xref: /freebsd/sys/kern/uipc_socket.c (revision d184218c18d067f8fd47203f54ab02a7b2ed9b11)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include "opt_inet.h"
107 #include "opt_inet6.h"
108 #include "opt_zero.h"
109 #include "opt_compat.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h>			/* for struct knote */
122 #include <sys/kernel.h>
123 #include <sys/event.h>
124 #include <sys/eventhandler.h>
125 #include <sys/poll.h>
126 #include <sys/proc.h>
127 #include <sys/protosw.h>
128 #include <sys/socket.h>
129 #include <sys/socketvar.h>
130 #include <sys/resourcevar.h>
131 #include <net/route.h>
132 #include <sys/signalvar.h>
133 #include <sys/stat.h>
134 #include <sys/sx.h>
135 #include <sys/sysctl.h>
136 #include <sys/uio.h>
137 #include <sys/jail.h>
138 #include <sys/syslog.h>
139 #include <netinet/in.h>
140 
141 #include <net/vnet.h>
142 
143 #include <security/mac/mac_framework.h>
144 
145 #include <vm/uma.h>
146 
147 #ifdef COMPAT_FREEBSD32
148 #include <sys/mount.h>
149 #include <sys/sysent.h>
150 #include <compat/freebsd32/freebsd32.h>
151 #endif
152 
153 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
154 		    int flags);
155 
156 static void	filt_sordetach(struct knote *kn);
157 static int	filt_soread(struct knote *kn, long hint);
158 static void	filt_sowdetach(struct knote *kn);
159 static int	filt_sowrite(struct knote *kn, long hint);
160 static int	filt_solisten(struct knote *kn, long hint);
161 
162 static struct filterops solisten_filtops = {
163 	.f_isfd = 1,
164 	.f_detach = filt_sordetach,
165 	.f_event = filt_solisten,
166 };
167 static struct filterops soread_filtops = {
168 	.f_isfd = 1,
169 	.f_detach = filt_sordetach,
170 	.f_event = filt_soread,
171 };
172 static struct filterops sowrite_filtops = {
173 	.f_isfd = 1,
174 	.f_detach = filt_sowdetach,
175 	.f_event = filt_sowrite,
176 };
177 
178 so_gen_t	so_gencnt;	/* generation count for sockets */
179 
180 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
181 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
182 
183 #define	VNET_SO_ASSERT(so)						\
184 	VNET_ASSERT(curvnet != NULL,					\
185 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
186 
187 /*
188  * Limit on the number of connections in the listen queue waiting
189  * for accept(2).
190  * NB: The orginal sysctl somaxconn is still available but hidden
191  * to prevent confusion about the actual purpose of this number.
192  */
193 static int somaxconn = SOMAXCONN;
194 
195 static int
196 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
197 {
198 	int error;
199 	int val;
200 
201 	val = somaxconn;
202 	error = sysctl_handle_int(oidp, &val, 0, req);
203 	if (error || !req->newptr )
204 		return (error);
205 
206 	if (val < 1 || val > USHRT_MAX)
207 		return (EINVAL);
208 
209 	somaxconn = val;
210 	return (0);
211 }
212 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
213     0, sizeof(int), sysctl_somaxconn, "I",
214     "Maximum listen socket pending connection accept queue size");
215 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
216     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
217     0, sizeof(int), sysctl_somaxconn, "I",
218     "Maximum listen socket pending connection accept queue size (compat)");
219 
220 static int numopensockets;
221 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
222     &numopensockets, 0, "Number of open sockets");
223 
224 #if defined(SOCKET_SEND_COW) || defined(SOCKET_RECV_PFLIP)
225 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
226     "Zero copy controls");
227 #ifdef SOCKET_RECV_PFLIP
228 int so_zero_copy_receive = 1;
229 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
230     &so_zero_copy_receive, 0, "Enable zero copy receive");
231 #endif
232 #ifdef SOCKET_SEND_COW
233 int so_zero_copy_send = 1;
234 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
235     &so_zero_copy_send, 0, "Enable zero copy send");
236 #endif /* SOCKET_SEND_COW */
237 #endif /* SOCKET_SEND_COW || SOCKET_RECV_PFLIP */
238 
239 /*
240  * accept_mtx locks down per-socket fields relating to accept queues.  See
241  * socketvar.h for an annotation of the protected fields of struct socket.
242  */
243 struct mtx_padalign accept_mtx;
244 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
245 
246 /*
247  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
248  * so_gencnt field.
249  */
250 static struct mtx_padalign so_global_mtx;
251 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
252 
253 /*
254  * General IPC sysctl name space, used by sockets and a variety of other IPC
255  * types.
256  */
257 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
258 
259 /*
260  * Initialize the socket subsystem and set up the socket
261  * memory allocator.
262  */
263 static uma_zone_t socket_zone;
264 int	maxsockets;
265 
266 static void
267 socket_zone_change(void *tag)
268 {
269 
270 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
271 }
272 
273 static void
274 socket_init(void *tag)
275 {
276 
277 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
278 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
279 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
280 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
281 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
282 	    EVENTHANDLER_PRI_FIRST);
283 }
284 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
285 
286 /*
287  * Initialise maxsockets.  This SYSINIT must be run after
288  * tunable_mbinit().
289  */
290 static void
291 init_maxsockets(void *ignored)
292 {
293 
294 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
295 	maxsockets = imax(maxsockets, maxfiles);
296 }
297 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
298 
299 /*
300  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
301  * of the change so that they can update their dependent limits as required.
302  */
303 static int
304 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
305 {
306 	int error, newmaxsockets;
307 
308 	newmaxsockets = maxsockets;
309 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
310 	if (error == 0 && req->newptr) {
311 		if (newmaxsockets > maxsockets &&
312 		    newmaxsockets <= maxfiles) {
313 			maxsockets = newmaxsockets;
314 			EVENTHANDLER_INVOKE(maxsockets_change);
315 		} else
316 			error = EINVAL;
317 	}
318 	return (error);
319 }
320 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
321     &maxsockets, 0, sysctl_maxsockets, "IU",
322     "Maximum number of sockets avaliable");
323 
324 /*
325  * Socket operation routines.  These routines are called by the routines in
326  * sys_socket.c or from a system process, and implement the semantics of
327  * socket operations by switching out to the protocol specific routines.
328  */
329 
330 /*
331  * Get a socket structure from our zone, and initialize it.  Note that it
332  * would probably be better to allocate socket and PCB at the same time, but
333  * I'm not convinced that all the protocols can be easily modified to do
334  * this.
335  *
336  * soalloc() returns a socket with a ref count of 0.
337  */
338 static struct socket *
339 soalloc(struct vnet *vnet)
340 {
341 	struct socket *so;
342 
343 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
344 	if (so == NULL)
345 		return (NULL);
346 #ifdef MAC
347 	if (mac_socket_init(so, M_NOWAIT) != 0) {
348 		uma_zfree(socket_zone, so);
349 		return (NULL);
350 	}
351 #endif
352 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
353 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
354 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
355 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
356 	TAILQ_INIT(&so->so_aiojobq);
357 	mtx_lock(&so_global_mtx);
358 	so->so_gencnt = ++so_gencnt;
359 	++numopensockets;
360 #ifdef VIMAGE
361 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
362 	    __func__, __LINE__, so));
363 	vnet->vnet_sockcnt++;
364 	so->so_vnet = vnet;
365 #endif
366 	mtx_unlock(&so_global_mtx);
367 	return (so);
368 }
369 
370 /*
371  * Free the storage associated with a socket at the socket layer, tear down
372  * locks, labels, etc.  All protocol state is assumed already to have been
373  * torn down (and possibly never set up) by the caller.
374  */
375 static void
376 sodealloc(struct socket *so)
377 {
378 
379 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
380 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
381 
382 	mtx_lock(&so_global_mtx);
383 	so->so_gencnt = ++so_gencnt;
384 	--numopensockets;	/* Could be below, but faster here. */
385 #ifdef VIMAGE
386 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
387 	    __func__, __LINE__, so));
388 	so->so_vnet->vnet_sockcnt--;
389 #endif
390 	mtx_unlock(&so_global_mtx);
391 	if (so->so_rcv.sb_hiwat)
392 		(void)chgsbsize(so->so_cred->cr_uidinfo,
393 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
394 	if (so->so_snd.sb_hiwat)
395 		(void)chgsbsize(so->so_cred->cr_uidinfo,
396 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
397 #ifdef INET
398 	/* remove acccept filter if one is present. */
399 	if (so->so_accf != NULL)
400 		do_setopt_accept_filter(so, NULL);
401 #endif
402 #ifdef MAC
403 	mac_socket_destroy(so);
404 #endif
405 	crfree(so->so_cred);
406 	sx_destroy(&so->so_snd.sb_sx);
407 	sx_destroy(&so->so_rcv.sb_sx);
408 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
409 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
410 	uma_zfree(socket_zone, so);
411 }
412 
413 /*
414  * socreate returns a socket with a ref count of 1.  The socket should be
415  * closed with soclose().
416  */
417 int
418 socreate(int dom, struct socket **aso, int type, int proto,
419     struct ucred *cred, struct thread *td)
420 {
421 	struct protosw *prp;
422 	struct socket *so;
423 	int error;
424 
425 	if (proto)
426 		prp = pffindproto(dom, proto, type);
427 	else
428 		prp = pffindtype(dom, type);
429 
430 	if (prp == NULL) {
431 		/* No support for domain. */
432 		if (pffinddomain(dom) == NULL)
433 			return (EAFNOSUPPORT);
434 		/* No support for socket type. */
435 		if (proto == 0 && type != 0)
436 			return (EPROTOTYPE);
437 		return (EPROTONOSUPPORT);
438 	}
439 	if (prp->pr_usrreqs->pru_attach == NULL ||
440 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
441 		return (EPROTONOSUPPORT);
442 
443 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
444 		return (EPROTONOSUPPORT);
445 
446 	if (prp->pr_type != type)
447 		return (EPROTOTYPE);
448 	so = soalloc(CRED_TO_VNET(cred));
449 	if (so == NULL)
450 		return (ENOBUFS);
451 
452 	TAILQ_INIT(&so->so_incomp);
453 	TAILQ_INIT(&so->so_comp);
454 	so->so_type = type;
455 	so->so_cred = crhold(cred);
456 	if ((prp->pr_domain->dom_family == PF_INET) ||
457 	    (prp->pr_domain->dom_family == PF_INET6) ||
458 	    (prp->pr_domain->dom_family == PF_ROUTE))
459 		so->so_fibnum = td->td_proc->p_fibnum;
460 	else
461 		so->so_fibnum = 0;
462 	so->so_proto = prp;
463 #ifdef MAC
464 	mac_socket_create(cred, so);
465 #endif
466 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
467 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
468 	so->so_count = 1;
469 	/*
470 	 * Auto-sizing of socket buffers is managed by the protocols and
471 	 * the appropriate flags must be set in the pru_attach function.
472 	 */
473 	CURVNET_SET(so->so_vnet);
474 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
475 	CURVNET_RESTORE();
476 	if (error) {
477 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
478 		    so->so_count));
479 		so->so_count = 0;
480 		sodealloc(so);
481 		return (error);
482 	}
483 	*aso = so;
484 	return (0);
485 }
486 
487 #ifdef REGRESSION
488 static int regression_sonewconn_earlytest = 1;
489 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
490     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
491 #endif
492 
493 /*
494  * When an attempt at a new connection is noted on a socket which accepts
495  * connections, sonewconn is called.  If the connection is possible (subject
496  * to space constraints, etc.) then we allocate a new structure, propoerly
497  * linked into the data structure of the original socket, and return this.
498  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
499  *
500  * Note: the ref count on the socket is 0 on return.
501  */
502 struct socket *
503 sonewconn(struct socket *head, int connstatus)
504 {
505 	struct socket *so;
506 	int over;
507 
508 	ACCEPT_LOCK();
509 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
510 	ACCEPT_UNLOCK();
511 #ifdef REGRESSION
512 	if (regression_sonewconn_earlytest && over) {
513 #else
514 	if (over) {
515 #endif
516 		log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
517 		    "%i already in queue awaiting acceptance\n",
518 		    __func__, head->so_pcb, over);
519 		return (NULL);
520 	}
521 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
522 	    __func__, __LINE__, head));
523 	so = soalloc(head->so_vnet);
524 	if (so == NULL) {
525 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
526 		    "limit reached or out of memory\n",
527 		    __func__, head->so_pcb);
528 		return (NULL);
529 	}
530 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
531 		connstatus = 0;
532 	so->so_head = head;
533 	so->so_type = head->so_type;
534 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
535 	so->so_linger = head->so_linger;
536 	so->so_state = head->so_state | SS_NOFDREF;
537 	so->so_fibnum = head->so_fibnum;
538 	so->so_proto = head->so_proto;
539 	so->so_cred = crhold(head->so_cred);
540 #ifdef MAC
541 	mac_socket_newconn(head, so);
542 #endif
543 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
544 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
545 	VNET_SO_ASSERT(head);
546 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
547 		sodealloc(so);
548 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
549 		    __func__, head->so_pcb);
550 		return (NULL);
551 	}
552 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
553 		sodealloc(so);
554 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
555 		    __func__, head->so_pcb);
556 		return (NULL);
557 	}
558 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
559 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
560 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
561 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
562 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
563 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
564 	so->so_state |= connstatus;
565 	ACCEPT_LOCK();
566 	/*
567 	 * The accept socket may be tearing down but we just
568 	 * won a race on the ACCEPT_LOCK.
569 	 * However, if sctp_peeloff() is called on a 1-to-many
570 	 * style socket, the SO_ACCEPTCONN doesn't need to be set.
571 	 */
572 	if (!(head->so_options & SO_ACCEPTCONN) &&
573 	    ((head->so_proto->pr_protocol != IPPROTO_SCTP) ||
574 	     (head->so_type != SOCK_SEQPACKET))) {
575 		SOCK_LOCK(so);
576 		so->so_head = NULL;
577 		sofree(so);		/* NB: returns ACCEPT_UNLOCK'ed. */
578 		return (NULL);
579 	}
580 	if (connstatus) {
581 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
582 		so->so_qstate |= SQ_COMP;
583 		head->so_qlen++;
584 	} else {
585 		/*
586 		 * Keep removing sockets from the head until there's room for
587 		 * us to insert on the tail.  In pre-locking revisions, this
588 		 * was a simple if(), but as we could be racing with other
589 		 * threads and soabort() requires dropping locks, we must
590 		 * loop waiting for the condition to be true.
591 		 */
592 		while (head->so_incqlen > head->so_qlimit) {
593 			struct socket *sp;
594 			sp = TAILQ_FIRST(&head->so_incomp);
595 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
596 			head->so_incqlen--;
597 			sp->so_qstate &= ~SQ_INCOMP;
598 			sp->so_head = NULL;
599 			ACCEPT_UNLOCK();
600 			soabort(sp);
601 			ACCEPT_LOCK();
602 		}
603 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
604 		so->so_qstate |= SQ_INCOMP;
605 		head->so_incqlen++;
606 	}
607 	ACCEPT_UNLOCK();
608 	if (connstatus) {
609 		sorwakeup(head);
610 		wakeup_one(&head->so_timeo);
611 	}
612 	return (so);
613 }
614 
615 int
616 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
617 {
618 	int error;
619 
620 	CURVNET_SET(so->so_vnet);
621 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
622 	CURVNET_RESTORE();
623 	return (error);
624 }
625 
626 int
627 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
628 {
629 	int error;
630 
631 	CURVNET_SET(so->so_vnet);
632 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
633 	CURVNET_RESTORE();
634 	return (error);
635 }
636 
637 /*
638  * solisten() transitions a socket from a non-listening state to a listening
639  * state, but can also be used to update the listen queue depth on an
640  * existing listen socket.  The protocol will call back into the sockets
641  * layer using solisten_proto_check() and solisten_proto() to check and set
642  * socket-layer listen state.  Call backs are used so that the protocol can
643  * acquire both protocol and socket layer locks in whatever order is required
644  * by the protocol.
645  *
646  * Protocol implementors are advised to hold the socket lock across the
647  * socket-layer test and set to avoid races at the socket layer.
648  */
649 int
650 solisten(struct socket *so, int backlog, struct thread *td)
651 {
652 	int error;
653 
654 	CURVNET_SET(so->so_vnet);
655 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
656 	CURVNET_RESTORE();
657 	return (error);
658 }
659 
660 int
661 solisten_proto_check(struct socket *so)
662 {
663 
664 	SOCK_LOCK_ASSERT(so);
665 
666 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
667 	    SS_ISDISCONNECTING))
668 		return (EINVAL);
669 	return (0);
670 }
671 
672 void
673 solisten_proto(struct socket *so, int backlog)
674 {
675 
676 	SOCK_LOCK_ASSERT(so);
677 
678 	if (backlog < 0 || backlog > somaxconn)
679 		backlog = somaxconn;
680 	so->so_qlimit = backlog;
681 	so->so_options |= SO_ACCEPTCONN;
682 }
683 
684 /*
685  * Evaluate the reference count and named references on a socket; if no
686  * references remain, free it.  This should be called whenever a reference is
687  * released, such as in sorele(), but also when named reference flags are
688  * cleared in socket or protocol code.
689  *
690  * sofree() will free the socket if:
691  *
692  * - There are no outstanding file descriptor references or related consumers
693  *   (so_count == 0).
694  *
695  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
696  *
697  * - The protocol does not have an outstanding strong reference on the socket
698  *   (SS_PROTOREF).
699  *
700  * - The socket is not in a completed connection queue, so a process has been
701  *   notified that it is present.  If it is removed, the user process may
702  *   block in accept() despite select() saying the socket was ready.
703  */
704 void
705 sofree(struct socket *so)
706 {
707 	struct protosw *pr = so->so_proto;
708 	struct socket *head;
709 
710 	ACCEPT_LOCK_ASSERT();
711 	SOCK_LOCK_ASSERT(so);
712 
713 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
714 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
715 		SOCK_UNLOCK(so);
716 		ACCEPT_UNLOCK();
717 		return;
718 	}
719 
720 	head = so->so_head;
721 	if (head != NULL) {
722 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
723 		    (so->so_qstate & SQ_INCOMP) != 0,
724 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
725 		    "SQ_INCOMP"));
726 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
727 		    (so->so_qstate & SQ_INCOMP) == 0,
728 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
729 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
730 		head->so_incqlen--;
731 		so->so_qstate &= ~SQ_INCOMP;
732 		so->so_head = NULL;
733 	}
734 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
735 	    (so->so_qstate & SQ_INCOMP) == 0,
736 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
737 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
738 	if (so->so_options & SO_ACCEPTCONN) {
739 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
740 		    ("sofree: so_comp populated"));
741 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
742 		    ("sofree: so_incomp populated"));
743 	}
744 	SOCK_UNLOCK(so);
745 	ACCEPT_UNLOCK();
746 
747 	VNET_SO_ASSERT(so);
748 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
749 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
750 	if (pr->pr_usrreqs->pru_detach != NULL)
751 		(*pr->pr_usrreqs->pru_detach)(so);
752 
753 	/*
754 	 * From this point on, we assume that no other references to this
755 	 * socket exist anywhere else in the stack.  Therefore, no locks need
756 	 * to be acquired or held.
757 	 *
758 	 * We used to do a lot of socket buffer and socket locking here, as
759 	 * well as invoke sorflush() and perform wakeups.  The direct call to
760 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
761 	 * necessary from sorflush().
762 	 *
763 	 * Notice that the socket buffer and kqueue state are torn down
764 	 * before calling pru_detach.  This means that protocols shold not
765 	 * assume they can perform socket wakeups, etc, in their detach code.
766 	 */
767 	sbdestroy(&so->so_snd, so);
768 	sbdestroy(&so->so_rcv, so);
769 	seldrain(&so->so_snd.sb_sel);
770 	seldrain(&so->so_rcv.sb_sel);
771 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
772 	knlist_destroy(&so->so_snd.sb_sel.si_note);
773 	sodealloc(so);
774 }
775 
776 /*
777  * Close a socket on last file table reference removal.  Initiate disconnect
778  * if connected.  Free socket when disconnect complete.
779  *
780  * This function will sorele() the socket.  Note that soclose() may be called
781  * prior to the ref count reaching zero.  The actual socket structure will
782  * not be freed until the ref count reaches zero.
783  */
784 int
785 soclose(struct socket *so)
786 {
787 	int error = 0;
788 
789 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
790 
791 	CURVNET_SET(so->so_vnet);
792 	funsetown(&so->so_sigio);
793 	if (so->so_state & SS_ISCONNECTED) {
794 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
795 			error = sodisconnect(so);
796 			if (error) {
797 				if (error == ENOTCONN)
798 					error = 0;
799 				goto drop;
800 			}
801 		}
802 		if (so->so_options & SO_LINGER) {
803 			if ((so->so_state & SS_ISDISCONNECTING) &&
804 			    (so->so_state & SS_NBIO))
805 				goto drop;
806 			while (so->so_state & SS_ISCONNECTED) {
807 				error = tsleep(&so->so_timeo,
808 				    PSOCK | PCATCH, "soclos",
809 				    so->so_linger * hz);
810 				if (error)
811 					break;
812 			}
813 		}
814 	}
815 
816 drop:
817 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
818 		(*so->so_proto->pr_usrreqs->pru_close)(so);
819 	ACCEPT_LOCK();
820 	if (so->so_options & SO_ACCEPTCONN) {
821 		struct socket *sp;
822 		/*
823 		 * Prevent new additions to the accept queues due
824 		 * to ACCEPT_LOCK races while we are draining them.
825 		 */
826 		so->so_options &= ~SO_ACCEPTCONN;
827 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
828 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
829 			so->so_incqlen--;
830 			sp->so_qstate &= ~SQ_INCOMP;
831 			sp->so_head = NULL;
832 			ACCEPT_UNLOCK();
833 			soabort(sp);
834 			ACCEPT_LOCK();
835 		}
836 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
837 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
838 			so->so_qlen--;
839 			sp->so_qstate &= ~SQ_COMP;
840 			sp->so_head = NULL;
841 			ACCEPT_UNLOCK();
842 			soabort(sp);
843 			ACCEPT_LOCK();
844 		}
845 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
846 		    ("%s: so_comp populated", __func__));
847 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
848 		    ("%s: so_incomp populated", __func__));
849 	}
850 	SOCK_LOCK(so);
851 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
852 	so->so_state |= SS_NOFDREF;
853 	sorele(so);			/* NB: Returns with ACCEPT_UNLOCK(). */
854 	CURVNET_RESTORE();
855 	return (error);
856 }
857 
858 /*
859  * soabort() is used to abruptly tear down a connection, such as when a
860  * resource limit is reached (listen queue depth exceeded), or if a listen
861  * socket is closed while there are sockets waiting to be accepted.
862  *
863  * This interface is tricky, because it is called on an unreferenced socket,
864  * and must be called only by a thread that has actually removed the socket
865  * from the listen queue it was on, or races with other threads are risked.
866  *
867  * This interface will call into the protocol code, so must not be called
868  * with any socket locks held.  Protocols do call it while holding their own
869  * recursible protocol mutexes, but this is something that should be subject
870  * to review in the future.
871  */
872 void
873 soabort(struct socket *so)
874 {
875 
876 	/*
877 	 * In as much as is possible, assert that no references to this
878 	 * socket are held.  This is not quite the same as asserting that the
879 	 * current thread is responsible for arranging for no references, but
880 	 * is as close as we can get for now.
881 	 */
882 	KASSERT(so->so_count == 0, ("soabort: so_count"));
883 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
884 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
885 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
886 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
887 	VNET_SO_ASSERT(so);
888 
889 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
890 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
891 	ACCEPT_LOCK();
892 	SOCK_LOCK(so);
893 	sofree(so);
894 }
895 
896 int
897 soaccept(struct socket *so, struct sockaddr **nam)
898 {
899 	int error;
900 
901 	SOCK_LOCK(so);
902 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
903 	so->so_state &= ~SS_NOFDREF;
904 	SOCK_UNLOCK(so);
905 
906 	CURVNET_SET(so->so_vnet);
907 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
908 	CURVNET_RESTORE();
909 	return (error);
910 }
911 
912 int
913 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
914 {
915 
916 	return (soconnectat(AT_FDCWD, so, nam, td));
917 }
918 
919 int
920 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
921 {
922 	int error;
923 
924 	if (so->so_options & SO_ACCEPTCONN)
925 		return (EOPNOTSUPP);
926 
927 	CURVNET_SET(so->so_vnet);
928 	/*
929 	 * If protocol is connection-based, can only connect once.
930 	 * Otherwise, if connected, try to disconnect first.  This allows
931 	 * user to disconnect by connecting to, e.g., a null address.
932 	 */
933 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
934 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
935 	    (error = sodisconnect(so)))) {
936 		error = EISCONN;
937 	} else {
938 		/*
939 		 * Prevent accumulated error from previous connection from
940 		 * biting us.
941 		 */
942 		so->so_error = 0;
943 		if (fd == AT_FDCWD) {
944 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
945 			    nam, td);
946 		} else {
947 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
948 			    so, nam, td);
949 		}
950 	}
951 	CURVNET_RESTORE();
952 
953 	return (error);
954 }
955 
956 int
957 soconnect2(struct socket *so1, struct socket *so2)
958 {
959 	int error;
960 
961 	CURVNET_SET(so1->so_vnet);
962 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
963 	CURVNET_RESTORE();
964 	return (error);
965 }
966 
967 int
968 sodisconnect(struct socket *so)
969 {
970 	int error;
971 
972 	if ((so->so_state & SS_ISCONNECTED) == 0)
973 		return (ENOTCONN);
974 	if (so->so_state & SS_ISDISCONNECTING)
975 		return (EALREADY);
976 	VNET_SO_ASSERT(so);
977 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
978 	return (error);
979 }
980 
981 #ifdef SOCKET_SEND_COW
982 struct so_zerocopy_stats{
983 	int size_ok;
984 	int align_ok;
985 	int found_ifp;
986 };
987 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
988 
989 /*
990  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
991  * sosend_dgram() and sosend_generic() use m_uiotombuf().
992  *
993  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
994  * all of the data referenced by the uio.  If desired, it uses zero-copy.
995  * *space will be updated to reflect data copied in.
996  *
997  * NB: If atomic I/O is requested, the caller must already have checked that
998  * space can hold resid bytes.
999  *
1000  * NB: In the event of an error, the caller may need to free the partial
1001  * chain pointed to by *mpp.  The contents of both *uio and *space may be
1002  * modified even in the case of an error.
1003  */
1004 static int
1005 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
1006     int flags)
1007 {
1008 	struct mbuf *m, **mp, *top;
1009 	long len;
1010 	ssize_t resid;
1011 	int error;
1012 	int cow_send;
1013 
1014 	*retmp = top = NULL;
1015 	mp = &top;
1016 	len = 0;
1017 	resid = uio->uio_resid;
1018 	error = 0;
1019 	do {
1020 		cow_send = 0;
1021 		if (resid >= MINCLSIZE) {
1022 			if (top == NULL) {
1023 				m = m_gethdr(M_WAITOK, MT_DATA);
1024 				m->m_pkthdr.len = 0;
1025 				m->m_pkthdr.rcvif = NULL;
1026 			} else
1027 				m = m_get(M_WAITOK, MT_DATA);
1028 			if (so_zero_copy_send &&
1029 			    resid >= PAGE_SIZE &&
1030 			    *space >= PAGE_SIZE &&
1031 			    uio->uio_iov->iov_len >= PAGE_SIZE) {
1032 				so_zerocp_stats.size_ok++;
1033 				so_zerocp_stats.align_ok++;
1034 				cow_send = socow_setup(m, uio);
1035 				len = cow_send;
1036 			}
1037 			if (!cow_send) {
1038 				m_clget(m, M_WAITOK);
1039 				len = min(min(MCLBYTES, resid), *space);
1040 			}
1041 		} else {
1042 			if (top == NULL) {
1043 				m = m_gethdr(M_WAITOK, MT_DATA);
1044 				m->m_pkthdr.len = 0;
1045 				m->m_pkthdr.rcvif = NULL;
1046 
1047 				len = min(min(MHLEN, resid), *space);
1048 				/*
1049 				 * For datagram protocols, leave room
1050 				 * for protocol headers in first mbuf.
1051 				 */
1052 				if (atomic && m && len < MHLEN)
1053 					MH_ALIGN(m, len);
1054 			} else {
1055 				m = m_get(M_WAITOK, MT_DATA);
1056 				len = min(min(MLEN, resid), *space);
1057 			}
1058 		}
1059 		if (m == NULL) {
1060 			error = ENOBUFS;
1061 			goto out;
1062 		}
1063 
1064 		*space -= len;
1065 		if (cow_send)
1066 			error = 0;
1067 		else
1068 			error = uiomove(mtod(m, void *), (int)len, uio);
1069 		resid = uio->uio_resid;
1070 		m->m_len = len;
1071 		*mp = m;
1072 		top->m_pkthdr.len += len;
1073 		if (error)
1074 			goto out;
1075 		mp = &m->m_next;
1076 		if (resid <= 0) {
1077 			if (flags & MSG_EOR)
1078 				top->m_flags |= M_EOR;
1079 			break;
1080 		}
1081 	} while (*space > 0 && atomic);
1082 out:
1083 	*retmp = top;
1084 	return (error);
1085 }
1086 #endif /* SOCKET_SEND_COW */
1087 
1088 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1089 
1090 int
1091 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1092     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1093 {
1094 	long space;
1095 	ssize_t resid;
1096 	int clen = 0, error, dontroute;
1097 #ifdef SOCKET_SEND_COW
1098 	int atomic = sosendallatonce(so) || top;
1099 #endif
1100 
1101 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1102 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1103 	    ("sosend_dgram: !PR_ATOMIC"));
1104 
1105 	if (uio != NULL)
1106 		resid = uio->uio_resid;
1107 	else
1108 		resid = top->m_pkthdr.len;
1109 	/*
1110 	 * In theory resid should be unsigned.  However, space must be
1111 	 * signed, as it might be less than 0 if we over-committed, and we
1112 	 * must use a signed comparison of space and resid.  On the other
1113 	 * hand, a negative resid causes us to loop sending 0-length
1114 	 * segments to the protocol.
1115 	 */
1116 	if (resid < 0) {
1117 		error = EINVAL;
1118 		goto out;
1119 	}
1120 
1121 	dontroute =
1122 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1123 	if (td != NULL)
1124 		td->td_ru.ru_msgsnd++;
1125 	if (control != NULL)
1126 		clen = control->m_len;
1127 
1128 	SOCKBUF_LOCK(&so->so_snd);
1129 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1130 		SOCKBUF_UNLOCK(&so->so_snd);
1131 		error = EPIPE;
1132 		goto out;
1133 	}
1134 	if (so->so_error) {
1135 		error = so->so_error;
1136 		so->so_error = 0;
1137 		SOCKBUF_UNLOCK(&so->so_snd);
1138 		goto out;
1139 	}
1140 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1141 		/*
1142 		 * `sendto' and `sendmsg' is allowed on a connection-based
1143 		 * socket if it supports implied connect.  Return ENOTCONN if
1144 		 * not connected and no address is supplied.
1145 		 */
1146 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1147 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1148 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1149 			    !(resid == 0 && clen != 0)) {
1150 				SOCKBUF_UNLOCK(&so->so_snd);
1151 				error = ENOTCONN;
1152 				goto out;
1153 			}
1154 		} else if (addr == NULL) {
1155 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1156 				error = ENOTCONN;
1157 			else
1158 				error = EDESTADDRREQ;
1159 			SOCKBUF_UNLOCK(&so->so_snd);
1160 			goto out;
1161 		}
1162 	}
1163 
1164 	/*
1165 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1166 	 * problem and need fixing.
1167 	 */
1168 	space = sbspace(&so->so_snd);
1169 	if (flags & MSG_OOB)
1170 		space += 1024;
1171 	space -= clen;
1172 	SOCKBUF_UNLOCK(&so->so_snd);
1173 	if (resid > space) {
1174 		error = EMSGSIZE;
1175 		goto out;
1176 	}
1177 	if (uio == NULL) {
1178 		resid = 0;
1179 		if (flags & MSG_EOR)
1180 			top->m_flags |= M_EOR;
1181 	} else {
1182 #ifdef SOCKET_SEND_COW
1183 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1184 		if (error)
1185 			goto out;
1186 #else
1187 		/*
1188 		 * Copy the data from userland into a mbuf chain.
1189 		 * If no data is to be copied in, a single empty mbuf
1190 		 * is returned.
1191 		 */
1192 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1193 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1194 		if (top == NULL) {
1195 			error = EFAULT;	/* only possible error */
1196 			goto out;
1197 		}
1198 		space -= resid - uio->uio_resid;
1199 #endif /* SOCKET_SEND_COW */
1200 		resid = uio->uio_resid;
1201 	}
1202 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1203 	/*
1204 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1205 	 * than with.
1206 	 */
1207 	if (dontroute) {
1208 		SOCK_LOCK(so);
1209 		so->so_options |= SO_DONTROUTE;
1210 		SOCK_UNLOCK(so);
1211 	}
1212 	/*
1213 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1214 	 * of date.  We could have recieved a reset packet in an interrupt or
1215 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1216 	 * probably recheck again inside the locking protection here, but
1217 	 * there are probably other places that this also happens.  We must
1218 	 * rethink this.
1219 	 */
1220 	VNET_SO_ASSERT(so);
1221 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1222 	    (flags & MSG_OOB) ? PRUS_OOB :
1223 	/*
1224 	 * If the user set MSG_EOF, the protocol understands this flag and
1225 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1226 	 */
1227 	    ((flags & MSG_EOF) &&
1228 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1229 	     (resid <= 0)) ?
1230 		PRUS_EOF :
1231 		/* If there is more to send set PRUS_MORETOCOME */
1232 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1233 		top, addr, control, td);
1234 	if (dontroute) {
1235 		SOCK_LOCK(so);
1236 		so->so_options &= ~SO_DONTROUTE;
1237 		SOCK_UNLOCK(so);
1238 	}
1239 	clen = 0;
1240 	control = NULL;
1241 	top = NULL;
1242 out:
1243 	if (top != NULL)
1244 		m_freem(top);
1245 	if (control != NULL)
1246 		m_freem(control);
1247 	return (error);
1248 }
1249 
1250 /*
1251  * Send on a socket.  If send must go all at once and message is larger than
1252  * send buffering, then hard error.  Lock against other senders.  If must go
1253  * all at once and not enough room now, then inform user that this would
1254  * block and do nothing.  Otherwise, if nonblocking, send as much as
1255  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1256  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1257  * in mbuf chain must be small enough to send all at once.
1258  *
1259  * Returns nonzero on error, timeout or signal; callers must check for short
1260  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1261  * on return.
1262  */
1263 int
1264 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1265     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1266 {
1267 	long space;
1268 	ssize_t resid;
1269 	int clen = 0, error, dontroute;
1270 	int atomic = sosendallatonce(so) || top;
1271 
1272 	if (uio != NULL)
1273 		resid = uio->uio_resid;
1274 	else
1275 		resid = top->m_pkthdr.len;
1276 	/*
1277 	 * In theory resid should be unsigned.  However, space must be
1278 	 * signed, as it might be less than 0 if we over-committed, and we
1279 	 * must use a signed comparison of space and resid.  On the other
1280 	 * hand, a negative resid causes us to loop sending 0-length
1281 	 * segments to the protocol.
1282 	 *
1283 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1284 	 * type sockets since that's an error.
1285 	 */
1286 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1287 		error = EINVAL;
1288 		goto out;
1289 	}
1290 
1291 	dontroute =
1292 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1293 	    (so->so_proto->pr_flags & PR_ATOMIC);
1294 	if (td != NULL)
1295 		td->td_ru.ru_msgsnd++;
1296 	if (control != NULL)
1297 		clen = control->m_len;
1298 
1299 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1300 	if (error)
1301 		goto out;
1302 
1303 restart:
1304 	do {
1305 		SOCKBUF_LOCK(&so->so_snd);
1306 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1307 			SOCKBUF_UNLOCK(&so->so_snd);
1308 			error = EPIPE;
1309 			goto release;
1310 		}
1311 		if (so->so_error) {
1312 			error = so->so_error;
1313 			so->so_error = 0;
1314 			SOCKBUF_UNLOCK(&so->so_snd);
1315 			goto release;
1316 		}
1317 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1318 			/*
1319 			 * `sendto' and `sendmsg' is allowed on a connection-
1320 			 * based socket if it supports implied connect.
1321 			 * Return ENOTCONN if not connected and no address is
1322 			 * supplied.
1323 			 */
1324 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1325 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1326 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1327 				    !(resid == 0 && clen != 0)) {
1328 					SOCKBUF_UNLOCK(&so->so_snd);
1329 					error = ENOTCONN;
1330 					goto release;
1331 				}
1332 			} else if (addr == NULL) {
1333 				SOCKBUF_UNLOCK(&so->so_snd);
1334 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1335 					error = ENOTCONN;
1336 				else
1337 					error = EDESTADDRREQ;
1338 				goto release;
1339 			}
1340 		}
1341 		space = sbspace(&so->so_snd);
1342 		if (flags & MSG_OOB)
1343 			space += 1024;
1344 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1345 		    clen > so->so_snd.sb_hiwat) {
1346 			SOCKBUF_UNLOCK(&so->so_snd);
1347 			error = EMSGSIZE;
1348 			goto release;
1349 		}
1350 		if (space < resid + clen &&
1351 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1352 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1353 				SOCKBUF_UNLOCK(&so->so_snd);
1354 				error = EWOULDBLOCK;
1355 				goto release;
1356 			}
1357 			error = sbwait(&so->so_snd);
1358 			SOCKBUF_UNLOCK(&so->so_snd);
1359 			if (error)
1360 				goto release;
1361 			goto restart;
1362 		}
1363 		SOCKBUF_UNLOCK(&so->so_snd);
1364 		space -= clen;
1365 		do {
1366 			if (uio == NULL) {
1367 				resid = 0;
1368 				if (flags & MSG_EOR)
1369 					top->m_flags |= M_EOR;
1370 			} else {
1371 #ifdef SOCKET_SEND_COW
1372 				error = sosend_copyin(uio, &top, atomic,
1373 				    &space, flags);
1374 				if (error != 0)
1375 					goto release;
1376 #else
1377 				/*
1378 				 * Copy the data from userland into a mbuf
1379 				 * chain.  If no data is to be copied in,
1380 				 * a single empty mbuf is returned.
1381 				 */
1382 				top = m_uiotombuf(uio, M_WAITOK, space,
1383 				    (atomic ? max_hdr : 0),
1384 				    (atomic ? M_PKTHDR : 0) |
1385 				    ((flags & MSG_EOR) ? M_EOR : 0));
1386 				if (top == NULL) {
1387 					error = EFAULT; /* only possible error */
1388 					goto release;
1389 				}
1390 				space -= resid - uio->uio_resid;
1391 #endif /* SOCKET_SEND_COW */
1392 				resid = uio->uio_resid;
1393 			}
1394 			if (dontroute) {
1395 				SOCK_LOCK(so);
1396 				so->so_options |= SO_DONTROUTE;
1397 				SOCK_UNLOCK(so);
1398 			}
1399 			/*
1400 			 * XXX all the SBS_CANTSENDMORE checks previously
1401 			 * done could be out of date.  We could have recieved
1402 			 * a reset packet in an interrupt or maybe we slept
1403 			 * while doing page faults in uiomove() etc.  We
1404 			 * could probably recheck again inside the locking
1405 			 * protection here, but there are probably other
1406 			 * places that this also happens.  We must rethink
1407 			 * this.
1408 			 */
1409 			VNET_SO_ASSERT(so);
1410 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1411 			    (flags & MSG_OOB) ? PRUS_OOB :
1412 			/*
1413 			 * If the user set MSG_EOF, the protocol understands
1414 			 * this flag and nothing left to send then use
1415 			 * PRU_SEND_EOF instead of PRU_SEND.
1416 			 */
1417 			    ((flags & MSG_EOF) &&
1418 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1419 			     (resid <= 0)) ?
1420 				PRUS_EOF :
1421 			/* If there is more to send set PRUS_MORETOCOME. */
1422 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1423 			    top, addr, control, td);
1424 			if (dontroute) {
1425 				SOCK_LOCK(so);
1426 				so->so_options &= ~SO_DONTROUTE;
1427 				SOCK_UNLOCK(so);
1428 			}
1429 			clen = 0;
1430 			control = NULL;
1431 			top = NULL;
1432 			if (error)
1433 				goto release;
1434 		} while (resid && space > 0);
1435 	} while (resid);
1436 
1437 release:
1438 	sbunlock(&so->so_snd);
1439 out:
1440 	if (top != NULL)
1441 		m_freem(top);
1442 	if (control != NULL)
1443 		m_freem(control);
1444 	return (error);
1445 }
1446 
1447 int
1448 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1449     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1450 {
1451 	int error;
1452 
1453 	CURVNET_SET(so->so_vnet);
1454 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1455 	    control, flags, td);
1456 	CURVNET_RESTORE();
1457 	return (error);
1458 }
1459 
1460 /*
1461  * The part of soreceive() that implements reading non-inline out-of-band
1462  * data from a socket.  For more complete comments, see soreceive(), from
1463  * which this code originated.
1464  *
1465  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1466  * unable to return an mbuf chain to the caller.
1467  */
1468 static int
1469 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1470 {
1471 	struct protosw *pr = so->so_proto;
1472 	struct mbuf *m;
1473 	int error;
1474 
1475 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1476 	VNET_SO_ASSERT(so);
1477 
1478 	m = m_get(M_WAITOK, MT_DATA);
1479 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1480 	if (error)
1481 		goto bad;
1482 	do {
1483 #ifdef SOCKET_RECV_PFLIP
1484 		if (so_zero_copy_receive) {
1485 			int disposable;
1486 
1487 			if ((m->m_flags & M_EXT)
1488 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1489 				disposable = 1;
1490 			else
1491 				disposable = 0;
1492 
1493 			error = uiomoveco(mtod(m, void *),
1494 			    min(uio->uio_resid, m->m_len), uio, disposable);
1495 		} else
1496 #endif /* SOCKET_RECV_PFLIP */
1497 		error = uiomove(mtod(m, void *),
1498 		    (int) min(uio->uio_resid, m->m_len), uio);
1499 		m = m_free(m);
1500 	} while (uio->uio_resid && error == 0 && m);
1501 bad:
1502 	if (m != NULL)
1503 		m_freem(m);
1504 	return (error);
1505 }
1506 
1507 /*
1508  * Following replacement or removal of the first mbuf on the first mbuf chain
1509  * of a socket buffer, push necessary state changes back into the socket
1510  * buffer so that other consumers see the values consistently.  'nextrecord'
1511  * is the callers locally stored value of the original value of
1512  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1513  * NOTE: 'nextrecord' may be NULL.
1514  */
1515 static __inline void
1516 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1517 {
1518 
1519 	SOCKBUF_LOCK_ASSERT(sb);
1520 	/*
1521 	 * First, update for the new value of nextrecord.  If necessary, make
1522 	 * it the first record.
1523 	 */
1524 	if (sb->sb_mb != NULL)
1525 		sb->sb_mb->m_nextpkt = nextrecord;
1526 	else
1527 		sb->sb_mb = nextrecord;
1528 
1529 	/*
1530 	 * Now update any dependent socket buffer fields to reflect the new
1531 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1532 	 * addition of a second clause that takes care of the case where
1533 	 * sb_mb has been updated, but remains the last record.
1534 	 */
1535 	if (sb->sb_mb == NULL) {
1536 		sb->sb_mbtail = NULL;
1537 		sb->sb_lastrecord = NULL;
1538 	} else if (sb->sb_mb->m_nextpkt == NULL)
1539 		sb->sb_lastrecord = sb->sb_mb;
1540 }
1541 
1542 /*
1543  * Implement receive operations on a socket.  We depend on the way that
1544  * records are added to the sockbuf by sbappend.  In particular, each record
1545  * (mbufs linked through m_next) must begin with an address if the protocol
1546  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1547  * data, and then zero or more mbufs of data.  In order to allow parallelism
1548  * between network receive and copying to user space, as well as avoid
1549  * sleeping with a mutex held, we release the socket buffer mutex during the
1550  * user space copy.  Although the sockbuf is locked, new data may still be
1551  * appended, and thus we must maintain consistency of the sockbuf during that
1552  * time.
1553  *
1554  * The caller may receive the data as a single mbuf chain by supplying an
1555  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1556  * the count in uio_resid.
1557  */
1558 int
1559 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1560     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1561 {
1562 	struct mbuf *m, **mp;
1563 	int flags, error, offset;
1564 	ssize_t len;
1565 	struct protosw *pr = so->so_proto;
1566 	struct mbuf *nextrecord;
1567 	int moff, type = 0;
1568 	ssize_t orig_resid = uio->uio_resid;
1569 
1570 	mp = mp0;
1571 	if (psa != NULL)
1572 		*psa = NULL;
1573 	if (controlp != NULL)
1574 		*controlp = NULL;
1575 	if (flagsp != NULL)
1576 		flags = *flagsp &~ MSG_EOR;
1577 	else
1578 		flags = 0;
1579 	if (flags & MSG_OOB)
1580 		return (soreceive_rcvoob(so, uio, flags));
1581 	if (mp != NULL)
1582 		*mp = NULL;
1583 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1584 	    && uio->uio_resid) {
1585 		VNET_SO_ASSERT(so);
1586 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1587 	}
1588 
1589 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1590 	if (error)
1591 		return (error);
1592 
1593 restart:
1594 	SOCKBUF_LOCK(&so->so_rcv);
1595 	m = so->so_rcv.sb_mb;
1596 	/*
1597 	 * If we have less data than requested, block awaiting more (subject
1598 	 * to any timeout) if:
1599 	 *   1. the current count is less than the low water mark, or
1600 	 *   2. MSG_DONTWAIT is not set
1601 	 */
1602 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1603 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1604 	    so->so_rcv.sb_cc < so->so_rcv.sb_lowat &&
1605 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1606 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1607 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1608 		    m, so->so_rcv.sb_cc));
1609 		if (so->so_error) {
1610 			if (m != NULL)
1611 				goto dontblock;
1612 			error = so->so_error;
1613 			if ((flags & MSG_PEEK) == 0)
1614 				so->so_error = 0;
1615 			SOCKBUF_UNLOCK(&so->so_rcv);
1616 			goto release;
1617 		}
1618 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1619 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1620 			if (m == NULL) {
1621 				SOCKBUF_UNLOCK(&so->so_rcv);
1622 				goto release;
1623 			} else
1624 				goto dontblock;
1625 		}
1626 		for (; m != NULL; m = m->m_next)
1627 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1628 				m = so->so_rcv.sb_mb;
1629 				goto dontblock;
1630 			}
1631 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1632 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1633 			SOCKBUF_UNLOCK(&so->so_rcv);
1634 			error = ENOTCONN;
1635 			goto release;
1636 		}
1637 		if (uio->uio_resid == 0) {
1638 			SOCKBUF_UNLOCK(&so->so_rcv);
1639 			goto release;
1640 		}
1641 		if ((so->so_state & SS_NBIO) ||
1642 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1643 			SOCKBUF_UNLOCK(&so->so_rcv);
1644 			error = EWOULDBLOCK;
1645 			goto release;
1646 		}
1647 		SBLASTRECORDCHK(&so->so_rcv);
1648 		SBLASTMBUFCHK(&so->so_rcv);
1649 		error = sbwait(&so->so_rcv);
1650 		SOCKBUF_UNLOCK(&so->so_rcv);
1651 		if (error)
1652 			goto release;
1653 		goto restart;
1654 	}
1655 dontblock:
1656 	/*
1657 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1658 	 * pointer to the next record in the socket buffer.  We must keep the
1659 	 * various socket buffer pointers and local stack versions of the
1660 	 * pointers in sync, pushing out modifications before dropping the
1661 	 * socket buffer mutex, and re-reading them when picking it up.
1662 	 *
1663 	 * Otherwise, we will race with the network stack appending new data
1664 	 * or records onto the socket buffer by using inconsistent/stale
1665 	 * versions of the field, possibly resulting in socket buffer
1666 	 * corruption.
1667 	 *
1668 	 * By holding the high-level sblock(), we prevent simultaneous
1669 	 * readers from pulling off the front of the socket buffer.
1670 	 */
1671 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1672 	if (uio->uio_td)
1673 		uio->uio_td->td_ru.ru_msgrcv++;
1674 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1675 	SBLASTRECORDCHK(&so->so_rcv);
1676 	SBLASTMBUFCHK(&so->so_rcv);
1677 	nextrecord = m->m_nextpkt;
1678 	if (pr->pr_flags & PR_ADDR) {
1679 		KASSERT(m->m_type == MT_SONAME,
1680 		    ("m->m_type == %d", m->m_type));
1681 		orig_resid = 0;
1682 		if (psa != NULL)
1683 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1684 			    M_NOWAIT);
1685 		if (flags & MSG_PEEK) {
1686 			m = m->m_next;
1687 		} else {
1688 			sbfree(&so->so_rcv, m);
1689 			so->so_rcv.sb_mb = m_free(m);
1690 			m = so->so_rcv.sb_mb;
1691 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1697 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1698 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1699 	 * perform externalization (or freeing if controlp == NULL).
1700 	 */
1701 	if (m != NULL && m->m_type == MT_CONTROL) {
1702 		struct mbuf *cm = NULL, *cmn;
1703 		struct mbuf **cme = &cm;
1704 
1705 		do {
1706 			if (flags & MSG_PEEK) {
1707 				if (controlp != NULL) {
1708 					*controlp = m_copy(m, 0, m->m_len);
1709 					controlp = &(*controlp)->m_next;
1710 				}
1711 				m = m->m_next;
1712 			} else {
1713 				sbfree(&so->so_rcv, m);
1714 				so->so_rcv.sb_mb = m->m_next;
1715 				m->m_next = NULL;
1716 				*cme = m;
1717 				cme = &(*cme)->m_next;
1718 				m = so->so_rcv.sb_mb;
1719 			}
1720 		} while (m != NULL && m->m_type == MT_CONTROL);
1721 		if ((flags & MSG_PEEK) == 0)
1722 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1723 		while (cm != NULL) {
1724 			cmn = cm->m_next;
1725 			cm->m_next = NULL;
1726 			if (pr->pr_domain->dom_externalize != NULL) {
1727 				SOCKBUF_UNLOCK(&so->so_rcv);
1728 				VNET_SO_ASSERT(so);
1729 				error = (*pr->pr_domain->dom_externalize)
1730 				    (cm, controlp, flags);
1731 				SOCKBUF_LOCK(&so->so_rcv);
1732 			} else if (controlp != NULL)
1733 				*controlp = cm;
1734 			else
1735 				m_freem(cm);
1736 			if (controlp != NULL) {
1737 				orig_resid = 0;
1738 				while (*controlp != NULL)
1739 					controlp = &(*controlp)->m_next;
1740 			}
1741 			cm = cmn;
1742 		}
1743 		if (m != NULL)
1744 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1745 		else
1746 			nextrecord = so->so_rcv.sb_mb;
1747 		orig_resid = 0;
1748 	}
1749 	if (m != NULL) {
1750 		if ((flags & MSG_PEEK) == 0) {
1751 			KASSERT(m->m_nextpkt == nextrecord,
1752 			    ("soreceive: post-control, nextrecord !sync"));
1753 			if (nextrecord == NULL) {
1754 				KASSERT(so->so_rcv.sb_mb == m,
1755 				    ("soreceive: post-control, sb_mb!=m"));
1756 				KASSERT(so->so_rcv.sb_lastrecord == m,
1757 				    ("soreceive: post-control, lastrecord!=m"));
1758 			}
1759 		}
1760 		type = m->m_type;
1761 		if (type == MT_OOBDATA)
1762 			flags |= MSG_OOB;
1763 	} else {
1764 		if ((flags & MSG_PEEK) == 0) {
1765 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1766 			    ("soreceive: sb_mb != nextrecord"));
1767 			if (so->so_rcv.sb_mb == NULL) {
1768 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1769 				    ("soreceive: sb_lastercord != NULL"));
1770 			}
1771 		}
1772 	}
1773 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1774 	SBLASTRECORDCHK(&so->so_rcv);
1775 	SBLASTMBUFCHK(&so->so_rcv);
1776 
1777 	/*
1778 	 * Now continue to read any data mbufs off of the head of the socket
1779 	 * buffer until the read request is satisfied.  Note that 'type' is
1780 	 * used to store the type of any mbuf reads that have happened so far
1781 	 * such that soreceive() can stop reading if the type changes, which
1782 	 * causes soreceive() to return only one of regular data and inline
1783 	 * out-of-band data in a single socket receive operation.
1784 	 */
1785 	moff = 0;
1786 	offset = 0;
1787 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1788 		/*
1789 		 * If the type of mbuf has changed since the last mbuf
1790 		 * examined ('type'), end the receive operation.
1791 		 */
1792 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1793 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1794 			if (type != m->m_type)
1795 				break;
1796 		} else if (type == MT_OOBDATA)
1797 			break;
1798 		else
1799 		    KASSERT(m->m_type == MT_DATA,
1800 			("m->m_type == %d", m->m_type));
1801 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1802 		len = uio->uio_resid;
1803 		if (so->so_oobmark && len > so->so_oobmark - offset)
1804 			len = so->so_oobmark - offset;
1805 		if (len > m->m_len - moff)
1806 			len = m->m_len - moff;
1807 		/*
1808 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1809 		 * them out via the uio, then free.  Sockbuf must be
1810 		 * consistent here (points to current mbuf, it points to next
1811 		 * record) when we drop priority; we must note any additions
1812 		 * to the sockbuf when we block interrupts again.
1813 		 */
1814 		if (mp == NULL) {
1815 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1816 			SBLASTRECORDCHK(&so->so_rcv);
1817 			SBLASTMBUFCHK(&so->so_rcv);
1818 			SOCKBUF_UNLOCK(&so->so_rcv);
1819 #ifdef SOCKET_RECV_PFLIP
1820 			if (so_zero_copy_receive) {
1821 				int disposable;
1822 
1823 				if ((m->m_flags & M_EXT)
1824 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1825 					disposable = 1;
1826 				else
1827 					disposable = 0;
1828 
1829 				error = uiomoveco(mtod(m, char *) + moff,
1830 				    (int)len, uio, disposable);
1831 			} else
1832 #endif /* SOCKET_RECV_PFLIP */
1833 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1834 			SOCKBUF_LOCK(&so->so_rcv);
1835 			if (error) {
1836 				/*
1837 				 * The MT_SONAME mbuf has already been removed
1838 				 * from the record, so it is necessary to
1839 				 * remove the data mbufs, if any, to preserve
1840 				 * the invariant in the case of PR_ADDR that
1841 				 * requires MT_SONAME mbufs at the head of
1842 				 * each record.
1843 				 */
1844 				if (m && pr->pr_flags & PR_ATOMIC &&
1845 				    ((flags & MSG_PEEK) == 0))
1846 					(void)sbdroprecord_locked(&so->so_rcv);
1847 				SOCKBUF_UNLOCK(&so->so_rcv);
1848 				goto release;
1849 			}
1850 		} else
1851 			uio->uio_resid -= len;
1852 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1853 		if (len == m->m_len - moff) {
1854 			if (m->m_flags & M_EOR)
1855 				flags |= MSG_EOR;
1856 			if (flags & MSG_PEEK) {
1857 				m = m->m_next;
1858 				moff = 0;
1859 			} else {
1860 				nextrecord = m->m_nextpkt;
1861 				sbfree(&so->so_rcv, m);
1862 				if (mp != NULL) {
1863 					m->m_nextpkt = NULL;
1864 					*mp = m;
1865 					mp = &m->m_next;
1866 					so->so_rcv.sb_mb = m = m->m_next;
1867 					*mp = NULL;
1868 				} else {
1869 					so->so_rcv.sb_mb = m_free(m);
1870 					m = so->so_rcv.sb_mb;
1871 				}
1872 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1873 				SBLASTRECORDCHK(&so->so_rcv);
1874 				SBLASTMBUFCHK(&so->so_rcv);
1875 			}
1876 		} else {
1877 			if (flags & MSG_PEEK)
1878 				moff += len;
1879 			else {
1880 				if (mp != NULL) {
1881 					int copy_flag;
1882 
1883 					if (flags & MSG_DONTWAIT)
1884 						copy_flag = M_NOWAIT;
1885 					else
1886 						copy_flag = M_WAIT;
1887 					if (copy_flag == M_WAITOK)
1888 						SOCKBUF_UNLOCK(&so->so_rcv);
1889 					*mp = m_copym(m, 0, len, copy_flag);
1890 					if (copy_flag == M_WAITOK)
1891 						SOCKBUF_LOCK(&so->so_rcv);
1892 					if (*mp == NULL) {
1893 						/*
1894 						 * m_copym() couldn't
1895 						 * allocate an mbuf.  Adjust
1896 						 * uio_resid back (it was
1897 						 * adjusted down by len
1898 						 * bytes, which we didn't end
1899 						 * up "copying" over).
1900 						 */
1901 						uio->uio_resid += len;
1902 						break;
1903 					}
1904 				}
1905 				m->m_data += len;
1906 				m->m_len -= len;
1907 				so->so_rcv.sb_cc -= len;
1908 			}
1909 		}
1910 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1911 		if (so->so_oobmark) {
1912 			if ((flags & MSG_PEEK) == 0) {
1913 				so->so_oobmark -= len;
1914 				if (so->so_oobmark == 0) {
1915 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1916 					break;
1917 				}
1918 			} else {
1919 				offset += len;
1920 				if (offset == so->so_oobmark)
1921 					break;
1922 			}
1923 		}
1924 		if (flags & MSG_EOR)
1925 			break;
1926 		/*
1927 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1928 		 * must not quit until "uio->uio_resid == 0" or an error
1929 		 * termination.  If a signal/timeout occurs, return with a
1930 		 * short count but without error.  Keep sockbuf locked
1931 		 * against other readers.
1932 		 */
1933 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1934 		    !sosendallatonce(so) && nextrecord == NULL) {
1935 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1936 			if (so->so_error ||
1937 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
1938 				break;
1939 			/*
1940 			 * Notify the protocol that some data has been
1941 			 * drained before blocking.
1942 			 */
1943 			if (pr->pr_flags & PR_WANTRCVD) {
1944 				SOCKBUF_UNLOCK(&so->so_rcv);
1945 				VNET_SO_ASSERT(so);
1946 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1947 				SOCKBUF_LOCK(&so->so_rcv);
1948 			}
1949 			SBLASTRECORDCHK(&so->so_rcv);
1950 			SBLASTMBUFCHK(&so->so_rcv);
1951 			/*
1952 			 * We could receive some data while was notifying
1953 			 * the protocol. Skip blocking in this case.
1954 			 */
1955 			if (so->so_rcv.sb_mb == NULL) {
1956 				error = sbwait(&so->so_rcv);
1957 				if (error) {
1958 					SOCKBUF_UNLOCK(&so->so_rcv);
1959 					goto release;
1960 				}
1961 			}
1962 			m = so->so_rcv.sb_mb;
1963 			if (m != NULL)
1964 				nextrecord = m->m_nextpkt;
1965 		}
1966 	}
1967 
1968 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1969 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1970 		flags |= MSG_TRUNC;
1971 		if ((flags & MSG_PEEK) == 0)
1972 			(void) sbdroprecord_locked(&so->so_rcv);
1973 	}
1974 	if ((flags & MSG_PEEK) == 0) {
1975 		if (m == NULL) {
1976 			/*
1977 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1978 			 * part makes sure sb_lastrecord is up-to-date if
1979 			 * there is still data in the socket buffer.
1980 			 */
1981 			so->so_rcv.sb_mb = nextrecord;
1982 			if (so->so_rcv.sb_mb == NULL) {
1983 				so->so_rcv.sb_mbtail = NULL;
1984 				so->so_rcv.sb_lastrecord = NULL;
1985 			} else if (nextrecord->m_nextpkt == NULL)
1986 				so->so_rcv.sb_lastrecord = nextrecord;
1987 		}
1988 		SBLASTRECORDCHK(&so->so_rcv);
1989 		SBLASTMBUFCHK(&so->so_rcv);
1990 		/*
1991 		 * If soreceive() is being done from the socket callback,
1992 		 * then don't need to generate ACK to peer to update window,
1993 		 * since ACK will be generated on return to TCP.
1994 		 */
1995 		if (!(flags & MSG_SOCALLBCK) &&
1996 		    (pr->pr_flags & PR_WANTRCVD)) {
1997 			SOCKBUF_UNLOCK(&so->so_rcv);
1998 			VNET_SO_ASSERT(so);
1999 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2000 			SOCKBUF_LOCK(&so->so_rcv);
2001 		}
2002 	}
2003 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2004 	if (orig_resid == uio->uio_resid && orig_resid &&
2005 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2006 		SOCKBUF_UNLOCK(&so->so_rcv);
2007 		goto restart;
2008 	}
2009 	SOCKBUF_UNLOCK(&so->so_rcv);
2010 
2011 	if (flagsp != NULL)
2012 		*flagsp |= flags;
2013 release:
2014 	sbunlock(&so->so_rcv);
2015 	return (error);
2016 }
2017 
2018 /*
2019  * Optimized version of soreceive() for stream (TCP) sockets.
2020  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
2021  */
2022 int
2023 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2024     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2025 {
2026 	int len = 0, error = 0, flags, oresid;
2027 	struct sockbuf *sb;
2028 	struct mbuf *m, *n = NULL;
2029 
2030 	/* We only do stream sockets. */
2031 	if (so->so_type != SOCK_STREAM)
2032 		return (EINVAL);
2033 	if (psa != NULL)
2034 		*psa = NULL;
2035 	if (controlp != NULL)
2036 		return (EINVAL);
2037 	if (flagsp != NULL)
2038 		flags = *flagsp &~ MSG_EOR;
2039 	else
2040 		flags = 0;
2041 	if (flags & MSG_OOB)
2042 		return (soreceive_rcvoob(so, uio, flags));
2043 	if (mp0 != NULL)
2044 		*mp0 = NULL;
2045 
2046 	sb = &so->so_rcv;
2047 
2048 	/* Prevent other readers from entering the socket. */
2049 	error = sblock(sb, SBLOCKWAIT(flags));
2050 	if (error)
2051 		goto out;
2052 	SOCKBUF_LOCK(sb);
2053 
2054 	/* Easy one, no space to copyout anything. */
2055 	if (uio->uio_resid == 0) {
2056 		error = EINVAL;
2057 		goto out;
2058 	}
2059 	oresid = uio->uio_resid;
2060 
2061 	/* We will never ever get anything unless we are or were connected. */
2062 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2063 		error = ENOTCONN;
2064 		goto out;
2065 	}
2066 
2067 restart:
2068 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2069 
2070 	/* Abort if socket has reported problems. */
2071 	if (so->so_error) {
2072 		if (sb->sb_cc > 0)
2073 			goto deliver;
2074 		if (oresid > uio->uio_resid)
2075 			goto out;
2076 		error = so->so_error;
2077 		if (!(flags & MSG_PEEK))
2078 			so->so_error = 0;
2079 		goto out;
2080 	}
2081 
2082 	/* Door is closed.  Deliver what is left, if any. */
2083 	if (sb->sb_state & SBS_CANTRCVMORE) {
2084 		if (sb->sb_cc > 0)
2085 			goto deliver;
2086 		else
2087 			goto out;
2088 	}
2089 
2090 	/* Socket buffer is empty and we shall not block. */
2091 	if (sb->sb_cc == 0 &&
2092 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2093 		error = EAGAIN;
2094 		goto out;
2095 	}
2096 
2097 	/* Socket buffer got some data that we shall deliver now. */
2098 	if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
2099 	    ((sb->sb_flags & SS_NBIO) ||
2100 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2101 	     sb->sb_cc >= sb->sb_lowat ||
2102 	     sb->sb_cc >= uio->uio_resid ||
2103 	     sb->sb_cc >= sb->sb_hiwat) ) {
2104 		goto deliver;
2105 	}
2106 
2107 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2108 	if ((flags & MSG_WAITALL) &&
2109 	    (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat))
2110 		goto deliver;
2111 
2112 	/*
2113 	 * Wait and block until (more) data comes in.
2114 	 * NB: Drops the sockbuf lock during wait.
2115 	 */
2116 	error = sbwait(sb);
2117 	if (error)
2118 		goto out;
2119 	goto restart;
2120 
2121 deliver:
2122 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2123 	KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
2124 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2125 
2126 	/* Statistics. */
2127 	if (uio->uio_td)
2128 		uio->uio_td->td_ru.ru_msgrcv++;
2129 
2130 	/* Fill uio until full or current end of socket buffer is reached. */
2131 	len = min(uio->uio_resid, sb->sb_cc);
2132 	if (mp0 != NULL) {
2133 		/* Dequeue as many mbufs as possible. */
2134 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2135 			if (*mp0 == NULL)
2136 				*mp0 = sb->sb_mb;
2137 			else
2138 				m_cat(*mp0, sb->sb_mb);
2139 			for (m = sb->sb_mb;
2140 			     m != NULL && m->m_len <= len;
2141 			     m = m->m_next) {
2142 				len -= m->m_len;
2143 				uio->uio_resid -= m->m_len;
2144 				sbfree(sb, m);
2145 				n = m;
2146 			}
2147 			n->m_next = NULL;
2148 			sb->sb_mb = m;
2149 			sb->sb_lastrecord = sb->sb_mb;
2150 			if (sb->sb_mb == NULL)
2151 				SB_EMPTY_FIXUP(sb);
2152 		}
2153 		/* Copy the remainder. */
2154 		if (len > 0) {
2155 			KASSERT(sb->sb_mb != NULL,
2156 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2157 
2158 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2159 			if (m == NULL)
2160 				len = 0;	/* Don't flush data from sockbuf. */
2161 			else
2162 				uio->uio_resid -= len;
2163 			if (*mp0 != NULL)
2164 				m_cat(*mp0, m);
2165 			else
2166 				*mp0 = m;
2167 			if (*mp0 == NULL) {
2168 				error = ENOBUFS;
2169 				goto out;
2170 			}
2171 		}
2172 	} else {
2173 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2174 		SOCKBUF_UNLOCK(sb);
2175 		error = m_mbuftouio(uio, sb->sb_mb, len);
2176 		SOCKBUF_LOCK(sb);
2177 		if (error)
2178 			goto out;
2179 	}
2180 	SBLASTRECORDCHK(sb);
2181 	SBLASTMBUFCHK(sb);
2182 
2183 	/*
2184 	 * Remove the delivered data from the socket buffer unless we
2185 	 * were only peeking.
2186 	 */
2187 	if (!(flags & MSG_PEEK)) {
2188 		if (len > 0)
2189 			sbdrop_locked(sb, len);
2190 
2191 		/* Notify protocol that we drained some data. */
2192 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2193 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2194 		     !(flags & MSG_SOCALLBCK))) {
2195 			SOCKBUF_UNLOCK(sb);
2196 			VNET_SO_ASSERT(so);
2197 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2198 			SOCKBUF_LOCK(sb);
2199 		}
2200 	}
2201 
2202 	/*
2203 	 * For MSG_WAITALL we may have to loop again and wait for
2204 	 * more data to come in.
2205 	 */
2206 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2207 		goto restart;
2208 out:
2209 	SOCKBUF_LOCK_ASSERT(sb);
2210 	SBLASTRECORDCHK(sb);
2211 	SBLASTMBUFCHK(sb);
2212 	SOCKBUF_UNLOCK(sb);
2213 	sbunlock(sb);
2214 	return (error);
2215 }
2216 
2217 /*
2218  * Optimized version of soreceive() for simple datagram cases from userspace.
2219  * Unlike in the stream case, we're able to drop a datagram if copyout()
2220  * fails, and because we handle datagrams atomically, we don't need to use a
2221  * sleep lock to prevent I/O interlacing.
2222  */
2223 int
2224 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2225     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2226 {
2227 	struct mbuf *m, *m2;
2228 	int flags, error;
2229 	ssize_t len;
2230 	struct protosw *pr = so->so_proto;
2231 	struct mbuf *nextrecord;
2232 
2233 	if (psa != NULL)
2234 		*psa = NULL;
2235 	if (controlp != NULL)
2236 		*controlp = NULL;
2237 	if (flagsp != NULL)
2238 		flags = *flagsp &~ MSG_EOR;
2239 	else
2240 		flags = 0;
2241 
2242 	/*
2243 	 * For any complicated cases, fall back to the full
2244 	 * soreceive_generic().
2245 	 */
2246 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2247 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2248 		    flagsp));
2249 
2250 	/*
2251 	 * Enforce restrictions on use.
2252 	 */
2253 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2254 	    ("soreceive_dgram: wantrcvd"));
2255 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2256 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2257 	    ("soreceive_dgram: SBS_RCVATMARK"));
2258 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2259 	    ("soreceive_dgram: P_CONNREQUIRED"));
2260 
2261 	/*
2262 	 * Loop blocking while waiting for a datagram.
2263 	 */
2264 	SOCKBUF_LOCK(&so->so_rcv);
2265 	while ((m = so->so_rcv.sb_mb) == NULL) {
2266 		KASSERT(so->so_rcv.sb_cc == 0,
2267 		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
2268 		    so->so_rcv.sb_cc));
2269 		if (so->so_error) {
2270 			error = so->so_error;
2271 			so->so_error = 0;
2272 			SOCKBUF_UNLOCK(&so->so_rcv);
2273 			return (error);
2274 		}
2275 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2276 		    uio->uio_resid == 0) {
2277 			SOCKBUF_UNLOCK(&so->so_rcv);
2278 			return (0);
2279 		}
2280 		if ((so->so_state & SS_NBIO) ||
2281 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2282 			SOCKBUF_UNLOCK(&so->so_rcv);
2283 			return (EWOULDBLOCK);
2284 		}
2285 		SBLASTRECORDCHK(&so->so_rcv);
2286 		SBLASTMBUFCHK(&so->so_rcv);
2287 		error = sbwait(&so->so_rcv);
2288 		if (error) {
2289 			SOCKBUF_UNLOCK(&so->so_rcv);
2290 			return (error);
2291 		}
2292 	}
2293 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2294 
2295 	if (uio->uio_td)
2296 		uio->uio_td->td_ru.ru_msgrcv++;
2297 	SBLASTRECORDCHK(&so->so_rcv);
2298 	SBLASTMBUFCHK(&so->so_rcv);
2299 	nextrecord = m->m_nextpkt;
2300 	if (nextrecord == NULL) {
2301 		KASSERT(so->so_rcv.sb_lastrecord == m,
2302 		    ("soreceive_dgram: lastrecord != m"));
2303 	}
2304 
2305 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2306 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2307 
2308 	/*
2309 	 * Pull 'm' and its chain off the front of the packet queue.
2310 	 */
2311 	so->so_rcv.sb_mb = NULL;
2312 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2313 
2314 	/*
2315 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2316 	 */
2317 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2318 		sbfree(&so->so_rcv, m2);
2319 
2320 	/*
2321 	 * Do a few last checks before we let go of the lock.
2322 	 */
2323 	SBLASTRECORDCHK(&so->so_rcv);
2324 	SBLASTMBUFCHK(&so->so_rcv);
2325 	SOCKBUF_UNLOCK(&so->so_rcv);
2326 
2327 	if (pr->pr_flags & PR_ADDR) {
2328 		KASSERT(m->m_type == MT_SONAME,
2329 		    ("m->m_type == %d", m->m_type));
2330 		if (psa != NULL)
2331 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2332 			    M_NOWAIT);
2333 		m = m_free(m);
2334 	}
2335 	if (m == NULL) {
2336 		/* XXXRW: Can this happen? */
2337 		return (0);
2338 	}
2339 
2340 	/*
2341 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2342 	 * queue.
2343 	 *
2344 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2345 	 * in the first mbuf chain on the socket buffer.  We call into the
2346 	 * protocol to perform externalization (or freeing if controlp ==
2347 	 * NULL).
2348 	 */
2349 	if (m->m_type == MT_CONTROL) {
2350 		struct mbuf *cm = NULL, *cmn;
2351 		struct mbuf **cme = &cm;
2352 
2353 		do {
2354 			m2 = m->m_next;
2355 			m->m_next = NULL;
2356 			*cme = m;
2357 			cme = &(*cme)->m_next;
2358 			m = m2;
2359 		} while (m != NULL && m->m_type == MT_CONTROL);
2360 		while (cm != NULL) {
2361 			cmn = cm->m_next;
2362 			cm->m_next = NULL;
2363 			if (pr->pr_domain->dom_externalize != NULL) {
2364 				error = (*pr->pr_domain->dom_externalize)
2365 				    (cm, controlp, flags);
2366 			} else if (controlp != NULL)
2367 				*controlp = cm;
2368 			else
2369 				m_freem(cm);
2370 			if (controlp != NULL) {
2371 				while (*controlp != NULL)
2372 					controlp = &(*controlp)->m_next;
2373 			}
2374 			cm = cmn;
2375 		}
2376 	}
2377 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2378 
2379 	while (m != NULL && uio->uio_resid > 0) {
2380 		len = uio->uio_resid;
2381 		if (len > m->m_len)
2382 			len = m->m_len;
2383 		error = uiomove(mtod(m, char *), (int)len, uio);
2384 		if (error) {
2385 			m_freem(m);
2386 			return (error);
2387 		}
2388 		if (len == m->m_len)
2389 			m = m_free(m);
2390 		else {
2391 			m->m_data += len;
2392 			m->m_len -= len;
2393 		}
2394 	}
2395 	if (m != NULL)
2396 		flags |= MSG_TRUNC;
2397 	m_freem(m);
2398 	if (flagsp != NULL)
2399 		*flagsp |= flags;
2400 	return (0);
2401 }
2402 
2403 int
2404 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2405     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2406 {
2407 	int error;
2408 
2409 	CURVNET_SET(so->so_vnet);
2410 	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2411 	    controlp, flagsp));
2412 	CURVNET_RESTORE();
2413 	return (error);
2414 }
2415 
2416 int
2417 soshutdown(struct socket *so, int how)
2418 {
2419 	struct protosw *pr = so->so_proto;
2420 	int error;
2421 
2422 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2423 		return (EINVAL);
2424 
2425 	CURVNET_SET(so->so_vnet);
2426 	if (pr->pr_usrreqs->pru_flush != NULL)
2427 		(*pr->pr_usrreqs->pru_flush)(so, how);
2428 	if (how != SHUT_WR)
2429 		sorflush(so);
2430 	if (how != SHUT_RD) {
2431 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2432 		CURVNET_RESTORE();
2433 		return (error);
2434 	}
2435 	CURVNET_RESTORE();
2436 	return (0);
2437 }
2438 
2439 void
2440 sorflush(struct socket *so)
2441 {
2442 	struct sockbuf *sb = &so->so_rcv;
2443 	struct protosw *pr = so->so_proto;
2444 	struct sockbuf asb;
2445 
2446 	VNET_SO_ASSERT(so);
2447 
2448 	/*
2449 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2450 	 * held, and in order to generally avoid holding the lock for a long
2451 	 * time, we make a copy of the socket buffer and clear the original
2452 	 * (except locks, state).  The new socket buffer copy won't have
2453 	 * initialized locks so we can only call routines that won't use or
2454 	 * assert those locks.
2455 	 *
2456 	 * Dislodge threads currently blocked in receive and wait to acquire
2457 	 * a lock against other simultaneous readers before clearing the
2458 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2459 	 * despite any existing socket disposition on interruptable waiting.
2460 	 */
2461 	socantrcvmore(so);
2462 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2463 
2464 	/*
2465 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2466 	 * and mutex data unchanged.
2467 	 */
2468 	SOCKBUF_LOCK(sb);
2469 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2470 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2471 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2472 	bzero(&sb->sb_startzero,
2473 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2474 	SOCKBUF_UNLOCK(sb);
2475 	sbunlock(sb);
2476 
2477 	/*
2478 	 * Dispose of special rights and flush the socket buffer.  Don't call
2479 	 * any unsafe routines (that rely on locks being initialized) on asb.
2480 	 */
2481 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2482 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2483 	sbrelease_internal(&asb, so);
2484 }
2485 
2486 /*
2487  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2488  * additional variant to handle the case where the option value needs to be
2489  * some kind of integer, but not a specific size.  In addition to their use
2490  * here, these functions are also called by the protocol-level pr_ctloutput()
2491  * routines.
2492  */
2493 int
2494 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2495 {
2496 	size_t	valsize;
2497 
2498 	/*
2499 	 * If the user gives us more than we wanted, we ignore it, but if we
2500 	 * don't get the minimum length the caller wants, we return EINVAL.
2501 	 * On success, sopt->sopt_valsize is set to however much we actually
2502 	 * retrieved.
2503 	 */
2504 	if ((valsize = sopt->sopt_valsize) < minlen)
2505 		return EINVAL;
2506 	if (valsize > len)
2507 		sopt->sopt_valsize = valsize = len;
2508 
2509 	if (sopt->sopt_td != NULL)
2510 		return (copyin(sopt->sopt_val, buf, valsize));
2511 
2512 	bcopy(sopt->sopt_val, buf, valsize);
2513 	return (0);
2514 }
2515 
2516 /*
2517  * Kernel version of setsockopt(2).
2518  *
2519  * XXX: optlen is size_t, not socklen_t
2520  */
2521 int
2522 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2523     size_t optlen)
2524 {
2525 	struct sockopt sopt;
2526 
2527 	sopt.sopt_level = level;
2528 	sopt.sopt_name = optname;
2529 	sopt.sopt_dir = SOPT_SET;
2530 	sopt.sopt_val = optval;
2531 	sopt.sopt_valsize = optlen;
2532 	sopt.sopt_td = NULL;
2533 	return (sosetopt(so, &sopt));
2534 }
2535 
2536 int
2537 sosetopt(struct socket *so, struct sockopt *sopt)
2538 {
2539 	int	error, optval;
2540 	struct	linger l;
2541 	struct	timeval tv;
2542 	u_long  val;
2543 	uint32_t val32;
2544 #ifdef MAC
2545 	struct mac extmac;
2546 #endif
2547 
2548 	CURVNET_SET(so->so_vnet);
2549 	error = 0;
2550 	if (sopt->sopt_level != SOL_SOCKET) {
2551 		if (so->so_proto->pr_ctloutput != NULL) {
2552 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2553 			CURVNET_RESTORE();
2554 			return (error);
2555 		}
2556 		error = ENOPROTOOPT;
2557 	} else {
2558 		switch (sopt->sopt_name) {
2559 #ifdef INET
2560 		case SO_ACCEPTFILTER:
2561 			error = do_setopt_accept_filter(so, sopt);
2562 			if (error)
2563 				goto bad;
2564 			break;
2565 #endif
2566 		case SO_LINGER:
2567 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2568 			if (error)
2569 				goto bad;
2570 
2571 			SOCK_LOCK(so);
2572 			so->so_linger = l.l_linger;
2573 			if (l.l_onoff)
2574 				so->so_options |= SO_LINGER;
2575 			else
2576 				so->so_options &= ~SO_LINGER;
2577 			SOCK_UNLOCK(so);
2578 			break;
2579 
2580 		case SO_DEBUG:
2581 		case SO_KEEPALIVE:
2582 		case SO_DONTROUTE:
2583 		case SO_USELOOPBACK:
2584 		case SO_BROADCAST:
2585 		case SO_REUSEADDR:
2586 		case SO_REUSEPORT:
2587 		case SO_OOBINLINE:
2588 		case SO_TIMESTAMP:
2589 		case SO_BINTIME:
2590 		case SO_NOSIGPIPE:
2591 		case SO_NO_DDP:
2592 		case SO_NO_OFFLOAD:
2593 			error = sooptcopyin(sopt, &optval, sizeof optval,
2594 			    sizeof optval);
2595 			if (error)
2596 				goto bad;
2597 			SOCK_LOCK(so);
2598 			if (optval)
2599 				so->so_options |= sopt->sopt_name;
2600 			else
2601 				so->so_options &= ~sopt->sopt_name;
2602 			SOCK_UNLOCK(so);
2603 			break;
2604 
2605 		case SO_SETFIB:
2606 			error = sooptcopyin(sopt, &optval, sizeof optval,
2607 			    sizeof optval);
2608 			if (error)
2609 				goto bad;
2610 
2611 			if (optval < 0 || optval >= rt_numfibs) {
2612 				error = EINVAL;
2613 				goto bad;
2614 			}
2615 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2616 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2617 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2618 				so->so_fibnum = optval;
2619 			else
2620 				so->so_fibnum = 0;
2621 			break;
2622 
2623 		case SO_USER_COOKIE:
2624 			error = sooptcopyin(sopt, &val32, sizeof val32,
2625 			    sizeof val32);
2626 			if (error)
2627 				goto bad;
2628 			so->so_user_cookie = val32;
2629 			break;
2630 
2631 		case SO_SNDBUF:
2632 		case SO_RCVBUF:
2633 		case SO_SNDLOWAT:
2634 		case SO_RCVLOWAT:
2635 			error = sooptcopyin(sopt, &optval, sizeof optval,
2636 			    sizeof optval);
2637 			if (error)
2638 				goto bad;
2639 
2640 			/*
2641 			 * Values < 1 make no sense for any of these options,
2642 			 * so disallow them.
2643 			 */
2644 			if (optval < 1) {
2645 				error = EINVAL;
2646 				goto bad;
2647 			}
2648 
2649 			switch (sopt->sopt_name) {
2650 			case SO_SNDBUF:
2651 			case SO_RCVBUF:
2652 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2653 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2654 				    so, curthread) == 0) {
2655 					error = ENOBUFS;
2656 					goto bad;
2657 				}
2658 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2659 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2660 				break;
2661 
2662 			/*
2663 			 * Make sure the low-water is never greater than the
2664 			 * high-water.
2665 			 */
2666 			case SO_SNDLOWAT:
2667 				SOCKBUF_LOCK(&so->so_snd);
2668 				so->so_snd.sb_lowat =
2669 				    (optval > so->so_snd.sb_hiwat) ?
2670 				    so->so_snd.sb_hiwat : optval;
2671 				SOCKBUF_UNLOCK(&so->so_snd);
2672 				break;
2673 			case SO_RCVLOWAT:
2674 				SOCKBUF_LOCK(&so->so_rcv);
2675 				so->so_rcv.sb_lowat =
2676 				    (optval > so->so_rcv.sb_hiwat) ?
2677 				    so->so_rcv.sb_hiwat : optval;
2678 				SOCKBUF_UNLOCK(&so->so_rcv);
2679 				break;
2680 			}
2681 			break;
2682 
2683 		case SO_SNDTIMEO:
2684 		case SO_RCVTIMEO:
2685 #ifdef COMPAT_FREEBSD32
2686 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2687 				struct timeval32 tv32;
2688 
2689 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2690 				    sizeof tv32);
2691 				CP(tv32, tv, tv_sec);
2692 				CP(tv32, tv, tv_usec);
2693 			} else
2694 #endif
2695 				error = sooptcopyin(sopt, &tv, sizeof tv,
2696 				    sizeof tv);
2697 			if (error)
2698 				goto bad;
2699 
2700 			/* assert(hz > 0); */
2701 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2702 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2703 				error = EDOM;
2704 				goto bad;
2705 			}
2706 			/* assert(tick > 0); */
2707 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2708 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2709 			if (val > INT_MAX) {
2710 				error = EDOM;
2711 				goto bad;
2712 			}
2713 			if (val == 0 && tv.tv_usec != 0)
2714 				val = 1;
2715 
2716 			switch (sopt->sopt_name) {
2717 			case SO_SNDTIMEO:
2718 				so->so_snd.sb_timeo = val;
2719 				break;
2720 			case SO_RCVTIMEO:
2721 				so->so_rcv.sb_timeo = val;
2722 				break;
2723 			}
2724 			break;
2725 
2726 		case SO_LABEL:
2727 #ifdef MAC
2728 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2729 			    sizeof extmac);
2730 			if (error)
2731 				goto bad;
2732 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2733 			    so, &extmac);
2734 #else
2735 			error = EOPNOTSUPP;
2736 #endif
2737 			break;
2738 
2739 		default:
2740 			error = ENOPROTOOPT;
2741 			break;
2742 		}
2743 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2744 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2745 	}
2746 bad:
2747 	CURVNET_RESTORE();
2748 	return (error);
2749 }
2750 
2751 /*
2752  * Helper routine for getsockopt.
2753  */
2754 int
2755 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2756 {
2757 	int	error;
2758 	size_t	valsize;
2759 
2760 	error = 0;
2761 
2762 	/*
2763 	 * Documented get behavior is that we always return a value, possibly
2764 	 * truncated to fit in the user's buffer.  Traditional behavior is
2765 	 * that we always tell the user precisely how much we copied, rather
2766 	 * than something useful like the total amount we had available for
2767 	 * her.  Note that this interface is not idempotent; the entire
2768 	 * answer must generated ahead of time.
2769 	 */
2770 	valsize = min(len, sopt->sopt_valsize);
2771 	sopt->sopt_valsize = valsize;
2772 	if (sopt->sopt_val != NULL) {
2773 		if (sopt->sopt_td != NULL)
2774 			error = copyout(buf, sopt->sopt_val, valsize);
2775 		else
2776 			bcopy(buf, sopt->sopt_val, valsize);
2777 	}
2778 	return (error);
2779 }
2780 
2781 int
2782 sogetopt(struct socket *so, struct sockopt *sopt)
2783 {
2784 	int	error, optval;
2785 	struct	linger l;
2786 	struct	timeval tv;
2787 #ifdef MAC
2788 	struct mac extmac;
2789 #endif
2790 
2791 	CURVNET_SET(so->so_vnet);
2792 	error = 0;
2793 	if (sopt->sopt_level != SOL_SOCKET) {
2794 		if (so->so_proto->pr_ctloutput != NULL)
2795 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2796 		else
2797 			error = ENOPROTOOPT;
2798 		CURVNET_RESTORE();
2799 		return (error);
2800 	} else {
2801 		switch (sopt->sopt_name) {
2802 #ifdef INET
2803 		case SO_ACCEPTFILTER:
2804 			error = do_getopt_accept_filter(so, sopt);
2805 			break;
2806 #endif
2807 		case SO_LINGER:
2808 			SOCK_LOCK(so);
2809 			l.l_onoff = so->so_options & SO_LINGER;
2810 			l.l_linger = so->so_linger;
2811 			SOCK_UNLOCK(so);
2812 			error = sooptcopyout(sopt, &l, sizeof l);
2813 			break;
2814 
2815 		case SO_USELOOPBACK:
2816 		case SO_DONTROUTE:
2817 		case SO_DEBUG:
2818 		case SO_KEEPALIVE:
2819 		case SO_REUSEADDR:
2820 		case SO_REUSEPORT:
2821 		case SO_BROADCAST:
2822 		case SO_OOBINLINE:
2823 		case SO_ACCEPTCONN:
2824 		case SO_TIMESTAMP:
2825 		case SO_BINTIME:
2826 		case SO_NOSIGPIPE:
2827 			optval = so->so_options & sopt->sopt_name;
2828 integer:
2829 			error = sooptcopyout(sopt, &optval, sizeof optval);
2830 			break;
2831 
2832 		case SO_TYPE:
2833 			optval = so->so_type;
2834 			goto integer;
2835 
2836 		case SO_PROTOCOL:
2837 			optval = so->so_proto->pr_protocol;
2838 			goto integer;
2839 
2840 		case SO_ERROR:
2841 			SOCK_LOCK(so);
2842 			optval = so->so_error;
2843 			so->so_error = 0;
2844 			SOCK_UNLOCK(so);
2845 			goto integer;
2846 
2847 		case SO_SNDBUF:
2848 			optval = so->so_snd.sb_hiwat;
2849 			goto integer;
2850 
2851 		case SO_RCVBUF:
2852 			optval = so->so_rcv.sb_hiwat;
2853 			goto integer;
2854 
2855 		case SO_SNDLOWAT:
2856 			optval = so->so_snd.sb_lowat;
2857 			goto integer;
2858 
2859 		case SO_RCVLOWAT:
2860 			optval = so->so_rcv.sb_lowat;
2861 			goto integer;
2862 
2863 		case SO_SNDTIMEO:
2864 		case SO_RCVTIMEO:
2865 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2866 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2867 
2868 			tv.tv_sec = optval / hz;
2869 			tv.tv_usec = (optval % hz) * tick;
2870 #ifdef COMPAT_FREEBSD32
2871 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2872 				struct timeval32 tv32;
2873 
2874 				CP(tv, tv32, tv_sec);
2875 				CP(tv, tv32, tv_usec);
2876 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2877 			} else
2878 #endif
2879 				error = sooptcopyout(sopt, &tv, sizeof tv);
2880 			break;
2881 
2882 		case SO_LABEL:
2883 #ifdef MAC
2884 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2885 			    sizeof(extmac));
2886 			if (error)
2887 				goto bad;
2888 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2889 			    so, &extmac);
2890 			if (error)
2891 				goto bad;
2892 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2893 #else
2894 			error = EOPNOTSUPP;
2895 #endif
2896 			break;
2897 
2898 		case SO_PEERLABEL:
2899 #ifdef MAC
2900 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2901 			    sizeof(extmac));
2902 			if (error)
2903 				goto bad;
2904 			error = mac_getsockopt_peerlabel(
2905 			    sopt->sopt_td->td_ucred, so, &extmac);
2906 			if (error)
2907 				goto bad;
2908 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2909 #else
2910 			error = EOPNOTSUPP;
2911 #endif
2912 			break;
2913 
2914 		case SO_LISTENQLIMIT:
2915 			optval = so->so_qlimit;
2916 			goto integer;
2917 
2918 		case SO_LISTENQLEN:
2919 			optval = so->so_qlen;
2920 			goto integer;
2921 
2922 		case SO_LISTENINCQLEN:
2923 			optval = so->so_incqlen;
2924 			goto integer;
2925 
2926 		default:
2927 			error = ENOPROTOOPT;
2928 			break;
2929 		}
2930 	}
2931 #ifdef MAC
2932 bad:
2933 #endif
2934 	CURVNET_RESTORE();
2935 	return (error);
2936 }
2937 
2938 int
2939 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2940 {
2941 	struct mbuf *m, *m_prev;
2942 	int sopt_size = sopt->sopt_valsize;
2943 
2944 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2945 	if (m == NULL)
2946 		return ENOBUFS;
2947 	if (sopt_size > MLEN) {
2948 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
2949 		if ((m->m_flags & M_EXT) == 0) {
2950 			m_free(m);
2951 			return ENOBUFS;
2952 		}
2953 		m->m_len = min(MCLBYTES, sopt_size);
2954 	} else {
2955 		m->m_len = min(MLEN, sopt_size);
2956 	}
2957 	sopt_size -= m->m_len;
2958 	*mp = m;
2959 	m_prev = m;
2960 
2961 	while (sopt_size) {
2962 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2963 		if (m == NULL) {
2964 			m_freem(*mp);
2965 			return ENOBUFS;
2966 		}
2967 		if (sopt_size > MLEN) {
2968 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
2969 			    M_NOWAIT);
2970 			if ((m->m_flags & M_EXT) == 0) {
2971 				m_freem(m);
2972 				m_freem(*mp);
2973 				return ENOBUFS;
2974 			}
2975 			m->m_len = min(MCLBYTES, sopt_size);
2976 		} else {
2977 			m->m_len = min(MLEN, sopt_size);
2978 		}
2979 		sopt_size -= m->m_len;
2980 		m_prev->m_next = m;
2981 		m_prev = m;
2982 	}
2983 	return (0);
2984 }
2985 
2986 int
2987 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2988 {
2989 	struct mbuf *m0 = m;
2990 
2991 	if (sopt->sopt_val == NULL)
2992 		return (0);
2993 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2994 		if (sopt->sopt_td != NULL) {
2995 			int error;
2996 
2997 			error = copyin(sopt->sopt_val, mtod(m, char *),
2998 			    m->m_len);
2999 			if (error != 0) {
3000 				m_freem(m0);
3001 				return(error);
3002 			}
3003 		} else
3004 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3005 		sopt->sopt_valsize -= m->m_len;
3006 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3007 		m = m->m_next;
3008 	}
3009 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3010 		panic("ip6_sooptmcopyin");
3011 	return (0);
3012 }
3013 
3014 int
3015 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3016 {
3017 	struct mbuf *m0 = m;
3018 	size_t valsize = 0;
3019 
3020 	if (sopt->sopt_val == NULL)
3021 		return (0);
3022 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3023 		if (sopt->sopt_td != NULL) {
3024 			int error;
3025 
3026 			error = copyout(mtod(m, char *), sopt->sopt_val,
3027 			    m->m_len);
3028 			if (error != 0) {
3029 				m_freem(m0);
3030 				return(error);
3031 			}
3032 		} else
3033 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3034 		sopt->sopt_valsize -= m->m_len;
3035 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3036 		valsize += m->m_len;
3037 		m = m->m_next;
3038 	}
3039 	if (m != NULL) {
3040 		/* enough soopt buffer should be given from user-land */
3041 		m_freem(m0);
3042 		return(EINVAL);
3043 	}
3044 	sopt->sopt_valsize = valsize;
3045 	return (0);
3046 }
3047 
3048 /*
3049  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3050  * out-of-band data, which will then notify socket consumers.
3051  */
3052 void
3053 sohasoutofband(struct socket *so)
3054 {
3055 
3056 	if (so->so_sigio != NULL)
3057 		pgsigio(&so->so_sigio, SIGURG, 0);
3058 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
3059 }
3060 
3061 int
3062 sopoll(struct socket *so, int events, struct ucred *active_cred,
3063     struct thread *td)
3064 {
3065 
3066 	/*
3067 	 * We do not need to set or assert curvnet as long as everyone uses
3068 	 * sopoll_generic().
3069 	 */
3070 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3071 	    td));
3072 }
3073 
3074 int
3075 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3076     struct thread *td)
3077 {
3078 	int revents = 0;
3079 
3080 	SOCKBUF_LOCK(&so->so_snd);
3081 	SOCKBUF_LOCK(&so->so_rcv);
3082 	if (events & (POLLIN | POLLRDNORM))
3083 		if (soreadabledata(so))
3084 			revents |= events & (POLLIN | POLLRDNORM);
3085 
3086 	if (events & (POLLOUT | POLLWRNORM))
3087 		if (sowriteable(so))
3088 			revents |= events & (POLLOUT | POLLWRNORM);
3089 
3090 	if (events & (POLLPRI | POLLRDBAND))
3091 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3092 			revents |= events & (POLLPRI | POLLRDBAND);
3093 
3094 	if ((events & POLLINIGNEOF) == 0) {
3095 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3096 			revents |= events & (POLLIN | POLLRDNORM);
3097 			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3098 				revents |= POLLHUP;
3099 		}
3100 	}
3101 
3102 	if (revents == 0) {
3103 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3104 			selrecord(td, &so->so_rcv.sb_sel);
3105 			so->so_rcv.sb_flags |= SB_SEL;
3106 		}
3107 
3108 		if (events & (POLLOUT | POLLWRNORM)) {
3109 			selrecord(td, &so->so_snd.sb_sel);
3110 			so->so_snd.sb_flags |= SB_SEL;
3111 		}
3112 	}
3113 
3114 	SOCKBUF_UNLOCK(&so->so_rcv);
3115 	SOCKBUF_UNLOCK(&so->so_snd);
3116 	return (revents);
3117 }
3118 
3119 int
3120 soo_kqfilter(struct file *fp, struct knote *kn)
3121 {
3122 	struct socket *so = kn->kn_fp->f_data;
3123 	struct sockbuf *sb;
3124 
3125 	switch (kn->kn_filter) {
3126 	case EVFILT_READ:
3127 		if (so->so_options & SO_ACCEPTCONN)
3128 			kn->kn_fop = &solisten_filtops;
3129 		else
3130 			kn->kn_fop = &soread_filtops;
3131 		sb = &so->so_rcv;
3132 		break;
3133 	case EVFILT_WRITE:
3134 		kn->kn_fop = &sowrite_filtops;
3135 		sb = &so->so_snd;
3136 		break;
3137 	default:
3138 		return (EINVAL);
3139 	}
3140 
3141 	SOCKBUF_LOCK(sb);
3142 	knlist_add(&sb->sb_sel.si_note, kn, 1);
3143 	sb->sb_flags |= SB_KNOTE;
3144 	SOCKBUF_UNLOCK(sb);
3145 	return (0);
3146 }
3147 
3148 /*
3149  * Some routines that return EOPNOTSUPP for entry points that are not
3150  * supported by a protocol.  Fill in as needed.
3151  */
3152 int
3153 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3154 {
3155 
3156 	return EOPNOTSUPP;
3157 }
3158 
3159 int
3160 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3161 {
3162 
3163 	return EOPNOTSUPP;
3164 }
3165 
3166 int
3167 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3168 {
3169 
3170 	return EOPNOTSUPP;
3171 }
3172 
3173 int
3174 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3175     struct thread *td)
3176 {
3177 
3178 	return EOPNOTSUPP;
3179 }
3180 
3181 int
3182 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3183 {
3184 
3185 	return EOPNOTSUPP;
3186 }
3187 
3188 int
3189 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3190     struct thread *td)
3191 {
3192 
3193 	return EOPNOTSUPP;
3194 }
3195 
3196 int
3197 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3198 {
3199 
3200 	return EOPNOTSUPP;
3201 }
3202 
3203 int
3204 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3205     struct ifnet *ifp, struct thread *td)
3206 {
3207 
3208 	return EOPNOTSUPP;
3209 }
3210 
3211 int
3212 pru_disconnect_notsupp(struct socket *so)
3213 {
3214 
3215 	return EOPNOTSUPP;
3216 }
3217 
3218 int
3219 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3220 {
3221 
3222 	return EOPNOTSUPP;
3223 }
3224 
3225 int
3226 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3227 {
3228 
3229 	return EOPNOTSUPP;
3230 }
3231 
3232 int
3233 pru_rcvd_notsupp(struct socket *so, int flags)
3234 {
3235 
3236 	return EOPNOTSUPP;
3237 }
3238 
3239 int
3240 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3241 {
3242 
3243 	return EOPNOTSUPP;
3244 }
3245 
3246 int
3247 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3248     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3249 {
3250 
3251 	return EOPNOTSUPP;
3252 }
3253 
3254 /*
3255  * This isn't really a ``null'' operation, but it's the default one and
3256  * doesn't do anything destructive.
3257  */
3258 int
3259 pru_sense_null(struct socket *so, struct stat *sb)
3260 {
3261 
3262 	sb->st_blksize = so->so_snd.sb_hiwat;
3263 	return 0;
3264 }
3265 
3266 int
3267 pru_shutdown_notsupp(struct socket *so)
3268 {
3269 
3270 	return EOPNOTSUPP;
3271 }
3272 
3273 int
3274 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3275 {
3276 
3277 	return EOPNOTSUPP;
3278 }
3279 
3280 int
3281 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3282     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3283 {
3284 
3285 	return EOPNOTSUPP;
3286 }
3287 
3288 int
3289 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3290     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3291 {
3292 
3293 	return EOPNOTSUPP;
3294 }
3295 
3296 int
3297 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3298     struct thread *td)
3299 {
3300 
3301 	return EOPNOTSUPP;
3302 }
3303 
3304 static void
3305 filt_sordetach(struct knote *kn)
3306 {
3307 	struct socket *so = kn->kn_fp->f_data;
3308 
3309 	SOCKBUF_LOCK(&so->so_rcv);
3310 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3311 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3312 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3313 	SOCKBUF_UNLOCK(&so->so_rcv);
3314 }
3315 
3316 /*ARGSUSED*/
3317 static int
3318 filt_soread(struct knote *kn, long hint)
3319 {
3320 	struct socket *so;
3321 
3322 	so = kn->kn_fp->f_data;
3323 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3324 
3325 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
3326 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3327 		kn->kn_flags |= EV_EOF;
3328 		kn->kn_fflags = so->so_error;
3329 		return (1);
3330 	} else if (so->so_error)	/* temporary udp error */
3331 		return (1);
3332 	else if (kn->kn_sfflags & NOTE_LOWAT)
3333 		return (kn->kn_data >= kn->kn_sdata);
3334 	else
3335 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
3336 }
3337 
3338 static void
3339 filt_sowdetach(struct knote *kn)
3340 {
3341 	struct socket *so = kn->kn_fp->f_data;
3342 
3343 	SOCKBUF_LOCK(&so->so_snd);
3344 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3345 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3346 		so->so_snd.sb_flags &= ~SB_KNOTE;
3347 	SOCKBUF_UNLOCK(&so->so_snd);
3348 }
3349 
3350 /*ARGSUSED*/
3351 static int
3352 filt_sowrite(struct knote *kn, long hint)
3353 {
3354 	struct socket *so;
3355 
3356 	so = kn->kn_fp->f_data;
3357 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3358 	kn->kn_data = sbspace(&so->so_snd);
3359 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3360 		kn->kn_flags |= EV_EOF;
3361 		kn->kn_fflags = so->so_error;
3362 		return (1);
3363 	} else if (so->so_error)	/* temporary udp error */
3364 		return (1);
3365 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3366 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3367 		return (0);
3368 	else if (kn->kn_sfflags & NOTE_LOWAT)
3369 		return (kn->kn_data >= kn->kn_sdata);
3370 	else
3371 		return (kn->kn_data >= so->so_snd.sb_lowat);
3372 }
3373 
3374 /*ARGSUSED*/
3375 static int
3376 filt_solisten(struct knote *kn, long hint)
3377 {
3378 	struct socket *so = kn->kn_fp->f_data;
3379 
3380 	kn->kn_data = so->so_qlen;
3381 	return (!TAILQ_EMPTY(&so->so_comp));
3382 }
3383 
3384 int
3385 socheckuid(struct socket *so, uid_t uid)
3386 {
3387 
3388 	if (so == NULL)
3389 		return (EPERM);
3390 	if (so->so_cred->cr_uid != uid)
3391 		return (EPERM);
3392 	return (0);
3393 }
3394 
3395 /*
3396  * These functions are used by protocols to notify the socket layer (and its
3397  * consumers) of state changes in the sockets driven by protocol-side events.
3398  */
3399 
3400 /*
3401  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3402  *
3403  * Normal sequence from the active (originating) side is that
3404  * soisconnecting() is called during processing of connect() call, resulting
3405  * in an eventual call to soisconnected() if/when the connection is
3406  * established.  When the connection is torn down soisdisconnecting() is
3407  * called during processing of disconnect() call, and soisdisconnected() is
3408  * called when the connection to the peer is totally severed.  The semantics
3409  * of these routines are such that connectionless protocols can call
3410  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3411  * calls when setting up a ``connection'' takes no time.
3412  *
3413  * From the passive side, a socket is created with two queues of sockets:
3414  * so_incomp for connections in progress and so_comp for connections already
3415  * made and awaiting user acceptance.  As a protocol is preparing incoming
3416  * connections, it creates a socket structure queued on so_incomp by calling
3417  * sonewconn().  When the connection is established, soisconnected() is
3418  * called, and transfers the socket structure to so_comp, making it available
3419  * to accept().
3420  *
3421  * If a socket is closed with sockets on either so_incomp or so_comp, these
3422  * sockets are dropped.
3423  *
3424  * If higher-level protocols are implemented in the kernel, the wakeups done
3425  * here will sometimes cause software-interrupt process scheduling.
3426  */
3427 void
3428 soisconnecting(struct socket *so)
3429 {
3430 
3431 	SOCK_LOCK(so);
3432 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3433 	so->so_state |= SS_ISCONNECTING;
3434 	SOCK_UNLOCK(so);
3435 }
3436 
3437 void
3438 soisconnected(struct socket *so)
3439 {
3440 	struct socket *head;
3441 	int ret;
3442 
3443 restart:
3444 	ACCEPT_LOCK();
3445 	SOCK_LOCK(so);
3446 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3447 	so->so_state |= SS_ISCONNECTED;
3448 	head = so->so_head;
3449 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3450 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3451 			SOCK_UNLOCK(so);
3452 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3453 			head->so_incqlen--;
3454 			so->so_qstate &= ~SQ_INCOMP;
3455 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3456 			head->so_qlen++;
3457 			so->so_qstate |= SQ_COMP;
3458 			ACCEPT_UNLOCK();
3459 			sorwakeup(head);
3460 			wakeup_one(&head->so_timeo);
3461 		} else {
3462 			ACCEPT_UNLOCK();
3463 			soupcall_set(so, SO_RCV,
3464 			    head->so_accf->so_accept_filter->accf_callback,
3465 			    head->so_accf->so_accept_filter_arg);
3466 			so->so_options &= ~SO_ACCEPTFILTER;
3467 			ret = head->so_accf->so_accept_filter->accf_callback(so,
3468 			    head->so_accf->so_accept_filter_arg, M_NOWAIT);
3469 			if (ret == SU_ISCONNECTED)
3470 				soupcall_clear(so, SO_RCV);
3471 			SOCK_UNLOCK(so);
3472 			if (ret == SU_ISCONNECTED)
3473 				goto restart;
3474 		}
3475 		return;
3476 	}
3477 	SOCK_UNLOCK(so);
3478 	ACCEPT_UNLOCK();
3479 	wakeup(&so->so_timeo);
3480 	sorwakeup(so);
3481 	sowwakeup(so);
3482 }
3483 
3484 void
3485 soisdisconnecting(struct socket *so)
3486 {
3487 
3488 	/*
3489 	 * Note: This code assumes that SOCK_LOCK(so) and
3490 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3491 	 */
3492 	SOCKBUF_LOCK(&so->so_rcv);
3493 	so->so_state &= ~SS_ISCONNECTING;
3494 	so->so_state |= SS_ISDISCONNECTING;
3495 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3496 	sorwakeup_locked(so);
3497 	SOCKBUF_LOCK(&so->so_snd);
3498 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3499 	sowwakeup_locked(so);
3500 	wakeup(&so->so_timeo);
3501 }
3502 
3503 void
3504 soisdisconnected(struct socket *so)
3505 {
3506 
3507 	/*
3508 	 * Note: This code assumes that SOCK_LOCK(so) and
3509 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3510 	 */
3511 	SOCKBUF_LOCK(&so->so_rcv);
3512 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3513 	so->so_state |= SS_ISDISCONNECTED;
3514 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3515 	sorwakeup_locked(so);
3516 	SOCKBUF_LOCK(&so->so_snd);
3517 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3518 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3519 	sowwakeup_locked(so);
3520 	wakeup(&so->so_timeo);
3521 }
3522 
3523 /*
3524  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3525  */
3526 struct sockaddr *
3527 sodupsockaddr(const struct sockaddr *sa, int mflags)
3528 {
3529 	struct sockaddr *sa2;
3530 
3531 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3532 	if (sa2)
3533 		bcopy(sa, sa2, sa->sa_len);
3534 	return sa2;
3535 }
3536 
3537 /*
3538  * Register per-socket buffer upcalls.
3539  */
3540 void
3541 soupcall_set(struct socket *so, int which,
3542     int (*func)(struct socket *, void *, int), void *arg)
3543 {
3544 	struct sockbuf *sb;
3545 
3546 	switch (which) {
3547 	case SO_RCV:
3548 		sb = &so->so_rcv;
3549 		break;
3550 	case SO_SND:
3551 		sb = &so->so_snd;
3552 		break;
3553 	default:
3554 		panic("soupcall_set: bad which");
3555 	}
3556 	SOCKBUF_LOCK_ASSERT(sb);
3557 #if 0
3558 	/* XXX: accf_http actually wants to do this on purpose. */
3559 	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3560 #endif
3561 	sb->sb_upcall = func;
3562 	sb->sb_upcallarg = arg;
3563 	sb->sb_flags |= SB_UPCALL;
3564 }
3565 
3566 void
3567 soupcall_clear(struct socket *so, int which)
3568 {
3569 	struct sockbuf *sb;
3570 
3571 	switch (which) {
3572 	case SO_RCV:
3573 		sb = &so->so_rcv;
3574 		break;
3575 	case SO_SND:
3576 		sb = &so->so_snd;
3577 		break;
3578 	default:
3579 		panic("soupcall_clear: bad which");
3580 	}
3581 	SOCKBUF_LOCK_ASSERT(sb);
3582 	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3583 	sb->sb_upcall = NULL;
3584 	sb->sb_upcallarg = NULL;
3585 	sb->sb_flags &= ~SB_UPCALL;
3586 }
3587 
3588 /*
3589  * Create an external-format (``xsocket'') structure using the information in
3590  * the kernel-format socket structure pointed to by so.  This is done to
3591  * reduce the spew of irrelevant information over this interface, to isolate
3592  * user code from changes in the kernel structure, and potentially to provide
3593  * information-hiding if we decide that some of this information should be
3594  * hidden from users.
3595  */
3596 void
3597 sotoxsocket(struct socket *so, struct xsocket *xso)
3598 {
3599 
3600 	xso->xso_len = sizeof *xso;
3601 	xso->xso_so = so;
3602 	xso->so_type = so->so_type;
3603 	xso->so_options = so->so_options;
3604 	xso->so_linger = so->so_linger;
3605 	xso->so_state = so->so_state;
3606 	xso->so_pcb = so->so_pcb;
3607 	xso->xso_protocol = so->so_proto->pr_protocol;
3608 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3609 	xso->so_qlen = so->so_qlen;
3610 	xso->so_incqlen = so->so_incqlen;
3611 	xso->so_qlimit = so->so_qlimit;
3612 	xso->so_timeo = so->so_timeo;
3613 	xso->so_error = so->so_error;
3614 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3615 	xso->so_oobmark = so->so_oobmark;
3616 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3617 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3618 	xso->so_uid = so->so_cred->cr_uid;
3619 }
3620 
3621 
3622 /*
3623  * Socket accessor functions to provide external consumers with
3624  * a safe interface to socket state
3625  *
3626  */
3627 
3628 void
3629 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *),
3630     void *arg)
3631 {
3632 
3633 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3634 		func(so, arg);
3635 }
3636 
3637 struct sockbuf *
3638 so_sockbuf_rcv(struct socket *so)
3639 {
3640 
3641 	return (&so->so_rcv);
3642 }
3643 
3644 struct sockbuf *
3645 so_sockbuf_snd(struct socket *so)
3646 {
3647 
3648 	return (&so->so_snd);
3649 }
3650 
3651 int
3652 so_state_get(const struct socket *so)
3653 {
3654 
3655 	return (so->so_state);
3656 }
3657 
3658 void
3659 so_state_set(struct socket *so, int val)
3660 {
3661 
3662 	so->so_state = val;
3663 }
3664 
3665 int
3666 so_options_get(const struct socket *so)
3667 {
3668 
3669 	return (so->so_options);
3670 }
3671 
3672 void
3673 so_options_set(struct socket *so, int val)
3674 {
3675 
3676 	so->so_options = val;
3677 }
3678 
3679 int
3680 so_error_get(const struct socket *so)
3681 {
3682 
3683 	return (so->so_error);
3684 }
3685 
3686 void
3687 so_error_set(struct socket *so, int val)
3688 {
3689 
3690 	so->so_error = val;
3691 }
3692 
3693 int
3694 so_linger_get(const struct socket *so)
3695 {
3696 
3697 	return (so->so_linger);
3698 }
3699 
3700 void
3701 so_linger_set(struct socket *so, int val)
3702 {
3703 
3704 	so->so_linger = val;
3705 }
3706 
3707 struct protosw *
3708 so_protosw_get(const struct socket *so)
3709 {
3710 
3711 	return (so->so_proto);
3712 }
3713 
3714 void
3715 so_protosw_set(struct socket *so, struct protosw *val)
3716 {
3717 
3718 	so->so_proto = val;
3719 }
3720 
3721 void
3722 so_sorwakeup(struct socket *so)
3723 {
3724 
3725 	sorwakeup(so);
3726 }
3727 
3728 void
3729 so_sowwakeup(struct socket *so)
3730 {
3731 
3732 	sowwakeup(so);
3733 }
3734 
3735 void
3736 so_sorwakeup_locked(struct socket *so)
3737 {
3738 
3739 	sorwakeup_locked(so);
3740 }
3741 
3742 void
3743 so_sowwakeup_locked(struct socket *so)
3744 {
3745 
3746 	sowwakeup_locked(so);
3747 }
3748 
3749 void
3750 so_lock(struct socket *so)
3751 {
3752 
3753 	SOCK_LOCK(so);
3754 }
3755 
3756 void
3757 so_unlock(struct socket *so)
3758 {
3759 
3760 	SOCK_UNLOCK(so);
3761 }
3762