1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called 99 * from a pre-set VNET context. sopoll() currently does not need a VNET 100 * context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 #include "opt_inet.h" 105 #include "opt_inet6.h" 106 #include "opt_kern_tls.h" 107 #include "opt_ktrace.h" 108 #include "opt_sctp.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/capsicum.h> 113 #include <sys/fcntl.h> 114 #include <sys/limits.h> 115 #include <sys/lock.h> 116 #include <sys/mac.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/domain.h> 121 #include <sys/file.h> /* for struct knote */ 122 #include <sys/hhook.h> 123 #include <sys/kernel.h> 124 #include <sys/khelp.h> 125 #include <sys/ktls.h> 126 #include <sys/event.h> 127 #include <sys/eventhandler.h> 128 #include <sys/poll.h> 129 #include <sys/proc.h> 130 #include <sys/protosw.h> 131 #include <sys/sbuf.h> 132 #include <sys/socket.h> 133 #include <sys/socketvar.h> 134 #include <sys/resourcevar.h> 135 #include <net/route.h> 136 #include <sys/signalvar.h> 137 #include <sys/stat.h> 138 #include <sys/sx.h> 139 #include <sys/sysctl.h> 140 #include <sys/taskqueue.h> 141 #include <sys/uio.h> 142 #include <sys/un.h> 143 #include <sys/unpcb.h> 144 #include <sys/jail.h> 145 #include <sys/syslog.h> 146 #include <netinet/in.h> 147 #include <netinet/in_pcb.h> 148 #include <netinet/tcp.h> 149 150 #include <net/vnet.h> 151 152 #include <security/mac/mac_framework.h> 153 154 #include <vm/uma.h> 155 156 #ifdef COMPAT_FREEBSD32 157 #include <sys/mount.h> 158 #include <sys/sysent.h> 159 #include <compat/freebsd32/freebsd32.h> 160 #endif 161 162 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 163 int flags); 164 static void so_rdknl_lock(void *); 165 static void so_rdknl_unlock(void *); 166 static void so_rdknl_assert_lock(void *, int); 167 static void so_wrknl_lock(void *); 168 static void so_wrknl_unlock(void *); 169 static void so_wrknl_assert_lock(void *, int); 170 171 static void filt_sordetach(struct knote *kn); 172 static int filt_soread(struct knote *kn, long hint); 173 static void filt_sowdetach(struct knote *kn); 174 static int filt_sowrite(struct knote *kn, long hint); 175 static int filt_soempty(struct knote *kn, long hint); 176 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 177 fo_kqfilter_t soo_kqfilter; 178 179 static struct filterops soread_filtops = { 180 .f_isfd = 1, 181 .f_detach = filt_sordetach, 182 .f_event = filt_soread, 183 }; 184 static struct filterops sowrite_filtops = { 185 .f_isfd = 1, 186 .f_detach = filt_sowdetach, 187 .f_event = filt_sowrite, 188 }; 189 static struct filterops soempty_filtops = { 190 .f_isfd = 1, 191 .f_detach = filt_sowdetach, 192 .f_event = filt_soempty, 193 }; 194 195 so_gen_t so_gencnt; /* generation count for sockets */ 196 197 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 198 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 199 200 #define VNET_SO_ASSERT(so) \ 201 VNET_ASSERT(curvnet != NULL, \ 202 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 203 204 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 205 #define V_socket_hhh VNET(socket_hhh) 206 207 /* 208 * Limit on the number of connections in the listen queue waiting 209 * for accept(2). 210 * NB: The original sysctl somaxconn is still available but hidden 211 * to prevent confusion about the actual purpose of this number. 212 */ 213 static u_int somaxconn = SOMAXCONN; 214 215 static int 216 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 217 { 218 int error; 219 int val; 220 221 val = somaxconn; 222 error = sysctl_handle_int(oidp, &val, 0, req); 223 if (error || !req->newptr ) 224 return (error); 225 226 /* 227 * The purpose of the UINT_MAX / 3 limit, is so that the formula 228 * 3 * so_qlimit / 2 229 * below, will not overflow. 230 */ 231 232 if (val < 1 || val > UINT_MAX / 3) 233 return (EINVAL); 234 235 somaxconn = val; 236 return (0); 237 } 238 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 239 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 240 sysctl_somaxconn, "I", 241 "Maximum listen socket pending connection accept queue size"); 242 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 243 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 244 sizeof(int), sysctl_somaxconn, "I", 245 "Maximum listen socket pending connection accept queue size (compat)"); 246 247 static int numopensockets; 248 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 249 &numopensockets, 0, "Number of open sockets"); 250 251 /* 252 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 253 * so_gencnt field. 254 */ 255 static struct mtx so_global_mtx; 256 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 257 258 /* 259 * General IPC sysctl name space, used by sockets and a variety of other IPC 260 * types. 261 */ 262 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 263 "IPC"); 264 265 /* 266 * Initialize the socket subsystem and set up the socket 267 * memory allocator. 268 */ 269 static uma_zone_t socket_zone; 270 int maxsockets; 271 272 static void 273 socket_zone_change(void *tag) 274 { 275 276 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 277 } 278 279 static void 280 socket_hhook_register(int subtype) 281 { 282 283 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 284 &V_socket_hhh[subtype], 285 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 286 printf("%s: WARNING: unable to register hook\n", __func__); 287 } 288 289 static void 290 socket_hhook_deregister(int subtype) 291 { 292 293 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 294 printf("%s: WARNING: unable to deregister hook\n", __func__); 295 } 296 297 static void 298 socket_init(void *tag) 299 { 300 301 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 302 NULL, NULL, UMA_ALIGN_PTR, 0); 303 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 304 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 305 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 306 EVENTHANDLER_PRI_FIRST); 307 } 308 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 309 310 static void 311 socket_vnet_init(const void *unused __unused) 312 { 313 int i; 314 315 /* We expect a contiguous range */ 316 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 317 socket_hhook_register(i); 318 } 319 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 320 socket_vnet_init, NULL); 321 322 static void 323 socket_vnet_uninit(const void *unused __unused) 324 { 325 int i; 326 327 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 328 socket_hhook_deregister(i); 329 } 330 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 331 socket_vnet_uninit, NULL); 332 333 /* 334 * Initialise maxsockets. This SYSINIT must be run after 335 * tunable_mbinit(). 336 */ 337 static void 338 init_maxsockets(void *ignored) 339 { 340 341 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 342 maxsockets = imax(maxsockets, maxfiles); 343 } 344 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 345 346 /* 347 * Sysctl to get and set the maximum global sockets limit. Notify protocols 348 * of the change so that they can update their dependent limits as required. 349 */ 350 static int 351 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 352 { 353 int error, newmaxsockets; 354 355 newmaxsockets = maxsockets; 356 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 357 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 358 if (newmaxsockets > maxsockets && 359 newmaxsockets <= maxfiles) { 360 maxsockets = newmaxsockets; 361 EVENTHANDLER_INVOKE(maxsockets_change); 362 } else 363 error = EINVAL; 364 } 365 return (error); 366 } 367 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 368 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 369 &maxsockets, 0, sysctl_maxsockets, "IU", 370 "Maximum number of sockets available"); 371 372 /* 373 * Socket operation routines. These routines are called by the routines in 374 * sys_socket.c or from a system process, and implement the semantics of 375 * socket operations by switching out to the protocol specific routines. 376 */ 377 378 /* 379 * Get a socket structure from our zone, and initialize it. Note that it 380 * would probably be better to allocate socket and PCB at the same time, but 381 * I'm not convinced that all the protocols can be easily modified to do 382 * this. 383 * 384 * soalloc() returns a socket with a ref count of 0. 385 */ 386 static struct socket * 387 soalloc(struct vnet *vnet) 388 { 389 struct socket *so; 390 391 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 392 if (so == NULL) 393 return (NULL); 394 #ifdef MAC 395 if (mac_socket_init(so, M_NOWAIT) != 0) { 396 uma_zfree(socket_zone, so); 397 return (NULL); 398 } 399 #endif 400 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 401 uma_zfree(socket_zone, so); 402 return (NULL); 403 } 404 405 /* 406 * The socket locking protocol allows to lock 2 sockets at a time, 407 * however, the first one must be a listening socket. WITNESS lacks 408 * a feature to change class of an existing lock, so we use DUPOK. 409 */ 410 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 411 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 412 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 413 so->so_rcv.sb_sel = &so->so_rdsel; 414 so->so_snd.sb_sel = &so->so_wrsel; 415 sx_init(&so->so_snd_sx, "so_snd_sx"); 416 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 417 TAILQ_INIT(&so->so_snd.sb_aiojobq); 418 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 419 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 420 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 421 #ifdef VIMAGE 422 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 423 __func__, __LINE__, so)); 424 so->so_vnet = vnet; 425 #endif 426 /* We shouldn't need the so_global_mtx */ 427 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 428 /* Do we need more comprehensive error returns? */ 429 uma_zfree(socket_zone, so); 430 return (NULL); 431 } 432 mtx_lock(&so_global_mtx); 433 so->so_gencnt = ++so_gencnt; 434 ++numopensockets; 435 #ifdef VIMAGE 436 vnet->vnet_sockcnt++; 437 #endif 438 mtx_unlock(&so_global_mtx); 439 440 return (so); 441 } 442 443 /* 444 * Free the storage associated with a socket at the socket layer, tear down 445 * locks, labels, etc. All protocol state is assumed already to have been 446 * torn down (and possibly never set up) by the caller. 447 */ 448 void 449 sodealloc(struct socket *so) 450 { 451 452 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 453 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 454 455 mtx_lock(&so_global_mtx); 456 so->so_gencnt = ++so_gencnt; 457 --numopensockets; /* Could be below, but faster here. */ 458 #ifdef VIMAGE 459 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 460 __func__, __LINE__, so)); 461 so->so_vnet->vnet_sockcnt--; 462 #endif 463 mtx_unlock(&so_global_mtx); 464 #ifdef MAC 465 mac_socket_destroy(so); 466 #endif 467 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 468 469 khelp_destroy_osd(&so->osd); 470 if (SOLISTENING(so)) { 471 if (so->sol_accept_filter != NULL) 472 accept_filt_setopt(so, NULL); 473 } else { 474 if (so->so_rcv.sb_hiwat) 475 (void)chgsbsize(so->so_cred->cr_uidinfo, 476 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 477 if (so->so_snd.sb_hiwat) 478 (void)chgsbsize(so->so_cred->cr_uidinfo, 479 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 480 sx_destroy(&so->so_snd_sx); 481 sx_destroy(&so->so_rcv_sx); 482 mtx_destroy(&so->so_snd_mtx); 483 mtx_destroy(&so->so_rcv_mtx); 484 } 485 crfree(so->so_cred); 486 mtx_destroy(&so->so_lock); 487 uma_zfree(socket_zone, so); 488 } 489 490 /* 491 * socreate returns a socket with a ref count of 1 and a file descriptor 492 * reference. The socket should be closed with soclose(). 493 */ 494 int 495 socreate(int dom, struct socket **aso, int type, int proto, 496 struct ucred *cred, struct thread *td) 497 { 498 struct protosw *prp; 499 struct socket *so; 500 int error; 501 502 /* 503 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 504 * shim until all applications have been updated. 505 */ 506 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 507 proto == IPPROTO_DIVERT)) { 508 dom = PF_DIVERT; 509 printf("%s uses obsolete way to create divert(4) socket\n", 510 td->td_proc->p_comm); 511 } 512 513 prp = pffindproto(dom, type, proto); 514 if (prp == NULL) { 515 /* No support for domain. */ 516 if (pffinddomain(dom) == NULL) 517 return (EAFNOSUPPORT); 518 /* No support for socket type. */ 519 if (proto == 0 && type != 0) 520 return (EPROTOTYPE); 521 return (EPROTONOSUPPORT); 522 } 523 524 MPASS(prp->pr_attach); 525 526 if ((prp->pr_flags & PR_CAPATTACH) == 0) { 527 if (CAP_TRACING(td)) 528 ktrcapfail(CAPFAIL_PROTO, &proto); 529 if (IN_CAPABILITY_MODE(td)) 530 return (ECAPMODE); 531 } 532 533 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 534 return (EPROTONOSUPPORT); 535 536 so = soalloc(CRED_TO_VNET(cred)); 537 if (so == NULL) 538 return (ENOBUFS); 539 540 so->so_type = type; 541 so->so_cred = crhold(cred); 542 if ((prp->pr_domain->dom_family == PF_INET) || 543 (prp->pr_domain->dom_family == PF_INET6) || 544 (prp->pr_domain->dom_family == PF_ROUTE)) 545 so->so_fibnum = td->td_proc->p_fibnum; 546 else 547 so->so_fibnum = 0; 548 so->so_proto = prp; 549 #ifdef MAC 550 mac_socket_create(cred, so); 551 #endif 552 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 553 so_rdknl_assert_lock); 554 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 555 so_wrknl_assert_lock); 556 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 557 so->so_snd.sb_mtx = &so->so_snd_mtx; 558 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 559 } 560 /* 561 * Auto-sizing of socket buffers is managed by the protocols and 562 * the appropriate flags must be set in the pru_attach function. 563 */ 564 CURVNET_SET(so->so_vnet); 565 error = prp->pr_attach(so, proto, td); 566 CURVNET_RESTORE(); 567 if (error) { 568 sodealloc(so); 569 return (error); 570 } 571 soref(so); 572 *aso = so; 573 return (0); 574 } 575 576 #ifdef REGRESSION 577 static int regression_sonewconn_earlytest = 1; 578 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 579 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 580 #endif 581 582 static int sooverprio = LOG_DEBUG; 583 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, 584 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); 585 586 static struct timeval overinterval = { 60, 0 }; 587 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 588 &overinterval, 589 "Delay in seconds between warnings for listen socket overflows"); 590 591 /* 592 * When an attempt at a new connection is noted on a socket which supports 593 * accept(2), the protocol has two options: 594 * 1) Call legacy sonewconn() function, which would call protocol attach 595 * method, same as used for socket(2). 596 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 597 * and then call solisten_enqueue(). 598 * 599 * Note: the ref count on the socket is 0 on return. 600 */ 601 struct socket * 602 solisten_clone(struct socket *head) 603 { 604 struct sbuf descrsb; 605 struct socket *so; 606 int len, overcount; 607 u_int qlen; 608 const char localprefix[] = "local:"; 609 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 610 #if defined(INET6) 611 char addrbuf[INET6_ADDRSTRLEN]; 612 #elif defined(INET) 613 char addrbuf[INET_ADDRSTRLEN]; 614 #endif 615 bool dolog, over; 616 617 SOLISTEN_LOCK(head); 618 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 619 #ifdef REGRESSION 620 if (regression_sonewconn_earlytest && over) { 621 #else 622 if (over) { 623 #endif 624 head->sol_overcount++; 625 dolog = (sooverprio >= 0) && 626 !!ratecheck(&head->sol_lastover, &overinterval); 627 628 /* 629 * If we're going to log, copy the overflow count and queue 630 * length from the listen socket before dropping the lock. 631 * Also, reset the overflow count. 632 */ 633 if (dolog) { 634 overcount = head->sol_overcount; 635 head->sol_overcount = 0; 636 qlen = head->sol_qlen; 637 } 638 SOLISTEN_UNLOCK(head); 639 640 if (dolog) { 641 /* 642 * Try to print something descriptive about the 643 * socket for the error message. 644 */ 645 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 646 SBUF_FIXEDLEN); 647 switch (head->so_proto->pr_domain->dom_family) { 648 #if defined(INET) || defined(INET6) 649 #ifdef INET 650 case AF_INET: 651 #endif 652 #ifdef INET6 653 case AF_INET6: 654 if (head->so_proto->pr_domain->dom_family == 655 AF_INET6 || 656 (sotoinpcb(head)->inp_inc.inc_flags & 657 INC_ISIPV6)) { 658 ip6_sprintf(addrbuf, 659 &sotoinpcb(head)->inp_inc.inc6_laddr); 660 sbuf_printf(&descrsb, "[%s]", addrbuf); 661 } else 662 #endif 663 { 664 #ifdef INET 665 inet_ntoa_r( 666 sotoinpcb(head)->inp_inc.inc_laddr, 667 addrbuf); 668 sbuf_cat(&descrsb, addrbuf); 669 #endif 670 } 671 sbuf_printf(&descrsb, ":%hu (proto %u)", 672 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 673 head->so_proto->pr_protocol); 674 break; 675 #endif /* INET || INET6 */ 676 case AF_UNIX: 677 sbuf_cat(&descrsb, localprefix); 678 if (sotounpcb(head)->unp_addr != NULL) 679 len = 680 sotounpcb(head)->unp_addr->sun_len - 681 offsetof(struct sockaddr_un, 682 sun_path); 683 else 684 len = 0; 685 if (len > 0) 686 sbuf_bcat(&descrsb, 687 sotounpcb(head)->unp_addr->sun_path, 688 len); 689 else 690 sbuf_cat(&descrsb, "(unknown)"); 691 break; 692 } 693 694 /* 695 * If we can't print something more specific, at least 696 * print the domain name. 697 */ 698 if (sbuf_finish(&descrsb) != 0 || 699 sbuf_len(&descrsb) <= 0) { 700 sbuf_clear(&descrsb); 701 sbuf_cat(&descrsb, 702 head->so_proto->pr_domain->dom_name ?: 703 "unknown"); 704 sbuf_finish(&descrsb); 705 } 706 KASSERT(sbuf_len(&descrsb) > 0, 707 ("%s: sbuf creation failed", __func__)); 708 /* 709 * Preserve the historic listen queue overflow log 710 * message, that starts with "sonewconn:". It has 711 * been known to sysadmins for years and also test 712 * sys/kern/sonewconn_overflow checks for it. 713 */ 714 if (head->so_cred == 0) { 715 log(LOG_PRI(sooverprio), 716 "sonewconn: pcb %p (%s): " 717 "Listen queue overflow: %i already in " 718 "queue awaiting acceptance (%d " 719 "occurrences)\n", head->so_pcb, 720 sbuf_data(&descrsb), 721 qlen, overcount); 722 } else { 723 log(LOG_PRI(sooverprio), 724 "sonewconn: pcb %p (%s): " 725 "Listen queue overflow: " 726 "%i already in queue awaiting acceptance " 727 "(%d occurrences), euid %d, rgid %d, jail %s\n", 728 head->so_pcb, sbuf_data(&descrsb), qlen, 729 overcount, head->so_cred->cr_uid, 730 head->so_cred->cr_rgid, 731 head->so_cred->cr_prison ? 732 head->so_cred->cr_prison->pr_name : 733 "not_jailed"); 734 } 735 sbuf_delete(&descrsb); 736 737 overcount = 0; 738 } 739 740 return (NULL); 741 } 742 SOLISTEN_UNLOCK(head); 743 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 744 __func__, head)); 745 so = soalloc(head->so_vnet); 746 if (so == NULL) { 747 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 748 "limit reached or out of memory\n", 749 __func__, head->so_pcb); 750 return (NULL); 751 } 752 so->so_listen = head; 753 so->so_type = head->so_type; 754 /* 755 * POSIX is ambiguous on what options an accept(2)ed socket should 756 * inherit from the listener. Words "create a new socket" may be 757 * interpreted as not inheriting anything. Best programming practice 758 * for application developers is to not rely on such inheritance. 759 * FreeBSD had historically inherited all so_options excluding 760 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, 761 * including those completely irrelevant to a new born socket. For 762 * compatibility with older versions we will inherit a list of 763 * meaningful options. 764 */ 765 so->so_options = head->so_options & (SO_KEEPALIVE | SO_DONTROUTE | 766 SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); 767 so->so_linger = head->so_linger; 768 so->so_state = head->so_state; 769 so->so_fibnum = head->so_fibnum; 770 so->so_proto = head->so_proto; 771 so->so_cred = crhold(head->so_cred); 772 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) { 773 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) { 774 sodealloc(so); 775 log(LOG_DEBUG, "%s: hhook run failed\n", __func__); 776 return (NULL); 777 } 778 } 779 #ifdef MAC 780 mac_socket_newconn(head, so); 781 #endif 782 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 783 so_rdknl_assert_lock); 784 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 785 so_wrknl_assert_lock); 786 VNET_SO_ASSERT(head); 787 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 788 sodealloc(so); 789 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 790 __func__, head->so_pcb); 791 return (NULL); 792 } 793 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 794 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 795 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 796 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 797 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 798 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 799 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 800 so->so_snd.sb_mtx = &so->so_snd_mtx; 801 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 802 } 803 804 return (so); 805 } 806 807 /* Connstatus may be 0 or SS_ISCONNECTED. */ 808 struct socket * 809 sonewconn(struct socket *head, int connstatus) 810 { 811 struct socket *so; 812 813 if ((so = solisten_clone(head)) == NULL) 814 return (NULL); 815 816 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 817 sodealloc(so); 818 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 819 __func__, head->so_pcb); 820 return (NULL); 821 } 822 823 (void)solisten_enqueue(so, connstatus); 824 825 return (so); 826 } 827 828 /* 829 * Enqueue socket cloned by solisten_clone() to the listen queue of the 830 * listener it has been cloned from. 831 * 832 * Return 'true' if socket landed on complete queue, otherwise 'false'. 833 */ 834 bool 835 solisten_enqueue(struct socket *so, int connstatus) 836 { 837 struct socket *head = so->so_listen; 838 839 MPASS(refcount_load(&so->so_count) == 0); 840 refcount_init(&so->so_count, 1); 841 842 SOLISTEN_LOCK(head); 843 if (head->sol_accept_filter != NULL) 844 connstatus = 0; 845 so->so_state |= connstatus; 846 soref(head); /* A socket on (in)complete queue refs head. */ 847 if (connstatus) { 848 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 849 so->so_qstate = SQ_COMP; 850 head->sol_qlen++; 851 solisten_wakeup(head); /* unlocks */ 852 return (true); 853 } else { 854 /* 855 * Keep removing sockets from the head until there's room for 856 * us to insert on the tail. In pre-locking revisions, this 857 * was a simple if(), but as we could be racing with other 858 * threads and soabort() requires dropping locks, we must 859 * loop waiting for the condition to be true. 860 */ 861 while (head->sol_incqlen > head->sol_qlimit) { 862 struct socket *sp; 863 864 sp = TAILQ_FIRST(&head->sol_incomp); 865 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 866 head->sol_incqlen--; 867 SOCK_LOCK(sp); 868 sp->so_qstate = SQ_NONE; 869 sp->so_listen = NULL; 870 SOCK_UNLOCK(sp); 871 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 872 soabort(sp); 873 SOLISTEN_LOCK(head); 874 } 875 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 876 so->so_qstate = SQ_INCOMP; 877 head->sol_incqlen++; 878 SOLISTEN_UNLOCK(head); 879 return (false); 880 } 881 } 882 883 #if defined(SCTP) || defined(SCTP_SUPPORT) 884 /* 885 * Socket part of sctp_peeloff(). Detach a new socket from an 886 * association. The new socket is returned with a reference. 887 * 888 * XXXGL: reduce copy-paste with solisten_clone(). 889 */ 890 struct socket * 891 sopeeloff(struct socket *head) 892 { 893 struct socket *so; 894 895 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 896 __func__, __LINE__, head)); 897 so = soalloc(head->so_vnet); 898 if (so == NULL) { 899 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 900 "limit reached or out of memory\n", 901 __func__, head->so_pcb); 902 return (NULL); 903 } 904 so->so_type = head->so_type; 905 so->so_options = head->so_options; 906 so->so_linger = head->so_linger; 907 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 908 so->so_fibnum = head->so_fibnum; 909 so->so_proto = head->so_proto; 910 so->so_cred = crhold(head->so_cred); 911 #ifdef MAC 912 mac_socket_newconn(head, so); 913 #endif 914 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 915 so_rdknl_assert_lock); 916 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 917 so_wrknl_assert_lock); 918 VNET_SO_ASSERT(head); 919 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 920 sodealloc(so); 921 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 922 __func__, head->so_pcb); 923 return (NULL); 924 } 925 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 926 sodealloc(so); 927 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 928 __func__, head->so_pcb); 929 return (NULL); 930 } 931 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 932 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 933 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 934 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 935 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 936 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 937 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 938 so->so_snd.sb_mtx = &so->so_snd_mtx; 939 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 940 } 941 942 soref(so); 943 944 return (so); 945 } 946 #endif /* SCTP */ 947 948 int 949 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 950 { 951 int error; 952 953 CURVNET_SET(so->so_vnet); 954 error = so->so_proto->pr_bind(so, nam, td); 955 CURVNET_RESTORE(); 956 return (error); 957 } 958 959 int 960 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 961 { 962 int error; 963 964 CURVNET_SET(so->so_vnet); 965 error = so->so_proto->pr_bindat(fd, so, nam, td); 966 CURVNET_RESTORE(); 967 return (error); 968 } 969 970 /* 971 * solisten() transitions a socket from a non-listening state to a listening 972 * state, but can also be used to update the listen queue depth on an 973 * existing listen socket. The protocol will call back into the sockets 974 * layer using solisten_proto_check() and solisten_proto() to check and set 975 * socket-layer listen state. Call backs are used so that the protocol can 976 * acquire both protocol and socket layer locks in whatever order is required 977 * by the protocol. 978 * 979 * Protocol implementors are advised to hold the socket lock across the 980 * socket-layer test and set to avoid races at the socket layer. 981 */ 982 int 983 solisten(struct socket *so, int backlog, struct thread *td) 984 { 985 int error; 986 987 CURVNET_SET(so->so_vnet); 988 error = so->so_proto->pr_listen(so, backlog, td); 989 CURVNET_RESTORE(); 990 return (error); 991 } 992 993 /* 994 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 995 * order to interlock with socket I/O. 996 */ 997 int 998 solisten_proto_check(struct socket *so) 999 { 1000 SOCK_LOCK_ASSERT(so); 1001 1002 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1003 SS_ISDISCONNECTING)) != 0) 1004 return (EINVAL); 1005 1006 /* 1007 * Sleeping is not permitted here, so simply fail if userspace is 1008 * attempting to transmit or receive on the socket. This kind of 1009 * transient failure is not ideal, but it should occur only if userspace 1010 * is misusing the socket interfaces. 1011 */ 1012 if (!sx_try_xlock(&so->so_snd_sx)) 1013 return (EAGAIN); 1014 if (!sx_try_xlock(&so->so_rcv_sx)) { 1015 sx_xunlock(&so->so_snd_sx); 1016 return (EAGAIN); 1017 } 1018 mtx_lock(&so->so_snd_mtx); 1019 mtx_lock(&so->so_rcv_mtx); 1020 1021 /* Interlock with soo_aio_queue() and KTLS. */ 1022 if (!SOLISTENING(so)) { 1023 bool ktls; 1024 1025 #ifdef KERN_TLS 1026 ktls = so->so_snd.sb_tls_info != NULL || 1027 so->so_rcv.sb_tls_info != NULL; 1028 #else 1029 ktls = false; 1030 #endif 1031 if (ktls || 1032 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 1033 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 1034 solisten_proto_abort(so); 1035 return (EINVAL); 1036 } 1037 } 1038 1039 return (0); 1040 } 1041 1042 /* 1043 * Undo the setup done by solisten_proto_check(). 1044 */ 1045 void 1046 solisten_proto_abort(struct socket *so) 1047 { 1048 mtx_unlock(&so->so_snd_mtx); 1049 mtx_unlock(&so->so_rcv_mtx); 1050 sx_xunlock(&so->so_snd_sx); 1051 sx_xunlock(&so->so_rcv_sx); 1052 } 1053 1054 void 1055 solisten_proto(struct socket *so, int backlog) 1056 { 1057 int sbrcv_lowat, sbsnd_lowat; 1058 u_int sbrcv_hiwat, sbsnd_hiwat; 1059 short sbrcv_flags, sbsnd_flags; 1060 sbintime_t sbrcv_timeo, sbsnd_timeo; 1061 1062 SOCK_LOCK_ASSERT(so); 1063 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1064 SS_ISDISCONNECTING)) == 0, 1065 ("%s: bad socket state %p", __func__, so)); 1066 1067 if (SOLISTENING(so)) 1068 goto listening; 1069 1070 /* 1071 * Change this socket to listening state. 1072 */ 1073 sbrcv_lowat = so->so_rcv.sb_lowat; 1074 sbsnd_lowat = so->so_snd.sb_lowat; 1075 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1076 sbsnd_hiwat = so->so_snd.sb_hiwat; 1077 sbrcv_flags = so->so_rcv.sb_flags; 1078 sbsnd_flags = so->so_snd.sb_flags; 1079 sbrcv_timeo = so->so_rcv.sb_timeo; 1080 sbsnd_timeo = so->so_snd.sb_timeo; 1081 1082 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) { 1083 sbdestroy(so, SO_SND); 1084 sbdestroy(so, SO_RCV); 1085 } 1086 1087 #ifdef INVARIANTS 1088 bzero(&so->so_rcv, 1089 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1090 #endif 1091 1092 so->sol_sbrcv_lowat = sbrcv_lowat; 1093 so->sol_sbsnd_lowat = sbsnd_lowat; 1094 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1095 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1096 so->sol_sbrcv_flags = sbrcv_flags; 1097 so->sol_sbsnd_flags = sbsnd_flags; 1098 so->sol_sbrcv_timeo = sbrcv_timeo; 1099 so->sol_sbsnd_timeo = sbsnd_timeo; 1100 1101 so->sol_qlen = so->sol_incqlen = 0; 1102 TAILQ_INIT(&so->sol_incomp); 1103 TAILQ_INIT(&so->sol_comp); 1104 1105 so->sol_accept_filter = NULL; 1106 so->sol_accept_filter_arg = NULL; 1107 so->sol_accept_filter_str = NULL; 1108 1109 so->sol_upcall = NULL; 1110 so->sol_upcallarg = NULL; 1111 1112 so->so_options |= SO_ACCEPTCONN; 1113 1114 listening: 1115 if (backlog < 0 || backlog > somaxconn) 1116 backlog = somaxconn; 1117 so->sol_qlimit = backlog; 1118 1119 mtx_unlock(&so->so_snd_mtx); 1120 mtx_unlock(&so->so_rcv_mtx); 1121 sx_xunlock(&so->so_snd_sx); 1122 sx_xunlock(&so->so_rcv_sx); 1123 } 1124 1125 /* 1126 * Wakeup listeners/subsystems once we have a complete connection. 1127 * Enters with lock, returns unlocked. 1128 */ 1129 void 1130 solisten_wakeup(struct socket *sol) 1131 { 1132 1133 if (sol->sol_upcall != NULL) 1134 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1135 else { 1136 selwakeuppri(&sol->so_rdsel, PSOCK); 1137 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1138 } 1139 SOLISTEN_UNLOCK(sol); 1140 wakeup_one(&sol->sol_comp); 1141 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1142 pgsigio(&sol->so_sigio, SIGIO, 0); 1143 } 1144 1145 /* 1146 * Return single connection off a listening socket queue. Main consumer of 1147 * the function is kern_accept4(). Some modules, that do their own accept 1148 * management also use the function. The socket reference held by the 1149 * listen queue is handed to the caller. 1150 * 1151 * Listening socket must be locked on entry and is returned unlocked on 1152 * return. 1153 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1154 */ 1155 int 1156 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1157 { 1158 struct socket *so; 1159 int error; 1160 1161 SOLISTEN_LOCK_ASSERT(head); 1162 1163 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1164 head->so_error == 0) { 1165 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1166 "accept", 0); 1167 if (error != 0) { 1168 SOLISTEN_UNLOCK(head); 1169 return (error); 1170 } 1171 } 1172 if (head->so_error) { 1173 error = head->so_error; 1174 head->so_error = 0; 1175 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1176 error = EWOULDBLOCK; 1177 else 1178 error = 0; 1179 if (error) { 1180 SOLISTEN_UNLOCK(head); 1181 return (error); 1182 } 1183 so = TAILQ_FIRST(&head->sol_comp); 1184 SOCK_LOCK(so); 1185 KASSERT(so->so_qstate == SQ_COMP, 1186 ("%s: so %p not SQ_COMP", __func__, so)); 1187 head->sol_qlen--; 1188 so->so_qstate = SQ_NONE; 1189 so->so_listen = NULL; 1190 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1191 if (flags & ACCEPT4_INHERIT) 1192 so->so_state |= (head->so_state & SS_NBIO); 1193 else 1194 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1195 SOCK_UNLOCK(so); 1196 sorele_locked(head); 1197 1198 *ret = so; 1199 return (0); 1200 } 1201 1202 /* 1203 * Free socket upon release of the very last reference. 1204 */ 1205 static void 1206 sofree(struct socket *so) 1207 { 1208 struct protosw *pr = so->so_proto; 1209 1210 SOCK_LOCK_ASSERT(so); 1211 KASSERT(refcount_load(&so->so_count) == 0, 1212 ("%s: so %p has references", __func__, so)); 1213 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1214 ("%s: so %p is on listen queue", __func__, so)); 1215 1216 SOCK_UNLOCK(so); 1217 1218 if (so->so_dtor != NULL) 1219 so->so_dtor(so); 1220 1221 VNET_SO_ASSERT(so); 1222 if (pr->pr_detach != NULL) 1223 pr->pr_detach(so); 1224 1225 /* 1226 * From this point on, we assume that no other references to this 1227 * socket exist anywhere else in the stack. Therefore, no locks need 1228 * to be acquired or held. 1229 */ 1230 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1231 sbdestroy(so, SO_SND); 1232 sbdestroy(so, SO_RCV); 1233 } 1234 seldrain(&so->so_rdsel); 1235 seldrain(&so->so_wrsel); 1236 knlist_destroy(&so->so_rdsel.si_note); 1237 knlist_destroy(&so->so_wrsel.si_note); 1238 sodealloc(so); 1239 } 1240 1241 /* 1242 * Release a reference on a socket while holding the socket lock. 1243 * Unlocks the socket lock before returning. 1244 */ 1245 void 1246 sorele_locked(struct socket *so) 1247 { 1248 SOCK_LOCK_ASSERT(so); 1249 if (refcount_release(&so->so_count)) 1250 sofree(so); 1251 else 1252 SOCK_UNLOCK(so); 1253 } 1254 1255 /* 1256 * Close a socket on last file table reference removal. Initiate disconnect 1257 * if connected. Free socket when disconnect complete. 1258 * 1259 * This function will sorele() the socket. Note that soclose() may be called 1260 * prior to the ref count reaching zero. The actual socket structure will 1261 * not be freed until the ref count reaches zero. 1262 */ 1263 int 1264 soclose(struct socket *so) 1265 { 1266 struct accept_queue lqueue; 1267 int error = 0; 1268 bool listening, last __diagused; 1269 1270 CURVNET_SET(so->so_vnet); 1271 funsetown(&so->so_sigio); 1272 if (so->so_state & SS_ISCONNECTED) { 1273 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1274 error = sodisconnect(so); 1275 if (error) { 1276 if (error == ENOTCONN) 1277 error = 0; 1278 goto drop; 1279 } 1280 } 1281 1282 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1283 if ((so->so_state & SS_ISDISCONNECTING) && 1284 (so->so_state & SS_NBIO)) 1285 goto drop; 1286 while (so->so_state & SS_ISCONNECTED) { 1287 error = tsleep(&so->so_timeo, 1288 PSOCK | PCATCH, "soclos", 1289 so->so_linger * hz); 1290 if (error) 1291 break; 1292 } 1293 } 1294 } 1295 1296 drop: 1297 if (so->so_proto->pr_close != NULL) 1298 so->so_proto->pr_close(so); 1299 1300 SOCK_LOCK(so); 1301 if ((listening = SOLISTENING(so))) { 1302 struct socket *sp; 1303 1304 TAILQ_INIT(&lqueue); 1305 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1306 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1307 1308 so->sol_qlen = so->sol_incqlen = 0; 1309 1310 TAILQ_FOREACH(sp, &lqueue, so_list) { 1311 SOCK_LOCK(sp); 1312 sp->so_qstate = SQ_NONE; 1313 sp->so_listen = NULL; 1314 SOCK_UNLOCK(sp); 1315 last = refcount_release(&so->so_count); 1316 KASSERT(!last, ("%s: released last reference for %p", 1317 __func__, so)); 1318 } 1319 } 1320 sorele_locked(so); 1321 if (listening) { 1322 struct socket *sp, *tsp; 1323 1324 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1325 soabort(sp); 1326 } 1327 CURVNET_RESTORE(); 1328 return (error); 1329 } 1330 1331 /* 1332 * soabort() is used to abruptly tear down a connection, such as when a 1333 * resource limit is reached (listen queue depth exceeded), or if a listen 1334 * socket is closed while there are sockets waiting to be accepted. 1335 * 1336 * This interface is tricky, because it is called on an unreferenced socket, 1337 * and must be called only by a thread that has actually removed the socket 1338 * from the listen queue it was on. Likely this thread holds the last 1339 * reference on the socket and soabort() will proceed with sofree(). But 1340 * it might be not the last, as the sockets on the listen queues are seen 1341 * from the protocol side. 1342 * 1343 * This interface will call into the protocol code, so must not be called 1344 * with any socket locks held. Protocols do call it while holding their own 1345 * recursible protocol mutexes, but this is something that should be subject 1346 * to review in the future. 1347 * 1348 * Usually socket should have a single reference left, but this is not a 1349 * requirement. In the past, when we have had named references for file 1350 * descriptor and protocol, we asserted that none of them are being held. 1351 */ 1352 void 1353 soabort(struct socket *so) 1354 { 1355 1356 VNET_SO_ASSERT(so); 1357 1358 if (so->so_proto->pr_abort != NULL) 1359 so->so_proto->pr_abort(so); 1360 SOCK_LOCK(so); 1361 sorele_locked(so); 1362 } 1363 1364 int 1365 soaccept(struct socket *so, struct sockaddr *sa) 1366 { 1367 #ifdef INVARIANTS 1368 u_char len = sa->sa_len; 1369 #endif 1370 int error; 1371 1372 CURVNET_SET(so->so_vnet); 1373 error = so->so_proto->pr_accept(so, sa); 1374 KASSERT(sa->sa_len <= len, 1375 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1376 CURVNET_RESTORE(); 1377 return (error); 1378 } 1379 1380 int 1381 sopeeraddr(struct socket *so, struct sockaddr *sa) 1382 { 1383 #ifdef INVARIANTS 1384 u_char len = sa->sa_len; 1385 #endif 1386 int error; 1387 1388 CURVNET_SET(so->so_vnet); 1389 error = so->so_proto->pr_peeraddr(so, sa); 1390 KASSERT(sa->sa_len <= len, 1391 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1392 CURVNET_RESTORE(); 1393 1394 return (error); 1395 } 1396 1397 int 1398 sosockaddr(struct socket *so, struct sockaddr *sa) 1399 { 1400 #ifdef INVARIANTS 1401 u_char len = sa->sa_len; 1402 #endif 1403 int error; 1404 1405 CURVNET_SET(so->so_vnet); 1406 error = so->so_proto->pr_sockaddr(so, sa); 1407 KASSERT(sa->sa_len <= len, 1408 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1409 CURVNET_RESTORE(); 1410 1411 return (error); 1412 } 1413 1414 int 1415 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1416 { 1417 1418 return (soconnectat(AT_FDCWD, so, nam, td)); 1419 } 1420 1421 int 1422 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1423 { 1424 int error; 1425 1426 CURVNET_SET(so->so_vnet); 1427 1428 /* 1429 * If protocol is connection-based, can only connect once. 1430 * Otherwise, if connected, try to disconnect first. This allows 1431 * user to disconnect by connecting to, e.g., a null address. 1432 * 1433 * Note, this check is racy and may need to be re-evaluated at the 1434 * protocol layer. 1435 */ 1436 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1437 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1438 (error = sodisconnect(so)))) { 1439 error = EISCONN; 1440 } else { 1441 /* 1442 * Prevent accumulated error from previous connection from 1443 * biting us. 1444 */ 1445 so->so_error = 0; 1446 if (fd == AT_FDCWD) { 1447 error = so->so_proto->pr_connect(so, nam, td); 1448 } else { 1449 error = so->so_proto->pr_connectat(fd, so, nam, td); 1450 } 1451 } 1452 CURVNET_RESTORE(); 1453 1454 return (error); 1455 } 1456 1457 int 1458 soconnect2(struct socket *so1, struct socket *so2) 1459 { 1460 int error; 1461 1462 CURVNET_SET(so1->so_vnet); 1463 error = so1->so_proto->pr_connect2(so1, so2); 1464 CURVNET_RESTORE(); 1465 return (error); 1466 } 1467 1468 int 1469 sodisconnect(struct socket *so) 1470 { 1471 int error; 1472 1473 if ((so->so_state & SS_ISCONNECTED) == 0) 1474 return (ENOTCONN); 1475 if (so->so_state & SS_ISDISCONNECTING) 1476 return (EALREADY); 1477 VNET_SO_ASSERT(so); 1478 error = so->so_proto->pr_disconnect(so); 1479 return (error); 1480 } 1481 1482 int 1483 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1484 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1485 { 1486 long space; 1487 ssize_t resid; 1488 int clen = 0, error, dontroute; 1489 1490 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1491 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1492 ("sosend_dgram: !PR_ATOMIC")); 1493 1494 if (uio != NULL) 1495 resid = uio->uio_resid; 1496 else 1497 resid = top->m_pkthdr.len; 1498 /* 1499 * In theory resid should be unsigned. However, space must be 1500 * signed, as it might be less than 0 if we over-committed, and we 1501 * must use a signed comparison of space and resid. On the other 1502 * hand, a negative resid causes us to loop sending 0-length 1503 * segments to the protocol. 1504 */ 1505 if (resid < 0) { 1506 error = EINVAL; 1507 goto out; 1508 } 1509 1510 dontroute = 1511 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1512 if (td != NULL) 1513 td->td_ru.ru_msgsnd++; 1514 if (control != NULL) 1515 clen = control->m_len; 1516 1517 SOCKBUF_LOCK(&so->so_snd); 1518 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1519 SOCKBUF_UNLOCK(&so->so_snd); 1520 error = EPIPE; 1521 goto out; 1522 } 1523 if (so->so_error) { 1524 error = so->so_error; 1525 so->so_error = 0; 1526 SOCKBUF_UNLOCK(&so->so_snd); 1527 goto out; 1528 } 1529 if ((so->so_state & SS_ISCONNECTED) == 0) { 1530 /* 1531 * `sendto' and `sendmsg' is allowed on a connection-based 1532 * socket if it supports implied connect. Return ENOTCONN if 1533 * not connected and no address is supplied. 1534 */ 1535 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1536 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1537 if (!(resid == 0 && clen != 0)) { 1538 SOCKBUF_UNLOCK(&so->so_snd); 1539 error = ENOTCONN; 1540 goto out; 1541 } 1542 } else if (addr == NULL) { 1543 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1544 error = ENOTCONN; 1545 else 1546 error = EDESTADDRREQ; 1547 SOCKBUF_UNLOCK(&so->so_snd); 1548 goto out; 1549 } 1550 } 1551 1552 /* 1553 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1554 * problem and need fixing. 1555 */ 1556 space = sbspace(&so->so_snd); 1557 if (flags & MSG_OOB) 1558 space += 1024; 1559 space -= clen; 1560 SOCKBUF_UNLOCK(&so->so_snd); 1561 if (resid > space) { 1562 error = EMSGSIZE; 1563 goto out; 1564 } 1565 if (uio == NULL) { 1566 resid = 0; 1567 if (flags & MSG_EOR) 1568 top->m_flags |= M_EOR; 1569 } else { 1570 /* 1571 * Copy the data from userland into a mbuf chain. 1572 * If no data is to be copied in, a single empty mbuf 1573 * is returned. 1574 */ 1575 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1576 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1577 if (top == NULL) { 1578 error = EFAULT; /* only possible error */ 1579 goto out; 1580 } 1581 space -= resid - uio->uio_resid; 1582 resid = uio->uio_resid; 1583 } 1584 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1585 /* 1586 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1587 * than with. 1588 */ 1589 if (dontroute) { 1590 SOCK_LOCK(so); 1591 so->so_options |= SO_DONTROUTE; 1592 SOCK_UNLOCK(so); 1593 } 1594 /* 1595 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1596 * of date. We could have received a reset packet in an interrupt or 1597 * maybe we slept while doing page faults in uiomove() etc. We could 1598 * probably recheck again inside the locking protection here, but 1599 * there are probably other places that this also happens. We must 1600 * rethink this. 1601 */ 1602 VNET_SO_ASSERT(so); 1603 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1604 /* 1605 * If the user set MSG_EOF, the protocol understands this flag and 1606 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1607 */ 1608 ((flags & MSG_EOF) && 1609 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1610 (resid <= 0)) ? 1611 PRUS_EOF : 1612 /* If there is more to send set PRUS_MORETOCOME */ 1613 (flags & MSG_MORETOCOME) || 1614 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1615 top, addr, control, td); 1616 if (dontroute) { 1617 SOCK_LOCK(so); 1618 so->so_options &= ~SO_DONTROUTE; 1619 SOCK_UNLOCK(so); 1620 } 1621 clen = 0; 1622 control = NULL; 1623 top = NULL; 1624 out: 1625 if (top != NULL) 1626 m_freem(top); 1627 if (control != NULL) 1628 m_freem(control); 1629 return (error); 1630 } 1631 1632 /* 1633 * Send on a socket. If send must go all at once and message is larger than 1634 * send buffering, then hard error. Lock against other senders. If must go 1635 * all at once and not enough room now, then inform user that this would 1636 * block and do nothing. Otherwise, if nonblocking, send as much as 1637 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1638 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1639 * in mbuf chain must be small enough to send all at once. 1640 * 1641 * Returns nonzero on error, timeout or signal; callers must check for short 1642 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1643 * on return. 1644 */ 1645 int 1646 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1647 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1648 { 1649 long space; 1650 ssize_t resid; 1651 int clen = 0, error, dontroute; 1652 int atomic = sosendallatonce(so) || top; 1653 int pr_send_flag; 1654 #ifdef KERN_TLS 1655 struct ktls_session *tls; 1656 int tls_enq_cnt, tls_send_flag; 1657 uint8_t tls_rtype; 1658 1659 tls = NULL; 1660 tls_rtype = TLS_RLTYPE_APP; 1661 #endif 1662 if (uio != NULL) 1663 resid = uio->uio_resid; 1664 else if ((top->m_flags & M_PKTHDR) != 0) 1665 resid = top->m_pkthdr.len; 1666 else 1667 resid = m_length(top, NULL); 1668 /* 1669 * In theory resid should be unsigned. However, space must be 1670 * signed, as it might be less than 0 if we over-committed, and we 1671 * must use a signed comparison of space and resid. On the other 1672 * hand, a negative resid causes us to loop sending 0-length 1673 * segments to the protocol. 1674 * 1675 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1676 * type sockets since that's an error. 1677 */ 1678 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1679 error = EINVAL; 1680 goto out; 1681 } 1682 1683 dontroute = 1684 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1685 (so->so_proto->pr_flags & PR_ATOMIC); 1686 if (td != NULL) 1687 td->td_ru.ru_msgsnd++; 1688 if (control != NULL) 1689 clen = control->m_len; 1690 1691 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1692 if (error) 1693 goto out; 1694 1695 #ifdef KERN_TLS 1696 tls_send_flag = 0; 1697 tls = ktls_hold(so->so_snd.sb_tls_info); 1698 if (tls != NULL) { 1699 if (tls->mode == TCP_TLS_MODE_SW) 1700 tls_send_flag = PRUS_NOTREADY; 1701 1702 if (control != NULL) { 1703 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1704 1705 if (clen >= sizeof(*cm) && 1706 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1707 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1708 clen = 0; 1709 m_freem(control); 1710 control = NULL; 1711 atomic = 1; 1712 } 1713 } 1714 1715 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1716 error = EINVAL; 1717 goto release; 1718 } 1719 } 1720 #endif 1721 1722 restart: 1723 do { 1724 SOCKBUF_LOCK(&so->so_snd); 1725 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1726 SOCKBUF_UNLOCK(&so->so_snd); 1727 error = EPIPE; 1728 goto release; 1729 } 1730 if (so->so_error) { 1731 error = so->so_error; 1732 so->so_error = 0; 1733 SOCKBUF_UNLOCK(&so->so_snd); 1734 goto release; 1735 } 1736 if ((so->so_state & SS_ISCONNECTED) == 0) { 1737 /* 1738 * `sendto' and `sendmsg' is allowed on a connection- 1739 * based socket if it supports implied connect. 1740 * Return ENOTCONN if not connected and no address is 1741 * supplied. 1742 */ 1743 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1744 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1745 if (!(resid == 0 && clen != 0)) { 1746 SOCKBUF_UNLOCK(&so->so_snd); 1747 error = ENOTCONN; 1748 goto release; 1749 } 1750 } else if (addr == NULL) { 1751 SOCKBUF_UNLOCK(&so->so_snd); 1752 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1753 error = ENOTCONN; 1754 else 1755 error = EDESTADDRREQ; 1756 goto release; 1757 } 1758 } 1759 space = sbspace(&so->so_snd); 1760 if (flags & MSG_OOB) 1761 space += 1024; 1762 if ((atomic && resid > so->so_snd.sb_hiwat) || 1763 clen > so->so_snd.sb_hiwat) { 1764 SOCKBUF_UNLOCK(&so->so_snd); 1765 error = EMSGSIZE; 1766 goto release; 1767 } 1768 if (space < resid + clen && 1769 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1770 if ((so->so_state & SS_NBIO) || 1771 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1772 SOCKBUF_UNLOCK(&so->so_snd); 1773 error = EWOULDBLOCK; 1774 goto release; 1775 } 1776 error = sbwait(so, SO_SND); 1777 SOCKBUF_UNLOCK(&so->so_snd); 1778 if (error) 1779 goto release; 1780 goto restart; 1781 } 1782 SOCKBUF_UNLOCK(&so->so_snd); 1783 space -= clen; 1784 do { 1785 if (uio == NULL) { 1786 resid = 0; 1787 if (flags & MSG_EOR) 1788 top->m_flags |= M_EOR; 1789 #ifdef KERN_TLS 1790 if (tls != NULL) { 1791 ktls_frame(top, tls, &tls_enq_cnt, 1792 tls_rtype); 1793 tls_rtype = TLS_RLTYPE_APP; 1794 } 1795 #endif 1796 } else { 1797 /* 1798 * Copy the data from userland into a mbuf 1799 * chain. If resid is 0, which can happen 1800 * only if we have control to send, then 1801 * a single empty mbuf is returned. This 1802 * is a workaround to prevent protocol send 1803 * methods to panic. 1804 */ 1805 #ifdef KERN_TLS 1806 if (tls != NULL) { 1807 top = m_uiotombuf(uio, M_WAITOK, space, 1808 tls->params.max_frame_len, 1809 M_EXTPG | 1810 ((flags & MSG_EOR) ? M_EOR : 0)); 1811 if (top != NULL) { 1812 ktls_frame(top, tls, 1813 &tls_enq_cnt, tls_rtype); 1814 } 1815 tls_rtype = TLS_RLTYPE_APP; 1816 } else 1817 #endif 1818 top = m_uiotombuf(uio, M_WAITOK, space, 1819 (atomic ? max_hdr : 0), 1820 (atomic ? M_PKTHDR : 0) | 1821 ((flags & MSG_EOR) ? M_EOR : 0)); 1822 if (top == NULL) { 1823 error = EFAULT; /* only possible error */ 1824 goto release; 1825 } 1826 space -= resid - uio->uio_resid; 1827 resid = uio->uio_resid; 1828 } 1829 if (dontroute) { 1830 SOCK_LOCK(so); 1831 so->so_options |= SO_DONTROUTE; 1832 SOCK_UNLOCK(so); 1833 } 1834 /* 1835 * XXX all the SBS_CANTSENDMORE checks previously 1836 * done could be out of date. We could have received 1837 * a reset packet in an interrupt or maybe we slept 1838 * while doing page faults in uiomove() etc. We 1839 * could probably recheck again inside the locking 1840 * protection here, but there are probably other 1841 * places that this also happens. We must rethink 1842 * this. 1843 */ 1844 VNET_SO_ASSERT(so); 1845 1846 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1847 /* 1848 * If the user set MSG_EOF, the protocol understands 1849 * this flag and nothing left to send then use 1850 * PRU_SEND_EOF instead of PRU_SEND. 1851 */ 1852 ((flags & MSG_EOF) && 1853 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1854 (resid <= 0)) ? 1855 PRUS_EOF : 1856 /* If there is more to send set PRUS_MORETOCOME. */ 1857 (flags & MSG_MORETOCOME) || 1858 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1859 1860 #ifdef KERN_TLS 1861 pr_send_flag |= tls_send_flag; 1862 #endif 1863 1864 error = so->so_proto->pr_send(so, pr_send_flag, top, 1865 addr, control, td); 1866 1867 if (dontroute) { 1868 SOCK_LOCK(so); 1869 so->so_options &= ~SO_DONTROUTE; 1870 SOCK_UNLOCK(so); 1871 } 1872 1873 #ifdef KERN_TLS 1874 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1875 if (error != 0) { 1876 m_freem(top); 1877 top = NULL; 1878 } else { 1879 soref(so); 1880 ktls_enqueue(top, so, tls_enq_cnt); 1881 } 1882 } 1883 #endif 1884 clen = 0; 1885 control = NULL; 1886 top = NULL; 1887 if (error) 1888 goto release; 1889 } while (resid && space > 0); 1890 } while (resid); 1891 1892 release: 1893 SOCK_IO_SEND_UNLOCK(so); 1894 out: 1895 #ifdef KERN_TLS 1896 if (tls != NULL) 1897 ktls_free(tls); 1898 #endif 1899 if (top != NULL) 1900 m_freem(top); 1901 if (control != NULL) 1902 m_freem(control); 1903 return (error); 1904 } 1905 1906 /* 1907 * Send to a socket from a kernel thread. 1908 * 1909 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 1910 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 1911 * to be set at all. This function should just boil down to a static inline 1912 * calling the protocol method. 1913 */ 1914 int 1915 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1916 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1917 { 1918 int error; 1919 1920 CURVNET_SET(so->so_vnet); 1921 error = so->so_proto->pr_sosend(so, addr, uio, 1922 top, control, flags, td); 1923 CURVNET_RESTORE(); 1924 return (error); 1925 } 1926 1927 /* 1928 * send(2), write(2) or aio_write(2) on a socket. 1929 */ 1930 int 1931 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1932 struct mbuf *control, int flags, struct proc *userproc) 1933 { 1934 struct thread *td; 1935 ssize_t len; 1936 int error; 1937 1938 td = uio->uio_td; 1939 len = uio->uio_resid; 1940 CURVNET_SET(so->so_vnet); 1941 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 1942 td); 1943 CURVNET_RESTORE(); 1944 if (error != 0) { 1945 /* 1946 * Clear transient errors for stream protocols if they made 1947 * some progress. Make exclusion for aio(4) that would 1948 * schedule a new write in case of EWOULDBLOCK and clear 1949 * error itself. See soaio_process_job(). 1950 */ 1951 if (uio->uio_resid != len && 1952 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 1953 userproc == NULL && 1954 (error == ERESTART || error == EINTR || 1955 error == EWOULDBLOCK)) 1956 error = 0; 1957 /* Generation of SIGPIPE can be controlled per socket. */ 1958 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 1959 (flags & MSG_NOSIGNAL) == 0) { 1960 if (userproc != NULL) { 1961 /* aio(4) job */ 1962 PROC_LOCK(userproc); 1963 kern_psignal(userproc, SIGPIPE); 1964 PROC_UNLOCK(userproc); 1965 } else { 1966 PROC_LOCK(td->td_proc); 1967 tdsignal(td, SIGPIPE); 1968 PROC_UNLOCK(td->td_proc); 1969 } 1970 } 1971 } 1972 return (error); 1973 } 1974 1975 /* 1976 * The part of soreceive() that implements reading non-inline out-of-band 1977 * data from a socket. For more complete comments, see soreceive(), from 1978 * which this code originated. 1979 * 1980 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1981 * unable to return an mbuf chain to the caller. 1982 */ 1983 static int 1984 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1985 { 1986 struct protosw *pr = so->so_proto; 1987 struct mbuf *m; 1988 int error; 1989 1990 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1991 VNET_SO_ASSERT(so); 1992 1993 m = m_get(M_WAITOK, MT_DATA); 1994 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 1995 if (error) 1996 goto bad; 1997 do { 1998 error = uiomove(mtod(m, void *), 1999 (int) min(uio->uio_resid, m->m_len), uio); 2000 m = m_free(m); 2001 } while (uio->uio_resid && error == 0 && m); 2002 bad: 2003 if (m != NULL) 2004 m_freem(m); 2005 return (error); 2006 } 2007 2008 /* 2009 * Following replacement or removal of the first mbuf on the first mbuf chain 2010 * of a socket buffer, push necessary state changes back into the socket 2011 * buffer so that other consumers see the values consistently. 'nextrecord' 2012 * is the callers locally stored value of the original value of 2013 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 2014 * NOTE: 'nextrecord' may be NULL. 2015 */ 2016 static __inline void 2017 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 2018 { 2019 2020 SOCKBUF_LOCK_ASSERT(sb); 2021 /* 2022 * First, update for the new value of nextrecord. If necessary, make 2023 * it the first record. 2024 */ 2025 if (sb->sb_mb != NULL) 2026 sb->sb_mb->m_nextpkt = nextrecord; 2027 else 2028 sb->sb_mb = nextrecord; 2029 2030 /* 2031 * Now update any dependent socket buffer fields to reflect the new 2032 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 2033 * addition of a second clause that takes care of the case where 2034 * sb_mb has been updated, but remains the last record. 2035 */ 2036 if (sb->sb_mb == NULL) { 2037 sb->sb_mbtail = NULL; 2038 sb->sb_lastrecord = NULL; 2039 } else if (sb->sb_mb->m_nextpkt == NULL) 2040 sb->sb_lastrecord = sb->sb_mb; 2041 } 2042 2043 /* 2044 * Implement receive operations on a socket. We depend on the way that 2045 * records are added to the sockbuf by sbappend. In particular, each record 2046 * (mbufs linked through m_next) must begin with an address if the protocol 2047 * so specifies, followed by an optional mbuf or mbufs containing ancillary 2048 * data, and then zero or more mbufs of data. In order to allow parallelism 2049 * between network receive and copying to user space, as well as avoid 2050 * sleeping with a mutex held, we release the socket buffer mutex during the 2051 * user space copy. Although the sockbuf is locked, new data may still be 2052 * appended, and thus we must maintain consistency of the sockbuf during that 2053 * time. 2054 * 2055 * The caller may receive the data as a single mbuf chain by supplying an 2056 * mbuf **mp0 for use in returning the chain. The uio is then used only for 2057 * the count in uio_resid. 2058 */ 2059 int 2060 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 2061 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2062 { 2063 struct mbuf *m, **mp; 2064 int flags, error, offset; 2065 ssize_t len; 2066 struct protosw *pr = so->so_proto; 2067 struct mbuf *nextrecord; 2068 int moff, type = 0; 2069 ssize_t orig_resid = uio->uio_resid; 2070 bool report_real_len = false; 2071 2072 mp = mp0; 2073 if (psa != NULL) 2074 *psa = NULL; 2075 if (controlp != NULL) 2076 *controlp = NULL; 2077 if (flagsp != NULL) { 2078 report_real_len = *flagsp & MSG_TRUNC; 2079 *flagsp &= ~MSG_TRUNC; 2080 flags = *flagsp &~ MSG_EOR; 2081 } else 2082 flags = 0; 2083 if (flags & MSG_OOB) 2084 return (soreceive_rcvoob(so, uio, flags)); 2085 if (mp != NULL) 2086 *mp = NULL; 2087 2088 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2089 if (error) 2090 return (error); 2091 2092 restart: 2093 SOCKBUF_LOCK(&so->so_rcv); 2094 m = so->so_rcv.sb_mb; 2095 /* 2096 * If we have less data than requested, block awaiting more (subject 2097 * to any timeout) if: 2098 * 1. the current count is less than the low water mark, or 2099 * 2. MSG_DONTWAIT is not set 2100 */ 2101 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2102 sbavail(&so->so_rcv) < uio->uio_resid) && 2103 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2104 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2105 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2106 ("receive: m == %p sbavail == %u", 2107 m, sbavail(&so->so_rcv))); 2108 if (so->so_error || so->so_rerror) { 2109 if (m != NULL) 2110 goto dontblock; 2111 if (so->so_error) 2112 error = so->so_error; 2113 else 2114 error = so->so_rerror; 2115 if ((flags & MSG_PEEK) == 0) { 2116 if (so->so_error) 2117 so->so_error = 0; 2118 else 2119 so->so_rerror = 0; 2120 } 2121 SOCKBUF_UNLOCK(&so->so_rcv); 2122 goto release; 2123 } 2124 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2125 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2126 if (m != NULL) 2127 goto dontblock; 2128 #ifdef KERN_TLS 2129 else if (so->so_rcv.sb_tlsdcc == 0 && 2130 so->so_rcv.sb_tlscc == 0) { 2131 #else 2132 else { 2133 #endif 2134 SOCKBUF_UNLOCK(&so->so_rcv); 2135 goto release; 2136 } 2137 } 2138 for (; m != NULL; m = m->m_next) 2139 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2140 m = so->so_rcv.sb_mb; 2141 goto dontblock; 2142 } 2143 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2144 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2145 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2146 SOCKBUF_UNLOCK(&so->so_rcv); 2147 error = ENOTCONN; 2148 goto release; 2149 } 2150 if (uio->uio_resid == 0 && !report_real_len) { 2151 SOCKBUF_UNLOCK(&so->so_rcv); 2152 goto release; 2153 } 2154 if ((so->so_state & SS_NBIO) || 2155 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2156 SOCKBUF_UNLOCK(&so->so_rcv); 2157 error = EWOULDBLOCK; 2158 goto release; 2159 } 2160 SBLASTRECORDCHK(&so->so_rcv); 2161 SBLASTMBUFCHK(&so->so_rcv); 2162 error = sbwait(so, SO_RCV); 2163 SOCKBUF_UNLOCK(&so->so_rcv); 2164 if (error) 2165 goto release; 2166 goto restart; 2167 } 2168 dontblock: 2169 /* 2170 * From this point onward, we maintain 'nextrecord' as a cache of the 2171 * pointer to the next record in the socket buffer. We must keep the 2172 * various socket buffer pointers and local stack versions of the 2173 * pointers in sync, pushing out modifications before dropping the 2174 * socket buffer mutex, and re-reading them when picking it up. 2175 * 2176 * Otherwise, we will race with the network stack appending new data 2177 * or records onto the socket buffer by using inconsistent/stale 2178 * versions of the field, possibly resulting in socket buffer 2179 * corruption. 2180 * 2181 * By holding the high-level sblock(), we prevent simultaneous 2182 * readers from pulling off the front of the socket buffer. 2183 */ 2184 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2185 if (uio->uio_td) 2186 uio->uio_td->td_ru.ru_msgrcv++; 2187 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2188 SBLASTRECORDCHK(&so->so_rcv); 2189 SBLASTMBUFCHK(&so->so_rcv); 2190 nextrecord = m->m_nextpkt; 2191 if (pr->pr_flags & PR_ADDR) { 2192 KASSERT(m->m_type == MT_SONAME, 2193 ("m->m_type == %d", m->m_type)); 2194 orig_resid = 0; 2195 if (psa != NULL) 2196 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2197 M_NOWAIT); 2198 if (flags & MSG_PEEK) { 2199 m = m->m_next; 2200 } else { 2201 sbfree(&so->so_rcv, m); 2202 so->so_rcv.sb_mb = m_free(m); 2203 m = so->so_rcv.sb_mb; 2204 sockbuf_pushsync(&so->so_rcv, nextrecord); 2205 } 2206 } 2207 2208 /* 2209 * Process one or more MT_CONTROL mbufs present before any data mbufs 2210 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2211 * just copy the data; if !MSG_PEEK, we call into the protocol to 2212 * perform externalization (or freeing if controlp == NULL). 2213 */ 2214 if (m != NULL && m->m_type == MT_CONTROL) { 2215 struct mbuf *cm = NULL, *cmn; 2216 struct mbuf **cme = &cm; 2217 #ifdef KERN_TLS 2218 struct cmsghdr *cmsg; 2219 struct tls_get_record tgr; 2220 2221 /* 2222 * For MSG_TLSAPPDATA, check for an alert record. 2223 * If found, return ENXIO without removing 2224 * it from the receive queue. This allows a subsequent 2225 * call without MSG_TLSAPPDATA to receive it. 2226 * Note that, for TLS, there should only be a single 2227 * control mbuf with the TLS_GET_RECORD message in it. 2228 */ 2229 if (flags & MSG_TLSAPPDATA) { 2230 cmsg = mtod(m, struct cmsghdr *); 2231 if (cmsg->cmsg_type == TLS_GET_RECORD && 2232 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2233 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2234 if (__predict_false(tgr.tls_type == 2235 TLS_RLTYPE_ALERT)) { 2236 SOCKBUF_UNLOCK(&so->so_rcv); 2237 error = ENXIO; 2238 goto release; 2239 } 2240 } 2241 } 2242 #endif 2243 2244 do { 2245 if (flags & MSG_PEEK) { 2246 if (controlp != NULL) { 2247 *controlp = m_copym(m, 0, m->m_len, 2248 M_NOWAIT); 2249 controlp = &(*controlp)->m_next; 2250 } 2251 m = m->m_next; 2252 } else { 2253 sbfree(&so->so_rcv, m); 2254 so->so_rcv.sb_mb = m->m_next; 2255 m->m_next = NULL; 2256 *cme = m; 2257 cme = &(*cme)->m_next; 2258 m = so->so_rcv.sb_mb; 2259 } 2260 } while (m != NULL && m->m_type == MT_CONTROL); 2261 if ((flags & MSG_PEEK) == 0) 2262 sockbuf_pushsync(&so->so_rcv, nextrecord); 2263 while (cm != NULL) { 2264 cmn = cm->m_next; 2265 cm->m_next = NULL; 2266 if (pr->pr_domain->dom_externalize != NULL) { 2267 SOCKBUF_UNLOCK(&so->so_rcv); 2268 VNET_SO_ASSERT(so); 2269 error = (*pr->pr_domain->dom_externalize) 2270 (cm, controlp, flags); 2271 SOCKBUF_LOCK(&so->so_rcv); 2272 } else if (controlp != NULL) 2273 *controlp = cm; 2274 else 2275 m_freem(cm); 2276 if (controlp != NULL) { 2277 while (*controlp != NULL) 2278 controlp = &(*controlp)->m_next; 2279 } 2280 cm = cmn; 2281 } 2282 if (m != NULL) 2283 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2284 else 2285 nextrecord = so->so_rcv.sb_mb; 2286 orig_resid = 0; 2287 } 2288 if (m != NULL) { 2289 if ((flags & MSG_PEEK) == 0) { 2290 KASSERT(m->m_nextpkt == nextrecord, 2291 ("soreceive: post-control, nextrecord !sync")); 2292 if (nextrecord == NULL) { 2293 KASSERT(so->so_rcv.sb_mb == m, 2294 ("soreceive: post-control, sb_mb!=m")); 2295 KASSERT(so->so_rcv.sb_lastrecord == m, 2296 ("soreceive: post-control, lastrecord!=m")); 2297 } 2298 } 2299 type = m->m_type; 2300 if (type == MT_OOBDATA) 2301 flags |= MSG_OOB; 2302 } else { 2303 if ((flags & MSG_PEEK) == 0) { 2304 KASSERT(so->so_rcv.sb_mb == nextrecord, 2305 ("soreceive: sb_mb != nextrecord")); 2306 if (so->so_rcv.sb_mb == NULL) { 2307 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2308 ("soreceive: sb_lastercord != NULL")); 2309 } 2310 } 2311 } 2312 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2313 SBLASTRECORDCHK(&so->so_rcv); 2314 SBLASTMBUFCHK(&so->so_rcv); 2315 2316 /* 2317 * Now continue to read any data mbufs off of the head of the socket 2318 * buffer until the read request is satisfied. Note that 'type' is 2319 * used to store the type of any mbuf reads that have happened so far 2320 * such that soreceive() can stop reading if the type changes, which 2321 * causes soreceive() to return only one of regular data and inline 2322 * out-of-band data in a single socket receive operation. 2323 */ 2324 moff = 0; 2325 offset = 0; 2326 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2327 && error == 0) { 2328 /* 2329 * If the type of mbuf has changed since the last mbuf 2330 * examined ('type'), end the receive operation. 2331 */ 2332 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2333 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2334 if (type != m->m_type) 2335 break; 2336 } else if (type == MT_OOBDATA) 2337 break; 2338 else 2339 KASSERT(m->m_type == MT_DATA, 2340 ("m->m_type == %d", m->m_type)); 2341 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2342 len = uio->uio_resid; 2343 if (so->so_oobmark && len > so->so_oobmark - offset) 2344 len = so->so_oobmark - offset; 2345 if (len > m->m_len - moff) 2346 len = m->m_len - moff; 2347 /* 2348 * If mp is set, just pass back the mbufs. Otherwise copy 2349 * them out via the uio, then free. Sockbuf must be 2350 * consistent here (points to current mbuf, it points to next 2351 * record) when we drop priority; we must note any additions 2352 * to the sockbuf when we block interrupts again. 2353 */ 2354 if (mp == NULL) { 2355 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2356 SBLASTRECORDCHK(&so->so_rcv); 2357 SBLASTMBUFCHK(&so->so_rcv); 2358 SOCKBUF_UNLOCK(&so->so_rcv); 2359 if ((m->m_flags & M_EXTPG) != 0) 2360 error = m_unmapped_uiomove(m, moff, uio, 2361 (int)len); 2362 else 2363 error = uiomove(mtod(m, char *) + moff, 2364 (int)len, uio); 2365 SOCKBUF_LOCK(&so->so_rcv); 2366 if (error) { 2367 /* 2368 * The MT_SONAME mbuf has already been removed 2369 * from the record, so it is necessary to 2370 * remove the data mbufs, if any, to preserve 2371 * the invariant in the case of PR_ADDR that 2372 * requires MT_SONAME mbufs at the head of 2373 * each record. 2374 */ 2375 if (pr->pr_flags & PR_ATOMIC && 2376 ((flags & MSG_PEEK) == 0)) 2377 (void)sbdroprecord_locked(&so->so_rcv); 2378 SOCKBUF_UNLOCK(&so->so_rcv); 2379 goto release; 2380 } 2381 } else 2382 uio->uio_resid -= len; 2383 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2384 if (len == m->m_len - moff) { 2385 if (m->m_flags & M_EOR) 2386 flags |= MSG_EOR; 2387 if (flags & MSG_PEEK) { 2388 m = m->m_next; 2389 moff = 0; 2390 } else { 2391 nextrecord = m->m_nextpkt; 2392 sbfree(&so->so_rcv, m); 2393 if (mp != NULL) { 2394 m->m_nextpkt = NULL; 2395 *mp = m; 2396 mp = &m->m_next; 2397 so->so_rcv.sb_mb = m = m->m_next; 2398 *mp = NULL; 2399 } else { 2400 so->so_rcv.sb_mb = m_free(m); 2401 m = so->so_rcv.sb_mb; 2402 } 2403 sockbuf_pushsync(&so->so_rcv, nextrecord); 2404 SBLASTRECORDCHK(&so->so_rcv); 2405 SBLASTMBUFCHK(&so->so_rcv); 2406 } 2407 } else { 2408 if (flags & MSG_PEEK) 2409 moff += len; 2410 else { 2411 if (mp != NULL) { 2412 if (flags & MSG_DONTWAIT) { 2413 *mp = m_copym(m, 0, len, 2414 M_NOWAIT); 2415 if (*mp == NULL) { 2416 /* 2417 * m_copym() couldn't 2418 * allocate an mbuf. 2419 * Adjust uio_resid back 2420 * (it was adjusted 2421 * down by len bytes, 2422 * which we didn't end 2423 * up "copying" over). 2424 */ 2425 uio->uio_resid += len; 2426 break; 2427 } 2428 } else { 2429 SOCKBUF_UNLOCK(&so->so_rcv); 2430 *mp = m_copym(m, 0, len, 2431 M_WAITOK); 2432 SOCKBUF_LOCK(&so->so_rcv); 2433 } 2434 } 2435 sbcut_locked(&so->so_rcv, len); 2436 } 2437 } 2438 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2439 if (so->so_oobmark) { 2440 if ((flags & MSG_PEEK) == 0) { 2441 so->so_oobmark -= len; 2442 if (so->so_oobmark == 0) { 2443 so->so_rcv.sb_state |= SBS_RCVATMARK; 2444 break; 2445 } 2446 } else { 2447 offset += len; 2448 if (offset == so->so_oobmark) 2449 break; 2450 } 2451 } 2452 if (flags & MSG_EOR) 2453 break; 2454 /* 2455 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2456 * must not quit until "uio->uio_resid == 0" or an error 2457 * termination. If a signal/timeout occurs, return with a 2458 * short count but without error. Keep sockbuf locked 2459 * against other readers. 2460 */ 2461 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2462 !sosendallatonce(so) && nextrecord == NULL) { 2463 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2464 if (so->so_error || so->so_rerror || 2465 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2466 break; 2467 /* 2468 * Notify the protocol that some data has been 2469 * drained before blocking. 2470 */ 2471 if (pr->pr_flags & PR_WANTRCVD) { 2472 SOCKBUF_UNLOCK(&so->so_rcv); 2473 VNET_SO_ASSERT(so); 2474 pr->pr_rcvd(so, flags); 2475 SOCKBUF_LOCK(&so->so_rcv); 2476 if (__predict_false(so->so_rcv.sb_mb == NULL && 2477 (so->so_error || so->so_rerror || 2478 so->so_rcv.sb_state & SBS_CANTRCVMORE))) 2479 break; 2480 } 2481 SBLASTRECORDCHK(&so->so_rcv); 2482 SBLASTMBUFCHK(&so->so_rcv); 2483 /* 2484 * We could receive some data while was notifying 2485 * the protocol. Skip blocking in this case. 2486 */ 2487 if (so->so_rcv.sb_mb == NULL) { 2488 error = sbwait(so, SO_RCV); 2489 if (error) { 2490 SOCKBUF_UNLOCK(&so->so_rcv); 2491 goto release; 2492 } 2493 } 2494 m = so->so_rcv.sb_mb; 2495 if (m != NULL) 2496 nextrecord = m->m_nextpkt; 2497 } 2498 } 2499 2500 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2501 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2502 if (report_real_len) 2503 uio->uio_resid -= m_length(m, NULL) - moff; 2504 flags |= MSG_TRUNC; 2505 if ((flags & MSG_PEEK) == 0) 2506 (void) sbdroprecord_locked(&so->so_rcv); 2507 } 2508 if ((flags & MSG_PEEK) == 0) { 2509 if (m == NULL) { 2510 /* 2511 * First part is an inline SB_EMPTY_FIXUP(). Second 2512 * part makes sure sb_lastrecord is up-to-date if 2513 * there is still data in the socket buffer. 2514 */ 2515 so->so_rcv.sb_mb = nextrecord; 2516 if (so->so_rcv.sb_mb == NULL) { 2517 so->so_rcv.sb_mbtail = NULL; 2518 so->so_rcv.sb_lastrecord = NULL; 2519 } else if (nextrecord->m_nextpkt == NULL) 2520 so->so_rcv.sb_lastrecord = nextrecord; 2521 } 2522 SBLASTRECORDCHK(&so->so_rcv); 2523 SBLASTMBUFCHK(&so->so_rcv); 2524 /* 2525 * If soreceive() is being done from the socket callback, 2526 * then don't need to generate ACK to peer to update window, 2527 * since ACK will be generated on return to TCP. 2528 */ 2529 if (!(flags & MSG_SOCALLBCK) && 2530 (pr->pr_flags & PR_WANTRCVD)) { 2531 SOCKBUF_UNLOCK(&so->so_rcv); 2532 VNET_SO_ASSERT(so); 2533 pr->pr_rcvd(so, flags); 2534 SOCKBUF_LOCK(&so->so_rcv); 2535 } 2536 } 2537 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2538 if (orig_resid == uio->uio_resid && orig_resid && 2539 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2540 SOCKBUF_UNLOCK(&so->so_rcv); 2541 goto restart; 2542 } 2543 SOCKBUF_UNLOCK(&so->so_rcv); 2544 2545 if (flagsp != NULL) 2546 *flagsp |= flags; 2547 release: 2548 SOCK_IO_RECV_UNLOCK(so); 2549 return (error); 2550 } 2551 2552 /* 2553 * Optimized version of soreceive() for stream (TCP) sockets. 2554 */ 2555 int 2556 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2557 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2558 { 2559 int len = 0, error = 0, flags, oresid; 2560 struct sockbuf *sb; 2561 struct mbuf *m, *n = NULL; 2562 2563 /* We only do stream sockets. */ 2564 if (so->so_type != SOCK_STREAM) 2565 return (EINVAL); 2566 if (psa != NULL) 2567 *psa = NULL; 2568 if (flagsp != NULL) 2569 flags = *flagsp &~ MSG_EOR; 2570 else 2571 flags = 0; 2572 if (controlp != NULL) 2573 *controlp = NULL; 2574 if (flags & MSG_OOB) 2575 return (soreceive_rcvoob(so, uio, flags)); 2576 if (mp0 != NULL) 2577 *mp0 = NULL; 2578 2579 sb = &so->so_rcv; 2580 2581 #ifdef KERN_TLS 2582 /* 2583 * KTLS store TLS records as records with a control message to 2584 * describe the framing. 2585 * 2586 * We check once here before acquiring locks to optimize the 2587 * common case. 2588 */ 2589 if (sb->sb_tls_info != NULL) 2590 return (soreceive_generic(so, psa, uio, mp0, controlp, 2591 flagsp)); 2592 #endif 2593 2594 /* Prevent other readers from entering the socket. */ 2595 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2596 if (error) 2597 return (error); 2598 SOCKBUF_LOCK(sb); 2599 2600 #ifdef KERN_TLS 2601 if (sb->sb_tls_info != NULL) { 2602 SOCKBUF_UNLOCK(sb); 2603 SOCK_IO_RECV_UNLOCK(so); 2604 return (soreceive_generic(so, psa, uio, mp0, controlp, 2605 flagsp)); 2606 } 2607 #endif 2608 2609 /* Easy one, no space to copyout anything. */ 2610 if (uio->uio_resid == 0) { 2611 error = EINVAL; 2612 goto out; 2613 } 2614 oresid = uio->uio_resid; 2615 2616 /* We will never ever get anything unless we are or were connected. */ 2617 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2618 error = ENOTCONN; 2619 goto out; 2620 } 2621 2622 restart: 2623 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2624 2625 /* Abort if socket has reported problems. */ 2626 if (so->so_error) { 2627 if (sbavail(sb) > 0) 2628 goto deliver; 2629 if (oresid > uio->uio_resid) 2630 goto out; 2631 error = so->so_error; 2632 if (!(flags & MSG_PEEK)) 2633 so->so_error = 0; 2634 goto out; 2635 } 2636 2637 /* Door is closed. Deliver what is left, if any. */ 2638 if (sb->sb_state & SBS_CANTRCVMORE) { 2639 if (sbavail(sb) > 0) 2640 goto deliver; 2641 else 2642 goto out; 2643 } 2644 2645 /* Socket buffer is empty and we shall not block. */ 2646 if (sbavail(sb) == 0 && 2647 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2648 error = EAGAIN; 2649 goto out; 2650 } 2651 2652 /* Socket buffer got some data that we shall deliver now. */ 2653 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2654 ((so->so_state & SS_NBIO) || 2655 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2656 sbavail(sb) >= sb->sb_lowat || 2657 sbavail(sb) >= uio->uio_resid || 2658 sbavail(sb) >= sb->sb_hiwat) ) { 2659 goto deliver; 2660 } 2661 2662 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2663 if ((flags & MSG_WAITALL) && 2664 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2665 goto deliver; 2666 2667 /* 2668 * Wait and block until (more) data comes in. 2669 * NB: Drops the sockbuf lock during wait. 2670 */ 2671 error = sbwait(so, SO_RCV); 2672 if (error) 2673 goto out; 2674 goto restart; 2675 2676 deliver: 2677 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2678 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2679 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2680 2681 /* Statistics. */ 2682 if (uio->uio_td) 2683 uio->uio_td->td_ru.ru_msgrcv++; 2684 2685 /* Fill uio until full or current end of socket buffer is reached. */ 2686 len = min(uio->uio_resid, sbavail(sb)); 2687 if (mp0 != NULL) { 2688 /* Dequeue as many mbufs as possible. */ 2689 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2690 if (*mp0 == NULL) 2691 *mp0 = sb->sb_mb; 2692 else 2693 m_cat(*mp0, sb->sb_mb); 2694 for (m = sb->sb_mb; 2695 m != NULL && m->m_len <= len; 2696 m = m->m_next) { 2697 KASSERT(!(m->m_flags & M_NOTAVAIL), 2698 ("%s: m %p not available", __func__, m)); 2699 len -= m->m_len; 2700 uio->uio_resid -= m->m_len; 2701 sbfree(sb, m); 2702 n = m; 2703 } 2704 n->m_next = NULL; 2705 sb->sb_mb = m; 2706 sb->sb_lastrecord = sb->sb_mb; 2707 if (sb->sb_mb == NULL) 2708 SB_EMPTY_FIXUP(sb); 2709 } 2710 /* Copy the remainder. */ 2711 if (len > 0) { 2712 KASSERT(sb->sb_mb != NULL, 2713 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2714 2715 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2716 if (m == NULL) 2717 len = 0; /* Don't flush data from sockbuf. */ 2718 else 2719 uio->uio_resid -= len; 2720 if (*mp0 != NULL) 2721 m_cat(*mp0, m); 2722 else 2723 *mp0 = m; 2724 if (*mp0 == NULL) { 2725 error = ENOBUFS; 2726 goto out; 2727 } 2728 } 2729 } else { 2730 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2731 SOCKBUF_UNLOCK(sb); 2732 error = m_mbuftouio(uio, sb->sb_mb, len); 2733 SOCKBUF_LOCK(sb); 2734 if (error) 2735 goto out; 2736 } 2737 SBLASTRECORDCHK(sb); 2738 SBLASTMBUFCHK(sb); 2739 2740 /* 2741 * Remove the delivered data from the socket buffer unless we 2742 * were only peeking. 2743 */ 2744 if (!(flags & MSG_PEEK)) { 2745 if (len > 0) 2746 sbdrop_locked(sb, len); 2747 2748 /* Notify protocol that we drained some data. */ 2749 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2750 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2751 !(flags & MSG_SOCALLBCK))) { 2752 SOCKBUF_UNLOCK(sb); 2753 VNET_SO_ASSERT(so); 2754 so->so_proto->pr_rcvd(so, flags); 2755 SOCKBUF_LOCK(sb); 2756 } 2757 } 2758 2759 /* 2760 * For MSG_WAITALL we may have to loop again and wait for 2761 * more data to come in. 2762 */ 2763 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2764 goto restart; 2765 out: 2766 SBLASTRECORDCHK(sb); 2767 SBLASTMBUFCHK(sb); 2768 SOCKBUF_UNLOCK(sb); 2769 SOCK_IO_RECV_UNLOCK(so); 2770 return (error); 2771 } 2772 2773 /* 2774 * Optimized version of soreceive() for simple datagram cases from userspace. 2775 * Unlike in the stream case, we're able to drop a datagram if copyout() 2776 * fails, and because we handle datagrams atomically, we don't need to use a 2777 * sleep lock to prevent I/O interlacing. 2778 */ 2779 int 2780 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2781 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2782 { 2783 struct mbuf *m, *m2; 2784 int flags, error; 2785 ssize_t len; 2786 struct protosw *pr = so->so_proto; 2787 struct mbuf *nextrecord; 2788 2789 if (psa != NULL) 2790 *psa = NULL; 2791 if (controlp != NULL) 2792 *controlp = NULL; 2793 if (flagsp != NULL) 2794 flags = *flagsp &~ MSG_EOR; 2795 else 2796 flags = 0; 2797 2798 /* 2799 * For any complicated cases, fall back to the full 2800 * soreceive_generic(). 2801 */ 2802 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2803 return (soreceive_generic(so, psa, uio, mp0, controlp, 2804 flagsp)); 2805 2806 /* 2807 * Enforce restrictions on use. 2808 */ 2809 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2810 ("soreceive_dgram: wantrcvd")); 2811 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2812 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2813 ("soreceive_dgram: SBS_RCVATMARK")); 2814 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2815 ("soreceive_dgram: P_CONNREQUIRED")); 2816 2817 /* 2818 * Loop blocking while waiting for a datagram. 2819 */ 2820 SOCKBUF_LOCK(&so->so_rcv); 2821 while ((m = so->so_rcv.sb_mb) == NULL) { 2822 KASSERT(sbavail(&so->so_rcv) == 0, 2823 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2824 sbavail(&so->so_rcv))); 2825 if (so->so_error) { 2826 error = so->so_error; 2827 so->so_error = 0; 2828 SOCKBUF_UNLOCK(&so->so_rcv); 2829 return (error); 2830 } 2831 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2832 uio->uio_resid == 0) { 2833 SOCKBUF_UNLOCK(&so->so_rcv); 2834 return (0); 2835 } 2836 if ((so->so_state & SS_NBIO) || 2837 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2838 SOCKBUF_UNLOCK(&so->so_rcv); 2839 return (EWOULDBLOCK); 2840 } 2841 SBLASTRECORDCHK(&so->so_rcv); 2842 SBLASTMBUFCHK(&so->so_rcv); 2843 error = sbwait(so, SO_RCV); 2844 if (error) { 2845 SOCKBUF_UNLOCK(&so->so_rcv); 2846 return (error); 2847 } 2848 } 2849 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2850 2851 if (uio->uio_td) 2852 uio->uio_td->td_ru.ru_msgrcv++; 2853 SBLASTRECORDCHK(&so->so_rcv); 2854 SBLASTMBUFCHK(&so->so_rcv); 2855 nextrecord = m->m_nextpkt; 2856 if (nextrecord == NULL) { 2857 KASSERT(so->so_rcv.sb_lastrecord == m, 2858 ("soreceive_dgram: lastrecord != m")); 2859 } 2860 2861 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2862 ("soreceive_dgram: m_nextpkt != nextrecord")); 2863 2864 /* 2865 * Pull 'm' and its chain off the front of the packet queue. 2866 */ 2867 so->so_rcv.sb_mb = NULL; 2868 sockbuf_pushsync(&so->so_rcv, nextrecord); 2869 2870 /* 2871 * Walk 'm's chain and free that many bytes from the socket buffer. 2872 */ 2873 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2874 sbfree(&so->so_rcv, m2); 2875 2876 /* 2877 * Do a few last checks before we let go of the lock. 2878 */ 2879 SBLASTRECORDCHK(&so->so_rcv); 2880 SBLASTMBUFCHK(&so->so_rcv); 2881 SOCKBUF_UNLOCK(&so->so_rcv); 2882 2883 if (pr->pr_flags & PR_ADDR) { 2884 KASSERT(m->m_type == MT_SONAME, 2885 ("m->m_type == %d", m->m_type)); 2886 if (psa != NULL) 2887 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2888 M_WAITOK); 2889 m = m_free(m); 2890 } 2891 KASSERT(m, ("%s: no data or control after soname", __func__)); 2892 2893 /* 2894 * Packet to copyout() is now in 'm' and it is disconnected from the 2895 * queue. 2896 * 2897 * Process one or more MT_CONTROL mbufs present before any data mbufs 2898 * in the first mbuf chain on the socket buffer. We call into the 2899 * protocol to perform externalization (or freeing if controlp == 2900 * NULL). In some cases there can be only MT_CONTROL mbufs without 2901 * MT_DATA mbufs. 2902 */ 2903 if (m->m_type == MT_CONTROL) { 2904 struct mbuf *cm = NULL, *cmn; 2905 struct mbuf **cme = &cm; 2906 2907 do { 2908 m2 = m->m_next; 2909 m->m_next = NULL; 2910 *cme = m; 2911 cme = &(*cme)->m_next; 2912 m = m2; 2913 } while (m != NULL && m->m_type == MT_CONTROL); 2914 while (cm != NULL) { 2915 cmn = cm->m_next; 2916 cm->m_next = NULL; 2917 if (pr->pr_domain->dom_externalize != NULL) { 2918 error = (*pr->pr_domain->dom_externalize) 2919 (cm, controlp, flags); 2920 } else if (controlp != NULL) 2921 *controlp = cm; 2922 else 2923 m_freem(cm); 2924 if (controlp != NULL) { 2925 while (*controlp != NULL) 2926 controlp = &(*controlp)->m_next; 2927 } 2928 cm = cmn; 2929 } 2930 } 2931 KASSERT(m == NULL || m->m_type == MT_DATA, 2932 ("soreceive_dgram: !data")); 2933 while (m != NULL && uio->uio_resid > 0) { 2934 len = uio->uio_resid; 2935 if (len > m->m_len) 2936 len = m->m_len; 2937 error = uiomove(mtod(m, char *), (int)len, uio); 2938 if (error) { 2939 m_freem(m); 2940 return (error); 2941 } 2942 if (len == m->m_len) 2943 m = m_free(m); 2944 else { 2945 m->m_data += len; 2946 m->m_len -= len; 2947 } 2948 } 2949 if (m != NULL) { 2950 flags |= MSG_TRUNC; 2951 m_freem(m); 2952 } 2953 if (flagsp != NULL) 2954 *flagsp |= flags; 2955 return (0); 2956 } 2957 2958 int 2959 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2960 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2961 { 2962 int error; 2963 2964 CURVNET_SET(so->so_vnet); 2965 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2966 CURVNET_RESTORE(); 2967 return (error); 2968 } 2969 2970 int 2971 soshutdown(struct socket *so, enum shutdown_how how) 2972 { 2973 int error; 2974 2975 CURVNET_SET(so->so_vnet); 2976 error = so->so_proto->pr_shutdown(so, how); 2977 CURVNET_RESTORE(); 2978 2979 return (error); 2980 } 2981 2982 /* 2983 * Used by several pr_shutdown implementations that use generic socket buffers. 2984 */ 2985 void 2986 sorflush(struct socket *so) 2987 { 2988 int error; 2989 2990 VNET_SO_ASSERT(so); 2991 2992 /* 2993 * Dislodge threads currently blocked in receive and wait to acquire 2994 * a lock against other simultaneous readers before clearing the 2995 * socket buffer. Don't let our acquire be interrupted by a signal 2996 * despite any existing socket disposition on interruptable waiting. 2997 * 2998 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive 2999 * methods that read the top of the socket buffer without acquisition 3000 * of the socket buffer mutex, assuming that top of the buffer 3001 * exclusively belongs to the read(2) syscall. This is handy when 3002 * performing MSG_PEEK. 3003 */ 3004 socantrcvmore(so); 3005 3006 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 3007 if (error != 0) { 3008 KASSERT(SOLISTENING(so), 3009 ("%s: soiolock(%p) failed", __func__, so)); 3010 return; 3011 } 3012 3013 sbrelease(so, SO_RCV); 3014 SOCK_IO_RECV_UNLOCK(so); 3015 3016 } 3017 3018 /* 3019 * Wrapper for Socket established helper hook. 3020 * Parameters: socket, context of the hook point, hook id. 3021 */ 3022 static int inline 3023 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3024 { 3025 struct socket_hhook_data hhook_data = { 3026 .so = so, 3027 .hctx = hctx, 3028 .m = NULL, 3029 .status = 0 3030 }; 3031 3032 CURVNET_SET(so->so_vnet); 3033 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3034 CURVNET_RESTORE(); 3035 3036 /* Ugly but needed, since hhooks return void for now */ 3037 return (hhook_data.status); 3038 } 3039 3040 /* 3041 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3042 * additional variant to handle the case where the option value needs to be 3043 * some kind of integer, but not a specific size. In addition to their use 3044 * here, these functions are also called by the protocol-level pr_ctloutput() 3045 * routines. 3046 */ 3047 int 3048 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3049 { 3050 size_t valsize; 3051 3052 /* 3053 * If the user gives us more than we wanted, we ignore it, but if we 3054 * don't get the minimum length the caller wants, we return EINVAL. 3055 * On success, sopt->sopt_valsize is set to however much we actually 3056 * retrieved. 3057 */ 3058 if ((valsize = sopt->sopt_valsize) < minlen) 3059 return EINVAL; 3060 if (valsize > len) 3061 sopt->sopt_valsize = valsize = len; 3062 3063 if (sopt->sopt_td != NULL) 3064 return (copyin(sopt->sopt_val, buf, valsize)); 3065 3066 bcopy(sopt->sopt_val, buf, valsize); 3067 return (0); 3068 } 3069 3070 /* 3071 * Kernel version of setsockopt(2). 3072 * 3073 * XXX: optlen is size_t, not socklen_t 3074 */ 3075 int 3076 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3077 size_t optlen) 3078 { 3079 struct sockopt sopt; 3080 3081 sopt.sopt_level = level; 3082 sopt.sopt_name = optname; 3083 sopt.sopt_dir = SOPT_SET; 3084 sopt.sopt_val = optval; 3085 sopt.sopt_valsize = optlen; 3086 sopt.sopt_td = NULL; 3087 return (sosetopt(so, &sopt)); 3088 } 3089 3090 int 3091 sosetopt(struct socket *so, struct sockopt *sopt) 3092 { 3093 int error, optval; 3094 struct linger l; 3095 struct timeval tv; 3096 sbintime_t val, *valp; 3097 uint32_t val32; 3098 #ifdef MAC 3099 struct mac extmac; 3100 #endif 3101 3102 CURVNET_SET(so->so_vnet); 3103 error = 0; 3104 if (sopt->sopt_level != SOL_SOCKET) { 3105 if (so->so_proto->pr_ctloutput != NULL) 3106 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3107 else 3108 error = ENOPROTOOPT; 3109 } else { 3110 switch (sopt->sopt_name) { 3111 case SO_ACCEPTFILTER: 3112 error = accept_filt_setopt(so, sopt); 3113 if (error) 3114 goto bad; 3115 break; 3116 3117 case SO_LINGER: 3118 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3119 if (error) 3120 goto bad; 3121 if (l.l_linger < 0 || 3122 l.l_linger > USHRT_MAX || 3123 l.l_linger > (INT_MAX / hz)) { 3124 error = EDOM; 3125 goto bad; 3126 } 3127 SOCK_LOCK(so); 3128 so->so_linger = l.l_linger; 3129 if (l.l_onoff) 3130 so->so_options |= SO_LINGER; 3131 else 3132 so->so_options &= ~SO_LINGER; 3133 SOCK_UNLOCK(so); 3134 break; 3135 3136 case SO_DEBUG: 3137 case SO_KEEPALIVE: 3138 case SO_DONTROUTE: 3139 case SO_USELOOPBACK: 3140 case SO_BROADCAST: 3141 case SO_REUSEADDR: 3142 case SO_REUSEPORT: 3143 case SO_REUSEPORT_LB: 3144 case SO_OOBINLINE: 3145 case SO_TIMESTAMP: 3146 case SO_BINTIME: 3147 case SO_NOSIGPIPE: 3148 case SO_NO_DDP: 3149 case SO_NO_OFFLOAD: 3150 case SO_RERROR: 3151 error = sooptcopyin(sopt, &optval, sizeof optval, 3152 sizeof optval); 3153 if (error) 3154 goto bad; 3155 SOCK_LOCK(so); 3156 if (optval) 3157 so->so_options |= sopt->sopt_name; 3158 else 3159 so->so_options &= ~sopt->sopt_name; 3160 SOCK_UNLOCK(so); 3161 break; 3162 3163 case SO_SETFIB: 3164 error = sooptcopyin(sopt, &optval, sizeof optval, 3165 sizeof optval); 3166 if (error) 3167 goto bad; 3168 3169 if (optval < 0 || optval >= rt_numfibs) { 3170 error = EINVAL; 3171 goto bad; 3172 } 3173 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3174 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3175 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3176 so->so_fibnum = optval; 3177 else 3178 so->so_fibnum = 0; 3179 break; 3180 3181 case SO_USER_COOKIE: 3182 error = sooptcopyin(sopt, &val32, sizeof val32, 3183 sizeof val32); 3184 if (error) 3185 goto bad; 3186 so->so_user_cookie = val32; 3187 break; 3188 3189 case SO_SNDBUF: 3190 case SO_RCVBUF: 3191 case SO_SNDLOWAT: 3192 case SO_RCVLOWAT: 3193 error = so->so_proto->pr_setsbopt(so, sopt); 3194 if (error) 3195 goto bad; 3196 break; 3197 3198 case SO_SNDTIMEO: 3199 case SO_RCVTIMEO: 3200 #ifdef COMPAT_FREEBSD32 3201 if (SV_CURPROC_FLAG(SV_ILP32)) { 3202 struct timeval32 tv32; 3203 3204 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3205 sizeof tv32); 3206 CP(tv32, tv, tv_sec); 3207 CP(tv32, tv, tv_usec); 3208 } else 3209 #endif 3210 error = sooptcopyin(sopt, &tv, sizeof tv, 3211 sizeof tv); 3212 if (error) 3213 goto bad; 3214 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3215 tv.tv_usec >= 1000000) { 3216 error = EDOM; 3217 goto bad; 3218 } 3219 if (tv.tv_sec > INT32_MAX) 3220 val = SBT_MAX; 3221 else 3222 val = tvtosbt(tv); 3223 SOCK_LOCK(so); 3224 valp = sopt->sopt_name == SO_SNDTIMEO ? 3225 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3226 &so->so_snd.sb_timeo) : 3227 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3228 &so->so_rcv.sb_timeo); 3229 *valp = val; 3230 SOCK_UNLOCK(so); 3231 break; 3232 3233 case SO_LABEL: 3234 #ifdef MAC 3235 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3236 sizeof extmac); 3237 if (error) 3238 goto bad; 3239 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3240 so, &extmac); 3241 #else 3242 error = EOPNOTSUPP; 3243 #endif 3244 break; 3245 3246 case SO_TS_CLOCK: 3247 error = sooptcopyin(sopt, &optval, sizeof optval, 3248 sizeof optval); 3249 if (error) 3250 goto bad; 3251 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3252 error = EINVAL; 3253 goto bad; 3254 } 3255 so->so_ts_clock = optval; 3256 break; 3257 3258 case SO_MAX_PACING_RATE: 3259 error = sooptcopyin(sopt, &val32, sizeof(val32), 3260 sizeof(val32)); 3261 if (error) 3262 goto bad; 3263 so->so_max_pacing_rate = val32; 3264 break; 3265 3266 default: 3267 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3268 error = hhook_run_socket(so, sopt, 3269 HHOOK_SOCKET_OPT); 3270 else 3271 error = ENOPROTOOPT; 3272 break; 3273 } 3274 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3275 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3276 } 3277 bad: 3278 CURVNET_RESTORE(); 3279 return (error); 3280 } 3281 3282 /* 3283 * Helper routine for getsockopt. 3284 */ 3285 int 3286 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3287 { 3288 int error; 3289 size_t valsize; 3290 3291 error = 0; 3292 3293 /* 3294 * Documented get behavior is that we always return a value, possibly 3295 * truncated to fit in the user's buffer. Traditional behavior is 3296 * that we always tell the user precisely how much we copied, rather 3297 * than something useful like the total amount we had available for 3298 * her. Note that this interface is not idempotent; the entire 3299 * answer must be generated ahead of time. 3300 */ 3301 valsize = min(len, sopt->sopt_valsize); 3302 sopt->sopt_valsize = valsize; 3303 if (sopt->sopt_val != NULL) { 3304 if (sopt->sopt_td != NULL) 3305 error = copyout(buf, sopt->sopt_val, valsize); 3306 else 3307 bcopy(buf, sopt->sopt_val, valsize); 3308 } 3309 return (error); 3310 } 3311 3312 int 3313 sogetopt(struct socket *so, struct sockopt *sopt) 3314 { 3315 int error, optval; 3316 struct linger l; 3317 struct timeval tv; 3318 #ifdef MAC 3319 struct mac extmac; 3320 #endif 3321 3322 CURVNET_SET(so->so_vnet); 3323 error = 0; 3324 if (sopt->sopt_level != SOL_SOCKET) { 3325 if (so->so_proto->pr_ctloutput != NULL) 3326 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3327 else 3328 error = ENOPROTOOPT; 3329 CURVNET_RESTORE(); 3330 return (error); 3331 } else { 3332 switch (sopt->sopt_name) { 3333 case SO_ACCEPTFILTER: 3334 error = accept_filt_getopt(so, sopt); 3335 break; 3336 3337 case SO_LINGER: 3338 SOCK_LOCK(so); 3339 l.l_onoff = so->so_options & SO_LINGER; 3340 l.l_linger = so->so_linger; 3341 SOCK_UNLOCK(so); 3342 error = sooptcopyout(sopt, &l, sizeof l); 3343 break; 3344 3345 case SO_USELOOPBACK: 3346 case SO_DONTROUTE: 3347 case SO_DEBUG: 3348 case SO_KEEPALIVE: 3349 case SO_REUSEADDR: 3350 case SO_REUSEPORT: 3351 case SO_REUSEPORT_LB: 3352 case SO_BROADCAST: 3353 case SO_OOBINLINE: 3354 case SO_ACCEPTCONN: 3355 case SO_TIMESTAMP: 3356 case SO_BINTIME: 3357 case SO_NOSIGPIPE: 3358 case SO_NO_DDP: 3359 case SO_NO_OFFLOAD: 3360 case SO_RERROR: 3361 optval = so->so_options & sopt->sopt_name; 3362 integer: 3363 error = sooptcopyout(sopt, &optval, sizeof optval); 3364 break; 3365 3366 case SO_DOMAIN: 3367 optval = so->so_proto->pr_domain->dom_family; 3368 goto integer; 3369 3370 case SO_TYPE: 3371 optval = so->so_type; 3372 goto integer; 3373 3374 case SO_PROTOCOL: 3375 optval = so->so_proto->pr_protocol; 3376 goto integer; 3377 3378 case SO_ERROR: 3379 SOCK_LOCK(so); 3380 if (so->so_error) { 3381 optval = so->so_error; 3382 so->so_error = 0; 3383 } else { 3384 optval = so->so_rerror; 3385 so->so_rerror = 0; 3386 } 3387 SOCK_UNLOCK(so); 3388 goto integer; 3389 3390 case SO_SNDBUF: 3391 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3392 so->so_snd.sb_hiwat; 3393 goto integer; 3394 3395 case SO_RCVBUF: 3396 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3397 so->so_rcv.sb_hiwat; 3398 goto integer; 3399 3400 case SO_SNDLOWAT: 3401 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3402 so->so_snd.sb_lowat; 3403 goto integer; 3404 3405 case SO_RCVLOWAT: 3406 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3407 so->so_rcv.sb_lowat; 3408 goto integer; 3409 3410 case SO_SNDTIMEO: 3411 case SO_RCVTIMEO: 3412 SOCK_LOCK(so); 3413 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3414 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3415 so->so_snd.sb_timeo) : 3416 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3417 so->so_rcv.sb_timeo)); 3418 SOCK_UNLOCK(so); 3419 #ifdef COMPAT_FREEBSD32 3420 if (SV_CURPROC_FLAG(SV_ILP32)) { 3421 struct timeval32 tv32; 3422 3423 CP(tv, tv32, tv_sec); 3424 CP(tv, tv32, tv_usec); 3425 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3426 } else 3427 #endif 3428 error = sooptcopyout(sopt, &tv, sizeof tv); 3429 break; 3430 3431 case SO_LABEL: 3432 #ifdef MAC 3433 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3434 sizeof(extmac)); 3435 if (error) 3436 goto bad; 3437 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3438 so, &extmac); 3439 if (error) 3440 goto bad; 3441 /* Don't copy out extmac, it is unchanged. */ 3442 #else 3443 error = EOPNOTSUPP; 3444 #endif 3445 break; 3446 3447 case SO_PEERLABEL: 3448 #ifdef MAC 3449 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3450 sizeof(extmac)); 3451 if (error) 3452 goto bad; 3453 error = mac_getsockopt_peerlabel( 3454 sopt->sopt_td->td_ucred, so, &extmac); 3455 if (error) 3456 goto bad; 3457 /* Don't copy out extmac, it is unchanged. */ 3458 #else 3459 error = EOPNOTSUPP; 3460 #endif 3461 break; 3462 3463 case SO_LISTENQLIMIT: 3464 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3465 goto integer; 3466 3467 case SO_LISTENQLEN: 3468 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3469 goto integer; 3470 3471 case SO_LISTENINCQLEN: 3472 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3473 goto integer; 3474 3475 case SO_TS_CLOCK: 3476 optval = so->so_ts_clock; 3477 goto integer; 3478 3479 case SO_MAX_PACING_RATE: 3480 optval = so->so_max_pacing_rate; 3481 goto integer; 3482 3483 default: 3484 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3485 error = hhook_run_socket(so, sopt, 3486 HHOOK_SOCKET_OPT); 3487 else 3488 error = ENOPROTOOPT; 3489 break; 3490 } 3491 } 3492 #ifdef MAC 3493 bad: 3494 #endif 3495 CURVNET_RESTORE(); 3496 return (error); 3497 } 3498 3499 int 3500 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3501 { 3502 struct mbuf *m, *m_prev; 3503 int sopt_size = sopt->sopt_valsize; 3504 3505 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3506 if (m == NULL) 3507 return ENOBUFS; 3508 if (sopt_size > MLEN) { 3509 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3510 if ((m->m_flags & M_EXT) == 0) { 3511 m_free(m); 3512 return ENOBUFS; 3513 } 3514 m->m_len = min(MCLBYTES, sopt_size); 3515 } else { 3516 m->m_len = min(MLEN, sopt_size); 3517 } 3518 sopt_size -= m->m_len; 3519 *mp = m; 3520 m_prev = m; 3521 3522 while (sopt_size) { 3523 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3524 if (m == NULL) { 3525 m_freem(*mp); 3526 return ENOBUFS; 3527 } 3528 if (sopt_size > MLEN) { 3529 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3530 M_NOWAIT); 3531 if ((m->m_flags & M_EXT) == 0) { 3532 m_freem(m); 3533 m_freem(*mp); 3534 return ENOBUFS; 3535 } 3536 m->m_len = min(MCLBYTES, sopt_size); 3537 } else { 3538 m->m_len = min(MLEN, sopt_size); 3539 } 3540 sopt_size -= m->m_len; 3541 m_prev->m_next = m; 3542 m_prev = m; 3543 } 3544 return (0); 3545 } 3546 3547 int 3548 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3549 { 3550 struct mbuf *m0 = m; 3551 3552 if (sopt->sopt_val == NULL) 3553 return (0); 3554 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3555 if (sopt->sopt_td != NULL) { 3556 int error; 3557 3558 error = copyin(sopt->sopt_val, mtod(m, char *), 3559 m->m_len); 3560 if (error != 0) { 3561 m_freem(m0); 3562 return(error); 3563 } 3564 } else 3565 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3566 sopt->sopt_valsize -= m->m_len; 3567 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3568 m = m->m_next; 3569 } 3570 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3571 panic("ip6_sooptmcopyin"); 3572 return (0); 3573 } 3574 3575 int 3576 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3577 { 3578 struct mbuf *m0 = m; 3579 size_t valsize = 0; 3580 3581 if (sopt->sopt_val == NULL) 3582 return (0); 3583 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3584 if (sopt->sopt_td != NULL) { 3585 int error; 3586 3587 error = copyout(mtod(m, char *), sopt->sopt_val, 3588 m->m_len); 3589 if (error != 0) { 3590 m_freem(m0); 3591 return(error); 3592 } 3593 } else 3594 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3595 sopt->sopt_valsize -= m->m_len; 3596 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3597 valsize += m->m_len; 3598 m = m->m_next; 3599 } 3600 if (m != NULL) { 3601 /* enough soopt buffer should be given from user-land */ 3602 m_freem(m0); 3603 return(EINVAL); 3604 } 3605 sopt->sopt_valsize = valsize; 3606 return (0); 3607 } 3608 3609 /* 3610 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3611 * out-of-band data, which will then notify socket consumers. 3612 */ 3613 void 3614 sohasoutofband(struct socket *so) 3615 { 3616 3617 if (so->so_sigio != NULL) 3618 pgsigio(&so->so_sigio, SIGURG, 0); 3619 selwakeuppri(&so->so_rdsel, PSOCK); 3620 } 3621 3622 int 3623 sopoll(struct socket *so, int events, struct ucred *active_cred, 3624 struct thread *td) 3625 { 3626 3627 /* 3628 * We do not need to set or assert curvnet as long as everyone uses 3629 * sopoll_generic(). 3630 */ 3631 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3632 } 3633 3634 int 3635 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3636 struct thread *td) 3637 { 3638 int revents; 3639 3640 SOCK_LOCK(so); 3641 if (SOLISTENING(so)) { 3642 if (!(events & (POLLIN | POLLRDNORM))) 3643 revents = 0; 3644 else if (!TAILQ_EMPTY(&so->sol_comp)) 3645 revents = events & (POLLIN | POLLRDNORM); 3646 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3647 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3648 else { 3649 selrecord(td, &so->so_rdsel); 3650 revents = 0; 3651 } 3652 } else { 3653 revents = 0; 3654 SOCK_SENDBUF_LOCK(so); 3655 SOCK_RECVBUF_LOCK(so); 3656 if (events & (POLLIN | POLLRDNORM)) 3657 if (soreadabledata(so)) 3658 revents |= events & (POLLIN | POLLRDNORM); 3659 if (events & (POLLOUT | POLLWRNORM)) 3660 if (sowriteable(so)) 3661 revents |= events & (POLLOUT | POLLWRNORM); 3662 if (events & (POLLPRI | POLLRDBAND)) 3663 if (so->so_oobmark || 3664 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3665 revents |= events & (POLLPRI | POLLRDBAND); 3666 if ((events & POLLINIGNEOF) == 0) { 3667 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3668 revents |= events & (POLLIN | POLLRDNORM); 3669 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3670 revents |= POLLHUP; 3671 } 3672 } 3673 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3674 revents |= events & POLLRDHUP; 3675 if (revents == 0) { 3676 if (events & 3677 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3678 selrecord(td, &so->so_rdsel); 3679 so->so_rcv.sb_flags |= SB_SEL; 3680 } 3681 if (events & (POLLOUT | POLLWRNORM)) { 3682 selrecord(td, &so->so_wrsel); 3683 so->so_snd.sb_flags |= SB_SEL; 3684 } 3685 } 3686 SOCK_RECVBUF_UNLOCK(so); 3687 SOCK_SENDBUF_UNLOCK(so); 3688 } 3689 SOCK_UNLOCK(so); 3690 return (revents); 3691 } 3692 3693 int 3694 soo_kqfilter(struct file *fp, struct knote *kn) 3695 { 3696 struct socket *so = kn->kn_fp->f_data; 3697 struct sockbuf *sb; 3698 sb_which which; 3699 struct knlist *knl; 3700 3701 switch (kn->kn_filter) { 3702 case EVFILT_READ: 3703 kn->kn_fop = &soread_filtops; 3704 knl = &so->so_rdsel.si_note; 3705 sb = &so->so_rcv; 3706 which = SO_RCV; 3707 break; 3708 case EVFILT_WRITE: 3709 kn->kn_fop = &sowrite_filtops; 3710 knl = &so->so_wrsel.si_note; 3711 sb = &so->so_snd; 3712 which = SO_SND; 3713 break; 3714 case EVFILT_EMPTY: 3715 kn->kn_fop = &soempty_filtops; 3716 knl = &so->so_wrsel.si_note; 3717 sb = &so->so_snd; 3718 which = SO_SND; 3719 break; 3720 default: 3721 return (EINVAL); 3722 } 3723 3724 SOCK_LOCK(so); 3725 if (SOLISTENING(so)) { 3726 knlist_add(knl, kn, 1); 3727 } else { 3728 SOCK_BUF_LOCK(so, which); 3729 knlist_add(knl, kn, 1); 3730 sb->sb_flags |= SB_KNOTE; 3731 SOCK_BUF_UNLOCK(so, which); 3732 } 3733 SOCK_UNLOCK(so); 3734 return (0); 3735 } 3736 3737 static void 3738 filt_sordetach(struct knote *kn) 3739 { 3740 struct socket *so = kn->kn_fp->f_data; 3741 3742 so_rdknl_lock(so); 3743 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3744 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3745 so->so_rcv.sb_flags &= ~SB_KNOTE; 3746 so_rdknl_unlock(so); 3747 } 3748 3749 /*ARGSUSED*/ 3750 static int 3751 filt_soread(struct knote *kn, long hint) 3752 { 3753 struct socket *so; 3754 3755 so = kn->kn_fp->f_data; 3756 3757 if (SOLISTENING(so)) { 3758 SOCK_LOCK_ASSERT(so); 3759 kn->kn_data = so->sol_qlen; 3760 if (so->so_error) { 3761 kn->kn_flags |= EV_EOF; 3762 kn->kn_fflags = so->so_error; 3763 return (1); 3764 } 3765 return (!TAILQ_EMPTY(&so->sol_comp)); 3766 } 3767 3768 SOCK_RECVBUF_LOCK_ASSERT(so); 3769 3770 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3771 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3772 kn->kn_flags |= EV_EOF; 3773 kn->kn_fflags = so->so_error; 3774 return (1); 3775 } else if (so->so_error || so->so_rerror) 3776 return (1); 3777 3778 if (kn->kn_sfflags & NOTE_LOWAT) { 3779 if (kn->kn_data >= kn->kn_sdata) 3780 return (1); 3781 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3782 return (1); 3783 3784 /* This hook returning non-zero indicates an event, not error */ 3785 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3786 } 3787 3788 static void 3789 filt_sowdetach(struct knote *kn) 3790 { 3791 struct socket *so = kn->kn_fp->f_data; 3792 3793 so_wrknl_lock(so); 3794 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3795 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3796 so->so_snd.sb_flags &= ~SB_KNOTE; 3797 so_wrknl_unlock(so); 3798 } 3799 3800 /*ARGSUSED*/ 3801 static int 3802 filt_sowrite(struct knote *kn, long hint) 3803 { 3804 struct socket *so; 3805 3806 so = kn->kn_fp->f_data; 3807 3808 if (SOLISTENING(so)) 3809 return (0); 3810 3811 SOCK_SENDBUF_LOCK_ASSERT(so); 3812 kn->kn_data = sbspace(&so->so_snd); 3813 3814 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3815 3816 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3817 kn->kn_flags |= EV_EOF; 3818 kn->kn_fflags = so->so_error; 3819 return (1); 3820 } else if (so->so_error) /* temporary udp error */ 3821 return (1); 3822 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3823 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3824 return (0); 3825 else if (kn->kn_sfflags & NOTE_LOWAT) 3826 return (kn->kn_data >= kn->kn_sdata); 3827 else 3828 return (kn->kn_data >= so->so_snd.sb_lowat); 3829 } 3830 3831 static int 3832 filt_soempty(struct knote *kn, long hint) 3833 { 3834 struct socket *so; 3835 3836 so = kn->kn_fp->f_data; 3837 3838 if (SOLISTENING(so)) 3839 return (1); 3840 3841 SOCK_SENDBUF_LOCK_ASSERT(so); 3842 kn->kn_data = sbused(&so->so_snd); 3843 3844 if (kn->kn_data == 0) 3845 return (1); 3846 else 3847 return (0); 3848 } 3849 3850 int 3851 socheckuid(struct socket *so, uid_t uid) 3852 { 3853 3854 if (so == NULL) 3855 return (EPERM); 3856 if (so->so_cred->cr_uid != uid) 3857 return (EPERM); 3858 return (0); 3859 } 3860 3861 /* 3862 * These functions are used by protocols to notify the socket layer (and its 3863 * consumers) of state changes in the sockets driven by protocol-side events. 3864 */ 3865 3866 /* 3867 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3868 * 3869 * Normal sequence from the active (originating) side is that 3870 * soisconnecting() is called during processing of connect() call, resulting 3871 * in an eventual call to soisconnected() if/when the connection is 3872 * established. When the connection is torn down soisdisconnecting() is 3873 * called during processing of disconnect() call, and soisdisconnected() is 3874 * called when the connection to the peer is totally severed. The semantics 3875 * of these routines are such that connectionless protocols can call 3876 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3877 * calls when setting up a ``connection'' takes no time. 3878 * 3879 * From the passive side, a socket is created with two queues of sockets: 3880 * so_incomp for connections in progress and so_comp for connections already 3881 * made and awaiting user acceptance. As a protocol is preparing incoming 3882 * connections, it creates a socket structure queued on so_incomp by calling 3883 * sonewconn(). When the connection is established, soisconnected() is 3884 * called, and transfers the socket structure to so_comp, making it available 3885 * to accept(). 3886 * 3887 * If a socket is closed with sockets on either so_incomp or so_comp, these 3888 * sockets are dropped. 3889 * 3890 * If higher-level protocols are implemented in the kernel, the wakeups done 3891 * here will sometimes cause software-interrupt process scheduling. 3892 */ 3893 void 3894 soisconnecting(struct socket *so) 3895 { 3896 3897 SOCK_LOCK(so); 3898 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3899 so->so_state |= SS_ISCONNECTING; 3900 SOCK_UNLOCK(so); 3901 } 3902 3903 void 3904 soisconnected(struct socket *so) 3905 { 3906 bool last __diagused; 3907 3908 SOCK_LOCK(so); 3909 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 3910 so->so_state |= SS_ISCONNECTED; 3911 3912 if (so->so_qstate == SQ_INCOMP) { 3913 struct socket *head = so->so_listen; 3914 int ret; 3915 3916 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3917 /* 3918 * Promoting a socket from incomplete queue to complete, we 3919 * need to go through reverse order of locking. We first do 3920 * trylock, and if that doesn't succeed, we go the hard way 3921 * leaving a reference and rechecking consistency after proper 3922 * locking. 3923 */ 3924 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3925 soref(head); 3926 SOCK_UNLOCK(so); 3927 SOLISTEN_LOCK(head); 3928 SOCK_LOCK(so); 3929 if (__predict_false(head != so->so_listen)) { 3930 /* 3931 * The socket went off the listen queue, 3932 * should be lost race to close(2) of sol. 3933 * The socket is about to soabort(). 3934 */ 3935 SOCK_UNLOCK(so); 3936 sorele_locked(head); 3937 return; 3938 } 3939 last = refcount_release(&head->so_count); 3940 KASSERT(!last, ("%s: released last reference for %p", 3941 __func__, head)); 3942 } 3943 again: 3944 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3945 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3946 head->sol_incqlen--; 3947 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3948 head->sol_qlen++; 3949 so->so_qstate = SQ_COMP; 3950 SOCK_UNLOCK(so); 3951 solisten_wakeup(head); /* unlocks */ 3952 } else { 3953 SOCK_RECVBUF_LOCK(so); 3954 soupcall_set(so, SO_RCV, 3955 head->sol_accept_filter->accf_callback, 3956 head->sol_accept_filter_arg); 3957 so->so_options &= ~SO_ACCEPTFILTER; 3958 ret = head->sol_accept_filter->accf_callback(so, 3959 head->sol_accept_filter_arg, M_NOWAIT); 3960 if (ret == SU_ISCONNECTED) { 3961 soupcall_clear(so, SO_RCV); 3962 SOCK_RECVBUF_UNLOCK(so); 3963 goto again; 3964 } 3965 SOCK_RECVBUF_UNLOCK(so); 3966 SOCK_UNLOCK(so); 3967 SOLISTEN_UNLOCK(head); 3968 } 3969 return; 3970 } 3971 SOCK_UNLOCK(so); 3972 wakeup(&so->so_timeo); 3973 sorwakeup(so); 3974 sowwakeup(so); 3975 } 3976 3977 void 3978 soisdisconnecting(struct socket *so) 3979 { 3980 3981 SOCK_LOCK(so); 3982 so->so_state &= ~SS_ISCONNECTING; 3983 so->so_state |= SS_ISDISCONNECTING; 3984 3985 if (!SOLISTENING(so)) { 3986 SOCK_RECVBUF_LOCK(so); 3987 socantrcvmore_locked(so); 3988 SOCK_SENDBUF_LOCK(so); 3989 socantsendmore_locked(so); 3990 } 3991 SOCK_UNLOCK(so); 3992 wakeup(&so->so_timeo); 3993 } 3994 3995 void 3996 soisdisconnected(struct socket *so) 3997 { 3998 3999 SOCK_LOCK(so); 4000 4001 /* 4002 * There is at least one reader of so_state that does not 4003 * acquire socket lock, namely soreceive_generic(). Ensure 4004 * that it never sees all flags that track connection status 4005 * cleared, by ordering the update with a barrier semantic of 4006 * our release thread fence. 4007 */ 4008 so->so_state |= SS_ISDISCONNECTED; 4009 atomic_thread_fence_rel(); 4010 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4011 4012 if (!SOLISTENING(so)) { 4013 SOCK_UNLOCK(so); 4014 SOCK_RECVBUF_LOCK(so); 4015 socantrcvmore_locked(so); 4016 SOCK_SENDBUF_LOCK(so); 4017 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4018 socantsendmore_locked(so); 4019 } else 4020 SOCK_UNLOCK(so); 4021 wakeup(&so->so_timeo); 4022 } 4023 4024 int 4025 soiolock(struct socket *so, struct sx *sx, int flags) 4026 { 4027 int error; 4028 4029 KASSERT((flags & SBL_VALID) == flags, 4030 ("soiolock: invalid flags %#x", flags)); 4031 4032 if ((flags & SBL_WAIT) != 0) { 4033 if ((flags & SBL_NOINTR) != 0) { 4034 sx_xlock(sx); 4035 } else { 4036 error = sx_xlock_sig(sx); 4037 if (error != 0) 4038 return (error); 4039 } 4040 } else if (!sx_try_xlock(sx)) { 4041 return (EWOULDBLOCK); 4042 } 4043 4044 if (__predict_false(SOLISTENING(so))) { 4045 sx_xunlock(sx); 4046 return (ENOTCONN); 4047 } 4048 return (0); 4049 } 4050 4051 void 4052 soiounlock(struct sx *sx) 4053 { 4054 sx_xunlock(sx); 4055 } 4056 4057 /* 4058 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4059 */ 4060 struct sockaddr * 4061 sodupsockaddr(const struct sockaddr *sa, int mflags) 4062 { 4063 struct sockaddr *sa2; 4064 4065 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4066 if (sa2) 4067 bcopy(sa, sa2, sa->sa_len); 4068 return sa2; 4069 } 4070 4071 /* 4072 * Register per-socket destructor. 4073 */ 4074 void 4075 sodtor_set(struct socket *so, so_dtor_t *func) 4076 { 4077 4078 SOCK_LOCK_ASSERT(so); 4079 so->so_dtor = func; 4080 } 4081 4082 /* 4083 * Register per-socket buffer upcalls. 4084 */ 4085 void 4086 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4087 { 4088 struct sockbuf *sb; 4089 4090 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4091 4092 switch (which) { 4093 case SO_RCV: 4094 sb = &so->so_rcv; 4095 break; 4096 case SO_SND: 4097 sb = &so->so_snd; 4098 break; 4099 } 4100 SOCK_BUF_LOCK_ASSERT(so, which); 4101 sb->sb_upcall = func; 4102 sb->sb_upcallarg = arg; 4103 sb->sb_flags |= SB_UPCALL; 4104 } 4105 4106 void 4107 soupcall_clear(struct socket *so, sb_which which) 4108 { 4109 struct sockbuf *sb; 4110 4111 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4112 4113 switch (which) { 4114 case SO_RCV: 4115 sb = &so->so_rcv; 4116 break; 4117 case SO_SND: 4118 sb = &so->so_snd; 4119 break; 4120 } 4121 SOCK_BUF_LOCK_ASSERT(so, which); 4122 KASSERT(sb->sb_upcall != NULL, 4123 ("%s: so %p no upcall to clear", __func__, so)); 4124 sb->sb_upcall = NULL; 4125 sb->sb_upcallarg = NULL; 4126 sb->sb_flags &= ~SB_UPCALL; 4127 } 4128 4129 void 4130 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4131 { 4132 4133 SOLISTEN_LOCK_ASSERT(so); 4134 so->sol_upcall = func; 4135 so->sol_upcallarg = arg; 4136 } 4137 4138 static void 4139 so_rdknl_lock(void *arg) 4140 { 4141 struct socket *so = arg; 4142 4143 retry: 4144 if (SOLISTENING(so)) { 4145 SOLISTEN_LOCK(so); 4146 } else { 4147 SOCK_RECVBUF_LOCK(so); 4148 if (__predict_false(SOLISTENING(so))) { 4149 SOCK_RECVBUF_UNLOCK(so); 4150 goto retry; 4151 } 4152 } 4153 } 4154 4155 static void 4156 so_rdknl_unlock(void *arg) 4157 { 4158 struct socket *so = arg; 4159 4160 if (SOLISTENING(so)) 4161 SOLISTEN_UNLOCK(so); 4162 else 4163 SOCK_RECVBUF_UNLOCK(so); 4164 } 4165 4166 static void 4167 so_rdknl_assert_lock(void *arg, int what) 4168 { 4169 struct socket *so = arg; 4170 4171 if (what == LA_LOCKED) { 4172 if (SOLISTENING(so)) 4173 SOLISTEN_LOCK_ASSERT(so); 4174 else 4175 SOCK_RECVBUF_LOCK_ASSERT(so); 4176 } else { 4177 if (SOLISTENING(so)) 4178 SOLISTEN_UNLOCK_ASSERT(so); 4179 else 4180 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4181 } 4182 } 4183 4184 static void 4185 so_wrknl_lock(void *arg) 4186 { 4187 struct socket *so = arg; 4188 4189 retry: 4190 if (SOLISTENING(so)) { 4191 SOLISTEN_LOCK(so); 4192 } else { 4193 SOCK_SENDBUF_LOCK(so); 4194 if (__predict_false(SOLISTENING(so))) { 4195 SOCK_SENDBUF_UNLOCK(so); 4196 goto retry; 4197 } 4198 } 4199 } 4200 4201 static void 4202 so_wrknl_unlock(void *arg) 4203 { 4204 struct socket *so = arg; 4205 4206 if (SOLISTENING(so)) 4207 SOLISTEN_UNLOCK(so); 4208 else 4209 SOCK_SENDBUF_UNLOCK(so); 4210 } 4211 4212 static void 4213 so_wrknl_assert_lock(void *arg, int what) 4214 { 4215 struct socket *so = arg; 4216 4217 if (what == LA_LOCKED) { 4218 if (SOLISTENING(so)) 4219 SOLISTEN_LOCK_ASSERT(so); 4220 else 4221 SOCK_SENDBUF_LOCK_ASSERT(so); 4222 } else { 4223 if (SOLISTENING(so)) 4224 SOLISTEN_UNLOCK_ASSERT(so); 4225 else 4226 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4227 } 4228 } 4229 4230 /* 4231 * Create an external-format (``xsocket'') structure using the information in 4232 * the kernel-format socket structure pointed to by so. This is done to 4233 * reduce the spew of irrelevant information over this interface, to isolate 4234 * user code from changes in the kernel structure, and potentially to provide 4235 * information-hiding if we decide that some of this information should be 4236 * hidden from users. 4237 */ 4238 void 4239 sotoxsocket(struct socket *so, struct xsocket *xso) 4240 { 4241 4242 bzero(xso, sizeof(*xso)); 4243 xso->xso_len = sizeof *xso; 4244 xso->xso_so = (uintptr_t)so; 4245 xso->so_type = so->so_type; 4246 xso->so_options = so->so_options; 4247 xso->so_linger = so->so_linger; 4248 xso->so_state = so->so_state; 4249 xso->so_pcb = (uintptr_t)so->so_pcb; 4250 xso->xso_protocol = so->so_proto->pr_protocol; 4251 xso->xso_family = so->so_proto->pr_domain->dom_family; 4252 xso->so_timeo = so->so_timeo; 4253 xso->so_error = so->so_error; 4254 xso->so_uid = so->so_cred->cr_uid; 4255 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4256 if (SOLISTENING(so)) { 4257 xso->so_qlen = so->sol_qlen; 4258 xso->so_incqlen = so->sol_incqlen; 4259 xso->so_qlimit = so->sol_qlimit; 4260 xso->so_oobmark = 0; 4261 } else { 4262 xso->so_state |= so->so_qstate; 4263 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4264 xso->so_oobmark = so->so_oobmark; 4265 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4266 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4267 } 4268 } 4269 4270 int 4271 so_options_get(const struct socket *so) 4272 { 4273 4274 return (so->so_options); 4275 } 4276 4277 void 4278 so_options_set(struct socket *so, int val) 4279 { 4280 4281 so->so_options = val; 4282 } 4283 4284 int 4285 so_error_get(const struct socket *so) 4286 { 4287 4288 return (so->so_error); 4289 } 4290 4291 void 4292 so_error_set(struct socket *so, int val) 4293 { 4294 4295 so->so_error = val; 4296 } 4297