1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/fcntl.h> 116 #include <sys/limits.h> 117 #include <sys/lock.h> 118 #include <sys/mac.h> 119 #include <sys/malloc.h> 120 #include <sys/mbuf.h> 121 #include <sys/mutex.h> 122 #include <sys/domain.h> 123 #include <sys/file.h> /* for struct knote */ 124 #include <sys/hhook.h> 125 #include <sys/kernel.h> 126 #include <sys/khelp.h> 127 #include <sys/ktls.h> 128 #include <sys/event.h> 129 #include <sys/eventhandler.h> 130 #include <sys/poll.h> 131 #include <sys/proc.h> 132 #include <sys/protosw.h> 133 #include <sys/socket.h> 134 #include <sys/socketvar.h> 135 #include <sys/resourcevar.h> 136 #include <net/route.h> 137 #include <sys/signalvar.h> 138 #include <sys/stat.h> 139 #include <sys/sx.h> 140 #include <sys/sysctl.h> 141 #include <sys/taskqueue.h> 142 #include <sys/uio.h> 143 #include <sys/jail.h> 144 #include <sys/syslog.h> 145 #include <netinet/in.h> 146 #include <netinet/tcp.h> 147 148 #include <net/vnet.h> 149 #include <net/if.h> /* XXXGL: net_epoch should move out there */ 150 #include <net/if_var.h> /* XXXGL: net_epoch should move out there */ 151 152 #include <security/mac/mac_framework.h> 153 154 #include <vm/uma.h> 155 156 #ifdef COMPAT_FREEBSD32 157 #include <sys/mount.h> 158 #include <sys/sysent.h> 159 #include <compat/freebsd32/freebsd32.h> 160 #endif 161 162 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 163 int flags); 164 static void so_rdknl_lock(void *); 165 static void so_rdknl_unlock(void *); 166 static void so_rdknl_assert_locked(void *); 167 static void so_rdknl_assert_unlocked(void *); 168 static void so_wrknl_lock(void *); 169 static void so_wrknl_unlock(void *); 170 static void so_wrknl_assert_locked(void *); 171 static void so_wrknl_assert_unlocked(void *); 172 173 static void filt_sordetach(struct knote *kn); 174 static int filt_soread(struct knote *kn, long hint); 175 static void filt_sowdetach(struct knote *kn); 176 static int filt_sowrite(struct knote *kn, long hint); 177 static int filt_soempty(struct knote *kn, long hint); 178 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 179 fo_kqfilter_t soo_kqfilter; 180 181 static struct filterops soread_filtops = { 182 .f_isfd = 1, 183 .f_detach = filt_sordetach, 184 .f_event = filt_soread, 185 }; 186 static struct filterops sowrite_filtops = { 187 .f_isfd = 1, 188 .f_detach = filt_sowdetach, 189 .f_event = filt_sowrite, 190 }; 191 static struct filterops soempty_filtops = { 192 .f_isfd = 1, 193 .f_detach = filt_sowdetach, 194 .f_event = filt_soempty, 195 }; 196 197 so_gen_t so_gencnt; /* generation count for sockets */ 198 199 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 200 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 201 202 #define VNET_SO_ASSERT(so) \ 203 VNET_ASSERT(curvnet != NULL, \ 204 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 205 206 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 207 #define V_socket_hhh VNET(socket_hhh) 208 209 /* 210 * Limit on the number of connections in the listen queue waiting 211 * for accept(2). 212 * NB: The original sysctl somaxconn is still available but hidden 213 * to prevent confusion about the actual purpose of this number. 214 */ 215 static u_int somaxconn = SOMAXCONN; 216 217 static int 218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 219 { 220 int error; 221 int val; 222 223 val = somaxconn; 224 error = sysctl_handle_int(oidp, &val, 0, req); 225 if (error || !req->newptr ) 226 return (error); 227 228 /* 229 * The purpose of the UINT_MAX / 3 limit, is so that the formula 230 * 3 * so_qlimit / 2 231 * below, will not overflow. 232 */ 233 234 if (val < 1 || val > UINT_MAX / 3) 235 return (EINVAL); 236 237 somaxconn = val; 238 return (0); 239 } 240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 241 0, sizeof(int), sysctl_somaxconn, "I", 242 "Maximum listen socket pending connection accept queue size"); 243 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 244 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 245 0, sizeof(int), sysctl_somaxconn, "I", 246 "Maximum listen socket pending connection accept queue size (compat)"); 247 248 static int numopensockets; 249 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 250 &numopensockets, 0, "Number of open sockets"); 251 252 /* 253 * accept_mtx locks down per-socket fields relating to accept queues. See 254 * socketvar.h for an annotation of the protected fields of struct socket. 255 */ 256 struct mtx accept_mtx; 257 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 258 259 /* 260 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 261 * so_gencnt field. 262 */ 263 static struct mtx so_global_mtx; 264 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 265 266 /* 267 * General IPC sysctl name space, used by sockets and a variety of other IPC 268 * types. 269 */ 270 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 271 272 /* 273 * Initialize the socket subsystem and set up the socket 274 * memory allocator. 275 */ 276 static uma_zone_t socket_zone; 277 int maxsockets; 278 279 static void 280 socket_zone_change(void *tag) 281 { 282 283 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 284 } 285 286 static void 287 socket_hhook_register(int subtype) 288 { 289 290 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 291 &V_socket_hhh[subtype], 292 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 293 printf("%s: WARNING: unable to register hook\n", __func__); 294 } 295 296 static void 297 socket_hhook_deregister(int subtype) 298 { 299 300 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 301 printf("%s: WARNING: unable to deregister hook\n", __func__); 302 } 303 304 static void 305 socket_init(void *tag) 306 { 307 308 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 309 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 310 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 311 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 312 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 313 EVENTHANDLER_PRI_FIRST); 314 } 315 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 316 317 static void 318 socket_vnet_init(const void *unused __unused) 319 { 320 int i; 321 322 /* We expect a contiguous range */ 323 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 324 socket_hhook_register(i); 325 } 326 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 327 socket_vnet_init, NULL); 328 329 static void 330 socket_vnet_uninit(const void *unused __unused) 331 { 332 int i; 333 334 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 335 socket_hhook_deregister(i); 336 } 337 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 338 socket_vnet_uninit, NULL); 339 340 /* 341 * Initialise maxsockets. This SYSINIT must be run after 342 * tunable_mbinit(). 343 */ 344 static void 345 init_maxsockets(void *ignored) 346 { 347 348 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 349 maxsockets = imax(maxsockets, maxfiles); 350 } 351 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 352 353 /* 354 * Sysctl to get and set the maximum global sockets limit. Notify protocols 355 * of the change so that they can update their dependent limits as required. 356 */ 357 static int 358 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 359 { 360 int error, newmaxsockets; 361 362 newmaxsockets = maxsockets; 363 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 364 if (error == 0 && req->newptr) { 365 if (newmaxsockets > maxsockets && 366 newmaxsockets <= maxfiles) { 367 maxsockets = newmaxsockets; 368 EVENTHANDLER_INVOKE(maxsockets_change); 369 } else 370 error = EINVAL; 371 } 372 return (error); 373 } 374 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 375 &maxsockets, 0, sysctl_maxsockets, "IU", 376 "Maximum number of sockets available"); 377 378 /* 379 * Socket operation routines. These routines are called by the routines in 380 * sys_socket.c or from a system process, and implement the semantics of 381 * socket operations by switching out to the protocol specific routines. 382 */ 383 384 /* 385 * Get a socket structure from our zone, and initialize it. Note that it 386 * would probably be better to allocate socket and PCB at the same time, but 387 * I'm not convinced that all the protocols can be easily modified to do 388 * this. 389 * 390 * soalloc() returns a socket with a ref count of 0. 391 */ 392 static struct socket * 393 soalloc(struct vnet *vnet) 394 { 395 struct socket *so; 396 397 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 398 if (so == NULL) 399 return (NULL); 400 #ifdef MAC 401 if (mac_socket_init(so, M_NOWAIT) != 0) { 402 uma_zfree(socket_zone, so); 403 return (NULL); 404 } 405 #endif 406 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 407 uma_zfree(socket_zone, so); 408 return (NULL); 409 } 410 411 /* 412 * The socket locking protocol allows to lock 2 sockets at a time, 413 * however, the first one must be a listening socket. WITNESS lacks 414 * a feature to change class of an existing lock, so we use DUPOK. 415 */ 416 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 417 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 418 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 419 so->so_rcv.sb_sel = &so->so_rdsel; 420 so->so_snd.sb_sel = &so->so_wrsel; 421 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 422 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 423 TAILQ_INIT(&so->so_snd.sb_aiojobq); 424 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 425 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 426 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 427 #ifdef VIMAGE 428 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 429 __func__, __LINE__, so)); 430 so->so_vnet = vnet; 431 #endif 432 /* We shouldn't need the so_global_mtx */ 433 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 434 /* Do we need more comprehensive error returns? */ 435 uma_zfree(socket_zone, so); 436 return (NULL); 437 } 438 mtx_lock(&so_global_mtx); 439 so->so_gencnt = ++so_gencnt; 440 ++numopensockets; 441 #ifdef VIMAGE 442 vnet->vnet_sockcnt++; 443 #endif 444 mtx_unlock(&so_global_mtx); 445 446 return (so); 447 } 448 449 /* 450 * Free the storage associated with a socket at the socket layer, tear down 451 * locks, labels, etc. All protocol state is assumed already to have been 452 * torn down (and possibly never set up) by the caller. 453 */ 454 static void 455 sodealloc(struct socket *so) 456 { 457 458 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 459 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 460 461 mtx_lock(&so_global_mtx); 462 so->so_gencnt = ++so_gencnt; 463 --numopensockets; /* Could be below, but faster here. */ 464 #ifdef VIMAGE 465 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 466 __func__, __LINE__, so)); 467 so->so_vnet->vnet_sockcnt--; 468 #endif 469 mtx_unlock(&so_global_mtx); 470 #ifdef MAC 471 mac_socket_destroy(so); 472 #endif 473 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 474 475 crfree(so->so_cred); 476 khelp_destroy_osd(&so->osd); 477 if (SOLISTENING(so)) { 478 if (so->sol_accept_filter != NULL) 479 accept_filt_setopt(so, NULL); 480 } else { 481 if (so->so_rcv.sb_hiwat) 482 (void)chgsbsize(so->so_cred->cr_uidinfo, 483 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 484 if (so->so_snd.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 487 sx_destroy(&so->so_snd.sb_sx); 488 sx_destroy(&so->so_rcv.sb_sx); 489 SOCKBUF_LOCK_DESTROY(&so->so_snd); 490 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 491 } 492 mtx_destroy(&so->so_lock); 493 uma_zfree(socket_zone, so); 494 } 495 496 /* 497 * socreate returns a socket with a ref count of 1. The socket should be 498 * closed with soclose(). 499 */ 500 int 501 socreate(int dom, struct socket **aso, int type, int proto, 502 struct ucred *cred, struct thread *td) 503 { 504 struct protosw *prp; 505 struct socket *so; 506 int error; 507 508 if (proto) 509 prp = pffindproto(dom, proto, type); 510 else 511 prp = pffindtype(dom, type); 512 513 if (prp == NULL) { 514 /* No support for domain. */ 515 if (pffinddomain(dom) == NULL) 516 return (EAFNOSUPPORT); 517 /* No support for socket type. */ 518 if (proto == 0 && type != 0) 519 return (EPROTOTYPE); 520 return (EPROTONOSUPPORT); 521 } 522 if (prp->pr_usrreqs->pru_attach == NULL || 523 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 524 return (EPROTONOSUPPORT); 525 526 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 527 return (EPROTONOSUPPORT); 528 529 if (prp->pr_type != type) 530 return (EPROTOTYPE); 531 so = soalloc(CRED_TO_VNET(cred)); 532 if (so == NULL) 533 return (ENOBUFS); 534 535 so->so_type = type; 536 so->so_cred = crhold(cred); 537 if ((prp->pr_domain->dom_family == PF_INET) || 538 (prp->pr_domain->dom_family == PF_INET6) || 539 (prp->pr_domain->dom_family == PF_ROUTE)) 540 so->so_fibnum = td->td_proc->p_fibnum; 541 else 542 so->so_fibnum = 0; 543 so->so_proto = prp; 544 #ifdef MAC 545 mac_socket_create(cred, so); 546 #endif 547 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 548 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 549 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 550 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 551 /* 552 * Auto-sizing of socket buffers is managed by the protocols and 553 * the appropriate flags must be set in the pru_attach function. 554 */ 555 CURVNET_SET(so->so_vnet); 556 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 557 CURVNET_RESTORE(); 558 if (error) { 559 sodealloc(so); 560 return (error); 561 } 562 soref(so); 563 *aso = so; 564 return (0); 565 } 566 567 #ifdef REGRESSION 568 static int regression_sonewconn_earlytest = 1; 569 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 570 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 571 #endif 572 573 /* 574 * When an attempt at a new connection is noted on a socket which accepts 575 * connections, sonewconn is called. If the connection is possible (subject 576 * to space constraints, etc.) then we allocate a new structure, properly 577 * linked into the data structure of the original socket, and return this. 578 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 579 * 580 * Note: the ref count on the socket is 0 on return. 581 */ 582 struct socket * 583 sonewconn(struct socket *head, int connstatus) 584 { 585 static struct timeval lastover; 586 static struct timeval overinterval = { 60, 0 }; 587 static int overcount; 588 589 struct socket *so; 590 u_int over; 591 592 SOLISTEN_LOCK(head); 593 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 594 SOLISTEN_UNLOCK(head); 595 #ifdef REGRESSION 596 if (regression_sonewconn_earlytest && over) { 597 #else 598 if (over) { 599 #endif 600 overcount++; 601 602 if (ratecheck(&lastover, &overinterval)) { 603 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 604 "%i already in queue awaiting acceptance " 605 "(%d occurrences)\n", 606 __func__, head->so_pcb, head->sol_qlen, overcount); 607 608 overcount = 0; 609 } 610 611 return (NULL); 612 } 613 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 614 __func__, head)); 615 so = soalloc(head->so_vnet); 616 if (so == NULL) { 617 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 618 "limit reached or out of memory\n", 619 __func__, head->so_pcb); 620 return (NULL); 621 } 622 so->so_listen = head; 623 so->so_type = head->so_type; 624 so->so_linger = head->so_linger; 625 so->so_state = head->so_state | SS_NOFDREF; 626 so->so_fibnum = head->so_fibnum; 627 so->so_proto = head->so_proto; 628 so->so_cred = crhold(head->so_cred); 629 #ifdef MAC 630 mac_socket_newconn(head, so); 631 #endif 632 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 633 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 634 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 635 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 636 VNET_SO_ASSERT(head); 637 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 638 sodealloc(so); 639 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 640 __func__, head->so_pcb); 641 return (NULL); 642 } 643 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 644 sodealloc(so); 645 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 646 __func__, head->so_pcb); 647 return (NULL); 648 } 649 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 650 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 651 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 652 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 653 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 654 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 655 656 SOLISTEN_LOCK(head); 657 if (head->sol_accept_filter != NULL) 658 connstatus = 0; 659 so->so_state |= connstatus; 660 so->so_options = head->so_options & ~SO_ACCEPTCONN; 661 soref(head); /* A socket on (in)complete queue refs head. */ 662 if (connstatus) { 663 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 664 so->so_qstate = SQ_COMP; 665 head->sol_qlen++; 666 solisten_wakeup(head); /* unlocks */ 667 } else { 668 /* 669 * Keep removing sockets from the head until there's room for 670 * us to insert on the tail. In pre-locking revisions, this 671 * was a simple if(), but as we could be racing with other 672 * threads and soabort() requires dropping locks, we must 673 * loop waiting for the condition to be true. 674 */ 675 while (head->sol_incqlen > head->sol_qlimit) { 676 struct socket *sp; 677 678 sp = TAILQ_FIRST(&head->sol_incomp); 679 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 680 head->sol_incqlen--; 681 SOCK_LOCK(sp); 682 sp->so_qstate = SQ_NONE; 683 sp->so_listen = NULL; 684 SOCK_UNLOCK(sp); 685 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 686 soabort(sp); 687 SOLISTEN_LOCK(head); 688 } 689 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 690 so->so_qstate = SQ_INCOMP; 691 head->sol_incqlen++; 692 SOLISTEN_UNLOCK(head); 693 } 694 return (so); 695 } 696 697 #ifdef SCTP 698 /* 699 * Socket part of sctp_peeloff(). Detach a new socket from an 700 * association. The new socket is returned with a reference. 701 */ 702 struct socket * 703 sopeeloff(struct socket *head) 704 { 705 struct socket *so; 706 707 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 708 __func__, __LINE__, head)); 709 so = soalloc(head->so_vnet); 710 if (so == NULL) { 711 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 712 "limit reached or out of memory\n", 713 __func__, head->so_pcb); 714 return (NULL); 715 } 716 so->so_type = head->so_type; 717 so->so_options = head->so_options; 718 so->so_linger = head->so_linger; 719 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 720 so->so_fibnum = head->so_fibnum; 721 so->so_proto = head->so_proto; 722 so->so_cred = crhold(head->so_cred); 723 #ifdef MAC 724 mac_socket_newconn(head, so); 725 #endif 726 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 727 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 728 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 729 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 730 VNET_SO_ASSERT(head); 731 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 732 sodealloc(so); 733 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 734 __func__, head->so_pcb); 735 return (NULL); 736 } 737 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 738 sodealloc(so); 739 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 740 __func__, head->so_pcb); 741 return (NULL); 742 } 743 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 744 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 745 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 746 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 747 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 748 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 749 750 soref(so); 751 752 return (so); 753 } 754 #endif /* SCTP */ 755 756 int 757 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 758 { 759 int error; 760 761 CURVNET_SET(so->so_vnet); 762 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 763 CURVNET_RESTORE(); 764 return (error); 765 } 766 767 int 768 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 769 { 770 int error; 771 772 CURVNET_SET(so->so_vnet); 773 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 774 CURVNET_RESTORE(); 775 return (error); 776 } 777 778 /* 779 * solisten() transitions a socket from a non-listening state to a listening 780 * state, but can also be used to update the listen queue depth on an 781 * existing listen socket. The protocol will call back into the sockets 782 * layer using solisten_proto_check() and solisten_proto() to check and set 783 * socket-layer listen state. Call backs are used so that the protocol can 784 * acquire both protocol and socket layer locks in whatever order is required 785 * by the protocol. 786 * 787 * Protocol implementors are advised to hold the socket lock across the 788 * socket-layer test and set to avoid races at the socket layer. 789 */ 790 int 791 solisten(struct socket *so, int backlog, struct thread *td) 792 { 793 int error; 794 795 CURVNET_SET(so->so_vnet); 796 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 797 CURVNET_RESTORE(); 798 return (error); 799 } 800 801 int 802 solisten_proto_check(struct socket *so) 803 { 804 805 SOCK_LOCK_ASSERT(so); 806 807 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 808 SS_ISDISCONNECTING)) 809 return (EINVAL); 810 return (0); 811 } 812 813 void 814 solisten_proto(struct socket *so, int backlog) 815 { 816 int sbrcv_lowat, sbsnd_lowat; 817 u_int sbrcv_hiwat, sbsnd_hiwat; 818 short sbrcv_flags, sbsnd_flags; 819 sbintime_t sbrcv_timeo, sbsnd_timeo; 820 821 SOCK_LOCK_ASSERT(so); 822 823 if (SOLISTENING(so)) 824 goto listening; 825 826 /* 827 * Change this socket to listening state. 828 */ 829 sbrcv_lowat = so->so_rcv.sb_lowat; 830 sbsnd_lowat = so->so_snd.sb_lowat; 831 sbrcv_hiwat = so->so_rcv.sb_hiwat; 832 sbsnd_hiwat = so->so_snd.sb_hiwat; 833 sbrcv_flags = so->so_rcv.sb_flags; 834 sbsnd_flags = so->so_snd.sb_flags; 835 sbrcv_timeo = so->so_rcv.sb_timeo; 836 sbsnd_timeo = so->so_snd.sb_timeo; 837 838 sbdestroy(&so->so_snd, so); 839 sbdestroy(&so->so_rcv, so); 840 sx_destroy(&so->so_snd.sb_sx); 841 sx_destroy(&so->so_rcv.sb_sx); 842 SOCKBUF_LOCK_DESTROY(&so->so_snd); 843 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 844 845 #ifdef INVARIANTS 846 bzero(&so->so_rcv, 847 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 848 #endif 849 850 so->sol_sbrcv_lowat = sbrcv_lowat; 851 so->sol_sbsnd_lowat = sbsnd_lowat; 852 so->sol_sbrcv_hiwat = sbrcv_hiwat; 853 so->sol_sbsnd_hiwat = sbsnd_hiwat; 854 so->sol_sbrcv_flags = sbrcv_flags; 855 so->sol_sbsnd_flags = sbsnd_flags; 856 so->sol_sbrcv_timeo = sbrcv_timeo; 857 so->sol_sbsnd_timeo = sbsnd_timeo; 858 859 so->sol_qlen = so->sol_incqlen = 0; 860 TAILQ_INIT(&so->sol_incomp); 861 TAILQ_INIT(&so->sol_comp); 862 863 so->sol_accept_filter = NULL; 864 so->sol_accept_filter_arg = NULL; 865 so->sol_accept_filter_str = NULL; 866 867 so->sol_upcall = NULL; 868 so->sol_upcallarg = NULL; 869 870 so->so_options |= SO_ACCEPTCONN; 871 872 listening: 873 if (backlog < 0 || backlog > somaxconn) 874 backlog = somaxconn; 875 so->sol_qlimit = backlog; 876 } 877 878 /* 879 * Wakeup listeners/subsystems once we have a complete connection. 880 * Enters with lock, returns unlocked. 881 */ 882 void 883 solisten_wakeup(struct socket *sol) 884 { 885 886 if (sol->sol_upcall != NULL) 887 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 888 else { 889 selwakeuppri(&sol->so_rdsel, PSOCK); 890 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 891 } 892 SOLISTEN_UNLOCK(sol); 893 wakeup_one(&sol->sol_comp); 894 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 895 pgsigio(&sol->so_sigio, SIGIO, 0); 896 } 897 898 /* 899 * Return single connection off a listening socket queue. Main consumer of 900 * the function is kern_accept4(). Some modules, that do their own accept 901 * management also use the function. 902 * 903 * Listening socket must be locked on entry and is returned unlocked on 904 * return. 905 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 906 */ 907 int 908 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 909 { 910 struct socket *so; 911 int error; 912 913 SOLISTEN_LOCK_ASSERT(head); 914 915 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 916 head->so_error == 0) { 917 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, 918 "accept", 0); 919 if (error != 0) { 920 SOLISTEN_UNLOCK(head); 921 return (error); 922 } 923 } 924 if (head->so_error) { 925 error = head->so_error; 926 head->so_error = 0; 927 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 928 error = EWOULDBLOCK; 929 else 930 error = 0; 931 if (error) { 932 SOLISTEN_UNLOCK(head); 933 return (error); 934 } 935 so = TAILQ_FIRST(&head->sol_comp); 936 SOCK_LOCK(so); 937 KASSERT(so->so_qstate == SQ_COMP, 938 ("%s: so %p not SQ_COMP", __func__, so)); 939 soref(so); 940 head->sol_qlen--; 941 so->so_qstate = SQ_NONE; 942 so->so_listen = NULL; 943 TAILQ_REMOVE(&head->sol_comp, so, so_list); 944 if (flags & ACCEPT4_INHERIT) 945 so->so_state |= (head->so_state & SS_NBIO); 946 else 947 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 948 SOCK_UNLOCK(so); 949 sorele(head); 950 951 *ret = so; 952 return (0); 953 } 954 955 /* 956 * Evaluate the reference count and named references on a socket; if no 957 * references remain, free it. This should be called whenever a reference is 958 * released, such as in sorele(), but also when named reference flags are 959 * cleared in socket or protocol code. 960 * 961 * sofree() will free the socket if: 962 * 963 * - There are no outstanding file descriptor references or related consumers 964 * (so_count == 0). 965 * 966 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 967 * 968 * - The protocol does not have an outstanding strong reference on the socket 969 * (SS_PROTOREF). 970 * 971 * - The socket is not in a completed connection queue, so a process has been 972 * notified that it is present. If it is removed, the user process may 973 * block in accept() despite select() saying the socket was ready. 974 */ 975 void 976 sofree(struct socket *so) 977 { 978 struct protosw *pr = so->so_proto; 979 980 SOCK_LOCK_ASSERT(so); 981 982 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 983 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 984 SOCK_UNLOCK(so); 985 return; 986 } 987 988 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 989 struct socket *sol; 990 991 sol = so->so_listen; 992 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 993 994 /* 995 * To solve race between close of a listening socket and 996 * a socket on its incomplete queue, we need to lock both. 997 * The order is first listening socket, then regular. 998 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 999 * function and the listening socket are the only pointers 1000 * to so. To preserve so and sol, we reference both and then 1001 * relock. 1002 * After relock the socket may not move to so_comp since it 1003 * doesn't have PCB already, but it may be removed from 1004 * so_incomp. If that happens, we share responsiblity on 1005 * freeing the socket, but soclose() has already removed 1006 * it from queue. 1007 */ 1008 soref(sol); 1009 soref(so); 1010 SOCK_UNLOCK(so); 1011 SOLISTEN_LOCK(sol); 1012 SOCK_LOCK(so); 1013 if (so->so_qstate == SQ_INCOMP) { 1014 KASSERT(so->so_listen == sol, 1015 ("%s: so %p migrated out of sol %p", 1016 __func__, so, sol)); 1017 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1018 sol->sol_incqlen--; 1019 /* This is guarenteed not to be the last. */ 1020 refcount_release(&sol->so_count); 1021 so->so_qstate = SQ_NONE; 1022 so->so_listen = NULL; 1023 } else 1024 KASSERT(so->so_listen == NULL, 1025 ("%s: so %p not on (in)comp with so_listen", 1026 __func__, so)); 1027 sorele(sol); 1028 KASSERT(so->so_count == 1, 1029 ("%s: so %p count %u", __func__, so, so->so_count)); 1030 so->so_count = 0; 1031 } 1032 if (SOLISTENING(so)) 1033 so->so_error = ECONNABORTED; 1034 SOCK_UNLOCK(so); 1035 1036 if (so->so_dtor != NULL) 1037 so->so_dtor(so); 1038 1039 VNET_SO_ASSERT(so); 1040 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1041 (*pr->pr_domain->dom_dispose)(so); 1042 if (pr->pr_usrreqs->pru_detach != NULL) 1043 (*pr->pr_usrreqs->pru_detach)(so); 1044 1045 /* 1046 * From this point on, we assume that no other references to this 1047 * socket exist anywhere else in the stack. Therefore, no locks need 1048 * to be acquired or held. 1049 * 1050 * We used to do a lot of socket buffer and socket locking here, as 1051 * well as invoke sorflush() and perform wakeups. The direct call to 1052 * dom_dispose() and sbdestroy() are an inlining of what was 1053 * necessary from sorflush(). 1054 * 1055 * Notice that the socket buffer and kqueue state are torn down 1056 * before calling pru_detach. This means that protocols shold not 1057 * assume they can perform socket wakeups, etc, in their detach code. 1058 */ 1059 if (!SOLISTENING(so)) { 1060 sbdestroy(&so->so_snd, so); 1061 sbdestroy(&so->so_rcv, so); 1062 } 1063 seldrain(&so->so_rdsel); 1064 seldrain(&so->so_wrsel); 1065 knlist_destroy(&so->so_rdsel.si_note); 1066 knlist_destroy(&so->so_wrsel.si_note); 1067 sodealloc(so); 1068 } 1069 1070 /* 1071 * Close a socket on last file table reference removal. Initiate disconnect 1072 * if connected. Free socket when disconnect complete. 1073 * 1074 * This function will sorele() the socket. Note that soclose() may be called 1075 * prior to the ref count reaching zero. The actual socket structure will 1076 * not be freed until the ref count reaches zero. 1077 */ 1078 int 1079 soclose(struct socket *so) 1080 { 1081 struct accept_queue lqueue; 1082 bool listening; 1083 int error = 0; 1084 1085 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1086 1087 CURVNET_SET(so->so_vnet); 1088 funsetown(&so->so_sigio); 1089 if (so->so_state & SS_ISCONNECTED) { 1090 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1091 error = sodisconnect(so); 1092 if (error) { 1093 if (error == ENOTCONN) 1094 error = 0; 1095 goto drop; 1096 } 1097 } 1098 if (so->so_options & SO_LINGER) { 1099 if ((so->so_state & SS_ISDISCONNECTING) && 1100 (so->so_state & SS_NBIO)) 1101 goto drop; 1102 while (so->so_state & SS_ISCONNECTED) { 1103 error = tsleep(&so->so_timeo, 1104 PSOCK | PCATCH, "soclos", 1105 so->so_linger * hz); 1106 if (error) 1107 break; 1108 } 1109 } 1110 } 1111 1112 drop: 1113 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1114 (*so->so_proto->pr_usrreqs->pru_close)(so); 1115 1116 SOCK_LOCK(so); 1117 if ((listening = (so->so_options & SO_ACCEPTCONN))) { 1118 struct socket *sp; 1119 1120 TAILQ_INIT(&lqueue); 1121 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1122 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1123 1124 so->sol_qlen = so->sol_incqlen = 0; 1125 1126 TAILQ_FOREACH(sp, &lqueue, so_list) { 1127 SOCK_LOCK(sp); 1128 sp->so_qstate = SQ_NONE; 1129 sp->so_listen = NULL; 1130 SOCK_UNLOCK(sp); 1131 /* Guaranteed not to be the last. */ 1132 refcount_release(&so->so_count); 1133 } 1134 } 1135 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1136 so->so_state |= SS_NOFDREF; 1137 sorele(so); 1138 if (listening) { 1139 struct socket *sp, *tsp; 1140 1141 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1142 SOCK_LOCK(sp); 1143 if (sp->so_count == 0) { 1144 SOCK_UNLOCK(sp); 1145 soabort(sp); 1146 } else 1147 /* sp is now in sofree() */ 1148 SOCK_UNLOCK(sp); 1149 } 1150 } 1151 CURVNET_RESTORE(); 1152 return (error); 1153 } 1154 1155 /* 1156 * soabort() is used to abruptly tear down a connection, such as when a 1157 * resource limit is reached (listen queue depth exceeded), or if a listen 1158 * socket is closed while there are sockets waiting to be accepted. 1159 * 1160 * This interface is tricky, because it is called on an unreferenced socket, 1161 * and must be called only by a thread that has actually removed the socket 1162 * from the listen queue it was on, or races with other threads are risked. 1163 * 1164 * This interface will call into the protocol code, so must not be called 1165 * with any socket locks held. Protocols do call it while holding their own 1166 * recursible protocol mutexes, but this is something that should be subject 1167 * to review in the future. 1168 */ 1169 void 1170 soabort(struct socket *so) 1171 { 1172 1173 /* 1174 * In as much as is possible, assert that no references to this 1175 * socket are held. This is not quite the same as asserting that the 1176 * current thread is responsible for arranging for no references, but 1177 * is as close as we can get for now. 1178 */ 1179 KASSERT(so->so_count == 0, ("soabort: so_count")); 1180 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1181 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1182 VNET_SO_ASSERT(so); 1183 1184 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1185 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1186 SOCK_LOCK(so); 1187 sofree(so); 1188 } 1189 1190 int 1191 soaccept(struct socket *so, struct sockaddr **nam) 1192 { 1193 int error; 1194 1195 SOCK_LOCK(so); 1196 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1197 so->so_state &= ~SS_NOFDREF; 1198 SOCK_UNLOCK(so); 1199 1200 CURVNET_SET(so->so_vnet); 1201 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1202 CURVNET_RESTORE(); 1203 return (error); 1204 } 1205 1206 int 1207 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1208 { 1209 1210 return (soconnectat(AT_FDCWD, so, nam, td)); 1211 } 1212 1213 int 1214 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1215 { 1216 int error; 1217 1218 if (so->so_options & SO_ACCEPTCONN) 1219 return (EOPNOTSUPP); 1220 1221 CURVNET_SET(so->so_vnet); 1222 /* 1223 * If protocol is connection-based, can only connect once. 1224 * Otherwise, if connected, try to disconnect first. This allows 1225 * user to disconnect by connecting to, e.g., a null address. 1226 */ 1227 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1228 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1229 (error = sodisconnect(so)))) { 1230 error = EISCONN; 1231 } else { 1232 /* 1233 * Prevent accumulated error from previous connection from 1234 * biting us. 1235 */ 1236 so->so_error = 0; 1237 if (fd == AT_FDCWD) { 1238 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1239 nam, td); 1240 } else { 1241 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1242 so, nam, td); 1243 } 1244 } 1245 CURVNET_RESTORE(); 1246 1247 return (error); 1248 } 1249 1250 int 1251 soconnect2(struct socket *so1, struct socket *so2) 1252 { 1253 int error; 1254 1255 CURVNET_SET(so1->so_vnet); 1256 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1257 CURVNET_RESTORE(); 1258 return (error); 1259 } 1260 1261 int 1262 sodisconnect(struct socket *so) 1263 { 1264 int error; 1265 1266 if ((so->so_state & SS_ISCONNECTED) == 0) 1267 return (ENOTCONN); 1268 if (so->so_state & SS_ISDISCONNECTING) 1269 return (EALREADY); 1270 VNET_SO_ASSERT(so); 1271 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1272 return (error); 1273 } 1274 1275 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1276 1277 int 1278 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1279 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1280 { 1281 long space; 1282 ssize_t resid; 1283 int clen = 0, error, dontroute; 1284 1285 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1286 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1287 ("sosend_dgram: !PR_ATOMIC")); 1288 1289 if (uio != NULL) 1290 resid = uio->uio_resid; 1291 else 1292 resid = top->m_pkthdr.len; 1293 /* 1294 * In theory resid should be unsigned. However, space must be 1295 * signed, as it might be less than 0 if we over-committed, and we 1296 * must use a signed comparison of space and resid. On the other 1297 * hand, a negative resid causes us to loop sending 0-length 1298 * segments to the protocol. 1299 */ 1300 if (resid < 0) { 1301 error = EINVAL; 1302 goto out; 1303 } 1304 1305 dontroute = 1306 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1307 if (td != NULL) 1308 td->td_ru.ru_msgsnd++; 1309 if (control != NULL) 1310 clen = control->m_len; 1311 1312 SOCKBUF_LOCK(&so->so_snd); 1313 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1314 SOCKBUF_UNLOCK(&so->so_snd); 1315 error = EPIPE; 1316 goto out; 1317 } 1318 if (so->so_error) { 1319 error = so->so_error; 1320 so->so_error = 0; 1321 SOCKBUF_UNLOCK(&so->so_snd); 1322 goto out; 1323 } 1324 if ((so->so_state & SS_ISCONNECTED) == 0) { 1325 /* 1326 * `sendto' and `sendmsg' is allowed on a connection-based 1327 * socket if it supports implied connect. Return ENOTCONN if 1328 * not connected and no address is supplied. 1329 */ 1330 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1331 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1332 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1333 !(resid == 0 && clen != 0)) { 1334 SOCKBUF_UNLOCK(&so->so_snd); 1335 error = ENOTCONN; 1336 goto out; 1337 } 1338 } else if (addr == NULL) { 1339 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1340 error = ENOTCONN; 1341 else 1342 error = EDESTADDRREQ; 1343 SOCKBUF_UNLOCK(&so->so_snd); 1344 goto out; 1345 } 1346 } 1347 1348 /* 1349 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1350 * problem and need fixing. 1351 */ 1352 space = sbspace(&so->so_snd); 1353 if (flags & MSG_OOB) 1354 space += 1024; 1355 space -= clen; 1356 SOCKBUF_UNLOCK(&so->so_snd); 1357 if (resid > space) { 1358 error = EMSGSIZE; 1359 goto out; 1360 } 1361 if (uio == NULL) { 1362 resid = 0; 1363 if (flags & MSG_EOR) 1364 top->m_flags |= M_EOR; 1365 } else { 1366 /* 1367 * Copy the data from userland into a mbuf chain. 1368 * If no data is to be copied in, a single empty mbuf 1369 * is returned. 1370 */ 1371 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1372 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1373 if (top == NULL) { 1374 error = EFAULT; /* only possible error */ 1375 goto out; 1376 } 1377 space -= resid - uio->uio_resid; 1378 resid = uio->uio_resid; 1379 } 1380 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1381 /* 1382 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1383 * than with. 1384 */ 1385 if (dontroute) { 1386 SOCK_LOCK(so); 1387 so->so_options |= SO_DONTROUTE; 1388 SOCK_UNLOCK(so); 1389 } 1390 /* 1391 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1392 * of date. We could have received a reset packet in an interrupt or 1393 * maybe we slept while doing page faults in uiomove() etc. We could 1394 * probably recheck again inside the locking protection here, but 1395 * there are probably other places that this also happens. We must 1396 * rethink this. 1397 */ 1398 VNET_SO_ASSERT(so); 1399 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1400 (flags & MSG_OOB) ? PRUS_OOB : 1401 /* 1402 * If the user set MSG_EOF, the protocol understands this flag and 1403 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1404 */ 1405 ((flags & MSG_EOF) && 1406 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1407 (resid <= 0)) ? 1408 PRUS_EOF : 1409 /* If there is more to send set PRUS_MORETOCOME */ 1410 (flags & MSG_MORETOCOME) || 1411 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1412 top, addr, control, td); 1413 if (dontroute) { 1414 SOCK_LOCK(so); 1415 so->so_options &= ~SO_DONTROUTE; 1416 SOCK_UNLOCK(so); 1417 } 1418 clen = 0; 1419 control = NULL; 1420 top = NULL; 1421 out: 1422 if (top != NULL) 1423 m_freem(top); 1424 if (control != NULL) 1425 m_freem(control); 1426 return (error); 1427 } 1428 1429 /* 1430 * Send on a socket. If send must go all at once and message is larger than 1431 * send buffering, then hard error. Lock against other senders. If must go 1432 * all at once and not enough room now, then inform user that this would 1433 * block and do nothing. Otherwise, if nonblocking, send as much as 1434 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1435 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1436 * in mbuf chain must be small enough to send all at once. 1437 * 1438 * Returns nonzero on error, timeout or signal; callers must check for short 1439 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1440 * on return. 1441 */ 1442 int 1443 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1444 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1445 { 1446 long space; 1447 ssize_t resid; 1448 int clen = 0, error, dontroute; 1449 int atomic = sosendallatonce(so) || top; 1450 int pru_flag; 1451 #ifdef KERN_TLS 1452 struct ktls_session *tls; 1453 int tls_enq_cnt, tls_pruflag; 1454 uint8_t tls_rtype; 1455 1456 tls = NULL; 1457 tls_rtype = TLS_RLTYPE_APP; 1458 #endif 1459 if (uio != NULL) 1460 resid = uio->uio_resid; 1461 else 1462 resid = top->m_pkthdr.len; 1463 /* 1464 * In theory resid should be unsigned. However, space must be 1465 * signed, as it might be less than 0 if we over-committed, and we 1466 * must use a signed comparison of space and resid. On the other 1467 * hand, a negative resid causes us to loop sending 0-length 1468 * segments to the protocol. 1469 * 1470 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1471 * type sockets since that's an error. 1472 */ 1473 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1474 error = EINVAL; 1475 goto out; 1476 } 1477 1478 dontroute = 1479 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1480 (so->so_proto->pr_flags & PR_ATOMIC); 1481 if (td != NULL) 1482 td->td_ru.ru_msgsnd++; 1483 if (control != NULL) 1484 clen = control->m_len; 1485 1486 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1487 if (error) 1488 goto out; 1489 1490 #ifdef KERN_TLS 1491 tls_pruflag = 0; 1492 tls = ktls_hold(so->so_snd.sb_tls_info); 1493 if (tls != NULL) { 1494 if (tls->sw_encrypt != NULL) 1495 tls_pruflag = PRUS_NOTREADY; 1496 1497 if (control != NULL) { 1498 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1499 1500 if (clen >= sizeof(*cm) && 1501 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1502 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1503 clen = 0; 1504 m_freem(control); 1505 control = NULL; 1506 atomic = 1; 1507 } 1508 } 1509 } 1510 #endif 1511 1512 restart: 1513 do { 1514 SOCKBUF_LOCK(&so->so_snd); 1515 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1516 SOCKBUF_UNLOCK(&so->so_snd); 1517 error = EPIPE; 1518 goto release; 1519 } 1520 if (so->so_error) { 1521 error = so->so_error; 1522 so->so_error = 0; 1523 SOCKBUF_UNLOCK(&so->so_snd); 1524 goto release; 1525 } 1526 if ((so->so_state & SS_ISCONNECTED) == 0) { 1527 /* 1528 * `sendto' and `sendmsg' is allowed on a connection- 1529 * based socket if it supports implied connect. 1530 * Return ENOTCONN if not connected and no address is 1531 * supplied. 1532 */ 1533 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1534 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1535 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1536 !(resid == 0 && clen != 0)) { 1537 SOCKBUF_UNLOCK(&so->so_snd); 1538 error = ENOTCONN; 1539 goto release; 1540 } 1541 } else if (addr == NULL) { 1542 SOCKBUF_UNLOCK(&so->so_snd); 1543 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1544 error = ENOTCONN; 1545 else 1546 error = EDESTADDRREQ; 1547 goto release; 1548 } 1549 } 1550 space = sbspace(&so->so_snd); 1551 if (flags & MSG_OOB) 1552 space += 1024; 1553 if ((atomic && resid > so->so_snd.sb_hiwat) || 1554 clen > so->so_snd.sb_hiwat) { 1555 SOCKBUF_UNLOCK(&so->so_snd); 1556 error = EMSGSIZE; 1557 goto release; 1558 } 1559 if (space < resid + clen && 1560 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1561 if ((so->so_state & SS_NBIO) || 1562 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1563 SOCKBUF_UNLOCK(&so->so_snd); 1564 error = EWOULDBLOCK; 1565 goto release; 1566 } 1567 error = sbwait(&so->so_snd); 1568 SOCKBUF_UNLOCK(&so->so_snd); 1569 if (error) 1570 goto release; 1571 goto restart; 1572 } 1573 SOCKBUF_UNLOCK(&so->so_snd); 1574 space -= clen; 1575 do { 1576 if (uio == NULL) { 1577 resid = 0; 1578 if (flags & MSG_EOR) 1579 top->m_flags |= M_EOR; 1580 } else { 1581 /* 1582 * Copy the data from userland into a mbuf 1583 * chain. If resid is 0, which can happen 1584 * only if we have control to send, then 1585 * a single empty mbuf is returned. This 1586 * is a workaround to prevent protocol send 1587 * methods to panic. 1588 */ 1589 #ifdef KERN_TLS 1590 if (tls != NULL) { 1591 top = m_uiotombuf(uio, M_WAITOK, space, 1592 tls->params.max_frame_len, 1593 M_NOMAP | 1594 ((flags & MSG_EOR) ? M_EOR : 0)); 1595 if (top != NULL) { 1596 error = ktls_frame(top, tls, 1597 &tls_enq_cnt, tls_rtype); 1598 if (error) { 1599 m_freem(top); 1600 goto release; 1601 } 1602 } 1603 tls_rtype = TLS_RLTYPE_APP; 1604 } else 1605 #endif 1606 top = m_uiotombuf(uio, M_WAITOK, space, 1607 (atomic ? max_hdr : 0), 1608 (atomic ? M_PKTHDR : 0) | 1609 ((flags & MSG_EOR) ? M_EOR : 0)); 1610 if (top == NULL) { 1611 error = EFAULT; /* only possible error */ 1612 goto release; 1613 } 1614 space -= resid - uio->uio_resid; 1615 resid = uio->uio_resid; 1616 } 1617 if (dontroute) { 1618 SOCK_LOCK(so); 1619 so->so_options |= SO_DONTROUTE; 1620 SOCK_UNLOCK(so); 1621 } 1622 /* 1623 * XXX all the SBS_CANTSENDMORE checks previously 1624 * done could be out of date. We could have received 1625 * a reset packet in an interrupt or maybe we slept 1626 * while doing page faults in uiomove() etc. We 1627 * could probably recheck again inside the locking 1628 * protection here, but there are probably other 1629 * places that this also happens. We must rethink 1630 * this. 1631 */ 1632 VNET_SO_ASSERT(so); 1633 1634 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1635 /* 1636 * If the user set MSG_EOF, the protocol understands 1637 * this flag and nothing left to send then use 1638 * PRU_SEND_EOF instead of PRU_SEND. 1639 */ 1640 ((flags & MSG_EOF) && 1641 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1642 (resid <= 0)) ? 1643 PRUS_EOF : 1644 /* If there is more to send set PRUS_MORETOCOME. */ 1645 (flags & MSG_MORETOCOME) || 1646 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1647 1648 #ifdef KERN_TLS 1649 pru_flag |= tls_pruflag; 1650 #endif 1651 1652 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1653 pru_flag, top, addr, control, td); 1654 1655 if (dontroute) { 1656 SOCK_LOCK(so); 1657 so->so_options &= ~SO_DONTROUTE; 1658 SOCK_UNLOCK(so); 1659 } 1660 1661 #ifdef KERN_TLS 1662 if (tls != NULL && tls->sw_encrypt != NULL) { 1663 /* 1664 * Note that error is intentionally 1665 * ignored. 1666 * 1667 * Like sendfile(), we rely on the 1668 * completion routine (pru_ready()) 1669 * to free the mbufs in the event that 1670 * pru_send() encountered an error and 1671 * did not append them to the sockbuf. 1672 */ 1673 soref(so); 1674 ktls_enqueue(top, so, tls_enq_cnt); 1675 } 1676 #endif 1677 clen = 0; 1678 control = NULL; 1679 top = NULL; 1680 if (error) 1681 goto release; 1682 } while (resid && space > 0); 1683 } while (resid); 1684 1685 release: 1686 sbunlock(&so->so_snd); 1687 out: 1688 #ifdef KERN_TLS 1689 if (tls != NULL) 1690 ktls_free(tls); 1691 #endif 1692 if (top != NULL) 1693 m_freem(top); 1694 if (control != NULL) 1695 m_freem(control); 1696 return (error); 1697 } 1698 1699 int 1700 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1701 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1702 { 1703 int error; 1704 1705 CURVNET_SET(so->so_vnet); 1706 if (!SOLISTENING(so)) 1707 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1708 top, control, flags, td); 1709 else { 1710 m_freem(top); 1711 m_freem(control); 1712 error = ENOTCONN; 1713 } 1714 CURVNET_RESTORE(); 1715 return (error); 1716 } 1717 1718 /* 1719 * The part of soreceive() that implements reading non-inline out-of-band 1720 * data from a socket. For more complete comments, see soreceive(), from 1721 * which this code originated. 1722 * 1723 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1724 * unable to return an mbuf chain to the caller. 1725 */ 1726 static int 1727 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1728 { 1729 struct protosw *pr = so->so_proto; 1730 struct mbuf *m; 1731 int error; 1732 1733 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1734 VNET_SO_ASSERT(so); 1735 1736 m = m_get(M_WAITOK, MT_DATA); 1737 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1738 if (error) 1739 goto bad; 1740 do { 1741 error = uiomove(mtod(m, void *), 1742 (int) min(uio->uio_resid, m->m_len), uio); 1743 m = m_free(m); 1744 } while (uio->uio_resid && error == 0 && m); 1745 bad: 1746 if (m != NULL) 1747 m_freem(m); 1748 return (error); 1749 } 1750 1751 /* 1752 * Following replacement or removal of the first mbuf on the first mbuf chain 1753 * of a socket buffer, push necessary state changes back into the socket 1754 * buffer so that other consumers see the values consistently. 'nextrecord' 1755 * is the callers locally stored value of the original value of 1756 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1757 * NOTE: 'nextrecord' may be NULL. 1758 */ 1759 static __inline void 1760 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1761 { 1762 1763 SOCKBUF_LOCK_ASSERT(sb); 1764 /* 1765 * First, update for the new value of nextrecord. If necessary, make 1766 * it the first record. 1767 */ 1768 if (sb->sb_mb != NULL) 1769 sb->sb_mb->m_nextpkt = nextrecord; 1770 else 1771 sb->sb_mb = nextrecord; 1772 1773 /* 1774 * Now update any dependent socket buffer fields to reflect the new 1775 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1776 * addition of a second clause that takes care of the case where 1777 * sb_mb has been updated, but remains the last record. 1778 */ 1779 if (sb->sb_mb == NULL) { 1780 sb->sb_mbtail = NULL; 1781 sb->sb_lastrecord = NULL; 1782 } else if (sb->sb_mb->m_nextpkt == NULL) 1783 sb->sb_lastrecord = sb->sb_mb; 1784 } 1785 1786 /* 1787 * Implement receive operations on a socket. We depend on the way that 1788 * records are added to the sockbuf by sbappend. In particular, each record 1789 * (mbufs linked through m_next) must begin with an address if the protocol 1790 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1791 * data, and then zero or more mbufs of data. In order to allow parallelism 1792 * between network receive and copying to user space, as well as avoid 1793 * sleeping with a mutex held, we release the socket buffer mutex during the 1794 * user space copy. Although the sockbuf is locked, new data may still be 1795 * appended, and thus we must maintain consistency of the sockbuf during that 1796 * time. 1797 * 1798 * The caller may receive the data as a single mbuf chain by supplying an 1799 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1800 * the count in uio_resid. 1801 */ 1802 int 1803 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1804 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1805 { 1806 struct mbuf *m, **mp; 1807 int flags, error, offset; 1808 ssize_t len; 1809 struct protosw *pr = so->so_proto; 1810 struct mbuf *nextrecord; 1811 int moff, type = 0; 1812 ssize_t orig_resid = uio->uio_resid; 1813 1814 mp = mp0; 1815 if (psa != NULL) 1816 *psa = NULL; 1817 if (controlp != NULL) 1818 *controlp = NULL; 1819 if (flagsp != NULL) 1820 flags = *flagsp &~ MSG_EOR; 1821 else 1822 flags = 0; 1823 if (flags & MSG_OOB) 1824 return (soreceive_rcvoob(so, uio, flags)); 1825 if (mp != NULL) 1826 *mp = NULL; 1827 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1828 && uio->uio_resid) { 1829 VNET_SO_ASSERT(so); 1830 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1831 } 1832 1833 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1834 if (error) 1835 return (error); 1836 1837 restart: 1838 SOCKBUF_LOCK(&so->so_rcv); 1839 m = so->so_rcv.sb_mb; 1840 /* 1841 * If we have less data than requested, block awaiting more (subject 1842 * to any timeout) if: 1843 * 1. the current count is less than the low water mark, or 1844 * 2. MSG_DONTWAIT is not set 1845 */ 1846 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1847 sbavail(&so->so_rcv) < uio->uio_resid) && 1848 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1849 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1850 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1851 ("receive: m == %p sbavail == %u", 1852 m, sbavail(&so->so_rcv))); 1853 if (so->so_error) { 1854 if (m != NULL) 1855 goto dontblock; 1856 error = so->so_error; 1857 if ((flags & MSG_PEEK) == 0) 1858 so->so_error = 0; 1859 SOCKBUF_UNLOCK(&so->so_rcv); 1860 goto release; 1861 } 1862 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1863 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1864 if (m == NULL) { 1865 SOCKBUF_UNLOCK(&so->so_rcv); 1866 goto release; 1867 } else 1868 goto dontblock; 1869 } 1870 for (; m != NULL; m = m->m_next) 1871 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1872 m = so->so_rcv.sb_mb; 1873 goto dontblock; 1874 } 1875 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1876 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1877 SOCKBUF_UNLOCK(&so->so_rcv); 1878 error = ENOTCONN; 1879 goto release; 1880 } 1881 if (uio->uio_resid == 0) { 1882 SOCKBUF_UNLOCK(&so->so_rcv); 1883 goto release; 1884 } 1885 if ((so->so_state & SS_NBIO) || 1886 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1887 SOCKBUF_UNLOCK(&so->so_rcv); 1888 error = EWOULDBLOCK; 1889 goto release; 1890 } 1891 SBLASTRECORDCHK(&so->so_rcv); 1892 SBLASTMBUFCHK(&so->so_rcv); 1893 error = sbwait(&so->so_rcv); 1894 SOCKBUF_UNLOCK(&so->so_rcv); 1895 if (error) 1896 goto release; 1897 goto restart; 1898 } 1899 dontblock: 1900 /* 1901 * From this point onward, we maintain 'nextrecord' as a cache of the 1902 * pointer to the next record in the socket buffer. We must keep the 1903 * various socket buffer pointers and local stack versions of the 1904 * pointers in sync, pushing out modifications before dropping the 1905 * socket buffer mutex, and re-reading them when picking it up. 1906 * 1907 * Otherwise, we will race with the network stack appending new data 1908 * or records onto the socket buffer by using inconsistent/stale 1909 * versions of the field, possibly resulting in socket buffer 1910 * corruption. 1911 * 1912 * By holding the high-level sblock(), we prevent simultaneous 1913 * readers from pulling off the front of the socket buffer. 1914 */ 1915 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1916 if (uio->uio_td) 1917 uio->uio_td->td_ru.ru_msgrcv++; 1918 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1919 SBLASTRECORDCHK(&so->so_rcv); 1920 SBLASTMBUFCHK(&so->so_rcv); 1921 nextrecord = m->m_nextpkt; 1922 if (pr->pr_flags & PR_ADDR) { 1923 KASSERT(m->m_type == MT_SONAME, 1924 ("m->m_type == %d", m->m_type)); 1925 orig_resid = 0; 1926 if (psa != NULL) 1927 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1928 M_NOWAIT); 1929 if (flags & MSG_PEEK) { 1930 m = m->m_next; 1931 } else { 1932 sbfree(&so->so_rcv, m); 1933 so->so_rcv.sb_mb = m_free(m); 1934 m = so->so_rcv.sb_mb; 1935 sockbuf_pushsync(&so->so_rcv, nextrecord); 1936 } 1937 } 1938 1939 /* 1940 * Process one or more MT_CONTROL mbufs present before any data mbufs 1941 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1942 * just copy the data; if !MSG_PEEK, we call into the protocol to 1943 * perform externalization (or freeing if controlp == NULL). 1944 */ 1945 if (m != NULL && m->m_type == MT_CONTROL) { 1946 struct mbuf *cm = NULL, *cmn; 1947 struct mbuf **cme = &cm; 1948 1949 do { 1950 if (flags & MSG_PEEK) { 1951 if (controlp != NULL) { 1952 *controlp = m_copym(m, 0, m->m_len, 1953 M_NOWAIT); 1954 controlp = &(*controlp)->m_next; 1955 } 1956 m = m->m_next; 1957 } else { 1958 sbfree(&so->so_rcv, m); 1959 so->so_rcv.sb_mb = m->m_next; 1960 m->m_next = NULL; 1961 *cme = m; 1962 cme = &(*cme)->m_next; 1963 m = so->so_rcv.sb_mb; 1964 } 1965 } while (m != NULL && m->m_type == MT_CONTROL); 1966 if ((flags & MSG_PEEK) == 0) 1967 sockbuf_pushsync(&so->so_rcv, nextrecord); 1968 while (cm != NULL) { 1969 cmn = cm->m_next; 1970 cm->m_next = NULL; 1971 if (pr->pr_domain->dom_externalize != NULL) { 1972 SOCKBUF_UNLOCK(&so->so_rcv); 1973 VNET_SO_ASSERT(so); 1974 error = (*pr->pr_domain->dom_externalize) 1975 (cm, controlp, flags); 1976 SOCKBUF_LOCK(&so->so_rcv); 1977 } else if (controlp != NULL) 1978 *controlp = cm; 1979 else 1980 m_freem(cm); 1981 if (controlp != NULL) { 1982 orig_resid = 0; 1983 while (*controlp != NULL) 1984 controlp = &(*controlp)->m_next; 1985 } 1986 cm = cmn; 1987 } 1988 if (m != NULL) 1989 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1990 else 1991 nextrecord = so->so_rcv.sb_mb; 1992 orig_resid = 0; 1993 } 1994 if (m != NULL) { 1995 if ((flags & MSG_PEEK) == 0) { 1996 KASSERT(m->m_nextpkt == nextrecord, 1997 ("soreceive: post-control, nextrecord !sync")); 1998 if (nextrecord == NULL) { 1999 KASSERT(so->so_rcv.sb_mb == m, 2000 ("soreceive: post-control, sb_mb!=m")); 2001 KASSERT(so->so_rcv.sb_lastrecord == m, 2002 ("soreceive: post-control, lastrecord!=m")); 2003 } 2004 } 2005 type = m->m_type; 2006 if (type == MT_OOBDATA) 2007 flags |= MSG_OOB; 2008 } else { 2009 if ((flags & MSG_PEEK) == 0) { 2010 KASSERT(so->so_rcv.sb_mb == nextrecord, 2011 ("soreceive: sb_mb != nextrecord")); 2012 if (so->so_rcv.sb_mb == NULL) { 2013 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2014 ("soreceive: sb_lastercord != NULL")); 2015 } 2016 } 2017 } 2018 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2019 SBLASTRECORDCHK(&so->so_rcv); 2020 SBLASTMBUFCHK(&so->so_rcv); 2021 2022 /* 2023 * Now continue to read any data mbufs off of the head of the socket 2024 * buffer until the read request is satisfied. Note that 'type' is 2025 * used to store the type of any mbuf reads that have happened so far 2026 * such that soreceive() can stop reading if the type changes, which 2027 * causes soreceive() to return only one of regular data and inline 2028 * out-of-band data in a single socket receive operation. 2029 */ 2030 moff = 0; 2031 offset = 0; 2032 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2033 && error == 0) { 2034 /* 2035 * If the type of mbuf has changed since the last mbuf 2036 * examined ('type'), end the receive operation. 2037 */ 2038 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2039 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2040 if (type != m->m_type) 2041 break; 2042 } else if (type == MT_OOBDATA) 2043 break; 2044 else 2045 KASSERT(m->m_type == MT_DATA, 2046 ("m->m_type == %d", m->m_type)); 2047 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2048 len = uio->uio_resid; 2049 if (so->so_oobmark && len > so->so_oobmark - offset) 2050 len = so->so_oobmark - offset; 2051 if (len > m->m_len - moff) 2052 len = m->m_len - moff; 2053 /* 2054 * If mp is set, just pass back the mbufs. Otherwise copy 2055 * them out via the uio, then free. Sockbuf must be 2056 * consistent here (points to current mbuf, it points to next 2057 * record) when we drop priority; we must note any additions 2058 * to the sockbuf when we block interrupts again. 2059 */ 2060 if (mp == NULL) { 2061 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2062 SBLASTRECORDCHK(&so->so_rcv); 2063 SBLASTMBUFCHK(&so->so_rcv); 2064 SOCKBUF_UNLOCK(&so->so_rcv); 2065 if ((m->m_flags & M_NOMAP) != 0) 2066 error = m_unmappedtouio(m, moff, uio, (int)len); 2067 else 2068 error = uiomove(mtod(m, char *) + moff, 2069 (int)len, uio); 2070 SOCKBUF_LOCK(&so->so_rcv); 2071 if (error) { 2072 /* 2073 * The MT_SONAME mbuf has already been removed 2074 * from the record, so it is necessary to 2075 * remove the data mbufs, if any, to preserve 2076 * the invariant in the case of PR_ADDR that 2077 * requires MT_SONAME mbufs at the head of 2078 * each record. 2079 */ 2080 if (pr->pr_flags & PR_ATOMIC && 2081 ((flags & MSG_PEEK) == 0)) 2082 (void)sbdroprecord_locked(&so->so_rcv); 2083 SOCKBUF_UNLOCK(&so->so_rcv); 2084 goto release; 2085 } 2086 } else 2087 uio->uio_resid -= len; 2088 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2089 if (len == m->m_len - moff) { 2090 if (m->m_flags & M_EOR) 2091 flags |= MSG_EOR; 2092 if (flags & MSG_PEEK) { 2093 m = m->m_next; 2094 moff = 0; 2095 } else { 2096 nextrecord = m->m_nextpkt; 2097 sbfree(&so->so_rcv, m); 2098 if (mp != NULL) { 2099 m->m_nextpkt = NULL; 2100 *mp = m; 2101 mp = &m->m_next; 2102 so->so_rcv.sb_mb = m = m->m_next; 2103 *mp = NULL; 2104 } else { 2105 so->so_rcv.sb_mb = m_free(m); 2106 m = so->so_rcv.sb_mb; 2107 } 2108 sockbuf_pushsync(&so->so_rcv, nextrecord); 2109 SBLASTRECORDCHK(&so->so_rcv); 2110 SBLASTMBUFCHK(&so->so_rcv); 2111 } 2112 } else { 2113 if (flags & MSG_PEEK) 2114 moff += len; 2115 else { 2116 if (mp != NULL) { 2117 if (flags & MSG_DONTWAIT) { 2118 *mp = m_copym(m, 0, len, 2119 M_NOWAIT); 2120 if (*mp == NULL) { 2121 /* 2122 * m_copym() couldn't 2123 * allocate an mbuf. 2124 * Adjust uio_resid back 2125 * (it was adjusted 2126 * down by len bytes, 2127 * which we didn't end 2128 * up "copying" over). 2129 */ 2130 uio->uio_resid += len; 2131 break; 2132 } 2133 } else { 2134 SOCKBUF_UNLOCK(&so->so_rcv); 2135 *mp = m_copym(m, 0, len, 2136 M_WAITOK); 2137 SOCKBUF_LOCK(&so->so_rcv); 2138 } 2139 } 2140 sbcut_locked(&so->so_rcv, len); 2141 } 2142 } 2143 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2144 if (so->so_oobmark) { 2145 if ((flags & MSG_PEEK) == 0) { 2146 so->so_oobmark -= len; 2147 if (so->so_oobmark == 0) { 2148 so->so_rcv.sb_state |= SBS_RCVATMARK; 2149 break; 2150 } 2151 } else { 2152 offset += len; 2153 if (offset == so->so_oobmark) 2154 break; 2155 } 2156 } 2157 if (flags & MSG_EOR) 2158 break; 2159 /* 2160 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2161 * must not quit until "uio->uio_resid == 0" or an error 2162 * termination. If a signal/timeout occurs, return with a 2163 * short count but without error. Keep sockbuf locked 2164 * against other readers. 2165 */ 2166 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2167 !sosendallatonce(so) && nextrecord == NULL) { 2168 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2169 if (so->so_error || 2170 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2171 break; 2172 /* 2173 * Notify the protocol that some data has been 2174 * drained before blocking. 2175 */ 2176 if (pr->pr_flags & PR_WANTRCVD) { 2177 SOCKBUF_UNLOCK(&so->so_rcv); 2178 VNET_SO_ASSERT(so); 2179 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2180 SOCKBUF_LOCK(&so->so_rcv); 2181 } 2182 SBLASTRECORDCHK(&so->so_rcv); 2183 SBLASTMBUFCHK(&so->so_rcv); 2184 /* 2185 * We could receive some data while was notifying 2186 * the protocol. Skip blocking in this case. 2187 */ 2188 if (so->so_rcv.sb_mb == NULL) { 2189 error = sbwait(&so->so_rcv); 2190 if (error) { 2191 SOCKBUF_UNLOCK(&so->so_rcv); 2192 goto release; 2193 } 2194 } 2195 m = so->so_rcv.sb_mb; 2196 if (m != NULL) 2197 nextrecord = m->m_nextpkt; 2198 } 2199 } 2200 2201 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2202 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2203 flags |= MSG_TRUNC; 2204 if ((flags & MSG_PEEK) == 0) 2205 (void) sbdroprecord_locked(&so->so_rcv); 2206 } 2207 if ((flags & MSG_PEEK) == 0) { 2208 if (m == NULL) { 2209 /* 2210 * First part is an inline SB_EMPTY_FIXUP(). Second 2211 * part makes sure sb_lastrecord is up-to-date if 2212 * there is still data in the socket buffer. 2213 */ 2214 so->so_rcv.sb_mb = nextrecord; 2215 if (so->so_rcv.sb_mb == NULL) { 2216 so->so_rcv.sb_mbtail = NULL; 2217 so->so_rcv.sb_lastrecord = NULL; 2218 } else if (nextrecord->m_nextpkt == NULL) 2219 so->so_rcv.sb_lastrecord = nextrecord; 2220 } 2221 SBLASTRECORDCHK(&so->so_rcv); 2222 SBLASTMBUFCHK(&so->so_rcv); 2223 /* 2224 * If soreceive() is being done from the socket callback, 2225 * then don't need to generate ACK to peer to update window, 2226 * since ACK will be generated on return to TCP. 2227 */ 2228 if (!(flags & MSG_SOCALLBCK) && 2229 (pr->pr_flags & PR_WANTRCVD)) { 2230 SOCKBUF_UNLOCK(&so->so_rcv); 2231 VNET_SO_ASSERT(so); 2232 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2233 SOCKBUF_LOCK(&so->so_rcv); 2234 } 2235 } 2236 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2237 if (orig_resid == uio->uio_resid && orig_resid && 2238 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2239 SOCKBUF_UNLOCK(&so->so_rcv); 2240 goto restart; 2241 } 2242 SOCKBUF_UNLOCK(&so->so_rcv); 2243 2244 if (flagsp != NULL) 2245 *flagsp |= flags; 2246 release: 2247 sbunlock(&so->so_rcv); 2248 return (error); 2249 } 2250 2251 /* 2252 * Optimized version of soreceive() for stream (TCP) sockets. 2253 */ 2254 int 2255 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2256 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2257 { 2258 int len = 0, error = 0, flags, oresid; 2259 struct sockbuf *sb; 2260 struct mbuf *m, *n = NULL; 2261 2262 /* We only do stream sockets. */ 2263 if (so->so_type != SOCK_STREAM) 2264 return (EINVAL); 2265 if (psa != NULL) 2266 *psa = NULL; 2267 if (flagsp != NULL) 2268 flags = *flagsp &~ MSG_EOR; 2269 else 2270 flags = 0; 2271 if (controlp != NULL) 2272 *controlp = NULL; 2273 if (flags & MSG_OOB) 2274 return (soreceive_rcvoob(so, uio, flags)); 2275 if (mp0 != NULL) 2276 *mp0 = NULL; 2277 2278 sb = &so->so_rcv; 2279 2280 /* Prevent other readers from entering the socket. */ 2281 error = sblock(sb, SBLOCKWAIT(flags)); 2282 if (error) 2283 return (error); 2284 SOCKBUF_LOCK(sb); 2285 2286 /* Easy one, no space to copyout anything. */ 2287 if (uio->uio_resid == 0) { 2288 error = EINVAL; 2289 goto out; 2290 } 2291 oresid = uio->uio_resid; 2292 2293 /* We will never ever get anything unless we are or were connected. */ 2294 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2295 error = ENOTCONN; 2296 goto out; 2297 } 2298 2299 restart: 2300 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2301 2302 /* Abort if socket has reported problems. */ 2303 if (so->so_error) { 2304 if (sbavail(sb) > 0) 2305 goto deliver; 2306 if (oresid > uio->uio_resid) 2307 goto out; 2308 error = so->so_error; 2309 if (!(flags & MSG_PEEK)) 2310 so->so_error = 0; 2311 goto out; 2312 } 2313 2314 /* Door is closed. Deliver what is left, if any. */ 2315 if (sb->sb_state & SBS_CANTRCVMORE) { 2316 if (sbavail(sb) > 0) 2317 goto deliver; 2318 else 2319 goto out; 2320 } 2321 2322 /* Socket buffer is empty and we shall not block. */ 2323 if (sbavail(sb) == 0 && 2324 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2325 error = EAGAIN; 2326 goto out; 2327 } 2328 2329 /* Socket buffer got some data that we shall deliver now. */ 2330 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2331 ((so->so_state & SS_NBIO) || 2332 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2333 sbavail(sb) >= sb->sb_lowat || 2334 sbavail(sb) >= uio->uio_resid || 2335 sbavail(sb) >= sb->sb_hiwat) ) { 2336 goto deliver; 2337 } 2338 2339 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2340 if ((flags & MSG_WAITALL) && 2341 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2342 goto deliver; 2343 2344 /* 2345 * Wait and block until (more) data comes in. 2346 * NB: Drops the sockbuf lock during wait. 2347 */ 2348 error = sbwait(sb); 2349 if (error) 2350 goto out; 2351 goto restart; 2352 2353 deliver: 2354 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2355 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2356 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2357 2358 /* Statistics. */ 2359 if (uio->uio_td) 2360 uio->uio_td->td_ru.ru_msgrcv++; 2361 2362 /* Fill uio until full or current end of socket buffer is reached. */ 2363 len = min(uio->uio_resid, sbavail(sb)); 2364 if (mp0 != NULL) { 2365 /* Dequeue as many mbufs as possible. */ 2366 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2367 if (*mp0 == NULL) 2368 *mp0 = sb->sb_mb; 2369 else 2370 m_cat(*mp0, sb->sb_mb); 2371 for (m = sb->sb_mb; 2372 m != NULL && m->m_len <= len; 2373 m = m->m_next) { 2374 KASSERT(!(m->m_flags & M_NOTAVAIL), 2375 ("%s: m %p not available", __func__, m)); 2376 len -= m->m_len; 2377 uio->uio_resid -= m->m_len; 2378 sbfree(sb, m); 2379 n = m; 2380 } 2381 n->m_next = NULL; 2382 sb->sb_mb = m; 2383 sb->sb_lastrecord = sb->sb_mb; 2384 if (sb->sb_mb == NULL) 2385 SB_EMPTY_FIXUP(sb); 2386 } 2387 /* Copy the remainder. */ 2388 if (len > 0) { 2389 KASSERT(sb->sb_mb != NULL, 2390 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2391 2392 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2393 if (m == NULL) 2394 len = 0; /* Don't flush data from sockbuf. */ 2395 else 2396 uio->uio_resid -= len; 2397 if (*mp0 != NULL) 2398 m_cat(*mp0, m); 2399 else 2400 *mp0 = m; 2401 if (*mp0 == NULL) { 2402 error = ENOBUFS; 2403 goto out; 2404 } 2405 } 2406 } else { 2407 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2408 SOCKBUF_UNLOCK(sb); 2409 error = m_mbuftouio(uio, sb->sb_mb, len); 2410 SOCKBUF_LOCK(sb); 2411 if (error) 2412 goto out; 2413 } 2414 SBLASTRECORDCHK(sb); 2415 SBLASTMBUFCHK(sb); 2416 2417 /* 2418 * Remove the delivered data from the socket buffer unless we 2419 * were only peeking. 2420 */ 2421 if (!(flags & MSG_PEEK)) { 2422 if (len > 0) 2423 sbdrop_locked(sb, len); 2424 2425 /* Notify protocol that we drained some data. */ 2426 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2427 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2428 !(flags & MSG_SOCALLBCK))) { 2429 SOCKBUF_UNLOCK(sb); 2430 VNET_SO_ASSERT(so); 2431 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2432 SOCKBUF_LOCK(sb); 2433 } 2434 } 2435 2436 /* 2437 * For MSG_WAITALL we may have to loop again and wait for 2438 * more data to come in. 2439 */ 2440 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2441 goto restart; 2442 out: 2443 SOCKBUF_LOCK_ASSERT(sb); 2444 SBLASTRECORDCHK(sb); 2445 SBLASTMBUFCHK(sb); 2446 SOCKBUF_UNLOCK(sb); 2447 sbunlock(sb); 2448 return (error); 2449 } 2450 2451 /* 2452 * Optimized version of soreceive() for simple datagram cases from userspace. 2453 * Unlike in the stream case, we're able to drop a datagram if copyout() 2454 * fails, and because we handle datagrams atomically, we don't need to use a 2455 * sleep lock to prevent I/O interlacing. 2456 */ 2457 int 2458 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2459 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2460 { 2461 struct mbuf *m, *m2; 2462 int flags, error; 2463 ssize_t len; 2464 struct protosw *pr = so->so_proto; 2465 struct mbuf *nextrecord; 2466 2467 if (psa != NULL) 2468 *psa = NULL; 2469 if (controlp != NULL) 2470 *controlp = NULL; 2471 if (flagsp != NULL) 2472 flags = *flagsp &~ MSG_EOR; 2473 else 2474 flags = 0; 2475 2476 /* 2477 * For any complicated cases, fall back to the full 2478 * soreceive_generic(). 2479 */ 2480 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2481 return (soreceive_generic(so, psa, uio, mp0, controlp, 2482 flagsp)); 2483 2484 /* 2485 * Enforce restrictions on use. 2486 */ 2487 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2488 ("soreceive_dgram: wantrcvd")); 2489 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2490 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2491 ("soreceive_dgram: SBS_RCVATMARK")); 2492 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2493 ("soreceive_dgram: P_CONNREQUIRED")); 2494 2495 /* 2496 * Loop blocking while waiting for a datagram. 2497 */ 2498 SOCKBUF_LOCK(&so->so_rcv); 2499 while ((m = so->so_rcv.sb_mb) == NULL) { 2500 KASSERT(sbavail(&so->so_rcv) == 0, 2501 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2502 sbavail(&so->so_rcv))); 2503 if (so->so_error) { 2504 error = so->so_error; 2505 so->so_error = 0; 2506 SOCKBUF_UNLOCK(&so->so_rcv); 2507 return (error); 2508 } 2509 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2510 uio->uio_resid == 0) { 2511 SOCKBUF_UNLOCK(&so->so_rcv); 2512 return (0); 2513 } 2514 if ((so->so_state & SS_NBIO) || 2515 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2516 SOCKBUF_UNLOCK(&so->so_rcv); 2517 return (EWOULDBLOCK); 2518 } 2519 SBLASTRECORDCHK(&so->so_rcv); 2520 SBLASTMBUFCHK(&so->so_rcv); 2521 error = sbwait(&so->so_rcv); 2522 if (error) { 2523 SOCKBUF_UNLOCK(&so->so_rcv); 2524 return (error); 2525 } 2526 } 2527 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2528 2529 if (uio->uio_td) 2530 uio->uio_td->td_ru.ru_msgrcv++; 2531 SBLASTRECORDCHK(&so->so_rcv); 2532 SBLASTMBUFCHK(&so->so_rcv); 2533 nextrecord = m->m_nextpkt; 2534 if (nextrecord == NULL) { 2535 KASSERT(so->so_rcv.sb_lastrecord == m, 2536 ("soreceive_dgram: lastrecord != m")); 2537 } 2538 2539 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2540 ("soreceive_dgram: m_nextpkt != nextrecord")); 2541 2542 /* 2543 * Pull 'm' and its chain off the front of the packet queue. 2544 */ 2545 so->so_rcv.sb_mb = NULL; 2546 sockbuf_pushsync(&so->so_rcv, nextrecord); 2547 2548 /* 2549 * Walk 'm's chain and free that many bytes from the socket buffer. 2550 */ 2551 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2552 sbfree(&so->so_rcv, m2); 2553 2554 /* 2555 * Do a few last checks before we let go of the lock. 2556 */ 2557 SBLASTRECORDCHK(&so->so_rcv); 2558 SBLASTMBUFCHK(&so->so_rcv); 2559 SOCKBUF_UNLOCK(&so->so_rcv); 2560 2561 if (pr->pr_flags & PR_ADDR) { 2562 KASSERT(m->m_type == MT_SONAME, 2563 ("m->m_type == %d", m->m_type)); 2564 if (psa != NULL) 2565 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2566 M_NOWAIT); 2567 m = m_free(m); 2568 } 2569 if (m == NULL) { 2570 /* XXXRW: Can this happen? */ 2571 return (0); 2572 } 2573 2574 /* 2575 * Packet to copyout() is now in 'm' and it is disconnected from the 2576 * queue. 2577 * 2578 * Process one or more MT_CONTROL mbufs present before any data mbufs 2579 * in the first mbuf chain on the socket buffer. We call into the 2580 * protocol to perform externalization (or freeing if controlp == 2581 * NULL). In some cases there can be only MT_CONTROL mbufs without 2582 * MT_DATA mbufs. 2583 */ 2584 if (m->m_type == MT_CONTROL) { 2585 struct mbuf *cm = NULL, *cmn; 2586 struct mbuf **cme = &cm; 2587 2588 do { 2589 m2 = m->m_next; 2590 m->m_next = NULL; 2591 *cme = m; 2592 cme = &(*cme)->m_next; 2593 m = m2; 2594 } while (m != NULL && m->m_type == MT_CONTROL); 2595 while (cm != NULL) { 2596 cmn = cm->m_next; 2597 cm->m_next = NULL; 2598 if (pr->pr_domain->dom_externalize != NULL) { 2599 error = (*pr->pr_domain->dom_externalize) 2600 (cm, controlp, flags); 2601 } else if (controlp != NULL) 2602 *controlp = cm; 2603 else 2604 m_freem(cm); 2605 if (controlp != NULL) { 2606 while (*controlp != NULL) 2607 controlp = &(*controlp)->m_next; 2608 } 2609 cm = cmn; 2610 } 2611 } 2612 KASSERT(m == NULL || m->m_type == MT_DATA, 2613 ("soreceive_dgram: !data")); 2614 while (m != NULL && uio->uio_resid > 0) { 2615 len = uio->uio_resid; 2616 if (len > m->m_len) 2617 len = m->m_len; 2618 error = uiomove(mtod(m, char *), (int)len, uio); 2619 if (error) { 2620 m_freem(m); 2621 return (error); 2622 } 2623 if (len == m->m_len) 2624 m = m_free(m); 2625 else { 2626 m->m_data += len; 2627 m->m_len -= len; 2628 } 2629 } 2630 if (m != NULL) { 2631 flags |= MSG_TRUNC; 2632 m_freem(m); 2633 } 2634 if (flagsp != NULL) 2635 *flagsp |= flags; 2636 return (0); 2637 } 2638 2639 int 2640 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2641 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2642 { 2643 int error; 2644 2645 CURVNET_SET(so->so_vnet); 2646 if (!SOLISTENING(so)) 2647 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2648 mp0, controlp, flagsp)); 2649 else 2650 error = ENOTCONN; 2651 CURVNET_RESTORE(); 2652 return (error); 2653 } 2654 2655 int 2656 soshutdown(struct socket *so, int how) 2657 { 2658 struct protosw *pr = so->so_proto; 2659 int error, soerror_enotconn; 2660 2661 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2662 return (EINVAL); 2663 2664 soerror_enotconn = 0; 2665 if ((so->so_state & 2666 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2667 /* 2668 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2669 * invoked on a datagram sockets, however historically we would 2670 * actually tear socket down. This is known to be leveraged by 2671 * some applications to unblock process waiting in recvXXX(2) 2672 * by other process that it shares that socket with. Try to meet 2673 * both backward-compatibility and POSIX requirements by forcing 2674 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2675 */ 2676 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2677 return (ENOTCONN); 2678 soerror_enotconn = 1; 2679 } 2680 2681 if (SOLISTENING(so)) { 2682 if (how != SHUT_WR) { 2683 SOLISTEN_LOCK(so); 2684 so->so_error = ECONNABORTED; 2685 solisten_wakeup(so); /* unlocks so */ 2686 } 2687 goto done; 2688 } 2689 2690 CURVNET_SET(so->so_vnet); 2691 if (pr->pr_usrreqs->pru_flush != NULL) 2692 (*pr->pr_usrreqs->pru_flush)(so, how); 2693 if (how != SHUT_WR) 2694 sorflush(so); 2695 if (how != SHUT_RD) { 2696 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2697 wakeup(&so->so_timeo); 2698 CURVNET_RESTORE(); 2699 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2700 } 2701 wakeup(&so->so_timeo); 2702 CURVNET_RESTORE(); 2703 2704 done: 2705 return (soerror_enotconn ? ENOTCONN : 0); 2706 } 2707 2708 void 2709 sorflush(struct socket *so) 2710 { 2711 struct sockbuf *sb = &so->so_rcv; 2712 struct protosw *pr = so->so_proto; 2713 struct socket aso; 2714 2715 VNET_SO_ASSERT(so); 2716 2717 /* 2718 * In order to avoid calling dom_dispose with the socket buffer mutex 2719 * held, and in order to generally avoid holding the lock for a long 2720 * time, we make a copy of the socket buffer and clear the original 2721 * (except locks, state). The new socket buffer copy won't have 2722 * initialized locks so we can only call routines that won't use or 2723 * assert those locks. 2724 * 2725 * Dislodge threads currently blocked in receive and wait to acquire 2726 * a lock against other simultaneous readers before clearing the 2727 * socket buffer. Don't let our acquire be interrupted by a signal 2728 * despite any existing socket disposition on interruptable waiting. 2729 */ 2730 socantrcvmore(so); 2731 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2732 2733 /* 2734 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2735 * and mutex data unchanged. 2736 */ 2737 SOCKBUF_LOCK(sb); 2738 bzero(&aso, sizeof(aso)); 2739 aso.so_pcb = so->so_pcb; 2740 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2741 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2742 bzero(&sb->sb_startzero, 2743 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2744 SOCKBUF_UNLOCK(sb); 2745 sbunlock(sb); 2746 2747 /* 2748 * Dispose of special rights and flush the copied socket. Don't call 2749 * any unsafe routines (that rely on locks being initialized) on aso. 2750 */ 2751 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2752 (*pr->pr_domain->dom_dispose)(&aso); 2753 sbrelease_internal(&aso.so_rcv, so); 2754 } 2755 2756 /* 2757 * Wrapper for Socket established helper hook. 2758 * Parameters: socket, context of the hook point, hook id. 2759 */ 2760 static int inline 2761 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2762 { 2763 struct socket_hhook_data hhook_data = { 2764 .so = so, 2765 .hctx = hctx, 2766 .m = NULL, 2767 .status = 0 2768 }; 2769 2770 CURVNET_SET(so->so_vnet); 2771 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2772 CURVNET_RESTORE(); 2773 2774 /* Ugly but needed, since hhooks return void for now */ 2775 return (hhook_data.status); 2776 } 2777 2778 /* 2779 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2780 * additional variant to handle the case where the option value needs to be 2781 * some kind of integer, but not a specific size. In addition to their use 2782 * here, these functions are also called by the protocol-level pr_ctloutput() 2783 * routines. 2784 */ 2785 int 2786 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2787 { 2788 size_t valsize; 2789 2790 /* 2791 * If the user gives us more than we wanted, we ignore it, but if we 2792 * don't get the minimum length the caller wants, we return EINVAL. 2793 * On success, sopt->sopt_valsize is set to however much we actually 2794 * retrieved. 2795 */ 2796 if ((valsize = sopt->sopt_valsize) < minlen) 2797 return EINVAL; 2798 if (valsize > len) 2799 sopt->sopt_valsize = valsize = len; 2800 2801 if (sopt->sopt_td != NULL) 2802 return (copyin(sopt->sopt_val, buf, valsize)); 2803 2804 bcopy(sopt->sopt_val, buf, valsize); 2805 return (0); 2806 } 2807 2808 /* 2809 * Kernel version of setsockopt(2). 2810 * 2811 * XXX: optlen is size_t, not socklen_t 2812 */ 2813 int 2814 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2815 size_t optlen) 2816 { 2817 struct sockopt sopt; 2818 2819 sopt.sopt_level = level; 2820 sopt.sopt_name = optname; 2821 sopt.sopt_dir = SOPT_SET; 2822 sopt.sopt_val = optval; 2823 sopt.sopt_valsize = optlen; 2824 sopt.sopt_td = NULL; 2825 return (sosetopt(so, &sopt)); 2826 } 2827 2828 int 2829 sosetopt(struct socket *so, struct sockopt *sopt) 2830 { 2831 int error, optval; 2832 struct linger l; 2833 struct timeval tv; 2834 sbintime_t val; 2835 uint32_t val32; 2836 #ifdef MAC 2837 struct mac extmac; 2838 #endif 2839 2840 CURVNET_SET(so->so_vnet); 2841 error = 0; 2842 if (sopt->sopt_level != SOL_SOCKET) { 2843 if (so->so_proto->pr_ctloutput != NULL) 2844 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2845 else 2846 error = ENOPROTOOPT; 2847 } else { 2848 switch (sopt->sopt_name) { 2849 case SO_ACCEPTFILTER: 2850 error = accept_filt_setopt(so, sopt); 2851 if (error) 2852 goto bad; 2853 break; 2854 2855 case SO_LINGER: 2856 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2857 if (error) 2858 goto bad; 2859 if (l.l_linger < 0 || 2860 l.l_linger > USHRT_MAX || 2861 l.l_linger > (INT_MAX / hz)) { 2862 error = EDOM; 2863 goto bad; 2864 } 2865 SOCK_LOCK(so); 2866 so->so_linger = l.l_linger; 2867 if (l.l_onoff) 2868 so->so_options |= SO_LINGER; 2869 else 2870 so->so_options &= ~SO_LINGER; 2871 SOCK_UNLOCK(so); 2872 break; 2873 2874 case SO_DEBUG: 2875 case SO_KEEPALIVE: 2876 case SO_DONTROUTE: 2877 case SO_USELOOPBACK: 2878 case SO_BROADCAST: 2879 case SO_REUSEADDR: 2880 case SO_REUSEPORT: 2881 case SO_REUSEPORT_LB: 2882 case SO_OOBINLINE: 2883 case SO_TIMESTAMP: 2884 case SO_BINTIME: 2885 case SO_NOSIGPIPE: 2886 case SO_NO_DDP: 2887 case SO_NO_OFFLOAD: 2888 error = sooptcopyin(sopt, &optval, sizeof optval, 2889 sizeof optval); 2890 if (error) 2891 goto bad; 2892 SOCK_LOCK(so); 2893 if (optval) 2894 so->so_options |= sopt->sopt_name; 2895 else 2896 so->so_options &= ~sopt->sopt_name; 2897 SOCK_UNLOCK(so); 2898 break; 2899 2900 case SO_SETFIB: 2901 error = sooptcopyin(sopt, &optval, sizeof optval, 2902 sizeof optval); 2903 if (error) 2904 goto bad; 2905 2906 if (optval < 0 || optval >= rt_numfibs) { 2907 error = EINVAL; 2908 goto bad; 2909 } 2910 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2911 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2912 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2913 so->so_fibnum = optval; 2914 else 2915 so->so_fibnum = 0; 2916 break; 2917 2918 case SO_USER_COOKIE: 2919 error = sooptcopyin(sopt, &val32, sizeof val32, 2920 sizeof val32); 2921 if (error) 2922 goto bad; 2923 so->so_user_cookie = val32; 2924 break; 2925 2926 case SO_SNDBUF: 2927 case SO_RCVBUF: 2928 case SO_SNDLOWAT: 2929 case SO_RCVLOWAT: 2930 error = sooptcopyin(sopt, &optval, sizeof optval, 2931 sizeof optval); 2932 if (error) 2933 goto bad; 2934 2935 /* 2936 * Values < 1 make no sense for any of these options, 2937 * so disallow them. 2938 */ 2939 if (optval < 1) { 2940 error = EINVAL; 2941 goto bad; 2942 } 2943 2944 error = sbsetopt(so, sopt->sopt_name, optval); 2945 break; 2946 2947 case SO_SNDTIMEO: 2948 case SO_RCVTIMEO: 2949 #ifdef COMPAT_FREEBSD32 2950 if (SV_CURPROC_FLAG(SV_ILP32)) { 2951 struct timeval32 tv32; 2952 2953 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2954 sizeof tv32); 2955 CP(tv32, tv, tv_sec); 2956 CP(tv32, tv, tv_usec); 2957 } else 2958 #endif 2959 error = sooptcopyin(sopt, &tv, sizeof tv, 2960 sizeof tv); 2961 if (error) 2962 goto bad; 2963 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2964 tv.tv_usec >= 1000000) { 2965 error = EDOM; 2966 goto bad; 2967 } 2968 if (tv.tv_sec > INT32_MAX) 2969 val = SBT_MAX; 2970 else 2971 val = tvtosbt(tv); 2972 switch (sopt->sopt_name) { 2973 case SO_SNDTIMEO: 2974 so->so_snd.sb_timeo = val; 2975 break; 2976 case SO_RCVTIMEO: 2977 so->so_rcv.sb_timeo = val; 2978 break; 2979 } 2980 break; 2981 2982 case SO_LABEL: 2983 #ifdef MAC 2984 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2985 sizeof extmac); 2986 if (error) 2987 goto bad; 2988 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2989 so, &extmac); 2990 #else 2991 error = EOPNOTSUPP; 2992 #endif 2993 break; 2994 2995 case SO_TS_CLOCK: 2996 error = sooptcopyin(sopt, &optval, sizeof optval, 2997 sizeof optval); 2998 if (error) 2999 goto bad; 3000 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3001 error = EINVAL; 3002 goto bad; 3003 } 3004 so->so_ts_clock = optval; 3005 break; 3006 3007 case SO_MAX_PACING_RATE: 3008 error = sooptcopyin(sopt, &val32, sizeof(val32), 3009 sizeof(val32)); 3010 if (error) 3011 goto bad; 3012 so->so_max_pacing_rate = val32; 3013 break; 3014 3015 default: 3016 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3017 error = hhook_run_socket(so, sopt, 3018 HHOOK_SOCKET_OPT); 3019 else 3020 error = ENOPROTOOPT; 3021 break; 3022 } 3023 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3024 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3025 } 3026 bad: 3027 CURVNET_RESTORE(); 3028 return (error); 3029 } 3030 3031 /* 3032 * Helper routine for getsockopt. 3033 */ 3034 int 3035 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3036 { 3037 int error; 3038 size_t valsize; 3039 3040 error = 0; 3041 3042 /* 3043 * Documented get behavior is that we always return a value, possibly 3044 * truncated to fit in the user's buffer. Traditional behavior is 3045 * that we always tell the user precisely how much we copied, rather 3046 * than something useful like the total amount we had available for 3047 * her. Note that this interface is not idempotent; the entire 3048 * answer must be generated ahead of time. 3049 */ 3050 valsize = min(len, sopt->sopt_valsize); 3051 sopt->sopt_valsize = valsize; 3052 if (sopt->sopt_val != NULL) { 3053 if (sopt->sopt_td != NULL) 3054 error = copyout(buf, sopt->sopt_val, valsize); 3055 else 3056 bcopy(buf, sopt->sopt_val, valsize); 3057 } 3058 return (error); 3059 } 3060 3061 int 3062 sogetopt(struct socket *so, struct sockopt *sopt) 3063 { 3064 int error, optval; 3065 struct linger l; 3066 struct timeval tv; 3067 #ifdef MAC 3068 struct mac extmac; 3069 #endif 3070 3071 CURVNET_SET(so->so_vnet); 3072 error = 0; 3073 if (sopt->sopt_level != SOL_SOCKET) { 3074 if (so->so_proto->pr_ctloutput != NULL) 3075 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3076 else 3077 error = ENOPROTOOPT; 3078 CURVNET_RESTORE(); 3079 return (error); 3080 } else { 3081 switch (sopt->sopt_name) { 3082 case SO_ACCEPTFILTER: 3083 error = accept_filt_getopt(so, sopt); 3084 break; 3085 3086 case SO_LINGER: 3087 SOCK_LOCK(so); 3088 l.l_onoff = so->so_options & SO_LINGER; 3089 l.l_linger = so->so_linger; 3090 SOCK_UNLOCK(so); 3091 error = sooptcopyout(sopt, &l, sizeof l); 3092 break; 3093 3094 case SO_USELOOPBACK: 3095 case SO_DONTROUTE: 3096 case SO_DEBUG: 3097 case SO_KEEPALIVE: 3098 case SO_REUSEADDR: 3099 case SO_REUSEPORT: 3100 case SO_REUSEPORT_LB: 3101 case SO_BROADCAST: 3102 case SO_OOBINLINE: 3103 case SO_ACCEPTCONN: 3104 case SO_TIMESTAMP: 3105 case SO_BINTIME: 3106 case SO_NOSIGPIPE: 3107 optval = so->so_options & sopt->sopt_name; 3108 integer: 3109 error = sooptcopyout(sopt, &optval, sizeof optval); 3110 break; 3111 3112 case SO_DOMAIN: 3113 optval = so->so_proto->pr_domain->dom_family; 3114 goto integer; 3115 3116 case SO_TYPE: 3117 optval = so->so_type; 3118 goto integer; 3119 3120 case SO_PROTOCOL: 3121 optval = so->so_proto->pr_protocol; 3122 goto integer; 3123 3124 case SO_ERROR: 3125 SOCK_LOCK(so); 3126 optval = so->so_error; 3127 so->so_error = 0; 3128 SOCK_UNLOCK(so); 3129 goto integer; 3130 3131 case SO_SNDBUF: 3132 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3133 so->so_snd.sb_hiwat; 3134 goto integer; 3135 3136 case SO_RCVBUF: 3137 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3138 so->so_rcv.sb_hiwat; 3139 goto integer; 3140 3141 case SO_SNDLOWAT: 3142 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3143 so->so_snd.sb_lowat; 3144 goto integer; 3145 3146 case SO_RCVLOWAT: 3147 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3148 so->so_rcv.sb_lowat; 3149 goto integer; 3150 3151 case SO_SNDTIMEO: 3152 case SO_RCVTIMEO: 3153 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3154 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3155 #ifdef COMPAT_FREEBSD32 3156 if (SV_CURPROC_FLAG(SV_ILP32)) { 3157 struct timeval32 tv32; 3158 3159 CP(tv, tv32, tv_sec); 3160 CP(tv, tv32, tv_usec); 3161 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3162 } else 3163 #endif 3164 error = sooptcopyout(sopt, &tv, sizeof tv); 3165 break; 3166 3167 case SO_LABEL: 3168 #ifdef MAC 3169 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3170 sizeof(extmac)); 3171 if (error) 3172 goto bad; 3173 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3174 so, &extmac); 3175 if (error) 3176 goto bad; 3177 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3178 #else 3179 error = EOPNOTSUPP; 3180 #endif 3181 break; 3182 3183 case SO_PEERLABEL: 3184 #ifdef MAC 3185 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3186 sizeof(extmac)); 3187 if (error) 3188 goto bad; 3189 error = mac_getsockopt_peerlabel( 3190 sopt->sopt_td->td_ucred, so, &extmac); 3191 if (error) 3192 goto bad; 3193 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3194 #else 3195 error = EOPNOTSUPP; 3196 #endif 3197 break; 3198 3199 case SO_LISTENQLIMIT: 3200 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3201 goto integer; 3202 3203 case SO_LISTENQLEN: 3204 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3205 goto integer; 3206 3207 case SO_LISTENINCQLEN: 3208 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3209 goto integer; 3210 3211 case SO_TS_CLOCK: 3212 optval = so->so_ts_clock; 3213 goto integer; 3214 3215 case SO_MAX_PACING_RATE: 3216 optval = so->so_max_pacing_rate; 3217 goto integer; 3218 3219 default: 3220 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3221 error = hhook_run_socket(so, sopt, 3222 HHOOK_SOCKET_OPT); 3223 else 3224 error = ENOPROTOOPT; 3225 break; 3226 } 3227 } 3228 #ifdef MAC 3229 bad: 3230 #endif 3231 CURVNET_RESTORE(); 3232 return (error); 3233 } 3234 3235 int 3236 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3237 { 3238 struct mbuf *m, *m_prev; 3239 int sopt_size = sopt->sopt_valsize; 3240 3241 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3242 if (m == NULL) 3243 return ENOBUFS; 3244 if (sopt_size > MLEN) { 3245 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3246 if ((m->m_flags & M_EXT) == 0) { 3247 m_free(m); 3248 return ENOBUFS; 3249 } 3250 m->m_len = min(MCLBYTES, sopt_size); 3251 } else { 3252 m->m_len = min(MLEN, sopt_size); 3253 } 3254 sopt_size -= m->m_len; 3255 *mp = m; 3256 m_prev = m; 3257 3258 while (sopt_size) { 3259 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3260 if (m == NULL) { 3261 m_freem(*mp); 3262 return ENOBUFS; 3263 } 3264 if (sopt_size > MLEN) { 3265 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3266 M_NOWAIT); 3267 if ((m->m_flags & M_EXT) == 0) { 3268 m_freem(m); 3269 m_freem(*mp); 3270 return ENOBUFS; 3271 } 3272 m->m_len = min(MCLBYTES, sopt_size); 3273 } else { 3274 m->m_len = min(MLEN, sopt_size); 3275 } 3276 sopt_size -= m->m_len; 3277 m_prev->m_next = m; 3278 m_prev = m; 3279 } 3280 return (0); 3281 } 3282 3283 int 3284 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3285 { 3286 struct mbuf *m0 = m; 3287 3288 if (sopt->sopt_val == NULL) 3289 return (0); 3290 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3291 if (sopt->sopt_td != NULL) { 3292 int error; 3293 3294 error = copyin(sopt->sopt_val, mtod(m, char *), 3295 m->m_len); 3296 if (error != 0) { 3297 m_freem(m0); 3298 return(error); 3299 } 3300 } else 3301 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3302 sopt->sopt_valsize -= m->m_len; 3303 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3304 m = m->m_next; 3305 } 3306 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3307 panic("ip6_sooptmcopyin"); 3308 return (0); 3309 } 3310 3311 int 3312 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3313 { 3314 struct mbuf *m0 = m; 3315 size_t valsize = 0; 3316 3317 if (sopt->sopt_val == NULL) 3318 return (0); 3319 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3320 if (sopt->sopt_td != NULL) { 3321 int error; 3322 3323 error = copyout(mtod(m, char *), sopt->sopt_val, 3324 m->m_len); 3325 if (error != 0) { 3326 m_freem(m0); 3327 return(error); 3328 } 3329 } else 3330 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3331 sopt->sopt_valsize -= m->m_len; 3332 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3333 valsize += m->m_len; 3334 m = m->m_next; 3335 } 3336 if (m != NULL) { 3337 /* enough soopt buffer should be given from user-land */ 3338 m_freem(m0); 3339 return(EINVAL); 3340 } 3341 sopt->sopt_valsize = valsize; 3342 return (0); 3343 } 3344 3345 /* 3346 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3347 * out-of-band data, which will then notify socket consumers. 3348 */ 3349 void 3350 sohasoutofband(struct socket *so) 3351 { 3352 3353 if (so->so_sigio != NULL) 3354 pgsigio(&so->so_sigio, SIGURG, 0); 3355 selwakeuppri(&so->so_rdsel, PSOCK); 3356 } 3357 3358 int 3359 sopoll(struct socket *so, int events, struct ucred *active_cred, 3360 struct thread *td) 3361 { 3362 3363 /* 3364 * We do not need to set or assert curvnet as long as everyone uses 3365 * sopoll_generic(). 3366 */ 3367 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3368 td)); 3369 } 3370 3371 int 3372 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3373 struct thread *td) 3374 { 3375 int revents; 3376 3377 SOCK_LOCK(so); 3378 if (SOLISTENING(so)) { 3379 if (!(events & (POLLIN | POLLRDNORM))) 3380 revents = 0; 3381 else if (!TAILQ_EMPTY(&so->sol_comp)) 3382 revents = events & (POLLIN | POLLRDNORM); 3383 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3384 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3385 else { 3386 selrecord(td, &so->so_rdsel); 3387 revents = 0; 3388 } 3389 } else { 3390 revents = 0; 3391 SOCKBUF_LOCK(&so->so_snd); 3392 SOCKBUF_LOCK(&so->so_rcv); 3393 if (events & (POLLIN | POLLRDNORM)) 3394 if (soreadabledata(so)) 3395 revents |= events & (POLLIN | POLLRDNORM); 3396 if (events & (POLLOUT | POLLWRNORM)) 3397 if (sowriteable(so)) 3398 revents |= events & (POLLOUT | POLLWRNORM); 3399 if (events & (POLLPRI | POLLRDBAND)) 3400 if (so->so_oobmark || 3401 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3402 revents |= events & (POLLPRI | POLLRDBAND); 3403 if ((events & POLLINIGNEOF) == 0) { 3404 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3405 revents |= events & (POLLIN | POLLRDNORM); 3406 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3407 revents |= POLLHUP; 3408 } 3409 } 3410 if (revents == 0) { 3411 if (events & 3412 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3413 selrecord(td, &so->so_rdsel); 3414 so->so_rcv.sb_flags |= SB_SEL; 3415 } 3416 if (events & (POLLOUT | POLLWRNORM)) { 3417 selrecord(td, &so->so_wrsel); 3418 so->so_snd.sb_flags |= SB_SEL; 3419 } 3420 } 3421 SOCKBUF_UNLOCK(&so->so_rcv); 3422 SOCKBUF_UNLOCK(&so->so_snd); 3423 } 3424 SOCK_UNLOCK(so); 3425 return (revents); 3426 } 3427 3428 int 3429 soo_kqfilter(struct file *fp, struct knote *kn) 3430 { 3431 struct socket *so = kn->kn_fp->f_data; 3432 struct sockbuf *sb; 3433 struct knlist *knl; 3434 3435 switch (kn->kn_filter) { 3436 case EVFILT_READ: 3437 kn->kn_fop = &soread_filtops; 3438 knl = &so->so_rdsel.si_note; 3439 sb = &so->so_rcv; 3440 break; 3441 case EVFILT_WRITE: 3442 kn->kn_fop = &sowrite_filtops; 3443 knl = &so->so_wrsel.si_note; 3444 sb = &so->so_snd; 3445 break; 3446 case EVFILT_EMPTY: 3447 kn->kn_fop = &soempty_filtops; 3448 knl = &so->so_wrsel.si_note; 3449 sb = &so->so_snd; 3450 break; 3451 default: 3452 return (EINVAL); 3453 } 3454 3455 SOCK_LOCK(so); 3456 if (SOLISTENING(so)) { 3457 knlist_add(knl, kn, 1); 3458 } else { 3459 SOCKBUF_LOCK(sb); 3460 knlist_add(knl, kn, 1); 3461 sb->sb_flags |= SB_KNOTE; 3462 SOCKBUF_UNLOCK(sb); 3463 } 3464 SOCK_UNLOCK(so); 3465 return (0); 3466 } 3467 3468 /* 3469 * Some routines that return EOPNOTSUPP for entry points that are not 3470 * supported by a protocol. Fill in as needed. 3471 */ 3472 int 3473 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3474 { 3475 3476 return EOPNOTSUPP; 3477 } 3478 3479 int 3480 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3481 { 3482 3483 return EOPNOTSUPP; 3484 } 3485 3486 int 3487 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3488 { 3489 3490 return EOPNOTSUPP; 3491 } 3492 3493 int 3494 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3495 { 3496 3497 return EOPNOTSUPP; 3498 } 3499 3500 int 3501 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3502 struct thread *td) 3503 { 3504 3505 return EOPNOTSUPP; 3506 } 3507 3508 int 3509 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3510 { 3511 3512 return EOPNOTSUPP; 3513 } 3514 3515 int 3516 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3517 struct thread *td) 3518 { 3519 3520 return EOPNOTSUPP; 3521 } 3522 3523 int 3524 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3525 { 3526 3527 return EOPNOTSUPP; 3528 } 3529 3530 int 3531 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3532 struct ifnet *ifp, struct thread *td) 3533 { 3534 3535 return EOPNOTSUPP; 3536 } 3537 3538 int 3539 pru_disconnect_notsupp(struct socket *so) 3540 { 3541 3542 return EOPNOTSUPP; 3543 } 3544 3545 int 3546 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3547 { 3548 3549 return EOPNOTSUPP; 3550 } 3551 3552 int 3553 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3554 { 3555 3556 return EOPNOTSUPP; 3557 } 3558 3559 int 3560 pru_rcvd_notsupp(struct socket *so, int flags) 3561 { 3562 3563 return EOPNOTSUPP; 3564 } 3565 3566 int 3567 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3568 { 3569 3570 return EOPNOTSUPP; 3571 } 3572 3573 int 3574 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3575 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3576 { 3577 3578 return EOPNOTSUPP; 3579 } 3580 3581 int 3582 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3583 { 3584 3585 return (EOPNOTSUPP); 3586 } 3587 3588 /* 3589 * This isn't really a ``null'' operation, but it's the default one and 3590 * doesn't do anything destructive. 3591 */ 3592 int 3593 pru_sense_null(struct socket *so, struct stat *sb) 3594 { 3595 3596 sb->st_blksize = so->so_snd.sb_hiwat; 3597 return 0; 3598 } 3599 3600 int 3601 pru_shutdown_notsupp(struct socket *so) 3602 { 3603 3604 return EOPNOTSUPP; 3605 } 3606 3607 int 3608 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3609 { 3610 3611 return EOPNOTSUPP; 3612 } 3613 3614 int 3615 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3616 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3617 { 3618 3619 return EOPNOTSUPP; 3620 } 3621 3622 int 3623 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3624 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3625 { 3626 3627 return EOPNOTSUPP; 3628 } 3629 3630 int 3631 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3632 struct thread *td) 3633 { 3634 3635 return EOPNOTSUPP; 3636 } 3637 3638 static void 3639 filt_sordetach(struct knote *kn) 3640 { 3641 struct socket *so = kn->kn_fp->f_data; 3642 3643 so_rdknl_lock(so); 3644 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3645 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3646 so->so_rcv.sb_flags &= ~SB_KNOTE; 3647 so_rdknl_unlock(so); 3648 } 3649 3650 /*ARGSUSED*/ 3651 static int 3652 filt_soread(struct knote *kn, long hint) 3653 { 3654 struct socket *so; 3655 3656 so = kn->kn_fp->f_data; 3657 3658 if (SOLISTENING(so)) { 3659 SOCK_LOCK_ASSERT(so); 3660 kn->kn_data = so->sol_qlen; 3661 if (so->so_error) { 3662 kn->kn_flags |= EV_EOF; 3663 kn->kn_fflags = so->so_error; 3664 return (1); 3665 } 3666 return (!TAILQ_EMPTY(&so->sol_comp)); 3667 } 3668 3669 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3670 3671 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3672 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3673 kn->kn_flags |= EV_EOF; 3674 kn->kn_fflags = so->so_error; 3675 return (1); 3676 } else if (so->so_error) /* temporary udp error */ 3677 return (1); 3678 3679 if (kn->kn_sfflags & NOTE_LOWAT) { 3680 if (kn->kn_data >= kn->kn_sdata) 3681 return (1); 3682 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3683 return (1); 3684 3685 /* This hook returning non-zero indicates an event, not error */ 3686 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3687 } 3688 3689 static void 3690 filt_sowdetach(struct knote *kn) 3691 { 3692 struct socket *so = kn->kn_fp->f_data; 3693 3694 so_wrknl_lock(so); 3695 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3696 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3697 so->so_snd.sb_flags &= ~SB_KNOTE; 3698 so_wrknl_unlock(so); 3699 } 3700 3701 /*ARGSUSED*/ 3702 static int 3703 filt_sowrite(struct knote *kn, long hint) 3704 { 3705 struct socket *so; 3706 3707 so = kn->kn_fp->f_data; 3708 3709 if (SOLISTENING(so)) 3710 return (0); 3711 3712 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3713 kn->kn_data = sbspace(&so->so_snd); 3714 3715 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3716 3717 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3718 kn->kn_flags |= EV_EOF; 3719 kn->kn_fflags = so->so_error; 3720 return (1); 3721 } else if (so->so_error) /* temporary udp error */ 3722 return (1); 3723 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3724 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3725 return (0); 3726 else if (kn->kn_sfflags & NOTE_LOWAT) 3727 return (kn->kn_data >= kn->kn_sdata); 3728 else 3729 return (kn->kn_data >= so->so_snd.sb_lowat); 3730 } 3731 3732 static int 3733 filt_soempty(struct knote *kn, long hint) 3734 { 3735 struct socket *so; 3736 3737 so = kn->kn_fp->f_data; 3738 3739 if (SOLISTENING(so)) 3740 return (1); 3741 3742 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3743 kn->kn_data = sbused(&so->so_snd); 3744 3745 if (kn->kn_data == 0) 3746 return (1); 3747 else 3748 return (0); 3749 } 3750 3751 int 3752 socheckuid(struct socket *so, uid_t uid) 3753 { 3754 3755 if (so == NULL) 3756 return (EPERM); 3757 if (so->so_cred->cr_uid != uid) 3758 return (EPERM); 3759 return (0); 3760 } 3761 3762 /* 3763 * These functions are used by protocols to notify the socket layer (and its 3764 * consumers) of state changes in the sockets driven by protocol-side events. 3765 */ 3766 3767 /* 3768 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3769 * 3770 * Normal sequence from the active (originating) side is that 3771 * soisconnecting() is called during processing of connect() call, resulting 3772 * in an eventual call to soisconnected() if/when the connection is 3773 * established. When the connection is torn down soisdisconnecting() is 3774 * called during processing of disconnect() call, and soisdisconnected() is 3775 * called when the connection to the peer is totally severed. The semantics 3776 * of these routines are such that connectionless protocols can call 3777 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3778 * calls when setting up a ``connection'' takes no time. 3779 * 3780 * From the passive side, a socket is created with two queues of sockets: 3781 * so_incomp for connections in progress and so_comp for connections already 3782 * made and awaiting user acceptance. As a protocol is preparing incoming 3783 * connections, it creates a socket structure queued on so_incomp by calling 3784 * sonewconn(). When the connection is established, soisconnected() is 3785 * called, and transfers the socket structure to so_comp, making it available 3786 * to accept(). 3787 * 3788 * If a socket is closed with sockets on either so_incomp or so_comp, these 3789 * sockets are dropped. 3790 * 3791 * If higher-level protocols are implemented in the kernel, the wakeups done 3792 * here will sometimes cause software-interrupt process scheduling. 3793 */ 3794 void 3795 soisconnecting(struct socket *so) 3796 { 3797 3798 SOCK_LOCK(so); 3799 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3800 so->so_state |= SS_ISCONNECTING; 3801 SOCK_UNLOCK(so); 3802 } 3803 3804 void 3805 soisconnected(struct socket *so) 3806 { 3807 3808 SOCK_LOCK(so); 3809 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3810 so->so_state |= SS_ISCONNECTED; 3811 3812 if (so->so_qstate == SQ_INCOMP) { 3813 struct socket *head = so->so_listen; 3814 int ret; 3815 3816 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3817 /* 3818 * Promoting a socket from incomplete queue to complete, we 3819 * need to go through reverse order of locking. We first do 3820 * trylock, and if that doesn't succeed, we go the hard way 3821 * leaving a reference and rechecking consistency after proper 3822 * locking. 3823 */ 3824 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3825 soref(head); 3826 SOCK_UNLOCK(so); 3827 SOLISTEN_LOCK(head); 3828 SOCK_LOCK(so); 3829 if (__predict_false(head != so->so_listen)) { 3830 /* 3831 * The socket went off the listen queue, 3832 * should be lost race to close(2) of sol. 3833 * The socket is about to soabort(). 3834 */ 3835 SOCK_UNLOCK(so); 3836 sorele(head); 3837 return; 3838 } 3839 /* Not the last one, as so holds a ref. */ 3840 refcount_release(&head->so_count); 3841 } 3842 again: 3843 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3844 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3845 head->sol_incqlen--; 3846 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3847 head->sol_qlen++; 3848 so->so_qstate = SQ_COMP; 3849 SOCK_UNLOCK(so); 3850 solisten_wakeup(head); /* unlocks */ 3851 } else { 3852 SOCKBUF_LOCK(&so->so_rcv); 3853 soupcall_set(so, SO_RCV, 3854 head->sol_accept_filter->accf_callback, 3855 head->sol_accept_filter_arg); 3856 so->so_options &= ~SO_ACCEPTFILTER; 3857 ret = head->sol_accept_filter->accf_callback(so, 3858 head->sol_accept_filter_arg, M_NOWAIT); 3859 if (ret == SU_ISCONNECTED) { 3860 soupcall_clear(so, SO_RCV); 3861 SOCKBUF_UNLOCK(&so->so_rcv); 3862 goto again; 3863 } 3864 SOCKBUF_UNLOCK(&so->so_rcv); 3865 SOCK_UNLOCK(so); 3866 SOLISTEN_UNLOCK(head); 3867 } 3868 return; 3869 } 3870 SOCK_UNLOCK(so); 3871 wakeup(&so->so_timeo); 3872 sorwakeup(so); 3873 sowwakeup(so); 3874 } 3875 3876 void 3877 soisdisconnecting(struct socket *so) 3878 { 3879 3880 SOCK_LOCK(so); 3881 so->so_state &= ~SS_ISCONNECTING; 3882 so->so_state |= SS_ISDISCONNECTING; 3883 3884 if (!SOLISTENING(so)) { 3885 SOCKBUF_LOCK(&so->so_rcv); 3886 socantrcvmore_locked(so); 3887 SOCKBUF_LOCK(&so->so_snd); 3888 socantsendmore_locked(so); 3889 } 3890 SOCK_UNLOCK(so); 3891 wakeup(&so->so_timeo); 3892 } 3893 3894 void 3895 soisdisconnected(struct socket *so) 3896 { 3897 3898 SOCK_LOCK(so); 3899 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3900 so->so_state |= SS_ISDISCONNECTED; 3901 3902 if (!SOLISTENING(so)) { 3903 SOCK_UNLOCK(so); 3904 SOCKBUF_LOCK(&so->so_rcv); 3905 socantrcvmore_locked(so); 3906 SOCKBUF_LOCK(&so->so_snd); 3907 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3908 socantsendmore_locked(so); 3909 } else 3910 SOCK_UNLOCK(so); 3911 wakeup(&so->so_timeo); 3912 } 3913 3914 /* 3915 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3916 */ 3917 struct sockaddr * 3918 sodupsockaddr(const struct sockaddr *sa, int mflags) 3919 { 3920 struct sockaddr *sa2; 3921 3922 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3923 if (sa2) 3924 bcopy(sa, sa2, sa->sa_len); 3925 return sa2; 3926 } 3927 3928 /* 3929 * Register per-socket destructor. 3930 */ 3931 void 3932 sodtor_set(struct socket *so, so_dtor_t *func) 3933 { 3934 3935 SOCK_LOCK_ASSERT(so); 3936 so->so_dtor = func; 3937 } 3938 3939 /* 3940 * Register per-socket buffer upcalls. 3941 */ 3942 void 3943 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 3944 { 3945 struct sockbuf *sb; 3946 3947 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 3948 3949 switch (which) { 3950 case SO_RCV: 3951 sb = &so->so_rcv; 3952 break; 3953 case SO_SND: 3954 sb = &so->so_snd; 3955 break; 3956 default: 3957 panic("soupcall_set: bad which"); 3958 } 3959 SOCKBUF_LOCK_ASSERT(sb); 3960 sb->sb_upcall = func; 3961 sb->sb_upcallarg = arg; 3962 sb->sb_flags |= SB_UPCALL; 3963 } 3964 3965 void 3966 soupcall_clear(struct socket *so, int which) 3967 { 3968 struct sockbuf *sb; 3969 3970 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 3971 3972 switch (which) { 3973 case SO_RCV: 3974 sb = &so->so_rcv; 3975 break; 3976 case SO_SND: 3977 sb = &so->so_snd; 3978 break; 3979 default: 3980 panic("soupcall_clear: bad which"); 3981 } 3982 SOCKBUF_LOCK_ASSERT(sb); 3983 KASSERT(sb->sb_upcall != NULL, 3984 ("%s: so %p no upcall to clear", __func__, so)); 3985 sb->sb_upcall = NULL; 3986 sb->sb_upcallarg = NULL; 3987 sb->sb_flags &= ~SB_UPCALL; 3988 } 3989 3990 void 3991 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 3992 { 3993 3994 SOLISTEN_LOCK_ASSERT(so); 3995 so->sol_upcall = func; 3996 so->sol_upcallarg = arg; 3997 } 3998 3999 static void 4000 so_rdknl_lock(void *arg) 4001 { 4002 struct socket *so = arg; 4003 4004 if (SOLISTENING(so)) 4005 SOCK_LOCK(so); 4006 else 4007 SOCKBUF_LOCK(&so->so_rcv); 4008 } 4009 4010 static void 4011 so_rdknl_unlock(void *arg) 4012 { 4013 struct socket *so = arg; 4014 4015 if (SOLISTENING(so)) 4016 SOCK_UNLOCK(so); 4017 else 4018 SOCKBUF_UNLOCK(&so->so_rcv); 4019 } 4020 4021 static void 4022 so_rdknl_assert_locked(void *arg) 4023 { 4024 struct socket *so = arg; 4025 4026 if (SOLISTENING(so)) 4027 SOCK_LOCK_ASSERT(so); 4028 else 4029 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4030 } 4031 4032 static void 4033 so_rdknl_assert_unlocked(void *arg) 4034 { 4035 struct socket *so = arg; 4036 4037 if (SOLISTENING(so)) 4038 SOCK_UNLOCK_ASSERT(so); 4039 else 4040 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4041 } 4042 4043 static void 4044 so_wrknl_lock(void *arg) 4045 { 4046 struct socket *so = arg; 4047 4048 if (SOLISTENING(so)) 4049 SOCK_LOCK(so); 4050 else 4051 SOCKBUF_LOCK(&so->so_snd); 4052 } 4053 4054 static void 4055 so_wrknl_unlock(void *arg) 4056 { 4057 struct socket *so = arg; 4058 4059 if (SOLISTENING(so)) 4060 SOCK_UNLOCK(so); 4061 else 4062 SOCKBUF_UNLOCK(&so->so_snd); 4063 } 4064 4065 static void 4066 so_wrknl_assert_locked(void *arg) 4067 { 4068 struct socket *so = arg; 4069 4070 if (SOLISTENING(so)) 4071 SOCK_LOCK_ASSERT(so); 4072 else 4073 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4074 } 4075 4076 static void 4077 so_wrknl_assert_unlocked(void *arg) 4078 { 4079 struct socket *so = arg; 4080 4081 if (SOLISTENING(so)) 4082 SOCK_UNLOCK_ASSERT(so); 4083 else 4084 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4085 } 4086 4087 /* 4088 * Create an external-format (``xsocket'') structure using the information in 4089 * the kernel-format socket structure pointed to by so. This is done to 4090 * reduce the spew of irrelevant information over this interface, to isolate 4091 * user code from changes in the kernel structure, and potentially to provide 4092 * information-hiding if we decide that some of this information should be 4093 * hidden from users. 4094 */ 4095 void 4096 sotoxsocket(struct socket *so, struct xsocket *xso) 4097 { 4098 4099 bzero(xso, sizeof(*xso)); 4100 xso->xso_len = sizeof *xso; 4101 xso->xso_so = (uintptr_t)so; 4102 xso->so_type = so->so_type; 4103 xso->so_options = so->so_options; 4104 xso->so_linger = so->so_linger; 4105 xso->so_state = so->so_state; 4106 xso->so_pcb = (uintptr_t)so->so_pcb; 4107 xso->xso_protocol = so->so_proto->pr_protocol; 4108 xso->xso_family = so->so_proto->pr_domain->dom_family; 4109 xso->so_timeo = so->so_timeo; 4110 xso->so_error = so->so_error; 4111 xso->so_uid = so->so_cred->cr_uid; 4112 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4113 if (SOLISTENING(so)) { 4114 xso->so_qlen = so->sol_qlen; 4115 xso->so_incqlen = so->sol_incqlen; 4116 xso->so_qlimit = so->sol_qlimit; 4117 xso->so_oobmark = 0; 4118 } else { 4119 xso->so_state |= so->so_qstate; 4120 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4121 xso->so_oobmark = so->so_oobmark; 4122 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4123 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4124 } 4125 } 4126 4127 struct sockbuf * 4128 so_sockbuf_rcv(struct socket *so) 4129 { 4130 4131 return (&so->so_rcv); 4132 } 4133 4134 struct sockbuf * 4135 so_sockbuf_snd(struct socket *so) 4136 { 4137 4138 return (&so->so_snd); 4139 } 4140 4141 int 4142 so_state_get(const struct socket *so) 4143 { 4144 4145 return (so->so_state); 4146 } 4147 4148 void 4149 so_state_set(struct socket *so, int val) 4150 { 4151 4152 so->so_state = val; 4153 } 4154 4155 int 4156 so_options_get(const struct socket *so) 4157 { 4158 4159 return (so->so_options); 4160 } 4161 4162 void 4163 so_options_set(struct socket *so, int val) 4164 { 4165 4166 so->so_options = val; 4167 } 4168 4169 int 4170 so_error_get(const struct socket *so) 4171 { 4172 4173 return (so->so_error); 4174 } 4175 4176 void 4177 so_error_set(struct socket *so, int val) 4178 { 4179 4180 so->so_error = val; 4181 } 4182 4183 int 4184 so_linger_get(const struct socket *so) 4185 { 4186 4187 return (so->so_linger); 4188 } 4189 4190 void 4191 so_linger_set(struct socket *so, int val) 4192 { 4193 4194 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4195 ("%s: val %d out of range", __func__, val)); 4196 4197 so->so_linger = val; 4198 } 4199 4200 struct protosw * 4201 so_protosw_get(const struct socket *so) 4202 { 4203 4204 return (so->so_proto); 4205 } 4206 4207 void 4208 so_protosw_set(struct socket *so, struct protosw *val) 4209 { 4210 4211 so->so_proto = val; 4212 } 4213 4214 void 4215 so_sorwakeup(struct socket *so) 4216 { 4217 4218 sorwakeup(so); 4219 } 4220 4221 void 4222 so_sowwakeup(struct socket *so) 4223 { 4224 4225 sowwakeup(so); 4226 } 4227 4228 void 4229 so_sorwakeup_locked(struct socket *so) 4230 { 4231 4232 sorwakeup_locked(so); 4233 } 4234 4235 void 4236 so_sowwakeup_locked(struct socket *so) 4237 { 4238 4239 sowwakeup_locked(so); 4240 } 4241 4242 void 4243 so_lock(struct socket *so) 4244 { 4245 4246 SOCK_LOCK(so); 4247 } 4248 4249 void 4250 so_unlock(struct socket *so) 4251 { 4252 4253 SOCK_UNLOCK(so); 4254 } 4255