1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called 99 * from a pre-set VNET context. sopoll() currently does not need a VNET 100 * context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 #include "opt_inet.h" 105 #include "opt_inet6.h" 106 #include "opt_kern_tls.h" 107 #include "opt_ktrace.h" 108 #include "opt_sctp.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/capsicum.h> 113 #include <sys/fcntl.h> 114 #include <sys/limits.h> 115 #include <sys/lock.h> 116 #include <sys/mac.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/domain.h> 121 #include <sys/file.h> /* for struct knote */ 122 #include <sys/hhook.h> 123 #include <sys/kernel.h> 124 #include <sys/khelp.h> 125 #include <sys/ktls.h> 126 #include <sys/event.h> 127 #include <sys/eventhandler.h> 128 #include <sys/poll.h> 129 #include <sys/proc.h> 130 #include <sys/protosw.h> 131 #include <sys/sbuf.h> 132 #include <sys/socket.h> 133 #include <sys/socketvar.h> 134 #include <sys/resourcevar.h> 135 #include <net/route.h> 136 #include <sys/signalvar.h> 137 #include <sys/stat.h> 138 #include <sys/sx.h> 139 #include <sys/sysctl.h> 140 #include <sys/taskqueue.h> 141 #include <sys/uio.h> 142 #include <sys/un.h> 143 #include <sys/unpcb.h> 144 #include <sys/jail.h> 145 #include <sys/syslog.h> 146 #include <netinet/in.h> 147 #include <netinet/in_pcb.h> 148 #include <netinet/tcp.h> 149 150 #include <net/vnet.h> 151 152 #include <security/mac/mac_framework.h> 153 154 #include <vm/uma.h> 155 156 #ifdef COMPAT_FREEBSD32 157 #include <sys/mount.h> 158 #include <sys/sysent.h> 159 #include <compat/freebsd32/freebsd32.h> 160 #endif 161 162 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 163 int flags); 164 static void so_rdknl_lock(void *); 165 static void so_rdknl_unlock(void *); 166 static void so_rdknl_assert_lock(void *, int); 167 static void so_wrknl_lock(void *); 168 static void so_wrknl_unlock(void *); 169 static void so_wrknl_assert_lock(void *, int); 170 171 static void filt_sordetach(struct knote *kn); 172 static int filt_soread(struct knote *kn, long hint); 173 static void filt_sowdetach(struct knote *kn); 174 static int filt_sowrite(struct knote *kn, long hint); 175 static int filt_soempty(struct knote *kn, long hint); 176 fo_kqfilter_t soo_kqfilter; 177 178 static struct filterops soread_filtops = { 179 .f_isfd = 1, 180 .f_detach = filt_sordetach, 181 .f_event = filt_soread, 182 }; 183 static struct filterops sowrite_filtops = { 184 .f_isfd = 1, 185 .f_detach = filt_sowdetach, 186 .f_event = filt_sowrite, 187 }; 188 static struct filterops soempty_filtops = { 189 .f_isfd = 1, 190 .f_detach = filt_sowdetach, 191 .f_event = filt_soempty, 192 }; 193 194 so_gen_t so_gencnt; /* generation count for sockets */ 195 196 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 197 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 198 199 #define VNET_SO_ASSERT(so) \ 200 VNET_ASSERT(curvnet != NULL, \ 201 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 202 203 #ifdef SOCKET_HHOOK 204 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 205 #define V_socket_hhh VNET(socket_hhh) 206 static inline int hhook_run_socket(struct socket *, void *, int32_t); 207 #endif 208 209 /* 210 * Limit on the number of connections in the listen queue waiting 211 * for accept(2). 212 * NB: The original sysctl somaxconn is still available but hidden 213 * to prevent confusion about the actual purpose of this number. 214 */ 215 static u_int somaxconn = SOMAXCONN; 216 217 static int 218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 219 { 220 int error; 221 int val; 222 223 val = somaxconn; 224 error = sysctl_handle_int(oidp, &val, 0, req); 225 if (error || !req->newptr ) 226 return (error); 227 228 /* 229 * The purpose of the UINT_MAX / 3 limit, is so that the formula 230 * 3 * so_qlimit / 2 231 * below, will not overflow. 232 */ 233 234 if (val < 1 || val > UINT_MAX / 3) 235 return (EINVAL); 236 237 somaxconn = val; 238 return (0); 239 } 240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 241 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 242 sysctl_somaxconn, "I", 243 "Maximum listen socket pending connection accept queue size"); 244 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 245 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 246 sizeof(int), sysctl_somaxconn, "I", 247 "Maximum listen socket pending connection accept queue size (compat)"); 248 249 static int numopensockets; 250 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 251 &numopensockets, 0, "Number of open sockets"); 252 253 /* 254 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 255 * so_gencnt field. 256 */ 257 static struct mtx so_global_mtx; 258 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 259 260 /* 261 * General IPC sysctl name space, used by sockets and a variety of other IPC 262 * types. 263 */ 264 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 265 "IPC"); 266 267 /* 268 * Initialize the socket subsystem and set up the socket 269 * memory allocator. 270 */ 271 static uma_zone_t socket_zone; 272 int maxsockets; 273 274 static void 275 socket_zone_change(void *tag) 276 { 277 278 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 279 } 280 281 static void 282 socket_init(void *tag) 283 { 284 285 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 286 NULL, NULL, UMA_ALIGN_PTR, 0); 287 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 288 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 289 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 290 EVENTHANDLER_PRI_FIRST); 291 } 292 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 293 294 #ifdef SOCKET_HHOOK 295 static void 296 socket_hhook_register(int subtype) 297 { 298 299 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 300 &V_socket_hhh[subtype], 301 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 302 printf("%s: WARNING: unable to register hook\n", __func__); 303 } 304 305 static void 306 socket_hhook_deregister(int subtype) 307 { 308 309 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 310 printf("%s: WARNING: unable to deregister hook\n", __func__); 311 } 312 313 static void 314 socket_vnet_init(const void *unused __unused) 315 { 316 int i; 317 318 /* We expect a contiguous range */ 319 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 320 socket_hhook_register(i); 321 } 322 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 323 socket_vnet_init, NULL); 324 325 static void 326 socket_vnet_uninit(const void *unused __unused) 327 { 328 int i; 329 330 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 331 socket_hhook_deregister(i); 332 } 333 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 334 socket_vnet_uninit, NULL); 335 #endif /* SOCKET_HHOOK */ 336 337 /* 338 * Initialise maxsockets. This SYSINIT must be run after 339 * tunable_mbinit(). 340 */ 341 static void 342 init_maxsockets(void *ignored) 343 { 344 345 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 346 maxsockets = imax(maxsockets, maxfiles); 347 } 348 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 349 350 /* 351 * Sysctl to get and set the maximum global sockets limit. Notify protocols 352 * of the change so that they can update their dependent limits as required. 353 */ 354 static int 355 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 356 { 357 int error, newmaxsockets; 358 359 newmaxsockets = maxsockets; 360 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 361 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 362 if (newmaxsockets > maxsockets && 363 newmaxsockets <= maxfiles) { 364 maxsockets = newmaxsockets; 365 EVENTHANDLER_INVOKE(maxsockets_change); 366 } else 367 error = EINVAL; 368 } 369 return (error); 370 } 371 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 372 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 373 &maxsockets, 0, sysctl_maxsockets, "IU", 374 "Maximum number of sockets available"); 375 376 /* 377 * Socket operation routines. These routines are called by the routines in 378 * sys_socket.c or from a system process, and implement the semantics of 379 * socket operations by switching out to the protocol specific routines. 380 */ 381 382 /* 383 * Get a socket structure from our zone, and initialize it. Note that it 384 * would probably be better to allocate socket and PCB at the same time, but 385 * I'm not convinced that all the protocols can be easily modified to do 386 * this. 387 * 388 * soalloc() returns a socket with a ref count of 0. 389 */ 390 static struct socket * 391 soalloc(struct vnet *vnet) 392 { 393 struct socket *so; 394 395 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 396 if (so == NULL) 397 return (NULL); 398 #ifdef MAC 399 if (mac_socket_init(so, M_NOWAIT) != 0) { 400 uma_zfree(socket_zone, so); 401 return (NULL); 402 } 403 #endif 404 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 405 uma_zfree(socket_zone, so); 406 return (NULL); 407 } 408 409 /* 410 * The socket locking protocol allows to lock 2 sockets at a time, 411 * however, the first one must be a listening socket. WITNESS lacks 412 * a feature to change class of an existing lock, so we use DUPOK. 413 */ 414 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 415 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 416 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 417 so->so_rcv.sb_sel = &so->so_rdsel; 418 so->so_snd.sb_sel = &so->so_wrsel; 419 sx_init(&so->so_snd_sx, "so_snd_sx"); 420 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 421 TAILQ_INIT(&so->so_snd.sb_aiojobq); 422 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 423 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 424 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 425 #ifdef VIMAGE 426 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 427 __func__, __LINE__, so)); 428 so->so_vnet = vnet; 429 #endif 430 #ifdef SOCKET_HHOOK 431 /* We shouldn't need the so_global_mtx */ 432 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 433 /* Do we need more comprehensive error returns? */ 434 uma_zfree(socket_zone, so); 435 return (NULL); 436 } 437 #endif 438 mtx_lock(&so_global_mtx); 439 so->so_gencnt = ++so_gencnt; 440 ++numopensockets; 441 #ifdef VIMAGE 442 vnet->vnet_sockcnt++; 443 #endif 444 mtx_unlock(&so_global_mtx); 445 446 return (so); 447 } 448 449 /* 450 * Free the storage associated with a socket at the socket layer, tear down 451 * locks, labels, etc. All protocol state is assumed already to have been 452 * torn down (and possibly never set up) by the caller. 453 */ 454 void 455 sodealloc(struct socket *so) 456 { 457 458 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 459 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 460 461 mtx_lock(&so_global_mtx); 462 so->so_gencnt = ++so_gencnt; 463 --numopensockets; /* Could be below, but faster here. */ 464 #ifdef VIMAGE 465 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 466 __func__, __LINE__, so)); 467 so->so_vnet->vnet_sockcnt--; 468 #endif 469 mtx_unlock(&so_global_mtx); 470 #ifdef MAC 471 mac_socket_destroy(so); 472 #endif 473 #ifdef SOCKET_HHOOK 474 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 475 #endif 476 477 khelp_destroy_osd(&so->osd); 478 if (SOLISTENING(so)) { 479 if (so->sol_accept_filter != NULL) 480 accept_filt_setopt(so, NULL); 481 } else { 482 if (so->so_rcv.sb_hiwat) 483 (void)chgsbsize(so->so_cred->cr_uidinfo, 484 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 485 if (so->so_snd.sb_hiwat) 486 (void)chgsbsize(so->so_cred->cr_uidinfo, 487 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 488 sx_destroy(&so->so_snd_sx); 489 sx_destroy(&so->so_rcv_sx); 490 mtx_destroy(&so->so_snd_mtx); 491 mtx_destroy(&so->so_rcv_mtx); 492 } 493 crfree(so->so_cred); 494 mtx_destroy(&so->so_lock); 495 uma_zfree(socket_zone, so); 496 } 497 498 /* 499 * socreate returns a socket with a ref count of 1 and a file descriptor 500 * reference. The socket should be closed with soclose(). 501 */ 502 int 503 socreate(int dom, struct socket **aso, int type, int proto, 504 struct ucred *cred, struct thread *td) 505 { 506 struct protosw *prp; 507 struct socket *so; 508 int error; 509 510 /* 511 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 512 * shim until all applications have been updated. 513 */ 514 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 515 proto == IPPROTO_DIVERT)) { 516 dom = PF_DIVERT; 517 printf("%s uses obsolete way to create divert(4) socket\n", 518 td->td_proc->p_comm); 519 } 520 521 prp = pffindproto(dom, type, proto); 522 if (prp == NULL) { 523 /* No support for domain. */ 524 if (pffinddomain(dom) == NULL) 525 return (EAFNOSUPPORT); 526 /* No support for socket type. */ 527 if (proto == 0 && type != 0) 528 return (EPROTOTYPE); 529 return (EPROTONOSUPPORT); 530 } 531 532 MPASS(prp->pr_attach); 533 534 if ((prp->pr_flags & PR_CAPATTACH) == 0) { 535 if (CAP_TRACING(td)) 536 ktrcapfail(CAPFAIL_PROTO, &proto); 537 if (IN_CAPABILITY_MODE(td)) 538 return (ECAPMODE); 539 } 540 541 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 542 return (EPROTONOSUPPORT); 543 544 so = soalloc(CRED_TO_VNET(cred)); 545 if (so == NULL) 546 return (ENOBUFS); 547 548 so->so_type = type; 549 so->so_cred = crhold(cred); 550 if ((prp->pr_domain->dom_family == PF_INET) || 551 (prp->pr_domain->dom_family == PF_INET6) || 552 (prp->pr_domain->dom_family == PF_ROUTE)) 553 so->so_fibnum = td->td_proc->p_fibnum; 554 else 555 so->so_fibnum = 0; 556 so->so_proto = prp; 557 #ifdef MAC 558 mac_socket_create(cred, so); 559 #endif 560 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 561 so_rdknl_assert_lock); 562 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 563 so_wrknl_assert_lock); 564 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 565 so->so_snd.sb_mtx = &so->so_snd_mtx; 566 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 567 } 568 /* 569 * Auto-sizing of socket buffers is managed by the protocols and 570 * the appropriate flags must be set in the pru_attach function. 571 */ 572 CURVNET_SET(so->so_vnet); 573 error = prp->pr_attach(so, proto, td); 574 CURVNET_RESTORE(); 575 if (error) { 576 sodealloc(so); 577 return (error); 578 } 579 soref(so); 580 *aso = so; 581 return (0); 582 } 583 584 #ifdef REGRESSION 585 static int regression_sonewconn_earlytest = 1; 586 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 587 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 588 #endif 589 590 static int sooverprio = LOG_DEBUG; 591 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, 592 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); 593 594 static struct timeval overinterval = { 60, 0 }; 595 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 596 &overinterval, 597 "Delay in seconds between warnings for listen socket overflows"); 598 599 /* 600 * When an attempt at a new connection is noted on a socket which supports 601 * accept(2), the protocol has two options: 602 * 1) Call legacy sonewconn() function, which would call protocol attach 603 * method, same as used for socket(2). 604 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 605 * and then call solisten_enqueue(). 606 * 607 * Note: the ref count on the socket is 0 on return. 608 */ 609 struct socket * 610 solisten_clone(struct socket *head) 611 { 612 struct sbuf descrsb; 613 struct socket *so; 614 int len, overcount; 615 u_int qlen; 616 const char localprefix[] = "local:"; 617 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 618 #if defined(INET6) 619 char addrbuf[INET6_ADDRSTRLEN]; 620 #elif defined(INET) 621 char addrbuf[INET_ADDRSTRLEN]; 622 #endif 623 bool dolog, over; 624 625 SOLISTEN_LOCK(head); 626 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 627 #ifdef REGRESSION 628 if (regression_sonewconn_earlytest && over) { 629 #else 630 if (over) { 631 #endif 632 head->sol_overcount++; 633 dolog = (sooverprio >= 0) && 634 !!ratecheck(&head->sol_lastover, &overinterval); 635 636 /* 637 * If we're going to log, copy the overflow count and queue 638 * length from the listen socket before dropping the lock. 639 * Also, reset the overflow count. 640 */ 641 if (dolog) { 642 overcount = head->sol_overcount; 643 head->sol_overcount = 0; 644 qlen = head->sol_qlen; 645 } 646 SOLISTEN_UNLOCK(head); 647 648 if (dolog) { 649 /* 650 * Try to print something descriptive about the 651 * socket for the error message. 652 */ 653 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 654 SBUF_FIXEDLEN); 655 switch (head->so_proto->pr_domain->dom_family) { 656 #if defined(INET) || defined(INET6) 657 #ifdef INET 658 case AF_INET: 659 #endif 660 #ifdef INET6 661 case AF_INET6: 662 if (head->so_proto->pr_domain->dom_family == 663 AF_INET6 || 664 (sotoinpcb(head)->inp_inc.inc_flags & 665 INC_ISIPV6)) { 666 ip6_sprintf(addrbuf, 667 &sotoinpcb(head)->inp_inc.inc6_laddr); 668 sbuf_printf(&descrsb, "[%s]", addrbuf); 669 } else 670 #endif 671 { 672 #ifdef INET 673 inet_ntoa_r( 674 sotoinpcb(head)->inp_inc.inc_laddr, 675 addrbuf); 676 sbuf_cat(&descrsb, addrbuf); 677 #endif 678 } 679 sbuf_printf(&descrsb, ":%hu (proto %u)", 680 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 681 head->so_proto->pr_protocol); 682 break; 683 #endif /* INET || INET6 */ 684 case AF_UNIX: 685 sbuf_cat(&descrsb, localprefix); 686 if (sotounpcb(head)->unp_addr != NULL) 687 len = 688 sotounpcb(head)->unp_addr->sun_len - 689 offsetof(struct sockaddr_un, 690 sun_path); 691 else 692 len = 0; 693 if (len > 0) 694 sbuf_bcat(&descrsb, 695 sotounpcb(head)->unp_addr->sun_path, 696 len); 697 else 698 sbuf_cat(&descrsb, "(unknown)"); 699 break; 700 } 701 702 /* 703 * If we can't print something more specific, at least 704 * print the domain name. 705 */ 706 if (sbuf_finish(&descrsb) != 0 || 707 sbuf_len(&descrsb) <= 0) { 708 sbuf_clear(&descrsb); 709 sbuf_cat(&descrsb, 710 head->so_proto->pr_domain->dom_name ?: 711 "unknown"); 712 sbuf_finish(&descrsb); 713 } 714 KASSERT(sbuf_len(&descrsb) > 0, 715 ("%s: sbuf creation failed", __func__)); 716 /* 717 * Preserve the historic listen queue overflow log 718 * message, that starts with "sonewconn:". It has 719 * been known to sysadmins for years and also test 720 * sys/kern/sonewconn_overflow checks for it. 721 */ 722 if (head->so_cred == 0) { 723 log(LOG_PRI(sooverprio), 724 "sonewconn: pcb %p (%s): " 725 "Listen queue overflow: %i already in " 726 "queue awaiting acceptance (%d " 727 "occurrences)\n", head->so_pcb, 728 sbuf_data(&descrsb), 729 qlen, overcount); 730 } else { 731 log(LOG_PRI(sooverprio), 732 "sonewconn: pcb %p (%s): " 733 "Listen queue overflow: " 734 "%i already in queue awaiting acceptance " 735 "(%d occurrences), euid %d, rgid %d, jail %s\n", 736 head->so_pcb, sbuf_data(&descrsb), qlen, 737 overcount, head->so_cred->cr_uid, 738 head->so_cred->cr_rgid, 739 head->so_cred->cr_prison ? 740 head->so_cred->cr_prison->pr_name : 741 "not_jailed"); 742 } 743 sbuf_delete(&descrsb); 744 745 overcount = 0; 746 } 747 748 return (NULL); 749 } 750 SOLISTEN_UNLOCK(head); 751 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 752 __func__, head)); 753 so = soalloc(head->so_vnet); 754 if (so == NULL) { 755 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 756 "limit reached or out of memory\n", 757 __func__, head->so_pcb); 758 return (NULL); 759 } 760 so->so_listen = head; 761 so->so_type = head->so_type; 762 /* 763 * POSIX is ambiguous on what options an accept(2)ed socket should 764 * inherit from the listener. Words "create a new socket" may be 765 * interpreted as not inheriting anything. Best programming practice 766 * for application developers is to not rely on such inheritance. 767 * FreeBSD had historically inherited all so_options excluding 768 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, 769 * including those completely irrelevant to a new born socket. For 770 * compatibility with older versions we will inherit a list of 771 * meaningful options. 772 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present 773 * in the child socket for soisconnected() promoting socket from the 774 * incomplete queue to complete. It will be cleared before the child 775 * gets available to accept(2). 776 */ 777 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE | 778 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); 779 so->so_linger = head->so_linger; 780 so->so_state = head->so_state; 781 so->so_fibnum = head->so_fibnum; 782 so->so_proto = head->so_proto; 783 so->so_cred = crhold(head->so_cred); 784 #ifdef SOCKET_HHOOK 785 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) { 786 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) { 787 sodealloc(so); 788 log(LOG_DEBUG, "%s: hhook run failed\n", __func__); 789 return (NULL); 790 } 791 } 792 #endif 793 #ifdef MAC 794 mac_socket_newconn(head, so); 795 #endif 796 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 797 so_rdknl_assert_lock); 798 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 799 so_wrknl_assert_lock); 800 VNET_SO_ASSERT(head); 801 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 802 sodealloc(so); 803 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 804 __func__, head->so_pcb); 805 return (NULL); 806 } 807 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 808 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 809 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 810 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 811 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 812 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 813 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 814 so->so_snd.sb_mtx = &so->so_snd_mtx; 815 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 816 } 817 818 return (so); 819 } 820 821 /* Connstatus may be 0 or SS_ISCONNECTED. */ 822 struct socket * 823 sonewconn(struct socket *head, int connstatus) 824 { 825 struct socket *so; 826 827 if ((so = solisten_clone(head)) == NULL) 828 return (NULL); 829 830 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 831 sodealloc(so); 832 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 833 __func__, head->so_pcb); 834 return (NULL); 835 } 836 837 (void)solisten_enqueue(so, connstatus); 838 839 return (so); 840 } 841 842 /* 843 * Enqueue socket cloned by solisten_clone() to the listen queue of the 844 * listener it has been cloned from. 845 * 846 * Return 'true' if socket landed on complete queue, otherwise 'false'. 847 */ 848 bool 849 solisten_enqueue(struct socket *so, int connstatus) 850 { 851 struct socket *head = so->so_listen; 852 853 MPASS(refcount_load(&so->so_count) == 0); 854 refcount_init(&so->so_count, 1); 855 856 SOLISTEN_LOCK(head); 857 if (head->sol_accept_filter != NULL) 858 connstatus = 0; 859 so->so_state |= connstatus; 860 soref(head); /* A socket on (in)complete queue refs head. */ 861 if (connstatus) { 862 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 863 so->so_qstate = SQ_COMP; 864 head->sol_qlen++; 865 solisten_wakeup(head); /* unlocks */ 866 return (true); 867 } else { 868 /* 869 * Keep removing sockets from the head until there's room for 870 * us to insert on the tail. In pre-locking revisions, this 871 * was a simple if(), but as we could be racing with other 872 * threads and soabort() requires dropping locks, we must 873 * loop waiting for the condition to be true. 874 */ 875 while (head->sol_incqlen > head->sol_qlimit) { 876 struct socket *sp; 877 878 sp = TAILQ_FIRST(&head->sol_incomp); 879 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 880 head->sol_incqlen--; 881 SOCK_LOCK(sp); 882 sp->so_qstate = SQ_NONE; 883 sp->so_listen = NULL; 884 SOCK_UNLOCK(sp); 885 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 886 soabort(sp); 887 SOLISTEN_LOCK(head); 888 } 889 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 890 so->so_qstate = SQ_INCOMP; 891 head->sol_incqlen++; 892 SOLISTEN_UNLOCK(head); 893 return (false); 894 } 895 } 896 897 #if defined(SCTP) || defined(SCTP_SUPPORT) 898 /* 899 * Socket part of sctp_peeloff(). Detach a new socket from an 900 * association. The new socket is returned with a reference. 901 * 902 * XXXGL: reduce copy-paste with solisten_clone(). 903 */ 904 struct socket * 905 sopeeloff(struct socket *head) 906 { 907 struct socket *so; 908 909 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 910 __func__, __LINE__, head)); 911 so = soalloc(head->so_vnet); 912 if (so == NULL) { 913 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 914 "limit reached or out of memory\n", 915 __func__, head->so_pcb); 916 return (NULL); 917 } 918 so->so_type = head->so_type; 919 so->so_options = head->so_options; 920 so->so_linger = head->so_linger; 921 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 922 so->so_fibnum = head->so_fibnum; 923 so->so_proto = head->so_proto; 924 so->so_cred = crhold(head->so_cred); 925 #ifdef MAC 926 mac_socket_newconn(head, so); 927 #endif 928 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 929 so_rdknl_assert_lock); 930 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 931 so_wrknl_assert_lock); 932 VNET_SO_ASSERT(head); 933 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 934 sodealloc(so); 935 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 936 __func__, head->so_pcb); 937 return (NULL); 938 } 939 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 940 sodealloc(so); 941 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 942 __func__, head->so_pcb); 943 return (NULL); 944 } 945 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 946 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 947 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 948 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 949 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 950 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 951 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 952 so->so_snd.sb_mtx = &so->so_snd_mtx; 953 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 954 } 955 956 soref(so); 957 958 return (so); 959 } 960 #endif /* SCTP */ 961 962 int 963 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 964 { 965 int error; 966 967 CURVNET_SET(so->so_vnet); 968 error = so->so_proto->pr_bind(so, nam, td); 969 CURVNET_RESTORE(); 970 return (error); 971 } 972 973 int 974 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 975 { 976 int error; 977 978 CURVNET_SET(so->so_vnet); 979 error = so->so_proto->pr_bindat(fd, so, nam, td); 980 CURVNET_RESTORE(); 981 return (error); 982 } 983 984 /* 985 * solisten() transitions a socket from a non-listening state to a listening 986 * state, but can also be used to update the listen queue depth on an 987 * existing listen socket. The protocol will call back into the sockets 988 * layer using solisten_proto_check() and solisten_proto() to check and set 989 * socket-layer listen state. Call backs are used so that the protocol can 990 * acquire both protocol and socket layer locks in whatever order is required 991 * by the protocol. 992 * 993 * Protocol implementors are advised to hold the socket lock across the 994 * socket-layer test and set to avoid races at the socket layer. 995 */ 996 int 997 solisten(struct socket *so, int backlog, struct thread *td) 998 { 999 int error; 1000 1001 CURVNET_SET(so->so_vnet); 1002 error = so->so_proto->pr_listen(so, backlog, td); 1003 CURVNET_RESTORE(); 1004 return (error); 1005 } 1006 1007 /* 1008 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 1009 * order to interlock with socket I/O. 1010 */ 1011 int 1012 solisten_proto_check(struct socket *so) 1013 { 1014 SOCK_LOCK_ASSERT(so); 1015 1016 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1017 SS_ISDISCONNECTING)) != 0) 1018 return (EINVAL); 1019 1020 /* 1021 * Sleeping is not permitted here, so simply fail if userspace is 1022 * attempting to transmit or receive on the socket. This kind of 1023 * transient failure is not ideal, but it should occur only if userspace 1024 * is misusing the socket interfaces. 1025 */ 1026 if (!sx_try_xlock(&so->so_snd_sx)) 1027 return (EAGAIN); 1028 if (!sx_try_xlock(&so->so_rcv_sx)) { 1029 sx_xunlock(&so->so_snd_sx); 1030 return (EAGAIN); 1031 } 1032 mtx_lock(&so->so_snd_mtx); 1033 mtx_lock(&so->so_rcv_mtx); 1034 1035 /* Interlock with soo_aio_queue() and KTLS. */ 1036 if (!SOLISTENING(so)) { 1037 bool ktls; 1038 1039 #ifdef KERN_TLS 1040 ktls = so->so_snd.sb_tls_info != NULL || 1041 so->so_rcv.sb_tls_info != NULL; 1042 #else 1043 ktls = false; 1044 #endif 1045 if (ktls || 1046 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 1047 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 1048 solisten_proto_abort(so); 1049 return (EINVAL); 1050 } 1051 } 1052 1053 return (0); 1054 } 1055 1056 /* 1057 * Undo the setup done by solisten_proto_check(). 1058 */ 1059 void 1060 solisten_proto_abort(struct socket *so) 1061 { 1062 mtx_unlock(&so->so_snd_mtx); 1063 mtx_unlock(&so->so_rcv_mtx); 1064 sx_xunlock(&so->so_snd_sx); 1065 sx_xunlock(&so->so_rcv_sx); 1066 } 1067 1068 void 1069 solisten_proto(struct socket *so, int backlog) 1070 { 1071 int sbrcv_lowat, sbsnd_lowat; 1072 u_int sbrcv_hiwat, sbsnd_hiwat; 1073 short sbrcv_flags, sbsnd_flags; 1074 sbintime_t sbrcv_timeo, sbsnd_timeo; 1075 1076 SOCK_LOCK_ASSERT(so); 1077 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1078 SS_ISDISCONNECTING)) == 0, 1079 ("%s: bad socket state %p", __func__, so)); 1080 1081 if (SOLISTENING(so)) 1082 goto listening; 1083 1084 /* 1085 * Change this socket to listening state. 1086 */ 1087 sbrcv_lowat = so->so_rcv.sb_lowat; 1088 sbsnd_lowat = so->so_snd.sb_lowat; 1089 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1090 sbsnd_hiwat = so->so_snd.sb_hiwat; 1091 sbrcv_flags = so->so_rcv.sb_flags; 1092 sbsnd_flags = so->so_snd.sb_flags; 1093 sbrcv_timeo = so->so_rcv.sb_timeo; 1094 sbsnd_timeo = so->so_snd.sb_timeo; 1095 1096 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) { 1097 sbdestroy(so, SO_SND); 1098 sbdestroy(so, SO_RCV); 1099 } 1100 1101 #ifdef INVARIANTS 1102 bzero(&so->so_rcv, 1103 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1104 #endif 1105 1106 so->sol_sbrcv_lowat = sbrcv_lowat; 1107 so->sol_sbsnd_lowat = sbsnd_lowat; 1108 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1109 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1110 so->sol_sbrcv_flags = sbrcv_flags; 1111 so->sol_sbsnd_flags = sbsnd_flags; 1112 so->sol_sbrcv_timeo = sbrcv_timeo; 1113 so->sol_sbsnd_timeo = sbsnd_timeo; 1114 1115 so->sol_qlen = so->sol_incqlen = 0; 1116 TAILQ_INIT(&so->sol_incomp); 1117 TAILQ_INIT(&so->sol_comp); 1118 1119 so->sol_accept_filter = NULL; 1120 so->sol_accept_filter_arg = NULL; 1121 so->sol_accept_filter_str = NULL; 1122 1123 so->sol_upcall = NULL; 1124 so->sol_upcallarg = NULL; 1125 1126 so->so_options |= SO_ACCEPTCONN; 1127 1128 listening: 1129 if (backlog < 0 || backlog > somaxconn) 1130 backlog = somaxconn; 1131 so->sol_qlimit = backlog; 1132 1133 mtx_unlock(&so->so_snd_mtx); 1134 mtx_unlock(&so->so_rcv_mtx); 1135 sx_xunlock(&so->so_snd_sx); 1136 sx_xunlock(&so->so_rcv_sx); 1137 } 1138 1139 /* 1140 * Wakeup listeners/subsystems once we have a complete connection. 1141 * Enters with lock, returns unlocked. 1142 */ 1143 void 1144 solisten_wakeup(struct socket *sol) 1145 { 1146 1147 if (sol->sol_upcall != NULL) 1148 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1149 else { 1150 selwakeuppri(&sol->so_rdsel, PSOCK); 1151 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1152 } 1153 SOLISTEN_UNLOCK(sol); 1154 wakeup_one(&sol->sol_comp); 1155 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1156 pgsigio(&sol->so_sigio, SIGIO, 0); 1157 } 1158 1159 /* 1160 * Return single connection off a listening socket queue. Main consumer of 1161 * the function is kern_accept4(). Some modules, that do their own accept 1162 * management also use the function. The socket reference held by the 1163 * listen queue is handed to the caller. 1164 * 1165 * Listening socket must be locked on entry and is returned unlocked on 1166 * return. 1167 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1168 */ 1169 int 1170 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1171 { 1172 struct socket *so; 1173 int error; 1174 1175 SOLISTEN_LOCK_ASSERT(head); 1176 1177 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1178 head->so_error == 0) { 1179 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1180 "accept", 0); 1181 if (error != 0) { 1182 SOLISTEN_UNLOCK(head); 1183 return (error); 1184 } 1185 } 1186 if (head->so_error) { 1187 error = head->so_error; 1188 head->so_error = 0; 1189 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1190 error = EWOULDBLOCK; 1191 else 1192 error = 0; 1193 if (error) { 1194 SOLISTEN_UNLOCK(head); 1195 return (error); 1196 } 1197 so = TAILQ_FIRST(&head->sol_comp); 1198 SOCK_LOCK(so); 1199 KASSERT(so->so_qstate == SQ_COMP, 1200 ("%s: so %p not SQ_COMP", __func__, so)); 1201 head->sol_qlen--; 1202 so->so_qstate = SQ_NONE; 1203 so->so_listen = NULL; 1204 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1205 if (flags & ACCEPT4_INHERIT) 1206 so->so_state |= (head->so_state & SS_NBIO); 1207 else 1208 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1209 SOCK_UNLOCK(so); 1210 sorele_locked(head); 1211 1212 *ret = so; 1213 return (0); 1214 } 1215 1216 /* 1217 * Free socket upon release of the very last reference. 1218 */ 1219 static void 1220 sofree(struct socket *so) 1221 { 1222 struct protosw *pr = so->so_proto; 1223 1224 SOCK_LOCK_ASSERT(so); 1225 KASSERT(refcount_load(&so->so_count) == 0, 1226 ("%s: so %p has references", __func__, so)); 1227 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1228 ("%s: so %p is on listen queue", __func__, so)); 1229 1230 SOCK_UNLOCK(so); 1231 1232 if (so->so_dtor != NULL) 1233 so->so_dtor(so); 1234 1235 VNET_SO_ASSERT(so); 1236 if (pr->pr_detach != NULL) 1237 pr->pr_detach(so); 1238 1239 /* 1240 * From this point on, we assume that no other references to this 1241 * socket exist anywhere else in the stack. Therefore, no locks need 1242 * to be acquired or held. 1243 */ 1244 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1245 sbdestroy(so, SO_SND); 1246 sbdestroy(so, SO_RCV); 1247 } 1248 seldrain(&so->so_rdsel); 1249 seldrain(&so->so_wrsel); 1250 knlist_destroy(&so->so_rdsel.si_note); 1251 knlist_destroy(&so->so_wrsel.si_note); 1252 sodealloc(so); 1253 } 1254 1255 /* 1256 * Release a reference on a socket while holding the socket lock. 1257 * Unlocks the socket lock before returning. 1258 */ 1259 void 1260 sorele_locked(struct socket *so) 1261 { 1262 SOCK_LOCK_ASSERT(so); 1263 if (refcount_release(&so->so_count)) 1264 sofree(so); 1265 else 1266 SOCK_UNLOCK(so); 1267 } 1268 1269 /* 1270 * Close a socket on last file table reference removal. Initiate disconnect 1271 * if connected. Free socket when disconnect complete. 1272 * 1273 * This function will sorele() the socket. Note that soclose() may be called 1274 * prior to the ref count reaching zero. The actual socket structure will 1275 * not be freed until the ref count reaches zero. 1276 */ 1277 int 1278 soclose(struct socket *so) 1279 { 1280 struct accept_queue lqueue; 1281 int error = 0; 1282 bool listening, last __diagused; 1283 1284 CURVNET_SET(so->so_vnet); 1285 funsetown(&so->so_sigio); 1286 if (so->so_state & SS_ISCONNECTED) { 1287 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1288 error = sodisconnect(so); 1289 if (error) { 1290 if (error == ENOTCONN) 1291 error = 0; 1292 goto drop; 1293 } 1294 } 1295 1296 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1297 if ((so->so_state & SS_ISDISCONNECTING) && 1298 (so->so_state & SS_NBIO)) 1299 goto drop; 1300 while (so->so_state & SS_ISCONNECTED) { 1301 error = tsleep(&so->so_timeo, 1302 PSOCK | PCATCH, "soclos", 1303 so->so_linger * hz); 1304 if (error) 1305 break; 1306 } 1307 } 1308 } 1309 1310 drop: 1311 if (so->so_proto->pr_close != NULL) 1312 so->so_proto->pr_close(so); 1313 1314 SOCK_LOCK(so); 1315 if ((listening = SOLISTENING(so))) { 1316 struct socket *sp; 1317 1318 TAILQ_INIT(&lqueue); 1319 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1320 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1321 1322 so->sol_qlen = so->sol_incqlen = 0; 1323 1324 TAILQ_FOREACH(sp, &lqueue, so_list) { 1325 SOCK_LOCK(sp); 1326 sp->so_qstate = SQ_NONE; 1327 sp->so_listen = NULL; 1328 SOCK_UNLOCK(sp); 1329 last = refcount_release(&so->so_count); 1330 KASSERT(!last, ("%s: released last reference for %p", 1331 __func__, so)); 1332 } 1333 } 1334 sorele_locked(so); 1335 if (listening) { 1336 struct socket *sp, *tsp; 1337 1338 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1339 soabort(sp); 1340 } 1341 CURVNET_RESTORE(); 1342 return (error); 1343 } 1344 1345 /* 1346 * soabort() is used to abruptly tear down a connection, such as when a 1347 * resource limit is reached (listen queue depth exceeded), or if a listen 1348 * socket is closed while there are sockets waiting to be accepted. 1349 * 1350 * This interface is tricky, because it is called on an unreferenced socket, 1351 * and must be called only by a thread that has actually removed the socket 1352 * from the listen queue it was on. Likely this thread holds the last 1353 * reference on the socket and soabort() will proceed with sofree(). But 1354 * it might be not the last, as the sockets on the listen queues are seen 1355 * from the protocol side. 1356 * 1357 * This interface will call into the protocol code, so must not be called 1358 * with any socket locks held. Protocols do call it while holding their own 1359 * recursible protocol mutexes, but this is something that should be subject 1360 * to review in the future. 1361 * 1362 * Usually socket should have a single reference left, but this is not a 1363 * requirement. In the past, when we have had named references for file 1364 * descriptor and protocol, we asserted that none of them are being held. 1365 */ 1366 void 1367 soabort(struct socket *so) 1368 { 1369 1370 VNET_SO_ASSERT(so); 1371 1372 if (so->so_proto->pr_abort != NULL) 1373 so->so_proto->pr_abort(so); 1374 SOCK_LOCK(so); 1375 sorele_locked(so); 1376 } 1377 1378 int 1379 soaccept(struct socket *so, struct sockaddr *sa) 1380 { 1381 #ifdef INVARIANTS 1382 u_char len = sa->sa_len; 1383 #endif 1384 int error; 1385 1386 CURVNET_SET(so->so_vnet); 1387 error = so->so_proto->pr_accept(so, sa); 1388 KASSERT(sa->sa_len <= len, 1389 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1390 CURVNET_RESTORE(); 1391 return (error); 1392 } 1393 1394 int 1395 sopeeraddr(struct socket *so, struct sockaddr *sa) 1396 { 1397 #ifdef INVARIANTS 1398 u_char len = sa->sa_len; 1399 #endif 1400 int error; 1401 1402 CURVNET_SET(so->so_vnet); 1403 error = so->so_proto->pr_peeraddr(so, sa); 1404 KASSERT(sa->sa_len <= len, 1405 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1406 CURVNET_RESTORE(); 1407 1408 return (error); 1409 } 1410 1411 int 1412 sosockaddr(struct socket *so, struct sockaddr *sa) 1413 { 1414 #ifdef INVARIANTS 1415 u_char len = sa->sa_len; 1416 #endif 1417 int error; 1418 1419 CURVNET_SET(so->so_vnet); 1420 error = so->so_proto->pr_sockaddr(so, sa); 1421 KASSERT(sa->sa_len <= len, 1422 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1423 CURVNET_RESTORE(); 1424 1425 return (error); 1426 } 1427 1428 int 1429 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1430 { 1431 1432 return (soconnectat(AT_FDCWD, so, nam, td)); 1433 } 1434 1435 int 1436 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1437 { 1438 int error; 1439 1440 CURVNET_SET(so->so_vnet); 1441 1442 /* 1443 * If protocol is connection-based, can only connect once. 1444 * Otherwise, if connected, try to disconnect first. This allows 1445 * user to disconnect by connecting to, e.g., a null address. 1446 * 1447 * Note, this check is racy and may need to be re-evaluated at the 1448 * protocol layer. 1449 */ 1450 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1451 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1452 (error = sodisconnect(so)))) { 1453 error = EISCONN; 1454 } else { 1455 /* 1456 * Prevent accumulated error from previous connection from 1457 * biting us. 1458 */ 1459 so->so_error = 0; 1460 if (fd == AT_FDCWD) { 1461 error = so->so_proto->pr_connect(so, nam, td); 1462 } else { 1463 error = so->so_proto->pr_connectat(fd, so, nam, td); 1464 } 1465 } 1466 CURVNET_RESTORE(); 1467 1468 return (error); 1469 } 1470 1471 int 1472 soconnect2(struct socket *so1, struct socket *so2) 1473 { 1474 int error; 1475 1476 CURVNET_SET(so1->so_vnet); 1477 error = so1->so_proto->pr_connect2(so1, so2); 1478 CURVNET_RESTORE(); 1479 return (error); 1480 } 1481 1482 int 1483 sodisconnect(struct socket *so) 1484 { 1485 int error; 1486 1487 if ((so->so_state & SS_ISCONNECTED) == 0) 1488 return (ENOTCONN); 1489 if (so->so_state & SS_ISDISCONNECTING) 1490 return (EALREADY); 1491 VNET_SO_ASSERT(so); 1492 error = so->so_proto->pr_disconnect(so); 1493 return (error); 1494 } 1495 1496 int 1497 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1498 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1499 { 1500 long space; 1501 ssize_t resid; 1502 int clen = 0, error, dontroute; 1503 1504 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1505 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1506 ("sosend_dgram: !PR_ATOMIC")); 1507 1508 if (uio != NULL) 1509 resid = uio->uio_resid; 1510 else 1511 resid = top->m_pkthdr.len; 1512 /* 1513 * In theory resid should be unsigned. However, space must be 1514 * signed, as it might be less than 0 if we over-committed, and we 1515 * must use a signed comparison of space and resid. On the other 1516 * hand, a negative resid causes us to loop sending 0-length 1517 * segments to the protocol. 1518 */ 1519 if (resid < 0) { 1520 error = EINVAL; 1521 goto out; 1522 } 1523 1524 dontroute = 1525 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1526 if (td != NULL) 1527 td->td_ru.ru_msgsnd++; 1528 if (control != NULL) 1529 clen = control->m_len; 1530 1531 SOCKBUF_LOCK(&so->so_snd); 1532 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1533 SOCKBUF_UNLOCK(&so->so_snd); 1534 error = EPIPE; 1535 goto out; 1536 } 1537 if (so->so_error) { 1538 error = so->so_error; 1539 so->so_error = 0; 1540 SOCKBUF_UNLOCK(&so->so_snd); 1541 goto out; 1542 } 1543 if ((so->so_state & SS_ISCONNECTED) == 0) { 1544 /* 1545 * `sendto' and `sendmsg' is allowed on a connection-based 1546 * socket if it supports implied connect. Return ENOTCONN if 1547 * not connected and no address is supplied. 1548 */ 1549 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1550 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1551 if (!(resid == 0 && clen != 0)) { 1552 SOCKBUF_UNLOCK(&so->so_snd); 1553 error = ENOTCONN; 1554 goto out; 1555 } 1556 } else if (addr == NULL) { 1557 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1558 error = ENOTCONN; 1559 else 1560 error = EDESTADDRREQ; 1561 SOCKBUF_UNLOCK(&so->so_snd); 1562 goto out; 1563 } 1564 } 1565 1566 /* 1567 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1568 * problem and need fixing. 1569 */ 1570 space = sbspace(&so->so_snd); 1571 if (flags & MSG_OOB) 1572 space += 1024; 1573 space -= clen; 1574 SOCKBUF_UNLOCK(&so->so_snd); 1575 if (resid > space) { 1576 error = EMSGSIZE; 1577 goto out; 1578 } 1579 if (uio == NULL) { 1580 resid = 0; 1581 if (flags & MSG_EOR) 1582 top->m_flags |= M_EOR; 1583 } else { 1584 /* 1585 * Copy the data from userland into a mbuf chain. 1586 * If no data is to be copied in, a single empty mbuf 1587 * is returned. 1588 */ 1589 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1590 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1591 if (top == NULL) { 1592 error = EFAULT; /* only possible error */ 1593 goto out; 1594 } 1595 space -= resid - uio->uio_resid; 1596 resid = uio->uio_resid; 1597 } 1598 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1599 /* 1600 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1601 * than with. 1602 */ 1603 if (dontroute) { 1604 SOCK_LOCK(so); 1605 so->so_options |= SO_DONTROUTE; 1606 SOCK_UNLOCK(so); 1607 } 1608 /* 1609 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1610 * of date. We could have received a reset packet in an interrupt or 1611 * maybe we slept while doing page faults in uiomove() etc. We could 1612 * probably recheck again inside the locking protection here, but 1613 * there are probably other places that this also happens. We must 1614 * rethink this. 1615 */ 1616 VNET_SO_ASSERT(so); 1617 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1618 /* 1619 * If the user set MSG_EOF, the protocol understands this flag and 1620 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1621 */ 1622 ((flags & MSG_EOF) && 1623 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1624 (resid <= 0)) ? 1625 PRUS_EOF : 1626 /* If there is more to send set PRUS_MORETOCOME */ 1627 (flags & MSG_MORETOCOME) || 1628 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1629 top, addr, control, td); 1630 if (dontroute) { 1631 SOCK_LOCK(so); 1632 so->so_options &= ~SO_DONTROUTE; 1633 SOCK_UNLOCK(so); 1634 } 1635 clen = 0; 1636 control = NULL; 1637 top = NULL; 1638 out: 1639 if (top != NULL) 1640 m_freem(top); 1641 if (control != NULL) 1642 m_freem(control); 1643 return (error); 1644 } 1645 1646 /* 1647 * Send on a socket. If send must go all at once and message is larger than 1648 * send buffering, then hard error. Lock against other senders. If must go 1649 * all at once and not enough room now, then inform user that this would 1650 * block and do nothing. Otherwise, if nonblocking, send as much as 1651 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1652 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1653 * in mbuf chain must be small enough to send all at once. 1654 * 1655 * Returns nonzero on error, timeout or signal; callers must check for short 1656 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1657 * on return. 1658 */ 1659 int 1660 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1661 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1662 { 1663 long space; 1664 ssize_t resid; 1665 int clen = 0, error, dontroute; 1666 int atomic = sosendallatonce(so) || top; 1667 int pr_send_flag; 1668 #ifdef KERN_TLS 1669 struct ktls_session *tls; 1670 int tls_enq_cnt, tls_send_flag; 1671 uint8_t tls_rtype; 1672 1673 tls = NULL; 1674 tls_rtype = TLS_RLTYPE_APP; 1675 #endif 1676 if (uio != NULL) 1677 resid = uio->uio_resid; 1678 else if ((top->m_flags & M_PKTHDR) != 0) 1679 resid = top->m_pkthdr.len; 1680 else 1681 resid = m_length(top, NULL); 1682 /* 1683 * In theory resid should be unsigned. However, space must be 1684 * signed, as it might be less than 0 if we over-committed, and we 1685 * must use a signed comparison of space and resid. On the other 1686 * hand, a negative resid causes us to loop sending 0-length 1687 * segments to the protocol. 1688 * 1689 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1690 * type sockets since that's an error. 1691 */ 1692 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1693 error = EINVAL; 1694 goto out; 1695 } 1696 1697 dontroute = 1698 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1699 (so->so_proto->pr_flags & PR_ATOMIC); 1700 if (td != NULL) 1701 td->td_ru.ru_msgsnd++; 1702 if (control != NULL) 1703 clen = control->m_len; 1704 1705 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1706 if (error) 1707 goto out; 1708 1709 #ifdef KERN_TLS 1710 tls_send_flag = 0; 1711 tls = ktls_hold(so->so_snd.sb_tls_info); 1712 if (tls != NULL) { 1713 if (tls->mode == TCP_TLS_MODE_SW) 1714 tls_send_flag = PRUS_NOTREADY; 1715 1716 if (control != NULL) { 1717 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1718 1719 if (clen >= sizeof(*cm) && 1720 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1721 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1722 clen = 0; 1723 m_freem(control); 1724 control = NULL; 1725 atomic = 1; 1726 } 1727 } 1728 1729 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1730 error = EINVAL; 1731 goto release; 1732 } 1733 } 1734 #endif 1735 1736 restart: 1737 do { 1738 SOCKBUF_LOCK(&so->so_snd); 1739 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1740 SOCKBUF_UNLOCK(&so->so_snd); 1741 error = EPIPE; 1742 goto release; 1743 } 1744 if (so->so_error) { 1745 error = so->so_error; 1746 so->so_error = 0; 1747 SOCKBUF_UNLOCK(&so->so_snd); 1748 goto release; 1749 } 1750 if ((so->so_state & SS_ISCONNECTED) == 0) { 1751 /* 1752 * `sendto' and `sendmsg' is allowed on a connection- 1753 * based socket if it supports implied connect. 1754 * Return ENOTCONN if not connected and no address is 1755 * supplied. 1756 */ 1757 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1758 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1759 if (!(resid == 0 && clen != 0)) { 1760 SOCKBUF_UNLOCK(&so->so_snd); 1761 error = ENOTCONN; 1762 goto release; 1763 } 1764 } else if (addr == NULL) { 1765 SOCKBUF_UNLOCK(&so->so_snd); 1766 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1767 error = ENOTCONN; 1768 else 1769 error = EDESTADDRREQ; 1770 goto release; 1771 } 1772 } 1773 space = sbspace(&so->so_snd); 1774 if (flags & MSG_OOB) 1775 space += 1024; 1776 if ((atomic && resid > so->so_snd.sb_hiwat) || 1777 clen > so->so_snd.sb_hiwat) { 1778 SOCKBUF_UNLOCK(&so->so_snd); 1779 error = EMSGSIZE; 1780 goto release; 1781 } 1782 if (space < resid + clen && 1783 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1784 if ((so->so_state & SS_NBIO) || 1785 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1786 SOCKBUF_UNLOCK(&so->so_snd); 1787 error = EWOULDBLOCK; 1788 goto release; 1789 } 1790 error = sbwait(so, SO_SND); 1791 SOCKBUF_UNLOCK(&so->so_snd); 1792 if (error) 1793 goto release; 1794 goto restart; 1795 } 1796 SOCKBUF_UNLOCK(&so->so_snd); 1797 space -= clen; 1798 do { 1799 if (uio == NULL) { 1800 resid = 0; 1801 if (flags & MSG_EOR) 1802 top->m_flags |= M_EOR; 1803 #ifdef KERN_TLS 1804 if (tls != NULL) { 1805 ktls_frame(top, tls, &tls_enq_cnt, 1806 tls_rtype); 1807 tls_rtype = TLS_RLTYPE_APP; 1808 } 1809 #endif 1810 } else { 1811 /* 1812 * Copy the data from userland into a mbuf 1813 * chain. If resid is 0, which can happen 1814 * only if we have control to send, then 1815 * a single empty mbuf is returned. This 1816 * is a workaround to prevent protocol send 1817 * methods to panic. 1818 */ 1819 #ifdef KERN_TLS 1820 if (tls != NULL) { 1821 top = m_uiotombuf(uio, M_WAITOK, space, 1822 tls->params.max_frame_len, 1823 M_EXTPG | 1824 ((flags & MSG_EOR) ? M_EOR : 0)); 1825 if (top != NULL) { 1826 ktls_frame(top, tls, 1827 &tls_enq_cnt, tls_rtype); 1828 } 1829 tls_rtype = TLS_RLTYPE_APP; 1830 } else 1831 #endif 1832 top = m_uiotombuf(uio, M_WAITOK, space, 1833 (atomic ? max_hdr : 0), 1834 (atomic ? M_PKTHDR : 0) | 1835 ((flags & MSG_EOR) ? M_EOR : 0)); 1836 if (top == NULL) { 1837 error = EFAULT; /* only possible error */ 1838 goto release; 1839 } 1840 space -= resid - uio->uio_resid; 1841 resid = uio->uio_resid; 1842 } 1843 if (dontroute) { 1844 SOCK_LOCK(so); 1845 so->so_options |= SO_DONTROUTE; 1846 SOCK_UNLOCK(so); 1847 } 1848 /* 1849 * XXX all the SBS_CANTSENDMORE checks previously 1850 * done could be out of date. We could have received 1851 * a reset packet in an interrupt or maybe we slept 1852 * while doing page faults in uiomove() etc. We 1853 * could probably recheck again inside the locking 1854 * protection here, but there are probably other 1855 * places that this also happens. We must rethink 1856 * this. 1857 */ 1858 VNET_SO_ASSERT(so); 1859 1860 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1861 /* 1862 * If the user set MSG_EOF, the protocol understands 1863 * this flag and nothing left to send then use 1864 * PRU_SEND_EOF instead of PRU_SEND. 1865 */ 1866 ((flags & MSG_EOF) && 1867 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1868 (resid <= 0)) ? 1869 PRUS_EOF : 1870 /* If there is more to send set PRUS_MORETOCOME. */ 1871 (flags & MSG_MORETOCOME) || 1872 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1873 1874 #ifdef KERN_TLS 1875 pr_send_flag |= tls_send_flag; 1876 #endif 1877 1878 error = so->so_proto->pr_send(so, pr_send_flag, top, 1879 addr, control, td); 1880 1881 if (dontroute) { 1882 SOCK_LOCK(so); 1883 so->so_options &= ~SO_DONTROUTE; 1884 SOCK_UNLOCK(so); 1885 } 1886 1887 #ifdef KERN_TLS 1888 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1889 if (error != 0) { 1890 m_freem(top); 1891 top = NULL; 1892 } else { 1893 soref(so); 1894 ktls_enqueue(top, so, tls_enq_cnt); 1895 } 1896 } 1897 #endif 1898 clen = 0; 1899 control = NULL; 1900 top = NULL; 1901 if (error) 1902 goto release; 1903 } while (resid && space > 0); 1904 } while (resid); 1905 1906 release: 1907 SOCK_IO_SEND_UNLOCK(so); 1908 out: 1909 #ifdef KERN_TLS 1910 if (tls != NULL) 1911 ktls_free(tls); 1912 #endif 1913 if (top != NULL) 1914 m_freem(top); 1915 if (control != NULL) 1916 m_freem(control); 1917 return (error); 1918 } 1919 1920 /* 1921 * Send to a socket from a kernel thread. 1922 * 1923 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 1924 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 1925 * to be set at all. This function should just boil down to a static inline 1926 * calling the protocol method. 1927 */ 1928 int 1929 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1930 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1931 { 1932 int error; 1933 1934 CURVNET_SET(so->so_vnet); 1935 error = so->so_proto->pr_sosend(so, addr, uio, 1936 top, control, flags, td); 1937 CURVNET_RESTORE(); 1938 return (error); 1939 } 1940 1941 /* 1942 * send(2), write(2) or aio_write(2) on a socket. 1943 */ 1944 int 1945 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1946 struct mbuf *control, int flags, struct proc *userproc) 1947 { 1948 struct thread *td; 1949 ssize_t len; 1950 int error; 1951 1952 td = uio->uio_td; 1953 len = uio->uio_resid; 1954 CURVNET_SET(so->so_vnet); 1955 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 1956 td); 1957 CURVNET_RESTORE(); 1958 if (error != 0) { 1959 /* 1960 * Clear transient errors for stream protocols if they made 1961 * some progress. Make exclusion for aio(4) that would 1962 * schedule a new write in case of EWOULDBLOCK and clear 1963 * error itself. See soaio_process_job(). 1964 */ 1965 if (uio->uio_resid != len && 1966 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 1967 userproc == NULL && 1968 (error == ERESTART || error == EINTR || 1969 error == EWOULDBLOCK)) 1970 error = 0; 1971 /* Generation of SIGPIPE can be controlled per socket. */ 1972 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 1973 (flags & MSG_NOSIGNAL) == 0) { 1974 if (userproc != NULL) { 1975 /* aio(4) job */ 1976 PROC_LOCK(userproc); 1977 kern_psignal(userproc, SIGPIPE); 1978 PROC_UNLOCK(userproc); 1979 } else { 1980 PROC_LOCK(td->td_proc); 1981 tdsignal(td, SIGPIPE); 1982 PROC_UNLOCK(td->td_proc); 1983 } 1984 } 1985 } 1986 return (error); 1987 } 1988 1989 /* 1990 * The part of soreceive() that implements reading non-inline out-of-band 1991 * data from a socket. For more complete comments, see soreceive(), from 1992 * which this code originated. 1993 * 1994 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1995 * unable to return an mbuf chain to the caller. 1996 */ 1997 static int 1998 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1999 { 2000 struct protosw *pr = so->so_proto; 2001 struct mbuf *m; 2002 int error; 2003 2004 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 2005 VNET_SO_ASSERT(so); 2006 2007 m = m_get(M_WAITOK, MT_DATA); 2008 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 2009 if (error) 2010 goto bad; 2011 do { 2012 error = uiomove(mtod(m, void *), 2013 (int) min(uio->uio_resid, m->m_len), uio); 2014 m = m_free(m); 2015 } while (uio->uio_resid && error == 0 && m); 2016 bad: 2017 if (m != NULL) 2018 m_freem(m); 2019 return (error); 2020 } 2021 2022 /* 2023 * Following replacement or removal of the first mbuf on the first mbuf chain 2024 * of a socket buffer, push necessary state changes back into the socket 2025 * buffer so that other consumers see the values consistently. 'nextrecord' 2026 * is the callers locally stored value of the original value of 2027 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 2028 * NOTE: 'nextrecord' may be NULL. 2029 */ 2030 static __inline void 2031 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 2032 { 2033 2034 SOCKBUF_LOCK_ASSERT(sb); 2035 /* 2036 * First, update for the new value of nextrecord. If necessary, make 2037 * it the first record. 2038 */ 2039 if (sb->sb_mb != NULL) 2040 sb->sb_mb->m_nextpkt = nextrecord; 2041 else 2042 sb->sb_mb = nextrecord; 2043 2044 /* 2045 * Now update any dependent socket buffer fields to reflect the new 2046 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 2047 * addition of a second clause that takes care of the case where 2048 * sb_mb has been updated, but remains the last record. 2049 */ 2050 if (sb->sb_mb == NULL) { 2051 sb->sb_mbtail = NULL; 2052 sb->sb_lastrecord = NULL; 2053 } else if (sb->sb_mb->m_nextpkt == NULL) 2054 sb->sb_lastrecord = sb->sb_mb; 2055 } 2056 2057 /* 2058 * Implement receive operations on a socket. We depend on the way that 2059 * records are added to the sockbuf by sbappend. In particular, each record 2060 * (mbufs linked through m_next) must begin with an address if the protocol 2061 * so specifies, followed by an optional mbuf or mbufs containing ancillary 2062 * data, and then zero or more mbufs of data. In order to allow parallelism 2063 * between network receive and copying to user space, as well as avoid 2064 * sleeping with a mutex held, we release the socket buffer mutex during the 2065 * user space copy. Although the sockbuf is locked, new data may still be 2066 * appended, and thus we must maintain consistency of the sockbuf during that 2067 * time. 2068 * 2069 * The caller may receive the data as a single mbuf chain by supplying an 2070 * mbuf **mp0 for use in returning the chain. The uio is then used only for 2071 * the count in uio_resid. 2072 */ 2073 int 2074 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 2075 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2076 { 2077 struct mbuf *m, **mp; 2078 int flags, error, offset; 2079 ssize_t len; 2080 struct protosw *pr = so->so_proto; 2081 struct mbuf *nextrecord; 2082 int moff, type = 0; 2083 ssize_t orig_resid = uio->uio_resid; 2084 bool report_real_len = false; 2085 2086 mp = mp0; 2087 if (psa != NULL) 2088 *psa = NULL; 2089 if (controlp != NULL) 2090 *controlp = NULL; 2091 if (flagsp != NULL) { 2092 report_real_len = *flagsp & MSG_TRUNC; 2093 *flagsp &= ~MSG_TRUNC; 2094 flags = *flagsp &~ MSG_EOR; 2095 } else 2096 flags = 0; 2097 if (flags & MSG_OOB) 2098 return (soreceive_rcvoob(so, uio, flags)); 2099 if (mp != NULL) 2100 *mp = NULL; 2101 2102 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2103 if (error) 2104 return (error); 2105 2106 restart: 2107 SOCKBUF_LOCK(&so->so_rcv); 2108 m = so->so_rcv.sb_mb; 2109 /* 2110 * If we have less data than requested, block awaiting more (subject 2111 * to any timeout) if: 2112 * 1. the current count is less than the low water mark, or 2113 * 2. MSG_DONTWAIT is not set 2114 */ 2115 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2116 sbavail(&so->so_rcv) < uio->uio_resid) && 2117 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2118 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2119 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2120 ("receive: m == %p sbavail == %u", 2121 m, sbavail(&so->so_rcv))); 2122 if (so->so_error || so->so_rerror) { 2123 if (m != NULL) 2124 goto dontblock; 2125 if (so->so_error) 2126 error = so->so_error; 2127 else 2128 error = so->so_rerror; 2129 if ((flags & MSG_PEEK) == 0) { 2130 if (so->so_error) 2131 so->so_error = 0; 2132 else 2133 so->so_rerror = 0; 2134 } 2135 SOCKBUF_UNLOCK(&so->so_rcv); 2136 goto release; 2137 } 2138 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2139 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2140 if (m != NULL) 2141 goto dontblock; 2142 #ifdef KERN_TLS 2143 else if (so->so_rcv.sb_tlsdcc == 0 && 2144 so->so_rcv.sb_tlscc == 0) { 2145 #else 2146 else { 2147 #endif 2148 SOCKBUF_UNLOCK(&so->so_rcv); 2149 goto release; 2150 } 2151 } 2152 for (; m != NULL; m = m->m_next) 2153 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2154 m = so->so_rcv.sb_mb; 2155 goto dontblock; 2156 } 2157 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2158 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2159 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2160 SOCKBUF_UNLOCK(&so->so_rcv); 2161 error = ENOTCONN; 2162 goto release; 2163 } 2164 if (uio->uio_resid == 0 && !report_real_len) { 2165 SOCKBUF_UNLOCK(&so->so_rcv); 2166 goto release; 2167 } 2168 if ((so->so_state & SS_NBIO) || 2169 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2170 SOCKBUF_UNLOCK(&so->so_rcv); 2171 error = EWOULDBLOCK; 2172 goto release; 2173 } 2174 SBLASTRECORDCHK(&so->so_rcv); 2175 SBLASTMBUFCHK(&so->so_rcv); 2176 error = sbwait(so, SO_RCV); 2177 SOCKBUF_UNLOCK(&so->so_rcv); 2178 if (error) 2179 goto release; 2180 goto restart; 2181 } 2182 dontblock: 2183 /* 2184 * From this point onward, we maintain 'nextrecord' as a cache of the 2185 * pointer to the next record in the socket buffer. We must keep the 2186 * various socket buffer pointers and local stack versions of the 2187 * pointers in sync, pushing out modifications before dropping the 2188 * socket buffer mutex, and re-reading them when picking it up. 2189 * 2190 * Otherwise, we will race with the network stack appending new data 2191 * or records onto the socket buffer by using inconsistent/stale 2192 * versions of the field, possibly resulting in socket buffer 2193 * corruption. 2194 * 2195 * By holding the high-level sblock(), we prevent simultaneous 2196 * readers from pulling off the front of the socket buffer. 2197 */ 2198 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2199 if (uio->uio_td) 2200 uio->uio_td->td_ru.ru_msgrcv++; 2201 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2202 SBLASTRECORDCHK(&so->so_rcv); 2203 SBLASTMBUFCHK(&so->so_rcv); 2204 nextrecord = m->m_nextpkt; 2205 if (pr->pr_flags & PR_ADDR) { 2206 KASSERT(m->m_type == MT_SONAME, 2207 ("m->m_type == %d", m->m_type)); 2208 orig_resid = 0; 2209 if (psa != NULL) 2210 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2211 M_NOWAIT); 2212 if (flags & MSG_PEEK) { 2213 m = m->m_next; 2214 } else { 2215 sbfree(&so->so_rcv, m); 2216 so->so_rcv.sb_mb = m_free(m); 2217 m = so->so_rcv.sb_mb; 2218 sockbuf_pushsync(&so->so_rcv, nextrecord); 2219 } 2220 } 2221 2222 /* 2223 * Process one or more MT_CONTROL mbufs present before any data mbufs 2224 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2225 * just copy the data; if !MSG_PEEK, we call into the protocol to 2226 * perform externalization (or freeing if controlp == NULL). 2227 */ 2228 if (m != NULL && m->m_type == MT_CONTROL) { 2229 struct mbuf *cm = NULL, *cmn; 2230 struct mbuf **cme = &cm; 2231 #ifdef KERN_TLS 2232 struct cmsghdr *cmsg; 2233 struct tls_get_record tgr; 2234 2235 /* 2236 * For MSG_TLSAPPDATA, check for an alert record. 2237 * If found, return ENXIO without removing 2238 * it from the receive queue. This allows a subsequent 2239 * call without MSG_TLSAPPDATA to receive it. 2240 * Note that, for TLS, there should only be a single 2241 * control mbuf with the TLS_GET_RECORD message in it. 2242 */ 2243 if (flags & MSG_TLSAPPDATA) { 2244 cmsg = mtod(m, struct cmsghdr *); 2245 if (cmsg->cmsg_type == TLS_GET_RECORD && 2246 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2247 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2248 if (__predict_false(tgr.tls_type == 2249 TLS_RLTYPE_ALERT)) { 2250 SOCKBUF_UNLOCK(&so->so_rcv); 2251 error = ENXIO; 2252 goto release; 2253 } 2254 } 2255 } 2256 #endif 2257 2258 do { 2259 if (flags & MSG_PEEK) { 2260 if (controlp != NULL) { 2261 *controlp = m_copym(m, 0, m->m_len, 2262 M_NOWAIT); 2263 controlp = &(*controlp)->m_next; 2264 } 2265 m = m->m_next; 2266 } else { 2267 sbfree(&so->so_rcv, m); 2268 so->so_rcv.sb_mb = m->m_next; 2269 m->m_next = NULL; 2270 *cme = m; 2271 cme = &(*cme)->m_next; 2272 m = so->so_rcv.sb_mb; 2273 } 2274 } while (m != NULL && m->m_type == MT_CONTROL); 2275 if ((flags & MSG_PEEK) == 0) 2276 sockbuf_pushsync(&so->so_rcv, nextrecord); 2277 while (cm != NULL) { 2278 cmn = cm->m_next; 2279 cm->m_next = NULL; 2280 if (pr->pr_domain->dom_externalize != NULL) { 2281 SOCKBUF_UNLOCK(&so->so_rcv); 2282 VNET_SO_ASSERT(so); 2283 error = (*pr->pr_domain->dom_externalize) 2284 (cm, controlp, flags); 2285 SOCKBUF_LOCK(&so->so_rcv); 2286 } else if (controlp != NULL) 2287 *controlp = cm; 2288 else 2289 m_freem(cm); 2290 if (controlp != NULL) { 2291 while (*controlp != NULL) 2292 controlp = &(*controlp)->m_next; 2293 } 2294 cm = cmn; 2295 } 2296 if (m != NULL) 2297 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2298 else 2299 nextrecord = so->so_rcv.sb_mb; 2300 orig_resid = 0; 2301 } 2302 if (m != NULL) { 2303 if ((flags & MSG_PEEK) == 0) { 2304 KASSERT(m->m_nextpkt == nextrecord, 2305 ("soreceive: post-control, nextrecord !sync")); 2306 if (nextrecord == NULL) { 2307 KASSERT(so->so_rcv.sb_mb == m, 2308 ("soreceive: post-control, sb_mb!=m")); 2309 KASSERT(so->so_rcv.sb_lastrecord == m, 2310 ("soreceive: post-control, lastrecord!=m")); 2311 } 2312 } 2313 type = m->m_type; 2314 if (type == MT_OOBDATA) 2315 flags |= MSG_OOB; 2316 } else { 2317 if ((flags & MSG_PEEK) == 0) { 2318 KASSERT(so->so_rcv.sb_mb == nextrecord, 2319 ("soreceive: sb_mb != nextrecord")); 2320 if (so->so_rcv.sb_mb == NULL) { 2321 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2322 ("soreceive: sb_lastercord != NULL")); 2323 } 2324 } 2325 } 2326 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2327 SBLASTRECORDCHK(&so->so_rcv); 2328 SBLASTMBUFCHK(&so->so_rcv); 2329 2330 /* 2331 * Now continue to read any data mbufs off of the head of the socket 2332 * buffer until the read request is satisfied. Note that 'type' is 2333 * used to store the type of any mbuf reads that have happened so far 2334 * such that soreceive() can stop reading if the type changes, which 2335 * causes soreceive() to return only one of regular data and inline 2336 * out-of-band data in a single socket receive operation. 2337 */ 2338 moff = 0; 2339 offset = 0; 2340 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2341 && error == 0) { 2342 /* 2343 * If the type of mbuf has changed since the last mbuf 2344 * examined ('type'), end the receive operation. 2345 */ 2346 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2347 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2348 if (type != m->m_type) 2349 break; 2350 } else if (type == MT_OOBDATA) 2351 break; 2352 else 2353 KASSERT(m->m_type == MT_DATA, 2354 ("m->m_type == %d", m->m_type)); 2355 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2356 len = uio->uio_resid; 2357 if (so->so_oobmark && len > so->so_oobmark - offset) 2358 len = so->so_oobmark - offset; 2359 if (len > m->m_len - moff) 2360 len = m->m_len - moff; 2361 /* 2362 * If mp is set, just pass back the mbufs. Otherwise copy 2363 * them out via the uio, then free. Sockbuf must be 2364 * consistent here (points to current mbuf, it points to next 2365 * record) when we drop priority; we must note any additions 2366 * to the sockbuf when we block interrupts again. 2367 */ 2368 if (mp == NULL) { 2369 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2370 SBLASTRECORDCHK(&so->so_rcv); 2371 SBLASTMBUFCHK(&so->so_rcv); 2372 SOCKBUF_UNLOCK(&so->so_rcv); 2373 if ((m->m_flags & M_EXTPG) != 0) 2374 error = m_unmapped_uiomove(m, moff, uio, 2375 (int)len); 2376 else 2377 error = uiomove(mtod(m, char *) + moff, 2378 (int)len, uio); 2379 SOCKBUF_LOCK(&so->so_rcv); 2380 if (error) { 2381 /* 2382 * The MT_SONAME mbuf has already been removed 2383 * from the record, so it is necessary to 2384 * remove the data mbufs, if any, to preserve 2385 * the invariant in the case of PR_ADDR that 2386 * requires MT_SONAME mbufs at the head of 2387 * each record. 2388 */ 2389 if (pr->pr_flags & PR_ATOMIC && 2390 ((flags & MSG_PEEK) == 0)) 2391 (void)sbdroprecord_locked(&so->so_rcv); 2392 SOCKBUF_UNLOCK(&so->so_rcv); 2393 goto release; 2394 } 2395 } else 2396 uio->uio_resid -= len; 2397 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2398 if (len == m->m_len - moff) { 2399 if (m->m_flags & M_EOR) 2400 flags |= MSG_EOR; 2401 if (flags & MSG_PEEK) { 2402 m = m->m_next; 2403 moff = 0; 2404 } else { 2405 nextrecord = m->m_nextpkt; 2406 sbfree(&so->so_rcv, m); 2407 if (mp != NULL) { 2408 m->m_nextpkt = NULL; 2409 *mp = m; 2410 mp = &m->m_next; 2411 so->so_rcv.sb_mb = m = m->m_next; 2412 *mp = NULL; 2413 } else { 2414 so->so_rcv.sb_mb = m_free(m); 2415 m = so->so_rcv.sb_mb; 2416 } 2417 sockbuf_pushsync(&so->so_rcv, nextrecord); 2418 SBLASTRECORDCHK(&so->so_rcv); 2419 SBLASTMBUFCHK(&so->so_rcv); 2420 } 2421 } else { 2422 if (flags & MSG_PEEK) 2423 moff += len; 2424 else { 2425 if (mp != NULL) { 2426 if (flags & MSG_DONTWAIT) { 2427 *mp = m_copym(m, 0, len, 2428 M_NOWAIT); 2429 if (*mp == NULL) { 2430 /* 2431 * m_copym() couldn't 2432 * allocate an mbuf. 2433 * Adjust uio_resid back 2434 * (it was adjusted 2435 * down by len bytes, 2436 * which we didn't end 2437 * up "copying" over). 2438 */ 2439 uio->uio_resid += len; 2440 break; 2441 } 2442 } else { 2443 SOCKBUF_UNLOCK(&so->so_rcv); 2444 *mp = m_copym(m, 0, len, 2445 M_WAITOK); 2446 SOCKBUF_LOCK(&so->so_rcv); 2447 } 2448 } 2449 sbcut_locked(&so->so_rcv, len); 2450 } 2451 } 2452 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2453 if (so->so_oobmark) { 2454 if ((flags & MSG_PEEK) == 0) { 2455 so->so_oobmark -= len; 2456 if (so->so_oobmark == 0) { 2457 so->so_rcv.sb_state |= SBS_RCVATMARK; 2458 break; 2459 } 2460 } else { 2461 offset += len; 2462 if (offset == so->so_oobmark) 2463 break; 2464 } 2465 } 2466 if (flags & MSG_EOR) 2467 break; 2468 /* 2469 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2470 * must not quit until "uio->uio_resid == 0" or an error 2471 * termination. If a signal/timeout occurs, return with a 2472 * short count but without error. Keep sockbuf locked 2473 * against other readers. 2474 */ 2475 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2476 !sosendallatonce(so) && nextrecord == NULL) { 2477 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2478 if (so->so_error || so->so_rerror || 2479 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2480 break; 2481 /* 2482 * Notify the protocol that some data has been 2483 * drained before blocking. 2484 */ 2485 if (pr->pr_flags & PR_WANTRCVD) { 2486 SOCKBUF_UNLOCK(&so->so_rcv); 2487 VNET_SO_ASSERT(so); 2488 pr->pr_rcvd(so, flags); 2489 SOCKBUF_LOCK(&so->so_rcv); 2490 if (__predict_false(so->so_rcv.sb_mb == NULL && 2491 (so->so_error || so->so_rerror || 2492 so->so_rcv.sb_state & SBS_CANTRCVMORE))) 2493 break; 2494 } 2495 SBLASTRECORDCHK(&so->so_rcv); 2496 SBLASTMBUFCHK(&so->so_rcv); 2497 /* 2498 * We could receive some data while was notifying 2499 * the protocol. Skip blocking in this case. 2500 */ 2501 if (so->so_rcv.sb_mb == NULL) { 2502 error = sbwait(so, SO_RCV); 2503 if (error) { 2504 SOCKBUF_UNLOCK(&so->so_rcv); 2505 goto release; 2506 } 2507 } 2508 m = so->so_rcv.sb_mb; 2509 if (m != NULL) 2510 nextrecord = m->m_nextpkt; 2511 } 2512 } 2513 2514 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2515 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2516 if (report_real_len) 2517 uio->uio_resid -= m_length(m, NULL) - moff; 2518 flags |= MSG_TRUNC; 2519 if ((flags & MSG_PEEK) == 0) 2520 (void) sbdroprecord_locked(&so->so_rcv); 2521 } 2522 if ((flags & MSG_PEEK) == 0) { 2523 if (m == NULL) { 2524 /* 2525 * First part is an inline SB_EMPTY_FIXUP(). Second 2526 * part makes sure sb_lastrecord is up-to-date if 2527 * there is still data in the socket buffer. 2528 */ 2529 so->so_rcv.sb_mb = nextrecord; 2530 if (so->so_rcv.sb_mb == NULL) { 2531 so->so_rcv.sb_mbtail = NULL; 2532 so->so_rcv.sb_lastrecord = NULL; 2533 } else if (nextrecord->m_nextpkt == NULL) 2534 so->so_rcv.sb_lastrecord = nextrecord; 2535 } 2536 SBLASTRECORDCHK(&so->so_rcv); 2537 SBLASTMBUFCHK(&so->so_rcv); 2538 /* 2539 * If soreceive() is being done from the socket callback, 2540 * then don't need to generate ACK to peer to update window, 2541 * since ACK will be generated on return to TCP. 2542 */ 2543 if (!(flags & MSG_SOCALLBCK) && 2544 (pr->pr_flags & PR_WANTRCVD)) { 2545 SOCKBUF_UNLOCK(&so->so_rcv); 2546 VNET_SO_ASSERT(so); 2547 pr->pr_rcvd(so, flags); 2548 SOCKBUF_LOCK(&so->so_rcv); 2549 } 2550 } 2551 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2552 if (orig_resid == uio->uio_resid && orig_resid && 2553 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2554 SOCKBUF_UNLOCK(&so->so_rcv); 2555 goto restart; 2556 } 2557 SOCKBUF_UNLOCK(&so->so_rcv); 2558 2559 if (flagsp != NULL) 2560 *flagsp |= flags; 2561 release: 2562 SOCK_IO_RECV_UNLOCK(so); 2563 return (error); 2564 } 2565 2566 /* 2567 * Optimized version of soreceive() for stream (TCP) sockets. 2568 */ 2569 int 2570 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2571 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2572 { 2573 int len = 0, error = 0, flags, oresid; 2574 struct sockbuf *sb; 2575 struct mbuf *m, *n = NULL; 2576 2577 /* We only do stream sockets. */ 2578 if (so->so_type != SOCK_STREAM) 2579 return (EINVAL); 2580 if (psa != NULL) 2581 *psa = NULL; 2582 if (flagsp != NULL) 2583 flags = *flagsp &~ MSG_EOR; 2584 else 2585 flags = 0; 2586 if (controlp != NULL) 2587 *controlp = NULL; 2588 if (flags & MSG_OOB) 2589 return (soreceive_rcvoob(so, uio, flags)); 2590 if (mp0 != NULL) 2591 *mp0 = NULL; 2592 2593 sb = &so->so_rcv; 2594 2595 #ifdef KERN_TLS 2596 /* 2597 * KTLS store TLS records as records with a control message to 2598 * describe the framing. 2599 * 2600 * We check once here before acquiring locks to optimize the 2601 * common case. 2602 */ 2603 if (sb->sb_tls_info != NULL) 2604 return (soreceive_generic(so, psa, uio, mp0, controlp, 2605 flagsp)); 2606 #endif 2607 2608 /* Prevent other readers from entering the socket. */ 2609 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2610 if (error) 2611 return (error); 2612 SOCKBUF_LOCK(sb); 2613 2614 #ifdef KERN_TLS 2615 if (sb->sb_tls_info != NULL) { 2616 SOCKBUF_UNLOCK(sb); 2617 SOCK_IO_RECV_UNLOCK(so); 2618 return (soreceive_generic(so, psa, uio, mp0, controlp, 2619 flagsp)); 2620 } 2621 #endif 2622 2623 /* Easy one, no space to copyout anything. */ 2624 if (uio->uio_resid == 0) { 2625 error = EINVAL; 2626 goto out; 2627 } 2628 oresid = uio->uio_resid; 2629 2630 /* We will never ever get anything unless we are or were connected. */ 2631 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2632 error = ENOTCONN; 2633 goto out; 2634 } 2635 2636 restart: 2637 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2638 2639 /* Abort if socket has reported problems. */ 2640 if (so->so_error) { 2641 if (sbavail(sb) > 0) 2642 goto deliver; 2643 if (oresid > uio->uio_resid) 2644 goto out; 2645 error = so->so_error; 2646 if (!(flags & MSG_PEEK)) 2647 so->so_error = 0; 2648 goto out; 2649 } 2650 2651 /* Door is closed. Deliver what is left, if any. */ 2652 if (sb->sb_state & SBS_CANTRCVMORE) { 2653 if (sbavail(sb) > 0) 2654 goto deliver; 2655 else 2656 goto out; 2657 } 2658 2659 /* Socket buffer is empty and we shall not block. */ 2660 if (sbavail(sb) == 0 && 2661 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2662 error = EAGAIN; 2663 goto out; 2664 } 2665 2666 /* Socket buffer got some data that we shall deliver now. */ 2667 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2668 ((so->so_state & SS_NBIO) || 2669 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2670 sbavail(sb) >= sb->sb_lowat || 2671 sbavail(sb) >= uio->uio_resid || 2672 sbavail(sb) >= sb->sb_hiwat) ) { 2673 goto deliver; 2674 } 2675 2676 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2677 if ((flags & MSG_WAITALL) && 2678 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2679 goto deliver; 2680 2681 /* 2682 * Wait and block until (more) data comes in. 2683 * NB: Drops the sockbuf lock during wait. 2684 */ 2685 error = sbwait(so, SO_RCV); 2686 if (error) 2687 goto out; 2688 goto restart; 2689 2690 deliver: 2691 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2692 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2693 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2694 2695 /* Statistics. */ 2696 if (uio->uio_td) 2697 uio->uio_td->td_ru.ru_msgrcv++; 2698 2699 /* Fill uio until full or current end of socket buffer is reached. */ 2700 len = min(uio->uio_resid, sbavail(sb)); 2701 if (mp0 != NULL) { 2702 /* Dequeue as many mbufs as possible. */ 2703 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2704 if (*mp0 == NULL) 2705 *mp0 = sb->sb_mb; 2706 else 2707 m_cat(*mp0, sb->sb_mb); 2708 for (m = sb->sb_mb; 2709 m != NULL && m->m_len <= len; 2710 m = m->m_next) { 2711 KASSERT(!(m->m_flags & M_NOTAVAIL), 2712 ("%s: m %p not available", __func__, m)); 2713 len -= m->m_len; 2714 uio->uio_resid -= m->m_len; 2715 sbfree(sb, m); 2716 n = m; 2717 } 2718 n->m_next = NULL; 2719 sb->sb_mb = m; 2720 sb->sb_lastrecord = sb->sb_mb; 2721 if (sb->sb_mb == NULL) 2722 SB_EMPTY_FIXUP(sb); 2723 } 2724 /* Copy the remainder. */ 2725 if (len > 0) { 2726 KASSERT(sb->sb_mb != NULL, 2727 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2728 2729 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2730 if (m == NULL) 2731 len = 0; /* Don't flush data from sockbuf. */ 2732 else 2733 uio->uio_resid -= len; 2734 if (*mp0 != NULL) 2735 m_cat(*mp0, m); 2736 else 2737 *mp0 = m; 2738 if (*mp0 == NULL) { 2739 error = ENOBUFS; 2740 goto out; 2741 } 2742 } 2743 } else { 2744 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2745 SOCKBUF_UNLOCK(sb); 2746 error = m_mbuftouio(uio, sb->sb_mb, len); 2747 SOCKBUF_LOCK(sb); 2748 if (error) 2749 goto out; 2750 } 2751 SBLASTRECORDCHK(sb); 2752 SBLASTMBUFCHK(sb); 2753 2754 /* 2755 * Remove the delivered data from the socket buffer unless we 2756 * were only peeking. 2757 */ 2758 if (!(flags & MSG_PEEK)) { 2759 if (len > 0) 2760 sbdrop_locked(sb, len); 2761 2762 /* Notify protocol that we drained some data. */ 2763 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2764 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2765 !(flags & MSG_SOCALLBCK))) { 2766 SOCKBUF_UNLOCK(sb); 2767 VNET_SO_ASSERT(so); 2768 so->so_proto->pr_rcvd(so, flags); 2769 SOCKBUF_LOCK(sb); 2770 } 2771 } 2772 2773 /* 2774 * For MSG_WAITALL we may have to loop again and wait for 2775 * more data to come in. 2776 */ 2777 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2778 goto restart; 2779 out: 2780 SBLASTRECORDCHK(sb); 2781 SBLASTMBUFCHK(sb); 2782 SOCKBUF_UNLOCK(sb); 2783 SOCK_IO_RECV_UNLOCK(so); 2784 return (error); 2785 } 2786 2787 /* 2788 * Optimized version of soreceive() for simple datagram cases from userspace. 2789 * Unlike in the stream case, we're able to drop a datagram if copyout() 2790 * fails, and because we handle datagrams atomically, we don't need to use a 2791 * sleep lock to prevent I/O interlacing. 2792 */ 2793 int 2794 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2795 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2796 { 2797 struct mbuf *m, *m2; 2798 int flags, error; 2799 ssize_t len; 2800 struct protosw *pr = so->so_proto; 2801 struct mbuf *nextrecord; 2802 2803 if (psa != NULL) 2804 *psa = NULL; 2805 if (controlp != NULL) 2806 *controlp = NULL; 2807 if (flagsp != NULL) 2808 flags = *flagsp &~ MSG_EOR; 2809 else 2810 flags = 0; 2811 2812 /* 2813 * For any complicated cases, fall back to the full 2814 * soreceive_generic(). 2815 */ 2816 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2817 return (soreceive_generic(so, psa, uio, mp0, controlp, 2818 flagsp)); 2819 2820 /* 2821 * Enforce restrictions on use. 2822 */ 2823 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2824 ("soreceive_dgram: wantrcvd")); 2825 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2826 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2827 ("soreceive_dgram: SBS_RCVATMARK")); 2828 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2829 ("soreceive_dgram: P_CONNREQUIRED")); 2830 2831 /* 2832 * Loop blocking while waiting for a datagram. 2833 */ 2834 SOCKBUF_LOCK(&so->so_rcv); 2835 while ((m = so->so_rcv.sb_mb) == NULL) { 2836 KASSERT(sbavail(&so->so_rcv) == 0, 2837 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2838 sbavail(&so->so_rcv))); 2839 if (so->so_error) { 2840 error = so->so_error; 2841 so->so_error = 0; 2842 SOCKBUF_UNLOCK(&so->so_rcv); 2843 return (error); 2844 } 2845 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2846 uio->uio_resid == 0) { 2847 SOCKBUF_UNLOCK(&so->so_rcv); 2848 return (0); 2849 } 2850 if ((so->so_state & SS_NBIO) || 2851 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2852 SOCKBUF_UNLOCK(&so->so_rcv); 2853 return (EWOULDBLOCK); 2854 } 2855 SBLASTRECORDCHK(&so->so_rcv); 2856 SBLASTMBUFCHK(&so->so_rcv); 2857 error = sbwait(so, SO_RCV); 2858 if (error) { 2859 SOCKBUF_UNLOCK(&so->so_rcv); 2860 return (error); 2861 } 2862 } 2863 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2864 2865 if (uio->uio_td) 2866 uio->uio_td->td_ru.ru_msgrcv++; 2867 SBLASTRECORDCHK(&so->so_rcv); 2868 SBLASTMBUFCHK(&so->so_rcv); 2869 nextrecord = m->m_nextpkt; 2870 if (nextrecord == NULL) { 2871 KASSERT(so->so_rcv.sb_lastrecord == m, 2872 ("soreceive_dgram: lastrecord != m")); 2873 } 2874 2875 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2876 ("soreceive_dgram: m_nextpkt != nextrecord")); 2877 2878 /* 2879 * Pull 'm' and its chain off the front of the packet queue. 2880 */ 2881 so->so_rcv.sb_mb = NULL; 2882 sockbuf_pushsync(&so->so_rcv, nextrecord); 2883 2884 /* 2885 * Walk 'm's chain and free that many bytes from the socket buffer. 2886 */ 2887 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2888 sbfree(&so->so_rcv, m2); 2889 2890 /* 2891 * Do a few last checks before we let go of the lock. 2892 */ 2893 SBLASTRECORDCHK(&so->so_rcv); 2894 SBLASTMBUFCHK(&so->so_rcv); 2895 SOCKBUF_UNLOCK(&so->so_rcv); 2896 2897 if (pr->pr_flags & PR_ADDR) { 2898 KASSERT(m->m_type == MT_SONAME, 2899 ("m->m_type == %d", m->m_type)); 2900 if (psa != NULL) 2901 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2902 M_WAITOK); 2903 m = m_free(m); 2904 } 2905 KASSERT(m, ("%s: no data or control after soname", __func__)); 2906 2907 /* 2908 * Packet to copyout() is now in 'm' and it is disconnected from the 2909 * queue. 2910 * 2911 * Process one or more MT_CONTROL mbufs present before any data mbufs 2912 * in the first mbuf chain on the socket buffer. We call into the 2913 * protocol to perform externalization (or freeing if controlp == 2914 * NULL). In some cases there can be only MT_CONTROL mbufs without 2915 * MT_DATA mbufs. 2916 */ 2917 if (m->m_type == MT_CONTROL) { 2918 struct mbuf *cm = NULL, *cmn; 2919 struct mbuf **cme = &cm; 2920 2921 do { 2922 m2 = m->m_next; 2923 m->m_next = NULL; 2924 *cme = m; 2925 cme = &(*cme)->m_next; 2926 m = m2; 2927 } while (m != NULL && m->m_type == MT_CONTROL); 2928 while (cm != NULL) { 2929 cmn = cm->m_next; 2930 cm->m_next = NULL; 2931 if (pr->pr_domain->dom_externalize != NULL) { 2932 error = (*pr->pr_domain->dom_externalize) 2933 (cm, controlp, flags); 2934 } else if (controlp != NULL) 2935 *controlp = cm; 2936 else 2937 m_freem(cm); 2938 if (controlp != NULL) { 2939 while (*controlp != NULL) 2940 controlp = &(*controlp)->m_next; 2941 } 2942 cm = cmn; 2943 } 2944 } 2945 KASSERT(m == NULL || m->m_type == MT_DATA, 2946 ("soreceive_dgram: !data")); 2947 while (m != NULL && uio->uio_resid > 0) { 2948 len = uio->uio_resid; 2949 if (len > m->m_len) 2950 len = m->m_len; 2951 error = uiomove(mtod(m, char *), (int)len, uio); 2952 if (error) { 2953 m_freem(m); 2954 return (error); 2955 } 2956 if (len == m->m_len) 2957 m = m_free(m); 2958 else { 2959 m->m_data += len; 2960 m->m_len -= len; 2961 } 2962 } 2963 if (m != NULL) { 2964 flags |= MSG_TRUNC; 2965 m_freem(m); 2966 } 2967 if (flagsp != NULL) 2968 *flagsp |= flags; 2969 return (0); 2970 } 2971 2972 int 2973 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2974 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2975 { 2976 int error; 2977 2978 CURVNET_SET(so->so_vnet); 2979 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2980 CURVNET_RESTORE(); 2981 return (error); 2982 } 2983 2984 int 2985 soshutdown(struct socket *so, enum shutdown_how how) 2986 { 2987 int error; 2988 2989 CURVNET_SET(so->so_vnet); 2990 error = so->so_proto->pr_shutdown(so, how); 2991 CURVNET_RESTORE(); 2992 2993 return (error); 2994 } 2995 2996 /* 2997 * Used by several pr_shutdown implementations that use generic socket buffers. 2998 */ 2999 void 3000 sorflush(struct socket *so) 3001 { 3002 int error; 3003 3004 VNET_SO_ASSERT(so); 3005 3006 /* 3007 * Dislodge threads currently blocked in receive and wait to acquire 3008 * a lock against other simultaneous readers before clearing the 3009 * socket buffer. Don't let our acquire be interrupted by a signal 3010 * despite any existing socket disposition on interruptable waiting. 3011 * 3012 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive 3013 * methods that read the top of the socket buffer without acquisition 3014 * of the socket buffer mutex, assuming that top of the buffer 3015 * exclusively belongs to the read(2) syscall. This is handy when 3016 * performing MSG_PEEK. 3017 */ 3018 socantrcvmore(so); 3019 3020 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 3021 if (error != 0) { 3022 KASSERT(SOLISTENING(so), 3023 ("%s: soiolock(%p) failed", __func__, so)); 3024 return; 3025 } 3026 3027 sbrelease(so, SO_RCV); 3028 SOCK_IO_RECV_UNLOCK(so); 3029 3030 } 3031 3032 #ifdef SOCKET_HHOOK 3033 /* 3034 * Wrapper for Socket established helper hook. 3035 * Parameters: socket, context of the hook point, hook id. 3036 */ 3037 static inline int 3038 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3039 { 3040 struct socket_hhook_data hhook_data = { 3041 .so = so, 3042 .hctx = hctx, 3043 .m = NULL, 3044 .status = 0 3045 }; 3046 3047 CURVNET_SET(so->so_vnet); 3048 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3049 CURVNET_RESTORE(); 3050 3051 /* Ugly but needed, since hhooks return void for now */ 3052 return (hhook_data.status); 3053 } 3054 #endif 3055 3056 /* 3057 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3058 * additional variant to handle the case where the option value needs to be 3059 * some kind of integer, but not a specific size. In addition to their use 3060 * here, these functions are also called by the protocol-level pr_ctloutput() 3061 * routines. 3062 */ 3063 int 3064 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3065 { 3066 size_t valsize; 3067 3068 /* 3069 * If the user gives us more than we wanted, we ignore it, but if we 3070 * don't get the minimum length the caller wants, we return EINVAL. 3071 * On success, sopt->sopt_valsize is set to however much we actually 3072 * retrieved. 3073 */ 3074 if ((valsize = sopt->sopt_valsize) < minlen) 3075 return EINVAL; 3076 if (valsize > len) 3077 sopt->sopt_valsize = valsize = len; 3078 3079 if (sopt->sopt_td != NULL) 3080 return (copyin(sopt->sopt_val, buf, valsize)); 3081 3082 bcopy(sopt->sopt_val, buf, valsize); 3083 return (0); 3084 } 3085 3086 /* 3087 * Kernel version of setsockopt(2). 3088 * 3089 * XXX: optlen is size_t, not socklen_t 3090 */ 3091 int 3092 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3093 size_t optlen) 3094 { 3095 struct sockopt sopt; 3096 3097 sopt.sopt_level = level; 3098 sopt.sopt_name = optname; 3099 sopt.sopt_dir = SOPT_SET; 3100 sopt.sopt_val = optval; 3101 sopt.sopt_valsize = optlen; 3102 sopt.sopt_td = NULL; 3103 return (sosetopt(so, &sopt)); 3104 } 3105 3106 int 3107 sosetopt(struct socket *so, struct sockopt *sopt) 3108 { 3109 int error, optval; 3110 struct linger l; 3111 struct timeval tv; 3112 sbintime_t val, *valp; 3113 uint32_t val32; 3114 #ifdef MAC 3115 struct mac extmac; 3116 #endif 3117 3118 CURVNET_SET(so->so_vnet); 3119 error = 0; 3120 if (sopt->sopt_level != SOL_SOCKET) { 3121 if (so->so_proto->pr_ctloutput != NULL) 3122 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3123 else 3124 error = ENOPROTOOPT; 3125 } else { 3126 switch (sopt->sopt_name) { 3127 case SO_ACCEPTFILTER: 3128 error = accept_filt_setopt(so, sopt); 3129 if (error) 3130 goto bad; 3131 break; 3132 3133 case SO_LINGER: 3134 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3135 if (error) 3136 goto bad; 3137 if (l.l_linger < 0 || 3138 l.l_linger > USHRT_MAX || 3139 l.l_linger > (INT_MAX / hz)) { 3140 error = EDOM; 3141 goto bad; 3142 } 3143 SOCK_LOCK(so); 3144 so->so_linger = l.l_linger; 3145 if (l.l_onoff) 3146 so->so_options |= SO_LINGER; 3147 else 3148 so->so_options &= ~SO_LINGER; 3149 SOCK_UNLOCK(so); 3150 break; 3151 3152 case SO_DEBUG: 3153 case SO_KEEPALIVE: 3154 case SO_DONTROUTE: 3155 case SO_USELOOPBACK: 3156 case SO_BROADCAST: 3157 case SO_REUSEADDR: 3158 case SO_REUSEPORT: 3159 case SO_REUSEPORT_LB: 3160 case SO_OOBINLINE: 3161 case SO_TIMESTAMP: 3162 case SO_BINTIME: 3163 case SO_NOSIGPIPE: 3164 case SO_NO_DDP: 3165 case SO_NO_OFFLOAD: 3166 case SO_RERROR: 3167 error = sooptcopyin(sopt, &optval, sizeof optval, 3168 sizeof optval); 3169 if (error) 3170 goto bad; 3171 SOCK_LOCK(so); 3172 if (optval) 3173 so->so_options |= sopt->sopt_name; 3174 else 3175 so->so_options &= ~sopt->sopt_name; 3176 SOCK_UNLOCK(so); 3177 break; 3178 3179 case SO_SETFIB: 3180 error = sooptcopyin(sopt, &optval, sizeof optval, 3181 sizeof optval); 3182 if (error) 3183 goto bad; 3184 3185 if (optval < 0 || optval >= rt_numfibs) { 3186 error = EINVAL; 3187 goto bad; 3188 } 3189 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3190 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3191 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3192 so->so_fibnum = optval; 3193 else 3194 so->so_fibnum = 0; 3195 break; 3196 3197 case SO_USER_COOKIE: 3198 error = sooptcopyin(sopt, &val32, sizeof val32, 3199 sizeof val32); 3200 if (error) 3201 goto bad; 3202 so->so_user_cookie = val32; 3203 break; 3204 3205 case SO_SNDBUF: 3206 case SO_RCVBUF: 3207 case SO_SNDLOWAT: 3208 case SO_RCVLOWAT: 3209 error = so->so_proto->pr_setsbopt(so, sopt); 3210 if (error) 3211 goto bad; 3212 break; 3213 3214 case SO_SNDTIMEO: 3215 case SO_RCVTIMEO: 3216 #ifdef COMPAT_FREEBSD32 3217 if (SV_CURPROC_FLAG(SV_ILP32)) { 3218 struct timeval32 tv32; 3219 3220 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3221 sizeof tv32); 3222 CP(tv32, tv, tv_sec); 3223 CP(tv32, tv, tv_usec); 3224 } else 3225 #endif 3226 error = sooptcopyin(sopt, &tv, sizeof tv, 3227 sizeof tv); 3228 if (error) 3229 goto bad; 3230 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3231 tv.tv_usec >= 1000000) { 3232 error = EDOM; 3233 goto bad; 3234 } 3235 if (tv.tv_sec > INT32_MAX) 3236 val = SBT_MAX; 3237 else 3238 val = tvtosbt(tv); 3239 SOCK_LOCK(so); 3240 valp = sopt->sopt_name == SO_SNDTIMEO ? 3241 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3242 &so->so_snd.sb_timeo) : 3243 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3244 &so->so_rcv.sb_timeo); 3245 *valp = val; 3246 SOCK_UNLOCK(so); 3247 break; 3248 3249 case SO_LABEL: 3250 #ifdef MAC 3251 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3252 sizeof extmac); 3253 if (error) 3254 goto bad; 3255 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3256 so, &extmac); 3257 #else 3258 error = EOPNOTSUPP; 3259 #endif 3260 break; 3261 3262 case SO_TS_CLOCK: 3263 error = sooptcopyin(sopt, &optval, sizeof optval, 3264 sizeof optval); 3265 if (error) 3266 goto bad; 3267 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3268 error = EINVAL; 3269 goto bad; 3270 } 3271 so->so_ts_clock = optval; 3272 break; 3273 3274 case SO_MAX_PACING_RATE: 3275 error = sooptcopyin(sopt, &val32, sizeof(val32), 3276 sizeof(val32)); 3277 if (error) 3278 goto bad; 3279 so->so_max_pacing_rate = val32; 3280 break; 3281 3282 default: 3283 #ifdef SOCKET_HHOOK 3284 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3285 error = hhook_run_socket(so, sopt, 3286 HHOOK_SOCKET_OPT); 3287 else 3288 #endif 3289 error = ENOPROTOOPT; 3290 break; 3291 } 3292 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3293 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3294 } 3295 bad: 3296 CURVNET_RESTORE(); 3297 return (error); 3298 } 3299 3300 /* 3301 * Helper routine for getsockopt. 3302 */ 3303 int 3304 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3305 { 3306 int error; 3307 size_t valsize; 3308 3309 error = 0; 3310 3311 /* 3312 * Documented get behavior is that we always return a value, possibly 3313 * truncated to fit in the user's buffer. Traditional behavior is 3314 * that we always tell the user precisely how much we copied, rather 3315 * than something useful like the total amount we had available for 3316 * her. Note that this interface is not idempotent; the entire 3317 * answer must be generated ahead of time. 3318 */ 3319 valsize = min(len, sopt->sopt_valsize); 3320 sopt->sopt_valsize = valsize; 3321 if (sopt->sopt_val != NULL) { 3322 if (sopt->sopt_td != NULL) 3323 error = copyout(buf, sopt->sopt_val, valsize); 3324 else 3325 bcopy(buf, sopt->sopt_val, valsize); 3326 } 3327 return (error); 3328 } 3329 3330 int 3331 sogetopt(struct socket *so, struct sockopt *sopt) 3332 { 3333 int error, optval; 3334 struct linger l; 3335 struct timeval tv; 3336 #ifdef MAC 3337 struct mac extmac; 3338 #endif 3339 3340 CURVNET_SET(so->so_vnet); 3341 error = 0; 3342 if (sopt->sopt_level != SOL_SOCKET) { 3343 if (so->so_proto->pr_ctloutput != NULL) 3344 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3345 else 3346 error = ENOPROTOOPT; 3347 CURVNET_RESTORE(); 3348 return (error); 3349 } else { 3350 switch (sopt->sopt_name) { 3351 case SO_ACCEPTFILTER: 3352 error = accept_filt_getopt(so, sopt); 3353 break; 3354 3355 case SO_LINGER: 3356 SOCK_LOCK(so); 3357 l.l_onoff = so->so_options & SO_LINGER; 3358 l.l_linger = so->so_linger; 3359 SOCK_UNLOCK(so); 3360 error = sooptcopyout(sopt, &l, sizeof l); 3361 break; 3362 3363 case SO_USELOOPBACK: 3364 case SO_DONTROUTE: 3365 case SO_DEBUG: 3366 case SO_KEEPALIVE: 3367 case SO_REUSEADDR: 3368 case SO_REUSEPORT: 3369 case SO_REUSEPORT_LB: 3370 case SO_BROADCAST: 3371 case SO_OOBINLINE: 3372 case SO_ACCEPTCONN: 3373 case SO_TIMESTAMP: 3374 case SO_BINTIME: 3375 case SO_NOSIGPIPE: 3376 case SO_NO_DDP: 3377 case SO_NO_OFFLOAD: 3378 case SO_RERROR: 3379 optval = so->so_options & sopt->sopt_name; 3380 integer: 3381 error = sooptcopyout(sopt, &optval, sizeof optval); 3382 break; 3383 3384 case SO_DOMAIN: 3385 optval = so->so_proto->pr_domain->dom_family; 3386 goto integer; 3387 3388 case SO_TYPE: 3389 optval = so->so_type; 3390 goto integer; 3391 3392 case SO_PROTOCOL: 3393 optval = so->so_proto->pr_protocol; 3394 goto integer; 3395 3396 case SO_ERROR: 3397 SOCK_LOCK(so); 3398 if (so->so_error) { 3399 optval = so->so_error; 3400 so->so_error = 0; 3401 } else { 3402 optval = so->so_rerror; 3403 so->so_rerror = 0; 3404 } 3405 SOCK_UNLOCK(so); 3406 goto integer; 3407 3408 case SO_SNDBUF: 3409 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3410 so->so_snd.sb_hiwat; 3411 goto integer; 3412 3413 case SO_RCVBUF: 3414 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3415 so->so_rcv.sb_hiwat; 3416 goto integer; 3417 3418 case SO_SNDLOWAT: 3419 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3420 so->so_snd.sb_lowat; 3421 goto integer; 3422 3423 case SO_RCVLOWAT: 3424 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3425 so->so_rcv.sb_lowat; 3426 goto integer; 3427 3428 case SO_SNDTIMEO: 3429 case SO_RCVTIMEO: 3430 SOCK_LOCK(so); 3431 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3432 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3433 so->so_snd.sb_timeo) : 3434 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3435 so->so_rcv.sb_timeo)); 3436 SOCK_UNLOCK(so); 3437 #ifdef COMPAT_FREEBSD32 3438 if (SV_CURPROC_FLAG(SV_ILP32)) { 3439 struct timeval32 tv32; 3440 3441 CP(tv, tv32, tv_sec); 3442 CP(tv, tv32, tv_usec); 3443 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3444 } else 3445 #endif 3446 error = sooptcopyout(sopt, &tv, sizeof tv); 3447 break; 3448 3449 case SO_LABEL: 3450 #ifdef MAC 3451 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3452 sizeof(extmac)); 3453 if (error) 3454 goto bad; 3455 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3456 so, &extmac); 3457 if (error) 3458 goto bad; 3459 /* Don't copy out extmac, it is unchanged. */ 3460 #else 3461 error = EOPNOTSUPP; 3462 #endif 3463 break; 3464 3465 case SO_PEERLABEL: 3466 #ifdef MAC 3467 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3468 sizeof(extmac)); 3469 if (error) 3470 goto bad; 3471 error = mac_getsockopt_peerlabel( 3472 sopt->sopt_td->td_ucred, so, &extmac); 3473 if (error) 3474 goto bad; 3475 /* Don't copy out extmac, it is unchanged. */ 3476 #else 3477 error = EOPNOTSUPP; 3478 #endif 3479 break; 3480 3481 case SO_LISTENQLIMIT: 3482 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3483 goto integer; 3484 3485 case SO_LISTENQLEN: 3486 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3487 goto integer; 3488 3489 case SO_LISTENINCQLEN: 3490 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3491 goto integer; 3492 3493 case SO_TS_CLOCK: 3494 optval = so->so_ts_clock; 3495 goto integer; 3496 3497 case SO_MAX_PACING_RATE: 3498 optval = so->so_max_pacing_rate; 3499 goto integer; 3500 3501 default: 3502 #ifdef SOCKET_HHOOK 3503 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3504 error = hhook_run_socket(so, sopt, 3505 HHOOK_SOCKET_OPT); 3506 else 3507 #endif 3508 error = ENOPROTOOPT; 3509 break; 3510 } 3511 } 3512 #ifdef MAC 3513 bad: 3514 #endif 3515 CURVNET_RESTORE(); 3516 return (error); 3517 } 3518 3519 int 3520 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3521 { 3522 struct mbuf *m, *m_prev; 3523 int sopt_size = sopt->sopt_valsize; 3524 3525 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3526 if (m == NULL) 3527 return ENOBUFS; 3528 if (sopt_size > MLEN) { 3529 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3530 if ((m->m_flags & M_EXT) == 0) { 3531 m_free(m); 3532 return ENOBUFS; 3533 } 3534 m->m_len = min(MCLBYTES, sopt_size); 3535 } else { 3536 m->m_len = min(MLEN, sopt_size); 3537 } 3538 sopt_size -= m->m_len; 3539 *mp = m; 3540 m_prev = m; 3541 3542 while (sopt_size) { 3543 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3544 if (m == NULL) { 3545 m_freem(*mp); 3546 return ENOBUFS; 3547 } 3548 if (sopt_size > MLEN) { 3549 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3550 M_NOWAIT); 3551 if ((m->m_flags & M_EXT) == 0) { 3552 m_freem(m); 3553 m_freem(*mp); 3554 return ENOBUFS; 3555 } 3556 m->m_len = min(MCLBYTES, sopt_size); 3557 } else { 3558 m->m_len = min(MLEN, sopt_size); 3559 } 3560 sopt_size -= m->m_len; 3561 m_prev->m_next = m; 3562 m_prev = m; 3563 } 3564 return (0); 3565 } 3566 3567 int 3568 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3569 { 3570 struct mbuf *m0 = m; 3571 3572 if (sopt->sopt_val == NULL) 3573 return (0); 3574 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3575 if (sopt->sopt_td != NULL) { 3576 int error; 3577 3578 error = copyin(sopt->sopt_val, mtod(m, char *), 3579 m->m_len); 3580 if (error != 0) { 3581 m_freem(m0); 3582 return(error); 3583 } 3584 } else 3585 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3586 sopt->sopt_valsize -= m->m_len; 3587 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3588 m = m->m_next; 3589 } 3590 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3591 panic("ip6_sooptmcopyin"); 3592 return (0); 3593 } 3594 3595 int 3596 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3597 { 3598 struct mbuf *m0 = m; 3599 size_t valsize = 0; 3600 3601 if (sopt->sopt_val == NULL) 3602 return (0); 3603 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3604 if (sopt->sopt_td != NULL) { 3605 int error; 3606 3607 error = copyout(mtod(m, char *), sopt->sopt_val, 3608 m->m_len); 3609 if (error != 0) { 3610 m_freem(m0); 3611 return(error); 3612 } 3613 } else 3614 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3615 sopt->sopt_valsize -= m->m_len; 3616 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3617 valsize += m->m_len; 3618 m = m->m_next; 3619 } 3620 if (m != NULL) { 3621 /* enough soopt buffer should be given from user-land */ 3622 m_freem(m0); 3623 return(EINVAL); 3624 } 3625 sopt->sopt_valsize = valsize; 3626 return (0); 3627 } 3628 3629 /* 3630 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3631 * out-of-band data, which will then notify socket consumers. 3632 */ 3633 void 3634 sohasoutofband(struct socket *so) 3635 { 3636 3637 if (so->so_sigio != NULL) 3638 pgsigio(&so->so_sigio, SIGURG, 0); 3639 selwakeuppri(&so->so_rdsel, PSOCK); 3640 } 3641 3642 int 3643 sopoll(struct socket *so, int events, struct ucred *active_cred, 3644 struct thread *td) 3645 { 3646 3647 /* 3648 * We do not need to set or assert curvnet as long as everyone uses 3649 * sopoll_generic(). 3650 */ 3651 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3652 } 3653 3654 int 3655 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3656 struct thread *td) 3657 { 3658 int revents; 3659 3660 SOCK_LOCK(so); 3661 if (SOLISTENING(so)) { 3662 if (!(events & (POLLIN | POLLRDNORM))) 3663 revents = 0; 3664 else if (!TAILQ_EMPTY(&so->sol_comp)) 3665 revents = events & (POLLIN | POLLRDNORM); 3666 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3667 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3668 else { 3669 selrecord(td, &so->so_rdsel); 3670 revents = 0; 3671 } 3672 } else { 3673 revents = 0; 3674 SOCK_SENDBUF_LOCK(so); 3675 SOCK_RECVBUF_LOCK(so); 3676 if (events & (POLLIN | POLLRDNORM)) 3677 if (soreadabledata(so)) 3678 revents |= events & (POLLIN | POLLRDNORM); 3679 if (events & (POLLOUT | POLLWRNORM)) 3680 if (sowriteable(so)) 3681 revents |= events & (POLLOUT | POLLWRNORM); 3682 if (events & (POLLPRI | POLLRDBAND)) 3683 if (so->so_oobmark || 3684 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3685 revents |= events & (POLLPRI | POLLRDBAND); 3686 if ((events & POLLINIGNEOF) == 0) { 3687 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3688 revents |= events & (POLLIN | POLLRDNORM); 3689 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3690 revents |= POLLHUP; 3691 } 3692 } 3693 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3694 revents |= events & POLLRDHUP; 3695 if (revents == 0) { 3696 if (events & 3697 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3698 selrecord(td, &so->so_rdsel); 3699 so->so_rcv.sb_flags |= SB_SEL; 3700 } 3701 if (events & (POLLOUT | POLLWRNORM)) { 3702 selrecord(td, &so->so_wrsel); 3703 so->so_snd.sb_flags |= SB_SEL; 3704 } 3705 } 3706 SOCK_RECVBUF_UNLOCK(so); 3707 SOCK_SENDBUF_UNLOCK(so); 3708 } 3709 SOCK_UNLOCK(so); 3710 return (revents); 3711 } 3712 3713 int 3714 soo_kqfilter(struct file *fp, struct knote *kn) 3715 { 3716 struct socket *so = kn->kn_fp->f_data; 3717 struct sockbuf *sb; 3718 sb_which which; 3719 struct knlist *knl; 3720 3721 switch (kn->kn_filter) { 3722 case EVFILT_READ: 3723 kn->kn_fop = &soread_filtops; 3724 knl = &so->so_rdsel.si_note; 3725 sb = &so->so_rcv; 3726 which = SO_RCV; 3727 break; 3728 case EVFILT_WRITE: 3729 kn->kn_fop = &sowrite_filtops; 3730 knl = &so->so_wrsel.si_note; 3731 sb = &so->so_snd; 3732 which = SO_SND; 3733 break; 3734 case EVFILT_EMPTY: 3735 kn->kn_fop = &soempty_filtops; 3736 knl = &so->so_wrsel.si_note; 3737 sb = &so->so_snd; 3738 which = SO_SND; 3739 break; 3740 default: 3741 return (EINVAL); 3742 } 3743 3744 SOCK_LOCK(so); 3745 if (SOLISTENING(so)) { 3746 knlist_add(knl, kn, 1); 3747 } else { 3748 SOCK_BUF_LOCK(so, which); 3749 knlist_add(knl, kn, 1); 3750 sb->sb_flags |= SB_KNOTE; 3751 SOCK_BUF_UNLOCK(so, which); 3752 } 3753 SOCK_UNLOCK(so); 3754 return (0); 3755 } 3756 3757 static void 3758 filt_sordetach(struct knote *kn) 3759 { 3760 struct socket *so = kn->kn_fp->f_data; 3761 3762 so_rdknl_lock(so); 3763 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3764 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3765 so->so_rcv.sb_flags &= ~SB_KNOTE; 3766 so_rdknl_unlock(so); 3767 } 3768 3769 /*ARGSUSED*/ 3770 static int 3771 filt_soread(struct knote *kn, long hint) 3772 { 3773 struct socket *so; 3774 3775 so = kn->kn_fp->f_data; 3776 3777 if (SOLISTENING(so)) { 3778 SOCK_LOCK_ASSERT(so); 3779 kn->kn_data = so->sol_qlen; 3780 if (so->so_error) { 3781 kn->kn_flags |= EV_EOF; 3782 kn->kn_fflags = so->so_error; 3783 return (1); 3784 } 3785 return (!TAILQ_EMPTY(&so->sol_comp)); 3786 } 3787 3788 SOCK_RECVBUF_LOCK_ASSERT(so); 3789 3790 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3791 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3792 kn->kn_flags |= EV_EOF; 3793 kn->kn_fflags = so->so_error; 3794 return (1); 3795 } else if (so->so_error || so->so_rerror) 3796 return (1); 3797 3798 if (kn->kn_sfflags & NOTE_LOWAT) { 3799 if (kn->kn_data >= kn->kn_sdata) 3800 return (1); 3801 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3802 return (1); 3803 3804 #ifdef SOCKET_HHOOK 3805 /* This hook returning non-zero indicates an event, not error */ 3806 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3807 #else 3808 return (0); 3809 #endif 3810 } 3811 3812 static void 3813 filt_sowdetach(struct knote *kn) 3814 { 3815 struct socket *so = kn->kn_fp->f_data; 3816 3817 so_wrknl_lock(so); 3818 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3819 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3820 so->so_snd.sb_flags &= ~SB_KNOTE; 3821 so_wrknl_unlock(so); 3822 } 3823 3824 /*ARGSUSED*/ 3825 static int 3826 filt_sowrite(struct knote *kn, long hint) 3827 { 3828 struct socket *so; 3829 3830 so = kn->kn_fp->f_data; 3831 3832 if (SOLISTENING(so)) 3833 return (0); 3834 3835 SOCK_SENDBUF_LOCK_ASSERT(so); 3836 kn->kn_data = sbspace(&so->so_snd); 3837 3838 #ifdef SOCKET_HHOOK 3839 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3840 #endif 3841 3842 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3843 kn->kn_flags |= EV_EOF; 3844 kn->kn_fflags = so->so_error; 3845 return (1); 3846 } else if (so->so_error) /* temporary udp error */ 3847 return (1); 3848 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3849 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3850 return (0); 3851 else if (kn->kn_sfflags & NOTE_LOWAT) 3852 return (kn->kn_data >= kn->kn_sdata); 3853 else 3854 return (kn->kn_data >= so->so_snd.sb_lowat); 3855 } 3856 3857 static int 3858 filt_soempty(struct knote *kn, long hint) 3859 { 3860 struct socket *so; 3861 3862 so = kn->kn_fp->f_data; 3863 3864 if (SOLISTENING(so)) 3865 return (1); 3866 3867 SOCK_SENDBUF_LOCK_ASSERT(so); 3868 kn->kn_data = sbused(&so->so_snd); 3869 3870 if (kn->kn_data == 0) 3871 return (1); 3872 else 3873 return (0); 3874 } 3875 3876 int 3877 socheckuid(struct socket *so, uid_t uid) 3878 { 3879 3880 if (so == NULL) 3881 return (EPERM); 3882 if (so->so_cred->cr_uid != uid) 3883 return (EPERM); 3884 return (0); 3885 } 3886 3887 /* 3888 * These functions are used by protocols to notify the socket layer (and its 3889 * consumers) of state changes in the sockets driven by protocol-side events. 3890 */ 3891 3892 /* 3893 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3894 * 3895 * Normal sequence from the active (originating) side is that 3896 * soisconnecting() is called during processing of connect() call, resulting 3897 * in an eventual call to soisconnected() if/when the connection is 3898 * established. When the connection is torn down soisdisconnecting() is 3899 * called during processing of disconnect() call, and soisdisconnected() is 3900 * called when the connection to the peer is totally severed. The semantics 3901 * of these routines are such that connectionless protocols can call 3902 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3903 * calls when setting up a ``connection'' takes no time. 3904 * 3905 * From the passive side, a socket is created with two queues of sockets: 3906 * so_incomp for connections in progress and so_comp for connections already 3907 * made and awaiting user acceptance. As a protocol is preparing incoming 3908 * connections, it creates a socket structure queued on so_incomp by calling 3909 * sonewconn(). When the connection is established, soisconnected() is 3910 * called, and transfers the socket structure to so_comp, making it available 3911 * to accept(). 3912 * 3913 * If a socket is closed with sockets on either so_incomp or so_comp, these 3914 * sockets are dropped. 3915 * 3916 * If higher-level protocols are implemented in the kernel, the wakeups done 3917 * here will sometimes cause software-interrupt process scheduling. 3918 */ 3919 void 3920 soisconnecting(struct socket *so) 3921 { 3922 3923 SOCK_LOCK(so); 3924 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3925 so->so_state |= SS_ISCONNECTING; 3926 SOCK_UNLOCK(so); 3927 } 3928 3929 void 3930 soisconnected(struct socket *so) 3931 { 3932 bool last __diagused; 3933 3934 SOCK_LOCK(so); 3935 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 3936 so->so_state |= SS_ISCONNECTED; 3937 3938 if (so->so_qstate == SQ_INCOMP) { 3939 struct socket *head = so->so_listen; 3940 int ret; 3941 3942 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3943 /* 3944 * Promoting a socket from incomplete queue to complete, we 3945 * need to go through reverse order of locking. We first do 3946 * trylock, and if that doesn't succeed, we go the hard way 3947 * leaving a reference and rechecking consistency after proper 3948 * locking. 3949 */ 3950 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3951 soref(head); 3952 SOCK_UNLOCK(so); 3953 SOLISTEN_LOCK(head); 3954 SOCK_LOCK(so); 3955 if (__predict_false(head != so->so_listen)) { 3956 /* 3957 * The socket went off the listen queue, 3958 * should be lost race to close(2) of sol. 3959 * The socket is about to soabort(). 3960 */ 3961 SOCK_UNLOCK(so); 3962 sorele_locked(head); 3963 return; 3964 } 3965 last = refcount_release(&head->so_count); 3966 KASSERT(!last, ("%s: released last reference for %p", 3967 __func__, head)); 3968 } 3969 again: 3970 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3971 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3972 head->sol_incqlen--; 3973 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3974 head->sol_qlen++; 3975 so->so_qstate = SQ_COMP; 3976 SOCK_UNLOCK(so); 3977 solisten_wakeup(head); /* unlocks */ 3978 } else { 3979 SOCK_RECVBUF_LOCK(so); 3980 soupcall_set(so, SO_RCV, 3981 head->sol_accept_filter->accf_callback, 3982 head->sol_accept_filter_arg); 3983 so->so_options &= ~SO_ACCEPTFILTER; 3984 ret = head->sol_accept_filter->accf_callback(so, 3985 head->sol_accept_filter_arg, M_NOWAIT); 3986 if (ret == SU_ISCONNECTED) { 3987 soupcall_clear(so, SO_RCV); 3988 SOCK_RECVBUF_UNLOCK(so); 3989 goto again; 3990 } 3991 SOCK_RECVBUF_UNLOCK(so); 3992 SOCK_UNLOCK(so); 3993 SOLISTEN_UNLOCK(head); 3994 } 3995 return; 3996 } 3997 SOCK_UNLOCK(so); 3998 wakeup(&so->so_timeo); 3999 sorwakeup(so); 4000 sowwakeup(so); 4001 } 4002 4003 void 4004 soisdisconnecting(struct socket *so) 4005 { 4006 4007 SOCK_LOCK(so); 4008 so->so_state &= ~SS_ISCONNECTING; 4009 so->so_state |= SS_ISDISCONNECTING; 4010 4011 if (!SOLISTENING(so)) { 4012 SOCK_RECVBUF_LOCK(so); 4013 socantrcvmore_locked(so); 4014 SOCK_SENDBUF_LOCK(so); 4015 socantsendmore_locked(so); 4016 } 4017 SOCK_UNLOCK(so); 4018 wakeup(&so->so_timeo); 4019 } 4020 4021 void 4022 soisdisconnected(struct socket *so) 4023 { 4024 4025 SOCK_LOCK(so); 4026 4027 /* 4028 * There is at least one reader of so_state that does not 4029 * acquire socket lock, namely soreceive_generic(). Ensure 4030 * that it never sees all flags that track connection status 4031 * cleared, by ordering the update with a barrier semantic of 4032 * our release thread fence. 4033 */ 4034 so->so_state |= SS_ISDISCONNECTED; 4035 atomic_thread_fence_rel(); 4036 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4037 4038 if (!SOLISTENING(so)) { 4039 SOCK_UNLOCK(so); 4040 SOCK_RECVBUF_LOCK(so); 4041 socantrcvmore_locked(so); 4042 SOCK_SENDBUF_LOCK(so); 4043 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4044 socantsendmore_locked(so); 4045 } else 4046 SOCK_UNLOCK(so); 4047 wakeup(&so->so_timeo); 4048 } 4049 4050 int 4051 soiolock(struct socket *so, struct sx *sx, int flags) 4052 { 4053 int error; 4054 4055 KASSERT((flags & SBL_VALID) == flags, 4056 ("soiolock: invalid flags %#x", flags)); 4057 4058 if ((flags & SBL_WAIT) != 0) { 4059 if ((flags & SBL_NOINTR) != 0) { 4060 sx_xlock(sx); 4061 } else { 4062 error = sx_xlock_sig(sx); 4063 if (error != 0) 4064 return (error); 4065 } 4066 } else if (!sx_try_xlock(sx)) { 4067 return (EWOULDBLOCK); 4068 } 4069 4070 if (__predict_false(SOLISTENING(so))) { 4071 sx_xunlock(sx); 4072 return (ENOTCONN); 4073 } 4074 return (0); 4075 } 4076 4077 void 4078 soiounlock(struct sx *sx) 4079 { 4080 sx_xunlock(sx); 4081 } 4082 4083 /* 4084 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4085 */ 4086 struct sockaddr * 4087 sodupsockaddr(const struct sockaddr *sa, int mflags) 4088 { 4089 struct sockaddr *sa2; 4090 4091 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4092 if (sa2) 4093 bcopy(sa, sa2, sa->sa_len); 4094 return sa2; 4095 } 4096 4097 /* 4098 * Register per-socket destructor. 4099 */ 4100 void 4101 sodtor_set(struct socket *so, so_dtor_t *func) 4102 { 4103 4104 SOCK_LOCK_ASSERT(so); 4105 so->so_dtor = func; 4106 } 4107 4108 /* 4109 * Register per-socket buffer upcalls. 4110 */ 4111 void 4112 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4113 { 4114 struct sockbuf *sb; 4115 4116 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4117 4118 switch (which) { 4119 case SO_RCV: 4120 sb = &so->so_rcv; 4121 break; 4122 case SO_SND: 4123 sb = &so->so_snd; 4124 break; 4125 } 4126 SOCK_BUF_LOCK_ASSERT(so, which); 4127 sb->sb_upcall = func; 4128 sb->sb_upcallarg = arg; 4129 sb->sb_flags |= SB_UPCALL; 4130 } 4131 4132 void 4133 soupcall_clear(struct socket *so, sb_which which) 4134 { 4135 struct sockbuf *sb; 4136 4137 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4138 4139 switch (which) { 4140 case SO_RCV: 4141 sb = &so->so_rcv; 4142 break; 4143 case SO_SND: 4144 sb = &so->so_snd; 4145 break; 4146 } 4147 SOCK_BUF_LOCK_ASSERT(so, which); 4148 KASSERT(sb->sb_upcall != NULL, 4149 ("%s: so %p no upcall to clear", __func__, so)); 4150 sb->sb_upcall = NULL; 4151 sb->sb_upcallarg = NULL; 4152 sb->sb_flags &= ~SB_UPCALL; 4153 } 4154 4155 void 4156 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4157 { 4158 4159 SOLISTEN_LOCK_ASSERT(so); 4160 so->sol_upcall = func; 4161 so->sol_upcallarg = arg; 4162 } 4163 4164 static void 4165 so_rdknl_lock(void *arg) 4166 { 4167 struct socket *so = arg; 4168 4169 retry: 4170 if (SOLISTENING(so)) { 4171 SOLISTEN_LOCK(so); 4172 } else { 4173 SOCK_RECVBUF_LOCK(so); 4174 if (__predict_false(SOLISTENING(so))) { 4175 SOCK_RECVBUF_UNLOCK(so); 4176 goto retry; 4177 } 4178 } 4179 } 4180 4181 static void 4182 so_rdknl_unlock(void *arg) 4183 { 4184 struct socket *so = arg; 4185 4186 if (SOLISTENING(so)) 4187 SOLISTEN_UNLOCK(so); 4188 else 4189 SOCK_RECVBUF_UNLOCK(so); 4190 } 4191 4192 static void 4193 so_rdknl_assert_lock(void *arg, int what) 4194 { 4195 struct socket *so = arg; 4196 4197 if (what == LA_LOCKED) { 4198 if (SOLISTENING(so)) 4199 SOLISTEN_LOCK_ASSERT(so); 4200 else 4201 SOCK_RECVBUF_LOCK_ASSERT(so); 4202 } else { 4203 if (SOLISTENING(so)) 4204 SOLISTEN_UNLOCK_ASSERT(so); 4205 else 4206 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4207 } 4208 } 4209 4210 static void 4211 so_wrknl_lock(void *arg) 4212 { 4213 struct socket *so = arg; 4214 4215 retry: 4216 if (SOLISTENING(so)) { 4217 SOLISTEN_LOCK(so); 4218 } else { 4219 SOCK_SENDBUF_LOCK(so); 4220 if (__predict_false(SOLISTENING(so))) { 4221 SOCK_SENDBUF_UNLOCK(so); 4222 goto retry; 4223 } 4224 } 4225 } 4226 4227 static void 4228 so_wrknl_unlock(void *arg) 4229 { 4230 struct socket *so = arg; 4231 4232 if (SOLISTENING(so)) 4233 SOLISTEN_UNLOCK(so); 4234 else 4235 SOCK_SENDBUF_UNLOCK(so); 4236 } 4237 4238 static void 4239 so_wrknl_assert_lock(void *arg, int what) 4240 { 4241 struct socket *so = arg; 4242 4243 if (what == LA_LOCKED) { 4244 if (SOLISTENING(so)) 4245 SOLISTEN_LOCK_ASSERT(so); 4246 else 4247 SOCK_SENDBUF_LOCK_ASSERT(so); 4248 } else { 4249 if (SOLISTENING(so)) 4250 SOLISTEN_UNLOCK_ASSERT(so); 4251 else 4252 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4253 } 4254 } 4255 4256 /* 4257 * Create an external-format (``xsocket'') structure using the information in 4258 * the kernel-format socket structure pointed to by so. This is done to 4259 * reduce the spew of irrelevant information over this interface, to isolate 4260 * user code from changes in the kernel structure, and potentially to provide 4261 * information-hiding if we decide that some of this information should be 4262 * hidden from users. 4263 */ 4264 void 4265 sotoxsocket(struct socket *so, struct xsocket *xso) 4266 { 4267 4268 bzero(xso, sizeof(*xso)); 4269 xso->xso_len = sizeof *xso; 4270 xso->xso_so = (uintptr_t)so; 4271 xso->so_type = so->so_type; 4272 xso->so_options = so->so_options; 4273 xso->so_linger = so->so_linger; 4274 xso->so_state = so->so_state; 4275 xso->so_pcb = (uintptr_t)so->so_pcb; 4276 xso->xso_protocol = so->so_proto->pr_protocol; 4277 xso->xso_family = so->so_proto->pr_domain->dom_family; 4278 xso->so_timeo = so->so_timeo; 4279 xso->so_error = so->so_error; 4280 xso->so_uid = so->so_cred->cr_uid; 4281 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4282 if (SOLISTENING(so)) { 4283 xso->so_qlen = so->sol_qlen; 4284 xso->so_incqlen = so->sol_incqlen; 4285 xso->so_qlimit = so->sol_qlimit; 4286 xso->so_oobmark = 0; 4287 } else { 4288 xso->so_state |= so->so_qstate; 4289 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4290 xso->so_oobmark = so->so_oobmark; 4291 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4292 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4293 } 4294 } 4295 4296 int 4297 so_options_get(const struct socket *so) 4298 { 4299 4300 return (so->so_options); 4301 } 4302 4303 void 4304 so_options_set(struct socket *so, int val) 4305 { 4306 4307 so->so_options = val; 4308 } 4309 4310 int 4311 so_error_get(const struct socket *so) 4312 { 4313 4314 return (so->so_error); 4315 } 4316 4317 void 4318 so_error_set(struct socket *so, int val) 4319 { 4320 4321 so->so_error = val; 4322 } 4323