumed already to have been 455 * torn down (and possibly never set up) by the caller. 456 */ 457 static void 458 sodealloc(struct socket *so) 459 { 460 461 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 462 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 463 464 mtx_lock(&so_global_mtx); 465 so->so_gencnt = ++so_gencnt; 466 --numopensockets; /* Could be below, but faster here. */ 467 #ifdef VIMAGE 468 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 469 __func__, __LINE__, so)); 470 so->so_vnet->vnet_sockcnt--; 471 #endif 472 mtx_unlock(&so_global_mtx); 473 #ifdef MAC 474 mac_socket_destroy(so); 475 #endif 476 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 477 478 crfree(so->so_cred); 479 khelp_destroy_osd(&so->osd); 480 if (SOLISTENING(so)) { 481 if (so->sol_accept_filter != NULL) 482 accept_filt_setopt(so, NULL); 483 } else { 484 if (so->so_rcv.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 487 if (so->so_snd.sb_hiwat) 488 (void)chgsbsize(so->so_cred->cr_uidinfo, 489 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 490 sx_destroy(&so->so_snd.sb_sx); 491 sx_destroy(&so->so_rcv.sb_sx); 492 SOCKBUF_LOCK_DESTROY(&so->so_snd); 493 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 494 } 495 mtx_destroy(&so->so_lock); 496 uma_zfree(socket_zone, so); 497 } 498 499 /* 500 * socreate returns a socket with a ref count of 1. The socket should be 501 * closed with soclose(). 502 */ 503 int 504 socreate(int dom, struct socket **aso, int type, int proto, 505 struct ucred *cred, struct thread *td) 506 { 507 struct protosw *prp; 508 struct socket *so; 509 int error; 510 511 if (proto) 512 prp = pffindproto(dom, proto, type); 513 else 514 prp = pffindtype(dom, type); 515 516 if (prp == NULL) { 517 /* No support for domain. */ 518 if (pffinddomain(dom) == NULL) 519 return (EAFNOSUPPORT); 520 /* No support for socket type. */ 521 if (proto == 0 && type != 0) 522 return (EPROTOTYPE); 523 return (EPROTONOSUPPORT); 524 } 525 if (prp->pr_usrreqs->pru_attach == NULL || 526 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 527 return (EPROTONOSUPPORT); 528 529 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 530 return (EPROTONOSUPPORT); 531 532 if (prp->pr_type != type) 533 return (EPROTOTYPE); 534 so = soalloc(CRED_TO_VNET(cred)); 535 if (so == NULL) 536 return (ENOBUFS); 537 538 so->so_type = type; 539 so->so_cred = crhold(cred); 540 if ((prp->pr_domain->dom_family == PF_INET) || 541 (prp->pr_domain->dom_family == PF_INET6) || 542 (prp->pr_domain->dom_family == PF_ROUTE)) 543 so->so_fibnum = td->td_proc->p_fibnum; 544 else 545 so->so_fibnum = 0; 546 so->so_proto = prp; 547 #ifdef MAC 548 mac_socket_create(cred, so); 549 #endif 550 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 551 so_rdknl_assert_lock); 552 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 553 so_wrknl_assert_lock); 554 /* 555 * Auto-sizing of socket buffers is managed by the protocols and 556 * the appropriate flags must be set in the pru_attach function. 557 */ 558 CURVNET_SET(so->so_vnet); 559 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 560 CURVNET_RESTORE(); 561 if (error) { 562 sodealloc(so); 563 return (error); 564 } 565 soref(so); 566 *aso = so; 567 return (0); 568 } 569 570 #ifdef REGRESSION 571 static int regression_sonewconn_earlytest = 1; 572 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 573 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 574 #endif 575 576 static struct timeval overinterval = { 60, 0 }; 577 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 578 &overinterval, 579 "Delay in seconds between warnings for listen socket overflows"); 580 581 /* 582 * When an attempt at a new connection is noted on a socket which accepts 583 * connections, sonewconn is called. If the connection is possible (subject 584 * to space constraints, etc.) then we allocate a new structure, properly 585 * linked into the data structure of the original socket, and return this. 586 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 587 * 588 * Note: the ref count on the socket is 0 on return. 589 */ 590 struct socket * 591 sonewconn(struct socket *head, int connstatus) 592 { 593 struct sbuf descrsb; 594 struct socket *so; 595 int len, overcount; 596 u_int qlen; 597 const char localprefix[] = "local:"; 598 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 599 #if defined(INET6) 600 char addrbuf[INET6_ADDRSTRLEN]; 601 #elif defined(INET) 602 char addrbuf[INET_ADDRSTRLEN]; 603 #endif 604 bool dolog, over; 605 606 SOLISTEN_LOCK(head); 607 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 608 #ifdef REGRESSION 609 if (regression_sonewconn_earlytest && over) { 610 #else 611 if (over) { 612 #endif 613 head->sol_overcount++; 614 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 615 616 /* 617 * If we're going to log, copy the overflow count and queue 618 * length from the listen socket before dropping the lock. 619 * Also, reset the overflow count. 620 */ 621 if (dolog) { 622 overcount = head->sol_overcount; 623 head->sol_overcount = 0; 624 qlen = head->sol_qlen; 625 } 626 SOLISTEN_UNLOCK(head); 627 628 if (dolog) { 629 /* 630 * Try to print something descriptive about the 631 * socket for the error message. 632 */ 633 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 634 SBUF_FIXEDLEN); 635 switch (head->so_proto->pr_domain->dom_family) { 636 #if defined(INET) || defined(INET6) 637 #ifdef INET 638 case AF_INET: 639 #endif 640 #ifdef INET6 641 case AF_INET6: 642 if (head->so_proto->pr_domain->dom_family == 643 AF_INET6 || 644 (sotoinpcb(head)->inp_inc.inc_flags & 645 INC_ISIPV6)) { 646 ip6_sprintf(addrbuf, 647 &sotoinpcb(head)->inp_inc.inc6_laddr); 648 sbuf_printf(&descrsb, "[%s]", addrbuf); 649 } else 650 #endif 651 { 652 #ifdef INET 653 inet_ntoa_r( 654 sotoinpcb(head)->inp_inc.inc_laddr, 655 addrbuf); 656 sbuf_cat(&descrsb, addrbuf); 657 #endif 658 } 659 sbuf_printf(&descrsb, ":%hu (proto %u)", 660 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 661 head->so_proto->pr_protocol); 662 break; 663 #endif /* INET || INET6 */ 664 case AF_UNIX: 665 sbuf_cat(&descrsb, localprefix); 666 if (sotounpcb(head)->unp_addr != NULL) 667 len = 668 sotounpcb(head)->unp_addr->sun_len - 669 offsetof(struct sockaddr_un, 670 sun_path); 671 else 672 len = 0; 673 if (len > 0) 674 sbuf_bcat(&descrsb, 675 sotounpcb(head)->unp_addr->sun_path, 676 len); 677 else 678 sbuf_cat(&descrsb, "(unknown)"); 679 break; 680 } 681 682 /* 683 * If we can't print something more specific, at least 684 * print the domain name. 685 */ 686 if (sbuf_finish(&descrsb) != 0 || 687 sbuf_len(&descrsb) <= 0) { 688 sbuf_clear(&descrsb); 689 sbuf_cat(&descrsb, 690 head->so_proto->pr_domain->dom_name ?: 691 "unknown"); 692 sbuf_finish(&descrsb); 693 } 694 KASSERT(sbuf_len(&descrsb) > 0, 695 ("%s: sbuf creation failed", __func__)); 696 log(LOG_DEBUG, 697 "%s: pcb %p (%s): Listen queue overflow: " 698 "%i already in queue awaiting acceptance " 699 "(%d occurrences)\n", 700 __func__, head->so_pcb, sbuf_data(&descrsb), 701 qlen, overcount); 702 sbuf_delete(&descrsb); 703 704 overcount = 0; 705 } 706 707 return (NULL); 708 } 709 SOLISTEN_UNLOCK(head); 710 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 711 __func__, head)); 712 so = soalloc(head->so_vnet); 713 if (so == NULL) { 714 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 715 "limit reached or out of memory\n", 716 __func__, head->so_pcb); 717 return (NULL); 718 } 719 so->so_listen = head; 720 so->so_type = head->so_type; 721 so->so_linger = head->so_linger; 722 so->so_state = head->so_state | SS_NOFDREF; 723 so->so_fibnum = head->so_fibnum; 724 so->so_proto = head->so_proto; 725 so->so_cred = crhold(head->so_cred); 726 #ifdef MAC 727 mac_socket_newconn(head, so); 728 #endif 729 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 730 so_rdknl_assert_lock); 731 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 732 so_wrknl_assert_lock); 733 VNET_SO_ASSERT(head); 734 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 735 sodealloc(so); 736 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 737 __func__, head->so_pcb); 738 return (NULL); 739 } 740 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 741 sodealloc(so); 742 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 743 __func__, head->so_pcb); 744 return (NULL); 745 } 746 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 747 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 748 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 749 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 750 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 751 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 752 753 SOLISTEN_LOCK(head); 754 if (head->sol_accept_filter != NULL) 755 connstatus = 0; 756 so->so_state |= connstatus; 757 so->so_options = head->so_options & ~SO_ACCEPTCONN; 758 soref(head); /* A socket on (in)complete queue refs head. */ 759 if (connstatus) { 760 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 761 so->so_qstate = SQ_COMP; 762 head->sol_qlen++; 763 solisten_wakeup(head); /* unlocks */ 764 } else { 765 /* 766 * Keep removing sockets from the head until there's room for 767 * us to insert on the tail. In pre-locking revisions, this 768 * was a simple if(), but as we could be racing with other 769 * threads and soabort() requires dropping locks, we must 770 * loop waiting for the condition to be true. 771 */ 772 while (head->sol_incqlen > head->sol_qlimit) { 773 struct socket *sp; 774 775 sp = TAILQ_FIRST(&head->sol_incomp); 776 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 777 head->sol_incqlen--; 778 SOCK_LOCK(sp); 779 sp->so_qstate = SQ_NONE; 780 sp->so_listen = NULL; 781 SOCK_UNLOCK(sp); 782 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 783 soabort(sp); 784 SOLISTEN_LOCK(head); 785 } 786 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 787 so->so_qstate = SQ_INCOMP; 788 head->sol_incqlen++; 789 SOLISTEN_UNLOCK(head); 790 } 791 return (so); 792 } 793 794 #if defined(SCTP) || defined(SCTP_SUPPORT) 795 /* 796 * Socket part of sctp_peeloff(). Detach a new socket from an 797 * association. The new socket is returned with a reference. 798 */ 799 struct socket * 800 sopeeloff(struct socket *head) 801 { 802 struct socket *so; 803 804 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 805 __func__, __LINE__, head)); 806 so = soalloc(head->so_vnet); 807 if (so == NULL) { 808 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 809 "limit reached or out of memory\n", 810 __func__, head->so_pcb); 811 return (NULL); 812 } 813 so->so_type = head->so_type; 814 so->so_options = head->so_options; 815 so->so_linger = head->so_linger; 816 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 817 so->so_fibnum = head->so_fibnum; 818 so->so_proto = head->so_proto; 819 so->so_cred = crhold(head->so_cred); 820 #ifdef MAC 821 mac_socket_newconn(head, so); 822 #endif 823 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 824 so_rdknl_assert_lock); 825 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 826 so_wrknl_assert_lock); 827 VNET_SO_ASSERT(head); 828 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 829 sodealloc(so); 830 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 831 __func__, head->so_pcb); 832 return (NULL); 833 } 834 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 835 sodealloc(so); 836 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 837 __func__, head->so_pcb); 838 return (NULL); 839 } 840 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 841 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 842 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 843 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 844 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 845 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 846 847 soref(so); 848 849 return (so); 850 } 851 #endif /* SCTP */ 852 853 int 854 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 855 { 856 int error; 857 858 CURVNET_SET(so->so_vnet); 859 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 860 CURVNET_RESTORE(); 861 return (error); 862 } 863 864 int 865 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 866 { 867 int error; 868 869 CURVNET_SET(so->so_vnet); 870 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 871 CURVNET_RESTORE(); 872 return (error); 873 } 874 875 /* 876 * solisten() transitions a socket from a non-listening state to a listening 877 * state, but can also be used to update the listen queue depth on an 878 * existing listen socket. The protocol will call back into the sockets 879 * layer using solisten_proto_check() and solisten_proto() to check and set 880 * socket-layer listen state. Call backs are used so that the protocol can 881 * acquire both protocol and socket layer locks in whatever order is required 882 * by the protocol. 883 * 884 * Protocol implementors are advised to hold the socket lock across the 885 * socket-layer test and set to avoid races at the socket layer. 886 */ 887 int 888 solisten(struct socket *so, int backlog, struct thread *td) 889 { 890 int error; 891 892 CURVNET_SET(so->so_vnet); 893 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 894 CURVNET_RESTORE(); 895 return (error); 896 } 897 898 int 899 solisten_proto_check(struct socket *so) 900 { 901 902 SOCK_LOCK_ASSERT(so); 903 904 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 905 SS_ISDISCONNECTING)) 906 return (EINVAL); 907 return (0); 908 } 909 910 void 911 solisten_proto(struct socket *so, int backlog) 912 { 913 int sbrcv_lowat, sbsnd_lowat; 914 u_int sbrcv_hiwat, sbsnd_hiwat; 915 short sbrcv_flags, sbsnd_flags; 916 sbintime_t sbrcv_timeo, sbsnd_timeo; 917 918 SOCK_LOCK_ASSERT(so); 919 920 if (SOLISTENING(so)) 921 goto listening; 922 923 /* 924 * Change this socket to listening state. 925 */ 926 sbrcv_lowat = so->so_rcv.sb_lowat; 927 sbsnd_lowat = so->so_snd.sb_lowat; 928 sbrcv_hiwat = so->so_rcv.sb_hiwat; 929 sbsnd_hiwat = so->so_snd.sb_hiwat; 930 sbrcv_flags = so->so_rcv.sb_flags; 931 sbsnd_flags = so->so_snd.sb_flags; 932 sbrcv_timeo = so->so_rcv.sb_timeo; 933 sbsnd_timeo = so->so_snd.sb_timeo; 934 935 sbdestroy(&so->so_snd, so); 936 sbdestroy(&so->so_rcv, so); 937 sx_destroy(&so->so_snd.sb_sx); 938 sx_destroy(&so->so_rcv.sb_sx); 939 SOCKBUF_LOCK_DESTROY(&so->so_snd); 940 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 941 942 #ifdef INVARIANTS 943 bzero(&so->so_rcv, 944 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 945 #endif 946 947 so->sol_sbrcv_lowat = sbrcv_lowat; 948 so->sol_sbsnd_lowat = sbsnd_lowat; 949 so->sol_sbrcv_hiwat = sbrcv_hiwat; 950 so->sol_sbsnd_hiwat = sbsnd_hiwat; 951 so->sol_sbrcv_flags = sbrcv_flags; 952 so->sol_sbsnd_flags = sbsnd_flags; 953 so->sol_sbrcv_timeo = sbrcv_timeo; 954 so->sol_sbsnd_timeo = sbsnd_timeo; 955 956 so->sol_qlen = so->sol_incqlen = 0; 957 TAILQ_INIT(&so->sol_incomp); 958 TAILQ_INIT(&so->sol_comp); 959 960 so->sol_accept_filter = NULL; 961 so->sol_accept_filter_arg = NULL; 962 so->sol_accept_filter_str = NULL; 963 964 so->sol_upcall = NULL; 965 so->sol_upcallarg = NULL; 966 967 so->so_options |= SO_ACCEPTCONN; 968 969 listening: 970 if (backlog < 0 || backlog > somaxconn) 971 backlog = somaxconn; 972 so->sol_qlimit = backlog; 973 } 974 975 /* 976 * Wakeup listeners/subsystems once we have a complete connection. 977 * Enters with lock, returns unlocked. 978 */ 979 void 980 solisten_wakeup(struct socket *sol) 981 { 982 983 if (sol->sol_upcall != NULL) 984 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 985 else { 986 selwakeuppri(&sol->so_rdsel, PSOCK); 987 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 988 } 989 SOLISTEN_UNLOCK(sol); 990 wakeup_one(&sol->sol_comp); 991 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 992 pgsigio(&sol->so_sigio, SIGIO, 0); 993 } 994 995 /* 996 * Return single connection off a listening socket queue. Main consumer of 997 * the function is kern_accept4(). Some modules, that do their own accept 998 * management also use the function. 999 * 1000 * Listening socket must be locked on entry and is returned unlocked on 1001 * return. 1002 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1003 */ 1004 int 1005 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1006 { 1007 struct socket *so; 1008 int error; 1009 1010 SOLISTEN_LOCK_ASSERT(head); 1011 1012 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1013 head->so_error == 0) { 1014 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, 1015 "accept", 0); 1016 if (error != 0) { 1017 SOLISTEN_UNLOCK(head); 1018 return (error); 1019 } 1020 } 1021 if (head->so_error) { 1022 error = head->so_error; 1023 head->so_error = 0; 1024 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1025 error = EWOULDBLOCK; 1026 else 1027 error = 0; 1028 if (error) { 1029 SOLISTEN_UNLOCK(head); 1030 return (error); 1031 } 1032 so = TAILQ_FIRST(&head->sol_comp); 1033 SOCK_LOCK(so); 1034 KASSERT(so->so_qstate == SQ_COMP, 1035 ("%s: so %p not SQ_COMP", __func__, so)); 1036 soref(so); 1037 head->sol_qlen--; 1038 so->so_qstate = SQ_NONE; 1039 so->so_listen = NULL; 1040 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1041 if (flags & ACCEPT4_INHERIT) 1042 so->so_state |= (head->so_state & SS_NBIO); 1043 else 1044 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1045 SOCK_UNLOCK(so); 1046 sorele(head); 1047 1048 *ret = so; 1049 return (0); 1050 } 1051 1052 /* 1053 * Evaluate the reference count and named references on a socket; if no 1054 * references remain, free it. This should be called whenever a reference is 1055 * released, such as in sorele(), but also when named reference flags are 1056 * cleared in socket or protocol code. 1057 * 1058 * sofree() will free the socket if: 1059 * 1060 * - There are no outstanding file descriptor references or related consumers 1061 * (so_count == 0). 1062 * 1063 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1064 * 1065 * - The protocol does not have an outstanding strong reference on the socket 1066 * (SS_PROTOREF). 1067 * 1068 * - The socket is not in a completed connection queue, so a process has been 1069 * notified that it is present. If it is removed, the user process may 1070 * block in accept() despite select() saying the socket was ready. 1071 */ 1072 void 1073 sofree(struct socket *so) 1074 { 1075 struct protosw *pr = so->so_proto; 1076 1077 SOCK_LOCK_ASSERT(so); 1078 1079 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 1080 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 1081 SOCK_UNLOCK(so); 1082 return; 1083 } 1084 1085 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1086 struct socket *sol; 1087 1088 sol = so->so_listen; 1089 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1090 1091 /* 1092 * To solve race between close of a listening socket and 1093 * a socket on its incomplete queue, we need to lock both. 1094 * The order is first listening socket, then regular. 1095 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1096 * function and the listening socket are the only pointers 1097 * to so. To preserve so and sol, we reference both and then 1098 * relock. 1099 * After relock the socket may not move to so_comp since it 1100 * doesn't have PCB already, but it may be removed from 1101 * so_incomp. If that happens, we share responsiblity on 1102 * freeing the socket, but soclose() has already removed 1103 * it from queue. 1104 */ 1105 soref(sol); 1106 soref(so); 1107 SOCK_UNLOCK(so); 1108 SOLISTEN_LOCK(sol); 1109 SOCK_LOCK(so); 1110 if (so->so_qstate == SQ_INCOMP) { 1111 KASSERT(so->so_listen == sol, 1112 ("%s: so %p migrated out of sol %p", 1113 __func__, so, sol)); 1114 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1115 sol->sol_incqlen--; 1116 /* This is guarenteed not to be the last. */ 1117 refcount_release(&sol->so_count); 1118 so->so_qstate = SQ_NONE; 1119 so->so_listen = NULL; 1120 } else 1121 KASSERT(so->so_listen == NULL, 1122 ("%s: so %p not on (in)comp with so_listen", 1123 __func__, so)); 1124 sorele(sol); 1125 KASSERT(so->so_count == 1, 1126 ("%s: so %p count %u", __func__, so, so->so_count)); 1127 so->so_count = 0; 1128 } 1129 if (SOLISTENING(so)) 1130 so->so_error = ECONNABORTED; 1131 SOCK_UNLOCK(so); 1132 1133 if (so->so_dtor != NULL) 1134 so->so_dtor(so); 1135 1136 VNET_SO_ASSERT(so); 1137 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1138 (*pr->pr_domain->dom_dispose)(so); 1139 if (pr->pr_usrreqs->pru_detach != NULL) 1140 (*pr->pr_usrreqs->pru_detach)(so); 1141 1142 /* 1143 * From this point on, we assume that no other references to this 1144 * socket exist anywhere else in the stack. Therefore, no locks need 1145 * to be acquired or held. 1146 * 1147 * We used to do a lot of socket buffer and socket locking here, as 1148 * well as invoke sorflush() and perform wakeups. The direct call to 1149 * dom_dispose() and sbdestroy() are an inlining of what was 1150 * necessary from sorflush(). 1151 * 1152 * Notice that the socket buffer and kqueue state are torn down 1153 * before calling pru_detach. This means that protocols shold not 1154 * assume they can perform socket wakeups, etc, in their detach code. 1155 */ 1156 if (!SOLISTENING(so)) { 1157 sbdestroy(&so->so_snd, so); 1158 sbdestroy(&so->so_rcv, so); 1159 } 1160 seldrain(&so->so_rdsel); 1161 seldrain(&so->so_wrsel); 1162 knlist_destroy(&so->so_rdsel.si_note); 1163 knlist_destroy(&so->so_wrsel.si_note); 1164 sodealloc(so); 1165 } 1166 1167 /* 1168 * Close a socket on last file table reference removal. Initiate disconnect 1169 * if connected. Free socket when disconnect complete. 1170 * 1171 * This function will sorele() the socket. Note that soclose() may be called 1172 * prior to the ref count reaching zero. The actual socket structure will 1173 * not be freed until the ref count reaches zero. 1174 */ 1175 int 1176 soclose(struct socket *so) 1177 { 1178 struct accept_queue lqueue; 1179 bool listening; 1180 int error = 0; 1181 1182 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1183 1184 CURVNET_SET(so->so_vnet); 1185 funsetown(&so->so_sigio); 1186 if (so->so_state & SS_ISCONNECTED) { 1187 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1188 error = sodisconnect(so); 1189 if (error) { 1190 if (error == ENOTCONN) 1191 error = 0; 1192 goto drop; 1193 } 1194 } 1195 1196 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1197 if ((so->so_state & SS_ISDISCONNECTING) && 1198 (so->so_state & SS_NBIO)) 1199 goto drop; 1200 while (so->so_state & SS_ISCONNECTED) { 1201 error = tsleep(&so->so_timeo, 1202 PSOCK | PCATCH, "soclos", 1203 so->so_linger * hz); 1204 if (error) 1205 break; 1206 } 1207 } 1208 } 1209 1210 drop: 1211 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1212 (*so->so_proto->pr_usrreqs->pru_close)(so); 1213 1214 SOCK_LOCK(so); 1215 if ((listening = (so->so_options & SO_ACCEPTCONN))) { 1216 struct socket *sp; 1217 1218 TAILQ_INIT(&lqueue); 1219 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1220 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1221 1222 so->sol_qlen = so->sol_incqlen = 0; 1223 1224 TAILQ_FOREACH(sp, &lqueue, so_list) { 1225 SOCK_LOCK(sp); 1226 sp->so_qstate = SQ_NONE; 1227 sp->so_listen = NULL; 1228 SOCK_UNLOCK(sp); 1229 /* Guaranteed not to be the last. */ 1230 refcount_release(&so->so_count); 1231 } 1232 } 1233 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1234 so->so_state |= SS_NOFDREF; 1235 sorele(so); 1236 if (listening) { 1237 struct socket *sp, *tsp; 1238 1239 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1240 SOCK_LOCK(sp); 1241 if (sp->so_count == 0) { 1242 SOCK_UNLOCK(sp); 1243 soabort(sp); 1244 } else 1245 /* sp is now in sofree() */ 1246 SOCK_UNLOCK(sp); 1247 } 1248 } 1249 CURVNET_RESTORE(); 1250 return (error); 1251 } 1252 1253 /* 1254 * soabort() is used to abruptly tear down a connection, such as when a 1255 * resource limit is reached (listen queue depth exceeded), or if a listen 1256 * socket is closed while there are sockets waiting to be accepted. 1257 * 1258 * This interface is tricky, because it is called on an unreferenced socket, 1259 * and must be called only by a thread that has actually removed the socket 1260 * from the listen queue it was on, or races with other threads are risked. 1261 * 1262 * This interface will call into the protocol code, so must not be called 1263 * with any socket locks held. Protocols do call it while holding their own 1264 * recursible protocol mutexes, but this is something that should be subject 1265 * to review in the future. 1266 */ 1267 void 1268 soabort(struct socket *so) 1269 { 1270 1271 /* 1272 * In as much as is possible, assert that no references to this 1273 * socket are held. This is not quite the same as asserting that the 1274 * current thread is responsible for arranging for no references, but 1275 * is as close as we can get for now. 1276 */ 1277 KASSERT(so->so_count == 0, ("soabort: so_count")); 1278 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1279 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1280 VNET_SO_ASSERT(so); 1281 1282 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1283 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1284 SOCK_LOCK(so); 1285 sofree(so); 1286 } 1287 1288 int 1289 soaccept(struct socket *so, struct sockaddr **nam) 1290 { 1291 int error; 1292 1293 SOCK_LOCK(so); 1294 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1295 so->so_state &= ~SS_NOFDREF; 1296 SOCK_UNLOCK(so); 1297 1298 CURVNET_SET(so->so_vnet); 1299 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1300 CURVNET_RESTORE(); 1301 return (error); 1302 } 1303 1304 int 1305 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1306 { 1307 1308 return (soconnectat(AT_FDCWD, so, nam, td)); 1309 } 1310 1311 int 1312 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1313 { 1314 int error; 1315 1316 if (so->so_options & SO_ACCEPTCONN) 1317 return (EOPNOTSUPP); 1318 1319 CURVNET_SET(so->so_vnet); 1320 /* 1321 * If protocol is connection-based, can only connect once. 1322 * Otherwise, if connected, try to disconnect first. This allows 1323 * user to disconnect by connecting to, e.g., a null address. 1324 */ 1325 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1326 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1327 (error = sodisconnect(so)))) { 1328 error = EISCONN; 1329 } else { 1330 /* 1331 * Prevent accumulated error from previous connection from 1332 * biting us. 1333 */ 1334 so->so_error = 0; 1335 if (fd == AT_FDCWD) { 1336 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1337 nam, td); 1338 } else { 1339 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1340 so, nam, td); 1341 } 1342 } 1343 CURVNET_RESTORE(); 1344 1345 return (error); 1346 } 1347 1348 int 1349 soconnect2(struct socket *so1, struct socket *so2) 1350 { 1351 int error; 1352 1353 CURVNET_SET(so1->so_vnet); 1354 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1355 CURVNET_RESTORE(); 1356 return (error); 1357 } 1358 1359 int 1360 sodisconnect(struct socket *so) 1361 { 1362 int error; 1363 1364 if ((so->so_state & SS_ISCONNECTED) == 0) 1365 return (ENOTCONN); 1366 if (so->so_state & SS_ISDISCONNECTING) 1367 return (EALREADY); 1368 VNET_SO_ASSERT(so); 1369 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1370 return (error); 1371 } 1372 1373 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1374 1375 int 1376 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1377 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1378 { 1379 long space; 1380 ssize_t resid; 1381 int clen = 0, error, dontroute; 1382 1383 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1384 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1385 ("sosend_dgram: !PR_ATOMIC")); 1386 1387 if (uio != NULL) 1388 resid = uio->uio_resid; 1389 else 1390 resid = top->m_pkthdr.len; 1391 /* 1392 * In theory resid should be unsigned. However, space must be 1393 * signed, as it might be less than 0 if we over-committed, and we 1394 * must use a signed comparison of space and resid. On the other 1395 * hand, a negative resid causes us to loop sending 0-length 1396 * segments to the protocol. 1397 */ 1398 if (resid < 0) { 1399 error = EINVAL; 1400 goto out; 1401 } 1402 1403 dontroute = 1404 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1405 if (td != NULL) 1406 td->td_ru.ru_msgsnd++; 1407 if (control != NULL) 1408 clen = control->m_len; 1409 1410 SOCKBUF_LOCK(&so->so_snd); 1411 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1412 SOCKBUF_UNLOCK(&so->so_snd); 1413 error = EPIPE; 1414 goto out; 1415 } 1416 if (so->so_error) { 1417 error = so->so_error; 1418 so->so_error = 0; 1419 SOCKBUF_UNLOCK(&so->so_snd); 1420 goto out; 1421 } 1422 if ((so->so_state & SS_ISCONNECTED) == 0) { 1423 /* 1424 * `sendto' and `sendmsg' is allowed on a connection-based 1425 * socket if it supports implied connect. Return ENOTCONN if 1426 * not connected and no address is supplied. 1427 */ 1428 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1429 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1430 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1431 !(resid == 0 && clen != 0)) { 1432 SOCKBUF_UNLOCK(&so->so_snd); 1433 error = ENOTCONN; 1434 goto out; 1435 } 1436 } else if (addr == NULL) { 1437 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1438 error = ENOTCONN; 1439 else 1440 error = EDESTADDRREQ; 1441 SOCKBUF_UNLOCK(&so->so_snd); 1442 goto out; 1443 } 1444 } 1445 1446 /* 1447 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1448 * problem and need fixing. 1449 */ 1450 space = sbspace(&so->so_snd); 1451 if (flags & MSG_OOB) 1452 space += 1024; 1453 space -= clen; 1454 SOCKBUF_UNLOCK(&so->so_snd); 1455 if (resid > space) { 1456 error = EMSGSIZE; 1457 goto out; 1458 } 1459 if (uio == NULL) { 1460 resid = 0; 1461 if (flags & MSG_EOR) 1462 top->m_flags |= M_EOR; 1463 } else { 1464 /* 1465 * Copy the data from userland into a mbuf chain. 1466 * If no data is to be copied in, a single empty mbuf 1467 * is returned. 1468 */ 1469 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1470 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1471 if (top == NULL) { 1472 error = EFAULT; /* only possible error */ 1473 goto out; 1474 } 1475 space -= resid - uio->uio_resid; 1476 resid = uio->uio_resid; 1477 } 1478 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1479 /* 1480 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1481 * than with. 1482 */ 1483 if (dontroute) { 1484 SOCK_LOCK(so); 1485 so->so_options |= SO_DONTROUTE; 1486 SOCK_UNLOCK(so); 1487 } 1488 /* 1489 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1490 * of date. We could have received a reset packet in an interrupt or 1491 * maybe we slept while doing page faults in uiomove() etc. We could 1492 * probably recheck again inside the locking protection here, but 1493 * there are probably other places that this also happens. We must 1494 * rethink this. 1495 */ 1496 VNET_SO_ASSERT(so); 1497 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1498 (flags & MSG_OOB) ? PRUS_OOB : 1499 /* 1500 * If the user set MSG_EOF, the protocol understands this flag and 1501 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1502 */ 1503 ((flags & MSG_EOF) && 1504 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1505 (resid <= 0)) ? 1506 PRUS_EOF : 1507 /* If there is more to send set PRUS_MORETOCOME */ 1508 (flags & MSG_MORETOCOME) || 1509 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1510 top, addr, control, td); 1511 if (dontroute) { 1512 SOCK_LOCK(so); 1513 so->so_options &= ~SO_DONTROUTE; 1514 SOCK_UNLOCK(so); 1515 } 1516 clen = 0; 1517 control = NULL; 1518 top = NULL; 1519 out: 1520 if (top != NULL) 1521 m_freem(top); 1522 if (control != NULL) 1523 m_freem(control); 1524 return (error); 1525 } 1526 1527 /* 1528 * Send on a socket. If send must go all at once and message is larger than 1529 * send buffering, then hard error. Lock against other senders. If must go 1530 * all at once and not enough room now, then inform user that this would 1531 * block and do nothing. Otherwise, if nonblocking, send as much as 1532 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1533 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1534 * in mbuf chain must be small enough to send all at once. 1535 * 1536 * Returns nonzero on error, timeout or signal; callers must check for short 1537 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1538 * on return. 1539 */ 1540 int 1541 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1542 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1543 { 1544 long space; 1545 ssize_t resid; 1546 int clen = 0, error, dontroute; 1547 int atomic = sosendallatonce(so) || top; 1548 int pru_flag; 1549 #ifdef KERN_TLS 1550 struct ktls_session *tls; 1551 int tls_enq_cnt, tls_pruflag; 1552 uint8_t tls_rtype; 1553 1554 tls = NULL; 1555 tls_rtype = TLS_RLTYPE_APP; 1556 #endif 1557 if (uio != NULL) 1558 resid = uio->uio_resid; 1559 else if ((top->m_flags & M_PKTHDR) != 0) 1560 resid = top->m_pkthdr.len; 1561 else 1562 resid = m_length(top, NULL); 1563 /* 1564 * In theory resid should be unsigned. However, space must be 1565 * signed, as it might be less than 0 if we over-committed, and we 1566 * must use a signed comparison of space and resid. On the other 1567 * hand, a negative resid causes us to loop sending 0-length 1568 * segments to the protocol. 1569 * 1570 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1571 * type sockets since that's an error. 1572 */ 1573 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1574 error = EINVAL; 1575 goto out; 1576 } 1577 1578 dontroute = 1579 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1580 (so->so_proto->pr_flags & PR_ATOMIC); 1581 if (td != NULL) 1582 td->td_ru.ru_msgsnd++; 1583 if (control != NULL) 1584 clen = control->m_len; 1585 1586 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1587 if (error) 1588 goto out; 1589 1590 #ifdef KERN_TLS 1591 tls_pruflag = 0; 1592 tls = ktls_hold(so->so_snd.sb_tls_info); 1593 if (tls != NULL) { 1594 if (tls->mode == TCP_TLS_MODE_SW) 1595 tls_pruflag = PRUS_NOTREADY; 1596 1597 if (control != NULL) { 1598 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1599 1600 if (clen >= sizeof(*cm) && 1601 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1602 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1603 clen = 0; 1604 m_freem(control); 1605 control = NULL; 1606 atomic = 1; 1607 } 1608 } 1609 } 1610 #endif 1611 1612 restart: 1613 do { 1614 SOCKBUF_LOCK(&so->so_snd); 1615 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1616 SOCKBUF_UNLOCK(&so->so_snd); 1617 error = EPIPE; 1618 goto release; 1619 } 1620 if (so->so_error) { 1621 error = so->so_error; 1622 so->so_error = 0; 1623 SOCKBUF_UNLOCK(&so->so_snd); 1624 goto release; 1625 } 1626 if ((so->so_state & SS_ISCONNECTED) == 0) { 1627 /* 1628 * `sendto' and `sendmsg' is allowed on a connection- 1629 * based socket if it supports implied connect. 1630 * Return ENOTCONN if not connected and no address is 1631 * supplied. 1632 */ 1633 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1634 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1635 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1636 !(resid == 0 && clen != 0)) { 1637 SOCKBUF_UNLOCK(&so->so_snd); 1638 error = ENOTCONN; 1639 goto release; 1640 } 1641 } else if (addr == NULL) { 1642 SOCKBUF_UNLOCK(&so->so_snd); 1643 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1644 error = ENOTCONN; 1645 else 1646 error = EDESTADDRREQ; 1647 goto release; 1648 } 1649 } 1650 space = sbspace(&so->so_snd); 1651 if (flags & MSG_OOB) 1652 space += 1024; 1653 if ((atomic && resid > so->so_snd.sb_hiwat) || 1654 clen > so->so_snd.sb_hiwat) { 1655 SOCKBUF_UNLOCK(&so->so_snd); 1656 error = EMSGSIZE; 1657 goto release; 1658 } 1659 if (space < resid + clen && 1660 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1661 if ((so->so_state & SS_NBIO) || 1662 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1663 SOCKBUF_UNLOCK(&so->so_snd); 1664 error = EWOULDBLOCK; 1665 goto release; 1666 } 1667 error = sbwait(&so->so_snd); 1668 SOCKBUF_UNLOCK(&so->so_snd); 1669 if (error) 1670 goto release; 1671 goto restart; 1672 } 1673 SOCKBUF_UNLOCK(&so->so_snd); 1674 space -= clen; 1675 do { 1676 if (uio == NULL) { 1677 resid = 0; 1678 if (flags & MSG_EOR) 1679 top->m_flags |= M_EOR; 1680 #ifdef KERN_TLS 1681 if (tls != NULL) { 1682 ktls_frame(top, tls, &tls_enq_cnt, 1683 tls_rtype); 1684 tls_rtype = TLS_RLTYPE_APP; 1685 } 1686 #endif 1687 } else { 1688 /* 1689 * Copy the data from userland into a mbuf 1690 * chain. If resid is 0, which can happen 1691 * only if we have control to send, then 1692 * a single empty mbuf is returned. This 1693 * is a workaround to prevent protocol send 1694 * methods to panic. 1695 */ 1696 #ifdef KERN_TLS 1697 if (tls != NULL) { 1698 top = m_uiotombuf(uio, M_WAITOK, space, 1699 tls->params.max_frame_len, 1700 M_EXTPG | 1701 ((flags & MSG_EOR) ? M_EOR : 0)); 1702 if (top != NULL) { 1703 ktls_frame(top, tls, 1704 &tls_enq_cnt, tls_rtype); 1705 } 1706 tls_rtype = TLS_RLTYPE_APP; 1707 } else 1708 #endif 1709 top = m_uiotombuf(uio, M_WAITOK, space, 1710 (atomic ? max_hdr : 0), 1711 (atomic ? M_PKTHDR : 0) | 1712 ((flags & MSG_EOR) ? M_EOR : 0)); 1713 if (top == NULL) { 1714 error = EFAULT; /* only possible error */ 1715 goto release; 1716 } 1717 space -= resid - uio->uio_resid; 1718 resid = uio->uio_resid; 1719 } 1720 if (dontroute) { 1721 SOCK_LOCK(so); 1722 so->so_options |= SO_DONTROUTE; 1723 SOCK_UNLOCK(so); 1724 } 1725 /* 1726 * XXX all the SBS_CANTSENDMORE checks previously 1727 * done could be out of date. We could have received 1728 * a reset packet in an interrupt or maybe we slept 1729 * while doing page faults in uiomove() etc. We 1730 * could probably recheck again inside the locking 1731 * protection here, but there are probably other 1732 * places that this also happens. We must rethink 1733 * this. 1734 */ 1735 VNET_SO_ASSERT(so); 1736 1737 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1738 /* 1739 * If the user set MSG_EOF, the protocol understands 1740 * this flag and nothing left to send then use 1741 * PRU_SEND_EOF instead of PRU_SEND. 1742 */ 1743 ((flags & MSG_EOF) && 1744 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1745 (resid <= 0)) ? 1746 PRUS_EOF : 1747 /* If there is more to send set PRUS_MORETOCOME. */ 1748 (flags & MSG_MORETOCOME) || 1749 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1750 1751 #ifdef KERN_TLS 1752 pru_flag |= tls_pruflag; 1753 #endif 1754 1755 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1756 pru_flag, top, addr, control, td); 1757 1758 if (dontroute) { 1759 SOCK_LOCK(so); 1760 so->so_options &= ~SO_DONTROUTE; 1761 SOCK_UNLOCK(so); 1762 } 1763 1764 #ifdef KERN_TLS 1765 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1766 /* 1767 * Note that error is intentionally 1768 * ignored. 1769 * 1770 * Like sendfile(), we rely on the 1771 * completion routine (pru_ready()) 1772 * to free the mbufs in the event that 1773 * pru_send() encountered an error and 1774 * did not append them to the sockbuf. 1775 */ 1776 soref(so); 1777 ktls_enqueue(top, so, tls_enq_cnt); 1778 } 1779 #endif 1780 clen = 0; 1781 control = NULL; 1782 top = NULL; 1783 if (error) 1784 goto release; 1785 } while (resid && space > 0); 1786 } while (resid); 1787 1788 release: 1789 sbunlock(&so->so_snd); 1790 out: 1791 #ifdef KERN_TLS 1792 if (tls != NULL) 1793 ktls_free(tls); 1794 #endif 1795 if (top != NULL) 1796 m_freem(top); 1797 if (control != NULL) 1798 m_freem(control); 1799 return (error); 1800 } 1801 1802 int 1803 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1804 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1805 { 1806 int error; 1807 1808 CURVNET_SET(so->so_vnet); 1809 if (!SOLISTENING(so)) 1810 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1811 top, control, flags, td); 1812 else { 1813 m_freem(top); 1814 m_freem(control); 1815 error = ENOTCONN; 1816 } 1817 CURVNET_RESTORE(); 1818 return (error); 1819 } 1820 1821 /* 1822 * The part of soreceive() that implements reading non-inline out-of-band 1823 * data from a socket. For more complete comments, see soreceive(), from 1824 * which this code originated. 1825 * 1826 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1827 * unable to return an mbuf chain to the caller. 1828 */ 1829 static int 1830 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1831 { 1832 struct protosw *pr = so->so_proto; 1833 struct mbuf *m; 1834 int error; 1835 1836 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1837 VNET_SO_ASSERT(so); 1838 1839 m = m_get(M_WAITOK, MT_DATA); 1840 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1841 if (error) 1842 goto bad; 1843 do { 1844 error = uiomove(mtod(m, void *), 1845 (int) min(uio->uio_resid, m->m_len), uio); 1846 m = m_free(m); 1847 } while (uio->uio_resid && error == 0 && m); 1848 bad: 1849 if (m != NULL) 1850 m_freem(m); 1851 return (error); 1852 } 1853 1854 /* 1855 * Following replacement or removal of the first mbuf on the first mbuf chain 1856 * of a socket buffer, push necessary state changes back into the socket 1857 * buffer so that other consumers see the values consistently. 'nextrecord' 1858 * is the callers locally stored value of the original value of 1859 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1860 * NOTE: 'nextrecord' may be NULL. 1861 */ 1862 static __inline void 1863 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1864 { 1865 1866 SOCKBUF_LOCK_ASSERT(sb); 1867 /* 1868 * First, update for the new value of nextrecord. If necessary, make 1869 * it the first record. 1870 */ 1871 if (sb->sb_mb != NULL) 1872 sb->sb_mb->m_nextpkt = nextrecord; 1873 else 1874 sb->sb_mb = nextrecord; 1875 1876 /* 1877 * Now update any dependent socket buffer fields to reflect the new 1878 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1879 * addition of a second clause that takes care of the case where 1880 * sb_mb has been updated, but remains the last record. 1881 */ 1882 if (sb->sb_mb == NULL) { 1883 sb->sb_mbtail = NULL; 1884 sb->sb_lastrecord = NULL; 1885 } else if (sb->sb_mb->m_nextpkt == NULL) 1886 sb->sb_lastrecord = sb->sb_mb; 1887 } 1888 1889 /* 1890 * Implement receive operations on a socket. We depend on the way that 1891 * records are added to the sockbuf by sbappend. In particular, each record 1892 * (mbufs linked through m_next) must begin with an address if the protocol 1893 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1894 * data, and then zero or more mbufs of data. In order to allow parallelism 1895 * between network receive and copying to user space, as well as avoid 1896 * sleeping with a mutex held, we release the socket buffer mutex during the 1897 * user space copy. Although the sockbuf is locked, new data may still be 1898 * appended, and thus we must maintain consistency of the sockbuf during that 1899 * time. 1900 * 1901 * The caller may receive the data as a single mbuf chain by supplying an 1902 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1903 * the count in uio_resid. 1904 */ 1905 int 1906 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1907 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1908 { 1909 struct mbuf *m, **mp; 1910 int flags, error, offset; 1911 ssize_t len; 1912 struct protosw *pr = so->so_proto; 1913 struct mbuf *nextrecord; 1914 int moff, type = 0; 1915 ssize_t orig_resid = uio->uio_resid; 1916 1917 mp = mp0; 1918 if (psa != NULL) 1919 *psa = NULL; 1920 if (controlp != NULL) 1921 *controlp = NULL; 1922 if (flagsp != NULL) 1923 flags = *flagsp &~ MSG_EOR; 1924 else 1925 flags = 0; 1926 if (flags & MSG_OOB) 1927 return (soreceive_rcvoob(so, uio, flags)); 1928 if (mp != NULL) 1929 *mp = NULL; 1930 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1931 && uio->uio_resid) { 1932 VNET_SO_ASSERT(so); 1933 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1934 } 1935 1936 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1937 if (error) 1938 return (error); 1939 1940 restart: 1941 SOCKBUF_LOCK(&so->so_rcv); 1942 m = so->so_rcv.sb_mb; 1943 /* 1944 * If we have less data than requested, block awaiting more (subject 1945 * to any timeout) if: 1946 * 1. the current count is less than the low water mark, or 1947 * 2. MSG_DONTWAIT is not set 1948 */ 1949 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1950 sbavail(&so->so_rcv) < uio->uio_resid) && 1951 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1952 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1953 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1954 ("receive: m == %p sbavail == %u", 1955 m, sbavail(&so->so_rcv))); 1956 if (so->so_error) { 1957 if (m != NULL) 1958 goto dontblock; 1959 error = so->so_error; 1960 if ((flags & MSG_PEEK) == 0) 1961 so->so_error = 0; 1962 SOCKBUF_UNLOCK(&so->so_rcv); 1963 goto release; 1964 } 1965 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1966 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1967 if (m != NULL) 1968 goto dontblock; 1969 #ifdef KERN_TLS 1970 else if (so->so_rcv.sb_tlsdcc == 0 && 1971 so->so_rcv.sb_tlscc == 0) { 1972 #else 1973 else { 1974 #endif 1975 SOCKBUF_UNLOCK(&so->so_rcv); 1976 goto release; 1977 } 1978 } 1979 for (; m != NULL; m = m->m_next) 1980 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1981 m = so->so_rcv.sb_mb; 1982 goto dontblock; 1983 } 1984 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 1985 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 1986 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 1987 SOCKBUF_UNLOCK(&so->so_rcv); 1988 error = ENOTCONN; 1989 goto release; 1990 } 1991 if (uio->uio_resid == 0) { 1992 SOCKBUF_UNLOCK(&so->so_rcv); 1993 goto release; 1994 } 1995 if ((so->so_state & SS_NBIO) || 1996 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1997 SOCKBUF_UNLOCK(&so->so_rcv); 1998 error = EWOULDBLOCK; 1999 goto release; 2000 } 2001 SBLASTRECORDCHK(&so->so_rcv); 2002 SBLASTMBUFCHK(&so->so_rcv); 2003 error = sbwait(&so->so_rcv); 2004 SOCKBUF_UNLOCK(&so->so_rcv); 2005 if (error) 2006 goto release; 2007 goto restart; 2008 } 2009 dontblock: 2010 /* 2011 * From this point onward, we maintain 'nextrecord' as a cache of the 2012 * pointer to the next record in the socket buffer. We must keep the 2013 * various socket buffer pointers and local stack versions of the 2014 * pointers in sync, pushing out modifications before dropping the 2015 * socket buffer mutex, and re-reading them when picking it up. 2016 * 2017 * Otherwise, we will race with the network stack appending new data 2018 * or records onto the socket buffer by using inconsistent/stale 2019 * versions of the field, possibly resulting in socket buffer 2020 * corruption. 2021 * 2022 * By holding the high-level sblock(), we prevent simultaneous 2023 * readers from pulling off the front of the socket buffer. 2024 */ 2025 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2026 if (uio->uio_td) 2027 uio->uio_td->td_ru.ru_msgrcv++; 2028 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2029 SBLASTRECORDCHK(&so->so_rcv); 2030 SBLASTMBUFCHK(&so->so_rcv); 2031 nextrecord = m->m_nextpkt; 2032 if (pr->pr_flags & PR_ADDR) { 2033 KASSERT(m->m_type == MT_SONAME, 2034 ("m->m_type == %d", m->m_type)); 2035 orig_resid = 0; 2036 if (psa != NULL) 2037 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2038 M_NOWAIT); 2039 if (flags & MSG_PEEK) { 2040 m = m->m_next; 2041 } else { 2042 sbfree(&so->so_rcv, m); 2043 so->so_rcv.sb_mb = m_free(m); 2044 m = so->so_rcv.sb_mb; 2045 sockbuf_pushsync(&so->so_rcv, nextrecord); 2046 } 2047 } 2048 2049 /* 2050 * Process one or more MT_CONTROL mbufs present before any data mbufs 2051 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2052 * just copy the data; if !MSG_PEEK, we call into the protocol to 2053 * perform externalization (or freeing if controlp == NULL). 2054 */ 2055 if (m != NULL && m->m_type == MT_CONTROL) { 2056 struct mbuf *cm = NULL, *cmn; 2057 struct mbuf **cme = &cm; 2058 #ifdef KERN_TLS 2059 struct cmsghdr *cmsg; 2060 struct tls_get_record tgr; 2061 2062 /* 2063 * For MSG_TLSAPPDATA, check for a non-application data 2064 * record. If found, return ENXIO without removing 2065 * it from the receive queue. This allows a subsequent 2066 * call without MSG_TLSAPPDATA to receive it. 2067 * Note that, for TLS, there should only be a single 2068 * control mbuf with the TLS_GET_RECORD message in it. 2069 */ 2070 if (flags & MSG_TLSAPPDATA) { 2071 cmsg = mtod(m, struct cmsghdr *); 2072 if (cmsg->cmsg_type == TLS_GET_RECORD && 2073 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2074 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2075 /* This will need to change for TLS 1.3. */ 2076 if (tgr.tls_type != TLS_RLTYPE_APP) { 2077 SOCKBUF_UNLOCK(&so->so_rcv); 2078 error = ENXIO; 2079 goto release; 2080 } 2081 } 2082 } 2083 #endif 2084 2085 do { 2086 if (flags & MSG_PEEK) { 2087 if (controlp != NULL) { 2088 *controlp = m_copym(m, 0, m->m_len, 2089 M_NOWAIT); 2090 controlp = &(*controlp)->m_next; 2091 } 2092 m = m->m_next; 2093 } else { 2094 sbfree(&so->so_rcv, m); 2095 so->so_rcv.sb_mb = m->m_next; 2096 m->m_next = NULL; 2097 *cme = m; 2098 cme = &(*cme)->m_next; 2099 m = so->so_rcv.sb_mb; 2100 } 2101 } while (m != NULL && m->m_type == MT_CONTROL); 2102 if ((flags & MSG_PEEK) == 0) 2103 sockbuf_pushsync(&so->so_rcv, nextrecord); 2104 while (cm != NULL) { 2105 cmn = cm->m_next; 2106 cm->m_next = NULL; 2107 if (pr->pr_domain->dom_externalize != NULL) { 2108 SOCKBUF_UNLOCK(&so->so_rcv); 2109 VNET_SO_ASSERT(so); 2110 error = (*pr->pr_domain->dom_externalize) 2111 (cm, controlp, flags); 2112 SOCKBUF_LOCK(&so->so_rcv); 2113 } else if (controlp != NULL) 2114 *controlp = cm; 2115 else 2116 m_freem(cm); 2117 if (controlp != NULL) { 2118 orig_resid = 0; 2119 while (*controlp != NULL) 2120 controlp = &(*controlp)->m_next; 2121 } 2122 cm = cmn; 2123 } 2124 if (m != NULL) 2125 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2126 else 2127 nextrecord = so->so_rcv.sb_mb; 2128 orig_resid = 0; 2129 } 2130 if (m != NULL) { 2131 if ((flags & MSG_PEEK) == 0) { 2132 KASSERT(m->m_nextpkt == nextrecord, 2133 ("soreceive: post-control, nextrecord !sync")); 2134 if (nextrecord == NULL) { 2135 KASSERT(so->so_rcv.sb_mb == m, 2136 ("soreceive: post-control, sb_mb!=m")); 2137 KASSERT(so->so_rcv.sb_lastrecord == m, 2138 ("soreceive: post-control, lastrecord!=m")); 2139 } 2140 } 2141 type = m->m_type; 2142 if (type == MT_OOBDATA) 2143 flags |= MSG_OOB; 2144 } else { 2145 if ((flags & MSG_PEEK) == 0) { 2146 KASSERT(so->so_rcv.sb_mb == nextrecord, 2147 ("soreceive: sb_mb != nextrecord")); 2148 if (so->so_rcv.sb_mb == NULL) { 2149 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2150 ("soreceive: sb_lastercord != NULL")); 2151 } 2152 } 2153 } 2154 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2155 SBLASTRECORDCHK(&so->so_rcv); 2156 SBLASTMBUFCHK(&so->so_rcv); 2157 2158 /* 2159 * Now continue to read any data mbufs off of the head of the socket 2160 * buffer until the read request is satisfied. Note that 'type' is 2161 * used to store the type of any mbuf reads that have happened so far 2162 * such that soreceive() can stop reading if the type changes, which 2163 * causes soreceive() to return only one of regular data and inline 2164 * out-of-band data in a single socket receive operation. 2165 */ 2166 moff = 0; 2167 offset = 0; 2168 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2169 && error == 0) { 2170 /* 2171 * If the type of mbuf has changed since the last mbuf 2172 * examined ('type'), end the receive operation. 2173 */ 2174 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2175 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2176 if (type != m->m_type) 2177 break; 2178 } else if (type == MT_OOBDATA) 2179 break; 2180 else 2181 KASSERT(m->m_type == MT_DATA, 2182 ("m->m_type == %d", m->m_type)); 2183 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2184 len = uio->uio_resid; 2185 if (so->so_oobmark && len > so->so_oobmark - offset) 2186 len = so->so_oobmark - offset; 2187 if (len > m->m_len - moff) 2188 len = m->m_len - moff; 2189 /* 2190 * If mp is set, just pass back the mbufs. Otherwise copy 2191 * them out via the uio, then free. Sockbuf must be 2192 * consistent here (points to current mbuf, it points to next 2193 * record) when we drop priority; we must note any additions 2194 * to the sockbuf when we block interrupts again. 2195 */ 2196 if (mp == NULL) { 2197 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2198 SBLASTRECORDCHK(&so->so_rcv); 2199 SBLASTMBUFCHK(&so->so_rcv); 2200 SOCKBUF_UNLOCK(&so->so_rcv); 2201 if ((m->m_flags & M_EXTPG) != 0) 2202 error = m_unmappedtouio(m, moff, uio, (int)len); 2203 else 2204 error = uiomove(mtod(m, char *) + moff, 2205 (int)len, uio); 2206 SOCKBUF_LOCK(&so->so_rcv); 2207 if (error) { 2208 /* 2209 * The MT_SONAME mbuf has already been removed 2210 * from the record, so it is necessary to 2211 * remove the data mbufs, if any, to preserve 2212 * the invariant in the case of PR_ADDR that 2213 * requires MT_SONAME mbufs at the head of 2214 * each record. 2215 */ 2216 if (pr->pr_flags & PR_ATOMIC && 2217 ((flags & MSG_PEEK) == 0)) 2218 (void)sbdroprecord_locked(&so->so_rcv); 2219 SOCKBUF_UNLOCK(&so->so_rcv); 2220 goto release; 2221 } 2222 } else 2223 uio->uio_resid -= len; 2224 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2225 if (len == m->m_len - moff) { 2226 if (m->m_flags & M_EOR) 2227 flags |= MSG_EOR; 2228 if (flags & MSG_PEEK) { 2229 m = m->m_next; 2230 moff = 0; 2231 } else { 2232 nextrecord = m->m_nextpkt; 2233 sbfree(&so->so_rcv, m); 2234 if (mp != NULL) { 2235 m->m_nextpkt = NULL; 2236 *mp = m; 2237 mp = &m->m_next; 2238 so->so_rcv.sb_mb = m = m->m_next; 2239 *mp = NULL; 2240 } else { 2241 so->so_rcv.sb_mb = m_free(m); 2242 m = so->so_rcv.sb_mb; 2243 } 2244 sockbuf_pushsync(&so->so_rcv, nextrecord); 2245 SBLASTRECORDCHK(&so->so_rcv); 2246 SBLASTMBUFCHK(&so->so_rcv); 2247 } 2248 } else { 2249 if (flags & MSG_PEEK) 2250 moff += len; 2251 else { 2252 if (mp != NULL) { 2253 if (flags & MSG_DONTWAIT) { 2254 *mp = m_copym(m, 0, len, 2255 M_NOWAIT); 2256 if (*mp == NULL) { 2257 /* 2258 * m_copym() couldn't 2259 * allocate an mbuf. 2260 * Adjust uio_resid back 2261 * (it was adjusted 2262 * down by len bytes, 2263 * which we didn't end 2264 * up "copying" over). 2265 */ 2266 uio->uio_resid += len; 2267 break; 2268 } 2269 } else { 2270 SOCKBUF_UNLOCK(&so->so_rcv); 2271 *mp = m_copym(m, 0, len, 2272 M_WAITOK); 2273 SOCKBUF_LOCK(&so->so_rcv); 2274 } 2275 } 2276 sbcut_locked(&so->so_rcv, len); 2277 } 2278 } 2279 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2280 if (so->so_oobmark) { 2281 if ((flags & MSG_PEEK) == 0) { 2282 so->so_oobmark -= len; 2283 if (so->so_oobmark == 0) { 2284 so->so_rcv.sb_state |= SBS_RCVATMARK; 2285 break; 2286 } 2287 } else { 2288 offset += len; 2289 if (offset == so->so_oobmark) 2290 break; 2291 } 2292 } 2293 if (flags & MSG_EOR) 2294 break; 2295 /* 2296 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2297 * must not quit until "uio->uio_resid == 0" or an error 2298 * termination. If a signal/timeout occurs, return with a 2299 * short count but without error. Keep sockbuf locked 2300 * against other readers. 2301 */ 2302 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2303 !sosendallatonce(so) && nextrecord == NULL) { 2304 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2305 if (so->so_error || 2306 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2307 break; 2308 /* 2309 * Notify the protocol that some data has been 2310 * drained before blocking. 2311 */ 2312 if (pr->pr_flags & PR_WANTRCVD) { 2313 SOCKBUF_UNLOCK(&so->so_rcv); 2314 VNET_SO_ASSERT(so); 2315 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2316 SOCKBUF_LOCK(&so->so_rcv); 2317 } 2318 SBLASTRECORDCHK(&so->so_rcv); 2319 SBLASTMBUFCHK(&so->so_rcv); 2320 /* 2321 * We could receive some data while was notifying 2322 * the protocol. Skip blocking in this case. 2323 */ 2324 if (so->so_rcv.sb_mb == NULL) { 2325 error = sbwait(&so->so_rcv); 2326 if (error) { 2327 SOCKBUF_UNLOCK(&so->so_rcv); 2328 goto release; 2329 } 2330 } 2331 m = so->so_rcv.sb_mb; 2332 if (m != NULL) 2333 nextrecord = m->m_nextpkt; 2334 } 2335 } 2336 2337 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2338 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2339 flags |= MSG_TRUNC; 2340 if ((flags & MSG_PEEK) == 0) 2341 (void) sbdroprecord_locked(&so->so_rcv); 2342 } 2343 if ((flags & MSG_PEEK) == 0) { 2344 if (m == NULL) { 2345 /* 2346 * First part is an inline SB_EMPTY_FIXUP(). Second 2347 * part makes sure sb_lastrecord is up-to-date if 2348 * there is still data in the socket buffer. 2349 */ 2350 so->so_rcv.sb_mb = nextrecord; 2351 if (so->so_rcv.sb_mb == NULL) { 2352 so->so_rcv.sb_mbtail = NULL; 2353 so->so_rcv.sb_lastrecord = NULL; 2354 } else if (nextrecord->m_nextpkt == NULL) 2355 so->so_rcv.sb_lastrecord = nextrecord; 2356 } 2357 SBLASTRECORDCHK(&so->so_rcv); 2358 SBLASTMBUFCHK(&so->so_rcv); 2359 /* 2360 * If soreceive() is being done from the socket callback, 2361 * then don't need to generate ACK to peer to update window, 2362 * since ACK will be generated on return to TCP. 2363 */ 2364 if (!(flags & MSG_SOCALLBCK) && 2365 (pr->pr_flags & PR_WANTRCVD)) { 2366 SOCKBUF_UNLOCK(&so->so_rcv); 2367 VNET_SO_ASSERT(so); 2368 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2369 SOCKBUF_LOCK(&so->so_rcv); 2370 } 2371 } 2372 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2373 if (orig_resid == uio->uio_resid && orig_resid && 2374 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2375 SOCKBUF_UNLOCK(&so->so_rcv); 2376 goto restart; 2377 } 2378 SOCKBUF_UNLOCK(&so->so_rcv); 2379 2380 if (flagsp != NULL) 2381 *flagsp |= flags; 2382 release: 2383 sbunlock(&so->so_rcv); 2384 return (error); 2385 } 2386 2387 /* 2388 * Optimized version of soreceive() for stream (TCP) sockets. 2389 */ 2390 int 2391 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2392 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2393 { 2394 int len = 0, error = 0, flags, oresid; 2395 struct sockbuf *sb; 2396 struct mbuf *m, *n = NULL; 2397 2398 /* We only do stream sockets. */ 2399 if (so->so_type != SOCK_STREAM) 2400 return (EINVAL); 2401 if (psa != NULL) 2402 *psa = NULL; 2403 if (flagsp != NULL) 2404 flags = *flagsp &~ MSG_EOR; 2405 else 2406 flags = 0; 2407 if (controlp != NULL) 2408 *controlp = NULL; 2409 if (flags & MSG_OOB) 2410 return (soreceive_rcvoob(so, uio, flags)); 2411 if (mp0 != NULL) 2412 *mp0 = NULL; 2413 2414 sb = &so->so_rcv; 2415 2416 #ifdef KERN_TLS 2417 /* 2418 * KTLS store TLS records as records with a control message to 2419 * describe the framing. 2420 * 2421 * We check once here before acquiring locks to optimize the 2422 * common case. 2423 */ 2424 if (sb->sb_tls_info != NULL) 2425 return (soreceive_generic(so, psa, uio, mp0, controlp, 2426 flagsp)); 2427 #endif 2428 2429 /* Prevent other readers from entering the socket. */ 2430 error = sblock(sb, SBLOCKWAIT(flags)); 2431 if (error) 2432 return (error); 2433 SOCKBUF_LOCK(sb); 2434 2435 #ifdef KERN_TLS 2436 if (sb->sb_tls_info != NULL) { 2437 SOCKBUF_UNLOCK(sb); 2438 sbunlock(sb); 2439 return (soreceive_generic(so, psa, uio, mp0, controlp, 2440 flagsp)); 2441 } 2442 #endif 2443 2444 /* Easy one, no space to copyout anything. */ 2445 if (uio->uio_resid == 0) { 2446 error = EINVAL; 2447 goto out; 2448 } 2449 oresid = uio->uio_resid; 2450 2451 /* We will never ever get anything unless we are or were connected. */ 2452 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2453 error = ENOTCONN; 2454 goto out; 2455 } 2456 2457 restart: 2458 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2459 2460 /* Abort if socket has reported problems. */ 2461 if (so->so_error) { 2462 if (sbavail(sb) > 0) 2463 goto deliver; 2464 if (oresid > uio->uio_resid) 2465 goto out; 2466 error = so->so_error; 2467 if (!(flags & MSG_PEEK)) 2468 so->so_error = 0; 2469 goto out; 2470 } 2471 2472 /* Door is closed. Deliver what is left, if any. */ 2473 if (sb->sb_state & SBS_CANTRCVMORE) { 2474 if (sbavail(sb) > 0) 2475 goto deliver; 2476 else 2477 goto out; 2478 } 2479 2480 /* Socket buffer is empty and we shall not block. */ 2481 if (sbavail(sb) == 0 && 2482 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2483 error = EAGAIN; 2484 goto out; 2485 } 2486 2487 /* Socket buffer got some data that we shall deliver now. */ 2488 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2489 ((so->so_state & SS_NBIO) || 2490 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2491 sbavail(sb) >= sb->sb_lowat || 2492 sbavail(sb) >= uio->uio_resid || 2493 sbavail(sb) >= sb->sb_hiwat) ) { 2494 goto deliver; 2495 } 2496 2497 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2498 if ((flags & MSG_WAITALL) && 2499 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2500 goto deliver; 2501 2502 /* 2503 * Wait and block until (more) data comes in. 2504 * NB: Drops the sockbuf lock during wait. 2505 */ 2506 error = sbwait(sb); 2507 if (error) 2508 goto out; 2509 goto restart; 2510 2511 deliver: 2512 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2513 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2514 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2515 2516 /* Statistics. */ 2517 if (uio->uio_td) 2518 uio->uio_td->td_ru.ru_msgrcv++; 2519 2520 /* Fill uio until full or current end of socket buffer is reached. */ 2521 len = min(uio->uio_resid, sbavail(sb)); 2522 if (mp0 != NULL) { 2523 /* Dequeue as many mbufs as possible. */ 2524 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2525 if (*mp0 == NULL) 2526 *mp0 = sb->sb_mb; 2527 else 2528 m_cat(*mp0, sb->sb_mb); 2529 for (m = sb->sb_mb; 2530 m != NULL && m->m_len <= len; 2531 m = m->m_next) { 2532 KASSERT(!(m->m_flags & M_NOTAVAIL), 2533 ("%s: m %p not available", __func__, m)); 2534 len -= m->m_len; 2535 uio->uio_resid -= m->m_len; 2536 sbfree(sb, m); 2537 n = m; 2538 } 2539 n->m_next = NULL; 2540 sb->sb_mb = m; 2541 sb->sb_lastrecord = sb->sb_mb; 2542 if (sb->sb_mb == NULL) 2543 SB_EMPTY_FIXUP(sb); 2544 } 2545 /* Copy the remainder. */ 2546 if (len > 0) { 2547 KASSERT(sb->sb_mb != NULL, 2548 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2549 2550 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2551 if (m == NULL) 2552 len = 0; /* Don't flush data from sockbuf. */ 2553 else 2554 uio->uio_resid -= len; 2555 if (*mp0 != NULL) 2556 m_cat(*mp0, m); 2557 else 2558 *mp0 = m; 2559 if (*mp0 == NULL) { 2560 error = ENOBUFS; 2561 goto out; 2562 } 2563 } 2564 } else { 2565 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2566 SOCKBUF_UNLOCK(sb); 2567 error = m_mbuftouio(uio, sb->sb_mb, len); 2568 SOCKBUF_LOCK(sb); 2569 if (error) 2570 goto out; 2571 } 2572 SBLASTRECORDCHK(sb); 2573 SBLASTMBUFCHK(sb); 2574 2575 /* 2576 * Remove the delivered data from the socket buffer unless we 2577 * were only peeking. 2578 */ 2579 if (!(flags & MSG_PEEK)) { 2580 if (len > 0) 2581 sbdrop_locked(sb, len); 2582 2583 /* Notify protocol that we drained some data. */ 2584 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2585 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2586 !(flags & MSG_SOCALLBCK))) { 2587 SOCKBUF_UNLOCK(sb); 2588 VNET_SO_ASSERT(so); 2589 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2590 SOCKBUF_LOCK(sb); 2591 } 2592 } 2593 2594 /* 2595 * For MSG_WAITALL we may have to loop again and wait for 2596 * more data to come in. 2597 */ 2598 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2599 goto restart; 2600 out: 2601 SOCKBUF_LOCK_ASSERT(sb); 2602 SBLASTRECORDCHK(sb); 2603 SBLASTMBUFCHK(sb); 2604 SOCKBUF_UNLOCK(sb); 2605 sbunlock(sb); 2606 return (error); 2607 } 2608 2609 /* 2610 * Optimized version of soreceive() for simple datagram cases from userspace. 2611 * Unlike in the stream case, we're able to drop a datagram if copyout() 2612 * fails, and because we handle datagrams atomically, we don't need to use a 2613 * sleep lock to prevent I/O interlacing. 2614 */ 2615 int 2616 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2617 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2618 { 2619 struct mbuf *m, *m2; 2620 int flags, error; 2621 ssize_t len; 2622 struct protosw *pr = so->so_proto; 2623 struct mbuf *nextrecord; 2624 2625 if (psa != NULL) 2626 *psa = NULL; 2627 if (controlp != NULL) 2628 *controlp = NULL; 2629 if (flagsp != NULL) 2630 flags = *flagsp &~ MSG_EOR; 2631 else 2632 flags = 0; 2633 2634 /* 2635 * For any complicated cases, fall back to the full 2636 * soreceive_generic(). 2637 */ 2638 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2639 return (soreceive_generic(so, psa, uio, mp0, controlp, 2640 flagsp)); 2641 2642 /* 2643 * Enforce restrictions on use. 2644 */ 2645 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2646 ("soreceive_dgram: wantrcvd")); 2647 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2648 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2649 ("soreceive_dgram: SBS_RCVATMARK")); 2650 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2651 ("soreceive_dgram: P_CONNREQUIRED")); 2652 2653 /* 2654 * Loop blocking while waiting for a datagram. 2655 */ 2656 SOCKBUF_LOCK(&so->so_rcv); 2657 while ((m = so->so_rcv.sb_mb) == NULL) { 2658 KASSERT(sbavail(&so->so_rcv) == 0, 2659 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2660 sbavail(&so->so_rcv))); 2661 if (so->so_error) { 2662 error = so->so_error; 2663 so->so_error = 0; 2664 SOCKBUF_UNLOCK(&so->so_rcv); 2665 return (error); 2666 } 2667 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2668 uio->uio_resid == 0) { 2669 SOCKBUF_UNLOCK(&so->so_rcv); 2670 return (0); 2671 } 2672 if ((so->so_state & SS_NBIO) || 2673 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2674 SOCKBUF_UNLOCK(&so->so_rcv); 2675 return (EWOULDBLOCK); 2676 } 2677 SBLASTRECORDCHK(&so->so_rcv); 2678 SBLASTMBUFCHK(&so->so_rcv); 2679 error = sbwait(&so->so_rcv); 2680 if (error) { 2681 SOCKBUF_UNLOCK(&so->so_rcv); 2682 return (error); 2683 } 2684 } 2685 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2686 2687 if (uio->uio_td) 2688 uio->uio_td->td_ru.ru_msgrcv++; 2689 SBLASTRECORDCHK(&so->so_rcv); 2690 SBLASTMBUFCHK(&so->so_rcv); 2691 nextrecord = m->m_nextpkt; 2692 if (nextrecord == NULL) { 2693 KASSERT(so->so_rcv.sb_lastrecord == m, 2694 ("soreceive_dgram: lastrecord != m")); 2695 } 2696 2697 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2698 ("soreceive_dgram: m_nextpkt != nextrecord")); 2699 2700 /* 2701 * Pull 'm' and its chain off the front of the packet queue. 2702 */ 2703 so->so_rcv.sb_mb = NULL; 2704 sockbuf_pushsync(&so->so_rcv, nextrecord); 2705 2706 /* 2707 * Walk 'm's chain and free that many bytes from the socket buffer. 2708 */ 2709 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2710 sbfree(&so->so_rcv, m2); 2711 2712 /* 2713 * Do a few last checks before we let go of the lock. 2714 */ 2715 SBLASTRECORDCHK(&so->so_rcv); 2716 SBLASTMBUFCHK(&so->so_rcv); 2717 SOCKBUF_UNLOCK(&so->so_rcv); 2718 2719 if (pr->pr_flags & PR_ADDR) { 2720 KASSERT(m->m_type == MT_SONAME, 2721 ("m->m_type == %d", m->m_type)); 2722 if (psa != NULL) 2723 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2724 M_NOWAIT); 2725 m = m_free(m); 2726 } 2727 if (m == NULL) { 2728 /* XXXRW: Can this happen? */ 2729 return (0); 2730 } 2731 2732 /* 2733 * Packet to copyout() is now in 'm' and it is disconnected from the 2734 * queue. 2735 * 2736 * Process one or more MT_CONTROL mbufs present before any data mbufs 2737 * in the first mbuf chain on the socket buffer. We call into the 2738 * protocol to perform externalization (or freeing if controlp == 2739 * NULL). In some cases there can be only MT_CONTROL mbufs without 2740 * MT_DATA mbufs. 2741 */ 2742 if (m->m_type == MT_CONTROL) { 2743 struct mbuf *cm = NULL, *cmn; 2744 struct mbuf **cme = &cm; 2745 2746 do { 2747 m2 = m->m_next; 2748 m->m_next = NULL; 2749 *cme = m; 2750 cme = &(*cme)->m_next; 2751 m = m2; 2752 } while (m != NULL && m->m_type == MT_CONTROL); 2753 while (cm != NULL) { 2754 cmn = cm->m_next; 2755 cm->m_next = NULL; 2756 if (pr->pr_domain->dom_externalize != NULL) { 2757 error = (*pr->pr_domain->dom_externalize) 2758 (cm, controlp, flags); 2759 } else if (controlp != NULL) 2760 *controlp = cm; 2761 else 2762 m_freem(cm); 2763 if (controlp != NULL) { 2764 while (*controlp != NULL) 2765 controlp = &(*controlp)->m_next; 2766 } 2767 cm = cmn; 2768 } 2769 } 2770 KASSERT(m == NULL || m->m_type == MT_DATA, 2771 ("soreceive_dgram: !data")); 2772 while (m != NULL && uio->uio_resid > 0) { 2773 len = uio->uio_resid; 2774 if (len > m->m_len) 2775 len = m->m_len; 2776 error = uiomove(mtod(m, char *), (int)len, uio); 2777 if (error) { 2778 m_freem(m); 2779 return (error); 2780 } 2781 if (len == m->m_len) 2782 m = m_free(m); 2783 else { 2784 m->m_data += len; 2785 m->m_len -= len; 2786 } 2787 } 2788 if (m != NULL) { 2789 flags |= MSG_TRUNC; 2790 m_freem(m); 2791 } 2792 if (flagsp != NULL) 2793 *flagsp |= flags; 2794 return (0); 2795 } 2796 2797 int 2798 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2799 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2800 { 2801 int error; 2802 2803 CURVNET_SET(so->so_vnet); 2804 if (!SOLISTENING(so)) 2805 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2806 mp0, controlp, flagsp)); 2807 else 2808 error = ENOTCONN; 2809 CURVNET_RESTORE(); 2810 return (error); 2811 } 2812 2813 int 2814 soshutdown(struct socket *so, int how) 2815 { 2816 struct protosw *pr = so->so_proto; 2817 int error, soerror_enotconn; 2818 2819 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2820 return (EINVAL); 2821 2822 soerror_enotconn = 0; 2823 if ((so->so_state & 2824 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2825 /* 2826 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2827 * invoked on a datagram sockets, however historically we would 2828 * actually tear socket down. This is known to be leveraged by 2829 * some applications to unblock process waiting in recvXXX(2) 2830 * by other process that it shares that socket with. Try to meet 2831 * both backward-compatibility and POSIX requirements by forcing 2832 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2833 */ 2834 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2835 return (ENOTCONN); 2836 soerror_enotconn = 1; 2837 } 2838 2839 if (SOLISTENING(so)) { 2840 if (how != SHUT_WR) { 2841 SOLISTEN_LOCK(so); 2842 so->so_error = ECONNABORTED; 2843 solisten_wakeup(so); /* unlocks so */ 2844 } 2845 goto done; 2846 } 2847 2848 CURVNET_SET(so->so_vnet); 2849 if (pr->pr_usrreqs->pru_flush != NULL) 2850 (*pr->pr_usrreqs->pru_flush)(so, how); 2851 if (how != SHUT_WR) 2852 sorflush(so); 2853 if (how != SHUT_RD) { 2854 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2855 wakeup(&so->so_timeo); 2856 CURVNET_RESTORE(); 2857 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2858 } 2859 wakeup(&so->so_timeo); 2860 CURVNET_RESTORE(); 2861 2862 done: 2863 return (soerror_enotconn ? ENOTCONN : 0); 2864 } 2865 2866 void 2867 sorflush(struct socket *so) 2868 { 2869 struct sockbuf *sb = &so->so_rcv; 2870 struct protosw *pr = so->so_proto; 2871 struct socket aso; 2872 2873 VNET_SO_ASSERT(so); 2874 2875 /* 2876 * In order to avoid calling dom_dispose with the socket buffer mutex 2877 * held, and in order to generally avoid holding the lock for a long 2878 * time, we make a copy of the socket buffer and clear the original 2879 * (except locks, state). The new socket buffer copy won't have 2880 * initialized locks so we can only call routines that won't use or 2881 * assert those locks. 2882 * 2883 * Dislodge threads currently blocked in receive and wait to acquire 2884 * a lock against other simultaneous readers before clearing the 2885 * socket buffer. Don't let our acquire be interrupted by a signal 2886 * despite any existing socket disposition on interruptable waiting. 2887 */ 2888 socantrcvmore(so); 2889 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2890 2891 /* 2892 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2893 * and mutex data unchanged. 2894 */ 2895 SOCKBUF_LOCK(sb); 2896 bzero(&aso, sizeof(aso)); 2897 aso.so_pcb = so->so_pcb; 2898 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2899 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2900 bzero(&sb->sb_startzero, 2901 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2902 SOCKBUF_UNLOCK(sb); 2903 sbunlock(sb); 2904 2905 /* 2906 * Dispose of special rights and flush the copied socket. Don't call 2907 * any unsafe routines (that rely on locks being initialized) on aso. 2908 */ 2909 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2910 (*pr->pr_domain->dom_dispose)(&aso); 2911 sbrelease_internal(&aso.so_rcv, so); 2912 } 2913 2914 /* 2915 * Wrapper for Socket established helper hook. 2916 * Parameters: socket, context of the hook point, hook id. 2917 */ 2918 static int inline 2919 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2920 { 2921 struct socket_hhook_data hhook_data = { 2922 .so = so, 2923 .hctx = hctx, 2924 .m = NULL, 2925 .status = 0 2926 }; 2927 2928 CURVNET_SET(so->so_vnet); 2929 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2930 CURVNET_RESTORE(); 2931 2932 /* Ugly but needed, since hhooks return void for now */ 2933 return (hhook_data.status); 2934 } 2935 2936 /* 2937 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2938 * additional variant to handle the case where the option value needs to be 2939 * some kind of integer, but not a specific size. In addition to their use 2940 * here, these functions are also called by the protocol-level pr_ctloutput() 2941 * routines. 2942 */ 2943 int 2944 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2945 { 2946 size_t valsize; 2947 2948 /* 2949 * If the user gives us more than we wanted, we ignore it, but if we 2950 * don't get the minimum length the caller wants, we return EINVAL. 2951 * On success, sopt->sopt_valsize is set to however much we actually 2952 * retrieved. 2953 */ 2954 if ((valsize = sopt->sopt_valsize) < minlen) 2955 return EINVAL; 2956 if (valsize > len) 2957 sopt->sopt_valsize = valsize = len; 2958 2959 if (sopt->sopt_td != NULL) 2960 return (copyin(sopt->sopt_val, buf, valsize)); 2961 2962 bcopy(sopt->sopt_val, buf, valsize); 2963 return (0); 2964 } 2965 2966 /* 2967 * Kernel version of setsockopt(2). 2968 * 2969 * XXX: optlen is size_t, not socklen_t 2970 */ 2971 int 2972 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2973 size_t optlen) 2974 { 2975 struct sockopt sopt; 2976 2977 sopt.sopt_level = level; 2978 sopt.sopt_name = optname; 2979 sopt.sopt_dir = SOPT_SET; 2980 sopt.sopt_val = optval; 2981 sopt.sopt_valsize = optlen; 2982 sopt.sopt_td = NULL; 2983 return (sosetopt(so, &sopt)); 2984 } 2985 2986 int 2987 sosetopt(struct socket *so, struct sockopt *sopt) 2988 { 2989 int error, optval; 2990 struct linger l; 2991 struct timeval tv; 2992 sbintime_t val; 2993 uint32_t val32; 2994 #ifdef MAC 2995 struct mac extmac; 2996 #endif 2997 2998 CURVNET_SET(so->so_vnet); 2999 error = 0; 3000 if (sopt->sopt_level != SOL_SOCKET) { 3001 if (so->so_proto->pr_ctloutput != NULL) 3002 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3003 else 3004 error = ENOPROTOOPT; 3005 } else { 3006 switch (sopt->sopt_name) { 3007 case SO_ACCEPTFILTER: 3008 error = accept_filt_setopt(so, sopt); 3009 if (error) 3010 goto bad; 3011 break; 3012 3013 case SO_LINGER: 3014 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3015 if (error) 3016 goto bad; 3017 if (l.l_linger < 0 || 3018 l.l_linger > USHRT_MAX || 3019 l.l_linger > (INT_MAX / hz)) { 3020 error = EDOM; 3021 goto bad; 3022 } 3023 SOCK_LOCK(so); 3024 so->so_linger = l.l_linger; 3025 if (l.l_onoff) 3026 so->so_options |= SO_LINGER; 3027 else 3028 so->so_options &= ~SO_LINGER; 3029 SOCK_UNLOCK(so); 3030 break; 3031 3032 case SO_DEBUG: 3033 case SO_KEEPALIVE: 3034 case SO_DONTROUTE: 3035 case SO_USELOOPBACK: 3036 case SO_BROADCAST: 3037 case SO_REUSEADDR: 3038 case SO_REUSEPORT: 3039 case SO_REUSEPORT_LB: 3040 case SO_OOBINLINE: 3041 case SO_TIMESTAMP: 3042 case SO_BINTIME: 3043 case SO_NOSIGPIPE: 3044 case SO_NO_DDP: 3045 case SO_NO_OFFLOAD: 3046 error = sooptcopyin(sopt, &optval, sizeof optval, 3047 sizeof optval); 3048 if (error) 3049 goto bad; 3050 SOCK_LOCK(so); 3051 if (optval) 3052 so->so_options |= sopt->sopt_name; 3053 else 3054 so->so_options &= ~sopt->sopt_name; 3055 SOCK_UNLOCK(so); 3056 break; 3057 3058 case SO_SETFIB: 3059 error = sooptcopyin(sopt, &optval, sizeof optval, 3060 sizeof optval); 3061 if (error) 3062 goto bad; 3063 3064 if (optval < 0 || optval >= rt_numfibs) { 3065 error = EINVAL; 3066 goto bad; 3067 } 3068 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3069 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3070 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3071 so->so_fibnum = optval; 3072 else 3073 so->so_fibnum = 0; 3074 break; 3075 3076 case SO_USER_COOKIE: 3077 error = sooptcopyin(sopt, &val32, sizeof val32, 3078 sizeof val32); 3079 if (error) 3080 goto bad; 3081 so->so_user_cookie = val32; 3082 break; 3083 3084 case SO_SNDBUF: 3085 case SO_RCVBUF: 3086 case SO_SNDLOWAT: 3087 case SO_RCVLOWAT: 3088 error = sooptcopyin(sopt, &optval, sizeof optval, 3089 sizeof optval); 3090 if (error) 3091 goto bad; 3092 3093 /* 3094 * Values < 1 make no sense for any of these options, 3095 * so disallow them. 3096 */ 3097 if (optval < 1) { 3098 error = EINVAL; 3099 goto bad; 3100 } 3101 3102 error = sbsetopt(so, sopt->sopt_name, optval); 3103 break; 3104 3105 case SO_SNDTIMEO: 3106 case SO_RCVTIMEO: 3107 #ifdef COMPAT_FREEBSD32 3108 if (SV_CURPROC_FLAG(SV_ILP32)) { 3109 struct timeval32 tv32; 3110 3111 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3112 sizeof tv32); 3113 CP(tv32, tv, tv_sec); 3114 CP(tv32, tv, tv_usec); 3115 } else 3116 #endif 3117 error = sooptcopyin(sopt, &tv, sizeof tv, 3118 sizeof tv); 3119 if (error) 3120 goto bad; 3121 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3122 tv.tv_usec >= 1000000) { 3123 error = EDOM; 3124 goto bad; 3125 } 3126 if (tv.tv_sec > INT32_MAX) 3127 val = SBT_MAX; 3128 else 3129 val = tvtosbt(tv); 3130 switch (sopt->sopt_name) { 3131 case SO_SNDTIMEO: 3132 so->so_snd.sb_timeo = val; 3133 break; 3134 case SO_RCVTIMEO: 3135 so->so_rcv.sb_timeo = val; 3136 break; 3137 } 3138 break; 3139 3140 case SO_LABEL: 3141 #ifdef MAC 3142 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3143 sizeof extmac); 3144 if (error) 3145 goto bad; 3146 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3147 so, &extmac); 3148 #else 3149 error = EOPNOTSUPP; 3150 #endif 3151 break; 3152 3153 case SO_TS_CLOCK: 3154 error = sooptcopyin(sopt, &optval, sizeof optval, 3155 sizeof optval); 3156 if (error) 3157 goto bad; 3158 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3159 error = EINVAL; 3160 goto bad; 3161 } 3162 so->so_ts_clock = optval; 3163 break; 3164 3165 case SO_MAX_PACING_RATE: 3166 error = sooptcopyin(sopt, &val32, sizeof(val32), 3167 sizeof(val32)); 3168 if (error) 3169 goto bad; 3170 so->so_max_pacing_rate = val32; 3171 break; 3172 3173 default: 3174 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3175 error = hhook_run_socket(so, sopt, 3176 HHOOK_SOCKET_OPT); 3177 else 3178 error = ENOPROTOOPT; 3179 break; 3180 } 3181 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3182 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3183 } 3184 bad: 3185 CURVNET_RESTORE(); 3186 return (error); 3187 } 3188 3189 /* 3190 * Helper routine for getsockopt. 3191 */ 3192 int 3193 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3194 { 3195 int error; 3196 size_t valsize; 3197 3198 error = 0; 3199 3200 /* 3201 * Documented get behavior is that we always return a value, possibly 3202 * truncated to fit in the user's buffer. Traditional behavior is 3203 * that we always tell the user precisely how much we copied, rather 3204 * than something useful like the total amount we had available for 3205 * her. Note that this interface is not idempotent; the entire 3206 * answer must be generated ahead of time. 3207 */ 3208 valsize = min(len, sopt->sopt_valsize); 3209 sopt->sopt_valsize = valsize; 3210 if (sopt->sopt_val != NULL) { 3211 if (sopt->sopt_td != NULL) 3212 error = copyout(buf, sopt->sopt_val, valsize); 3213 else 3214 bcopy(buf, sopt->sopt_val, valsize); 3215 } 3216 return (error); 3217 } 3218 3219 int 3220 sogetopt(struct socket *so, struct sockopt *sopt) 3221 { 3222 int error, optval; 3223 struct linger l; 3224 struct timeval tv; 3225 #ifdef MAC 3226 struct mac extmac; 3227 #endif 3228 3229 CURVNET_SET(so->so_vnet); 3230 error = 0; 3231 if (sopt->sopt_level != SOL_SOCKET) { 3232 if (so->so_proto->pr_ctloutput != NULL) 3233 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3234 else 3235 error = ENOPROTOOPT; 3236 CURVNET_RESTORE(); 3237 return (error); 3238 } else { 3239 switch (sopt->sopt_name) { 3240 case SO_ACCEPTFILTER: 3241 error = accept_filt_getopt(so, sopt); 3242 break; 3243 3244 case SO_LINGER: 3245 SOCK_LOCK(so); 3246 l.l_onoff = so->so_options & SO_LINGER; 3247 l.l_linger = so->so_linger; 3248 SOCK_UNLOCK(so); 3249 error = sooptcopyout(sopt, &l, sizeof l); 3250 break; 3251 3252 case SO_USELOOPBACK: 3253 case SO_DONTROUTE: 3254 case SO_DEBUG: 3255 case SO_KEEPALIVE: 3256 case SO_REUSEADDR: 3257 case SO_REUSEPORT: 3258 case SO_REUSEPORT_LB: 3259 case SO_BROADCAST: 3260 case SO_OOBINLINE: 3261 case SO_ACCEPTCONN: 3262 case SO_TIMESTAMP: 3263 case SO_BINTIME: 3264 case SO_NOSIGPIPE: 3265 case SO_NO_DDP: 3266 case SO_NO_OFFLOAD: 3267 optval = so->so_options & sopt->sopt_name; 3268 integer: 3269 error = sooptcopyout(sopt, &optval, sizeof optval); 3270 break; 3271 3272 case SO_DOMAIN: 3273 optval = so->so_proto->pr_domain->dom_family; 3274 goto integer; 3275 3276 case SO_TYPE: 3277 optval = so->so_type; 3278 goto integer; 3279 3280 case SO_PROTOCOL: 3281 optval = so->so_proto->pr_protocol; 3282 goto integer; 3283 3284 case SO_ERROR: 3285 SOCK_LOCK(so); 3286 optval = so->so_error; 3287 so->so_error = 0; 3288 SOCK_UNLOCK(so); 3289 goto integer; 3290 3291 case SO_SNDBUF: 3292 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3293 so->so_snd.sb_hiwat; 3294 goto integer; 3295 3296 case SO_RCVBUF: 3297 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3298 so->so_rcv.sb_hiwat; 3299 goto integer; 3300 3301 case SO_SNDLOWAT: 3302 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3303 so->so_snd.sb_lowat; 3304 goto integer; 3305 3306 case SO_RCVLOWAT: 3307 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3308 so->so_rcv.sb_lowat; 3309 goto integer; 3310 3311 case SO_SNDTIMEO: 3312 case SO_RCVTIMEO: 3313 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3314 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3315 #ifdef COMPAT_FREEBSD32 3316 if (SV_CURPROC_FLAG(SV_ILP32)) { 3317 struct timeval32 tv32; 3318 3319 CP(tv, tv32, tv_sec); 3320 CP(tv, tv32, tv_usec); 3321 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3322 } else 3323 #endif 3324 error = sooptcopyout(sopt, &tv, sizeof tv); 3325 break; 3326 3327 case SO_LABEL: 3328 #ifdef MAC 3329 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3330 sizeof(extmac)); 3331 if (error) 3332 goto bad; 3333 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3334 so, &extmac); 3335 if (error) 3336 goto bad; 3337 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3338 #else 3339 error = EOPNOTSUPP; 3340 #endif 3341 break; 3342 3343 case SO_PEERLABEL: 3344 #ifdef MAC 3345 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3346 sizeof(extmac)); 3347 if (error) 3348 goto bad; 3349 error = mac_getsockopt_peerlabel( 3350 sopt->sopt_td->td_ucred, so, &extmac); 3351 if (error) 3352 goto bad; 3353 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3354 #else 3355 error = EOPNOTSUPP; 3356 #endif 3357 break; 3358 3359 case SO_LISTENQLIMIT: 3360 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3361 goto integer; 3362 3363 case SO_LISTENQLEN: 3364 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3365 goto integer; 3366 3367 case SO_LISTENINCQLEN: 3368 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3369 goto integer; 3370 3371 case SO_TS_CLOCK: 3372 optval = so->so_ts_clock; 3373 goto integer; 3374 3375 case SO_MAX_PACING_RATE: 3376 optval = so->so_max_pacing_rate; 3377 goto integer; 3378 3379 default: 3380 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3381 error = hhook_run_socket(so, sopt, 3382 HHOOK_SOCKET_OPT); 3383 else 3384 error = ENOPROTOOPT; 3385 break; 3386 } 3387 } 3388 #ifdef MAC 3389 bad: 3390 #endif 3391 CURVNET_RESTORE(); 3392 return (error); 3393 } 3394 3395 int 3396 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3397 { 3398 struct mbuf *m, *m_prev; 3399 int sopt_size = sopt->sopt_valsize; 3400 3401 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3402 if (m == NULL) 3403 return ENOBUFS; 3404 if (sopt_size > MLEN) { 3405 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3406 if ((m->m_flags & M_EXT) == 0) { 3407 m_free(m); 3408 return ENOBUFS; 3409 } 3410 m->m_len = min(MCLBYTES, sopt_size); 3411 } else { 3412 m->m_len = min(MLEN, sopt_size); 3413 } 3414 sopt_size -= m->m_len; 3415 *mp = m; 3416 m_prev = m; 3417 3418 while (sopt_size) { 3419 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3420 if (m == NULL) { 3421 m_freem(*mp); 3422 return ENOBUFS; 3423 } 3424 if (sopt_size > MLEN) { 3425 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3426 M_NOWAIT); 3427 if ((m->m_flags & M_EXT) == 0) { 3428 m_freem(m); 3429 m_freem(*mp); 3430 return ENOBUFS; 3431 } 3432 m->m_len = min(MCLBYTES, sopt_size); 3433 } else { 3434 m->m_len = min(MLEN, sopt_size); 3435 } 3436 sopt_size -= m->m_len; 3437 m_prev->m_next = m; 3438 m_prev = m; 3439 } 3440 return (0); 3441 } 3442 3443 int 3444 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3445 { 3446 struct mbuf *m0 = m; 3447 3448 if (sopt->sopt_val == NULL) 3449 return (0); 3450 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3451 if (sopt->sopt_td != NULL) { 3452 int error; 3453 3454 error = copyin(sopt->sopt_val, mtod(m, char *), 3455 m->m_len); 3456 if (error != 0) { 3457 m_freem(m0); 3458 return(error); 3459 } 3460 } else 3461 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3462 sopt->sopt_valsize -= m->m_len; 3463 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3464 m = m->m_next; 3465 } 3466 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3467 panic("ip6_sooptmcopyin"); 3468 return (0); 3469 } 3470 3471 int 3472 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3473 { 3474 struct mbuf *m0 = m; 3475 size_t valsize = 0; 3476 3477 if (sopt->sopt_val == NULL) 3478 return (0); 3479 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3480 if (sopt->sopt_td != NULL) { 3481 int error; 3482 3483 error = copyout(mtod(m, char *), sopt->sopt_val, 3484 m->m_len); 3485 if (error != 0) { 3486 m_freem(m0); 3487 return(error); 3488 } 3489 } else 3490 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3491 sopt->sopt_valsize -= m->m_len; 3492 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3493 valsize += m->m_len; 3494 m = m->m_next; 3495 } 3496 if (m != NULL) { 3497 /* enough soopt buffer should be given from user-land */ 3498 m_freem(m0); 3499 return(EINVAL); 3500 } 3501 sopt->sopt_valsize = valsize; 3502 return (0); 3503 } 3504 3505 /* 3506 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3507 * out-of-band data, which will then notify socket consumers. 3508 */ 3509 void 3510 sohasoutofband(struct socket *so) 3511 { 3512 3513 if (so->so_sigio != NULL) 3514 pgsigio(&so->so_sigio, SIGURG, 0); 3515 selwakeuppri(&so->so_rdsel, PSOCK); 3516 } 3517 3518 int 3519 sopoll(struct socket *so, int events, struct ucred *active_cred, 3520 struct thread *td) 3521 { 3522 3523 /* 3524 * We do not need to set or assert curvnet as long as everyone uses 3525 * sopoll_generic(). 3526 */ 3527 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3528 td)); 3529 } 3530 3531 int 3532 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3533 struct thread *td) 3534 { 3535 int revents; 3536 3537 SOCK_LOCK(so); 3538 if (SOLISTENING(so)) { 3539 if (!(events & (POLLIN | POLLRDNORM))) 3540 revents = 0; 3541 else if (!TAILQ_EMPTY(&so->sol_comp)) 3542 revents = events & (POLLIN | POLLRDNORM); 3543 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3544 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3545 else { 3546 selrecord(td, &so->so_rdsel); 3547 revents = 0; 3548 } 3549 } else { 3550 revents = 0; 3551 SOCKBUF_LOCK(&so->so_snd); 3552 SOCKBUF_LOCK(&so->so_rcv); 3553 if (events & (POLLIN | POLLRDNORM)) 3554 if (soreadabledata(so)) 3555 revents |= events & (POLLIN | POLLRDNORM); 3556 if (events & (POLLOUT | POLLWRNORM)) 3557 if (sowriteable(so)) 3558 revents |= events & (POLLOUT | POLLWRNORM); 3559 if (events & (POLLPRI | POLLRDBAND)) 3560 if (so->so_oobmark || 3561 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3562 revents |= events & (POLLPRI | POLLRDBAND); 3563 if ((events & POLLINIGNEOF) == 0) { 3564 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3565 revents |= events & (POLLIN | POLLRDNORM); 3566 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3567 revents |= POLLHUP; 3568 } 3569 } 3570 if (revents == 0) { 3571 if (events & 3572 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3573 selrecord(td, &so->so_rdsel); 3574 so->so_rcv.sb_flags |= SB_SEL; 3575 } 3576 if (events & (POLLOUT | POLLWRNORM)) { 3577 selrecord(td, &so->so_wrsel); 3578 so->so_snd.sb_flags |= SB_SEL; 3579 } 3580 } 3581 SOCKBUF_UNLOCK(&so->so_rcv); 3582 SOCKBUF_UNLOCK(&so->so_snd); 3583 } 3584 SOCK_UNLOCK(so); 3585 return (revents); 3586 } 3587 3588 int 3589 soo_kqfilter(struct file *fp, struct knote *kn) 3590 { 3591 struct socket *so = kn->kn_fp->f_data; 3592 struct sockbuf *sb; 3593 struct knlist *knl; 3594 3595 switch (kn->kn_filter) { 3596 case EVFILT_READ: 3597 kn->kn_fop = &soread_filtops; 3598 knl = &so->so_rdsel.si_note; 3599 sb = &so->so_rcv; 3600 break; 3601 case EVFILT_WRITE: 3602 kn->kn_fop = &sowrite_filtops; 3603 knl = &so->so_wrsel.si_note; 3604 sb = &so->so_snd; 3605 break; 3606 case EVFILT_EMPTY: 3607 kn->kn_fop = &soempty_filtops; 3608 knl = &so->so_wrsel.si_note; 3609 sb = &so->so_snd; 3610 break; 3611 default: 3612 return (EINVAL); 3613 } 3614 3615 SOCK_LOCK(so); 3616 if (SOLISTENING(so)) { 3617 knlist_add(knl, kn, 1); 3618 } else { 3619 SOCKBUF_LOCK(sb); 3620 knlist_add(knl, kn, 1); 3621 sb->sb_flags |= SB_KNOTE; 3622 SOCKBUF_UNLOCK(sb); 3623 } 3624 SOCK_UNLOCK(so); 3625 return (0); 3626 } 3627 3628 /* 3629 * Some routines that return EOPNOTSUPP for entry points that are not 3630 * supported by a protocol. Fill in as needed. 3631 */ 3632 int 3633 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3634 { 3635 3636 return EOPNOTSUPP; 3637 } 3638 3639 int 3640 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3641 { 3642 3643 return EOPNOTSUPP; 3644 } 3645 3646 int 3647 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3648 { 3649 3650 return EOPNOTSUPP; 3651 } 3652 3653 int 3654 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3655 { 3656 3657 return EOPNOTSUPP; 3658 } 3659 3660 int 3661 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3662 struct thread *td) 3663 { 3664 3665 return EOPNOTSUPP; 3666 } 3667 3668 int 3669 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3670 { 3671 3672 return EOPNOTSUPP; 3673 } 3674 3675 int 3676 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3677 struct thread *td) 3678 { 3679 3680 return EOPNOTSUPP; 3681 } 3682 3683 int 3684 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3685 { 3686 3687 return EOPNOTSUPP; 3688 } 3689 3690 int 3691 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3692 struct ifnet *ifp, struct thread *td) 3693 { 3694 3695 return EOPNOTSUPP; 3696 } 3697 3698 int 3699 pru_disconnect_notsupp(struct socket *so) 3700 { 3701 3702 return EOPNOTSUPP; 3703 } 3704 3705 int 3706 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3707 { 3708 3709 return EOPNOTSUPP; 3710 } 3711 3712 int 3713 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3714 { 3715 3716 return EOPNOTSUPP; 3717 } 3718 3719 int 3720 pru_rcvd_notsupp(struct socket *so, int flags) 3721 { 3722 3723 return EOPNOTSUPP; 3724 } 3725 3726 int 3727 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3728 { 3729 3730 return EOPNOTSUPP; 3731 } 3732 3733 int 3734 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3735 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3736 { 3737 3738 return EOPNOTSUPP; 3739 } 3740 3741 int 3742 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3743 { 3744 3745 return (EOPNOTSUPP); 3746 } 3747 3748 /* 3749 * This isn't really a ``null'' operation, but it's the default one and 3750 * doesn't do anything destructive. 3751 */ 3752 int 3753 pru_sense_null(struct socket *so, struct stat *sb) 3754 { 3755 3756 sb->st_blksize = so->so_snd.sb_hiwat; 3757 return 0; 3758 } 3759 3760 int 3761 pru_shutdown_notsupp(struct socket *so) 3762 { 3763 3764 return EOPNOTSUPP; 3765 } 3766 3767 int 3768 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3769 { 3770 3771 return EOPNOTSUPP; 3772 } 3773 3774 int 3775 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3776 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3777 { 3778 3779 return EOPNOTSUPP; 3780 } 3781 3782 int 3783 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3784 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3785 { 3786 3787 return EOPNOTSUPP; 3788 } 3789 3790 int 3791 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3792 struct thread *td) 3793 { 3794 3795 return EOPNOTSUPP; 3796 } 3797 3798 static void 3799 filt_sordetach(struct knote *kn) 3800 { 3801 struct socket *so = kn->kn_fp->f_data; 3802 3803 so_rdknl_lock(so); 3804 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3805 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3806 so->so_rcv.sb_flags &= ~SB_KNOTE; 3807 so_rdknl_unlock(so); 3808 } 3809 3810 /*ARGSUSED*/ 3811 static int 3812 filt_soread(struct knote *kn, long hint) 3813 { 3814 struct socket *so; 3815 3816 so = kn->kn_fp->f_data; 3817 3818 if (SOLISTENING(so)) { 3819 SOCK_LOCK_ASSERT(so); 3820 kn->kn_data = so->sol_qlen; 3821 if (so->so_error) { 3822 kn->kn_flags |= EV_EOF; 3823 kn->kn_fflags = so->so_error; 3824 return (1); 3825 } 3826 return (!TAILQ_EMPTY(&so->sol_comp)); 3827 } 3828 3829 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3830 3831 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3832 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3833 kn->kn_flags |= EV_EOF; 3834 kn->kn_fflags = so->so_error; 3835 return (1); 3836 } else if (so->so_error) /* temporary udp error */ 3837 return (1); 3838 3839 if (kn->kn_sfflags & NOTE_LOWAT) { 3840 if (kn->kn_data >= kn->kn_sdata) 3841 return (1); 3842 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3843 return (1); 3844 3845 /* This hook returning non-zero indicates an event, not error */ 3846 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3847 } 3848 3849 static void 3850 filt_sowdetach(struct knote *kn) 3851 { 3852 struct socket *so = kn->kn_fp->f_data; 3853 3854 so_wrknl_lock(so); 3855 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3856 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3857 so->so_snd.sb_flags &= ~SB_KNOTE; 3858 so_wrknl_unlock(so); 3859 } 3860 3861 /*ARGSUSED*/ 3862 static int 3863 filt_sowrite(struct knote *kn, long hint) 3864 { 3865 struct socket *so; 3866 3867 so = kn->kn_fp->f_data; 3868 3869 if (SOLISTENING(so)) 3870 return (0); 3871 3872 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3873 kn->kn_data = sbspace(&so->so_snd); 3874 3875 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3876 3877 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3878 kn->kn_flags |= EV_EOF; 3879 kn->kn_fflags = so->so_error; 3880 return (1); 3881 } else if (so->so_error) /* temporary udp error */ 3882 return (1); 3883 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3884 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3885 return (0); 3886 else if (kn->kn_sfflags & NOTE_LOWAT) 3887 return (kn->kn_data >= kn->kn_sdata); 3888 else 3889 return (kn->kn_data >= so->so_snd.sb_lowat); 3890 } 3891 3892 static int 3893 filt_soempty(struct knote *kn, long hint) 3894 { 3895 struct socket *so; 3896 3897 so = kn->kn_fp->f_data; 3898 3899 if (SOLISTENING(so)) 3900 return (1); 3901 3902 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3903 kn->kn_data = sbused(&so->so_snd); 3904 3905 if (kn->kn_data == 0) 3906 return (1); 3907 else 3908 return (0); 3909 } 3910 3911 int 3912 socheckuid(struct socket *so, uid_t uid) 3913 { 3914 3915 if (so == NULL) 3916 return (EPERM); 3917 if (so->so_cred->cr_uid != uid) 3918 return (EPERM); 3919 return (0); 3920 } 3921 3922 /* 3923 * These functions are used by protocols to notify the socket layer (and its 3924 * consumers) of state changes in the sockets driven by protocol-side events. 3925 */ 3926 3927 /* 3928 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3929 * 3930 * Normal sequence from the active (originating) side is that 3931 * soisconnecting() is called during processing of connect() call, resulting 3932 * in an eventual call to soisconnected() if/when the connection is 3933 * established. When the connection is torn down soisdisconnecting() is 3934 * called during processing of disconnect() call, and soisdisconnected() is 3935 * called when the connection to the peer is totally severed. The semantics 3936 * of these routines are such that connectionless protocols can call 3937 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3938 * calls when setting up a ``connection'' takes no time. 3939 * 3940 * From the passive side, a socket is created with two queues of sockets: 3941 * so_incomp for connections in progress and so_comp for connections already 3942 * made and awaiting user acceptance. As a protocol is preparing incoming 3943 * connections, it creates a socket structure queued on so_incomp by calling 3944 * sonewconn(). When the connection is established, soisconnected() is 3945 * called, and transfers the socket structure to so_comp, making it available 3946 * to accept(). 3947 * 3948 * If a socket is closed with sockets on either so_incomp or so_comp, these 3949 * sockets are dropped. 3950 * 3951 * If higher-level protocols are implemented in the kernel, the wakeups done 3952 * here will sometimes cause software-interrupt process scheduling. 3953 */ 3954 void 3955 soisconnecting(struct socket *so) 3956 { 3957 3958 SOCK_LOCK(so); 3959 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3960 so->so_state |= SS_ISCONNECTING; 3961 SOCK_UNLOCK(so); 3962 } 3963 3964 void 3965 soisconnected(struct socket *so) 3966 { 3967 3968 SOCK_LOCK(so); 3969 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3970 so->so_state |= SS_ISCONNECTED; 3971 3972 if (so->so_qstate == SQ_INCOMP) { 3973 struct socket *head = so->so_listen; 3974 int ret; 3975 3976 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3977 /* 3978 * Promoting a socket from incomplete queue to complete, we 3979 * need to go through reverse order of locking. We first do 3980 * trylock, and if that doesn't succeed, we go the hard way 3981 * leaving a reference and rechecking consistency after proper 3982 * locking. 3983 */ 3984 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3985 soref(head); 3986 SOCK_UNLOCK(so); 3987 SOLISTEN_LOCK(head); 3988 SOCK_LOCK(so); 3989 if (__predict_false(head != so->so_listen)) { 3990 /* 3991 * The socket went off the listen queue, 3992 * should be lost race to close(2) of sol. 3993 * The socket is about to soabort(). 3994 */ 3995 SOCK_UNLOCK(so); 3996 sorele(head); 3997 return; 3998 } 3999 /* Not the last one, as so holds a ref. */ 4000 refcount_release(&head->so_count); 4001 } 4002 again: 4003 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4004 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4005 head->sol_incqlen--; 4006 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4007 head->sol_qlen++; 4008 so->so_qstate = SQ_COMP; 4009 SOCK_UNLOCK(so); 4010 solisten_wakeup(head); /* unlocks */ 4011 } else { 4012 SOCKBUF_LOCK(&so->so_rcv); 4013 soupcall_set(so, SO_RCV, 4014 head->sol_accept_filter->accf_callback, 4015 head->sol_accept_filter_arg); 4016 so->so_options &= ~SO_ACCEPTFILTER; 4017 ret = head->sol_accept_filter->accf_callback(so, 4018 head->sol_accept_filter_arg, M_NOWAIT); 4019 if (ret == SU_ISCONNECTED) { 4020 soupcall_clear(so, SO_RCV); 4021 SOCKBUF_UNLOCK(&so->so_rcv); 4022 goto again; 4023 } 4024 SOCKBUF_UNLOCK(&so->so_rcv); 4025 SOCK_UNLOCK(so); 4026 SOLISTEN_UNLOCK(head); 4027 } 4028 return; 4029 } 4030 SOCK_UNLOCK(so); 4031 wakeup(&so->so_timeo); 4032 sorwakeup(so); 4033 sowwakeup(so); 4034 } 4035 4036 void 4037 soisdisconnecting(struct socket *so) 4038 { 4039 4040 SOCK_LOCK(so); 4041 so->so_state &= ~SS_ISCONNECTING; 4042 so->so_state |= SS_ISDISCONNECTING; 4043 4044 if (!SOLISTENING(so)) { 4045 SOCKBUF_LOCK(&so->so_rcv); 4046 socantrcvmore_locked(so); 4047 SOCKBUF_LOCK(&so->so_snd); 4048 socantsendmore_locked(so); 4049 } 4050 SOCK_UNLOCK(so); 4051 wakeup(&so->so_timeo); 4052 } 4053 4054 void 4055 soisdisconnected(struct socket *so) 4056 { 4057 4058 SOCK_LOCK(so); 4059 4060 /* 4061 * There is at least one reader of so_state that does not 4062 * acquire socket lock, namely soreceive_generic(). Ensure 4063 * that it never sees all flags that track connection status 4064 * cleared, by ordering the update with a barrier semantic of 4065 * our release thread fence. 4066 */ 4067 so->so_state |= SS_ISDISCONNECTED; 4068 atomic_thread_fence_rel(); 4069 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4070 4071 if (!SOLISTENING(so)) { 4072 SOCK_UNLOCK(so); 4073 SOCKBUF_LOCK(&so->so_rcv); 4074 socantrcvmore_locked(so); 4075 SOCKBUF_LOCK(&so->so_snd); 4076 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4077 socantsendmore_locked(so); 4078 } else 4079 SOCK_UNLOCK(so); 4080 wakeup(&so->so_timeo); 4081 } 4082 4083 /* 4084 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4085 */ 4086 struct sockaddr * 4087 sodupsockaddr(const struct sockaddr *sa, int mflags) 4088 { 4089 struct sockaddr *sa2; 4090 4091 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4092 if (sa2) 4093 bcopy(sa, sa2, sa->sa_len); 4094 return sa2; 4095 } 4096 4097 /* 4098 * Register per-socket destructor. 4099 */ 4100 void 4101 sodtor_set(struct socket *so, so_dtor_t *func) 4102 { 4103 4104 SOCK_LOCK_ASSERT(so); 4105 so->so_dtor = func; 4106 } 4107 4108 /* 4109 * Register per-socket buffer upcalls. 4110 */ 4111 void 4112 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4113 { 4114 struct sockbuf *sb; 4115 4116 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4117 4118 switch (which) { 4119 case SO_RCV: 4120 sb = &so->so_rcv; 4121 break; 4122 case SO_SND: 4123 sb = &so->so_snd; 4124 break; 4125 default: 4126 panic("soupcall_set: bad which"); 4127 } 4128 SOCKBUF_LOCK_ASSERT(sb); 4129 sb->sb_upcall = func; 4130 sb->sb_upcallarg = arg; 4131 sb->sb_flags |= SB_UPCALL; 4132 } 4133 4134 void 4135 soupcall_clear(struct socket *so, int which) 4136 { 4137 struct sockbuf *sb; 4138 4139 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4140 4141 switch (which) { 4142 case SO_RCV: 4143 sb = &so->so_rcv; 4144 break; 4145 case SO_SND: 4146 sb = &so->so_snd; 4147 break; 4148 default: 4149 panic("soupcall_clear: bad which"); 4150 } 4151 SOCKBUF_LOCK_ASSERT(sb); 4152 KASSERT(sb->sb_upcall != NULL, 4153 ("%s: so %p no upcall to clear", __func__, so)); 4154 sb->sb_upcall = NULL; 4155 sb->sb_upcallarg = NULL; 4156 sb->sb_flags &= ~SB_UPCALL; 4157 } 4158 4159 void 4160 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4161 { 4162 4163 SOLISTEN_LOCK_ASSERT(so); 4164 so->sol_upcall = func; 4165 so->sol_upcallarg = arg; 4166 } 4167 4168 static void 4169 so_rdknl_lock(void *arg) 4170 { 4171 struct socket *so = arg; 4172 4173 if (SOLISTENING(so)) 4174 SOCK_LOCK(so); 4175 else 4176 SOCKBUF_LOCK(&so->so_rcv); 4177 } 4178 4179 static void 4180 so_rdknl_unlock(void *arg) 4181 { 4182 struct socket *so = arg; 4183 4184 if (SOLISTENING(so)) 4185 SOCK_UNLOCK(so); 4186 else 4187 SOCKBUF_UNLOCK(&so->so_rcv); 4188 } 4189 4190 static void 4191 so_rdknl_assert_lock(void *arg, int what) 4192 { 4193 struct socket *so = arg; 4194 4195 if (what == LA_LOCKED) { 4196 if (SOLISTENING(so)) 4197 SOCK_LOCK_ASSERT(so); 4198 else 4199 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4200 } else { 4201 if (SOLISTENING(so)) 4202 SOCK_UNLOCK_ASSERT(so); 4203 else 4204 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4205 } 4206 } 4207 4208 static void 4209 so_wrknl_lock(void *arg) 4210 { 4211 struct socket *so = arg; 4212 4213 if (SOLISTENING(so)) 4214 SOCK_LOCK(so); 4215 else 4216 SOCKBUF_LOCK(&so->so_snd); 4217 } 4218 4219 static void 4220 so_wrknl_unlock(void *arg) 4221 { 4222 struct socket *so = arg; 4223 4224 if (SOLISTENING(so)) 4225 SOCK_UNLOCK(so); 4226 else 4227 SOCKBUF_UNLOCK(&so->so_snd); 4228 } 4229 4230 static void 4231 so_wrknl_assert_lock(void *arg, int what) 4232 { 4233 struct socket *so = arg; 4234 4235 if (what == LA_LOCKED) { 4236 if (SOLISTENING(so)) 4237 SOCK_LOCK_ASSERT(so); 4238 else 4239 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4240 } else { 4241 if (SOLISTENING(so)) 4242 SOCK_UNLOCK_ASSERT(so); 4243 else 4244 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4245 } 4246 } 4247 4248 /* 4249 * Create an external-format (``xsocket'') structure using the information in 4250 * the kernel-format socket structure pointed to by so. This is done to 4251 * reduce the spew of irrelevant information over this interface, to isolate 4252 * user code from changes in the kernel structure, and potentially to provide 4253 * information-hiding if we decide that some of this information should be 4254 * hidden from users. 4255 */ 4256 void 4257 sotoxsocket(struct socket *so, struct xsocket *xso) 4258 { 4259 4260 bzero(xso, sizeof(*xso)); 4261 xso->xso_len = sizeof *xso; 4262 xso->xso_so = (uintptr_t)so; 4263 xso->so_type = so->so_type; 4264 xso->so_options = so->so_options; 4265 xso->so_linger = so->so_linger; 4266 xso->so_state = so->so_state; 4267 xso->so_pcb = (uintptr_t)so->so_pcb; 4268 xso->xso_protocol = so->so_proto->pr_protocol; 4269 xso->xso_family = so->so_proto->pr_domain->dom_family; 4270 xso->so_timeo = so->so_timeo; 4271 xso->so_error = so->so_error; 4272 xso->so_uid = so->so_cred->cr_uid; 4273 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4274 if (SOLISTENING(so)) { 4275 xso->so_qlen = so->sol_qlen; 4276 xso->so_incqlen = so->sol_incqlen; 4277 xso->so_qlimit = so->sol_qlimit; 4278 xso->so_oobmark = 0; 4279 } else { 4280 xso->so_state |= so->so_qstate; 4281 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4282 xso->so_oobmark = so->so_oobmark; 4283 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4284 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4285 } 4286 } 4287 4288 struct sockbuf * 4289 so_sockbuf_rcv(struct socket *so) 4290 { 4291 4292 return (&so->so_rcv); 4293 } 4294 4295 struct sockbuf * 4296 so_sockbuf_snd(struct socket *so) 4297 { 4298 4299 return (&so->so_snd); 4300 } 4301 4302 int 4303 so_state_get(const struct socket *so) 4304 { 4305 4306 return (so->so_state); 4307 } 4308 4309 void 4310 so_state_set(struct socket *so, int val) 4311 { 4312 4313 so->so_state = val; 4314 } 4315 4316 int 4317 so_options_get(const struct socket *so) 4318 { 4319 4320 return (so->so_options); 4321 } 4322 4323 void 4324 so_options_set(struct socket *so, int val) 4325 { 4326 4327 so->so_options = val; 4328 } 4329 4330 int 4331 so_error_get(const struct socket *so) 4332 { 4333 4334 return (so->so_error); 4335 } 4336 4337 void 4338 so_error_set(struct socket *so, int val) 4339 { 4340 4341 so->so_error = val; 4342 } 4343 4344 int 4345 so_linger_get(const struct socket *so) 4346 { 4347 4348 return (so->so_linger); 4349 } 4350 4351 void 4352 so_linger_set(struct socket *so, int val) 4353 { 4354 4355 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4356 ("%s: val %d out of range", __func__, val)); 4357 4358 so->so_linger = val; 4359 } 4360 4361 struct protosw * 4362 so_protosw_get(const struct socket *so) 4363 { 4364 4365 return (so->so_proto); 4366 } 4367 4368 void 4369 so_protosw_set(struct socket *so, struct protosw *val) 4370 { 4371 4372 so->so_proto = val; 4373 } 4374 4375 void 4376 so_sorwakeup(struct socket *so) 4377 { 4378 4379 sorwakeup(so); 4380 } 4381 4382 void 4383 so_sowwakeup(struct socket *so) 4384 { 4385 4386 sowwakeup(so); 4387 } 4388 4389 void 4390 so_sorwakeup_locked(struct socket *so) 4391 { 4392 4393 sorwakeup_locked(so); 4394 } 4395 4396 void 4397 so_sowwakeup_locked(struct socket *so) 4398 { 4399 4400 sowwakeup_locked(so); 4401 } 4402 4403 void 4404 so_lock(struct socket *so) 4405 { 4406 4407 SOCK_LOCK(so); 4408 } 4409 4410 void 4411 so_unlock(struct socket *so) 4412 { 4413 4414 SOCK_UNLOCK(so); 4415 } 4416