xref: /freebsd/sys/kern/uipc_socket.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
256  * so_gencnt field.
257  */
258 static struct mtx so_global_mtx;
259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
260 
261 /*
262  * General IPC sysctl name space, used by sockets and a variety of other IPC
263  * types.
264  */
265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
266     "IPC");
267 
268 /*
269  * Initialize the socket subsystem and set up the socket
270  * memory allocator.
271  */
272 static uma_zone_t socket_zone;
273 int	maxsockets;
274 
275 static void
276 socket_zone_change(void *tag)
277 {
278 
279 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
280 }
281 
282 static void
283 socket_hhook_register(int subtype)
284 {
285 
286 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
287 	    &V_socket_hhh[subtype],
288 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
289 		printf("%s: WARNING: unable to register hook\n", __func__);
290 }
291 
292 static void
293 socket_hhook_deregister(int subtype)
294 {
295 
296 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
297 		printf("%s: WARNING: unable to deregister hook\n", __func__);
298 }
299 
300 static void
301 socket_init(void *tag)
302 {
303 
304 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
305 	    NULL, NULL, UMA_ALIGN_PTR, 0);
306 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
307 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
308 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
309 	    EVENTHANDLER_PRI_FIRST);
310 }
311 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
312 
313 static void
314 socket_vnet_init(const void *unused __unused)
315 {
316 	int i;
317 
318 	/* We expect a contiguous range */
319 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
320 		socket_hhook_register(i);
321 }
322 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
323     socket_vnet_init, NULL);
324 
325 static void
326 socket_vnet_uninit(const void *unused __unused)
327 {
328 	int i;
329 
330 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
331 		socket_hhook_deregister(i);
332 }
333 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
334     socket_vnet_uninit, NULL);
335 
336 /*
337  * Initialise maxsockets.  This SYSINIT must be run after
338  * tunable_mbinit().
339  */
340 static void
341 init_maxsockets(void *ignored)
342 {
343 
344 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
345 	maxsockets = imax(maxsockets, maxfiles);
346 }
347 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
348 
349 /*
350  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
351  * of the change so that they can update their dependent limits as required.
352  */
353 static int
354 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
355 {
356 	int error, newmaxsockets;
357 
358 	newmaxsockets = maxsockets;
359 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
360 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
361 		if (newmaxsockets > maxsockets &&
362 		    newmaxsockets <= maxfiles) {
363 			maxsockets = newmaxsockets;
364 			EVENTHANDLER_INVOKE(maxsockets_change);
365 		} else
366 			error = EINVAL;
367 	}
368 	return (error);
369 }
370 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
371     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
372     sysctl_maxsockets, "IU",
373     "Maximum number of sockets available");
374 
375 /*
376  * Socket operation routines.  These routines are called by the routines in
377  * sys_socket.c or from a system process, and implement the semantics of
378  * socket operations by switching out to the protocol specific routines.
379  */
380 
381 /*
382  * Get a socket structure from our zone, and initialize it.  Note that it
383  * would probably be better to allocate socket and PCB at the same time, but
384  * I'm not convinced that all the protocols can be easily modified to do
385  * this.
386  *
387  * soalloc() returns a socket with a ref count of 0.
388  */
389 static struct socket *
390 soalloc(struct vnet *vnet)
391 {
392 	struct socket *so;
393 
394 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
395 	if (so == NULL)
396 		return (NULL);
397 #ifdef MAC
398 	if (mac_socket_init(so, M_NOWAIT) != 0) {
399 		uma_zfree(socket_zone, so);
400 		return (NULL);
401 	}
402 #endif
403 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
404 		uma_zfree(socket_zone, so);
405 		return (NULL);
406 	}
407 
408 	/*
409 	 * The socket locking protocol allows to lock 2 sockets at a time,
410 	 * however, the first one must be a listening socket.  WITNESS lacks
411 	 * a feature to change class of an existing lock, so we use DUPOK.
412 	 */
413 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
414 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
415 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
416 	so->so_rcv.sb_sel = &so->so_rdsel;
417 	so->so_snd.sb_sel = &so->so_wrsel;
418 	sx_init(&so->so_snd_sx, "so_snd_sx");
419 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
420 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
421 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
422 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
423 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
424 #ifdef VIMAGE
425 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
426 	    __func__, __LINE__, so));
427 	so->so_vnet = vnet;
428 #endif
429 	/* We shouldn't need the so_global_mtx */
430 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
431 		/* Do we need more comprehensive error returns? */
432 		uma_zfree(socket_zone, so);
433 		return (NULL);
434 	}
435 	mtx_lock(&so_global_mtx);
436 	so->so_gencnt = ++so_gencnt;
437 	++numopensockets;
438 #ifdef VIMAGE
439 	vnet->vnet_sockcnt++;
440 #endif
441 	mtx_unlock(&so_global_mtx);
442 
443 	return (so);
444 }
445 
446 /*
447  * Free the storage associated with a socket at the socket layer, tear down
448  * locks, labels, etc.  All protocol state is assumed already to have been
449  * torn down (and possibly never set up) by the caller.
450  */
451 void
452 sodealloc(struct socket *so)
453 {
454 
455 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
456 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
457 
458 	mtx_lock(&so_global_mtx);
459 	so->so_gencnt = ++so_gencnt;
460 	--numopensockets;	/* Could be below, but faster here. */
461 #ifdef VIMAGE
462 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
463 	    __func__, __LINE__, so));
464 	so->so_vnet->vnet_sockcnt--;
465 #endif
466 	mtx_unlock(&so_global_mtx);
467 #ifdef MAC
468 	mac_socket_destroy(so);
469 #endif
470 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
471 
472 	khelp_destroy_osd(&so->osd);
473 	if (SOLISTENING(so)) {
474 		if (so->sol_accept_filter != NULL)
475 			accept_filt_setopt(so, NULL);
476 	} else {
477 		if (so->so_rcv.sb_hiwat)
478 			(void)chgsbsize(so->so_cred->cr_uidinfo,
479 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
480 		if (so->so_snd.sb_hiwat)
481 			(void)chgsbsize(so->so_cred->cr_uidinfo,
482 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
483 		sx_destroy(&so->so_snd_sx);
484 		sx_destroy(&so->so_rcv_sx);
485 		mtx_destroy(&so->so_snd_mtx);
486 		mtx_destroy(&so->so_rcv_mtx);
487 	}
488 	crfree(so->so_cred);
489 	mtx_destroy(&so->so_lock);
490 	uma_zfree(socket_zone, so);
491 }
492 
493 /*
494  * socreate returns a socket with a ref count of 1 and a file descriptor
495  * reference.  The socket should be closed with soclose().
496  */
497 int
498 socreate(int dom, struct socket **aso, int type, int proto,
499     struct ucred *cred, struct thread *td)
500 {
501 	struct protosw *prp;
502 	struct socket *so;
503 	int error;
504 
505 	/*
506 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
507 	 * shim until all applications have been updated.
508 	 */
509 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
510 	    proto == IPPROTO_DIVERT)) {
511 		dom = PF_DIVERT;
512 		printf("%s uses obsolete way to create divert(4) socket\n",
513 		    td->td_proc->p_comm);
514 	}
515 
516 	prp = pffindproto(dom, type, proto);
517 	if (prp == NULL) {
518 		/* No support for domain. */
519 		if (pffinddomain(dom) == NULL)
520 			return (EAFNOSUPPORT);
521 		/* No support for socket type. */
522 		if (proto == 0 && type != 0)
523 			return (EPROTOTYPE);
524 		return (EPROTONOSUPPORT);
525 	}
526 
527 	MPASS(prp->pr_attach);
528 
529 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
530 		return (ECAPMODE);
531 
532 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
533 		return (EPROTONOSUPPORT);
534 
535 	so = soalloc(CRED_TO_VNET(cred));
536 	if (so == NULL)
537 		return (ENOBUFS);
538 
539 	so->so_type = type;
540 	so->so_cred = crhold(cred);
541 	if ((prp->pr_domain->dom_family == PF_INET) ||
542 	    (prp->pr_domain->dom_family == PF_INET6) ||
543 	    (prp->pr_domain->dom_family == PF_ROUTE))
544 		so->so_fibnum = td->td_proc->p_fibnum;
545 	else
546 		so->so_fibnum = 0;
547 	so->so_proto = prp;
548 #ifdef MAC
549 	mac_socket_create(cred, so);
550 #endif
551 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
552 	    so_rdknl_assert_lock);
553 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
554 	    so_wrknl_assert_lock);
555 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
556 		so->so_snd.sb_mtx = &so->so_snd_mtx;
557 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
558 	}
559 	/*
560 	 * Auto-sizing of socket buffers is managed by the protocols and
561 	 * the appropriate flags must be set in the pru_attach function.
562 	 */
563 	CURVNET_SET(so->so_vnet);
564 	error = prp->pr_attach(so, proto, td);
565 	CURVNET_RESTORE();
566 	if (error) {
567 		sodealloc(so);
568 		return (error);
569 	}
570 	soref(so);
571 	*aso = so;
572 	return (0);
573 }
574 
575 #ifdef REGRESSION
576 static int regression_sonewconn_earlytest = 1;
577 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
578     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
579 #endif
580 
581 static struct timeval overinterval = { 60, 0 };
582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
583     &overinterval,
584     "Delay in seconds between warnings for listen socket overflows");
585 
586 /*
587  * When an attempt at a new connection is noted on a socket which supports
588  * accept(2), the protocol has two options:
589  * 1) Call legacy sonewconn() function, which would call protocol attach
590  *    method, same as used for socket(2).
591  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
592  *    and then call solisten_enqueue().
593  *
594  * Note: the ref count on the socket is 0 on return.
595  */
596 struct socket *
597 solisten_clone(struct socket *head)
598 {
599 	struct sbuf descrsb;
600 	struct socket *so;
601 	int len, overcount;
602 	u_int qlen;
603 	const char localprefix[] = "local:";
604 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
605 #if defined(INET6)
606 	char addrbuf[INET6_ADDRSTRLEN];
607 #elif defined(INET)
608 	char addrbuf[INET_ADDRSTRLEN];
609 #endif
610 	bool dolog, over;
611 
612 	SOLISTEN_LOCK(head);
613 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
614 #ifdef REGRESSION
615 	if (regression_sonewconn_earlytest && over) {
616 #else
617 	if (over) {
618 #endif
619 		head->sol_overcount++;
620 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
621 
622 		/*
623 		 * If we're going to log, copy the overflow count and queue
624 		 * length from the listen socket before dropping the lock.
625 		 * Also, reset the overflow count.
626 		 */
627 		if (dolog) {
628 			overcount = head->sol_overcount;
629 			head->sol_overcount = 0;
630 			qlen = head->sol_qlen;
631 		}
632 		SOLISTEN_UNLOCK(head);
633 
634 		if (dolog) {
635 			/*
636 			 * Try to print something descriptive about the
637 			 * socket for the error message.
638 			 */
639 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
640 			    SBUF_FIXEDLEN);
641 			switch (head->so_proto->pr_domain->dom_family) {
642 #if defined(INET) || defined(INET6)
643 #ifdef INET
644 			case AF_INET:
645 #endif
646 #ifdef INET6
647 			case AF_INET6:
648 				if (head->so_proto->pr_domain->dom_family ==
649 				    AF_INET6 ||
650 				    (sotoinpcb(head)->inp_inc.inc_flags &
651 				    INC_ISIPV6)) {
652 					ip6_sprintf(addrbuf,
653 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
654 					sbuf_printf(&descrsb, "[%s]", addrbuf);
655 				} else
656 #endif
657 				{
658 #ifdef INET
659 					inet_ntoa_r(
660 					    sotoinpcb(head)->inp_inc.inc_laddr,
661 					    addrbuf);
662 					sbuf_cat(&descrsb, addrbuf);
663 #endif
664 				}
665 				sbuf_printf(&descrsb, ":%hu (proto %u)",
666 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
667 				    head->so_proto->pr_protocol);
668 				break;
669 #endif /* INET || INET6 */
670 			case AF_UNIX:
671 				sbuf_cat(&descrsb, localprefix);
672 				if (sotounpcb(head)->unp_addr != NULL)
673 					len =
674 					    sotounpcb(head)->unp_addr->sun_len -
675 					    offsetof(struct sockaddr_un,
676 					    sun_path);
677 				else
678 					len = 0;
679 				if (len > 0)
680 					sbuf_bcat(&descrsb,
681 					    sotounpcb(head)->unp_addr->sun_path,
682 					    len);
683 				else
684 					sbuf_cat(&descrsb, "(unknown)");
685 				break;
686 			}
687 
688 			/*
689 			 * If we can't print something more specific, at least
690 			 * print the domain name.
691 			 */
692 			if (sbuf_finish(&descrsb) != 0 ||
693 			    sbuf_len(&descrsb) <= 0) {
694 				sbuf_clear(&descrsb);
695 				sbuf_cat(&descrsb,
696 				    head->so_proto->pr_domain->dom_name ?:
697 				    "unknown");
698 				sbuf_finish(&descrsb);
699 			}
700 			KASSERT(sbuf_len(&descrsb) > 0,
701 			    ("%s: sbuf creation failed", __func__));
702 			/*
703 			 * Preserve the historic listen queue overflow log
704 			 * message, that starts with "sonewconn:".  It has
705 			 * been known to sysadmins for years and also test
706 			 * sys/kern/sonewconn_overflow checks for it.
707 			 */
708 			if (head->so_cred == 0) {
709 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
710 				    "Listen queue overflow: %i already in "
711 				    "queue awaiting acceptance (%d "
712 				    "occurrences)\n", head->so_pcb,
713 				    sbuf_data(&descrsb),
714 			    	qlen, overcount);
715 			} else {
716 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
717 				    "Listen queue overflow: "
718 				    "%i already in queue awaiting acceptance "
719 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
720 				    head->so_pcb, sbuf_data(&descrsb), qlen,
721 				    overcount, head->so_cred->cr_uid,
722 				    head->so_cred->cr_rgid,
723 				    head->so_cred->cr_prison ?
724 					head->so_cred->cr_prison->pr_name :
725 					"not_jailed");
726 			}
727 			sbuf_delete(&descrsb);
728 
729 			overcount = 0;
730 		}
731 
732 		return (NULL);
733 	}
734 	SOLISTEN_UNLOCK(head);
735 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
736 	    __func__, head));
737 	so = soalloc(head->so_vnet);
738 	if (so == NULL) {
739 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
740 		    "limit reached or out of memory\n",
741 		    __func__, head->so_pcb);
742 		return (NULL);
743 	}
744 	so->so_listen = head;
745 	so->so_type = head->so_type;
746 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
747 	so->so_linger = head->so_linger;
748 	so->so_state = head->so_state;
749 	so->so_fibnum = head->so_fibnum;
750 	so->so_proto = head->so_proto;
751 	so->so_cred = crhold(head->so_cred);
752 #ifdef MAC
753 	mac_socket_newconn(head, so);
754 #endif
755 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
756 	    so_rdknl_assert_lock);
757 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
758 	    so_wrknl_assert_lock);
759 	VNET_SO_ASSERT(head);
760 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
761 		sodealloc(so);
762 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
763 		    __func__, head->so_pcb);
764 		return (NULL);
765 	}
766 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
767 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
768 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
769 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
770 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
771 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
772 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
773 		so->so_snd.sb_mtx = &so->so_snd_mtx;
774 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
775 	}
776 
777 	return (so);
778 }
779 
780 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
781 struct socket *
782 sonewconn(struct socket *head, int connstatus)
783 {
784 	struct socket *so;
785 
786 	if ((so = solisten_clone(head)) == NULL)
787 		return (NULL);
788 
789 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
790 		sodealloc(so);
791 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
792 		    __func__, head->so_pcb);
793 		return (NULL);
794 	}
795 
796 	(void)solisten_enqueue(so, connstatus);
797 
798 	return (so);
799 }
800 
801 /*
802  * Enqueue socket cloned by solisten_clone() to the listen queue of the
803  * listener it has been cloned from.
804  *
805  * Return 'true' if socket landed on complete queue, otherwise 'false'.
806  */
807 bool
808 solisten_enqueue(struct socket *so, int connstatus)
809 {
810 	struct socket *head = so->so_listen;
811 
812 	MPASS(refcount_load(&so->so_count) == 0);
813 	refcount_init(&so->so_count, 1);
814 
815 	SOLISTEN_LOCK(head);
816 	if (head->sol_accept_filter != NULL)
817 		connstatus = 0;
818 	so->so_state |= connstatus;
819 	soref(head); /* A socket on (in)complete queue refs head. */
820 	if (connstatus) {
821 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
822 		so->so_qstate = SQ_COMP;
823 		head->sol_qlen++;
824 		solisten_wakeup(head);	/* unlocks */
825 		return (true);
826 	} else {
827 		/*
828 		 * Keep removing sockets from the head until there's room for
829 		 * us to insert on the tail.  In pre-locking revisions, this
830 		 * was a simple if(), but as we could be racing with other
831 		 * threads and soabort() requires dropping locks, we must
832 		 * loop waiting for the condition to be true.
833 		 */
834 		while (head->sol_incqlen > head->sol_qlimit) {
835 			struct socket *sp;
836 
837 			sp = TAILQ_FIRST(&head->sol_incomp);
838 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
839 			head->sol_incqlen--;
840 			SOCK_LOCK(sp);
841 			sp->so_qstate = SQ_NONE;
842 			sp->so_listen = NULL;
843 			SOCK_UNLOCK(sp);
844 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
845 			soabort(sp);
846 			SOLISTEN_LOCK(head);
847 		}
848 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
849 		so->so_qstate = SQ_INCOMP;
850 		head->sol_incqlen++;
851 		SOLISTEN_UNLOCK(head);
852 		return (false);
853 	}
854 }
855 
856 #if defined(SCTP) || defined(SCTP_SUPPORT)
857 /*
858  * Socket part of sctp_peeloff().  Detach a new socket from an
859  * association.  The new socket is returned with a reference.
860  *
861  * XXXGL: reduce copy-paste with solisten_clone().
862  */
863 struct socket *
864 sopeeloff(struct socket *head)
865 {
866 	struct socket *so;
867 
868 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
869 	    __func__, __LINE__, head));
870 	so = soalloc(head->so_vnet);
871 	if (so == NULL) {
872 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
873 		    "limit reached or out of memory\n",
874 		    __func__, head->so_pcb);
875 		return (NULL);
876 	}
877 	so->so_type = head->so_type;
878 	so->so_options = head->so_options;
879 	so->so_linger = head->so_linger;
880 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
881 	so->so_fibnum = head->so_fibnum;
882 	so->so_proto = head->so_proto;
883 	so->so_cred = crhold(head->so_cred);
884 #ifdef MAC
885 	mac_socket_newconn(head, so);
886 #endif
887 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
888 	    so_rdknl_assert_lock);
889 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
890 	    so_wrknl_assert_lock);
891 	VNET_SO_ASSERT(head);
892 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
893 		sodealloc(so);
894 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
895 		    __func__, head->so_pcb);
896 		return (NULL);
897 	}
898 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
899 		sodealloc(so);
900 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
901 		    __func__, head->so_pcb);
902 		return (NULL);
903 	}
904 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
905 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
906 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
907 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
908 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
909 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
910 
911 	soref(so);
912 
913 	return (so);
914 }
915 #endif	/* SCTP */
916 
917 int
918 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
919 {
920 	int error;
921 
922 	CURVNET_SET(so->so_vnet);
923 	error = so->so_proto->pr_bind(so, nam, td);
924 	CURVNET_RESTORE();
925 	return (error);
926 }
927 
928 int
929 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
930 {
931 	int error;
932 
933 	CURVNET_SET(so->so_vnet);
934 	error = so->so_proto->pr_bindat(fd, so, nam, td);
935 	CURVNET_RESTORE();
936 	return (error);
937 }
938 
939 /*
940  * solisten() transitions a socket from a non-listening state to a listening
941  * state, but can also be used to update the listen queue depth on an
942  * existing listen socket.  The protocol will call back into the sockets
943  * layer using solisten_proto_check() and solisten_proto() to check and set
944  * socket-layer listen state.  Call backs are used so that the protocol can
945  * acquire both protocol and socket layer locks in whatever order is required
946  * by the protocol.
947  *
948  * Protocol implementors are advised to hold the socket lock across the
949  * socket-layer test and set to avoid races at the socket layer.
950  */
951 int
952 solisten(struct socket *so, int backlog, struct thread *td)
953 {
954 	int error;
955 
956 	CURVNET_SET(so->so_vnet);
957 	error = so->so_proto->pr_listen(so, backlog, td);
958 	CURVNET_RESTORE();
959 	return (error);
960 }
961 
962 /*
963  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
964  * order to interlock with socket I/O.
965  */
966 int
967 solisten_proto_check(struct socket *so)
968 {
969 	SOCK_LOCK_ASSERT(so);
970 
971 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
972 	    SS_ISDISCONNECTING)) != 0)
973 		return (EINVAL);
974 
975 	/*
976 	 * Sleeping is not permitted here, so simply fail if userspace is
977 	 * attempting to transmit or receive on the socket.  This kind of
978 	 * transient failure is not ideal, but it should occur only if userspace
979 	 * is misusing the socket interfaces.
980 	 */
981 	if (!sx_try_xlock(&so->so_snd_sx))
982 		return (EAGAIN);
983 	if (!sx_try_xlock(&so->so_rcv_sx)) {
984 		sx_xunlock(&so->so_snd_sx);
985 		return (EAGAIN);
986 	}
987 	mtx_lock(&so->so_snd_mtx);
988 	mtx_lock(&so->so_rcv_mtx);
989 
990 	/* Interlock with soo_aio_queue(). */
991 	if (!SOLISTENING(so) &&
992 	   ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
993 	   (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) {
994 		solisten_proto_abort(so);
995 		return (EINVAL);
996 	}
997 	return (0);
998 }
999 
1000 /*
1001  * Undo the setup done by solisten_proto_check().
1002  */
1003 void
1004 solisten_proto_abort(struct socket *so)
1005 {
1006 	mtx_unlock(&so->so_snd_mtx);
1007 	mtx_unlock(&so->so_rcv_mtx);
1008 	sx_xunlock(&so->so_snd_sx);
1009 	sx_xunlock(&so->so_rcv_sx);
1010 }
1011 
1012 void
1013 solisten_proto(struct socket *so, int backlog)
1014 {
1015 	int sbrcv_lowat, sbsnd_lowat;
1016 	u_int sbrcv_hiwat, sbsnd_hiwat;
1017 	short sbrcv_flags, sbsnd_flags;
1018 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1019 
1020 	SOCK_LOCK_ASSERT(so);
1021 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1022 	    SS_ISDISCONNECTING)) == 0,
1023 	    ("%s: bad socket state %p", __func__, so));
1024 
1025 	if (SOLISTENING(so))
1026 		goto listening;
1027 
1028 	/*
1029 	 * Change this socket to listening state.
1030 	 */
1031 	sbrcv_lowat = so->so_rcv.sb_lowat;
1032 	sbsnd_lowat = so->so_snd.sb_lowat;
1033 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1034 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1035 	sbrcv_flags = so->so_rcv.sb_flags;
1036 	sbsnd_flags = so->so_snd.sb_flags;
1037 	sbrcv_timeo = so->so_rcv.sb_timeo;
1038 	sbsnd_timeo = so->so_snd.sb_timeo;
1039 
1040 	sbdestroy(so, SO_SND);
1041 	sbdestroy(so, SO_RCV);
1042 
1043 #ifdef INVARIANTS
1044 	bzero(&so->so_rcv,
1045 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1046 #endif
1047 
1048 	so->sol_sbrcv_lowat = sbrcv_lowat;
1049 	so->sol_sbsnd_lowat = sbsnd_lowat;
1050 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1051 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1052 	so->sol_sbrcv_flags = sbrcv_flags;
1053 	so->sol_sbsnd_flags = sbsnd_flags;
1054 	so->sol_sbrcv_timeo = sbrcv_timeo;
1055 	so->sol_sbsnd_timeo = sbsnd_timeo;
1056 
1057 	so->sol_qlen = so->sol_incqlen = 0;
1058 	TAILQ_INIT(&so->sol_incomp);
1059 	TAILQ_INIT(&so->sol_comp);
1060 
1061 	so->sol_accept_filter = NULL;
1062 	so->sol_accept_filter_arg = NULL;
1063 	so->sol_accept_filter_str = NULL;
1064 
1065 	so->sol_upcall = NULL;
1066 	so->sol_upcallarg = NULL;
1067 
1068 	so->so_options |= SO_ACCEPTCONN;
1069 
1070 listening:
1071 	if (backlog < 0 || backlog > somaxconn)
1072 		backlog = somaxconn;
1073 	so->sol_qlimit = backlog;
1074 
1075 	mtx_unlock(&so->so_snd_mtx);
1076 	mtx_unlock(&so->so_rcv_mtx);
1077 	sx_xunlock(&so->so_snd_sx);
1078 	sx_xunlock(&so->so_rcv_sx);
1079 }
1080 
1081 /*
1082  * Wakeup listeners/subsystems once we have a complete connection.
1083  * Enters with lock, returns unlocked.
1084  */
1085 void
1086 solisten_wakeup(struct socket *sol)
1087 {
1088 
1089 	if (sol->sol_upcall != NULL)
1090 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1091 	else {
1092 		selwakeuppri(&sol->so_rdsel, PSOCK);
1093 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1094 	}
1095 	SOLISTEN_UNLOCK(sol);
1096 	wakeup_one(&sol->sol_comp);
1097 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1098 		pgsigio(&sol->so_sigio, SIGIO, 0);
1099 }
1100 
1101 /*
1102  * Return single connection off a listening socket queue.  Main consumer of
1103  * the function is kern_accept4().  Some modules, that do their own accept
1104  * management also use the function.  The socket reference held by the
1105  * listen queue is handed to the caller.
1106  *
1107  * Listening socket must be locked on entry and is returned unlocked on
1108  * return.
1109  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1110  */
1111 int
1112 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1113 {
1114 	struct socket *so;
1115 	int error;
1116 
1117 	SOLISTEN_LOCK_ASSERT(head);
1118 
1119 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1120 	    head->so_error == 0) {
1121 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1122 		    "accept", 0);
1123 		if (error != 0) {
1124 			SOLISTEN_UNLOCK(head);
1125 			return (error);
1126 		}
1127 	}
1128 	if (head->so_error) {
1129 		error = head->so_error;
1130 		head->so_error = 0;
1131 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1132 		error = EWOULDBLOCK;
1133 	else
1134 		error = 0;
1135 	if (error) {
1136 		SOLISTEN_UNLOCK(head);
1137 		return (error);
1138 	}
1139 	so = TAILQ_FIRST(&head->sol_comp);
1140 	SOCK_LOCK(so);
1141 	KASSERT(so->so_qstate == SQ_COMP,
1142 	    ("%s: so %p not SQ_COMP", __func__, so));
1143 	head->sol_qlen--;
1144 	so->so_qstate = SQ_NONE;
1145 	so->so_listen = NULL;
1146 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1147 	if (flags & ACCEPT4_INHERIT)
1148 		so->so_state |= (head->so_state & SS_NBIO);
1149 	else
1150 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1151 	SOCK_UNLOCK(so);
1152 	sorele_locked(head);
1153 
1154 	*ret = so;
1155 	return (0);
1156 }
1157 
1158 /*
1159  * Free socket upon release of the very last reference.
1160  */
1161 static void
1162 sofree(struct socket *so)
1163 {
1164 	struct protosw *pr = so->so_proto;
1165 
1166 	SOCK_LOCK_ASSERT(so);
1167 	KASSERT(refcount_load(&so->so_count) == 0,
1168 	    ("%s: so %p has references", __func__, so));
1169 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1170 	    ("%s: so %p is on listen queue", __func__, so));
1171 
1172 	SOCK_UNLOCK(so);
1173 
1174 	if (so->so_dtor != NULL)
1175 		so->so_dtor(so);
1176 
1177 	VNET_SO_ASSERT(so);
1178 	if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
1179 		MPASS(pr->pr_domain->dom_dispose != NULL);
1180 		(*pr->pr_domain->dom_dispose)(so);
1181 	}
1182 	if (pr->pr_detach != NULL)
1183 		pr->pr_detach(so);
1184 
1185 	/*
1186 	 * From this point on, we assume that no other references to this
1187 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1188 	 * to be acquired or held.
1189 	 */
1190 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1191 		sbdestroy(so, SO_SND);
1192 		sbdestroy(so, SO_RCV);
1193 	}
1194 	seldrain(&so->so_rdsel);
1195 	seldrain(&so->so_wrsel);
1196 	knlist_destroy(&so->so_rdsel.si_note);
1197 	knlist_destroy(&so->so_wrsel.si_note);
1198 	sodealloc(so);
1199 }
1200 
1201 /*
1202  * Release a reference on a socket while holding the socket lock.
1203  * Unlocks the socket lock before returning.
1204  */
1205 void
1206 sorele_locked(struct socket *so)
1207 {
1208 	SOCK_LOCK_ASSERT(so);
1209 	if (refcount_release(&so->so_count))
1210 		sofree(so);
1211 	else
1212 		SOCK_UNLOCK(so);
1213 }
1214 
1215 /*
1216  * Close a socket on last file table reference removal.  Initiate disconnect
1217  * if connected.  Free socket when disconnect complete.
1218  *
1219  * This function will sorele() the socket.  Note that soclose() may be called
1220  * prior to the ref count reaching zero.  The actual socket structure will
1221  * not be freed until the ref count reaches zero.
1222  */
1223 int
1224 soclose(struct socket *so)
1225 {
1226 	struct accept_queue lqueue;
1227 	int error = 0;
1228 	bool listening, last __diagused;
1229 
1230 	CURVNET_SET(so->so_vnet);
1231 	funsetown(&so->so_sigio);
1232 	if (so->so_state & SS_ISCONNECTED) {
1233 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1234 			error = sodisconnect(so);
1235 			if (error) {
1236 				if (error == ENOTCONN)
1237 					error = 0;
1238 				goto drop;
1239 			}
1240 		}
1241 
1242 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1243 			if ((so->so_state & SS_ISDISCONNECTING) &&
1244 			    (so->so_state & SS_NBIO))
1245 				goto drop;
1246 			while (so->so_state & SS_ISCONNECTED) {
1247 				error = tsleep(&so->so_timeo,
1248 				    PSOCK | PCATCH, "soclos",
1249 				    so->so_linger * hz);
1250 				if (error)
1251 					break;
1252 			}
1253 		}
1254 	}
1255 
1256 drop:
1257 	if (so->so_proto->pr_close != NULL)
1258 		so->so_proto->pr_close(so);
1259 
1260 	SOCK_LOCK(so);
1261 	if ((listening = SOLISTENING(so))) {
1262 		struct socket *sp;
1263 
1264 		TAILQ_INIT(&lqueue);
1265 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1266 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1267 
1268 		so->sol_qlen = so->sol_incqlen = 0;
1269 
1270 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1271 			SOCK_LOCK(sp);
1272 			sp->so_qstate = SQ_NONE;
1273 			sp->so_listen = NULL;
1274 			SOCK_UNLOCK(sp);
1275 			last = refcount_release(&so->so_count);
1276 			KASSERT(!last, ("%s: released last reference for %p",
1277 			    __func__, so));
1278 		}
1279 	}
1280 	sorele_locked(so);
1281 	if (listening) {
1282 		struct socket *sp, *tsp;
1283 
1284 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1285 			soabort(sp);
1286 	}
1287 	CURVNET_RESTORE();
1288 	return (error);
1289 }
1290 
1291 /*
1292  * soabort() is used to abruptly tear down a connection, such as when a
1293  * resource limit is reached (listen queue depth exceeded), or if a listen
1294  * socket is closed while there are sockets waiting to be accepted.
1295  *
1296  * This interface is tricky, because it is called on an unreferenced socket,
1297  * and must be called only by a thread that has actually removed the socket
1298  * from the listen queue it was on.  Likely this thread holds the last
1299  * reference on the socket and soabort() will proceed with sofree().  But
1300  * it might be not the last, as the sockets on the listen queues are seen
1301  * from the protocol side.
1302  *
1303  * This interface will call into the protocol code, so must not be called
1304  * with any socket locks held.  Protocols do call it while holding their own
1305  * recursible protocol mutexes, but this is something that should be subject
1306  * to review in the future.
1307  *
1308  * Usually socket should have a single reference left, but this is not a
1309  * requirement.  In the past, when we have had named references for file
1310  * descriptor and protocol, we asserted that none of them are being held.
1311  */
1312 void
1313 soabort(struct socket *so)
1314 {
1315 
1316 	VNET_SO_ASSERT(so);
1317 
1318 	if (so->so_proto->pr_abort != NULL)
1319 		so->so_proto->pr_abort(so);
1320 	SOCK_LOCK(so);
1321 	sorele_locked(so);
1322 }
1323 
1324 int
1325 soaccept(struct socket *so, struct sockaddr **nam)
1326 {
1327 	int error;
1328 
1329 	CURVNET_SET(so->so_vnet);
1330 	error = so->so_proto->pr_accept(so, nam);
1331 	CURVNET_RESTORE();
1332 	return (error);
1333 }
1334 
1335 int
1336 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1337 {
1338 
1339 	return (soconnectat(AT_FDCWD, so, nam, td));
1340 }
1341 
1342 int
1343 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1344 {
1345 	int error;
1346 
1347 	CURVNET_SET(so->so_vnet);
1348 	/*
1349 	 * If protocol is connection-based, can only connect once.
1350 	 * Otherwise, if connected, try to disconnect first.  This allows
1351 	 * user to disconnect by connecting to, e.g., a null address.
1352 	 */
1353 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1354 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1355 	    (error = sodisconnect(so)))) {
1356 		error = EISCONN;
1357 	} else {
1358 		/*
1359 		 * Prevent accumulated error from previous connection from
1360 		 * biting us.
1361 		 */
1362 		so->so_error = 0;
1363 		if (fd == AT_FDCWD) {
1364 			error = so->so_proto->pr_connect(so, nam, td);
1365 		} else {
1366 			error = so->so_proto->pr_connectat(fd, so, nam, td);
1367 		}
1368 	}
1369 	CURVNET_RESTORE();
1370 
1371 	return (error);
1372 }
1373 
1374 int
1375 soconnect2(struct socket *so1, struct socket *so2)
1376 {
1377 	int error;
1378 
1379 	CURVNET_SET(so1->so_vnet);
1380 	error = so1->so_proto->pr_connect2(so1, so2);
1381 	CURVNET_RESTORE();
1382 	return (error);
1383 }
1384 
1385 int
1386 sodisconnect(struct socket *so)
1387 {
1388 	int error;
1389 
1390 	if ((so->so_state & SS_ISCONNECTED) == 0)
1391 		return (ENOTCONN);
1392 	if (so->so_state & SS_ISDISCONNECTING)
1393 		return (EALREADY);
1394 	VNET_SO_ASSERT(so);
1395 	error = so->so_proto->pr_disconnect(so);
1396 	return (error);
1397 }
1398 
1399 int
1400 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1401     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1402 {
1403 	long space;
1404 	ssize_t resid;
1405 	int clen = 0, error, dontroute;
1406 
1407 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1408 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1409 	    ("sosend_dgram: !PR_ATOMIC"));
1410 
1411 	if (uio != NULL)
1412 		resid = uio->uio_resid;
1413 	else
1414 		resid = top->m_pkthdr.len;
1415 	/*
1416 	 * In theory resid should be unsigned.  However, space must be
1417 	 * signed, as it might be less than 0 if we over-committed, and we
1418 	 * must use a signed comparison of space and resid.  On the other
1419 	 * hand, a negative resid causes us to loop sending 0-length
1420 	 * segments to the protocol.
1421 	 */
1422 	if (resid < 0) {
1423 		error = EINVAL;
1424 		goto out;
1425 	}
1426 
1427 	dontroute =
1428 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1429 	if (td != NULL)
1430 		td->td_ru.ru_msgsnd++;
1431 	if (control != NULL)
1432 		clen = control->m_len;
1433 
1434 	SOCKBUF_LOCK(&so->so_snd);
1435 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1436 		SOCKBUF_UNLOCK(&so->so_snd);
1437 		error = EPIPE;
1438 		goto out;
1439 	}
1440 	if (so->so_error) {
1441 		error = so->so_error;
1442 		so->so_error = 0;
1443 		SOCKBUF_UNLOCK(&so->so_snd);
1444 		goto out;
1445 	}
1446 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1447 		/*
1448 		 * `sendto' and `sendmsg' is allowed on a connection-based
1449 		 * socket if it supports implied connect.  Return ENOTCONN if
1450 		 * not connected and no address is supplied.
1451 		 */
1452 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1453 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1454 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1455 			    !(resid == 0 && clen != 0)) {
1456 				SOCKBUF_UNLOCK(&so->so_snd);
1457 				error = ENOTCONN;
1458 				goto out;
1459 			}
1460 		} else if (addr == NULL) {
1461 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1462 				error = ENOTCONN;
1463 			else
1464 				error = EDESTADDRREQ;
1465 			SOCKBUF_UNLOCK(&so->so_snd);
1466 			goto out;
1467 		}
1468 	}
1469 
1470 	/*
1471 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1472 	 * problem and need fixing.
1473 	 */
1474 	space = sbspace(&so->so_snd);
1475 	if (flags & MSG_OOB)
1476 		space += 1024;
1477 	space -= clen;
1478 	SOCKBUF_UNLOCK(&so->so_snd);
1479 	if (resid > space) {
1480 		error = EMSGSIZE;
1481 		goto out;
1482 	}
1483 	if (uio == NULL) {
1484 		resid = 0;
1485 		if (flags & MSG_EOR)
1486 			top->m_flags |= M_EOR;
1487 	} else {
1488 		/*
1489 		 * Copy the data from userland into a mbuf chain.
1490 		 * If no data is to be copied in, a single empty mbuf
1491 		 * is returned.
1492 		 */
1493 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1494 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1495 		if (top == NULL) {
1496 			error = EFAULT;	/* only possible error */
1497 			goto out;
1498 		}
1499 		space -= resid - uio->uio_resid;
1500 		resid = uio->uio_resid;
1501 	}
1502 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1503 	/*
1504 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1505 	 * than with.
1506 	 */
1507 	if (dontroute) {
1508 		SOCK_LOCK(so);
1509 		so->so_options |= SO_DONTROUTE;
1510 		SOCK_UNLOCK(so);
1511 	}
1512 	/*
1513 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1514 	 * of date.  We could have received a reset packet in an interrupt or
1515 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1516 	 * probably recheck again inside the locking protection here, but
1517 	 * there are probably other places that this also happens.  We must
1518 	 * rethink this.
1519 	 */
1520 	VNET_SO_ASSERT(so);
1521 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
1522 	/*
1523 	 * If the user set MSG_EOF, the protocol understands this flag and
1524 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1525 	 */
1526 	    ((flags & MSG_EOF) &&
1527 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1528 	     (resid <= 0)) ?
1529 		PRUS_EOF :
1530 		/* If there is more to send set PRUS_MORETOCOME */
1531 		(flags & MSG_MORETOCOME) ||
1532 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1533 		top, addr, control, td);
1534 	if (dontroute) {
1535 		SOCK_LOCK(so);
1536 		so->so_options &= ~SO_DONTROUTE;
1537 		SOCK_UNLOCK(so);
1538 	}
1539 	clen = 0;
1540 	control = NULL;
1541 	top = NULL;
1542 out:
1543 	if (top != NULL)
1544 		m_freem(top);
1545 	if (control != NULL)
1546 		m_freem(control);
1547 	return (error);
1548 }
1549 
1550 /*
1551  * Send on a socket.  If send must go all at once and message is larger than
1552  * send buffering, then hard error.  Lock against other senders.  If must go
1553  * all at once and not enough room now, then inform user that this would
1554  * block and do nothing.  Otherwise, if nonblocking, send as much as
1555  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1556  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1557  * in mbuf chain must be small enough to send all at once.
1558  *
1559  * Returns nonzero on error, timeout or signal; callers must check for short
1560  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1561  * on return.
1562  */
1563 int
1564 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1565     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1566 {
1567 	long space;
1568 	ssize_t resid;
1569 	int clen = 0, error, dontroute;
1570 	int atomic = sosendallatonce(so) || top;
1571 	int pr_send_flag;
1572 #ifdef KERN_TLS
1573 	struct ktls_session *tls;
1574 	int tls_enq_cnt, tls_send_flag;
1575 	uint8_t tls_rtype;
1576 
1577 	tls = NULL;
1578 	tls_rtype = TLS_RLTYPE_APP;
1579 #endif
1580 	if (uio != NULL)
1581 		resid = uio->uio_resid;
1582 	else if ((top->m_flags & M_PKTHDR) != 0)
1583 		resid = top->m_pkthdr.len;
1584 	else
1585 		resid = m_length(top, NULL);
1586 	/*
1587 	 * In theory resid should be unsigned.  However, space must be
1588 	 * signed, as it might be less than 0 if we over-committed, and we
1589 	 * must use a signed comparison of space and resid.  On the other
1590 	 * hand, a negative resid causes us to loop sending 0-length
1591 	 * segments to the protocol.
1592 	 *
1593 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1594 	 * type sockets since that's an error.
1595 	 */
1596 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1597 		error = EINVAL;
1598 		goto out;
1599 	}
1600 
1601 	dontroute =
1602 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1603 	    (so->so_proto->pr_flags & PR_ATOMIC);
1604 	if (td != NULL)
1605 		td->td_ru.ru_msgsnd++;
1606 	if (control != NULL)
1607 		clen = control->m_len;
1608 
1609 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1610 	if (error)
1611 		goto out;
1612 
1613 #ifdef KERN_TLS
1614 	tls_send_flag = 0;
1615 	tls = ktls_hold(so->so_snd.sb_tls_info);
1616 	if (tls != NULL) {
1617 		if (tls->mode == TCP_TLS_MODE_SW)
1618 			tls_send_flag = PRUS_NOTREADY;
1619 
1620 		if (control != NULL) {
1621 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1622 
1623 			if (clen >= sizeof(*cm) &&
1624 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1625 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1626 				clen = 0;
1627 				m_freem(control);
1628 				control = NULL;
1629 				atomic = 1;
1630 			}
1631 		}
1632 
1633 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1634 			error = EINVAL;
1635 			goto release;
1636 		}
1637 	}
1638 #endif
1639 
1640 restart:
1641 	do {
1642 		SOCKBUF_LOCK(&so->so_snd);
1643 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1644 			SOCKBUF_UNLOCK(&so->so_snd);
1645 			error = EPIPE;
1646 			goto release;
1647 		}
1648 		if (so->so_error) {
1649 			error = so->so_error;
1650 			so->so_error = 0;
1651 			SOCKBUF_UNLOCK(&so->so_snd);
1652 			goto release;
1653 		}
1654 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1655 			/*
1656 			 * `sendto' and `sendmsg' is allowed on a connection-
1657 			 * based socket if it supports implied connect.
1658 			 * Return ENOTCONN if not connected and no address is
1659 			 * supplied.
1660 			 */
1661 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1662 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1663 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1664 				    !(resid == 0 && clen != 0)) {
1665 					SOCKBUF_UNLOCK(&so->so_snd);
1666 					error = ENOTCONN;
1667 					goto release;
1668 				}
1669 			} else if (addr == NULL) {
1670 				SOCKBUF_UNLOCK(&so->so_snd);
1671 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1672 					error = ENOTCONN;
1673 				else
1674 					error = EDESTADDRREQ;
1675 				goto release;
1676 			}
1677 		}
1678 		space = sbspace(&so->so_snd);
1679 		if (flags & MSG_OOB)
1680 			space += 1024;
1681 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1682 		    clen > so->so_snd.sb_hiwat) {
1683 			SOCKBUF_UNLOCK(&so->so_snd);
1684 			error = EMSGSIZE;
1685 			goto release;
1686 		}
1687 		if (space < resid + clen &&
1688 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1689 			if ((so->so_state & SS_NBIO) ||
1690 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1691 				SOCKBUF_UNLOCK(&so->so_snd);
1692 				error = EWOULDBLOCK;
1693 				goto release;
1694 			}
1695 			error = sbwait(so, SO_SND);
1696 			SOCKBUF_UNLOCK(&so->so_snd);
1697 			if (error)
1698 				goto release;
1699 			goto restart;
1700 		}
1701 		SOCKBUF_UNLOCK(&so->so_snd);
1702 		space -= clen;
1703 		do {
1704 			if (uio == NULL) {
1705 				resid = 0;
1706 				if (flags & MSG_EOR)
1707 					top->m_flags |= M_EOR;
1708 #ifdef KERN_TLS
1709 				if (tls != NULL) {
1710 					ktls_frame(top, tls, &tls_enq_cnt,
1711 					    tls_rtype);
1712 					tls_rtype = TLS_RLTYPE_APP;
1713 				}
1714 #endif
1715 			} else {
1716 				/*
1717 				 * Copy the data from userland into a mbuf
1718 				 * chain.  If resid is 0, which can happen
1719 				 * only if we have control to send, then
1720 				 * a single empty mbuf is returned.  This
1721 				 * is a workaround to prevent protocol send
1722 				 * methods to panic.
1723 				 */
1724 #ifdef KERN_TLS
1725 				if (tls != NULL) {
1726 					top = m_uiotombuf(uio, M_WAITOK, space,
1727 					    tls->params.max_frame_len,
1728 					    M_EXTPG |
1729 					    ((flags & MSG_EOR) ? M_EOR : 0));
1730 					if (top != NULL) {
1731 						ktls_frame(top, tls,
1732 						    &tls_enq_cnt, tls_rtype);
1733 					}
1734 					tls_rtype = TLS_RLTYPE_APP;
1735 				} else
1736 #endif
1737 					top = m_uiotombuf(uio, M_WAITOK, space,
1738 					    (atomic ? max_hdr : 0),
1739 					    (atomic ? M_PKTHDR : 0) |
1740 					    ((flags & MSG_EOR) ? M_EOR : 0));
1741 				if (top == NULL) {
1742 					error = EFAULT; /* only possible error */
1743 					goto release;
1744 				}
1745 				space -= resid - uio->uio_resid;
1746 				resid = uio->uio_resid;
1747 			}
1748 			if (dontroute) {
1749 				SOCK_LOCK(so);
1750 				so->so_options |= SO_DONTROUTE;
1751 				SOCK_UNLOCK(so);
1752 			}
1753 			/*
1754 			 * XXX all the SBS_CANTSENDMORE checks previously
1755 			 * done could be out of date.  We could have received
1756 			 * a reset packet in an interrupt or maybe we slept
1757 			 * while doing page faults in uiomove() etc.  We
1758 			 * could probably recheck again inside the locking
1759 			 * protection here, but there are probably other
1760 			 * places that this also happens.  We must rethink
1761 			 * this.
1762 			 */
1763 			VNET_SO_ASSERT(so);
1764 
1765 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
1766 			/*
1767 			 * If the user set MSG_EOF, the protocol understands
1768 			 * this flag and nothing left to send then use
1769 			 * PRU_SEND_EOF instead of PRU_SEND.
1770 			 */
1771 			    ((flags & MSG_EOF) &&
1772 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1773 			     (resid <= 0)) ?
1774 				PRUS_EOF :
1775 			/* If there is more to send set PRUS_MORETOCOME. */
1776 			    (flags & MSG_MORETOCOME) ||
1777 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1778 
1779 #ifdef KERN_TLS
1780 			pr_send_flag |= tls_send_flag;
1781 #endif
1782 
1783 			error = so->so_proto->pr_send(so, pr_send_flag, top,
1784 			    addr, control, td);
1785 
1786 			if (dontroute) {
1787 				SOCK_LOCK(so);
1788 				so->so_options &= ~SO_DONTROUTE;
1789 				SOCK_UNLOCK(so);
1790 			}
1791 
1792 #ifdef KERN_TLS
1793 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1794 				if (error != 0) {
1795 					m_freem(top);
1796 					top = NULL;
1797 				} else {
1798 					soref(so);
1799 					ktls_enqueue(top, so, tls_enq_cnt);
1800 				}
1801 			}
1802 #endif
1803 			clen = 0;
1804 			control = NULL;
1805 			top = NULL;
1806 			if (error)
1807 				goto release;
1808 		} while (resid && space > 0);
1809 	} while (resid);
1810 
1811 release:
1812 	SOCK_IO_SEND_UNLOCK(so);
1813 out:
1814 #ifdef KERN_TLS
1815 	if (tls != NULL)
1816 		ktls_free(tls);
1817 #endif
1818 	if (top != NULL)
1819 		m_freem(top);
1820 	if (control != NULL)
1821 		m_freem(control);
1822 	return (error);
1823 }
1824 
1825 /*
1826  * Send to a socket from a kernel thread.
1827  *
1828  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
1829  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
1830  * to be set at all.  This function should just boil down to a static inline
1831  * calling the protocol method.
1832  */
1833 int
1834 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1835     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1836 {
1837 	int error;
1838 
1839 	CURVNET_SET(so->so_vnet);
1840 	error = so->so_proto->pr_sosend(so, addr, uio,
1841 	    top, control, flags, td);
1842 	CURVNET_RESTORE();
1843 	return (error);
1844 }
1845 
1846 /*
1847  * send(2), write(2) or aio_write(2) on a socket.
1848  */
1849 int
1850 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1851     struct mbuf *control, int flags, struct proc *userproc)
1852 {
1853 	struct thread *td;
1854 	ssize_t len;
1855 	int error;
1856 
1857 	td = uio->uio_td;
1858 	len = uio->uio_resid;
1859 	CURVNET_SET(so->so_vnet);
1860 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
1861 	    td);
1862 	CURVNET_RESTORE();
1863 	if (error != 0) {
1864 		if (uio->uio_resid != len &&
1865 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
1866 		    (error == ERESTART || error == EINTR ||
1867 		    error == EWOULDBLOCK))
1868 			error = 0;
1869 		/* Generation of SIGPIPE can be controlled per socket. */
1870 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
1871 		    (flags & MSG_NOSIGNAL) == 0) {
1872 			if (userproc != NULL) {
1873 				/* aio(4) job */
1874 				PROC_LOCK(userproc);
1875 				kern_psignal(userproc, SIGPIPE);
1876 				PROC_UNLOCK(userproc);
1877 			} else {
1878 				PROC_LOCK(td->td_proc);
1879 				tdsignal(td, SIGPIPE);
1880 				PROC_UNLOCK(td->td_proc);
1881 			}
1882 		}
1883 	}
1884 	return (error);
1885 }
1886 
1887 /*
1888  * The part of soreceive() that implements reading non-inline out-of-band
1889  * data from a socket.  For more complete comments, see soreceive(), from
1890  * which this code originated.
1891  *
1892  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1893  * unable to return an mbuf chain to the caller.
1894  */
1895 static int
1896 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1897 {
1898 	struct protosw *pr = so->so_proto;
1899 	struct mbuf *m;
1900 	int error;
1901 
1902 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1903 	VNET_SO_ASSERT(so);
1904 
1905 	m = m_get(M_WAITOK, MT_DATA);
1906 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
1907 	if (error)
1908 		goto bad;
1909 	do {
1910 		error = uiomove(mtod(m, void *),
1911 		    (int) min(uio->uio_resid, m->m_len), uio);
1912 		m = m_free(m);
1913 	} while (uio->uio_resid && error == 0 && m);
1914 bad:
1915 	if (m != NULL)
1916 		m_freem(m);
1917 	return (error);
1918 }
1919 
1920 /*
1921  * Following replacement or removal of the first mbuf on the first mbuf chain
1922  * of a socket buffer, push necessary state changes back into the socket
1923  * buffer so that other consumers see the values consistently.  'nextrecord'
1924  * is the callers locally stored value of the original value of
1925  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1926  * NOTE: 'nextrecord' may be NULL.
1927  */
1928 static __inline void
1929 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1930 {
1931 
1932 	SOCKBUF_LOCK_ASSERT(sb);
1933 	/*
1934 	 * First, update for the new value of nextrecord.  If necessary, make
1935 	 * it the first record.
1936 	 */
1937 	if (sb->sb_mb != NULL)
1938 		sb->sb_mb->m_nextpkt = nextrecord;
1939 	else
1940 		sb->sb_mb = nextrecord;
1941 
1942 	/*
1943 	 * Now update any dependent socket buffer fields to reflect the new
1944 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1945 	 * addition of a second clause that takes care of the case where
1946 	 * sb_mb has been updated, but remains the last record.
1947 	 */
1948 	if (sb->sb_mb == NULL) {
1949 		sb->sb_mbtail = NULL;
1950 		sb->sb_lastrecord = NULL;
1951 	} else if (sb->sb_mb->m_nextpkt == NULL)
1952 		sb->sb_lastrecord = sb->sb_mb;
1953 }
1954 
1955 /*
1956  * Implement receive operations on a socket.  We depend on the way that
1957  * records are added to the sockbuf by sbappend.  In particular, each record
1958  * (mbufs linked through m_next) must begin with an address if the protocol
1959  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1960  * data, and then zero or more mbufs of data.  In order to allow parallelism
1961  * between network receive and copying to user space, as well as avoid
1962  * sleeping with a mutex held, we release the socket buffer mutex during the
1963  * user space copy.  Although the sockbuf is locked, new data may still be
1964  * appended, and thus we must maintain consistency of the sockbuf during that
1965  * time.
1966  *
1967  * The caller may receive the data as a single mbuf chain by supplying an
1968  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1969  * the count in uio_resid.
1970  */
1971 int
1972 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1973     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1974 {
1975 	struct mbuf *m, **mp;
1976 	int flags, error, offset;
1977 	ssize_t len;
1978 	struct protosw *pr = so->so_proto;
1979 	struct mbuf *nextrecord;
1980 	int moff, type = 0;
1981 	ssize_t orig_resid = uio->uio_resid;
1982 	bool report_real_len = false;
1983 
1984 	mp = mp0;
1985 	if (psa != NULL)
1986 		*psa = NULL;
1987 	if (controlp != NULL)
1988 		*controlp = NULL;
1989 	if (flagsp != NULL) {
1990 		report_real_len = *flagsp & MSG_TRUNC;
1991 		*flagsp &= ~MSG_TRUNC;
1992 		flags = *flagsp &~ MSG_EOR;
1993 	} else
1994 		flags = 0;
1995 	if (flags & MSG_OOB)
1996 		return (soreceive_rcvoob(so, uio, flags));
1997 	if (mp != NULL)
1998 		*mp = NULL;
1999 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
2000 	    && uio->uio_resid) {
2001 		VNET_SO_ASSERT(so);
2002 		pr->pr_rcvd(so, 0);
2003 	}
2004 
2005 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2006 	if (error)
2007 		return (error);
2008 
2009 restart:
2010 	SOCKBUF_LOCK(&so->so_rcv);
2011 	m = so->so_rcv.sb_mb;
2012 	/*
2013 	 * If we have less data than requested, block awaiting more (subject
2014 	 * to any timeout) if:
2015 	 *   1. the current count is less than the low water mark, or
2016 	 *   2. MSG_DONTWAIT is not set
2017 	 */
2018 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2019 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2020 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2021 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2022 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2023 		    ("receive: m == %p sbavail == %u",
2024 		    m, sbavail(&so->so_rcv)));
2025 		if (so->so_error || so->so_rerror) {
2026 			if (m != NULL)
2027 				goto dontblock;
2028 			if (so->so_error)
2029 				error = so->so_error;
2030 			else
2031 				error = so->so_rerror;
2032 			if ((flags & MSG_PEEK) == 0) {
2033 				if (so->so_error)
2034 					so->so_error = 0;
2035 				else
2036 					so->so_rerror = 0;
2037 			}
2038 			SOCKBUF_UNLOCK(&so->so_rcv);
2039 			goto release;
2040 		}
2041 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2042 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2043 			if (m != NULL)
2044 				goto dontblock;
2045 #ifdef KERN_TLS
2046 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2047 			    so->so_rcv.sb_tlscc == 0) {
2048 #else
2049 			else {
2050 #endif
2051 				SOCKBUF_UNLOCK(&so->so_rcv);
2052 				goto release;
2053 			}
2054 		}
2055 		for (; m != NULL; m = m->m_next)
2056 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2057 				m = so->so_rcv.sb_mb;
2058 				goto dontblock;
2059 			}
2060 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2061 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2062 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2063 			SOCKBUF_UNLOCK(&so->so_rcv);
2064 			error = ENOTCONN;
2065 			goto release;
2066 		}
2067 		if (uio->uio_resid == 0 && !report_real_len) {
2068 			SOCKBUF_UNLOCK(&so->so_rcv);
2069 			goto release;
2070 		}
2071 		if ((so->so_state & SS_NBIO) ||
2072 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2073 			SOCKBUF_UNLOCK(&so->so_rcv);
2074 			error = EWOULDBLOCK;
2075 			goto release;
2076 		}
2077 		SBLASTRECORDCHK(&so->so_rcv);
2078 		SBLASTMBUFCHK(&so->so_rcv);
2079 		error = sbwait(so, SO_RCV);
2080 		SOCKBUF_UNLOCK(&so->so_rcv);
2081 		if (error)
2082 			goto release;
2083 		goto restart;
2084 	}
2085 dontblock:
2086 	/*
2087 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2088 	 * pointer to the next record in the socket buffer.  We must keep the
2089 	 * various socket buffer pointers and local stack versions of the
2090 	 * pointers in sync, pushing out modifications before dropping the
2091 	 * socket buffer mutex, and re-reading them when picking it up.
2092 	 *
2093 	 * Otherwise, we will race with the network stack appending new data
2094 	 * or records onto the socket buffer by using inconsistent/stale
2095 	 * versions of the field, possibly resulting in socket buffer
2096 	 * corruption.
2097 	 *
2098 	 * By holding the high-level sblock(), we prevent simultaneous
2099 	 * readers from pulling off the front of the socket buffer.
2100 	 */
2101 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2102 	if (uio->uio_td)
2103 		uio->uio_td->td_ru.ru_msgrcv++;
2104 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2105 	SBLASTRECORDCHK(&so->so_rcv);
2106 	SBLASTMBUFCHK(&so->so_rcv);
2107 	nextrecord = m->m_nextpkt;
2108 	if (pr->pr_flags & PR_ADDR) {
2109 		KASSERT(m->m_type == MT_SONAME,
2110 		    ("m->m_type == %d", m->m_type));
2111 		orig_resid = 0;
2112 		if (psa != NULL)
2113 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2114 			    M_NOWAIT);
2115 		if (flags & MSG_PEEK) {
2116 			m = m->m_next;
2117 		} else {
2118 			sbfree(&so->so_rcv, m);
2119 			so->so_rcv.sb_mb = m_free(m);
2120 			m = so->so_rcv.sb_mb;
2121 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2122 		}
2123 	}
2124 
2125 	/*
2126 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2127 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2128 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2129 	 * perform externalization (or freeing if controlp == NULL).
2130 	 */
2131 	if (m != NULL && m->m_type == MT_CONTROL) {
2132 		struct mbuf *cm = NULL, *cmn;
2133 		struct mbuf **cme = &cm;
2134 #ifdef KERN_TLS
2135 		struct cmsghdr *cmsg;
2136 		struct tls_get_record tgr;
2137 
2138 		/*
2139 		 * For MSG_TLSAPPDATA, check for an alert record.
2140 		 * If found, return ENXIO without removing
2141 		 * it from the receive queue.  This allows a subsequent
2142 		 * call without MSG_TLSAPPDATA to receive it.
2143 		 * Note that, for TLS, there should only be a single
2144 		 * control mbuf with the TLS_GET_RECORD message in it.
2145 		 */
2146 		if (flags & MSG_TLSAPPDATA) {
2147 			cmsg = mtod(m, struct cmsghdr *);
2148 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2149 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2150 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2151 				if (__predict_false(tgr.tls_type ==
2152 				    TLS_RLTYPE_ALERT)) {
2153 					SOCKBUF_UNLOCK(&so->so_rcv);
2154 					error = ENXIO;
2155 					goto release;
2156 				}
2157 			}
2158 		}
2159 #endif
2160 
2161 		do {
2162 			if (flags & MSG_PEEK) {
2163 				if (controlp != NULL) {
2164 					*controlp = m_copym(m, 0, m->m_len,
2165 					    M_NOWAIT);
2166 					controlp = &(*controlp)->m_next;
2167 				}
2168 				m = m->m_next;
2169 			} else {
2170 				sbfree(&so->so_rcv, m);
2171 				so->so_rcv.sb_mb = m->m_next;
2172 				m->m_next = NULL;
2173 				*cme = m;
2174 				cme = &(*cme)->m_next;
2175 				m = so->so_rcv.sb_mb;
2176 			}
2177 		} while (m != NULL && m->m_type == MT_CONTROL);
2178 		if ((flags & MSG_PEEK) == 0)
2179 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2180 		while (cm != NULL) {
2181 			cmn = cm->m_next;
2182 			cm->m_next = NULL;
2183 			if (pr->pr_domain->dom_externalize != NULL) {
2184 				SOCKBUF_UNLOCK(&so->so_rcv);
2185 				VNET_SO_ASSERT(so);
2186 				error = (*pr->pr_domain->dom_externalize)
2187 				    (cm, controlp, flags);
2188 				SOCKBUF_LOCK(&so->so_rcv);
2189 			} else if (controlp != NULL)
2190 				*controlp = cm;
2191 			else
2192 				m_freem(cm);
2193 			if (controlp != NULL) {
2194 				while (*controlp != NULL)
2195 					controlp = &(*controlp)->m_next;
2196 			}
2197 			cm = cmn;
2198 		}
2199 		if (m != NULL)
2200 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2201 		else
2202 			nextrecord = so->so_rcv.sb_mb;
2203 		orig_resid = 0;
2204 	}
2205 	if (m != NULL) {
2206 		if ((flags & MSG_PEEK) == 0) {
2207 			KASSERT(m->m_nextpkt == nextrecord,
2208 			    ("soreceive: post-control, nextrecord !sync"));
2209 			if (nextrecord == NULL) {
2210 				KASSERT(so->so_rcv.sb_mb == m,
2211 				    ("soreceive: post-control, sb_mb!=m"));
2212 				KASSERT(so->so_rcv.sb_lastrecord == m,
2213 				    ("soreceive: post-control, lastrecord!=m"));
2214 			}
2215 		}
2216 		type = m->m_type;
2217 		if (type == MT_OOBDATA)
2218 			flags |= MSG_OOB;
2219 	} else {
2220 		if ((flags & MSG_PEEK) == 0) {
2221 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2222 			    ("soreceive: sb_mb != nextrecord"));
2223 			if (so->so_rcv.sb_mb == NULL) {
2224 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2225 				    ("soreceive: sb_lastercord != NULL"));
2226 			}
2227 		}
2228 	}
2229 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2230 	SBLASTRECORDCHK(&so->so_rcv);
2231 	SBLASTMBUFCHK(&so->so_rcv);
2232 
2233 	/*
2234 	 * Now continue to read any data mbufs off of the head of the socket
2235 	 * buffer until the read request is satisfied.  Note that 'type' is
2236 	 * used to store the type of any mbuf reads that have happened so far
2237 	 * such that soreceive() can stop reading if the type changes, which
2238 	 * causes soreceive() to return only one of regular data and inline
2239 	 * out-of-band data in a single socket receive operation.
2240 	 */
2241 	moff = 0;
2242 	offset = 0;
2243 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2244 	    && error == 0) {
2245 		/*
2246 		 * If the type of mbuf has changed since the last mbuf
2247 		 * examined ('type'), end the receive operation.
2248 		 */
2249 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2250 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2251 			if (type != m->m_type)
2252 				break;
2253 		} else if (type == MT_OOBDATA)
2254 			break;
2255 		else
2256 		    KASSERT(m->m_type == MT_DATA,
2257 			("m->m_type == %d", m->m_type));
2258 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2259 		len = uio->uio_resid;
2260 		if (so->so_oobmark && len > so->so_oobmark - offset)
2261 			len = so->so_oobmark - offset;
2262 		if (len > m->m_len - moff)
2263 			len = m->m_len - moff;
2264 		/*
2265 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2266 		 * them out via the uio, then free.  Sockbuf must be
2267 		 * consistent here (points to current mbuf, it points to next
2268 		 * record) when we drop priority; we must note any additions
2269 		 * to the sockbuf when we block interrupts again.
2270 		 */
2271 		if (mp == NULL) {
2272 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2273 			SBLASTRECORDCHK(&so->so_rcv);
2274 			SBLASTMBUFCHK(&so->so_rcv);
2275 			SOCKBUF_UNLOCK(&so->so_rcv);
2276 			if ((m->m_flags & M_EXTPG) != 0)
2277 				error = m_unmapped_uiomove(m, moff, uio,
2278 				    (int)len);
2279 			else
2280 				error = uiomove(mtod(m, char *) + moff,
2281 				    (int)len, uio);
2282 			SOCKBUF_LOCK(&so->so_rcv);
2283 			if (error) {
2284 				/*
2285 				 * The MT_SONAME mbuf has already been removed
2286 				 * from the record, so it is necessary to
2287 				 * remove the data mbufs, if any, to preserve
2288 				 * the invariant in the case of PR_ADDR that
2289 				 * requires MT_SONAME mbufs at the head of
2290 				 * each record.
2291 				 */
2292 				if (pr->pr_flags & PR_ATOMIC &&
2293 				    ((flags & MSG_PEEK) == 0))
2294 					(void)sbdroprecord_locked(&so->so_rcv);
2295 				SOCKBUF_UNLOCK(&so->so_rcv);
2296 				goto release;
2297 			}
2298 		} else
2299 			uio->uio_resid -= len;
2300 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2301 		if (len == m->m_len - moff) {
2302 			if (m->m_flags & M_EOR)
2303 				flags |= MSG_EOR;
2304 			if (flags & MSG_PEEK) {
2305 				m = m->m_next;
2306 				moff = 0;
2307 			} else {
2308 				nextrecord = m->m_nextpkt;
2309 				sbfree(&so->so_rcv, m);
2310 				if (mp != NULL) {
2311 					m->m_nextpkt = NULL;
2312 					*mp = m;
2313 					mp = &m->m_next;
2314 					so->so_rcv.sb_mb = m = m->m_next;
2315 					*mp = NULL;
2316 				} else {
2317 					so->so_rcv.sb_mb = m_free(m);
2318 					m = so->so_rcv.sb_mb;
2319 				}
2320 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2321 				SBLASTRECORDCHK(&so->so_rcv);
2322 				SBLASTMBUFCHK(&so->so_rcv);
2323 			}
2324 		} else {
2325 			if (flags & MSG_PEEK)
2326 				moff += len;
2327 			else {
2328 				if (mp != NULL) {
2329 					if (flags & MSG_DONTWAIT) {
2330 						*mp = m_copym(m, 0, len,
2331 						    M_NOWAIT);
2332 						if (*mp == NULL) {
2333 							/*
2334 							 * m_copym() couldn't
2335 							 * allocate an mbuf.
2336 							 * Adjust uio_resid back
2337 							 * (it was adjusted
2338 							 * down by len bytes,
2339 							 * which we didn't end
2340 							 * up "copying" over).
2341 							 */
2342 							uio->uio_resid += len;
2343 							break;
2344 						}
2345 					} else {
2346 						SOCKBUF_UNLOCK(&so->so_rcv);
2347 						*mp = m_copym(m, 0, len,
2348 						    M_WAITOK);
2349 						SOCKBUF_LOCK(&so->so_rcv);
2350 					}
2351 				}
2352 				sbcut_locked(&so->so_rcv, len);
2353 			}
2354 		}
2355 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2356 		if (so->so_oobmark) {
2357 			if ((flags & MSG_PEEK) == 0) {
2358 				so->so_oobmark -= len;
2359 				if (so->so_oobmark == 0) {
2360 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2361 					break;
2362 				}
2363 			} else {
2364 				offset += len;
2365 				if (offset == so->so_oobmark)
2366 					break;
2367 			}
2368 		}
2369 		if (flags & MSG_EOR)
2370 			break;
2371 		/*
2372 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2373 		 * must not quit until "uio->uio_resid == 0" or an error
2374 		 * termination.  If a signal/timeout occurs, return with a
2375 		 * short count but without error.  Keep sockbuf locked
2376 		 * against other readers.
2377 		 */
2378 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2379 		    !sosendallatonce(so) && nextrecord == NULL) {
2380 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2381 			if (so->so_error || so->so_rerror ||
2382 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2383 				break;
2384 			/*
2385 			 * Notify the protocol that some data has been
2386 			 * drained before blocking.
2387 			 */
2388 			if (pr->pr_flags & PR_WANTRCVD) {
2389 				SOCKBUF_UNLOCK(&so->so_rcv);
2390 				VNET_SO_ASSERT(so);
2391 				pr->pr_rcvd(so, flags);
2392 				SOCKBUF_LOCK(&so->so_rcv);
2393 			}
2394 			SBLASTRECORDCHK(&so->so_rcv);
2395 			SBLASTMBUFCHK(&so->so_rcv);
2396 			/*
2397 			 * We could receive some data while was notifying
2398 			 * the protocol. Skip blocking in this case.
2399 			 */
2400 			if (so->so_rcv.sb_mb == NULL) {
2401 				error = sbwait(so, SO_RCV);
2402 				if (error) {
2403 					SOCKBUF_UNLOCK(&so->so_rcv);
2404 					goto release;
2405 				}
2406 			}
2407 			m = so->so_rcv.sb_mb;
2408 			if (m != NULL)
2409 				nextrecord = m->m_nextpkt;
2410 		}
2411 	}
2412 
2413 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2414 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2415 		if (report_real_len)
2416 			uio->uio_resid -= m_length(m, NULL) - moff;
2417 		flags |= MSG_TRUNC;
2418 		if ((flags & MSG_PEEK) == 0)
2419 			(void) sbdroprecord_locked(&so->so_rcv);
2420 	}
2421 	if ((flags & MSG_PEEK) == 0) {
2422 		if (m == NULL) {
2423 			/*
2424 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2425 			 * part makes sure sb_lastrecord is up-to-date if
2426 			 * there is still data in the socket buffer.
2427 			 */
2428 			so->so_rcv.sb_mb = nextrecord;
2429 			if (so->so_rcv.sb_mb == NULL) {
2430 				so->so_rcv.sb_mbtail = NULL;
2431 				so->so_rcv.sb_lastrecord = NULL;
2432 			} else if (nextrecord->m_nextpkt == NULL)
2433 				so->so_rcv.sb_lastrecord = nextrecord;
2434 		}
2435 		SBLASTRECORDCHK(&so->so_rcv);
2436 		SBLASTMBUFCHK(&so->so_rcv);
2437 		/*
2438 		 * If soreceive() is being done from the socket callback,
2439 		 * then don't need to generate ACK to peer to update window,
2440 		 * since ACK will be generated on return to TCP.
2441 		 */
2442 		if (!(flags & MSG_SOCALLBCK) &&
2443 		    (pr->pr_flags & PR_WANTRCVD)) {
2444 			SOCKBUF_UNLOCK(&so->so_rcv);
2445 			VNET_SO_ASSERT(so);
2446 			pr->pr_rcvd(so, flags);
2447 			SOCKBUF_LOCK(&so->so_rcv);
2448 		}
2449 	}
2450 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2451 	if (orig_resid == uio->uio_resid && orig_resid &&
2452 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2453 		SOCKBUF_UNLOCK(&so->so_rcv);
2454 		goto restart;
2455 	}
2456 	SOCKBUF_UNLOCK(&so->so_rcv);
2457 
2458 	if (flagsp != NULL)
2459 		*flagsp |= flags;
2460 release:
2461 	SOCK_IO_RECV_UNLOCK(so);
2462 	return (error);
2463 }
2464 
2465 /*
2466  * Optimized version of soreceive() for stream (TCP) sockets.
2467  */
2468 int
2469 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2470     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2471 {
2472 	int len = 0, error = 0, flags, oresid;
2473 	struct sockbuf *sb;
2474 	struct mbuf *m, *n = NULL;
2475 
2476 	/* We only do stream sockets. */
2477 	if (so->so_type != SOCK_STREAM)
2478 		return (EINVAL);
2479 	if (psa != NULL)
2480 		*psa = NULL;
2481 	if (flagsp != NULL)
2482 		flags = *flagsp &~ MSG_EOR;
2483 	else
2484 		flags = 0;
2485 	if (controlp != NULL)
2486 		*controlp = NULL;
2487 	if (flags & MSG_OOB)
2488 		return (soreceive_rcvoob(so, uio, flags));
2489 	if (mp0 != NULL)
2490 		*mp0 = NULL;
2491 
2492 	sb = &so->so_rcv;
2493 
2494 #ifdef KERN_TLS
2495 	/*
2496 	 * KTLS store TLS records as records with a control message to
2497 	 * describe the framing.
2498 	 *
2499 	 * We check once here before acquiring locks to optimize the
2500 	 * common case.
2501 	 */
2502 	if (sb->sb_tls_info != NULL)
2503 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2504 		    flagsp));
2505 #endif
2506 
2507 	/* Prevent other readers from entering the socket. */
2508 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2509 	if (error)
2510 		return (error);
2511 	SOCKBUF_LOCK(sb);
2512 
2513 #ifdef KERN_TLS
2514 	if (sb->sb_tls_info != NULL) {
2515 		SOCKBUF_UNLOCK(sb);
2516 		SOCK_IO_RECV_UNLOCK(so);
2517 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2518 		    flagsp));
2519 	}
2520 #endif
2521 
2522 	/* Easy one, no space to copyout anything. */
2523 	if (uio->uio_resid == 0) {
2524 		error = EINVAL;
2525 		goto out;
2526 	}
2527 	oresid = uio->uio_resid;
2528 
2529 	/* We will never ever get anything unless we are or were connected. */
2530 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2531 		error = ENOTCONN;
2532 		goto out;
2533 	}
2534 
2535 restart:
2536 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2537 
2538 	/* Abort if socket has reported problems. */
2539 	if (so->so_error) {
2540 		if (sbavail(sb) > 0)
2541 			goto deliver;
2542 		if (oresid > uio->uio_resid)
2543 			goto out;
2544 		error = so->so_error;
2545 		if (!(flags & MSG_PEEK))
2546 			so->so_error = 0;
2547 		goto out;
2548 	}
2549 
2550 	/* Door is closed.  Deliver what is left, if any. */
2551 	if (sb->sb_state & SBS_CANTRCVMORE) {
2552 		if (sbavail(sb) > 0)
2553 			goto deliver;
2554 		else
2555 			goto out;
2556 	}
2557 
2558 	/* Socket buffer is empty and we shall not block. */
2559 	if (sbavail(sb) == 0 &&
2560 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2561 		error = EAGAIN;
2562 		goto out;
2563 	}
2564 
2565 	/* Socket buffer got some data that we shall deliver now. */
2566 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2567 	    ((so->so_state & SS_NBIO) ||
2568 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2569 	     sbavail(sb) >= sb->sb_lowat ||
2570 	     sbavail(sb) >= uio->uio_resid ||
2571 	     sbavail(sb) >= sb->sb_hiwat) ) {
2572 		goto deliver;
2573 	}
2574 
2575 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2576 	if ((flags & MSG_WAITALL) &&
2577 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2578 		goto deliver;
2579 
2580 	/*
2581 	 * Wait and block until (more) data comes in.
2582 	 * NB: Drops the sockbuf lock during wait.
2583 	 */
2584 	error = sbwait(so, SO_RCV);
2585 	if (error)
2586 		goto out;
2587 	goto restart;
2588 
2589 deliver:
2590 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2591 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2592 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2593 
2594 	/* Statistics. */
2595 	if (uio->uio_td)
2596 		uio->uio_td->td_ru.ru_msgrcv++;
2597 
2598 	/* Fill uio until full or current end of socket buffer is reached. */
2599 	len = min(uio->uio_resid, sbavail(sb));
2600 	if (mp0 != NULL) {
2601 		/* Dequeue as many mbufs as possible. */
2602 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2603 			if (*mp0 == NULL)
2604 				*mp0 = sb->sb_mb;
2605 			else
2606 				m_cat(*mp0, sb->sb_mb);
2607 			for (m = sb->sb_mb;
2608 			     m != NULL && m->m_len <= len;
2609 			     m = m->m_next) {
2610 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2611 				    ("%s: m %p not available", __func__, m));
2612 				len -= m->m_len;
2613 				uio->uio_resid -= m->m_len;
2614 				sbfree(sb, m);
2615 				n = m;
2616 			}
2617 			n->m_next = NULL;
2618 			sb->sb_mb = m;
2619 			sb->sb_lastrecord = sb->sb_mb;
2620 			if (sb->sb_mb == NULL)
2621 				SB_EMPTY_FIXUP(sb);
2622 		}
2623 		/* Copy the remainder. */
2624 		if (len > 0) {
2625 			KASSERT(sb->sb_mb != NULL,
2626 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2627 
2628 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2629 			if (m == NULL)
2630 				len = 0;	/* Don't flush data from sockbuf. */
2631 			else
2632 				uio->uio_resid -= len;
2633 			if (*mp0 != NULL)
2634 				m_cat(*mp0, m);
2635 			else
2636 				*mp0 = m;
2637 			if (*mp0 == NULL) {
2638 				error = ENOBUFS;
2639 				goto out;
2640 			}
2641 		}
2642 	} else {
2643 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2644 		SOCKBUF_UNLOCK(sb);
2645 		error = m_mbuftouio(uio, sb->sb_mb, len);
2646 		SOCKBUF_LOCK(sb);
2647 		if (error)
2648 			goto out;
2649 	}
2650 	SBLASTRECORDCHK(sb);
2651 	SBLASTMBUFCHK(sb);
2652 
2653 	/*
2654 	 * Remove the delivered data from the socket buffer unless we
2655 	 * were only peeking.
2656 	 */
2657 	if (!(flags & MSG_PEEK)) {
2658 		if (len > 0)
2659 			sbdrop_locked(sb, len);
2660 
2661 		/* Notify protocol that we drained some data. */
2662 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2663 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2664 		     !(flags & MSG_SOCALLBCK))) {
2665 			SOCKBUF_UNLOCK(sb);
2666 			VNET_SO_ASSERT(so);
2667 			so->so_proto->pr_rcvd(so, flags);
2668 			SOCKBUF_LOCK(sb);
2669 		}
2670 	}
2671 
2672 	/*
2673 	 * For MSG_WAITALL we may have to loop again and wait for
2674 	 * more data to come in.
2675 	 */
2676 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2677 		goto restart;
2678 out:
2679 	SBLASTRECORDCHK(sb);
2680 	SBLASTMBUFCHK(sb);
2681 	SOCKBUF_UNLOCK(sb);
2682 	SOCK_IO_RECV_UNLOCK(so);
2683 	return (error);
2684 }
2685 
2686 /*
2687  * Optimized version of soreceive() for simple datagram cases from userspace.
2688  * Unlike in the stream case, we're able to drop a datagram if copyout()
2689  * fails, and because we handle datagrams atomically, we don't need to use a
2690  * sleep lock to prevent I/O interlacing.
2691  */
2692 int
2693 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2694     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2695 {
2696 	struct mbuf *m, *m2;
2697 	int flags, error;
2698 	ssize_t len;
2699 	struct protosw *pr = so->so_proto;
2700 	struct mbuf *nextrecord;
2701 
2702 	if (psa != NULL)
2703 		*psa = NULL;
2704 	if (controlp != NULL)
2705 		*controlp = NULL;
2706 	if (flagsp != NULL)
2707 		flags = *flagsp &~ MSG_EOR;
2708 	else
2709 		flags = 0;
2710 
2711 	/*
2712 	 * For any complicated cases, fall back to the full
2713 	 * soreceive_generic().
2714 	 */
2715 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2716 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2717 		    flagsp));
2718 
2719 	/*
2720 	 * Enforce restrictions on use.
2721 	 */
2722 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2723 	    ("soreceive_dgram: wantrcvd"));
2724 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2725 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2726 	    ("soreceive_dgram: SBS_RCVATMARK"));
2727 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2728 	    ("soreceive_dgram: P_CONNREQUIRED"));
2729 
2730 	/*
2731 	 * Loop blocking while waiting for a datagram.
2732 	 */
2733 	SOCKBUF_LOCK(&so->so_rcv);
2734 	while ((m = so->so_rcv.sb_mb) == NULL) {
2735 		KASSERT(sbavail(&so->so_rcv) == 0,
2736 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2737 		    sbavail(&so->so_rcv)));
2738 		if (so->so_error) {
2739 			error = so->so_error;
2740 			so->so_error = 0;
2741 			SOCKBUF_UNLOCK(&so->so_rcv);
2742 			return (error);
2743 		}
2744 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2745 		    uio->uio_resid == 0) {
2746 			SOCKBUF_UNLOCK(&so->so_rcv);
2747 			return (0);
2748 		}
2749 		if ((so->so_state & SS_NBIO) ||
2750 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2751 			SOCKBUF_UNLOCK(&so->so_rcv);
2752 			return (EWOULDBLOCK);
2753 		}
2754 		SBLASTRECORDCHK(&so->so_rcv);
2755 		SBLASTMBUFCHK(&so->so_rcv);
2756 		error = sbwait(so, SO_RCV);
2757 		if (error) {
2758 			SOCKBUF_UNLOCK(&so->so_rcv);
2759 			return (error);
2760 		}
2761 	}
2762 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2763 
2764 	if (uio->uio_td)
2765 		uio->uio_td->td_ru.ru_msgrcv++;
2766 	SBLASTRECORDCHK(&so->so_rcv);
2767 	SBLASTMBUFCHK(&so->so_rcv);
2768 	nextrecord = m->m_nextpkt;
2769 	if (nextrecord == NULL) {
2770 		KASSERT(so->so_rcv.sb_lastrecord == m,
2771 		    ("soreceive_dgram: lastrecord != m"));
2772 	}
2773 
2774 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2775 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2776 
2777 	/*
2778 	 * Pull 'm' and its chain off the front of the packet queue.
2779 	 */
2780 	so->so_rcv.sb_mb = NULL;
2781 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2782 
2783 	/*
2784 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2785 	 */
2786 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2787 		sbfree(&so->so_rcv, m2);
2788 
2789 	/*
2790 	 * Do a few last checks before we let go of the lock.
2791 	 */
2792 	SBLASTRECORDCHK(&so->so_rcv);
2793 	SBLASTMBUFCHK(&so->so_rcv);
2794 	SOCKBUF_UNLOCK(&so->so_rcv);
2795 
2796 	if (pr->pr_flags & PR_ADDR) {
2797 		KASSERT(m->m_type == MT_SONAME,
2798 		    ("m->m_type == %d", m->m_type));
2799 		if (psa != NULL)
2800 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2801 			    M_NOWAIT);
2802 		m = m_free(m);
2803 	}
2804 	if (m == NULL) {
2805 		/* XXXRW: Can this happen? */
2806 		return (0);
2807 	}
2808 
2809 	/*
2810 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2811 	 * queue.
2812 	 *
2813 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2814 	 * in the first mbuf chain on the socket buffer.  We call into the
2815 	 * protocol to perform externalization (or freeing if controlp ==
2816 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2817 	 * MT_DATA mbufs.
2818 	 */
2819 	if (m->m_type == MT_CONTROL) {
2820 		struct mbuf *cm = NULL, *cmn;
2821 		struct mbuf **cme = &cm;
2822 
2823 		do {
2824 			m2 = m->m_next;
2825 			m->m_next = NULL;
2826 			*cme = m;
2827 			cme = &(*cme)->m_next;
2828 			m = m2;
2829 		} while (m != NULL && m->m_type == MT_CONTROL);
2830 		while (cm != NULL) {
2831 			cmn = cm->m_next;
2832 			cm->m_next = NULL;
2833 			if (pr->pr_domain->dom_externalize != NULL) {
2834 				error = (*pr->pr_domain->dom_externalize)
2835 				    (cm, controlp, flags);
2836 			} else if (controlp != NULL)
2837 				*controlp = cm;
2838 			else
2839 				m_freem(cm);
2840 			if (controlp != NULL) {
2841 				while (*controlp != NULL)
2842 					controlp = &(*controlp)->m_next;
2843 			}
2844 			cm = cmn;
2845 		}
2846 	}
2847 	KASSERT(m == NULL || m->m_type == MT_DATA,
2848 	    ("soreceive_dgram: !data"));
2849 	while (m != NULL && uio->uio_resid > 0) {
2850 		len = uio->uio_resid;
2851 		if (len > m->m_len)
2852 			len = m->m_len;
2853 		error = uiomove(mtod(m, char *), (int)len, uio);
2854 		if (error) {
2855 			m_freem(m);
2856 			return (error);
2857 		}
2858 		if (len == m->m_len)
2859 			m = m_free(m);
2860 		else {
2861 			m->m_data += len;
2862 			m->m_len -= len;
2863 		}
2864 	}
2865 	if (m != NULL) {
2866 		flags |= MSG_TRUNC;
2867 		m_freem(m);
2868 	}
2869 	if (flagsp != NULL)
2870 		*flagsp |= flags;
2871 	return (0);
2872 }
2873 
2874 int
2875 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2876     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2877 {
2878 	int error;
2879 
2880 	CURVNET_SET(so->so_vnet);
2881 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
2882 	CURVNET_RESTORE();
2883 	return (error);
2884 }
2885 
2886 int
2887 soshutdown(struct socket *so, int how)
2888 {
2889 	struct protosw *pr;
2890 	int error, soerror_enotconn;
2891 
2892 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2893 		return (EINVAL);
2894 
2895 	soerror_enotconn = 0;
2896 	SOCK_LOCK(so);
2897 	if ((so->so_state &
2898 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2899 		/*
2900 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2901 		 * invoked on a datagram sockets, however historically we would
2902 		 * actually tear socket down. This is known to be leveraged by
2903 		 * some applications to unblock process waiting in recvXXX(2)
2904 		 * by other process that it shares that socket with. Try to meet
2905 		 * both backward-compatibility and POSIX requirements by forcing
2906 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2907 		 */
2908 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
2909 			SOCK_UNLOCK(so);
2910 			return (ENOTCONN);
2911 		}
2912 		soerror_enotconn = 1;
2913 	}
2914 
2915 	if (SOLISTENING(so)) {
2916 		if (how != SHUT_WR) {
2917 			so->so_error = ECONNABORTED;
2918 			solisten_wakeup(so);	/* unlocks so */
2919 		} else {
2920 			SOCK_UNLOCK(so);
2921 		}
2922 		goto done;
2923 	}
2924 	SOCK_UNLOCK(so);
2925 
2926 	CURVNET_SET(so->so_vnet);
2927 	pr = so->so_proto;
2928 	if (pr->pr_flush != NULL)
2929 		pr->pr_flush(so, how);
2930 	if (how != SHUT_WR)
2931 		sorflush(so);
2932 	if (how != SHUT_RD) {
2933 		error = pr->pr_shutdown(so);
2934 		wakeup(&so->so_timeo);
2935 		CURVNET_RESTORE();
2936 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2937 	}
2938 	wakeup(&so->so_timeo);
2939 	CURVNET_RESTORE();
2940 
2941 done:
2942 	return (soerror_enotconn ? ENOTCONN : 0);
2943 }
2944 
2945 void
2946 sorflush(struct socket *so)
2947 {
2948 	struct protosw *pr;
2949 	int error;
2950 
2951 	VNET_SO_ASSERT(so);
2952 
2953 	/*
2954 	 * Dislodge threads currently blocked in receive and wait to acquire
2955 	 * a lock against other simultaneous readers before clearing the
2956 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2957 	 * despite any existing socket disposition on interruptable waiting.
2958 	 */
2959 	socantrcvmore(so);
2960 
2961 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
2962 	if (error != 0) {
2963 		KASSERT(SOLISTENING(so),
2964 		    ("%s: soiolock(%p) failed", __func__, so));
2965 		return;
2966 	}
2967 
2968 	pr = so->so_proto;
2969 	if (pr->pr_flags & PR_RIGHTS) {
2970 		MPASS(pr->pr_domain->dom_dispose != NULL);
2971 		(*pr->pr_domain->dom_dispose)(so);
2972 	} else {
2973 		sbrelease(so, SO_RCV);
2974 		SOCK_IO_RECV_UNLOCK(so);
2975 	}
2976 
2977 }
2978 
2979 /*
2980  * Wrapper for Socket established helper hook.
2981  * Parameters: socket, context of the hook point, hook id.
2982  */
2983 static int inline
2984 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2985 {
2986 	struct socket_hhook_data hhook_data = {
2987 		.so = so,
2988 		.hctx = hctx,
2989 		.m = NULL,
2990 		.status = 0
2991 	};
2992 
2993 	CURVNET_SET(so->so_vnet);
2994 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2995 	CURVNET_RESTORE();
2996 
2997 	/* Ugly but needed, since hhooks return void for now */
2998 	return (hhook_data.status);
2999 }
3000 
3001 /*
3002  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3003  * additional variant to handle the case where the option value needs to be
3004  * some kind of integer, but not a specific size.  In addition to their use
3005  * here, these functions are also called by the protocol-level pr_ctloutput()
3006  * routines.
3007  */
3008 int
3009 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3010 {
3011 	size_t	valsize;
3012 
3013 	/*
3014 	 * If the user gives us more than we wanted, we ignore it, but if we
3015 	 * don't get the minimum length the caller wants, we return EINVAL.
3016 	 * On success, sopt->sopt_valsize is set to however much we actually
3017 	 * retrieved.
3018 	 */
3019 	if ((valsize = sopt->sopt_valsize) < minlen)
3020 		return EINVAL;
3021 	if (valsize > len)
3022 		sopt->sopt_valsize = valsize = len;
3023 
3024 	if (sopt->sopt_td != NULL)
3025 		return (copyin(sopt->sopt_val, buf, valsize));
3026 
3027 	bcopy(sopt->sopt_val, buf, valsize);
3028 	return (0);
3029 }
3030 
3031 /*
3032  * Kernel version of setsockopt(2).
3033  *
3034  * XXX: optlen is size_t, not socklen_t
3035  */
3036 int
3037 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3038     size_t optlen)
3039 {
3040 	struct sockopt sopt;
3041 
3042 	sopt.sopt_level = level;
3043 	sopt.sopt_name = optname;
3044 	sopt.sopt_dir = SOPT_SET;
3045 	sopt.sopt_val = optval;
3046 	sopt.sopt_valsize = optlen;
3047 	sopt.sopt_td = NULL;
3048 	return (sosetopt(so, &sopt));
3049 }
3050 
3051 int
3052 sosetopt(struct socket *so, struct sockopt *sopt)
3053 {
3054 	int	error, optval;
3055 	struct	linger l;
3056 	struct	timeval tv;
3057 	sbintime_t val, *valp;
3058 	uint32_t val32;
3059 #ifdef MAC
3060 	struct mac extmac;
3061 #endif
3062 
3063 	CURVNET_SET(so->so_vnet);
3064 	error = 0;
3065 	if (sopt->sopt_level != SOL_SOCKET) {
3066 		if (so->so_proto->pr_ctloutput != NULL)
3067 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3068 		else
3069 			error = ENOPROTOOPT;
3070 	} else {
3071 		switch (sopt->sopt_name) {
3072 		case SO_ACCEPTFILTER:
3073 			error = accept_filt_setopt(so, sopt);
3074 			if (error)
3075 				goto bad;
3076 			break;
3077 
3078 		case SO_LINGER:
3079 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3080 			if (error)
3081 				goto bad;
3082 			if (l.l_linger < 0 ||
3083 			    l.l_linger > USHRT_MAX ||
3084 			    l.l_linger > (INT_MAX / hz)) {
3085 				error = EDOM;
3086 				goto bad;
3087 			}
3088 			SOCK_LOCK(so);
3089 			so->so_linger = l.l_linger;
3090 			if (l.l_onoff)
3091 				so->so_options |= SO_LINGER;
3092 			else
3093 				so->so_options &= ~SO_LINGER;
3094 			SOCK_UNLOCK(so);
3095 			break;
3096 
3097 		case SO_DEBUG:
3098 		case SO_KEEPALIVE:
3099 		case SO_DONTROUTE:
3100 		case SO_USELOOPBACK:
3101 		case SO_BROADCAST:
3102 		case SO_REUSEADDR:
3103 		case SO_REUSEPORT:
3104 		case SO_REUSEPORT_LB:
3105 		case SO_OOBINLINE:
3106 		case SO_TIMESTAMP:
3107 		case SO_BINTIME:
3108 		case SO_NOSIGPIPE:
3109 		case SO_NO_DDP:
3110 		case SO_NO_OFFLOAD:
3111 		case SO_RERROR:
3112 			error = sooptcopyin(sopt, &optval, sizeof optval,
3113 			    sizeof optval);
3114 			if (error)
3115 				goto bad;
3116 			SOCK_LOCK(so);
3117 			if (optval)
3118 				so->so_options |= sopt->sopt_name;
3119 			else
3120 				so->so_options &= ~sopt->sopt_name;
3121 			SOCK_UNLOCK(so);
3122 			break;
3123 
3124 		case SO_SETFIB:
3125 			error = sooptcopyin(sopt, &optval, sizeof optval,
3126 			    sizeof optval);
3127 			if (error)
3128 				goto bad;
3129 
3130 			if (optval < 0 || optval >= rt_numfibs) {
3131 				error = EINVAL;
3132 				goto bad;
3133 			}
3134 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3135 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3136 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3137 				so->so_fibnum = optval;
3138 			else
3139 				so->so_fibnum = 0;
3140 			break;
3141 
3142 		case SO_USER_COOKIE:
3143 			error = sooptcopyin(sopt, &val32, sizeof val32,
3144 			    sizeof val32);
3145 			if (error)
3146 				goto bad;
3147 			so->so_user_cookie = val32;
3148 			break;
3149 
3150 		case SO_SNDBUF:
3151 		case SO_RCVBUF:
3152 		case SO_SNDLOWAT:
3153 		case SO_RCVLOWAT:
3154 			error = so->so_proto->pr_setsbopt(so, sopt);
3155 			if (error)
3156 				goto bad;
3157 			break;
3158 
3159 		case SO_SNDTIMEO:
3160 		case SO_RCVTIMEO:
3161 #ifdef COMPAT_FREEBSD32
3162 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3163 				struct timeval32 tv32;
3164 
3165 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3166 				    sizeof tv32);
3167 				CP(tv32, tv, tv_sec);
3168 				CP(tv32, tv, tv_usec);
3169 			} else
3170 #endif
3171 				error = sooptcopyin(sopt, &tv, sizeof tv,
3172 				    sizeof tv);
3173 			if (error)
3174 				goto bad;
3175 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3176 			    tv.tv_usec >= 1000000) {
3177 				error = EDOM;
3178 				goto bad;
3179 			}
3180 			if (tv.tv_sec > INT32_MAX)
3181 				val = SBT_MAX;
3182 			else
3183 				val = tvtosbt(tv);
3184 			SOCK_LOCK(so);
3185 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3186 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3187 			    &so->so_snd.sb_timeo) :
3188 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3189 			    &so->so_rcv.sb_timeo);
3190 			*valp = val;
3191 			SOCK_UNLOCK(so);
3192 			break;
3193 
3194 		case SO_LABEL:
3195 #ifdef MAC
3196 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3197 			    sizeof extmac);
3198 			if (error)
3199 				goto bad;
3200 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3201 			    so, &extmac);
3202 #else
3203 			error = EOPNOTSUPP;
3204 #endif
3205 			break;
3206 
3207 		case SO_TS_CLOCK:
3208 			error = sooptcopyin(sopt, &optval, sizeof optval,
3209 			    sizeof optval);
3210 			if (error)
3211 				goto bad;
3212 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3213 				error = EINVAL;
3214 				goto bad;
3215 			}
3216 			so->so_ts_clock = optval;
3217 			break;
3218 
3219 		case SO_MAX_PACING_RATE:
3220 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3221 			    sizeof(val32));
3222 			if (error)
3223 				goto bad;
3224 			so->so_max_pacing_rate = val32;
3225 			break;
3226 
3227 		default:
3228 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3229 				error = hhook_run_socket(so, sopt,
3230 				    HHOOK_SOCKET_OPT);
3231 			else
3232 				error = ENOPROTOOPT;
3233 			break;
3234 		}
3235 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3236 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3237 	}
3238 bad:
3239 	CURVNET_RESTORE();
3240 	return (error);
3241 }
3242 
3243 /*
3244  * Helper routine for getsockopt.
3245  */
3246 int
3247 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3248 {
3249 	int	error;
3250 	size_t	valsize;
3251 
3252 	error = 0;
3253 
3254 	/*
3255 	 * Documented get behavior is that we always return a value, possibly
3256 	 * truncated to fit in the user's buffer.  Traditional behavior is
3257 	 * that we always tell the user precisely how much we copied, rather
3258 	 * than something useful like the total amount we had available for
3259 	 * her.  Note that this interface is not idempotent; the entire
3260 	 * answer must be generated ahead of time.
3261 	 */
3262 	valsize = min(len, sopt->sopt_valsize);
3263 	sopt->sopt_valsize = valsize;
3264 	if (sopt->sopt_val != NULL) {
3265 		if (sopt->sopt_td != NULL)
3266 			error = copyout(buf, sopt->sopt_val, valsize);
3267 		else
3268 			bcopy(buf, sopt->sopt_val, valsize);
3269 	}
3270 	return (error);
3271 }
3272 
3273 int
3274 sogetopt(struct socket *so, struct sockopt *sopt)
3275 {
3276 	int	error, optval;
3277 	struct	linger l;
3278 	struct	timeval tv;
3279 #ifdef MAC
3280 	struct mac extmac;
3281 #endif
3282 
3283 	CURVNET_SET(so->so_vnet);
3284 	error = 0;
3285 	if (sopt->sopt_level != SOL_SOCKET) {
3286 		if (so->so_proto->pr_ctloutput != NULL)
3287 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3288 		else
3289 			error = ENOPROTOOPT;
3290 		CURVNET_RESTORE();
3291 		return (error);
3292 	} else {
3293 		switch (sopt->sopt_name) {
3294 		case SO_ACCEPTFILTER:
3295 			error = accept_filt_getopt(so, sopt);
3296 			break;
3297 
3298 		case SO_LINGER:
3299 			SOCK_LOCK(so);
3300 			l.l_onoff = so->so_options & SO_LINGER;
3301 			l.l_linger = so->so_linger;
3302 			SOCK_UNLOCK(so);
3303 			error = sooptcopyout(sopt, &l, sizeof l);
3304 			break;
3305 
3306 		case SO_USELOOPBACK:
3307 		case SO_DONTROUTE:
3308 		case SO_DEBUG:
3309 		case SO_KEEPALIVE:
3310 		case SO_REUSEADDR:
3311 		case SO_REUSEPORT:
3312 		case SO_REUSEPORT_LB:
3313 		case SO_BROADCAST:
3314 		case SO_OOBINLINE:
3315 		case SO_ACCEPTCONN:
3316 		case SO_TIMESTAMP:
3317 		case SO_BINTIME:
3318 		case SO_NOSIGPIPE:
3319 		case SO_NO_DDP:
3320 		case SO_NO_OFFLOAD:
3321 		case SO_RERROR:
3322 			optval = so->so_options & sopt->sopt_name;
3323 integer:
3324 			error = sooptcopyout(sopt, &optval, sizeof optval);
3325 			break;
3326 
3327 		case SO_DOMAIN:
3328 			optval = so->so_proto->pr_domain->dom_family;
3329 			goto integer;
3330 
3331 		case SO_TYPE:
3332 			optval = so->so_type;
3333 			goto integer;
3334 
3335 		case SO_PROTOCOL:
3336 			optval = so->so_proto->pr_protocol;
3337 			goto integer;
3338 
3339 		case SO_ERROR:
3340 			SOCK_LOCK(so);
3341 			if (so->so_error) {
3342 				optval = so->so_error;
3343 				so->so_error = 0;
3344 			} else {
3345 				optval = so->so_rerror;
3346 				so->so_rerror = 0;
3347 			}
3348 			SOCK_UNLOCK(so);
3349 			goto integer;
3350 
3351 		case SO_SNDBUF:
3352 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3353 			    so->so_snd.sb_hiwat;
3354 			goto integer;
3355 
3356 		case SO_RCVBUF:
3357 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3358 			    so->so_rcv.sb_hiwat;
3359 			goto integer;
3360 
3361 		case SO_SNDLOWAT:
3362 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3363 			    so->so_snd.sb_lowat;
3364 			goto integer;
3365 
3366 		case SO_RCVLOWAT:
3367 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3368 			    so->so_rcv.sb_lowat;
3369 			goto integer;
3370 
3371 		case SO_SNDTIMEO:
3372 		case SO_RCVTIMEO:
3373 			SOCK_LOCK(so);
3374 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3375 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3376 			    so->so_snd.sb_timeo) :
3377 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3378 			    so->so_rcv.sb_timeo));
3379 			SOCK_UNLOCK(so);
3380 #ifdef COMPAT_FREEBSD32
3381 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3382 				struct timeval32 tv32;
3383 
3384 				CP(tv, tv32, tv_sec);
3385 				CP(tv, tv32, tv_usec);
3386 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3387 			} else
3388 #endif
3389 				error = sooptcopyout(sopt, &tv, sizeof tv);
3390 			break;
3391 
3392 		case SO_LABEL:
3393 #ifdef MAC
3394 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3395 			    sizeof(extmac));
3396 			if (error)
3397 				goto bad;
3398 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3399 			    so, &extmac);
3400 			if (error)
3401 				goto bad;
3402 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3403 #else
3404 			error = EOPNOTSUPP;
3405 #endif
3406 			break;
3407 
3408 		case SO_PEERLABEL:
3409 #ifdef MAC
3410 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3411 			    sizeof(extmac));
3412 			if (error)
3413 				goto bad;
3414 			error = mac_getsockopt_peerlabel(
3415 			    sopt->sopt_td->td_ucred, so, &extmac);
3416 			if (error)
3417 				goto bad;
3418 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3419 #else
3420 			error = EOPNOTSUPP;
3421 #endif
3422 			break;
3423 
3424 		case SO_LISTENQLIMIT:
3425 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3426 			goto integer;
3427 
3428 		case SO_LISTENQLEN:
3429 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3430 			goto integer;
3431 
3432 		case SO_LISTENINCQLEN:
3433 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3434 			goto integer;
3435 
3436 		case SO_TS_CLOCK:
3437 			optval = so->so_ts_clock;
3438 			goto integer;
3439 
3440 		case SO_MAX_PACING_RATE:
3441 			optval = so->so_max_pacing_rate;
3442 			goto integer;
3443 
3444 		default:
3445 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3446 				error = hhook_run_socket(so, sopt,
3447 				    HHOOK_SOCKET_OPT);
3448 			else
3449 				error = ENOPROTOOPT;
3450 			break;
3451 		}
3452 	}
3453 #ifdef MAC
3454 bad:
3455 #endif
3456 	CURVNET_RESTORE();
3457 	return (error);
3458 }
3459 
3460 int
3461 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3462 {
3463 	struct mbuf *m, *m_prev;
3464 	int sopt_size = sopt->sopt_valsize;
3465 
3466 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3467 	if (m == NULL)
3468 		return ENOBUFS;
3469 	if (sopt_size > MLEN) {
3470 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3471 		if ((m->m_flags & M_EXT) == 0) {
3472 			m_free(m);
3473 			return ENOBUFS;
3474 		}
3475 		m->m_len = min(MCLBYTES, sopt_size);
3476 	} else {
3477 		m->m_len = min(MLEN, sopt_size);
3478 	}
3479 	sopt_size -= m->m_len;
3480 	*mp = m;
3481 	m_prev = m;
3482 
3483 	while (sopt_size) {
3484 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3485 		if (m == NULL) {
3486 			m_freem(*mp);
3487 			return ENOBUFS;
3488 		}
3489 		if (sopt_size > MLEN) {
3490 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3491 			    M_NOWAIT);
3492 			if ((m->m_flags & M_EXT) == 0) {
3493 				m_freem(m);
3494 				m_freem(*mp);
3495 				return ENOBUFS;
3496 			}
3497 			m->m_len = min(MCLBYTES, sopt_size);
3498 		} else {
3499 			m->m_len = min(MLEN, sopt_size);
3500 		}
3501 		sopt_size -= m->m_len;
3502 		m_prev->m_next = m;
3503 		m_prev = m;
3504 	}
3505 	return (0);
3506 }
3507 
3508 int
3509 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3510 {
3511 	struct mbuf *m0 = m;
3512 
3513 	if (sopt->sopt_val == NULL)
3514 		return (0);
3515 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3516 		if (sopt->sopt_td != NULL) {
3517 			int error;
3518 
3519 			error = copyin(sopt->sopt_val, mtod(m, char *),
3520 			    m->m_len);
3521 			if (error != 0) {
3522 				m_freem(m0);
3523 				return(error);
3524 			}
3525 		} else
3526 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3527 		sopt->sopt_valsize -= m->m_len;
3528 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3529 		m = m->m_next;
3530 	}
3531 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3532 		panic("ip6_sooptmcopyin");
3533 	return (0);
3534 }
3535 
3536 int
3537 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3538 {
3539 	struct mbuf *m0 = m;
3540 	size_t valsize = 0;
3541 
3542 	if (sopt->sopt_val == NULL)
3543 		return (0);
3544 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3545 		if (sopt->sopt_td != NULL) {
3546 			int error;
3547 
3548 			error = copyout(mtod(m, char *), sopt->sopt_val,
3549 			    m->m_len);
3550 			if (error != 0) {
3551 				m_freem(m0);
3552 				return(error);
3553 			}
3554 		} else
3555 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3556 		sopt->sopt_valsize -= m->m_len;
3557 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3558 		valsize += m->m_len;
3559 		m = m->m_next;
3560 	}
3561 	if (m != NULL) {
3562 		/* enough soopt buffer should be given from user-land */
3563 		m_freem(m0);
3564 		return(EINVAL);
3565 	}
3566 	sopt->sopt_valsize = valsize;
3567 	return (0);
3568 }
3569 
3570 /*
3571  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3572  * out-of-band data, which will then notify socket consumers.
3573  */
3574 void
3575 sohasoutofband(struct socket *so)
3576 {
3577 
3578 	if (so->so_sigio != NULL)
3579 		pgsigio(&so->so_sigio, SIGURG, 0);
3580 	selwakeuppri(&so->so_rdsel, PSOCK);
3581 }
3582 
3583 int
3584 sopoll(struct socket *so, int events, struct ucred *active_cred,
3585     struct thread *td)
3586 {
3587 
3588 	/*
3589 	 * We do not need to set or assert curvnet as long as everyone uses
3590 	 * sopoll_generic().
3591 	 */
3592 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
3593 }
3594 
3595 int
3596 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3597     struct thread *td)
3598 {
3599 	int revents;
3600 
3601 	SOCK_LOCK(so);
3602 	if (SOLISTENING(so)) {
3603 		if (!(events & (POLLIN | POLLRDNORM)))
3604 			revents = 0;
3605 		else if (!TAILQ_EMPTY(&so->sol_comp))
3606 			revents = events & (POLLIN | POLLRDNORM);
3607 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3608 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3609 		else {
3610 			selrecord(td, &so->so_rdsel);
3611 			revents = 0;
3612 		}
3613 	} else {
3614 		revents = 0;
3615 		SOCK_SENDBUF_LOCK(so);
3616 		SOCK_RECVBUF_LOCK(so);
3617 		if (events & (POLLIN | POLLRDNORM))
3618 			if (soreadabledata(so))
3619 				revents |= events & (POLLIN | POLLRDNORM);
3620 		if (events & (POLLOUT | POLLWRNORM))
3621 			if (sowriteable(so))
3622 				revents |= events & (POLLOUT | POLLWRNORM);
3623 		if (events & (POLLPRI | POLLRDBAND))
3624 			if (so->so_oobmark ||
3625 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3626 				revents |= events & (POLLPRI | POLLRDBAND);
3627 		if ((events & POLLINIGNEOF) == 0) {
3628 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3629 				revents |= events & (POLLIN | POLLRDNORM);
3630 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3631 					revents |= POLLHUP;
3632 			}
3633 		}
3634 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3635 			revents |= events & POLLRDHUP;
3636 		if (revents == 0) {
3637 			if (events &
3638 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3639 				selrecord(td, &so->so_rdsel);
3640 				so->so_rcv.sb_flags |= SB_SEL;
3641 			}
3642 			if (events & (POLLOUT | POLLWRNORM)) {
3643 				selrecord(td, &so->so_wrsel);
3644 				so->so_snd.sb_flags |= SB_SEL;
3645 			}
3646 		}
3647 		SOCK_RECVBUF_UNLOCK(so);
3648 		SOCK_SENDBUF_UNLOCK(so);
3649 	}
3650 	SOCK_UNLOCK(so);
3651 	return (revents);
3652 }
3653 
3654 int
3655 soo_kqfilter(struct file *fp, struct knote *kn)
3656 {
3657 	struct socket *so = kn->kn_fp->f_data;
3658 	struct sockbuf *sb;
3659 	sb_which which;
3660 	struct knlist *knl;
3661 
3662 	switch (kn->kn_filter) {
3663 	case EVFILT_READ:
3664 		kn->kn_fop = &soread_filtops;
3665 		knl = &so->so_rdsel.si_note;
3666 		sb = &so->so_rcv;
3667 		which = SO_RCV;
3668 		break;
3669 	case EVFILT_WRITE:
3670 		kn->kn_fop = &sowrite_filtops;
3671 		knl = &so->so_wrsel.si_note;
3672 		sb = &so->so_snd;
3673 		which = SO_SND;
3674 		break;
3675 	case EVFILT_EMPTY:
3676 		kn->kn_fop = &soempty_filtops;
3677 		knl = &so->so_wrsel.si_note;
3678 		sb = &so->so_snd;
3679 		which = SO_SND;
3680 		break;
3681 	default:
3682 		return (EINVAL);
3683 	}
3684 
3685 	SOCK_LOCK(so);
3686 	if (SOLISTENING(so)) {
3687 		knlist_add(knl, kn, 1);
3688 	} else {
3689 		SOCK_BUF_LOCK(so, which);
3690 		knlist_add(knl, kn, 1);
3691 		sb->sb_flags |= SB_KNOTE;
3692 		SOCK_BUF_UNLOCK(so, which);
3693 	}
3694 	SOCK_UNLOCK(so);
3695 	return (0);
3696 }
3697 
3698 static void
3699 filt_sordetach(struct knote *kn)
3700 {
3701 	struct socket *so = kn->kn_fp->f_data;
3702 
3703 	so_rdknl_lock(so);
3704 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3705 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3706 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3707 	so_rdknl_unlock(so);
3708 }
3709 
3710 /*ARGSUSED*/
3711 static int
3712 filt_soread(struct knote *kn, long hint)
3713 {
3714 	struct socket *so;
3715 
3716 	so = kn->kn_fp->f_data;
3717 
3718 	if (SOLISTENING(so)) {
3719 		SOCK_LOCK_ASSERT(so);
3720 		kn->kn_data = so->sol_qlen;
3721 		if (so->so_error) {
3722 			kn->kn_flags |= EV_EOF;
3723 			kn->kn_fflags = so->so_error;
3724 			return (1);
3725 		}
3726 		return (!TAILQ_EMPTY(&so->sol_comp));
3727 	}
3728 
3729 	SOCK_RECVBUF_LOCK_ASSERT(so);
3730 
3731 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3732 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3733 		kn->kn_flags |= EV_EOF;
3734 		kn->kn_fflags = so->so_error;
3735 		return (1);
3736 	} else if (so->so_error || so->so_rerror)
3737 		return (1);
3738 
3739 	if (kn->kn_sfflags & NOTE_LOWAT) {
3740 		if (kn->kn_data >= kn->kn_sdata)
3741 			return (1);
3742 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3743 		return (1);
3744 
3745 	/* This hook returning non-zero indicates an event, not error */
3746 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3747 }
3748 
3749 static void
3750 filt_sowdetach(struct knote *kn)
3751 {
3752 	struct socket *so = kn->kn_fp->f_data;
3753 
3754 	so_wrknl_lock(so);
3755 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3756 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3757 		so->so_snd.sb_flags &= ~SB_KNOTE;
3758 	so_wrknl_unlock(so);
3759 }
3760 
3761 /*ARGSUSED*/
3762 static int
3763 filt_sowrite(struct knote *kn, long hint)
3764 {
3765 	struct socket *so;
3766 
3767 	so = kn->kn_fp->f_data;
3768 
3769 	if (SOLISTENING(so))
3770 		return (0);
3771 
3772 	SOCK_SENDBUF_LOCK_ASSERT(so);
3773 	kn->kn_data = sbspace(&so->so_snd);
3774 
3775 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3776 
3777 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3778 		kn->kn_flags |= EV_EOF;
3779 		kn->kn_fflags = so->so_error;
3780 		return (1);
3781 	} else if (so->so_error)	/* temporary udp error */
3782 		return (1);
3783 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3784 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3785 		return (0);
3786 	else if (kn->kn_sfflags & NOTE_LOWAT)
3787 		return (kn->kn_data >= kn->kn_sdata);
3788 	else
3789 		return (kn->kn_data >= so->so_snd.sb_lowat);
3790 }
3791 
3792 static int
3793 filt_soempty(struct knote *kn, long hint)
3794 {
3795 	struct socket *so;
3796 
3797 	so = kn->kn_fp->f_data;
3798 
3799 	if (SOLISTENING(so))
3800 		return (1);
3801 
3802 	SOCK_SENDBUF_LOCK_ASSERT(so);
3803 	kn->kn_data = sbused(&so->so_snd);
3804 
3805 	if (kn->kn_data == 0)
3806 		return (1);
3807 	else
3808 		return (0);
3809 }
3810 
3811 int
3812 socheckuid(struct socket *so, uid_t uid)
3813 {
3814 
3815 	if (so == NULL)
3816 		return (EPERM);
3817 	if (so->so_cred->cr_uid != uid)
3818 		return (EPERM);
3819 	return (0);
3820 }
3821 
3822 /*
3823  * These functions are used by protocols to notify the socket layer (and its
3824  * consumers) of state changes in the sockets driven by protocol-side events.
3825  */
3826 
3827 /*
3828  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3829  *
3830  * Normal sequence from the active (originating) side is that
3831  * soisconnecting() is called during processing of connect() call, resulting
3832  * in an eventual call to soisconnected() if/when the connection is
3833  * established.  When the connection is torn down soisdisconnecting() is
3834  * called during processing of disconnect() call, and soisdisconnected() is
3835  * called when the connection to the peer is totally severed.  The semantics
3836  * of these routines are such that connectionless protocols can call
3837  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3838  * calls when setting up a ``connection'' takes no time.
3839  *
3840  * From the passive side, a socket is created with two queues of sockets:
3841  * so_incomp for connections in progress and so_comp for connections already
3842  * made and awaiting user acceptance.  As a protocol is preparing incoming
3843  * connections, it creates a socket structure queued on so_incomp by calling
3844  * sonewconn().  When the connection is established, soisconnected() is
3845  * called, and transfers the socket structure to so_comp, making it available
3846  * to accept().
3847  *
3848  * If a socket is closed with sockets on either so_incomp or so_comp, these
3849  * sockets are dropped.
3850  *
3851  * If higher-level protocols are implemented in the kernel, the wakeups done
3852  * here will sometimes cause software-interrupt process scheduling.
3853  */
3854 void
3855 soisconnecting(struct socket *so)
3856 {
3857 
3858 	SOCK_LOCK(so);
3859 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3860 	so->so_state |= SS_ISCONNECTING;
3861 	SOCK_UNLOCK(so);
3862 }
3863 
3864 void
3865 soisconnected(struct socket *so)
3866 {
3867 	bool last __diagused;
3868 
3869 	SOCK_LOCK(so);
3870 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3871 	so->so_state |= SS_ISCONNECTED;
3872 
3873 	if (so->so_qstate == SQ_INCOMP) {
3874 		struct socket *head = so->so_listen;
3875 		int ret;
3876 
3877 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3878 		/*
3879 		 * Promoting a socket from incomplete queue to complete, we
3880 		 * need to go through reverse order of locking.  We first do
3881 		 * trylock, and if that doesn't succeed, we go the hard way
3882 		 * leaving a reference and rechecking consistency after proper
3883 		 * locking.
3884 		 */
3885 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3886 			soref(head);
3887 			SOCK_UNLOCK(so);
3888 			SOLISTEN_LOCK(head);
3889 			SOCK_LOCK(so);
3890 			if (__predict_false(head != so->so_listen)) {
3891 				/*
3892 				 * The socket went off the listen queue,
3893 				 * should be lost race to close(2) of sol.
3894 				 * The socket is about to soabort().
3895 				 */
3896 				SOCK_UNLOCK(so);
3897 				sorele_locked(head);
3898 				return;
3899 			}
3900 			last = refcount_release(&head->so_count);
3901 			KASSERT(!last, ("%s: released last reference for %p",
3902 			    __func__, head));
3903 		}
3904 again:
3905 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3906 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3907 			head->sol_incqlen--;
3908 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3909 			head->sol_qlen++;
3910 			so->so_qstate = SQ_COMP;
3911 			SOCK_UNLOCK(so);
3912 			solisten_wakeup(head);	/* unlocks */
3913 		} else {
3914 			SOCK_RECVBUF_LOCK(so);
3915 			soupcall_set(so, SO_RCV,
3916 			    head->sol_accept_filter->accf_callback,
3917 			    head->sol_accept_filter_arg);
3918 			so->so_options &= ~SO_ACCEPTFILTER;
3919 			ret = head->sol_accept_filter->accf_callback(so,
3920 			    head->sol_accept_filter_arg, M_NOWAIT);
3921 			if (ret == SU_ISCONNECTED) {
3922 				soupcall_clear(so, SO_RCV);
3923 				SOCK_RECVBUF_UNLOCK(so);
3924 				goto again;
3925 			}
3926 			SOCK_RECVBUF_UNLOCK(so);
3927 			SOCK_UNLOCK(so);
3928 			SOLISTEN_UNLOCK(head);
3929 		}
3930 		return;
3931 	}
3932 	SOCK_UNLOCK(so);
3933 	wakeup(&so->so_timeo);
3934 	sorwakeup(so);
3935 	sowwakeup(so);
3936 }
3937 
3938 void
3939 soisdisconnecting(struct socket *so)
3940 {
3941 
3942 	SOCK_LOCK(so);
3943 	so->so_state &= ~SS_ISCONNECTING;
3944 	so->so_state |= SS_ISDISCONNECTING;
3945 
3946 	if (!SOLISTENING(so)) {
3947 		SOCK_RECVBUF_LOCK(so);
3948 		socantrcvmore_locked(so);
3949 		SOCK_SENDBUF_LOCK(so);
3950 		socantsendmore_locked(so);
3951 	}
3952 	SOCK_UNLOCK(so);
3953 	wakeup(&so->so_timeo);
3954 }
3955 
3956 void
3957 soisdisconnected(struct socket *so)
3958 {
3959 
3960 	SOCK_LOCK(so);
3961 
3962 	/*
3963 	 * There is at least one reader of so_state that does not
3964 	 * acquire socket lock, namely soreceive_generic().  Ensure
3965 	 * that it never sees all flags that track connection status
3966 	 * cleared, by ordering the update with a barrier semantic of
3967 	 * our release thread fence.
3968 	 */
3969 	so->so_state |= SS_ISDISCONNECTED;
3970 	atomic_thread_fence_rel();
3971 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3972 
3973 	if (!SOLISTENING(so)) {
3974 		SOCK_UNLOCK(so);
3975 		SOCK_RECVBUF_LOCK(so);
3976 		socantrcvmore_locked(so);
3977 		SOCK_SENDBUF_LOCK(so);
3978 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3979 		socantsendmore_locked(so);
3980 	} else
3981 		SOCK_UNLOCK(so);
3982 	wakeup(&so->so_timeo);
3983 }
3984 
3985 int
3986 soiolock(struct socket *so, struct sx *sx, int flags)
3987 {
3988 	int error;
3989 
3990 	KASSERT((flags & SBL_VALID) == flags,
3991 	    ("soiolock: invalid flags %#x", flags));
3992 
3993 	if ((flags & SBL_WAIT) != 0) {
3994 		if ((flags & SBL_NOINTR) != 0) {
3995 			sx_xlock(sx);
3996 		} else {
3997 			error = sx_xlock_sig(sx);
3998 			if (error != 0)
3999 				return (error);
4000 		}
4001 	} else if (!sx_try_xlock(sx)) {
4002 		return (EWOULDBLOCK);
4003 	}
4004 
4005 	if (__predict_false(SOLISTENING(so))) {
4006 		sx_xunlock(sx);
4007 		return (ENOTCONN);
4008 	}
4009 	return (0);
4010 }
4011 
4012 void
4013 soiounlock(struct sx *sx)
4014 {
4015 	sx_xunlock(sx);
4016 }
4017 
4018 /*
4019  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4020  */
4021 struct sockaddr *
4022 sodupsockaddr(const struct sockaddr *sa, int mflags)
4023 {
4024 	struct sockaddr *sa2;
4025 
4026 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4027 	if (sa2)
4028 		bcopy(sa, sa2, sa->sa_len);
4029 	return sa2;
4030 }
4031 
4032 /*
4033  * Register per-socket destructor.
4034  */
4035 void
4036 sodtor_set(struct socket *so, so_dtor_t *func)
4037 {
4038 
4039 	SOCK_LOCK_ASSERT(so);
4040 	so->so_dtor = func;
4041 }
4042 
4043 /*
4044  * Register per-socket buffer upcalls.
4045  */
4046 void
4047 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4048 {
4049 	struct sockbuf *sb;
4050 
4051 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4052 
4053 	switch (which) {
4054 	case SO_RCV:
4055 		sb = &so->so_rcv;
4056 		break;
4057 	case SO_SND:
4058 		sb = &so->so_snd;
4059 		break;
4060 	}
4061 	SOCK_BUF_LOCK_ASSERT(so, which);
4062 	sb->sb_upcall = func;
4063 	sb->sb_upcallarg = arg;
4064 	sb->sb_flags |= SB_UPCALL;
4065 }
4066 
4067 void
4068 soupcall_clear(struct socket *so, sb_which which)
4069 {
4070 	struct sockbuf *sb;
4071 
4072 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4073 
4074 	switch (which) {
4075 	case SO_RCV:
4076 		sb = &so->so_rcv;
4077 		break;
4078 	case SO_SND:
4079 		sb = &so->so_snd;
4080 		break;
4081 	}
4082 	SOCK_BUF_LOCK_ASSERT(so, which);
4083 	KASSERT(sb->sb_upcall != NULL,
4084 	    ("%s: so %p no upcall to clear", __func__, so));
4085 	sb->sb_upcall = NULL;
4086 	sb->sb_upcallarg = NULL;
4087 	sb->sb_flags &= ~SB_UPCALL;
4088 }
4089 
4090 void
4091 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4092 {
4093 
4094 	SOLISTEN_LOCK_ASSERT(so);
4095 	so->sol_upcall = func;
4096 	so->sol_upcallarg = arg;
4097 }
4098 
4099 static void
4100 so_rdknl_lock(void *arg)
4101 {
4102 	struct socket *so = arg;
4103 
4104 retry:
4105 	if (SOLISTENING(so)) {
4106 		SOLISTEN_LOCK(so);
4107 	} else {
4108 		SOCK_RECVBUF_LOCK(so);
4109 		if (__predict_false(SOLISTENING(so))) {
4110 			SOCK_RECVBUF_UNLOCK(so);
4111 			goto retry;
4112 		}
4113 	}
4114 }
4115 
4116 static void
4117 so_rdknl_unlock(void *arg)
4118 {
4119 	struct socket *so = arg;
4120 
4121 	if (SOLISTENING(so))
4122 		SOLISTEN_UNLOCK(so);
4123 	else
4124 		SOCK_RECVBUF_UNLOCK(so);
4125 }
4126 
4127 static void
4128 so_rdknl_assert_lock(void *arg, int what)
4129 {
4130 	struct socket *so = arg;
4131 
4132 	if (what == LA_LOCKED) {
4133 		if (SOLISTENING(so))
4134 			SOLISTEN_LOCK_ASSERT(so);
4135 		else
4136 			SOCK_RECVBUF_LOCK_ASSERT(so);
4137 	} else {
4138 		if (SOLISTENING(so))
4139 			SOLISTEN_UNLOCK_ASSERT(so);
4140 		else
4141 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4142 	}
4143 }
4144 
4145 static void
4146 so_wrknl_lock(void *arg)
4147 {
4148 	struct socket *so = arg;
4149 
4150 retry:
4151 	if (SOLISTENING(so)) {
4152 		SOLISTEN_LOCK(so);
4153 	} else {
4154 		SOCK_SENDBUF_LOCK(so);
4155 		if (__predict_false(SOLISTENING(so))) {
4156 			SOCK_SENDBUF_UNLOCK(so);
4157 			goto retry;
4158 		}
4159 	}
4160 }
4161 
4162 static void
4163 so_wrknl_unlock(void *arg)
4164 {
4165 	struct socket *so = arg;
4166 
4167 	if (SOLISTENING(so))
4168 		SOLISTEN_UNLOCK(so);
4169 	else
4170 		SOCK_SENDBUF_UNLOCK(so);
4171 }
4172 
4173 static void
4174 so_wrknl_assert_lock(void *arg, int what)
4175 {
4176 	struct socket *so = arg;
4177 
4178 	if (what == LA_LOCKED) {
4179 		if (SOLISTENING(so))
4180 			SOLISTEN_LOCK_ASSERT(so);
4181 		else
4182 			SOCK_SENDBUF_LOCK_ASSERT(so);
4183 	} else {
4184 		if (SOLISTENING(so))
4185 			SOLISTEN_UNLOCK_ASSERT(so);
4186 		else
4187 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4188 	}
4189 }
4190 
4191 /*
4192  * Create an external-format (``xsocket'') structure using the information in
4193  * the kernel-format socket structure pointed to by so.  This is done to
4194  * reduce the spew of irrelevant information over this interface, to isolate
4195  * user code from changes in the kernel structure, and potentially to provide
4196  * information-hiding if we decide that some of this information should be
4197  * hidden from users.
4198  */
4199 void
4200 sotoxsocket(struct socket *so, struct xsocket *xso)
4201 {
4202 
4203 	bzero(xso, sizeof(*xso));
4204 	xso->xso_len = sizeof *xso;
4205 	xso->xso_so = (uintptr_t)so;
4206 	xso->so_type = so->so_type;
4207 	xso->so_options = so->so_options;
4208 	xso->so_linger = so->so_linger;
4209 	xso->so_state = so->so_state;
4210 	xso->so_pcb = (uintptr_t)so->so_pcb;
4211 	xso->xso_protocol = so->so_proto->pr_protocol;
4212 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4213 	xso->so_timeo = so->so_timeo;
4214 	xso->so_error = so->so_error;
4215 	xso->so_uid = so->so_cred->cr_uid;
4216 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4217 	if (SOLISTENING(so)) {
4218 		xso->so_qlen = so->sol_qlen;
4219 		xso->so_incqlen = so->sol_incqlen;
4220 		xso->so_qlimit = so->sol_qlimit;
4221 		xso->so_oobmark = 0;
4222 	} else {
4223 		xso->so_state |= so->so_qstate;
4224 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4225 		xso->so_oobmark = so->so_oobmark;
4226 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4227 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4228 	}
4229 }
4230 
4231 struct sockbuf *
4232 so_sockbuf_rcv(struct socket *so)
4233 {
4234 
4235 	return (&so->so_rcv);
4236 }
4237 
4238 struct sockbuf *
4239 so_sockbuf_snd(struct socket *so)
4240 {
4241 
4242 	return (&so->so_snd);
4243 }
4244 
4245 int
4246 so_state_get(const struct socket *so)
4247 {
4248 
4249 	return (so->so_state);
4250 }
4251 
4252 void
4253 so_state_set(struct socket *so, int val)
4254 {
4255 
4256 	so->so_state = val;
4257 }
4258 
4259 int
4260 so_options_get(const struct socket *so)
4261 {
4262 
4263 	return (so->so_options);
4264 }
4265 
4266 void
4267 so_options_set(struct socket *so, int val)
4268 {
4269 
4270 	so->so_options = val;
4271 }
4272 
4273 int
4274 so_error_get(const struct socket *so)
4275 {
4276 
4277 	return (so->so_error);
4278 }
4279 
4280 void
4281 so_error_set(struct socket *so, int val)
4282 {
4283 
4284 	so->so_error = val;
4285 }
4286 
4287 int
4288 so_linger_get(const struct socket *so)
4289 {
4290 
4291 	return (so->so_linger);
4292 }
4293 
4294 void
4295 so_linger_set(struct socket *so, int val)
4296 {
4297 
4298 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4299 	    ("%s: val %d out of range", __func__, val));
4300 
4301 	so->so_linger = val;
4302 }
4303 
4304 struct protosw *
4305 so_protosw_get(const struct socket *so)
4306 {
4307 
4308 	return (so->so_proto);
4309 }
4310 
4311 void
4312 so_protosw_set(struct socket *so, struct protosw *val)
4313 {
4314 
4315 	so->so_proto = val;
4316 }
4317 
4318 void
4319 so_sorwakeup(struct socket *so)
4320 {
4321 
4322 	sorwakeup(so);
4323 }
4324 
4325 void
4326 so_sowwakeup(struct socket *so)
4327 {
4328 
4329 	sowwakeup(so);
4330 }
4331 
4332 void
4333 so_sorwakeup_locked(struct socket *so)
4334 {
4335 
4336 	sorwakeup_locked(so);
4337 }
4338 
4339 void
4340 so_sowwakeup_locked(struct socket *so)
4341 {
4342 
4343 	sowwakeup_locked(so);
4344 }
4345 
4346 void
4347 so_lock(struct socket *so)
4348 {
4349 
4350 	SOCK_LOCK(so);
4351 }
4352 
4353 void
4354 so_unlock(struct socket *so)
4355 {
4356 
4357 	SOCK_UNLOCK(so);
4358 }
4359