1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_compat.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/event.h> 125 #include <sys/eventhandler.h> 126 #include <sys/poll.h> 127 #include <sys/proc.h> 128 #include <sys/protosw.h> 129 #include <sys/socket.h> 130 #include <sys/socketvar.h> 131 #include <sys/resourcevar.h> 132 #include <net/route.h> 133 #include <sys/signalvar.h> 134 #include <sys/stat.h> 135 #include <sys/sx.h> 136 #include <sys/sysctl.h> 137 #include <sys/uio.h> 138 #include <sys/jail.h> 139 #include <sys/syslog.h> 140 #include <netinet/in.h> 141 142 #include <net/vnet.h> 143 144 #include <security/mac/mac_framework.h> 145 146 #include <vm/uma.h> 147 148 #ifdef COMPAT_FREEBSD32 149 #include <sys/mount.h> 150 #include <sys/sysent.h> 151 #include <compat/freebsd32/freebsd32.h> 152 #endif 153 154 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 155 int flags); 156 157 static void filt_sordetach(struct knote *kn); 158 static int filt_soread(struct knote *kn, long hint); 159 static void filt_sowdetach(struct knote *kn); 160 static int filt_sowrite(struct knote *kn, long hint); 161 static int filt_solisten(struct knote *kn, long hint); 162 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 163 fo_kqfilter_t soo_kqfilter; 164 165 static struct filterops solisten_filtops = { 166 .f_isfd = 1, 167 .f_detach = filt_sordetach, 168 .f_event = filt_solisten, 169 }; 170 static struct filterops soread_filtops = { 171 .f_isfd = 1, 172 .f_detach = filt_sordetach, 173 .f_event = filt_soread, 174 }; 175 static struct filterops sowrite_filtops = { 176 .f_isfd = 1, 177 .f_detach = filt_sowdetach, 178 .f_event = filt_sowrite, 179 }; 180 181 so_gen_t so_gencnt; /* generation count for sockets */ 182 183 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 184 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 185 186 #define VNET_SO_ASSERT(so) \ 187 VNET_ASSERT(curvnet != NULL, \ 188 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 189 190 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 191 #define V_socket_hhh VNET(socket_hhh) 192 193 /* 194 * Limit on the number of connections in the listen queue waiting 195 * for accept(2). 196 * NB: The orginal sysctl somaxconn is still available but hidden 197 * to prevent confusion about the actual purpose of this number. 198 */ 199 static int somaxconn = SOMAXCONN; 200 201 static int 202 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 203 { 204 int error; 205 int val; 206 207 val = somaxconn; 208 error = sysctl_handle_int(oidp, &val, 0, req); 209 if (error || !req->newptr ) 210 return (error); 211 212 if (val < 1 || val > USHRT_MAX) 213 return (EINVAL); 214 215 somaxconn = val; 216 return (0); 217 } 218 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 219 0, sizeof(int), sysctl_somaxconn, "I", 220 "Maximum listen socket pending connection accept queue size"); 221 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 222 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 223 0, sizeof(int), sysctl_somaxconn, "I", 224 "Maximum listen socket pending connection accept queue size (compat)"); 225 226 static int numopensockets; 227 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 228 &numopensockets, 0, "Number of open sockets"); 229 230 /* 231 * accept_mtx locks down per-socket fields relating to accept queues. See 232 * socketvar.h for an annotation of the protected fields of struct socket. 233 */ 234 struct mtx accept_mtx; 235 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 236 237 /* 238 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 239 * so_gencnt field. 240 */ 241 static struct mtx so_global_mtx; 242 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 243 244 /* 245 * General IPC sysctl name space, used by sockets and a variety of other IPC 246 * types. 247 */ 248 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 249 250 /* 251 * Initialize the socket subsystem and set up the socket 252 * memory allocator. 253 */ 254 static uma_zone_t socket_zone; 255 int maxsockets; 256 257 static void 258 socket_zone_change(void *tag) 259 { 260 261 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 262 } 263 264 static void 265 socket_hhook_register(int subtype) 266 { 267 268 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 269 &V_socket_hhh[subtype], 270 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 271 printf("%s: WARNING: unable to register hook\n", __func__); 272 } 273 274 static void 275 socket_hhook_deregister(int subtype) 276 { 277 278 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 279 printf("%s: WARNING: unable to deregister hook\n", __func__); 280 } 281 282 static void 283 socket_init(void *tag) 284 { 285 286 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 287 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 288 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 289 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 290 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 291 EVENTHANDLER_PRI_FIRST); 292 } 293 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 294 295 static void 296 socket_vnet_init(const void *unused __unused) 297 { 298 int i; 299 300 /* We expect a contiguous range */ 301 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 302 socket_hhook_register(i); 303 } 304 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 305 socket_vnet_init, NULL); 306 307 static void 308 socket_vnet_uninit(const void *unused __unused) 309 { 310 int i; 311 312 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 313 socket_hhook_deregister(i); 314 } 315 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 316 socket_vnet_uninit, NULL); 317 318 /* 319 * Initialise maxsockets. This SYSINIT must be run after 320 * tunable_mbinit(). 321 */ 322 static void 323 init_maxsockets(void *ignored) 324 { 325 326 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 327 maxsockets = imax(maxsockets, maxfiles); 328 } 329 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 330 331 /* 332 * Sysctl to get and set the maximum global sockets limit. Notify protocols 333 * of the change so that they can update their dependent limits as required. 334 */ 335 static int 336 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 337 { 338 int error, newmaxsockets; 339 340 newmaxsockets = maxsockets; 341 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 342 if (error == 0 && req->newptr) { 343 if (newmaxsockets > maxsockets && 344 newmaxsockets <= maxfiles) { 345 maxsockets = newmaxsockets; 346 EVENTHANDLER_INVOKE(maxsockets_change); 347 } else 348 error = EINVAL; 349 } 350 return (error); 351 } 352 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 353 &maxsockets, 0, sysctl_maxsockets, "IU", 354 "Maximum number of sockets avaliable"); 355 356 /* 357 * Socket operation routines. These routines are called by the routines in 358 * sys_socket.c or from a system process, and implement the semantics of 359 * socket operations by switching out to the protocol specific routines. 360 */ 361 362 /* 363 * Get a socket structure from our zone, and initialize it. Note that it 364 * would probably be better to allocate socket and PCB at the same time, but 365 * I'm not convinced that all the protocols can be easily modified to do 366 * this. 367 * 368 * soalloc() returns a socket with a ref count of 0. 369 */ 370 static struct socket * 371 soalloc(struct vnet *vnet) 372 { 373 struct socket *so; 374 375 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 376 if (so == NULL) 377 return (NULL); 378 #ifdef MAC 379 if (mac_socket_init(so, M_NOWAIT) != 0) { 380 uma_zfree(socket_zone, so); 381 return (NULL); 382 } 383 #endif 384 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 385 uma_zfree(socket_zone, so); 386 return (NULL); 387 } 388 389 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 390 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 391 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 392 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 393 TAILQ_INIT(&so->so_aiojobq); 394 #ifdef VIMAGE 395 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 396 __func__, __LINE__, so)); 397 so->so_vnet = vnet; 398 #endif 399 /* We shouldn't need the so_global_mtx */ 400 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 401 /* Do we need more comprehensive error returns? */ 402 uma_zfree(socket_zone, so); 403 return (NULL); 404 } 405 mtx_lock(&so_global_mtx); 406 so->so_gencnt = ++so_gencnt; 407 ++numopensockets; 408 #ifdef VIMAGE 409 vnet->vnet_sockcnt++; 410 #endif 411 mtx_unlock(&so_global_mtx); 412 413 return (so); 414 } 415 416 /* 417 * Free the storage associated with a socket at the socket layer, tear down 418 * locks, labels, etc. All protocol state is assumed already to have been 419 * torn down (and possibly never set up) by the caller. 420 */ 421 static void 422 sodealloc(struct socket *so) 423 { 424 425 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 426 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 427 428 mtx_lock(&so_global_mtx); 429 so->so_gencnt = ++so_gencnt; 430 --numopensockets; /* Could be below, but faster here. */ 431 #ifdef VIMAGE 432 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet->vnet_sockcnt--; 435 #endif 436 mtx_unlock(&so_global_mtx); 437 if (so->so_rcv.sb_hiwat) 438 (void)chgsbsize(so->so_cred->cr_uidinfo, 439 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 440 if (so->so_snd.sb_hiwat) 441 (void)chgsbsize(so->so_cred->cr_uidinfo, 442 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 443 /* remove acccept filter if one is present. */ 444 if (so->so_accf != NULL) 445 do_setopt_accept_filter(so, NULL); 446 #ifdef MAC 447 mac_socket_destroy(so); 448 #endif 449 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 450 451 crfree(so->so_cred); 452 khelp_destroy_osd(&so->osd); 453 sx_destroy(&so->so_snd.sb_sx); 454 sx_destroy(&so->so_rcv.sb_sx); 455 SOCKBUF_LOCK_DESTROY(&so->so_snd); 456 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 457 uma_zfree(socket_zone, so); 458 } 459 460 /* 461 * socreate returns a socket with a ref count of 1. The socket should be 462 * closed with soclose(). 463 */ 464 int 465 socreate(int dom, struct socket **aso, int type, int proto, 466 struct ucred *cred, struct thread *td) 467 { 468 struct protosw *prp; 469 struct socket *so; 470 int error; 471 472 if (proto) 473 prp = pffindproto(dom, proto, type); 474 else 475 prp = pffindtype(dom, type); 476 477 if (prp == NULL) { 478 /* No support for domain. */ 479 if (pffinddomain(dom) == NULL) 480 return (EAFNOSUPPORT); 481 /* No support for socket type. */ 482 if (proto == 0 && type != 0) 483 return (EPROTOTYPE); 484 return (EPROTONOSUPPORT); 485 } 486 if (prp->pr_usrreqs->pru_attach == NULL || 487 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 488 return (EPROTONOSUPPORT); 489 490 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 491 return (EPROTONOSUPPORT); 492 493 if (prp->pr_type != type) 494 return (EPROTOTYPE); 495 so = soalloc(CRED_TO_VNET(cred)); 496 if (so == NULL) 497 return (ENOBUFS); 498 499 TAILQ_INIT(&so->so_incomp); 500 TAILQ_INIT(&so->so_comp); 501 so->so_type = type; 502 so->so_cred = crhold(cred); 503 if ((prp->pr_domain->dom_family == PF_INET) || 504 (prp->pr_domain->dom_family == PF_INET6) || 505 (prp->pr_domain->dom_family == PF_ROUTE)) 506 so->so_fibnum = td->td_proc->p_fibnum; 507 else 508 so->so_fibnum = 0; 509 so->so_proto = prp; 510 #ifdef MAC 511 mac_socket_create(cred, so); 512 #endif 513 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 514 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 515 so->so_count = 1; 516 /* 517 * Auto-sizing of socket buffers is managed by the protocols and 518 * the appropriate flags must be set in the pru_attach function. 519 */ 520 CURVNET_SET(so->so_vnet); 521 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 522 CURVNET_RESTORE(); 523 if (error) { 524 KASSERT(so->so_count == 1, ("socreate: so_count %d", 525 so->so_count)); 526 so->so_count = 0; 527 sodealloc(so); 528 return (error); 529 } 530 *aso = so; 531 return (0); 532 } 533 534 #ifdef REGRESSION 535 static int regression_sonewconn_earlytest = 1; 536 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 537 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 538 #endif 539 540 /* 541 * When an attempt at a new connection is noted on a socket which accepts 542 * connections, sonewconn is called. If the connection is possible (subject 543 * to space constraints, etc.) then we allocate a new structure, propoerly 544 * linked into the data structure of the original socket, and return this. 545 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 546 * 547 * Note: the ref count on the socket is 0 on return. 548 */ 549 struct socket * 550 sonewconn(struct socket *head, int connstatus) 551 { 552 static struct timeval lastover; 553 static struct timeval overinterval = { 60, 0 }; 554 static int overcount; 555 556 struct socket *so; 557 int over; 558 559 ACCEPT_LOCK(); 560 over = (head->so_qlen > 3 * head->so_qlimit / 2); 561 ACCEPT_UNLOCK(); 562 #ifdef REGRESSION 563 if (regression_sonewconn_earlytest && over) { 564 #else 565 if (over) { 566 #endif 567 overcount++; 568 569 if (ratecheck(&lastover, &overinterval)) { 570 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 571 "%i already in queue awaiting acceptance " 572 "(%d occurrences)\n", 573 __func__, head->so_pcb, head->so_qlen, overcount); 574 575 overcount = 0; 576 } 577 578 return (NULL); 579 } 580 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 581 __func__, __LINE__, head)); 582 so = soalloc(head->so_vnet); 583 if (so == NULL) { 584 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 585 "limit reached or out of memory\n", 586 __func__, head->so_pcb); 587 return (NULL); 588 } 589 if ((head->so_options & SO_ACCEPTFILTER) != 0) 590 connstatus = 0; 591 so->so_head = head; 592 so->so_type = head->so_type; 593 so->so_options = head->so_options &~ SO_ACCEPTCONN; 594 so->so_linger = head->so_linger; 595 so->so_state = head->so_state | SS_NOFDREF; 596 so->so_fibnum = head->so_fibnum; 597 so->so_proto = head->so_proto; 598 so->so_cred = crhold(head->so_cred); 599 #ifdef MAC 600 mac_socket_newconn(head, so); 601 #endif 602 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 603 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 604 VNET_SO_ASSERT(head); 605 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 606 sodealloc(so); 607 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 608 __func__, head->so_pcb); 609 return (NULL); 610 } 611 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 612 sodealloc(so); 613 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 614 __func__, head->so_pcb); 615 return (NULL); 616 } 617 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 618 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 619 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 620 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 621 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 622 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 623 so->so_state |= connstatus; 624 ACCEPT_LOCK(); 625 /* 626 * The accept socket may be tearing down but we just 627 * won a race on the ACCEPT_LOCK. 628 * However, if sctp_peeloff() is called on a 1-to-many 629 * style socket, the SO_ACCEPTCONN doesn't need to be set. 630 */ 631 if (!(head->so_options & SO_ACCEPTCONN) && 632 ((head->so_proto->pr_protocol != IPPROTO_SCTP) || 633 (head->so_type != SOCK_SEQPACKET))) { 634 SOCK_LOCK(so); 635 so->so_head = NULL; 636 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 637 return (NULL); 638 } 639 if (connstatus) { 640 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 641 so->so_qstate |= SQ_COMP; 642 head->so_qlen++; 643 } else { 644 /* 645 * Keep removing sockets from the head until there's room for 646 * us to insert on the tail. In pre-locking revisions, this 647 * was a simple if(), but as we could be racing with other 648 * threads and soabort() requires dropping locks, we must 649 * loop waiting for the condition to be true. 650 */ 651 while (head->so_incqlen > head->so_qlimit) { 652 struct socket *sp; 653 sp = TAILQ_FIRST(&head->so_incomp); 654 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 655 head->so_incqlen--; 656 sp->so_qstate &= ~SQ_INCOMP; 657 sp->so_head = NULL; 658 ACCEPT_UNLOCK(); 659 soabort(sp); 660 ACCEPT_LOCK(); 661 } 662 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 663 so->so_qstate |= SQ_INCOMP; 664 head->so_incqlen++; 665 } 666 ACCEPT_UNLOCK(); 667 if (connstatus) { 668 sorwakeup(head); 669 wakeup_one(&head->so_timeo); 670 } 671 return (so); 672 } 673 674 int 675 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 676 { 677 int error; 678 679 CURVNET_SET(so->so_vnet); 680 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 681 CURVNET_RESTORE(); 682 return (error); 683 } 684 685 int 686 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 687 { 688 int error; 689 690 CURVNET_SET(so->so_vnet); 691 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 692 CURVNET_RESTORE(); 693 return (error); 694 } 695 696 /* 697 * solisten() transitions a socket from a non-listening state to a listening 698 * state, but can also be used to update the listen queue depth on an 699 * existing listen socket. The protocol will call back into the sockets 700 * layer using solisten_proto_check() and solisten_proto() to check and set 701 * socket-layer listen state. Call backs are used so that the protocol can 702 * acquire both protocol and socket layer locks in whatever order is required 703 * by the protocol. 704 * 705 * Protocol implementors are advised to hold the socket lock across the 706 * socket-layer test and set to avoid races at the socket layer. 707 */ 708 int 709 solisten(struct socket *so, int backlog, struct thread *td) 710 { 711 int error; 712 713 CURVNET_SET(so->so_vnet); 714 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 715 CURVNET_RESTORE(); 716 return (error); 717 } 718 719 int 720 solisten_proto_check(struct socket *so) 721 { 722 723 SOCK_LOCK_ASSERT(so); 724 725 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 726 SS_ISDISCONNECTING)) 727 return (EINVAL); 728 return (0); 729 } 730 731 void 732 solisten_proto(struct socket *so, int backlog) 733 { 734 735 SOCK_LOCK_ASSERT(so); 736 737 if (backlog < 0 || backlog > somaxconn) 738 backlog = somaxconn; 739 so->so_qlimit = backlog; 740 so->so_options |= SO_ACCEPTCONN; 741 } 742 743 /* 744 * Evaluate the reference count and named references on a socket; if no 745 * references remain, free it. This should be called whenever a reference is 746 * released, such as in sorele(), but also when named reference flags are 747 * cleared in socket or protocol code. 748 * 749 * sofree() will free the socket if: 750 * 751 * - There are no outstanding file descriptor references or related consumers 752 * (so_count == 0). 753 * 754 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 755 * 756 * - The protocol does not have an outstanding strong reference on the socket 757 * (SS_PROTOREF). 758 * 759 * - The socket is not in a completed connection queue, so a process has been 760 * notified that it is present. If it is removed, the user process may 761 * block in accept() despite select() saying the socket was ready. 762 */ 763 void 764 sofree(struct socket *so) 765 { 766 struct protosw *pr = so->so_proto; 767 struct socket *head; 768 769 ACCEPT_LOCK_ASSERT(); 770 SOCK_LOCK_ASSERT(so); 771 772 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 773 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 774 SOCK_UNLOCK(so); 775 ACCEPT_UNLOCK(); 776 return; 777 } 778 779 head = so->so_head; 780 if (head != NULL) { 781 KASSERT((so->so_qstate & SQ_COMP) != 0 || 782 (so->so_qstate & SQ_INCOMP) != 0, 783 ("sofree: so_head != NULL, but neither SQ_COMP nor " 784 "SQ_INCOMP")); 785 KASSERT((so->so_qstate & SQ_COMP) == 0 || 786 (so->so_qstate & SQ_INCOMP) == 0, 787 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 788 TAILQ_REMOVE(&head->so_incomp, so, so_list); 789 head->so_incqlen--; 790 so->so_qstate &= ~SQ_INCOMP; 791 so->so_head = NULL; 792 } 793 KASSERT((so->so_qstate & SQ_COMP) == 0 && 794 (so->so_qstate & SQ_INCOMP) == 0, 795 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 796 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 797 if (so->so_options & SO_ACCEPTCONN) { 798 KASSERT((TAILQ_EMPTY(&so->so_comp)), 799 ("sofree: so_comp populated")); 800 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 801 ("sofree: so_incomp populated")); 802 } 803 SOCK_UNLOCK(so); 804 ACCEPT_UNLOCK(); 805 806 VNET_SO_ASSERT(so); 807 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 808 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 809 if (pr->pr_usrreqs->pru_detach != NULL) 810 (*pr->pr_usrreqs->pru_detach)(so); 811 812 /* 813 * From this point on, we assume that no other references to this 814 * socket exist anywhere else in the stack. Therefore, no locks need 815 * to be acquired or held. 816 * 817 * We used to do a lot of socket buffer and socket locking here, as 818 * well as invoke sorflush() and perform wakeups. The direct call to 819 * dom_dispose() and sbrelease_internal() are an inlining of what was 820 * necessary from sorflush(). 821 * 822 * Notice that the socket buffer and kqueue state are torn down 823 * before calling pru_detach. This means that protocols shold not 824 * assume they can perform socket wakeups, etc, in their detach code. 825 */ 826 sbdestroy(&so->so_snd, so); 827 sbdestroy(&so->so_rcv, so); 828 seldrain(&so->so_snd.sb_sel); 829 seldrain(&so->so_rcv.sb_sel); 830 knlist_destroy(&so->so_rcv.sb_sel.si_note); 831 knlist_destroy(&so->so_snd.sb_sel.si_note); 832 sodealloc(so); 833 } 834 835 /* 836 * Close a socket on last file table reference removal. Initiate disconnect 837 * if connected. Free socket when disconnect complete. 838 * 839 * This function will sorele() the socket. Note that soclose() may be called 840 * prior to the ref count reaching zero. The actual socket structure will 841 * not be freed until the ref count reaches zero. 842 */ 843 int 844 soclose(struct socket *so) 845 { 846 int error = 0; 847 848 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 849 850 CURVNET_SET(so->so_vnet); 851 funsetown(&so->so_sigio); 852 if (so->so_state & SS_ISCONNECTED) { 853 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 854 error = sodisconnect(so); 855 if (error) { 856 if (error == ENOTCONN) 857 error = 0; 858 goto drop; 859 } 860 } 861 if (so->so_options & SO_LINGER) { 862 if ((so->so_state & SS_ISDISCONNECTING) && 863 (so->so_state & SS_NBIO)) 864 goto drop; 865 while (so->so_state & SS_ISCONNECTED) { 866 error = tsleep(&so->so_timeo, 867 PSOCK | PCATCH, "soclos", 868 so->so_linger * hz); 869 if (error) 870 break; 871 } 872 } 873 } 874 875 drop: 876 if (so->so_proto->pr_usrreqs->pru_close != NULL) 877 (*so->so_proto->pr_usrreqs->pru_close)(so); 878 ACCEPT_LOCK(); 879 if (so->so_options & SO_ACCEPTCONN) { 880 struct socket *sp; 881 /* 882 * Prevent new additions to the accept queues due 883 * to ACCEPT_LOCK races while we are draining them. 884 */ 885 so->so_options &= ~SO_ACCEPTCONN; 886 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 887 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 888 so->so_incqlen--; 889 sp->so_qstate &= ~SQ_INCOMP; 890 sp->so_head = NULL; 891 ACCEPT_UNLOCK(); 892 soabort(sp); 893 ACCEPT_LOCK(); 894 } 895 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 896 TAILQ_REMOVE(&so->so_comp, sp, so_list); 897 so->so_qlen--; 898 sp->so_qstate &= ~SQ_COMP; 899 sp->so_head = NULL; 900 ACCEPT_UNLOCK(); 901 soabort(sp); 902 ACCEPT_LOCK(); 903 } 904 KASSERT((TAILQ_EMPTY(&so->so_comp)), 905 ("%s: so_comp populated", __func__)); 906 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 907 ("%s: so_incomp populated", __func__)); 908 } 909 SOCK_LOCK(so); 910 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 911 so->so_state |= SS_NOFDREF; 912 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 913 CURVNET_RESTORE(); 914 return (error); 915 } 916 917 /* 918 * soabort() is used to abruptly tear down a connection, such as when a 919 * resource limit is reached (listen queue depth exceeded), or if a listen 920 * socket is closed while there are sockets waiting to be accepted. 921 * 922 * This interface is tricky, because it is called on an unreferenced socket, 923 * and must be called only by a thread that has actually removed the socket 924 * from the listen queue it was on, or races with other threads are risked. 925 * 926 * This interface will call into the protocol code, so must not be called 927 * with any socket locks held. Protocols do call it while holding their own 928 * recursible protocol mutexes, but this is something that should be subject 929 * to review in the future. 930 */ 931 void 932 soabort(struct socket *so) 933 { 934 935 /* 936 * In as much as is possible, assert that no references to this 937 * socket are held. This is not quite the same as asserting that the 938 * current thread is responsible for arranging for no references, but 939 * is as close as we can get for now. 940 */ 941 KASSERT(so->so_count == 0, ("soabort: so_count")); 942 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 943 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 944 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 945 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 946 VNET_SO_ASSERT(so); 947 948 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 949 (*so->so_proto->pr_usrreqs->pru_abort)(so); 950 ACCEPT_LOCK(); 951 SOCK_LOCK(so); 952 sofree(so); 953 } 954 955 int 956 soaccept(struct socket *so, struct sockaddr **nam) 957 { 958 int error; 959 960 SOCK_LOCK(so); 961 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 962 so->so_state &= ~SS_NOFDREF; 963 SOCK_UNLOCK(so); 964 965 CURVNET_SET(so->so_vnet); 966 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 967 CURVNET_RESTORE(); 968 return (error); 969 } 970 971 int 972 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 973 { 974 975 return (soconnectat(AT_FDCWD, so, nam, td)); 976 } 977 978 int 979 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 980 { 981 int error; 982 983 if (so->so_options & SO_ACCEPTCONN) 984 return (EOPNOTSUPP); 985 986 CURVNET_SET(so->so_vnet); 987 /* 988 * If protocol is connection-based, can only connect once. 989 * Otherwise, if connected, try to disconnect first. This allows 990 * user to disconnect by connecting to, e.g., a null address. 991 */ 992 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 993 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 994 (error = sodisconnect(so)))) { 995 error = EISCONN; 996 } else { 997 /* 998 * Prevent accumulated error from previous connection from 999 * biting us. 1000 */ 1001 so->so_error = 0; 1002 if (fd == AT_FDCWD) { 1003 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1004 nam, td); 1005 } else { 1006 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1007 so, nam, td); 1008 } 1009 } 1010 CURVNET_RESTORE(); 1011 1012 return (error); 1013 } 1014 1015 int 1016 soconnect2(struct socket *so1, struct socket *so2) 1017 { 1018 int error; 1019 1020 CURVNET_SET(so1->so_vnet); 1021 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1022 CURVNET_RESTORE(); 1023 return (error); 1024 } 1025 1026 int 1027 sodisconnect(struct socket *so) 1028 { 1029 int error; 1030 1031 if ((so->so_state & SS_ISCONNECTED) == 0) 1032 return (ENOTCONN); 1033 if (so->so_state & SS_ISDISCONNECTING) 1034 return (EALREADY); 1035 VNET_SO_ASSERT(so); 1036 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1037 return (error); 1038 } 1039 1040 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1041 1042 int 1043 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1044 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1045 { 1046 long space; 1047 ssize_t resid; 1048 int clen = 0, error, dontroute; 1049 1050 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1051 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1052 ("sosend_dgram: !PR_ATOMIC")); 1053 1054 if (uio != NULL) 1055 resid = uio->uio_resid; 1056 else 1057 resid = top->m_pkthdr.len; 1058 /* 1059 * In theory resid should be unsigned. However, space must be 1060 * signed, as it might be less than 0 if we over-committed, and we 1061 * must use a signed comparison of space and resid. On the other 1062 * hand, a negative resid causes us to loop sending 0-length 1063 * segments to the protocol. 1064 */ 1065 if (resid < 0) { 1066 error = EINVAL; 1067 goto out; 1068 } 1069 1070 dontroute = 1071 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1072 if (td != NULL) 1073 td->td_ru.ru_msgsnd++; 1074 if (control != NULL) 1075 clen = control->m_len; 1076 1077 SOCKBUF_LOCK(&so->so_snd); 1078 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1079 SOCKBUF_UNLOCK(&so->so_snd); 1080 error = EPIPE; 1081 goto out; 1082 } 1083 if (so->so_error) { 1084 error = so->so_error; 1085 so->so_error = 0; 1086 SOCKBUF_UNLOCK(&so->so_snd); 1087 goto out; 1088 } 1089 if ((so->so_state & SS_ISCONNECTED) == 0) { 1090 /* 1091 * `sendto' and `sendmsg' is allowed on a connection-based 1092 * socket if it supports implied connect. Return ENOTCONN if 1093 * not connected and no address is supplied. 1094 */ 1095 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1096 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1097 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1098 !(resid == 0 && clen != 0)) { 1099 SOCKBUF_UNLOCK(&so->so_snd); 1100 error = ENOTCONN; 1101 goto out; 1102 } 1103 } else if (addr == NULL) { 1104 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1105 error = ENOTCONN; 1106 else 1107 error = EDESTADDRREQ; 1108 SOCKBUF_UNLOCK(&so->so_snd); 1109 goto out; 1110 } 1111 } 1112 1113 /* 1114 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1115 * problem and need fixing. 1116 */ 1117 space = sbspace(&so->so_snd); 1118 if (flags & MSG_OOB) 1119 space += 1024; 1120 space -= clen; 1121 SOCKBUF_UNLOCK(&so->so_snd); 1122 if (resid > space) { 1123 error = EMSGSIZE; 1124 goto out; 1125 } 1126 if (uio == NULL) { 1127 resid = 0; 1128 if (flags & MSG_EOR) 1129 top->m_flags |= M_EOR; 1130 } else { 1131 /* 1132 * Copy the data from userland into a mbuf chain. 1133 * If no data is to be copied in, a single empty mbuf 1134 * is returned. 1135 */ 1136 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1137 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1138 if (top == NULL) { 1139 error = EFAULT; /* only possible error */ 1140 goto out; 1141 } 1142 space -= resid - uio->uio_resid; 1143 resid = uio->uio_resid; 1144 } 1145 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1146 /* 1147 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1148 * than with. 1149 */ 1150 if (dontroute) { 1151 SOCK_LOCK(so); 1152 so->so_options |= SO_DONTROUTE; 1153 SOCK_UNLOCK(so); 1154 } 1155 /* 1156 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1157 * of date. We could have recieved a reset packet in an interrupt or 1158 * maybe we slept while doing page faults in uiomove() etc. We could 1159 * probably recheck again inside the locking protection here, but 1160 * there are probably other places that this also happens. We must 1161 * rethink this. 1162 */ 1163 VNET_SO_ASSERT(so); 1164 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1165 (flags & MSG_OOB) ? PRUS_OOB : 1166 /* 1167 * If the user set MSG_EOF, the protocol understands this flag and 1168 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1169 */ 1170 ((flags & MSG_EOF) && 1171 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1172 (resid <= 0)) ? 1173 PRUS_EOF : 1174 /* If there is more to send set PRUS_MORETOCOME */ 1175 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1176 top, addr, control, td); 1177 if (dontroute) { 1178 SOCK_LOCK(so); 1179 so->so_options &= ~SO_DONTROUTE; 1180 SOCK_UNLOCK(so); 1181 } 1182 clen = 0; 1183 control = NULL; 1184 top = NULL; 1185 out: 1186 if (top != NULL) 1187 m_freem(top); 1188 if (control != NULL) 1189 m_freem(control); 1190 return (error); 1191 } 1192 1193 /* 1194 * Send on a socket. If send must go all at once and message is larger than 1195 * send buffering, then hard error. Lock against other senders. If must go 1196 * all at once and not enough room now, then inform user that this would 1197 * block and do nothing. Otherwise, if nonblocking, send as much as 1198 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1199 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1200 * in mbuf chain must be small enough to send all at once. 1201 * 1202 * Returns nonzero on error, timeout or signal; callers must check for short 1203 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1204 * on return. 1205 */ 1206 int 1207 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1208 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1209 { 1210 long space; 1211 ssize_t resid; 1212 int clen = 0, error, dontroute; 1213 int atomic = sosendallatonce(so) || top; 1214 1215 if (uio != NULL) 1216 resid = uio->uio_resid; 1217 else 1218 resid = top->m_pkthdr.len; 1219 /* 1220 * In theory resid should be unsigned. However, space must be 1221 * signed, as it might be less than 0 if we over-committed, and we 1222 * must use a signed comparison of space and resid. On the other 1223 * hand, a negative resid causes us to loop sending 0-length 1224 * segments to the protocol. 1225 * 1226 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1227 * type sockets since that's an error. 1228 */ 1229 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1230 error = EINVAL; 1231 goto out; 1232 } 1233 1234 dontroute = 1235 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1236 (so->so_proto->pr_flags & PR_ATOMIC); 1237 if (td != NULL) 1238 td->td_ru.ru_msgsnd++; 1239 if (control != NULL) 1240 clen = control->m_len; 1241 1242 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1243 if (error) 1244 goto out; 1245 1246 restart: 1247 do { 1248 SOCKBUF_LOCK(&so->so_snd); 1249 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1250 SOCKBUF_UNLOCK(&so->so_snd); 1251 error = EPIPE; 1252 goto release; 1253 } 1254 if (so->so_error) { 1255 error = so->so_error; 1256 so->so_error = 0; 1257 SOCKBUF_UNLOCK(&so->so_snd); 1258 goto release; 1259 } 1260 if ((so->so_state & SS_ISCONNECTED) == 0) { 1261 /* 1262 * `sendto' and `sendmsg' is allowed on a connection- 1263 * based socket if it supports implied connect. 1264 * Return ENOTCONN if not connected and no address is 1265 * supplied. 1266 */ 1267 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1268 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1269 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1270 !(resid == 0 && clen != 0)) { 1271 SOCKBUF_UNLOCK(&so->so_snd); 1272 error = ENOTCONN; 1273 goto release; 1274 } 1275 } else if (addr == NULL) { 1276 SOCKBUF_UNLOCK(&so->so_snd); 1277 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1278 error = ENOTCONN; 1279 else 1280 error = EDESTADDRREQ; 1281 goto release; 1282 } 1283 } 1284 space = sbspace(&so->so_snd); 1285 if (flags & MSG_OOB) 1286 space += 1024; 1287 if ((atomic && resid > so->so_snd.sb_hiwat) || 1288 clen > so->so_snd.sb_hiwat) { 1289 SOCKBUF_UNLOCK(&so->so_snd); 1290 error = EMSGSIZE; 1291 goto release; 1292 } 1293 if (space < resid + clen && 1294 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1295 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1296 SOCKBUF_UNLOCK(&so->so_snd); 1297 error = EWOULDBLOCK; 1298 goto release; 1299 } 1300 error = sbwait(&so->so_snd); 1301 SOCKBUF_UNLOCK(&so->so_snd); 1302 if (error) 1303 goto release; 1304 goto restart; 1305 } 1306 SOCKBUF_UNLOCK(&so->so_snd); 1307 space -= clen; 1308 do { 1309 if (uio == NULL) { 1310 resid = 0; 1311 if (flags & MSG_EOR) 1312 top->m_flags |= M_EOR; 1313 } else if (resid > 0) { 1314 /* 1315 * Copy the data from userland into a mbuf 1316 * chain. If no data is to be copied in, 1317 * a single empty mbuf is returned. 1318 */ 1319 top = m_uiotombuf(uio, M_WAITOK, space, 1320 (atomic ? max_hdr : 0), 1321 (atomic ? M_PKTHDR : 0) | 1322 ((flags & MSG_EOR) ? M_EOR : 0)); 1323 if (top == NULL) { 1324 error = EFAULT; /* only possible error */ 1325 goto release; 1326 } 1327 space -= resid - uio->uio_resid; 1328 resid = uio->uio_resid; 1329 } 1330 if (dontroute) { 1331 SOCK_LOCK(so); 1332 so->so_options |= SO_DONTROUTE; 1333 SOCK_UNLOCK(so); 1334 } 1335 /* 1336 * XXX all the SBS_CANTSENDMORE checks previously 1337 * done could be out of date. We could have recieved 1338 * a reset packet in an interrupt or maybe we slept 1339 * while doing page faults in uiomove() etc. We 1340 * could probably recheck again inside the locking 1341 * protection here, but there are probably other 1342 * places that this also happens. We must rethink 1343 * this. 1344 */ 1345 VNET_SO_ASSERT(so); 1346 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1347 (flags & MSG_OOB) ? PRUS_OOB : 1348 /* 1349 * If the user set MSG_EOF, the protocol understands 1350 * this flag and nothing left to send then use 1351 * PRU_SEND_EOF instead of PRU_SEND. 1352 */ 1353 ((flags & MSG_EOF) && 1354 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1355 (resid <= 0)) ? 1356 PRUS_EOF : 1357 /* If there is more to send set PRUS_MORETOCOME. */ 1358 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1359 top, addr, control, td); 1360 if (dontroute) { 1361 SOCK_LOCK(so); 1362 so->so_options &= ~SO_DONTROUTE; 1363 SOCK_UNLOCK(so); 1364 } 1365 clen = 0; 1366 control = NULL; 1367 top = NULL; 1368 if (error) 1369 goto release; 1370 } while (resid && space > 0); 1371 } while (resid); 1372 1373 release: 1374 sbunlock(&so->so_snd); 1375 out: 1376 if (top != NULL) 1377 m_freem(top); 1378 if (control != NULL) 1379 m_freem(control); 1380 return (error); 1381 } 1382 1383 int 1384 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1385 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1386 { 1387 int error; 1388 1389 CURVNET_SET(so->so_vnet); 1390 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1391 control, flags, td); 1392 CURVNET_RESTORE(); 1393 return (error); 1394 } 1395 1396 /* 1397 * The part of soreceive() that implements reading non-inline out-of-band 1398 * data from a socket. For more complete comments, see soreceive(), from 1399 * which this code originated. 1400 * 1401 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1402 * unable to return an mbuf chain to the caller. 1403 */ 1404 static int 1405 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1406 { 1407 struct protosw *pr = so->so_proto; 1408 struct mbuf *m; 1409 int error; 1410 1411 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1412 VNET_SO_ASSERT(so); 1413 1414 m = m_get(M_WAITOK, MT_DATA); 1415 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1416 if (error) 1417 goto bad; 1418 do { 1419 error = uiomove(mtod(m, void *), 1420 (int) min(uio->uio_resid, m->m_len), uio); 1421 m = m_free(m); 1422 } while (uio->uio_resid && error == 0 && m); 1423 bad: 1424 if (m != NULL) 1425 m_freem(m); 1426 return (error); 1427 } 1428 1429 /* 1430 * Following replacement or removal of the first mbuf on the first mbuf chain 1431 * of a socket buffer, push necessary state changes back into the socket 1432 * buffer so that other consumers see the values consistently. 'nextrecord' 1433 * is the callers locally stored value of the original value of 1434 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1435 * NOTE: 'nextrecord' may be NULL. 1436 */ 1437 static __inline void 1438 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1439 { 1440 1441 SOCKBUF_LOCK_ASSERT(sb); 1442 /* 1443 * First, update for the new value of nextrecord. If necessary, make 1444 * it the first record. 1445 */ 1446 if (sb->sb_mb != NULL) 1447 sb->sb_mb->m_nextpkt = nextrecord; 1448 else 1449 sb->sb_mb = nextrecord; 1450 1451 /* 1452 * Now update any dependent socket buffer fields to reflect the new 1453 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1454 * addition of a second clause that takes care of the case where 1455 * sb_mb has been updated, but remains the last record. 1456 */ 1457 if (sb->sb_mb == NULL) { 1458 sb->sb_mbtail = NULL; 1459 sb->sb_lastrecord = NULL; 1460 } else if (sb->sb_mb->m_nextpkt == NULL) 1461 sb->sb_lastrecord = sb->sb_mb; 1462 } 1463 1464 /* 1465 * Implement receive operations on a socket. We depend on the way that 1466 * records are added to the sockbuf by sbappend. In particular, each record 1467 * (mbufs linked through m_next) must begin with an address if the protocol 1468 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1469 * data, and then zero or more mbufs of data. In order to allow parallelism 1470 * between network receive and copying to user space, as well as avoid 1471 * sleeping with a mutex held, we release the socket buffer mutex during the 1472 * user space copy. Although the sockbuf is locked, new data may still be 1473 * appended, and thus we must maintain consistency of the sockbuf during that 1474 * time. 1475 * 1476 * The caller may receive the data as a single mbuf chain by supplying an 1477 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1478 * the count in uio_resid. 1479 */ 1480 int 1481 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1482 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1483 { 1484 struct mbuf *m, **mp; 1485 int flags, error, offset; 1486 ssize_t len; 1487 struct protosw *pr = so->so_proto; 1488 struct mbuf *nextrecord; 1489 int moff, type = 0; 1490 ssize_t orig_resid = uio->uio_resid; 1491 1492 mp = mp0; 1493 if (psa != NULL) 1494 *psa = NULL; 1495 if (controlp != NULL) 1496 *controlp = NULL; 1497 if (flagsp != NULL) 1498 flags = *flagsp &~ MSG_EOR; 1499 else 1500 flags = 0; 1501 if (flags & MSG_OOB) 1502 return (soreceive_rcvoob(so, uio, flags)); 1503 if (mp != NULL) 1504 *mp = NULL; 1505 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1506 && uio->uio_resid) { 1507 VNET_SO_ASSERT(so); 1508 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1509 } 1510 1511 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1512 if (error) 1513 return (error); 1514 1515 restart: 1516 SOCKBUF_LOCK(&so->so_rcv); 1517 m = so->so_rcv.sb_mb; 1518 /* 1519 * If we have less data than requested, block awaiting more (subject 1520 * to any timeout) if: 1521 * 1. the current count is less than the low water mark, or 1522 * 2. MSG_DONTWAIT is not set 1523 */ 1524 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1525 sbavail(&so->so_rcv) < uio->uio_resid) && 1526 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1527 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1528 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1529 ("receive: m == %p sbavail == %u", 1530 m, sbavail(&so->so_rcv))); 1531 if (so->so_error) { 1532 if (m != NULL) 1533 goto dontblock; 1534 error = so->so_error; 1535 if ((flags & MSG_PEEK) == 0) 1536 so->so_error = 0; 1537 SOCKBUF_UNLOCK(&so->so_rcv); 1538 goto release; 1539 } 1540 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1541 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1542 if (m == NULL) { 1543 SOCKBUF_UNLOCK(&so->so_rcv); 1544 goto release; 1545 } else 1546 goto dontblock; 1547 } 1548 for (; m != NULL; m = m->m_next) 1549 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1550 m = so->so_rcv.sb_mb; 1551 goto dontblock; 1552 } 1553 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1554 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1555 SOCKBUF_UNLOCK(&so->so_rcv); 1556 error = ENOTCONN; 1557 goto release; 1558 } 1559 if (uio->uio_resid == 0) { 1560 SOCKBUF_UNLOCK(&so->so_rcv); 1561 goto release; 1562 } 1563 if ((so->so_state & SS_NBIO) || 1564 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1565 SOCKBUF_UNLOCK(&so->so_rcv); 1566 error = EWOULDBLOCK; 1567 goto release; 1568 } 1569 SBLASTRECORDCHK(&so->so_rcv); 1570 SBLASTMBUFCHK(&so->so_rcv); 1571 error = sbwait(&so->so_rcv); 1572 SOCKBUF_UNLOCK(&so->so_rcv); 1573 if (error) 1574 goto release; 1575 goto restart; 1576 } 1577 dontblock: 1578 /* 1579 * From this point onward, we maintain 'nextrecord' as a cache of the 1580 * pointer to the next record in the socket buffer. We must keep the 1581 * various socket buffer pointers and local stack versions of the 1582 * pointers in sync, pushing out modifications before dropping the 1583 * socket buffer mutex, and re-reading them when picking it up. 1584 * 1585 * Otherwise, we will race with the network stack appending new data 1586 * or records onto the socket buffer by using inconsistent/stale 1587 * versions of the field, possibly resulting in socket buffer 1588 * corruption. 1589 * 1590 * By holding the high-level sblock(), we prevent simultaneous 1591 * readers from pulling off the front of the socket buffer. 1592 */ 1593 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1594 if (uio->uio_td) 1595 uio->uio_td->td_ru.ru_msgrcv++; 1596 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1597 SBLASTRECORDCHK(&so->so_rcv); 1598 SBLASTMBUFCHK(&so->so_rcv); 1599 nextrecord = m->m_nextpkt; 1600 if (pr->pr_flags & PR_ADDR) { 1601 KASSERT(m->m_type == MT_SONAME, 1602 ("m->m_type == %d", m->m_type)); 1603 orig_resid = 0; 1604 if (psa != NULL) 1605 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1606 M_NOWAIT); 1607 if (flags & MSG_PEEK) { 1608 m = m->m_next; 1609 } else { 1610 sbfree(&so->so_rcv, m); 1611 so->so_rcv.sb_mb = m_free(m); 1612 m = so->so_rcv.sb_mb; 1613 sockbuf_pushsync(&so->so_rcv, nextrecord); 1614 } 1615 } 1616 1617 /* 1618 * Process one or more MT_CONTROL mbufs present before any data mbufs 1619 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1620 * just copy the data; if !MSG_PEEK, we call into the protocol to 1621 * perform externalization (or freeing if controlp == NULL). 1622 */ 1623 if (m != NULL && m->m_type == MT_CONTROL) { 1624 struct mbuf *cm = NULL, *cmn; 1625 struct mbuf **cme = &cm; 1626 1627 do { 1628 if (flags & MSG_PEEK) { 1629 if (controlp != NULL) { 1630 *controlp = m_copy(m, 0, m->m_len); 1631 controlp = &(*controlp)->m_next; 1632 } 1633 m = m->m_next; 1634 } else { 1635 sbfree(&so->so_rcv, m); 1636 so->so_rcv.sb_mb = m->m_next; 1637 m->m_next = NULL; 1638 *cme = m; 1639 cme = &(*cme)->m_next; 1640 m = so->so_rcv.sb_mb; 1641 } 1642 } while (m != NULL && m->m_type == MT_CONTROL); 1643 if ((flags & MSG_PEEK) == 0) 1644 sockbuf_pushsync(&so->so_rcv, nextrecord); 1645 while (cm != NULL) { 1646 cmn = cm->m_next; 1647 cm->m_next = NULL; 1648 if (pr->pr_domain->dom_externalize != NULL) { 1649 SOCKBUF_UNLOCK(&so->so_rcv); 1650 VNET_SO_ASSERT(so); 1651 error = (*pr->pr_domain->dom_externalize) 1652 (cm, controlp, flags); 1653 SOCKBUF_LOCK(&so->so_rcv); 1654 } else if (controlp != NULL) 1655 *controlp = cm; 1656 else 1657 m_freem(cm); 1658 if (controlp != NULL) { 1659 orig_resid = 0; 1660 while (*controlp != NULL) 1661 controlp = &(*controlp)->m_next; 1662 } 1663 cm = cmn; 1664 } 1665 if (m != NULL) 1666 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1667 else 1668 nextrecord = so->so_rcv.sb_mb; 1669 orig_resid = 0; 1670 } 1671 if (m != NULL) { 1672 if ((flags & MSG_PEEK) == 0) { 1673 KASSERT(m->m_nextpkt == nextrecord, 1674 ("soreceive: post-control, nextrecord !sync")); 1675 if (nextrecord == NULL) { 1676 KASSERT(so->so_rcv.sb_mb == m, 1677 ("soreceive: post-control, sb_mb!=m")); 1678 KASSERT(so->so_rcv.sb_lastrecord == m, 1679 ("soreceive: post-control, lastrecord!=m")); 1680 } 1681 } 1682 type = m->m_type; 1683 if (type == MT_OOBDATA) 1684 flags |= MSG_OOB; 1685 } else { 1686 if ((flags & MSG_PEEK) == 0) { 1687 KASSERT(so->so_rcv.sb_mb == nextrecord, 1688 ("soreceive: sb_mb != nextrecord")); 1689 if (so->so_rcv.sb_mb == NULL) { 1690 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1691 ("soreceive: sb_lastercord != NULL")); 1692 } 1693 } 1694 } 1695 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1696 SBLASTRECORDCHK(&so->so_rcv); 1697 SBLASTMBUFCHK(&so->so_rcv); 1698 1699 /* 1700 * Now continue to read any data mbufs off of the head of the socket 1701 * buffer until the read request is satisfied. Note that 'type' is 1702 * used to store the type of any mbuf reads that have happened so far 1703 * such that soreceive() can stop reading if the type changes, which 1704 * causes soreceive() to return only one of regular data and inline 1705 * out-of-band data in a single socket receive operation. 1706 */ 1707 moff = 0; 1708 offset = 0; 1709 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 1710 && error == 0) { 1711 /* 1712 * If the type of mbuf has changed since the last mbuf 1713 * examined ('type'), end the receive operation. 1714 */ 1715 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1716 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1717 if (type != m->m_type) 1718 break; 1719 } else if (type == MT_OOBDATA) 1720 break; 1721 else 1722 KASSERT(m->m_type == MT_DATA, 1723 ("m->m_type == %d", m->m_type)); 1724 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1725 len = uio->uio_resid; 1726 if (so->so_oobmark && len > so->so_oobmark - offset) 1727 len = so->so_oobmark - offset; 1728 if (len > m->m_len - moff) 1729 len = m->m_len - moff; 1730 /* 1731 * If mp is set, just pass back the mbufs. Otherwise copy 1732 * them out via the uio, then free. Sockbuf must be 1733 * consistent here (points to current mbuf, it points to next 1734 * record) when we drop priority; we must note any additions 1735 * to the sockbuf when we block interrupts again. 1736 */ 1737 if (mp == NULL) { 1738 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1739 SBLASTRECORDCHK(&so->so_rcv); 1740 SBLASTMBUFCHK(&so->so_rcv); 1741 SOCKBUF_UNLOCK(&so->so_rcv); 1742 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1743 SOCKBUF_LOCK(&so->so_rcv); 1744 if (error) { 1745 /* 1746 * The MT_SONAME mbuf has already been removed 1747 * from the record, so it is necessary to 1748 * remove the data mbufs, if any, to preserve 1749 * the invariant in the case of PR_ADDR that 1750 * requires MT_SONAME mbufs at the head of 1751 * each record. 1752 */ 1753 if (m && pr->pr_flags & PR_ATOMIC && 1754 ((flags & MSG_PEEK) == 0)) 1755 (void)sbdroprecord_locked(&so->so_rcv); 1756 SOCKBUF_UNLOCK(&so->so_rcv); 1757 goto release; 1758 } 1759 } else 1760 uio->uio_resid -= len; 1761 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1762 if (len == m->m_len - moff) { 1763 if (m->m_flags & M_EOR) 1764 flags |= MSG_EOR; 1765 if (flags & MSG_PEEK) { 1766 m = m->m_next; 1767 moff = 0; 1768 } else { 1769 nextrecord = m->m_nextpkt; 1770 sbfree(&so->so_rcv, m); 1771 if (mp != NULL) { 1772 m->m_nextpkt = NULL; 1773 *mp = m; 1774 mp = &m->m_next; 1775 so->so_rcv.sb_mb = m = m->m_next; 1776 *mp = NULL; 1777 } else { 1778 so->so_rcv.sb_mb = m_free(m); 1779 m = so->so_rcv.sb_mb; 1780 } 1781 sockbuf_pushsync(&so->so_rcv, nextrecord); 1782 SBLASTRECORDCHK(&so->so_rcv); 1783 SBLASTMBUFCHK(&so->so_rcv); 1784 } 1785 } else { 1786 if (flags & MSG_PEEK) 1787 moff += len; 1788 else { 1789 if (mp != NULL) { 1790 if (flags & MSG_DONTWAIT) { 1791 *mp = m_copym(m, 0, len, 1792 M_NOWAIT); 1793 if (*mp == NULL) { 1794 /* 1795 * m_copym() couldn't 1796 * allocate an mbuf. 1797 * Adjust uio_resid back 1798 * (it was adjusted 1799 * down by len bytes, 1800 * which we didn't end 1801 * up "copying" over). 1802 */ 1803 uio->uio_resid += len; 1804 break; 1805 } 1806 } else { 1807 SOCKBUF_UNLOCK(&so->so_rcv); 1808 *mp = m_copym(m, 0, len, 1809 M_WAITOK); 1810 SOCKBUF_LOCK(&so->so_rcv); 1811 } 1812 } 1813 sbcut_locked(&so->so_rcv, len); 1814 } 1815 } 1816 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1817 if (so->so_oobmark) { 1818 if ((flags & MSG_PEEK) == 0) { 1819 so->so_oobmark -= len; 1820 if (so->so_oobmark == 0) { 1821 so->so_rcv.sb_state |= SBS_RCVATMARK; 1822 break; 1823 } 1824 } else { 1825 offset += len; 1826 if (offset == so->so_oobmark) 1827 break; 1828 } 1829 } 1830 if (flags & MSG_EOR) 1831 break; 1832 /* 1833 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1834 * must not quit until "uio->uio_resid == 0" or an error 1835 * termination. If a signal/timeout occurs, return with a 1836 * short count but without error. Keep sockbuf locked 1837 * against other readers. 1838 */ 1839 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1840 !sosendallatonce(so) && nextrecord == NULL) { 1841 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1842 if (so->so_error || 1843 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1844 break; 1845 /* 1846 * Notify the protocol that some data has been 1847 * drained before blocking. 1848 */ 1849 if (pr->pr_flags & PR_WANTRCVD) { 1850 SOCKBUF_UNLOCK(&so->so_rcv); 1851 VNET_SO_ASSERT(so); 1852 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1853 SOCKBUF_LOCK(&so->so_rcv); 1854 } 1855 SBLASTRECORDCHK(&so->so_rcv); 1856 SBLASTMBUFCHK(&so->so_rcv); 1857 /* 1858 * We could receive some data while was notifying 1859 * the protocol. Skip blocking in this case. 1860 */ 1861 if (so->so_rcv.sb_mb == NULL) { 1862 error = sbwait(&so->so_rcv); 1863 if (error) { 1864 SOCKBUF_UNLOCK(&so->so_rcv); 1865 goto release; 1866 } 1867 } 1868 m = so->so_rcv.sb_mb; 1869 if (m != NULL) 1870 nextrecord = m->m_nextpkt; 1871 } 1872 } 1873 1874 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1875 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1876 flags |= MSG_TRUNC; 1877 if ((flags & MSG_PEEK) == 0) 1878 (void) sbdroprecord_locked(&so->so_rcv); 1879 } 1880 if ((flags & MSG_PEEK) == 0) { 1881 if (m == NULL) { 1882 /* 1883 * First part is an inline SB_EMPTY_FIXUP(). Second 1884 * part makes sure sb_lastrecord is up-to-date if 1885 * there is still data in the socket buffer. 1886 */ 1887 so->so_rcv.sb_mb = nextrecord; 1888 if (so->so_rcv.sb_mb == NULL) { 1889 so->so_rcv.sb_mbtail = NULL; 1890 so->so_rcv.sb_lastrecord = NULL; 1891 } else if (nextrecord->m_nextpkt == NULL) 1892 so->so_rcv.sb_lastrecord = nextrecord; 1893 } 1894 SBLASTRECORDCHK(&so->so_rcv); 1895 SBLASTMBUFCHK(&so->so_rcv); 1896 /* 1897 * If soreceive() is being done from the socket callback, 1898 * then don't need to generate ACK to peer to update window, 1899 * since ACK will be generated on return to TCP. 1900 */ 1901 if (!(flags & MSG_SOCALLBCK) && 1902 (pr->pr_flags & PR_WANTRCVD)) { 1903 SOCKBUF_UNLOCK(&so->so_rcv); 1904 VNET_SO_ASSERT(so); 1905 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1906 SOCKBUF_LOCK(&so->so_rcv); 1907 } 1908 } 1909 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1910 if (orig_resid == uio->uio_resid && orig_resid && 1911 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1912 SOCKBUF_UNLOCK(&so->so_rcv); 1913 goto restart; 1914 } 1915 SOCKBUF_UNLOCK(&so->so_rcv); 1916 1917 if (flagsp != NULL) 1918 *flagsp |= flags; 1919 release: 1920 sbunlock(&so->so_rcv); 1921 return (error); 1922 } 1923 1924 /* 1925 * Optimized version of soreceive() for stream (TCP) sockets. 1926 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1927 */ 1928 int 1929 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1930 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1931 { 1932 int len = 0, error = 0, flags, oresid; 1933 struct sockbuf *sb; 1934 struct mbuf *m, *n = NULL; 1935 1936 /* We only do stream sockets. */ 1937 if (so->so_type != SOCK_STREAM) 1938 return (EINVAL); 1939 if (psa != NULL) 1940 *psa = NULL; 1941 if (controlp != NULL) 1942 return (EINVAL); 1943 if (flagsp != NULL) 1944 flags = *flagsp &~ MSG_EOR; 1945 else 1946 flags = 0; 1947 if (flags & MSG_OOB) 1948 return (soreceive_rcvoob(so, uio, flags)); 1949 if (mp0 != NULL) 1950 *mp0 = NULL; 1951 1952 sb = &so->so_rcv; 1953 1954 /* Prevent other readers from entering the socket. */ 1955 error = sblock(sb, SBLOCKWAIT(flags)); 1956 if (error) 1957 goto out; 1958 SOCKBUF_LOCK(sb); 1959 1960 /* Easy one, no space to copyout anything. */ 1961 if (uio->uio_resid == 0) { 1962 error = EINVAL; 1963 goto out; 1964 } 1965 oresid = uio->uio_resid; 1966 1967 /* We will never ever get anything unless we are or were connected. */ 1968 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1969 error = ENOTCONN; 1970 goto out; 1971 } 1972 1973 restart: 1974 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1975 1976 /* Abort if socket has reported problems. */ 1977 if (so->so_error) { 1978 if (sbavail(sb) > 0) 1979 goto deliver; 1980 if (oresid > uio->uio_resid) 1981 goto out; 1982 error = so->so_error; 1983 if (!(flags & MSG_PEEK)) 1984 so->so_error = 0; 1985 goto out; 1986 } 1987 1988 /* Door is closed. Deliver what is left, if any. */ 1989 if (sb->sb_state & SBS_CANTRCVMORE) { 1990 if (sbavail(sb) > 0) 1991 goto deliver; 1992 else 1993 goto out; 1994 } 1995 1996 /* Socket buffer is empty and we shall not block. */ 1997 if (sbavail(sb) == 0 && 1998 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1999 error = EAGAIN; 2000 goto out; 2001 } 2002 2003 /* Socket buffer got some data that we shall deliver now. */ 2004 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2005 ((sb->sb_flags & SS_NBIO) || 2006 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2007 sbavail(sb) >= sb->sb_lowat || 2008 sbavail(sb) >= uio->uio_resid || 2009 sbavail(sb) >= sb->sb_hiwat) ) { 2010 goto deliver; 2011 } 2012 2013 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2014 if ((flags & MSG_WAITALL) && 2015 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2016 goto deliver; 2017 2018 /* 2019 * Wait and block until (more) data comes in. 2020 * NB: Drops the sockbuf lock during wait. 2021 */ 2022 error = sbwait(sb); 2023 if (error) 2024 goto out; 2025 goto restart; 2026 2027 deliver: 2028 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2029 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2030 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2031 2032 /* Statistics. */ 2033 if (uio->uio_td) 2034 uio->uio_td->td_ru.ru_msgrcv++; 2035 2036 /* Fill uio until full or current end of socket buffer is reached. */ 2037 len = min(uio->uio_resid, sbavail(sb)); 2038 if (mp0 != NULL) { 2039 /* Dequeue as many mbufs as possible. */ 2040 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2041 if (*mp0 == NULL) 2042 *mp0 = sb->sb_mb; 2043 else 2044 m_cat(*mp0, sb->sb_mb); 2045 for (m = sb->sb_mb; 2046 m != NULL && m->m_len <= len; 2047 m = m->m_next) { 2048 KASSERT(!(m->m_flags & M_NOTAVAIL), 2049 ("%s: m %p not available", __func__, m)); 2050 len -= m->m_len; 2051 uio->uio_resid -= m->m_len; 2052 sbfree(sb, m); 2053 n = m; 2054 } 2055 n->m_next = NULL; 2056 sb->sb_mb = m; 2057 sb->sb_lastrecord = sb->sb_mb; 2058 if (sb->sb_mb == NULL) 2059 SB_EMPTY_FIXUP(sb); 2060 } 2061 /* Copy the remainder. */ 2062 if (len > 0) { 2063 KASSERT(sb->sb_mb != NULL, 2064 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2065 2066 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2067 if (m == NULL) 2068 len = 0; /* Don't flush data from sockbuf. */ 2069 else 2070 uio->uio_resid -= len; 2071 if (*mp0 != NULL) 2072 m_cat(*mp0, m); 2073 else 2074 *mp0 = m; 2075 if (*mp0 == NULL) { 2076 error = ENOBUFS; 2077 goto out; 2078 } 2079 } 2080 } else { 2081 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2082 SOCKBUF_UNLOCK(sb); 2083 error = m_mbuftouio(uio, sb->sb_mb, len); 2084 SOCKBUF_LOCK(sb); 2085 if (error) 2086 goto out; 2087 } 2088 SBLASTRECORDCHK(sb); 2089 SBLASTMBUFCHK(sb); 2090 2091 /* 2092 * Remove the delivered data from the socket buffer unless we 2093 * were only peeking. 2094 */ 2095 if (!(flags & MSG_PEEK)) { 2096 if (len > 0) 2097 sbdrop_locked(sb, len); 2098 2099 /* Notify protocol that we drained some data. */ 2100 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2101 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2102 !(flags & MSG_SOCALLBCK))) { 2103 SOCKBUF_UNLOCK(sb); 2104 VNET_SO_ASSERT(so); 2105 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2106 SOCKBUF_LOCK(sb); 2107 } 2108 } 2109 2110 /* 2111 * For MSG_WAITALL we may have to loop again and wait for 2112 * more data to come in. 2113 */ 2114 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2115 goto restart; 2116 out: 2117 SOCKBUF_LOCK_ASSERT(sb); 2118 SBLASTRECORDCHK(sb); 2119 SBLASTMBUFCHK(sb); 2120 SOCKBUF_UNLOCK(sb); 2121 sbunlock(sb); 2122 return (error); 2123 } 2124 2125 /* 2126 * Optimized version of soreceive() for simple datagram cases from userspace. 2127 * Unlike in the stream case, we're able to drop a datagram if copyout() 2128 * fails, and because we handle datagrams atomically, we don't need to use a 2129 * sleep lock to prevent I/O interlacing. 2130 */ 2131 int 2132 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2133 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2134 { 2135 struct mbuf *m, *m2; 2136 int flags, error; 2137 ssize_t len; 2138 struct protosw *pr = so->so_proto; 2139 struct mbuf *nextrecord; 2140 2141 if (psa != NULL) 2142 *psa = NULL; 2143 if (controlp != NULL) 2144 *controlp = NULL; 2145 if (flagsp != NULL) 2146 flags = *flagsp &~ MSG_EOR; 2147 else 2148 flags = 0; 2149 2150 /* 2151 * For any complicated cases, fall back to the full 2152 * soreceive_generic(). 2153 */ 2154 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2155 return (soreceive_generic(so, psa, uio, mp0, controlp, 2156 flagsp)); 2157 2158 /* 2159 * Enforce restrictions on use. 2160 */ 2161 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2162 ("soreceive_dgram: wantrcvd")); 2163 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2164 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2165 ("soreceive_dgram: SBS_RCVATMARK")); 2166 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2167 ("soreceive_dgram: P_CONNREQUIRED")); 2168 2169 /* 2170 * Loop blocking while waiting for a datagram. 2171 */ 2172 SOCKBUF_LOCK(&so->so_rcv); 2173 while ((m = so->so_rcv.sb_mb) == NULL) { 2174 KASSERT(sbavail(&so->so_rcv) == 0, 2175 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2176 sbavail(&so->so_rcv))); 2177 if (so->so_error) { 2178 error = so->so_error; 2179 so->so_error = 0; 2180 SOCKBUF_UNLOCK(&so->so_rcv); 2181 return (error); 2182 } 2183 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2184 uio->uio_resid == 0) { 2185 SOCKBUF_UNLOCK(&so->so_rcv); 2186 return (0); 2187 } 2188 if ((so->so_state & SS_NBIO) || 2189 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2190 SOCKBUF_UNLOCK(&so->so_rcv); 2191 return (EWOULDBLOCK); 2192 } 2193 SBLASTRECORDCHK(&so->so_rcv); 2194 SBLASTMBUFCHK(&so->so_rcv); 2195 error = sbwait(&so->so_rcv); 2196 if (error) { 2197 SOCKBUF_UNLOCK(&so->so_rcv); 2198 return (error); 2199 } 2200 } 2201 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2202 2203 if (uio->uio_td) 2204 uio->uio_td->td_ru.ru_msgrcv++; 2205 SBLASTRECORDCHK(&so->so_rcv); 2206 SBLASTMBUFCHK(&so->so_rcv); 2207 nextrecord = m->m_nextpkt; 2208 if (nextrecord == NULL) { 2209 KASSERT(so->so_rcv.sb_lastrecord == m, 2210 ("soreceive_dgram: lastrecord != m")); 2211 } 2212 2213 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2214 ("soreceive_dgram: m_nextpkt != nextrecord")); 2215 2216 /* 2217 * Pull 'm' and its chain off the front of the packet queue. 2218 */ 2219 so->so_rcv.sb_mb = NULL; 2220 sockbuf_pushsync(&so->so_rcv, nextrecord); 2221 2222 /* 2223 * Walk 'm's chain and free that many bytes from the socket buffer. 2224 */ 2225 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2226 sbfree(&so->so_rcv, m2); 2227 2228 /* 2229 * Do a few last checks before we let go of the lock. 2230 */ 2231 SBLASTRECORDCHK(&so->so_rcv); 2232 SBLASTMBUFCHK(&so->so_rcv); 2233 SOCKBUF_UNLOCK(&so->so_rcv); 2234 2235 if (pr->pr_flags & PR_ADDR) { 2236 KASSERT(m->m_type == MT_SONAME, 2237 ("m->m_type == %d", m->m_type)); 2238 if (psa != NULL) 2239 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2240 M_NOWAIT); 2241 m = m_free(m); 2242 } 2243 if (m == NULL) { 2244 /* XXXRW: Can this happen? */ 2245 return (0); 2246 } 2247 2248 /* 2249 * Packet to copyout() is now in 'm' and it is disconnected from the 2250 * queue. 2251 * 2252 * Process one or more MT_CONTROL mbufs present before any data mbufs 2253 * in the first mbuf chain on the socket buffer. We call into the 2254 * protocol to perform externalization (or freeing if controlp == 2255 * NULL). 2256 */ 2257 if (m->m_type == MT_CONTROL) { 2258 struct mbuf *cm = NULL, *cmn; 2259 struct mbuf **cme = &cm; 2260 2261 do { 2262 m2 = m->m_next; 2263 m->m_next = NULL; 2264 *cme = m; 2265 cme = &(*cme)->m_next; 2266 m = m2; 2267 } while (m != NULL && m->m_type == MT_CONTROL); 2268 while (cm != NULL) { 2269 cmn = cm->m_next; 2270 cm->m_next = NULL; 2271 if (pr->pr_domain->dom_externalize != NULL) { 2272 error = (*pr->pr_domain->dom_externalize) 2273 (cm, controlp, flags); 2274 } else if (controlp != NULL) 2275 *controlp = cm; 2276 else 2277 m_freem(cm); 2278 if (controlp != NULL) { 2279 while (*controlp != NULL) 2280 controlp = &(*controlp)->m_next; 2281 } 2282 cm = cmn; 2283 } 2284 } 2285 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2286 2287 while (m != NULL && uio->uio_resid > 0) { 2288 len = uio->uio_resid; 2289 if (len > m->m_len) 2290 len = m->m_len; 2291 error = uiomove(mtod(m, char *), (int)len, uio); 2292 if (error) { 2293 m_freem(m); 2294 return (error); 2295 } 2296 if (len == m->m_len) 2297 m = m_free(m); 2298 else { 2299 m->m_data += len; 2300 m->m_len -= len; 2301 } 2302 } 2303 if (m != NULL) 2304 flags |= MSG_TRUNC; 2305 m_freem(m); 2306 if (flagsp != NULL) 2307 *flagsp |= flags; 2308 return (0); 2309 } 2310 2311 int 2312 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2313 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2314 { 2315 int error; 2316 2317 CURVNET_SET(so->so_vnet); 2318 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2319 controlp, flagsp)); 2320 CURVNET_RESTORE(); 2321 return (error); 2322 } 2323 2324 int 2325 soshutdown(struct socket *so, int how) 2326 { 2327 struct protosw *pr = so->so_proto; 2328 int error; 2329 2330 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2331 return (EINVAL); 2332 2333 CURVNET_SET(so->so_vnet); 2334 if (pr->pr_usrreqs->pru_flush != NULL) 2335 (*pr->pr_usrreqs->pru_flush)(so, how); 2336 if (how != SHUT_WR) 2337 sorflush(so); 2338 if (how != SHUT_RD) { 2339 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2340 wakeup(&so->so_timeo); 2341 CURVNET_RESTORE(); 2342 return (error); 2343 } 2344 wakeup(&so->so_timeo); 2345 CURVNET_RESTORE(); 2346 return (0); 2347 } 2348 2349 void 2350 sorflush(struct socket *so) 2351 { 2352 struct sockbuf *sb = &so->so_rcv; 2353 struct protosw *pr = so->so_proto; 2354 struct sockbuf asb; 2355 2356 VNET_SO_ASSERT(so); 2357 2358 /* 2359 * In order to avoid calling dom_dispose with the socket buffer mutex 2360 * held, and in order to generally avoid holding the lock for a long 2361 * time, we make a copy of the socket buffer and clear the original 2362 * (except locks, state). The new socket buffer copy won't have 2363 * initialized locks so we can only call routines that won't use or 2364 * assert those locks. 2365 * 2366 * Dislodge threads currently blocked in receive and wait to acquire 2367 * a lock against other simultaneous readers before clearing the 2368 * socket buffer. Don't let our acquire be interrupted by a signal 2369 * despite any existing socket disposition on interruptable waiting. 2370 */ 2371 socantrcvmore(so); 2372 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2373 2374 /* 2375 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2376 * and mutex data unchanged. 2377 */ 2378 SOCKBUF_LOCK(sb); 2379 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2380 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2381 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2382 bzero(&sb->sb_startzero, 2383 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2384 SOCKBUF_UNLOCK(sb); 2385 sbunlock(sb); 2386 2387 /* 2388 * Dispose of special rights and flush the socket buffer. Don't call 2389 * any unsafe routines (that rely on locks being initialized) on asb. 2390 */ 2391 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2392 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2393 sbrelease_internal(&asb, so); 2394 } 2395 2396 /* 2397 * Wrapper for Socket established helper hook. 2398 * Parameters: socket, context of the hook point, hook id. 2399 */ 2400 static int inline 2401 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2402 { 2403 struct socket_hhook_data hhook_data = { 2404 .so = so, 2405 .hctx = hctx, 2406 .m = NULL, 2407 .status = 0 2408 }; 2409 2410 CURVNET_SET(so->so_vnet); 2411 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2412 CURVNET_RESTORE(); 2413 2414 /* Ugly but needed, since hhooks return void for now */ 2415 return (hhook_data.status); 2416 } 2417 2418 /* 2419 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2420 * additional variant to handle the case where the option value needs to be 2421 * some kind of integer, but not a specific size. In addition to their use 2422 * here, these functions are also called by the protocol-level pr_ctloutput() 2423 * routines. 2424 */ 2425 int 2426 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2427 { 2428 size_t valsize; 2429 2430 /* 2431 * If the user gives us more than we wanted, we ignore it, but if we 2432 * don't get the minimum length the caller wants, we return EINVAL. 2433 * On success, sopt->sopt_valsize is set to however much we actually 2434 * retrieved. 2435 */ 2436 if ((valsize = sopt->sopt_valsize) < minlen) 2437 return EINVAL; 2438 if (valsize > len) 2439 sopt->sopt_valsize = valsize = len; 2440 2441 if (sopt->sopt_td != NULL) 2442 return (copyin(sopt->sopt_val, buf, valsize)); 2443 2444 bcopy(sopt->sopt_val, buf, valsize); 2445 return (0); 2446 } 2447 2448 /* 2449 * Kernel version of setsockopt(2). 2450 * 2451 * XXX: optlen is size_t, not socklen_t 2452 */ 2453 int 2454 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2455 size_t optlen) 2456 { 2457 struct sockopt sopt; 2458 2459 sopt.sopt_level = level; 2460 sopt.sopt_name = optname; 2461 sopt.sopt_dir = SOPT_SET; 2462 sopt.sopt_val = optval; 2463 sopt.sopt_valsize = optlen; 2464 sopt.sopt_td = NULL; 2465 return (sosetopt(so, &sopt)); 2466 } 2467 2468 int 2469 sosetopt(struct socket *so, struct sockopt *sopt) 2470 { 2471 int error, optval; 2472 struct linger l; 2473 struct timeval tv; 2474 sbintime_t val; 2475 uint32_t val32; 2476 #ifdef MAC 2477 struct mac extmac; 2478 #endif 2479 2480 CURVNET_SET(so->so_vnet); 2481 error = 0; 2482 if (sopt->sopt_level != SOL_SOCKET) { 2483 if (so->so_proto->pr_ctloutput != NULL) { 2484 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2485 CURVNET_RESTORE(); 2486 return (error); 2487 } 2488 error = ENOPROTOOPT; 2489 } else { 2490 switch (sopt->sopt_name) { 2491 case SO_ACCEPTFILTER: 2492 error = do_setopt_accept_filter(so, sopt); 2493 if (error) 2494 goto bad; 2495 break; 2496 2497 case SO_LINGER: 2498 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2499 if (error) 2500 goto bad; 2501 2502 SOCK_LOCK(so); 2503 so->so_linger = l.l_linger; 2504 if (l.l_onoff) 2505 so->so_options |= SO_LINGER; 2506 else 2507 so->so_options &= ~SO_LINGER; 2508 SOCK_UNLOCK(so); 2509 break; 2510 2511 case SO_DEBUG: 2512 case SO_KEEPALIVE: 2513 case SO_DONTROUTE: 2514 case SO_USELOOPBACK: 2515 case SO_BROADCAST: 2516 case SO_REUSEADDR: 2517 case SO_REUSEPORT: 2518 case SO_OOBINLINE: 2519 case SO_TIMESTAMP: 2520 case SO_BINTIME: 2521 case SO_NOSIGPIPE: 2522 case SO_NO_DDP: 2523 case SO_NO_OFFLOAD: 2524 error = sooptcopyin(sopt, &optval, sizeof optval, 2525 sizeof optval); 2526 if (error) 2527 goto bad; 2528 SOCK_LOCK(so); 2529 if (optval) 2530 so->so_options |= sopt->sopt_name; 2531 else 2532 so->so_options &= ~sopt->sopt_name; 2533 SOCK_UNLOCK(so); 2534 break; 2535 2536 case SO_SETFIB: 2537 error = sooptcopyin(sopt, &optval, sizeof optval, 2538 sizeof optval); 2539 if (error) 2540 goto bad; 2541 2542 if (optval < 0 || optval >= rt_numfibs) { 2543 error = EINVAL; 2544 goto bad; 2545 } 2546 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2547 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2548 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2549 so->so_fibnum = optval; 2550 else 2551 so->so_fibnum = 0; 2552 break; 2553 2554 case SO_USER_COOKIE: 2555 error = sooptcopyin(sopt, &val32, sizeof val32, 2556 sizeof val32); 2557 if (error) 2558 goto bad; 2559 so->so_user_cookie = val32; 2560 break; 2561 2562 case SO_SNDBUF: 2563 case SO_RCVBUF: 2564 case SO_SNDLOWAT: 2565 case SO_RCVLOWAT: 2566 error = sooptcopyin(sopt, &optval, sizeof optval, 2567 sizeof optval); 2568 if (error) 2569 goto bad; 2570 2571 /* 2572 * Values < 1 make no sense for any of these options, 2573 * so disallow them. 2574 */ 2575 if (optval < 1) { 2576 error = EINVAL; 2577 goto bad; 2578 } 2579 2580 switch (sopt->sopt_name) { 2581 case SO_SNDBUF: 2582 case SO_RCVBUF: 2583 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2584 &so->so_snd : &so->so_rcv, (u_long)optval, 2585 so, curthread) == 0) { 2586 error = ENOBUFS; 2587 goto bad; 2588 } 2589 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2590 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2591 break; 2592 2593 /* 2594 * Make sure the low-water is never greater than the 2595 * high-water. 2596 */ 2597 case SO_SNDLOWAT: 2598 SOCKBUF_LOCK(&so->so_snd); 2599 so->so_snd.sb_lowat = 2600 (optval > so->so_snd.sb_hiwat) ? 2601 so->so_snd.sb_hiwat : optval; 2602 SOCKBUF_UNLOCK(&so->so_snd); 2603 break; 2604 case SO_RCVLOWAT: 2605 SOCKBUF_LOCK(&so->so_rcv); 2606 so->so_rcv.sb_lowat = 2607 (optval > so->so_rcv.sb_hiwat) ? 2608 so->so_rcv.sb_hiwat : optval; 2609 SOCKBUF_UNLOCK(&so->so_rcv); 2610 break; 2611 } 2612 break; 2613 2614 case SO_SNDTIMEO: 2615 case SO_RCVTIMEO: 2616 #ifdef COMPAT_FREEBSD32 2617 if (SV_CURPROC_FLAG(SV_ILP32)) { 2618 struct timeval32 tv32; 2619 2620 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2621 sizeof tv32); 2622 CP(tv32, tv, tv_sec); 2623 CP(tv32, tv, tv_usec); 2624 } else 2625 #endif 2626 error = sooptcopyin(sopt, &tv, sizeof tv, 2627 sizeof tv); 2628 if (error) 2629 goto bad; 2630 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2631 tv.tv_usec >= 1000000) { 2632 error = EDOM; 2633 goto bad; 2634 } 2635 if (tv.tv_sec > INT32_MAX) 2636 val = SBT_MAX; 2637 else 2638 val = tvtosbt(tv); 2639 switch (sopt->sopt_name) { 2640 case SO_SNDTIMEO: 2641 so->so_snd.sb_timeo = val; 2642 break; 2643 case SO_RCVTIMEO: 2644 so->so_rcv.sb_timeo = val; 2645 break; 2646 } 2647 break; 2648 2649 case SO_LABEL: 2650 #ifdef MAC 2651 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2652 sizeof extmac); 2653 if (error) 2654 goto bad; 2655 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2656 so, &extmac); 2657 #else 2658 error = EOPNOTSUPP; 2659 #endif 2660 break; 2661 2662 default: 2663 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2664 error = hhook_run_socket(so, sopt, 2665 HHOOK_SOCKET_OPT); 2666 else 2667 error = ENOPROTOOPT; 2668 break; 2669 } 2670 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2671 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2672 } 2673 bad: 2674 CURVNET_RESTORE(); 2675 return (error); 2676 } 2677 2678 /* 2679 * Helper routine for getsockopt. 2680 */ 2681 int 2682 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2683 { 2684 int error; 2685 size_t valsize; 2686 2687 error = 0; 2688 2689 /* 2690 * Documented get behavior is that we always return a value, possibly 2691 * truncated to fit in the user's buffer. Traditional behavior is 2692 * that we always tell the user precisely how much we copied, rather 2693 * than something useful like the total amount we had available for 2694 * her. Note that this interface is not idempotent; the entire 2695 * answer must generated ahead of time. 2696 */ 2697 valsize = min(len, sopt->sopt_valsize); 2698 sopt->sopt_valsize = valsize; 2699 if (sopt->sopt_val != NULL) { 2700 if (sopt->sopt_td != NULL) 2701 error = copyout(buf, sopt->sopt_val, valsize); 2702 else 2703 bcopy(buf, sopt->sopt_val, valsize); 2704 } 2705 return (error); 2706 } 2707 2708 int 2709 sogetopt(struct socket *so, struct sockopt *sopt) 2710 { 2711 int error, optval; 2712 struct linger l; 2713 struct timeval tv; 2714 #ifdef MAC 2715 struct mac extmac; 2716 #endif 2717 2718 CURVNET_SET(so->so_vnet); 2719 error = 0; 2720 if (sopt->sopt_level != SOL_SOCKET) { 2721 if (so->so_proto->pr_ctloutput != NULL) 2722 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2723 else 2724 error = ENOPROTOOPT; 2725 CURVNET_RESTORE(); 2726 return (error); 2727 } else { 2728 switch (sopt->sopt_name) { 2729 case SO_ACCEPTFILTER: 2730 error = do_getopt_accept_filter(so, sopt); 2731 break; 2732 2733 case SO_LINGER: 2734 SOCK_LOCK(so); 2735 l.l_onoff = so->so_options & SO_LINGER; 2736 l.l_linger = so->so_linger; 2737 SOCK_UNLOCK(so); 2738 error = sooptcopyout(sopt, &l, sizeof l); 2739 break; 2740 2741 case SO_USELOOPBACK: 2742 case SO_DONTROUTE: 2743 case SO_DEBUG: 2744 case SO_KEEPALIVE: 2745 case SO_REUSEADDR: 2746 case SO_REUSEPORT: 2747 case SO_BROADCAST: 2748 case SO_OOBINLINE: 2749 case SO_ACCEPTCONN: 2750 case SO_TIMESTAMP: 2751 case SO_BINTIME: 2752 case SO_NOSIGPIPE: 2753 optval = so->so_options & sopt->sopt_name; 2754 integer: 2755 error = sooptcopyout(sopt, &optval, sizeof optval); 2756 break; 2757 2758 case SO_TYPE: 2759 optval = so->so_type; 2760 goto integer; 2761 2762 case SO_PROTOCOL: 2763 optval = so->so_proto->pr_protocol; 2764 goto integer; 2765 2766 case SO_ERROR: 2767 SOCK_LOCK(so); 2768 optval = so->so_error; 2769 so->so_error = 0; 2770 SOCK_UNLOCK(so); 2771 goto integer; 2772 2773 case SO_SNDBUF: 2774 optval = so->so_snd.sb_hiwat; 2775 goto integer; 2776 2777 case SO_RCVBUF: 2778 optval = so->so_rcv.sb_hiwat; 2779 goto integer; 2780 2781 case SO_SNDLOWAT: 2782 optval = so->so_snd.sb_lowat; 2783 goto integer; 2784 2785 case SO_RCVLOWAT: 2786 optval = so->so_rcv.sb_lowat; 2787 goto integer; 2788 2789 case SO_SNDTIMEO: 2790 case SO_RCVTIMEO: 2791 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 2792 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2793 #ifdef COMPAT_FREEBSD32 2794 if (SV_CURPROC_FLAG(SV_ILP32)) { 2795 struct timeval32 tv32; 2796 2797 CP(tv, tv32, tv_sec); 2798 CP(tv, tv32, tv_usec); 2799 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2800 } else 2801 #endif 2802 error = sooptcopyout(sopt, &tv, sizeof tv); 2803 break; 2804 2805 case SO_LABEL: 2806 #ifdef MAC 2807 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2808 sizeof(extmac)); 2809 if (error) 2810 goto bad; 2811 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2812 so, &extmac); 2813 if (error) 2814 goto bad; 2815 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2816 #else 2817 error = EOPNOTSUPP; 2818 #endif 2819 break; 2820 2821 case SO_PEERLABEL: 2822 #ifdef MAC 2823 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2824 sizeof(extmac)); 2825 if (error) 2826 goto bad; 2827 error = mac_getsockopt_peerlabel( 2828 sopt->sopt_td->td_ucred, so, &extmac); 2829 if (error) 2830 goto bad; 2831 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2832 #else 2833 error = EOPNOTSUPP; 2834 #endif 2835 break; 2836 2837 case SO_LISTENQLIMIT: 2838 optval = so->so_qlimit; 2839 goto integer; 2840 2841 case SO_LISTENQLEN: 2842 optval = so->so_qlen; 2843 goto integer; 2844 2845 case SO_LISTENINCQLEN: 2846 optval = so->so_incqlen; 2847 goto integer; 2848 2849 default: 2850 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2851 error = hhook_run_socket(so, sopt, 2852 HHOOK_SOCKET_OPT); 2853 else 2854 error = ENOPROTOOPT; 2855 break; 2856 } 2857 } 2858 #ifdef MAC 2859 bad: 2860 #endif 2861 CURVNET_RESTORE(); 2862 return (error); 2863 } 2864 2865 int 2866 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2867 { 2868 struct mbuf *m, *m_prev; 2869 int sopt_size = sopt->sopt_valsize; 2870 2871 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2872 if (m == NULL) 2873 return ENOBUFS; 2874 if (sopt_size > MLEN) { 2875 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2876 if ((m->m_flags & M_EXT) == 0) { 2877 m_free(m); 2878 return ENOBUFS; 2879 } 2880 m->m_len = min(MCLBYTES, sopt_size); 2881 } else { 2882 m->m_len = min(MLEN, sopt_size); 2883 } 2884 sopt_size -= m->m_len; 2885 *mp = m; 2886 m_prev = m; 2887 2888 while (sopt_size) { 2889 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2890 if (m == NULL) { 2891 m_freem(*mp); 2892 return ENOBUFS; 2893 } 2894 if (sopt_size > MLEN) { 2895 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2896 M_NOWAIT); 2897 if ((m->m_flags & M_EXT) == 0) { 2898 m_freem(m); 2899 m_freem(*mp); 2900 return ENOBUFS; 2901 } 2902 m->m_len = min(MCLBYTES, sopt_size); 2903 } else { 2904 m->m_len = min(MLEN, sopt_size); 2905 } 2906 sopt_size -= m->m_len; 2907 m_prev->m_next = m; 2908 m_prev = m; 2909 } 2910 return (0); 2911 } 2912 2913 int 2914 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2915 { 2916 struct mbuf *m0 = m; 2917 2918 if (sopt->sopt_val == NULL) 2919 return (0); 2920 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2921 if (sopt->sopt_td != NULL) { 2922 int error; 2923 2924 error = copyin(sopt->sopt_val, mtod(m, char *), 2925 m->m_len); 2926 if (error != 0) { 2927 m_freem(m0); 2928 return(error); 2929 } 2930 } else 2931 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2932 sopt->sopt_valsize -= m->m_len; 2933 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2934 m = m->m_next; 2935 } 2936 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2937 panic("ip6_sooptmcopyin"); 2938 return (0); 2939 } 2940 2941 int 2942 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2943 { 2944 struct mbuf *m0 = m; 2945 size_t valsize = 0; 2946 2947 if (sopt->sopt_val == NULL) 2948 return (0); 2949 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2950 if (sopt->sopt_td != NULL) { 2951 int error; 2952 2953 error = copyout(mtod(m, char *), sopt->sopt_val, 2954 m->m_len); 2955 if (error != 0) { 2956 m_freem(m0); 2957 return(error); 2958 } 2959 } else 2960 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2961 sopt->sopt_valsize -= m->m_len; 2962 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2963 valsize += m->m_len; 2964 m = m->m_next; 2965 } 2966 if (m != NULL) { 2967 /* enough soopt buffer should be given from user-land */ 2968 m_freem(m0); 2969 return(EINVAL); 2970 } 2971 sopt->sopt_valsize = valsize; 2972 return (0); 2973 } 2974 2975 /* 2976 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2977 * out-of-band data, which will then notify socket consumers. 2978 */ 2979 void 2980 sohasoutofband(struct socket *so) 2981 { 2982 2983 if (so->so_sigio != NULL) 2984 pgsigio(&so->so_sigio, SIGURG, 0); 2985 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2986 } 2987 2988 int 2989 sopoll(struct socket *so, int events, struct ucred *active_cred, 2990 struct thread *td) 2991 { 2992 2993 /* 2994 * We do not need to set or assert curvnet as long as everyone uses 2995 * sopoll_generic(). 2996 */ 2997 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2998 td)); 2999 } 3000 3001 int 3002 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3003 struct thread *td) 3004 { 3005 int revents = 0; 3006 3007 SOCKBUF_LOCK(&so->so_snd); 3008 SOCKBUF_LOCK(&so->so_rcv); 3009 if (events & (POLLIN | POLLRDNORM)) 3010 if (soreadabledata(so)) 3011 revents |= events & (POLLIN | POLLRDNORM); 3012 3013 if (events & (POLLOUT | POLLWRNORM)) 3014 if (sowriteable(so)) 3015 revents |= events & (POLLOUT | POLLWRNORM); 3016 3017 if (events & (POLLPRI | POLLRDBAND)) 3018 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 3019 revents |= events & (POLLPRI | POLLRDBAND); 3020 3021 if ((events & POLLINIGNEOF) == 0) { 3022 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3023 revents |= events & (POLLIN | POLLRDNORM); 3024 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3025 revents |= POLLHUP; 3026 } 3027 } 3028 3029 if (revents == 0) { 3030 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3031 selrecord(td, &so->so_rcv.sb_sel); 3032 so->so_rcv.sb_flags |= SB_SEL; 3033 } 3034 3035 if (events & (POLLOUT | POLLWRNORM)) { 3036 selrecord(td, &so->so_snd.sb_sel); 3037 so->so_snd.sb_flags |= SB_SEL; 3038 } 3039 } 3040 3041 SOCKBUF_UNLOCK(&so->so_rcv); 3042 SOCKBUF_UNLOCK(&so->so_snd); 3043 return (revents); 3044 } 3045 3046 int 3047 soo_kqfilter(struct file *fp, struct knote *kn) 3048 { 3049 struct socket *so = kn->kn_fp->f_data; 3050 struct sockbuf *sb; 3051 3052 switch (kn->kn_filter) { 3053 case EVFILT_READ: 3054 if (so->so_options & SO_ACCEPTCONN) 3055 kn->kn_fop = &solisten_filtops; 3056 else 3057 kn->kn_fop = &soread_filtops; 3058 sb = &so->so_rcv; 3059 break; 3060 case EVFILT_WRITE: 3061 kn->kn_fop = &sowrite_filtops; 3062 sb = &so->so_snd; 3063 break; 3064 default: 3065 return (EINVAL); 3066 } 3067 3068 SOCKBUF_LOCK(sb); 3069 knlist_add(&sb->sb_sel.si_note, kn, 1); 3070 sb->sb_flags |= SB_KNOTE; 3071 SOCKBUF_UNLOCK(sb); 3072 return (0); 3073 } 3074 3075 /* 3076 * Some routines that return EOPNOTSUPP for entry points that are not 3077 * supported by a protocol. Fill in as needed. 3078 */ 3079 int 3080 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3081 { 3082 3083 return EOPNOTSUPP; 3084 } 3085 3086 int 3087 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3088 { 3089 3090 return EOPNOTSUPP; 3091 } 3092 3093 int 3094 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3095 { 3096 3097 return EOPNOTSUPP; 3098 } 3099 3100 int 3101 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3102 struct thread *td) 3103 { 3104 3105 return EOPNOTSUPP; 3106 } 3107 3108 int 3109 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3110 { 3111 3112 return EOPNOTSUPP; 3113 } 3114 3115 int 3116 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3117 struct thread *td) 3118 { 3119 3120 return EOPNOTSUPP; 3121 } 3122 3123 int 3124 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3125 { 3126 3127 return EOPNOTSUPP; 3128 } 3129 3130 int 3131 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3132 struct ifnet *ifp, struct thread *td) 3133 { 3134 3135 return EOPNOTSUPP; 3136 } 3137 3138 int 3139 pru_disconnect_notsupp(struct socket *so) 3140 { 3141 3142 return EOPNOTSUPP; 3143 } 3144 3145 int 3146 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3147 { 3148 3149 return EOPNOTSUPP; 3150 } 3151 3152 int 3153 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3154 { 3155 3156 return EOPNOTSUPP; 3157 } 3158 3159 int 3160 pru_rcvd_notsupp(struct socket *so, int flags) 3161 { 3162 3163 return EOPNOTSUPP; 3164 } 3165 3166 int 3167 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3168 { 3169 3170 return EOPNOTSUPP; 3171 } 3172 3173 int 3174 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3175 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3176 { 3177 3178 return EOPNOTSUPP; 3179 } 3180 3181 /* 3182 * This isn't really a ``null'' operation, but it's the default one and 3183 * doesn't do anything destructive. 3184 */ 3185 int 3186 pru_sense_null(struct socket *so, struct stat *sb) 3187 { 3188 3189 sb->st_blksize = so->so_snd.sb_hiwat; 3190 return 0; 3191 } 3192 3193 int 3194 pru_shutdown_notsupp(struct socket *so) 3195 { 3196 3197 return EOPNOTSUPP; 3198 } 3199 3200 int 3201 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3202 { 3203 3204 return EOPNOTSUPP; 3205 } 3206 3207 int 3208 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3209 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3210 { 3211 3212 return EOPNOTSUPP; 3213 } 3214 3215 int 3216 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3217 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3218 { 3219 3220 return EOPNOTSUPP; 3221 } 3222 3223 int 3224 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3225 struct thread *td) 3226 { 3227 3228 return EOPNOTSUPP; 3229 } 3230 3231 static void 3232 filt_sordetach(struct knote *kn) 3233 { 3234 struct socket *so = kn->kn_fp->f_data; 3235 3236 SOCKBUF_LOCK(&so->so_rcv); 3237 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3238 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3239 so->so_rcv.sb_flags &= ~SB_KNOTE; 3240 SOCKBUF_UNLOCK(&so->so_rcv); 3241 } 3242 3243 /*ARGSUSED*/ 3244 static int 3245 filt_soread(struct knote *kn, long hint) 3246 { 3247 struct socket *so; 3248 3249 so = kn->kn_fp->f_data; 3250 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3251 3252 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3253 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3254 kn->kn_flags |= EV_EOF; 3255 kn->kn_fflags = so->so_error; 3256 return (1); 3257 } else if (so->so_error) /* temporary udp error */ 3258 return (1); 3259 3260 if (kn->kn_sfflags & NOTE_LOWAT) { 3261 if (kn->kn_data >= kn->kn_sdata) 3262 return 1; 3263 } else { 3264 if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3265 return 1; 3266 } 3267 3268 /* This hook returning non-zero indicates an event, not error */ 3269 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3270 } 3271 3272 static void 3273 filt_sowdetach(struct knote *kn) 3274 { 3275 struct socket *so = kn->kn_fp->f_data; 3276 3277 SOCKBUF_LOCK(&so->so_snd); 3278 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3279 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3280 so->so_snd.sb_flags &= ~SB_KNOTE; 3281 SOCKBUF_UNLOCK(&so->so_snd); 3282 } 3283 3284 /*ARGSUSED*/ 3285 static int 3286 filt_sowrite(struct knote *kn, long hint) 3287 { 3288 struct socket *so; 3289 3290 so = kn->kn_fp->f_data; 3291 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3292 kn->kn_data = sbspace(&so->so_snd); 3293 3294 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3295 3296 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3297 kn->kn_flags |= EV_EOF; 3298 kn->kn_fflags = so->so_error; 3299 return (1); 3300 } else if (so->so_error) /* temporary udp error */ 3301 return (1); 3302 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3303 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3304 return (0); 3305 else if (kn->kn_sfflags & NOTE_LOWAT) 3306 return (kn->kn_data >= kn->kn_sdata); 3307 else 3308 return (kn->kn_data >= so->so_snd.sb_lowat); 3309 } 3310 3311 /*ARGSUSED*/ 3312 static int 3313 filt_solisten(struct knote *kn, long hint) 3314 { 3315 struct socket *so = kn->kn_fp->f_data; 3316 3317 kn->kn_data = so->so_qlen; 3318 return (!TAILQ_EMPTY(&so->so_comp)); 3319 } 3320 3321 int 3322 socheckuid(struct socket *so, uid_t uid) 3323 { 3324 3325 if (so == NULL) 3326 return (EPERM); 3327 if (so->so_cred->cr_uid != uid) 3328 return (EPERM); 3329 return (0); 3330 } 3331 3332 /* 3333 * These functions are used by protocols to notify the socket layer (and its 3334 * consumers) of state changes in the sockets driven by protocol-side events. 3335 */ 3336 3337 /* 3338 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3339 * 3340 * Normal sequence from the active (originating) side is that 3341 * soisconnecting() is called during processing of connect() call, resulting 3342 * in an eventual call to soisconnected() if/when the connection is 3343 * established. When the connection is torn down soisdisconnecting() is 3344 * called during processing of disconnect() call, and soisdisconnected() is 3345 * called when the connection to the peer is totally severed. The semantics 3346 * of these routines are such that connectionless protocols can call 3347 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3348 * calls when setting up a ``connection'' takes no time. 3349 * 3350 * From the passive side, a socket is created with two queues of sockets: 3351 * so_incomp for connections in progress and so_comp for connections already 3352 * made and awaiting user acceptance. As a protocol is preparing incoming 3353 * connections, it creates a socket structure queued on so_incomp by calling 3354 * sonewconn(). When the connection is established, soisconnected() is 3355 * called, and transfers the socket structure to so_comp, making it available 3356 * to accept(). 3357 * 3358 * If a socket is closed with sockets on either so_incomp or so_comp, these 3359 * sockets are dropped. 3360 * 3361 * If higher-level protocols are implemented in the kernel, the wakeups done 3362 * here will sometimes cause software-interrupt process scheduling. 3363 */ 3364 void 3365 soisconnecting(struct socket *so) 3366 { 3367 3368 SOCK_LOCK(so); 3369 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3370 so->so_state |= SS_ISCONNECTING; 3371 SOCK_UNLOCK(so); 3372 } 3373 3374 void 3375 soisconnected(struct socket *so) 3376 { 3377 struct socket *head; 3378 int ret; 3379 3380 restart: 3381 ACCEPT_LOCK(); 3382 SOCK_LOCK(so); 3383 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3384 so->so_state |= SS_ISCONNECTED; 3385 head = so->so_head; 3386 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3387 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3388 SOCK_UNLOCK(so); 3389 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3390 head->so_incqlen--; 3391 so->so_qstate &= ~SQ_INCOMP; 3392 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3393 head->so_qlen++; 3394 so->so_qstate |= SQ_COMP; 3395 ACCEPT_UNLOCK(); 3396 sorwakeup(head); 3397 wakeup_one(&head->so_timeo); 3398 } else { 3399 ACCEPT_UNLOCK(); 3400 soupcall_set(so, SO_RCV, 3401 head->so_accf->so_accept_filter->accf_callback, 3402 head->so_accf->so_accept_filter_arg); 3403 so->so_options &= ~SO_ACCEPTFILTER; 3404 ret = head->so_accf->so_accept_filter->accf_callback(so, 3405 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3406 if (ret == SU_ISCONNECTED) 3407 soupcall_clear(so, SO_RCV); 3408 SOCK_UNLOCK(so); 3409 if (ret == SU_ISCONNECTED) 3410 goto restart; 3411 } 3412 return; 3413 } 3414 SOCK_UNLOCK(so); 3415 ACCEPT_UNLOCK(); 3416 wakeup(&so->so_timeo); 3417 sorwakeup(so); 3418 sowwakeup(so); 3419 } 3420 3421 void 3422 soisdisconnecting(struct socket *so) 3423 { 3424 3425 /* 3426 * Note: This code assumes that SOCK_LOCK(so) and 3427 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3428 */ 3429 SOCKBUF_LOCK(&so->so_rcv); 3430 so->so_state &= ~SS_ISCONNECTING; 3431 so->so_state |= SS_ISDISCONNECTING; 3432 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3433 sorwakeup_locked(so); 3434 SOCKBUF_LOCK(&so->so_snd); 3435 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3436 sowwakeup_locked(so); 3437 wakeup(&so->so_timeo); 3438 } 3439 3440 void 3441 soisdisconnected(struct socket *so) 3442 { 3443 3444 /* 3445 * Note: This code assumes that SOCK_LOCK(so) and 3446 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3447 */ 3448 SOCKBUF_LOCK(&so->so_rcv); 3449 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3450 so->so_state |= SS_ISDISCONNECTED; 3451 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3452 sorwakeup_locked(so); 3453 SOCKBUF_LOCK(&so->so_snd); 3454 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3455 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3456 sowwakeup_locked(so); 3457 wakeup(&so->so_timeo); 3458 } 3459 3460 /* 3461 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3462 */ 3463 struct sockaddr * 3464 sodupsockaddr(const struct sockaddr *sa, int mflags) 3465 { 3466 struct sockaddr *sa2; 3467 3468 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3469 if (sa2) 3470 bcopy(sa, sa2, sa->sa_len); 3471 return sa2; 3472 } 3473 3474 /* 3475 * Register per-socket buffer upcalls. 3476 */ 3477 void 3478 soupcall_set(struct socket *so, int which, 3479 int (*func)(struct socket *, void *, int), void *arg) 3480 { 3481 struct sockbuf *sb; 3482 3483 switch (which) { 3484 case SO_RCV: 3485 sb = &so->so_rcv; 3486 break; 3487 case SO_SND: 3488 sb = &so->so_snd; 3489 break; 3490 default: 3491 panic("soupcall_set: bad which"); 3492 } 3493 SOCKBUF_LOCK_ASSERT(sb); 3494 #if 0 3495 /* XXX: accf_http actually wants to do this on purpose. */ 3496 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3497 #endif 3498 sb->sb_upcall = func; 3499 sb->sb_upcallarg = arg; 3500 sb->sb_flags |= SB_UPCALL; 3501 } 3502 3503 void 3504 soupcall_clear(struct socket *so, int which) 3505 { 3506 struct sockbuf *sb; 3507 3508 switch (which) { 3509 case SO_RCV: 3510 sb = &so->so_rcv; 3511 break; 3512 case SO_SND: 3513 sb = &so->so_snd; 3514 break; 3515 default: 3516 panic("soupcall_clear: bad which"); 3517 } 3518 SOCKBUF_LOCK_ASSERT(sb); 3519 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3520 sb->sb_upcall = NULL; 3521 sb->sb_upcallarg = NULL; 3522 sb->sb_flags &= ~SB_UPCALL; 3523 } 3524 3525 /* 3526 * Create an external-format (``xsocket'') structure using the information in 3527 * the kernel-format socket structure pointed to by so. This is done to 3528 * reduce the spew of irrelevant information over this interface, to isolate 3529 * user code from changes in the kernel structure, and potentially to provide 3530 * information-hiding if we decide that some of this information should be 3531 * hidden from users. 3532 */ 3533 void 3534 sotoxsocket(struct socket *so, struct xsocket *xso) 3535 { 3536 3537 xso->xso_len = sizeof *xso; 3538 xso->xso_so = so; 3539 xso->so_type = so->so_type; 3540 xso->so_options = so->so_options; 3541 xso->so_linger = so->so_linger; 3542 xso->so_state = so->so_state; 3543 xso->so_pcb = so->so_pcb; 3544 xso->xso_protocol = so->so_proto->pr_protocol; 3545 xso->xso_family = so->so_proto->pr_domain->dom_family; 3546 xso->so_qlen = so->so_qlen; 3547 xso->so_incqlen = so->so_incqlen; 3548 xso->so_qlimit = so->so_qlimit; 3549 xso->so_timeo = so->so_timeo; 3550 xso->so_error = so->so_error; 3551 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3552 xso->so_oobmark = so->so_oobmark; 3553 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3554 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3555 xso->so_uid = so->so_cred->cr_uid; 3556 } 3557 3558 3559 /* 3560 * Socket accessor functions to provide external consumers with 3561 * a safe interface to socket state 3562 * 3563 */ 3564 3565 void 3566 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3567 void *arg) 3568 { 3569 3570 TAILQ_FOREACH(so, &so->so_comp, so_list) 3571 func(so, arg); 3572 } 3573 3574 struct sockbuf * 3575 so_sockbuf_rcv(struct socket *so) 3576 { 3577 3578 return (&so->so_rcv); 3579 } 3580 3581 struct sockbuf * 3582 so_sockbuf_snd(struct socket *so) 3583 { 3584 3585 return (&so->so_snd); 3586 } 3587 3588 int 3589 so_state_get(const struct socket *so) 3590 { 3591 3592 return (so->so_state); 3593 } 3594 3595 void 3596 so_state_set(struct socket *so, int val) 3597 { 3598 3599 so->so_state = val; 3600 } 3601 3602 int 3603 so_options_get(const struct socket *so) 3604 { 3605 3606 return (so->so_options); 3607 } 3608 3609 void 3610 so_options_set(struct socket *so, int val) 3611 { 3612 3613 so->so_options = val; 3614 } 3615 3616 int 3617 so_error_get(const struct socket *so) 3618 { 3619 3620 return (so->so_error); 3621 } 3622 3623 void 3624 so_error_set(struct socket *so, int val) 3625 { 3626 3627 so->so_error = val; 3628 } 3629 3630 int 3631 so_linger_get(const struct socket *so) 3632 { 3633 3634 return (so->so_linger); 3635 } 3636 3637 void 3638 so_linger_set(struct socket *so, int val) 3639 { 3640 3641 so->so_linger = val; 3642 } 3643 3644 struct protosw * 3645 so_protosw_get(const struct socket *so) 3646 { 3647 3648 return (so->so_proto); 3649 } 3650 3651 void 3652 so_protosw_set(struct socket *so, struct protosw *val) 3653 { 3654 3655 so->so_proto = val; 3656 } 3657 3658 void 3659 so_sorwakeup(struct socket *so) 3660 { 3661 3662 sorwakeup(so); 3663 } 3664 3665 void 3666 so_sowwakeup(struct socket *so) 3667 { 3668 3669 sowwakeup(so); 3670 } 3671 3672 void 3673 so_sorwakeup_locked(struct socket *so) 3674 { 3675 3676 sorwakeup_locked(so); 3677 } 3678 3679 void 3680 so_sowwakeup_locked(struct socket *so) 3681 { 3682 3683 sowwakeup_locked(so); 3684 } 3685 3686 void 3687 so_lock(struct socket *so) 3688 { 3689 3690 SOCK_LOCK(so); 3691 } 3692 3693 void 3694 so_unlock(struct socket *so) 3695 { 3696 3697 SOCK_UNLOCK(so); 3698 } 3699