xref: /freebsd/sys/kern/uipc_socket.c (revision cf4c5a533126ca1ddb1f070af73f8f53b9e77fd4)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_inet6.h"
102 #include "opt_mac.h"
103 #include "opt_zero.h"
104 #include "opt_compat.h"
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/fcntl.h>
109 #include <sys/limits.h>
110 #include <sys/lock.h>
111 #include <sys/mac.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/mutex.h>
115 #include <sys/domain.h>
116 #include <sys/file.h>			/* for struct knote */
117 #include <sys/kernel.h>
118 #include <sys/event.h>
119 #include <sys/eventhandler.h>
120 #include <sys/poll.h>
121 #include <sys/proc.h>
122 #include <sys/protosw.h>
123 #include <sys/socket.h>
124 #include <sys/socketvar.h>
125 #include <sys/resourcevar.h>
126 #include <net/route.h>
127 #include <sys/signalvar.h>
128 #include <sys/stat.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131 #include <sys/uio.h>
132 #include <sys/jail.h>
133 #include <sys/vimage.h>
134 
135 #include <security/mac/mac_framework.h>
136 
137 #include <vm/uma.h>
138 
139 #ifdef COMPAT_IA32
140 #include <sys/mount.h>
141 #include <sys/sysent.h>
142 #include <compat/freebsd32/freebsd32.h>
143 #endif
144 
145 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
146 		    int flags);
147 
148 static void	filt_sordetach(struct knote *kn);
149 static int	filt_soread(struct knote *kn, long hint);
150 static void	filt_sowdetach(struct knote *kn);
151 static int	filt_sowrite(struct knote *kn, long hint);
152 static int	filt_solisten(struct knote *kn, long hint);
153 
154 static struct filterops solisten_filtops =
155 	{ 1, NULL, filt_sordetach, filt_solisten };
156 static struct filterops soread_filtops =
157 	{ 1, NULL, filt_sordetach, filt_soread };
158 static struct filterops sowrite_filtops =
159 	{ 1, NULL, filt_sowdetach, filt_sowrite };
160 
161 uma_zone_t socket_zone;
162 so_gen_t	so_gencnt;	/* generation count for sockets */
163 
164 int	maxsockets;
165 
166 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
167 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
168 
169 static int somaxconn = SOMAXCONN;
170 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
171 /* XXX: we dont have SYSCTL_USHORT */
172 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
173     0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
174     "queue size");
175 static int numopensockets;
176 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
177     &numopensockets, 0, "Number of open sockets");
178 #ifdef ZERO_COPY_SOCKETS
179 /* These aren't static because they're used in other files. */
180 int so_zero_copy_send = 1;
181 int so_zero_copy_receive = 1;
182 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
183     "Zero copy controls");
184 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
185     &so_zero_copy_receive, 0, "Enable zero copy receive");
186 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
187     &so_zero_copy_send, 0, "Enable zero copy send");
188 #endif /* ZERO_COPY_SOCKETS */
189 
190 /*
191  * accept_mtx locks down per-socket fields relating to accept queues.  See
192  * socketvar.h for an annotation of the protected fields of struct socket.
193  */
194 struct mtx accept_mtx;
195 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
196 
197 /*
198  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
199  * so_gencnt field.
200  */
201 static struct mtx so_global_mtx;
202 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
203 
204 /*
205  * General IPC sysctl name space, used by sockets and a variety of other IPC
206  * types.
207  */
208 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
209 
210 /*
211  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
212  * of the change so that they can update their dependent limits as required.
213  */
214 static int
215 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
216 {
217 	int error, newmaxsockets;
218 
219 	newmaxsockets = maxsockets;
220 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
221 	if (error == 0 && req->newptr) {
222 		if (newmaxsockets > maxsockets) {
223 			maxsockets = newmaxsockets;
224 			if (maxsockets > ((maxfiles / 4) * 3)) {
225 				maxfiles = (maxsockets * 5) / 4;
226 				maxfilesperproc = (maxfiles * 9) / 10;
227 			}
228 			EVENTHANDLER_INVOKE(maxsockets_change);
229 		} else
230 			error = EINVAL;
231 	}
232 	return (error);
233 }
234 
235 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
236     &maxsockets, 0, sysctl_maxsockets, "IU",
237     "Maximum number of sockets avaliable");
238 
239 /*
240  * Initialise maxsockets.  This SYSINIT must be run after
241  * tunable_mbinit().
242  */
243 static void
244 init_maxsockets(void *ignored)
245 {
246 
247 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
248 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
249 }
250 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
251 
252 /*
253  * Socket operation routines.  These routines are called by the routines in
254  * sys_socket.c or from a system process, and implement the semantics of
255  * socket operations by switching out to the protocol specific routines.
256  */
257 
258 /*
259  * Get a socket structure from our zone, and initialize it.  Note that it
260  * would probably be better to allocate socket and PCB at the same time, but
261  * I'm not convinced that all the protocols can be easily modified to do
262  * this.
263  *
264  * soalloc() returns a socket with a ref count of 0.
265  */
266 static struct socket *
267 soalloc(struct vnet *vnet)
268 {
269 	struct socket *so;
270 
271 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
272 	if (so == NULL)
273 		return (NULL);
274 #ifdef MAC
275 	if (mac_socket_init(so, M_NOWAIT) != 0) {
276 		uma_zfree(socket_zone, so);
277 		return (NULL);
278 	}
279 #endif
280 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
281 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
282 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
283 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
284 	TAILQ_INIT(&so->so_aiojobq);
285 	mtx_lock(&so_global_mtx);
286 	so->so_gencnt = ++so_gencnt;
287 	++numopensockets;
288 #ifdef VIMAGE
289 	++vnet->sockcnt;	/* Locked with so_global_mtx. */
290 	so->so_vnet = vnet;
291 #endif
292 	mtx_unlock(&so_global_mtx);
293 	return (so);
294 }
295 
296 /*
297  * Free the storage associated with a socket at the socket layer, tear down
298  * locks, labels, etc.  All protocol state is assumed already to have been
299  * torn down (and possibly never set up) by the caller.
300  */
301 static void
302 sodealloc(struct socket *so)
303 {
304 
305 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
306 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
307 
308 	mtx_lock(&so_global_mtx);
309 	so->so_gencnt = ++so_gencnt;
310 	--numopensockets;	/* Could be below, but faster here. */
311 #ifdef VIMAGE
312 	--so->so_vnet->sockcnt;
313 #endif
314 	mtx_unlock(&so_global_mtx);
315 	if (so->so_rcv.sb_hiwat)
316 		(void)chgsbsize(so->so_cred->cr_uidinfo,
317 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
318 	if (so->so_snd.sb_hiwat)
319 		(void)chgsbsize(so->so_cred->cr_uidinfo,
320 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
321 #ifdef INET
322 	/* remove acccept filter if one is present. */
323 	if (so->so_accf != NULL)
324 		do_setopt_accept_filter(so, NULL);
325 #endif
326 #ifdef MAC
327 	mac_socket_destroy(so);
328 #endif
329 	crfree(so->so_cred);
330 	sx_destroy(&so->so_snd.sb_sx);
331 	sx_destroy(&so->so_rcv.sb_sx);
332 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
333 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
334 	uma_zfree(socket_zone, so);
335 }
336 
337 /*
338  * socreate returns a socket with a ref count of 1.  The socket should be
339  * closed with soclose().
340  */
341 int
342 socreate(int dom, struct socket **aso, int type, int proto,
343     struct ucred *cred, struct thread *td)
344 {
345 	struct protosw *prp;
346 	struct socket *so;
347 	int error;
348 
349 	if (proto)
350 		prp = pffindproto(dom, proto, type);
351 	else
352 		prp = pffindtype(dom, type);
353 
354 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
355 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
356 		return (EPROTONOSUPPORT);
357 
358 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
359 		return (EPROTONOSUPPORT);
360 
361 	if (prp->pr_type != type)
362 		return (EPROTOTYPE);
363 	so = soalloc(TD_TO_VNET(td));
364 	if (so == NULL)
365 		return (ENOBUFS);
366 
367 	TAILQ_INIT(&so->so_incomp);
368 	TAILQ_INIT(&so->so_comp);
369 	so->so_type = type;
370 	so->so_cred = crhold(cred);
371 	if ((prp->pr_domain->dom_family == PF_INET) ||
372 	    (prp->pr_domain->dom_family == PF_ROUTE))
373 		so->so_fibnum = td->td_proc->p_fibnum;
374 	else
375 		so->so_fibnum = 0;
376 	so->so_proto = prp;
377 #ifdef MAC
378 	mac_socket_create(cred, so);
379 #endif
380 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
381 	    NULL, NULL, NULL);
382 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
383 	    NULL, NULL, NULL);
384 	so->so_count = 1;
385 	/*
386 	 * Auto-sizing of socket buffers is managed by the protocols and
387 	 * the appropriate flags must be set in the pru_attach function.
388 	 */
389 	CURVNET_SET(so->so_vnet);
390 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
391 	CURVNET_RESTORE();
392 	if (error) {
393 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
394 		    so->so_count));
395 		so->so_count = 0;
396 		sodealloc(so);
397 		return (error);
398 	}
399 	*aso = so;
400 	return (0);
401 }
402 
403 #ifdef REGRESSION
404 static int regression_sonewconn_earlytest = 1;
405 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
406     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
407 #endif
408 
409 /*
410  * When an attempt at a new connection is noted on a socket which accepts
411  * connections, sonewconn is called.  If the connection is possible (subject
412  * to space constraints, etc.) then we allocate a new structure, propoerly
413  * linked into the data structure of the original socket, and return this.
414  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
415  *
416  * Note: the ref count on the socket is 0 on return.
417  */
418 struct socket *
419 sonewconn(struct socket *head, int connstatus)
420 {
421 	struct socket *so;
422 	int over;
423 
424 	ACCEPT_LOCK();
425 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
426 	ACCEPT_UNLOCK();
427 #ifdef REGRESSION
428 	if (regression_sonewconn_earlytest && over)
429 #else
430 	if (over)
431 #endif
432 		return (NULL);
433 	VNET_ASSERT(head->so_vnet);
434 	so = soalloc(head->so_vnet);
435 	if (so == NULL)
436 		return (NULL);
437 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
438 		connstatus = 0;
439 	so->so_head = head;
440 	so->so_type = head->so_type;
441 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
442 	so->so_linger = head->so_linger;
443 	so->so_state = head->so_state | SS_NOFDREF;
444 	so->so_proto = head->so_proto;
445 	so->so_cred = crhold(head->so_cred);
446 #ifdef MAC
447 	SOCK_LOCK(head);
448 	mac_socket_newconn(head, so);
449 	SOCK_UNLOCK(head);
450 #endif
451 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
452 	    NULL, NULL, NULL);
453 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
454 	    NULL, NULL, NULL);
455 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
456 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
457 		sodealloc(so);
458 		return (NULL);
459 	}
460 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
461 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
462 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
463 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
464 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
465 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
466 	so->so_state |= connstatus;
467 	ACCEPT_LOCK();
468 	if (connstatus) {
469 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
470 		so->so_qstate |= SQ_COMP;
471 		head->so_qlen++;
472 	} else {
473 		/*
474 		 * Keep removing sockets from the head until there's room for
475 		 * us to insert on the tail.  In pre-locking revisions, this
476 		 * was a simple if(), but as we could be racing with other
477 		 * threads and soabort() requires dropping locks, we must
478 		 * loop waiting for the condition to be true.
479 		 */
480 		while (head->so_incqlen > head->so_qlimit) {
481 			struct socket *sp;
482 			sp = TAILQ_FIRST(&head->so_incomp);
483 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
484 			head->so_incqlen--;
485 			sp->so_qstate &= ~SQ_INCOMP;
486 			sp->so_head = NULL;
487 			ACCEPT_UNLOCK();
488 			soabort(sp);
489 			ACCEPT_LOCK();
490 		}
491 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
492 		so->so_qstate |= SQ_INCOMP;
493 		head->so_incqlen++;
494 	}
495 	ACCEPT_UNLOCK();
496 	if (connstatus) {
497 		sorwakeup(head);
498 		wakeup_one(&head->so_timeo);
499 	}
500 	return (so);
501 }
502 
503 int
504 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
505 {
506 	int error;
507 
508 	CURVNET_SET(so->so_vnet);
509 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
510 	CURVNET_RESTORE();
511 	return error;
512 }
513 
514 /*
515  * solisten() transitions a socket from a non-listening state to a listening
516  * state, but can also be used to update the listen queue depth on an
517  * existing listen socket.  The protocol will call back into the sockets
518  * layer using solisten_proto_check() and solisten_proto() to check and set
519  * socket-layer listen state.  Call backs are used so that the protocol can
520  * acquire both protocol and socket layer locks in whatever order is required
521  * by the protocol.
522  *
523  * Protocol implementors are advised to hold the socket lock across the
524  * socket-layer test and set to avoid races at the socket layer.
525  */
526 int
527 solisten(struct socket *so, int backlog, struct thread *td)
528 {
529 
530 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
531 }
532 
533 int
534 solisten_proto_check(struct socket *so)
535 {
536 
537 	SOCK_LOCK_ASSERT(so);
538 
539 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
540 	    SS_ISDISCONNECTING))
541 		return (EINVAL);
542 	return (0);
543 }
544 
545 void
546 solisten_proto(struct socket *so, int backlog)
547 {
548 
549 	SOCK_LOCK_ASSERT(so);
550 
551 	if (backlog < 0 || backlog > somaxconn)
552 		backlog = somaxconn;
553 	so->so_qlimit = backlog;
554 	so->so_options |= SO_ACCEPTCONN;
555 }
556 
557 /*
558  * Attempt to free a socket.  This should really be sotryfree().
559  *
560  * sofree() will succeed if:
561  *
562  * - There are no outstanding file descriptor references or related consumers
563  *   (so_count == 0).
564  *
565  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
566  *
567  * - The protocol does not have an outstanding strong reference on the socket
568  *   (SS_PROTOREF).
569  *
570  * - The socket is not in a completed connection queue, so a process has been
571  *   notified that it is present.  If it is removed, the user process may
572  *   block in accept() despite select() saying the socket was ready.
573  *
574  * Otherwise, it will quietly abort so that a future call to sofree(), when
575  * conditions are right, can succeed.
576  */
577 void
578 sofree(struct socket *so)
579 {
580 	struct protosw *pr = so->so_proto;
581 	struct socket *head;
582 
583 	ACCEPT_LOCK_ASSERT();
584 	SOCK_LOCK_ASSERT(so);
585 
586 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
587 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
588 		SOCK_UNLOCK(so);
589 		ACCEPT_UNLOCK();
590 		return;
591 	}
592 
593 	head = so->so_head;
594 	if (head != NULL) {
595 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
596 		    (so->so_qstate & SQ_INCOMP) != 0,
597 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
598 		    "SQ_INCOMP"));
599 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
600 		    (so->so_qstate & SQ_INCOMP) == 0,
601 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
602 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
603 		head->so_incqlen--;
604 		so->so_qstate &= ~SQ_INCOMP;
605 		so->so_head = NULL;
606 	}
607 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
608 	    (so->so_qstate & SQ_INCOMP) == 0,
609 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
610 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
611 	if (so->so_options & SO_ACCEPTCONN) {
612 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
613 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
614 	}
615 	SOCK_UNLOCK(so);
616 	ACCEPT_UNLOCK();
617 
618 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
619 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
620 	if (pr->pr_usrreqs->pru_detach != NULL)
621 		(*pr->pr_usrreqs->pru_detach)(so);
622 
623 	/*
624 	 * From this point on, we assume that no other references to this
625 	 * socket exist anywhere else in the stack.  Therefore, no locks need
626 	 * to be acquired or held.
627 	 *
628 	 * We used to do a lot of socket buffer and socket locking here, as
629 	 * well as invoke sorflush() and perform wakeups.  The direct call to
630 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
631 	 * necessary from sorflush().
632 	 *
633 	 * Notice that the socket buffer and kqueue state are torn down
634 	 * before calling pru_detach.  This means that protocols shold not
635 	 * assume they can perform socket wakeups, etc, in their detach code.
636 	 */
637 	sbdestroy(&so->so_snd, so);
638 	sbdestroy(&so->so_rcv, so);
639 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
640 	knlist_destroy(&so->so_snd.sb_sel.si_note);
641 	sodealloc(so);
642 }
643 
644 /*
645  * Close a socket on last file table reference removal.  Initiate disconnect
646  * if connected.  Free socket when disconnect complete.
647  *
648  * This function will sorele() the socket.  Note that soclose() may be called
649  * prior to the ref count reaching zero.  The actual socket structure will
650  * not be freed until the ref count reaches zero.
651  */
652 int
653 soclose(struct socket *so)
654 {
655 	int error = 0;
656 
657 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
658 
659 	CURVNET_SET(so->so_vnet);
660 	funsetown(&so->so_sigio);
661 	if (so->so_state & SS_ISCONNECTED) {
662 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
663 			error = sodisconnect(so);
664 			if (error)
665 				goto drop;
666 		}
667 		if (so->so_options & SO_LINGER) {
668 			if ((so->so_state & SS_ISDISCONNECTING) &&
669 			    (so->so_state & SS_NBIO))
670 				goto drop;
671 			while (so->so_state & SS_ISCONNECTED) {
672 				error = tsleep(&so->so_timeo,
673 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
674 				if (error)
675 					break;
676 			}
677 		}
678 	}
679 
680 drop:
681 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
682 		(*so->so_proto->pr_usrreqs->pru_close)(so);
683 	if (so->so_options & SO_ACCEPTCONN) {
684 		struct socket *sp;
685 		ACCEPT_LOCK();
686 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
687 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
688 			so->so_incqlen--;
689 			sp->so_qstate &= ~SQ_INCOMP;
690 			sp->so_head = NULL;
691 			ACCEPT_UNLOCK();
692 			soabort(sp);
693 			ACCEPT_LOCK();
694 		}
695 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
696 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
697 			so->so_qlen--;
698 			sp->so_qstate &= ~SQ_COMP;
699 			sp->so_head = NULL;
700 			ACCEPT_UNLOCK();
701 			soabort(sp);
702 			ACCEPT_LOCK();
703 		}
704 		ACCEPT_UNLOCK();
705 	}
706 	ACCEPT_LOCK();
707 	SOCK_LOCK(so);
708 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
709 	so->so_state |= SS_NOFDREF;
710 	sorele(so);
711 	CURVNET_RESTORE();
712 	return (error);
713 }
714 
715 /*
716  * soabort() is used to abruptly tear down a connection, such as when a
717  * resource limit is reached (listen queue depth exceeded), or if a listen
718  * socket is closed while there are sockets waiting to be accepted.
719  *
720  * This interface is tricky, because it is called on an unreferenced socket,
721  * and must be called only by a thread that has actually removed the socket
722  * from the listen queue it was on, or races with other threads are risked.
723  *
724  * This interface will call into the protocol code, so must not be called
725  * with any socket locks held.  Protocols do call it while holding their own
726  * recursible protocol mutexes, but this is something that should be subject
727  * to review in the future.
728  */
729 void
730 soabort(struct socket *so)
731 {
732 
733 	/*
734 	 * In as much as is possible, assert that no references to this
735 	 * socket are held.  This is not quite the same as asserting that the
736 	 * current thread is responsible for arranging for no references, but
737 	 * is as close as we can get for now.
738 	 */
739 	KASSERT(so->so_count == 0, ("soabort: so_count"));
740 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
741 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
742 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
743 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
744 
745 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
746 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
747 	ACCEPT_LOCK();
748 	SOCK_LOCK(so);
749 	sofree(so);
750 }
751 
752 int
753 soaccept(struct socket *so, struct sockaddr **nam)
754 {
755 	int error;
756 
757 	SOCK_LOCK(so);
758 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
759 	so->so_state &= ~SS_NOFDREF;
760 	SOCK_UNLOCK(so);
761 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
762 	return (error);
763 }
764 
765 int
766 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
767 {
768 	int error;
769 
770 	if (so->so_options & SO_ACCEPTCONN)
771 		return (EOPNOTSUPP);
772 	/*
773 	 * If protocol is connection-based, can only connect once.
774 	 * Otherwise, if connected, try to disconnect first.  This allows
775 	 * user to disconnect by connecting to, e.g., a null address.
776 	 */
777 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
778 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
779 	    (error = sodisconnect(so)))) {
780 		error = EISCONN;
781 	} else {
782 		/*
783 		 * Prevent accumulated error from previous connection from
784 		 * biting us.
785 		 */
786 		so->so_error = 0;
787 		CURVNET_SET(so->so_vnet);
788 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
789 		CURVNET_RESTORE();
790 	}
791 
792 	return (error);
793 }
794 
795 int
796 soconnect2(struct socket *so1, struct socket *so2)
797 {
798 
799 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
800 }
801 
802 int
803 sodisconnect(struct socket *so)
804 {
805 	int error;
806 
807 	if ((so->so_state & SS_ISCONNECTED) == 0)
808 		return (ENOTCONN);
809 	if (so->so_state & SS_ISDISCONNECTING)
810 		return (EALREADY);
811 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
812 	return (error);
813 }
814 
815 #ifdef ZERO_COPY_SOCKETS
816 struct so_zerocopy_stats{
817 	int size_ok;
818 	int align_ok;
819 	int found_ifp;
820 };
821 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
822 #include <netinet/in.h>
823 #include <net/route.h>
824 #include <netinet/in_pcb.h>
825 #include <vm/vm.h>
826 #include <vm/vm_page.h>
827 #include <vm/vm_object.h>
828 
829 /*
830  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
831  * sosend_dgram() and sosend_generic() use m_uiotombuf().
832  *
833  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
834  * all of the data referenced by the uio.  If desired, it uses zero-copy.
835  * *space will be updated to reflect data copied in.
836  *
837  * NB: If atomic I/O is requested, the caller must already have checked that
838  * space can hold resid bytes.
839  *
840  * NB: In the event of an error, the caller may need to free the partial
841  * chain pointed to by *mpp.  The contents of both *uio and *space may be
842  * modified even in the case of an error.
843  */
844 static int
845 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
846     int flags)
847 {
848 	struct mbuf *m, **mp, *top;
849 	long len, resid;
850 	int error;
851 #ifdef ZERO_COPY_SOCKETS
852 	int cow_send;
853 #endif
854 
855 	*retmp = top = NULL;
856 	mp = &top;
857 	len = 0;
858 	resid = uio->uio_resid;
859 	error = 0;
860 	do {
861 #ifdef ZERO_COPY_SOCKETS
862 		cow_send = 0;
863 #endif /* ZERO_COPY_SOCKETS */
864 		if (resid >= MINCLSIZE) {
865 #ifdef ZERO_COPY_SOCKETS
866 			if (top == NULL) {
867 				m = m_gethdr(M_WAITOK, MT_DATA);
868 				m->m_pkthdr.len = 0;
869 				m->m_pkthdr.rcvif = NULL;
870 			} else
871 				m = m_get(M_WAITOK, MT_DATA);
872 			if (so_zero_copy_send &&
873 			    resid>=PAGE_SIZE &&
874 			    *space>=PAGE_SIZE &&
875 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
876 				so_zerocp_stats.size_ok++;
877 				so_zerocp_stats.align_ok++;
878 				cow_send = socow_setup(m, uio);
879 				len = cow_send;
880 			}
881 			if (!cow_send) {
882 				m_clget(m, M_WAITOK);
883 				len = min(min(MCLBYTES, resid), *space);
884 			}
885 #else /* ZERO_COPY_SOCKETS */
886 			if (top == NULL) {
887 				m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
888 				m->m_pkthdr.len = 0;
889 				m->m_pkthdr.rcvif = NULL;
890 			} else
891 				m = m_getcl(M_WAIT, MT_DATA, 0);
892 			len = min(min(MCLBYTES, resid), *space);
893 #endif /* ZERO_COPY_SOCKETS */
894 		} else {
895 			if (top == NULL) {
896 				m = m_gethdr(M_WAIT, MT_DATA);
897 				m->m_pkthdr.len = 0;
898 				m->m_pkthdr.rcvif = NULL;
899 
900 				len = min(min(MHLEN, resid), *space);
901 				/*
902 				 * For datagram protocols, leave room
903 				 * for protocol headers in first mbuf.
904 				 */
905 				if (atomic && m && len < MHLEN)
906 					MH_ALIGN(m, len);
907 			} else {
908 				m = m_get(M_WAIT, MT_DATA);
909 				len = min(min(MLEN, resid), *space);
910 			}
911 		}
912 		if (m == NULL) {
913 			error = ENOBUFS;
914 			goto out;
915 		}
916 
917 		*space -= len;
918 #ifdef ZERO_COPY_SOCKETS
919 		if (cow_send)
920 			error = 0;
921 		else
922 #endif /* ZERO_COPY_SOCKETS */
923 		error = uiomove(mtod(m, void *), (int)len, uio);
924 		resid = uio->uio_resid;
925 		m->m_len = len;
926 		*mp = m;
927 		top->m_pkthdr.len += len;
928 		if (error)
929 			goto out;
930 		mp = &m->m_next;
931 		if (resid <= 0) {
932 			if (flags & MSG_EOR)
933 				top->m_flags |= M_EOR;
934 			break;
935 		}
936 	} while (*space > 0 && atomic);
937 out:
938 	*retmp = top;
939 	return (error);
940 }
941 #endif /*ZERO_COPY_SOCKETS*/
942 
943 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
944 
945 int
946 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
947     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
948 {
949 	long space, resid;
950 	int clen = 0, error, dontroute;
951 #ifdef ZERO_COPY_SOCKETS
952 	int atomic = sosendallatonce(so) || top;
953 #endif
954 
955 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
956 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
957 	    ("sodgram_send: !PR_ATOMIC"));
958 
959 	if (uio != NULL)
960 		resid = uio->uio_resid;
961 	else
962 		resid = top->m_pkthdr.len;
963 	/*
964 	 * In theory resid should be unsigned.  However, space must be
965 	 * signed, as it might be less than 0 if we over-committed, and we
966 	 * must use a signed comparison of space and resid.  On the other
967 	 * hand, a negative resid causes us to loop sending 0-length
968 	 * segments to the protocol.
969 	 *
970 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
971 	 * type sockets since that's an error.
972 	 */
973 	if (resid < 0) {
974 		error = EINVAL;
975 		goto out;
976 	}
977 
978 	dontroute =
979 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
980 	if (td != NULL)
981 		td->td_ru.ru_msgsnd++;
982 	if (control != NULL)
983 		clen = control->m_len;
984 
985 	SOCKBUF_LOCK(&so->so_snd);
986 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
987 		SOCKBUF_UNLOCK(&so->so_snd);
988 		error = EPIPE;
989 		goto out;
990 	}
991 	if (so->so_error) {
992 		error = so->so_error;
993 		so->so_error = 0;
994 		SOCKBUF_UNLOCK(&so->so_snd);
995 		goto out;
996 	}
997 	if ((so->so_state & SS_ISCONNECTED) == 0) {
998 		/*
999 		 * `sendto' and `sendmsg' is allowed on a connection-based
1000 		 * socket if it supports implied connect.  Return ENOTCONN if
1001 		 * not connected and no address is supplied.
1002 		 */
1003 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1004 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1005 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1006 			    !(resid == 0 && clen != 0)) {
1007 				SOCKBUF_UNLOCK(&so->so_snd);
1008 				error = ENOTCONN;
1009 				goto out;
1010 			}
1011 		} else if (addr == NULL) {
1012 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1013 				error = ENOTCONN;
1014 			else
1015 				error = EDESTADDRREQ;
1016 			SOCKBUF_UNLOCK(&so->so_snd);
1017 			goto out;
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1023 	 * problem and need fixing.
1024 	 */
1025 	space = sbspace(&so->so_snd);
1026 	if (flags & MSG_OOB)
1027 		space += 1024;
1028 	space -= clen;
1029 	SOCKBUF_UNLOCK(&so->so_snd);
1030 	if (resid > space) {
1031 		error = EMSGSIZE;
1032 		goto out;
1033 	}
1034 	if (uio == NULL) {
1035 		resid = 0;
1036 		if (flags & MSG_EOR)
1037 			top->m_flags |= M_EOR;
1038 	} else {
1039 #ifdef ZERO_COPY_SOCKETS
1040 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1041 		if (error)
1042 			goto out;
1043 #else
1044 		/*
1045 		 * Copy the data from userland into a mbuf chain.
1046 		 * If no data is to be copied in, a single empty mbuf
1047 		 * is returned.
1048 		 */
1049 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1050 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1051 		if (top == NULL) {
1052 			error = EFAULT;	/* only possible error */
1053 			goto out;
1054 		}
1055 		space -= resid - uio->uio_resid;
1056 #endif
1057 		resid = uio->uio_resid;
1058 	}
1059 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1060 	/*
1061 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1062 	 * than with.
1063 	 */
1064 	if (dontroute) {
1065 		SOCK_LOCK(so);
1066 		so->so_options |= SO_DONTROUTE;
1067 		SOCK_UNLOCK(so);
1068 	}
1069 	/*
1070 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1071 	 * of date.  We could have recieved a reset packet in an interrupt or
1072 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1073 	 * probably recheck again inside the locking protection here, but
1074 	 * there are probably other places that this also happens.  We must
1075 	 * rethink this.
1076 	 */
1077 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1078 	    (flags & MSG_OOB) ? PRUS_OOB :
1079 	/*
1080 	 * If the user set MSG_EOF, the protocol understands this flag and
1081 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1082 	 */
1083 	    ((flags & MSG_EOF) &&
1084 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1085 	     (resid <= 0)) ?
1086 		PRUS_EOF :
1087 		/* If there is more to send set PRUS_MORETOCOME */
1088 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1089 		top, addr, control, td);
1090 	if (dontroute) {
1091 		SOCK_LOCK(so);
1092 		so->so_options &= ~SO_DONTROUTE;
1093 		SOCK_UNLOCK(so);
1094 	}
1095 	clen = 0;
1096 	control = NULL;
1097 	top = NULL;
1098 out:
1099 	if (top != NULL)
1100 		m_freem(top);
1101 	if (control != NULL)
1102 		m_freem(control);
1103 	return (error);
1104 }
1105 
1106 /*
1107  * Send on a socket.  If send must go all at once and message is larger than
1108  * send buffering, then hard error.  Lock against other senders.  If must go
1109  * all at once and not enough room now, then inform user that this would
1110  * block and do nothing.  Otherwise, if nonblocking, send as much as
1111  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1112  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1113  * in mbuf chain must be small enough to send all at once.
1114  *
1115  * Returns nonzero on error, timeout or signal; callers must check for short
1116  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1117  * on return.
1118  */
1119 int
1120 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1121     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1122 {
1123 	long space, resid;
1124 	int clen = 0, error, dontroute;
1125 	int atomic = sosendallatonce(so) || top;
1126 
1127 	if (uio != NULL)
1128 		resid = uio->uio_resid;
1129 	else
1130 		resid = top->m_pkthdr.len;
1131 	/*
1132 	 * In theory resid should be unsigned.  However, space must be
1133 	 * signed, as it might be less than 0 if we over-committed, and we
1134 	 * must use a signed comparison of space and resid.  On the other
1135 	 * hand, a negative resid causes us to loop sending 0-length
1136 	 * segments to the protocol.
1137 	 *
1138 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1139 	 * type sockets since that's an error.
1140 	 */
1141 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1142 		error = EINVAL;
1143 		goto out;
1144 	}
1145 
1146 	dontroute =
1147 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1148 	    (so->so_proto->pr_flags & PR_ATOMIC);
1149 	if (td != NULL)
1150 		td->td_ru.ru_msgsnd++;
1151 	if (control != NULL)
1152 		clen = control->m_len;
1153 
1154 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1155 	if (error)
1156 		goto out;
1157 
1158 restart:
1159 	do {
1160 		SOCKBUF_LOCK(&so->so_snd);
1161 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1162 			SOCKBUF_UNLOCK(&so->so_snd);
1163 			error = EPIPE;
1164 			goto release;
1165 		}
1166 		if (so->so_error) {
1167 			error = so->so_error;
1168 			so->so_error = 0;
1169 			SOCKBUF_UNLOCK(&so->so_snd);
1170 			goto release;
1171 		}
1172 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1173 			/*
1174 			 * `sendto' and `sendmsg' is allowed on a connection-
1175 			 * based socket if it supports implied connect.
1176 			 * Return ENOTCONN if not connected and no address is
1177 			 * supplied.
1178 			 */
1179 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1180 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1181 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1182 				    !(resid == 0 && clen != 0)) {
1183 					SOCKBUF_UNLOCK(&so->so_snd);
1184 					error = ENOTCONN;
1185 					goto release;
1186 				}
1187 			} else if (addr == NULL) {
1188 				SOCKBUF_UNLOCK(&so->so_snd);
1189 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1190 					error = ENOTCONN;
1191 				else
1192 					error = EDESTADDRREQ;
1193 				goto release;
1194 			}
1195 		}
1196 		space = sbspace(&so->so_snd);
1197 		if (flags & MSG_OOB)
1198 			space += 1024;
1199 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1200 		    clen > so->so_snd.sb_hiwat) {
1201 			SOCKBUF_UNLOCK(&so->so_snd);
1202 			error = EMSGSIZE;
1203 			goto release;
1204 		}
1205 		if (space < resid + clen &&
1206 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1207 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1208 				SOCKBUF_UNLOCK(&so->so_snd);
1209 				error = EWOULDBLOCK;
1210 				goto release;
1211 			}
1212 			error = sbwait(&so->so_snd);
1213 			SOCKBUF_UNLOCK(&so->so_snd);
1214 			if (error)
1215 				goto release;
1216 			goto restart;
1217 		}
1218 		SOCKBUF_UNLOCK(&so->so_snd);
1219 		space -= clen;
1220 		do {
1221 			if (uio == NULL) {
1222 				resid = 0;
1223 				if (flags & MSG_EOR)
1224 					top->m_flags |= M_EOR;
1225 			} else {
1226 #ifdef ZERO_COPY_SOCKETS
1227 				error = sosend_copyin(uio, &top, atomic,
1228 				    &space, flags);
1229 				if (error != 0)
1230 					goto release;
1231 #else
1232 				/*
1233 				 * Copy the data from userland into a mbuf
1234 				 * chain.  If no data is to be copied in,
1235 				 * a single empty mbuf is returned.
1236 				 */
1237 				top = m_uiotombuf(uio, M_WAITOK, space,
1238 				    (atomic ? max_hdr : 0),
1239 				    (atomic ? M_PKTHDR : 0) |
1240 				    ((flags & MSG_EOR) ? M_EOR : 0));
1241 				if (top == NULL) {
1242 					error = EFAULT; /* only possible error */
1243 					goto release;
1244 				}
1245 				space -= resid - uio->uio_resid;
1246 #endif
1247 				resid = uio->uio_resid;
1248 			}
1249 			if (dontroute) {
1250 				SOCK_LOCK(so);
1251 				so->so_options |= SO_DONTROUTE;
1252 				SOCK_UNLOCK(so);
1253 			}
1254 			/*
1255 			 * XXX all the SBS_CANTSENDMORE checks previously
1256 			 * done could be out of date.  We could have recieved
1257 			 * a reset packet in an interrupt or maybe we slept
1258 			 * while doing page faults in uiomove() etc.  We
1259 			 * could probably recheck again inside the locking
1260 			 * protection here, but there are probably other
1261 			 * places that this also happens.  We must rethink
1262 			 * this.
1263 			 */
1264 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1265 			    (flags & MSG_OOB) ? PRUS_OOB :
1266 			/*
1267 			 * If the user set MSG_EOF, the protocol understands
1268 			 * this flag and nothing left to send then use
1269 			 * PRU_SEND_EOF instead of PRU_SEND.
1270 			 */
1271 			    ((flags & MSG_EOF) &&
1272 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1273 			     (resid <= 0)) ?
1274 				PRUS_EOF :
1275 			/* If there is more to send set PRUS_MORETOCOME. */
1276 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1277 			    top, addr, control, td);
1278 			if (dontroute) {
1279 				SOCK_LOCK(so);
1280 				so->so_options &= ~SO_DONTROUTE;
1281 				SOCK_UNLOCK(so);
1282 			}
1283 			clen = 0;
1284 			control = NULL;
1285 			top = NULL;
1286 			if (error)
1287 				goto release;
1288 		} while (resid && space > 0);
1289 	} while (resid);
1290 
1291 release:
1292 	sbunlock(&so->so_snd);
1293 out:
1294 	if (top != NULL)
1295 		m_freem(top);
1296 	if (control != NULL)
1297 		m_freem(control);
1298 	return (error);
1299 }
1300 
1301 int
1302 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1303     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1304 {
1305 	int error;
1306 
1307 	CURVNET_SET(so->so_vnet);
1308 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1309 	    control, flags, td);
1310 	CURVNET_RESTORE();
1311 	return (error);
1312 }
1313 
1314 /*
1315  * The part of soreceive() that implements reading non-inline out-of-band
1316  * data from a socket.  For more complete comments, see soreceive(), from
1317  * which this code originated.
1318  *
1319  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1320  * unable to return an mbuf chain to the caller.
1321  */
1322 static int
1323 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1324 {
1325 	struct protosw *pr = so->so_proto;
1326 	struct mbuf *m;
1327 	int error;
1328 
1329 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1330 
1331 	m = m_get(M_WAIT, MT_DATA);
1332 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1333 	if (error)
1334 		goto bad;
1335 	do {
1336 #ifdef ZERO_COPY_SOCKETS
1337 		if (so_zero_copy_receive) {
1338 			int disposable;
1339 
1340 			if ((m->m_flags & M_EXT)
1341 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1342 				disposable = 1;
1343 			else
1344 				disposable = 0;
1345 
1346 			error = uiomoveco(mtod(m, void *),
1347 					  min(uio->uio_resid, m->m_len),
1348 					  uio, disposable);
1349 		} else
1350 #endif /* ZERO_COPY_SOCKETS */
1351 		error = uiomove(mtod(m, void *),
1352 		    (int) min(uio->uio_resid, m->m_len), uio);
1353 		m = m_free(m);
1354 	} while (uio->uio_resid && error == 0 && m);
1355 bad:
1356 	if (m != NULL)
1357 		m_freem(m);
1358 	return (error);
1359 }
1360 
1361 /*
1362  * Following replacement or removal of the first mbuf on the first mbuf chain
1363  * of a socket buffer, push necessary state changes back into the socket
1364  * buffer so that other consumers see the values consistently.  'nextrecord'
1365  * is the callers locally stored value of the original value of
1366  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1367  * NOTE: 'nextrecord' may be NULL.
1368  */
1369 static __inline void
1370 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1371 {
1372 
1373 	SOCKBUF_LOCK_ASSERT(sb);
1374 	/*
1375 	 * First, update for the new value of nextrecord.  If necessary, make
1376 	 * it the first record.
1377 	 */
1378 	if (sb->sb_mb != NULL)
1379 		sb->sb_mb->m_nextpkt = nextrecord;
1380 	else
1381 		sb->sb_mb = nextrecord;
1382 
1383         /*
1384          * Now update any dependent socket buffer fields to reflect the new
1385          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1386 	 * addition of a second clause that takes care of the case where
1387 	 * sb_mb has been updated, but remains the last record.
1388          */
1389         if (sb->sb_mb == NULL) {
1390                 sb->sb_mbtail = NULL;
1391                 sb->sb_lastrecord = NULL;
1392         } else if (sb->sb_mb->m_nextpkt == NULL)
1393                 sb->sb_lastrecord = sb->sb_mb;
1394 }
1395 
1396 
1397 /*
1398  * Implement receive operations on a socket.  We depend on the way that
1399  * records are added to the sockbuf by sbappend.  In particular, each record
1400  * (mbufs linked through m_next) must begin with an address if the protocol
1401  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1402  * data, and then zero or more mbufs of data.  In order to allow parallelism
1403  * between network receive and copying to user space, as well as avoid
1404  * sleeping with a mutex held, we release the socket buffer mutex during the
1405  * user space copy.  Although the sockbuf is locked, new data may still be
1406  * appended, and thus we must maintain consistency of the sockbuf during that
1407  * time.
1408  *
1409  * The caller may receive the data as a single mbuf chain by supplying an
1410  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1411  * the count in uio_resid.
1412  */
1413 int
1414 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1415     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1416 {
1417 	struct mbuf *m, **mp;
1418 	int flags, len, error, offset;
1419 	struct protosw *pr = so->so_proto;
1420 	struct mbuf *nextrecord;
1421 	int moff, type = 0;
1422 	int orig_resid = uio->uio_resid;
1423 
1424 	mp = mp0;
1425 	if (psa != NULL)
1426 		*psa = NULL;
1427 	if (controlp != NULL)
1428 		*controlp = NULL;
1429 	if (flagsp != NULL)
1430 		flags = *flagsp &~ MSG_EOR;
1431 	else
1432 		flags = 0;
1433 	if (flags & MSG_OOB)
1434 		return (soreceive_rcvoob(so, uio, flags));
1435 	if (mp != NULL)
1436 		*mp = NULL;
1437 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1438 	    && uio->uio_resid)
1439 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1440 
1441 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1442 	if (error)
1443 		return (error);
1444 
1445 restart:
1446 	SOCKBUF_LOCK(&so->so_rcv);
1447 	m = so->so_rcv.sb_mb;
1448 	/*
1449 	 * If we have less data than requested, block awaiting more (subject
1450 	 * to any timeout) if:
1451 	 *   1. the current count is less than the low water mark, or
1452 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1453 	 *	receive operation at once if we block (resid <= hiwat).
1454 	 *   3. MSG_DONTWAIT is not set
1455 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1456 	 * we have to do the receive in sections, and thus risk returning a
1457 	 * short count if a timeout or signal occurs after we start.
1458 	 */
1459 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1460 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1461 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1462 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1463 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1464 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1465 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1466 		    m, so->so_rcv.sb_cc));
1467 		if (so->so_error) {
1468 			if (m != NULL)
1469 				goto dontblock;
1470 			error = so->so_error;
1471 			if ((flags & MSG_PEEK) == 0)
1472 				so->so_error = 0;
1473 			SOCKBUF_UNLOCK(&so->so_rcv);
1474 			goto release;
1475 		}
1476 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1477 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1478 			if (m == NULL) {
1479 				SOCKBUF_UNLOCK(&so->so_rcv);
1480 				goto release;
1481 			} else
1482 				goto dontblock;
1483 		}
1484 		for (; m != NULL; m = m->m_next)
1485 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1486 				m = so->so_rcv.sb_mb;
1487 				goto dontblock;
1488 			}
1489 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1490 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1491 			SOCKBUF_UNLOCK(&so->so_rcv);
1492 			error = ENOTCONN;
1493 			goto release;
1494 		}
1495 		if (uio->uio_resid == 0) {
1496 			SOCKBUF_UNLOCK(&so->so_rcv);
1497 			goto release;
1498 		}
1499 		if ((so->so_state & SS_NBIO) ||
1500 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1501 			SOCKBUF_UNLOCK(&so->so_rcv);
1502 			error = EWOULDBLOCK;
1503 			goto release;
1504 		}
1505 		SBLASTRECORDCHK(&so->so_rcv);
1506 		SBLASTMBUFCHK(&so->so_rcv);
1507 		error = sbwait(&so->so_rcv);
1508 		SOCKBUF_UNLOCK(&so->so_rcv);
1509 		if (error)
1510 			goto release;
1511 		goto restart;
1512 	}
1513 dontblock:
1514 	/*
1515 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1516 	 * pointer to the next record in the socket buffer.  We must keep the
1517 	 * various socket buffer pointers and local stack versions of the
1518 	 * pointers in sync, pushing out modifications before dropping the
1519 	 * socket buffer mutex, and re-reading them when picking it up.
1520 	 *
1521 	 * Otherwise, we will race with the network stack appending new data
1522 	 * or records onto the socket buffer by using inconsistent/stale
1523 	 * versions of the field, possibly resulting in socket buffer
1524 	 * corruption.
1525 	 *
1526 	 * By holding the high-level sblock(), we prevent simultaneous
1527 	 * readers from pulling off the front of the socket buffer.
1528 	 */
1529 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1530 	if (uio->uio_td)
1531 		uio->uio_td->td_ru.ru_msgrcv++;
1532 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1533 	SBLASTRECORDCHK(&so->so_rcv);
1534 	SBLASTMBUFCHK(&so->so_rcv);
1535 	nextrecord = m->m_nextpkt;
1536 	if (pr->pr_flags & PR_ADDR) {
1537 		KASSERT(m->m_type == MT_SONAME,
1538 		    ("m->m_type == %d", m->m_type));
1539 		orig_resid = 0;
1540 		if (psa != NULL)
1541 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1542 			    M_NOWAIT);
1543 		if (flags & MSG_PEEK) {
1544 			m = m->m_next;
1545 		} else {
1546 			sbfree(&so->so_rcv, m);
1547 			so->so_rcv.sb_mb = m_free(m);
1548 			m = so->so_rcv.sb_mb;
1549 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1555 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1556 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1557 	 * perform externalization (or freeing if controlp == NULL).
1558 	 */
1559 	if (m != NULL && m->m_type == MT_CONTROL) {
1560 		struct mbuf *cm = NULL, *cmn;
1561 		struct mbuf **cme = &cm;
1562 
1563 		do {
1564 			if (flags & MSG_PEEK) {
1565 				if (controlp != NULL) {
1566 					*controlp = m_copy(m, 0, m->m_len);
1567 					controlp = &(*controlp)->m_next;
1568 				}
1569 				m = m->m_next;
1570 			} else {
1571 				sbfree(&so->so_rcv, m);
1572 				so->so_rcv.sb_mb = m->m_next;
1573 				m->m_next = NULL;
1574 				*cme = m;
1575 				cme = &(*cme)->m_next;
1576 				m = so->so_rcv.sb_mb;
1577 			}
1578 		} while (m != NULL && m->m_type == MT_CONTROL);
1579 		if ((flags & MSG_PEEK) == 0)
1580 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1581 		while (cm != NULL) {
1582 			cmn = cm->m_next;
1583 			cm->m_next = NULL;
1584 			if (pr->pr_domain->dom_externalize != NULL) {
1585 				SOCKBUF_UNLOCK(&so->so_rcv);
1586 				error = (*pr->pr_domain->dom_externalize)
1587 				    (cm, controlp);
1588 				SOCKBUF_LOCK(&so->so_rcv);
1589 			} else if (controlp != NULL)
1590 				*controlp = cm;
1591 			else
1592 				m_freem(cm);
1593 			if (controlp != NULL) {
1594 				orig_resid = 0;
1595 				while (*controlp != NULL)
1596 					controlp = &(*controlp)->m_next;
1597 			}
1598 			cm = cmn;
1599 		}
1600 		if (m != NULL)
1601 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1602 		else
1603 			nextrecord = so->so_rcv.sb_mb;
1604 		orig_resid = 0;
1605 	}
1606 	if (m != NULL) {
1607 		if ((flags & MSG_PEEK) == 0) {
1608 			KASSERT(m->m_nextpkt == nextrecord,
1609 			    ("soreceive: post-control, nextrecord !sync"));
1610 			if (nextrecord == NULL) {
1611 				KASSERT(so->so_rcv.sb_mb == m,
1612 				    ("soreceive: post-control, sb_mb!=m"));
1613 				KASSERT(so->so_rcv.sb_lastrecord == m,
1614 				    ("soreceive: post-control, lastrecord!=m"));
1615 			}
1616 		}
1617 		type = m->m_type;
1618 		if (type == MT_OOBDATA)
1619 			flags |= MSG_OOB;
1620 	} else {
1621 		if ((flags & MSG_PEEK) == 0) {
1622 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1623 			    ("soreceive: sb_mb != nextrecord"));
1624 			if (so->so_rcv.sb_mb == NULL) {
1625 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1626 				    ("soreceive: sb_lastercord != NULL"));
1627 			}
1628 		}
1629 	}
1630 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1631 	SBLASTRECORDCHK(&so->so_rcv);
1632 	SBLASTMBUFCHK(&so->so_rcv);
1633 
1634 	/*
1635 	 * Now continue to read any data mbufs off of the head of the socket
1636 	 * buffer until the read request is satisfied.  Note that 'type' is
1637 	 * used to store the type of any mbuf reads that have happened so far
1638 	 * such that soreceive() can stop reading if the type changes, which
1639 	 * causes soreceive() to return only one of regular data and inline
1640 	 * out-of-band data in a single socket receive operation.
1641 	 */
1642 	moff = 0;
1643 	offset = 0;
1644 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1645 		/*
1646 		 * If the type of mbuf has changed since the last mbuf
1647 		 * examined ('type'), end the receive operation.
1648 	 	 */
1649 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1650 		if (m->m_type == MT_OOBDATA) {
1651 			if (type != MT_OOBDATA)
1652 				break;
1653 		} else if (type == MT_OOBDATA)
1654 			break;
1655 		else
1656 		    KASSERT(m->m_type == MT_DATA,
1657 			("m->m_type == %d", m->m_type));
1658 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1659 		len = uio->uio_resid;
1660 		if (so->so_oobmark && len > so->so_oobmark - offset)
1661 			len = so->so_oobmark - offset;
1662 		if (len > m->m_len - moff)
1663 			len = m->m_len - moff;
1664 		/*
1665 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1666 		 * them out via the uio, then free.  Sockbuf must be
1667 		 * consistent here (points to current mbuf, it points to next
1668 		 * record) when we drop priority; we must note any additions
1669 		 * to the sockbuf when we block interrupts again.
1670 		 */
1671 		if (mp == NULL) {
1672 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1673 			SBLASTRECORDCHK(&so->so_rcv);
1674 			SBLASTMBUFCHK(&so->so_rcv);
1675 			SOCKBUF_UNLOCK(&so->so_rcv);
1676 #ifdef ZERO_COPY_SOCKETS
1677 			if (so_zero_copy_receive) {
1678 				int disposable;
1679 
1680 				if ((m->m_flags & M_EXT)
1681 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1682 					disposable = 1;
1683 				else
1684 					disposable = 0;
1685 
1686 				error = uiomoveco(mtod(m, char *) + moff,
1687 						  (int)len, uio,
1688 						  disposable);
1689 			} else
1690 #endif /* ZERO_COPY_SOCKETS */
1691 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1692 			SOCKBUF_LOCK(&so->so_rcv);
1693 			if (error) {
1694 				/*
1695 				 * The MT_SONAME mbuf has already been removed
1696 				 * from the record, so it is necessary to
1697 				 * remove the data mbufs, if any, to preserve
1698 				 * the invariant in the case of PR_ADDR that
1699 				 * requires MT_SONAME mbufs at the head of
1700 				 * each record.
1701 				 */
1702 				if (m && pr->pr_flags & PR_ATOMIC &&
1703 				    ((flags & MSG_PEEK) == 0))
1704 					(void)sbdroprecord_locked(&so->so_rcv);
1705 				SOCKBUF_UNLOCK(&so->so_rcv);
1706 				goto release;
1707 			}
1708 		} else
1709 			uio->uio_resid -= len;
1710 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1711 		if (len == m->m_len - moff) {
1712 			if (m->m_flags & M_EOR)
1713 				flags |= MSG_EOR;
1714 			if (flags & MSG_PEEK) {
1715 				m = m->m_next;
1716 				moff = 0;
1717 			} else {
1718 				nextrecord = m->m_nextpkt;
1719 				sbfree(&so->so_rcv, m);
1720 				if (mp != NULL) {
1721 					*mp = m;
1722 					mp = &m->m_next;
1723 					so->so_rcv.sb_mb = m = m->m_next;
1724 					*mp = NULL;
1725 				} else {
1726 					so->so_rcv.sb_mb = m_free(m);
1727 					m = so->so_rcv.sb_mb;
1728 				}
1729 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1730 				SBLASTRECORDCHK(&so->so_rcv);
1731 				SBLASTMBUFCHK(&so->so_rcv);
1732 			}
1733 		} else {
1734 			if (flags & MSG_PEEK)
1735 				moff += len;
1736 			else {
1737 				if (mp != NULL) {
1738 					int copy_flag;
1739 
1740 					if (flags & MSG_DONTWAIT)
1741 						copy_flag = M_DONTWAIT;
1742 					else
1743 						copy_flag = M_WAIT;
1744 					if (copy_flag == M_WAIT)
1745 						SOCKBUF_UNLOCK(&so->so_rcv);
1746 					*mp = m_copym(m, 0, len, copy_flag);
1747 					if (copy_flag == M_WAIT)
1748 						SOCKBUF_LOCK(&so->so_rcv);
1749  					if (*mp == NULL) {
1750  						/*
1751  						 * m_copym() couldn't
1752 						 * allocate an mbuf.  Adjust
1753 						 * uio_resid back (it was
1754 						 * adjusted down by len
1755 						 * bytes, which we didn't end
1756 						 * up "copying" over).
1757  						 */
1758  						uio->uio_resid += len;
1759  						break;
1760  					}
1761 				}
1762 				m->m_data += len;
1763 				m->m_len -= len;
1764 				so->so_rcv.sb_cc -= len;
1765 			}
1766 		}
1767 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1768 		if (so->so_oobmark) {
1769 			if ((flags & MSG_PEEK) == 0) {
1770 				so->so_oobmark -= len;
1771 				if (so->so_oobmark == 0) {
1772 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1773 					break;
1774 				}
1775 			} else {
1776 				offset += len;
1777 				if (offset == so->so_oobmark)
1778 					break;
1779 			}
1780 		}
1781 		if (flags & MSG_EOR)
1782 			break;
1783 		/*
1784 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1785 		 * must not quit until "uio->uio_resid == 0" or an error
1786 		 * termination.  If a signal/timeout occurs, return with a
1787 		 * short count but without error.  Keep sockbuf locked
1788 		 * against other readers.
1789 		 */
1790 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1791 		    !sosendallatonce(so) && nextrecord == NULL) {
1792 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1793 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1794 				break;
1795 			/*
1796 			 * Notify the protocol that some data has been
1797 			 * drained before blocking.
1798 			 */
1799 			if (pr->pr_flags & PR_WANTRCVD) {
1800 				SOCKBUF_UNLOCK(&so->so_rcv);
1801 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1802 				SOCKBUF_LOCK(&so->so_rcv);
1803 			}
1804 			SBLASTRECORDCHK(&so->so_rcv);
1805 			SBLASTMBUFCHK(&so->so_rcv);
1806 			error = sbwait(&so->so_rcv);
1807 			if (error) {
1808 				SOCKBUF_UNLOCK(&so->so_rcv);
1809 				goto release;
1810 			}
1811 			m = so->so_rcv.sb_mb;
1812 			if (m != NULL)
1813 				nextrecord = m->m_nextpkt;
1814 		}
1815 	}
1816 
1817 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1818 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1819 		flags |= MSG_TRUNC;
1820 		if ((flags & MSG_PEEK) == 0)
1821 			(void) sbdroprecord_locked(&so->so_rcv);
1822 	}
1823 	if ((flags & MSG_PEEK) == 0) {
1824 		if (m == NULL) {
1825 			/*
1826 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1827 			 * part makes sure sb_lastrecord is up-to-date if
1828 			 * there is still data in the socket buffer.
1829 			 */
1830 			so->so_rcv.sb_mb = nextrecord;
1831 			if (so->so_rcv.sb_mb == NULL) {
1832 				so->so_rcv.sb_mbtail = NULL;
1833 				so->so_rcv.sb_lastrecord = NULL;
1834 			} else if (nextrecord->m_nextpkt == NULL)
1835 				so->so_rcv.sb_lastrecord = nextrecord;
1836 		}
1837 		SBLASTRECORDCHK(&so->so_rcv);
1838 		SBLASTMBUFCHK(&so->so_rcv);
1839 		/*
1840 		 * If soreceive() is being done from the socket callback,
1841 		 * then don't need to generate ACK to peer to update window,
1842 		 * since ACK will be generated on return to TCP.
1843 		 */
1844 		if (!(flags & MSG_SOCALLBCK) &&
1845 		    (pr->pr_flags & PR_WANTRCVD)) {
1846 			SOCKBUF_UNLOCK(&so->so_rcv);
1847 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1848 			SOCKBUF_LOCK(&so->so_rcv);
1849 		}
1850 	}
1851 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1852 	if (orig_resid == uio->uio_resid && orig_resid &&
1853 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1854 		SOCKBUF_UNLOCK(&so->so_rcv);
1855 		goto restart;
1856 	}
1857 	SOCKBUF_UNLOCK(&so->so_rcv);
1858 
1859 	if (flagsp != NULL)
1860 		*flagsp |= flags;
1861 release:
1862 	sbunlock(&so->so_rcv);
1863 	return (error);
1864 }
1865 
1866 /*
1867  * Optimized version of soreceive() for simple datagram cases from userspace.
1868  * Unlike in the stream case, we're able to drop a datagram if copyout()
1869  * fails, and because we handle datagrams atomically, we don't need to use a
1870  * sleep lock to prevent I/O interlacing.
1871  */
1872 int
1873 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1874     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1875 {
1876 	struct mbuf *m, *m2;
1877 	int flags, len, error;
1878 	struct protosw *pr = so->so_proto;
1879 	struct mbuf *nextrecord;
1880 
1881 	if (psa != NULL)
1882 		*psa = NULL;
1883 	if (controlp != NULL)
1884 		*controlp = NULL;
1885 	if (flagsp != NULL)
1886 		flags = *flagsp &~ MSG_EOR;
1887 	else
1888 		flags = 0;
1889 
1890 	/*
1891 	 * For any complicated cases, fall back to the full
1892 	 * soreceive_generic().
1893 	 */
1894 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
1895 		return (soreceive_generic(so, psa, uio, mp0, controlp,
1896 		    flagsp));
1897 
1898 	/*
1899 	 * Enforce restrictions on use.
1900 	 */
1901 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
1902 	    ("soreceive_dgram: wantrcvd"));
1903 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
1904 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
1905 	    ("soreceive_dgram: SBS_RCVATMARK"));
1906 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
1907 	    ("soreceive_dgram: P_CONNREQUIRED"));
1908 
1909 	/*
1910 	 * Loop blocking while waiting for a datagram.
1911 	 */
1912 	SOCKBUF_LOCK(&so->so_rcv);
1913 	while ((m = so->so_rcv.sb_mb) == NULL) {
1914 		KASSERT(so->so_rcv.sb_cc == 0,
1915 		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
1916 		    so->so_rcv.sb_cc));
1917 		if (so->so_error) {
1918 			error = so->so_error;
1919 			so->so_error = 0;
1920 			SOCKBUF_UNLOCK(&so->so_rcv);
1921 			return (error);
1922 		}
1923 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1924 		    uio->uio_resid == 0) {
1925 			SOCKBUF_UNLOCK(&so->so_rcv);
1926 			return (0);
1927 		}
1928 		if ((so->so_state & SS_NBIO) ||
1929 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1930 			SOCKBUF_UNLOCK(&so->so_rcv);
1931 			return (EWOULDBLOCK);
1932 		}
1933 		SBLASTRECORDCHK(&so->so_rcv);
1934 		SBLASTMBUFCHK(&so->so_rcv);
1935 		error = sbwait(&so->so_rcv);
1936 		if (error) {
1937 			SOCKBUF_UNLOCK(&so->so_rcv);
1938 			return (error);
1939 		}
1940 	}
1941 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1942 
1943 	if (uio->uio_td)
1944 		uio->uio_td->td_ru.ru_msgrcv++;
1945 	SBLASTRECORDCHK(&so->so_rcv);
1946 	SBLASTMBUFCHK(&so->so_rcv);
1947 	nextrecord = m->m_nextpkt;
1948 	if (nextrecord == NULL) {
1949 		KASSERT(so->so_rcv.sb_lastrecord == m,
1950 		    ("soreceive_dgram: lastrecord != m"));
1951 	}
1952 
1953 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
1954 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
1955 
1956 	/*
1957 	 * Pull 'm' and its chain off the front of the packet queue.
1958 	 */
1959 	so->so_rcv.sb_mb = NULL;
1960 	sockbuf_pushsync(&so->so_rcv, nextrecord);
1961 
1962 	/*
1963 	 * Walk 'm's chain and free that many bytes from the socket buffer.
1964 	 */
1965 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
1966 		sbfree(&so->so_rcv, m2);
1967 
1968 	/*
1969 	 * Do a few last checks before we let go of the lock.
1970 	 */
1971 	SBLASTRECORDCHK(&so->so_rcv);
1972 	SBLASTMBUFCHK(&so->so_rcv);
1973 	SOCKBUF_UNLOCK(&so->so_rcv);
1974 
1975 	if (pr->pr_flags & PR_ADDR) {
1976 		KASSERT(m->m_type == MT_SONAME,
1977 		    ("m->m_type == %d", m->m_type));
1978 		if (psa != NULL)
1979 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1980 			    M_NOWAIT);
1981 		m = m_free(m);
1982 	}
1983 	if (m == NULL) {
1984 		/* XXXRW: Can this happen? */
1985 		return (0);
1986 	}
1987 
1988 	/*
1989 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1990 	 * queue.
1991 	 *
1992 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1993 	 * in the first mbuf chain on the socket buffer.  We call into the
1994 	 * protocol to perform externalization (or freeing if controlp ==
1995 	 * NULL).
1996 	 */
1997 	if (m->m_type == MT_CONTROL) {
1998 		struct mbuf *cm = NULL, *cmn;
1999 		struct mbuf **cme = &cm;
2000 
2001 		do {
2002 			m2 = m->m_next;
2003 			m->m_next = NULL;
2004 			*cme = m;
2005 			cme = &(*cme)->m_next;
2006 			m = m2;
2007 		} while (m != NULL && m->m_type == MT_CONTROL);
2008 		while (cm != NULL) {
2009 			cmn = cm->m_next;
2010 			cm->m_next = NULL;
2011 			if (pr->pr_domain->dom_externalize != NULL) {
2012 				error = (*pr->pr_domain->dom_externalize)
2013 				    (cm, controlp);
2014 			} else if (controlp != NULL)
2015 				*controlp = cm;
2016 			else
2017 				m_freem(cm);
2018 			if (controlp != NULL) {
2019 				while (*controlp != NULL)
2020 					controlp = &(*controlp)->m_next;
2021 			}
2022 			cm = cmn;
2023 		}
2024 	}
2025 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2026 
2027 	while (m != NULL && uio->uio_resid > 0) {
2028 		len = uio->uio_resid;
2029 		if (len > m->m_len)
2030 			len = m->m_len;
2031 		error = uiomove(mtod(m, char *), (int)len, uio);
2032 		if (error) {
2033 			m_freem(m);
2034 			return (error);
2035 		}
2036 		m = m_free(m);
2037 	}
2038 	if (m != NULL)
2039 		flags |= MSG_TRUNC;
2040 	m_freem(m);
2041 	if (flagsp != NULL)
2042 		*flagsp |= flags;
2043 	return (0);
2044 }
2045 
2046 int
2047 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2048     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2049 {
2050 
2051 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2052 	    controlp, flagsp));
2053 }
2054 
2055 int
2056 soshutdown(struct socket *so, int how)
2057 {
2058 	struct protosw *pr = so->so_proto;
2059 	int error;
2060 
2061 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2062 		return (EINVAL);
2063 	if (pr->pr_usrreqs->pru_flush != NULL) {
2064 	        (*pr->pr_usrreqs->pru_flush)(so, how);
2065 	}
2066 	if (how != SHUT_WR)
2067 		sorflush(so);
2068 	if (how != SHUT_RD) {
2069 		CURVNET_SET(so->so_vnet);
2070 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2071 		CURVNET_RESTORE();
2072 		return (error);
2073 	}
2074 	return (0);
2075 }
2076 
2077 void
2078 sorflush(struct socket *so)
2079 {
2080 	struct sockbuf *sb = &so->so_rcv;
2081 	struct protosw *pr = so->so_proto;
2082 	struct sockbuf asb;
2083 
2084 	/*
2085 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2086 	 * held, and in order to generally avoid holding the lock for a long
2087 	 * time, we make a copy of the socket buffer and clear the original
2088 	 * (except locks, state).  The new socket buffer copy won't have
2089 	 * initialized locks so we can only call routines that won't use or
2090 	 * assert those locks.
2091 	 *
2092 	 * Dislodge threads currently blocked in receive and wait to acquire
2093 	 * a lock against other simultaneous readers before clearing the
2094 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2095 	 * despite any existing socket disposition on interruptable waiting.
2096 	 */
2097 	CURVNET_SET(so->so_vnet);
2098 	socantrcvmore(so);
2099 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2100 
2101 	/*
2102 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2103 	 * and mutex data unchanged.
2104 	 */
2105 	SOCKBUF_LOCK(sb);
2106 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2107 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2108 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2109 	bzero(&sb->sb_startzero,
2110 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2111 	SOCKBUF_UNLOCK(sb);
2112 	sbunlock(sb);
2113 
2114 	/*
2115 	 * Dispose of special rights and flush the socket buffer.  Don't call
2116 	 * any unsafe routines (that rely on locks being initialized) on asb.
2117 	 */
2118 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2119 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2120 	sbrelease_internal(&asb, so);
2121 	CURVNET_RESTORE();
2122 }
2123 
2124 /*
2125  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2126  * additional variant to handle the case where the option value needs to be
2127  * some kind of integer, but not a specific size.  In addition to their use
2128  * here, these functions are also called by the protocol-level pr_ctloutput()
2129  * routines.
2130  */
2131 int
2132 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2133 {
2134 	size_t	valsize;
2135 
2136 	/*
2137 	 * If the user gives us more than we wanted, we ignore it, but if we
2138 	 * don't get the minimum length the caller wants, we return EINVAL.
2139 	 * On success, sopt->sopt_valsize is set to however much we actually
2140 	 * retrieved.
2141 	 */
2142 	if ((valsize = sopt->sopt_valsize) < minlen)
2143 		return EINVAL;
2144 	if (valsize > len)
2145 		sopt->sopt_valsize = valsize = len;
2146 
2147 	if (sopt->sopt_td != NULL)
2148 		return (copyin(sopt->sopt_val, buf, valsize));
2149 
2150 	bcopy(sopt->sopt_val, buf, valsize);
2151 	return (0);
2152 }
2153 
2154 /*
2155  * Kernel version of setsockopt(2).
2156  *
2157  * XXX: optlen is size_t, not socklen_t
2158  */
2159 int
2160 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2161     size_t optlen)
2162 {
2163 	struct sockopt sopt;
2164 
2165 	sopt.sopt_level = level;
2166 	sopt.sopt_name = optname;
2167 	sopt.sopt_dir = SOPT_SET;
2168 	sopt.sopt_val = optval;
2169 	sopt.sopt_valsize = optlen;
2170 	sopt.sopt_td = NULL;
2171 	return (sosetopt(so, &sopt));
2172 }
2173 
2174 int
2175 sosetopt(struct socket *so, struct sockopt *sopt)
2176 {
2177 	int	error, optval;
2178 	struct	linger l;
2179 	struct	timeval tv;
2180 	u_long  val;
2181 #ifdef MAC
2182 	struct mac extmac;
2183 #endif
2184 
2185 	error = 0;
2186 	if (sopt->sopt_level != SOL_SOCKET) {
2187 		if (so->so_proto && so->so_proto->pr_ctloutput)
2188 			return ((*so->so_proto->pr_ctloutput)
2189 				  (so, sopt));
2190 		error = ENOPROTOOPT;
2191 	} else {
2192 		switch (sopt->sopt_name) {
2193 #ifdef INET
2194 		case SO_ACCEPTFILTER:
2195 			error = do_setopt_accept_filter(so, sopt);
2196 			if (error)
2197 				goto bad;
2198 			break;
2199 #endif
2200 		case SO_LINGER:
2201 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2202 			if (error)
2203 				goto bad;
2204 
2205 			SOCK_LOCK(so);
2206 			so->so_linger = l.l_linger;
2207 			if (l.l_onoff)
2208 				so->so_options |= SO_LINGER;
2209 			else
2210 				so->so_options &= ~SO_LINGER;
2211 			SOCK_UNLOCK(so);
2212 			break;
2213 
2214 		case SO_DEBUG:
2215 		case SO_KEEPALIVE:
2216 		case SO_DONTROUTE:
2217 		case SO_USELOOPBACK:
2218 		case SO_BROADCAST:
2219 		case SO_REUSEADDR:
2220 		case SO_REUSEPORT:
2221 		case SO_OOBINLINE:
2222 		case SO_TIMESTAMP:
2223 		case SO_BINTIME:
2224 		case SO_NOSIGPIPE:
2225 		case SO_NO_DDP:
2226 		case SO_NO_OFFLOAD:
2227 			error = sooptcopyin(sopt, &optval, sizeof optval,
2228 					    sizeof optval);
2229 			if (error)
2230 				goto bad;
2231 			SOCK_LOCK(so);
2232 			if (optval)
2233 				so->so_options |= sopt->sopt_name;
2234 			else
2235 				so->so_options &= ~sopt->sopt_name;
2236 			SOCK_UNLOCK(so);
2237 			break;
2238 
2239 		case SO_SETFIB:
2240 			error = sooptcopyin(sopt, &optval, sizeof optval,
2241 					    sizeof optval);
2242 			if (optval < 1 || optval > rt_numfibs) {
2243 				error = EINVAL;
2244 				goto bad;
2245 			}
2246 			if ((so->so_proto->pr_domain->dom_family == PF_INET) ||
2247 			    (so->so_proto->pr_domain->dom_family == PF_ROUTE)) {
2248 				so->so_fibnum = optval;
2249 				/* Note: ignore error */
2250 				if (so->so_proto && so->so_proto->pr_ctloutput)
2251 					(*so->so_proto->pr_ctloutput)(so, sopt);
2252 			} else {
2253 				so->so_fibnum = 0;
2254 			}
2255 			break;
2256 		case SO_SNDBUF:
2257 		case SO_RCVBUF:
2258 		case SO_SNDLOWAT:
2259 		case SO_RCVLOWAT:
2260 			error = sooptcopyin(sopt, &optval, sizeof optval,
2261 					    sizeof optval);
2262 			if (error)
2263 				goto bad;
2264 
2265 			/*
2266 			 * Values < 1 make no sense for any of these options,
2267 			 * so disallow them.
2268 			 */
2269 			if (optval < 1) {
2270 				error = EINVAL;
2271 				goto bad;
2272 			}
2273 
2274 			switch (sopt->sopt_name) {
2275 			case SO_SNDBUF:
2276 			case SO_RCVBUF:
2277 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2278 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2279 				    so, curthread) == 0) {
2280 					error = ENOBUFS;
2281 					goto bad;
2282 				}
2283 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2284 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2285 				break;
2286 
2287 			/*
2288 			 * Make sure the low-water is never greater than the
2289 			 * high-water.
2290 			 */
2291 			case SO_SNDLOWAT:
2292 				SOCKBUF_LOCK(&so->so_snd);
2293 				so->so_snd.sb_lowat =
2294 				    (optval > so->so_snd.sb_hiwat) ?
2295 				    so->so_snd.sb_hiwat : optval;
2296 				SOCKBUF_UNLOCK(&so->so_snd);
2297 				break;
2298 			case SO_RCVLOWAT:
2299 				SOCKBUF_LOCK(&so->so_rcv);
2300 				so->so_rcv.sb_lowat =
2301 				    (optval > so->so_rcv.sb_hiwat) ?
2302 				    so->so_rcv.sb_hiwat : optval;
2303 				SOCKBUF_UNLOCK(&so->so_rcv);
2304 				break;
2305 			}
2306 			break;
2307 
2308 		case SO_SNDTIMEO:
2309 		case SO_RCVTIMEO:
2310 #ifdef COMPAT_IA32
2311 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2312 				struct timeval32 tv32;
2313 
2314 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2315 				    sizeof tv32);
2316 				CP(tv32, tv, tv_sec);
2317 				CP(tv32, tv, tv_usec);
2318 			} else
2319 #endif
2320 				error = sooptcopyin(sopt, &tv, sizeof tv,
2321 				    sizeof tv);
2322 			if (error)
2323 				goto bad;
2324 
2325 			/* assert(hz > 0); */
2326 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2327 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2328 				error = EDOM;
2329 				goto bad;
2330 			}
2331 			/* assert(tick > 0); */
2332 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2333 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2334 			if (val > INT_MAX) {
2335 				error = EDOM;
2336 				goto bad;
2337 			}
2338 			if (val == 0 && tv.tv_usec != 0)
2339 				val = 1;
2340 
2341 			switch (sopt->sopt_name) {
2342 			case SO_SNDTIMEO:
2343 				so->so_snd.sb_timeo = val;
2344 				break;
2345 			case SO_RCVTIMEO:
2346 				so->so_rcv.sb_timeo = val;
2347 				break;
2348 			}
2349 			break;
2350 
2351 		case SO_LABEL:
2352 #ifdef MAC
2353 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2354 			    sizeof extmac);
2355 			if (error)
2356 				goto bad;
2357 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2358 			    so, &extmac);
2359 #else
2360 			error = EOPNOTSUPP;
2361 #endif
2362 			break;
2363 
2364 		default:
2365 			error = ENOPROTOOPT;
2366 			break;
2367 		}
2368 		if (error == 0 && so->so_proto != NULL &&
2369 		    so->so_proto->pr_ctloutput != NULL) {
2370 			(void) ((*so->so_proto->pr_ctloutput)
2371 				  (so, sopt));
2372 		}
2373 	}
2374 bad:
2375 	return (error);
2376 }
2377 
2378 /*
2379  * Helper routine for getsockopt.
2380  */
2381 int
2382 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2383 {
2384 	int	error;
2385 	size_t	valsize;
2386 
2387 	error = 0;
2388 
2389 	/*
2390 	 * Documented get behavior is that we always return a value, possibly
2391 	 * truncated to fit in the user's buffer.  Traditional behavior is
2392 	 * that we always tell the user precisely how much we copied, rather
2393 	 * than something useful like the total amount we had available for
2394 	 * her.  Note that this interface is not idempotent; the entire
2395 	 * answer must generated ahead of time.
2396 	 */
2397 	valsize = min(len, sopt->sopt_valsize);
2398 	sopt->sopt_valsize = valsize;
2399 	if (sopt->sopt_val != NULL) {
2400 		if (sopt->sopt_td != NULL)
2401 			error = copyout(buf, sopt->sopt_val, valsize);
2402 		else
2403 			bcopy(buf, sopt->sopt_val, valsize);
2404 	}
2405 	return (error);
2406 }
2407 
2408 int
2409 sogetopt(struct socket *so, struct sockopt *sopt)
2410 {
2411 	int	error, optval;
2412 	struct	linger l;
2413 	struct	timeval tv;
2414 #ifdef MAC
2415 	struct mac extmac;
2416 #endif
2417 
2418 	error = 0;
2419 	if (sopt->sopt_level != SOL_SOCKET) {
2420 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2421 			return ((*so->so_proto->pr_ctloutput)
2422 				  (so, sopt));
2423 		} else
2424 			return (ENOPROTOOPT);
2425 	} else {
2426 		switch (sopt->sopt_name) {
2427 #ifdef INET
2428 		case SO_ACCEPTFILTER:
2429 			error = do_getopt_accept_filter(so, sopt);
2430 			break;
2431 #endif
2432 		case SO_LINGER:
2433 			SOCK_LOCK(so);
2434 			l.l_onoff = so->so_options & SO_LINGER;
2435 			l.l_linger = so->so_linger;
2436 			SOCK_UNLOCK(so);
2437 			error = sooptcopyout(sopt, &l, sizeof l);
2438 			break;
2439 
2440 		case SO_USELOOPBACK:
2441 		case SO_DONTROUTE:
2442 		case SO_DEBUG:
2443 		case SO_KEEPALIVE:
2444 		case SO_REUSEADDR:
2445 		case SO_REUSEPORT:
2446 		case SO_BROADCAST:
2447 		case SO_OOBINLINE:
2448 		case SO_ACCEPTCONN:
2449 		case SO_TIMESTAMP:
2450 		case SO_BINTIME:
2451 		case SO_NOSIGPIPE:
2452 			optval = so->so_options & sopt->sopt_name;
2453 integer:
2454 			error = sooptcopyout(sopt, &optval, sizeof optval);
2455 			break;
2456 
2457 		case SO_TYPE:
2458 			optval = so->so_type;
2459 			goto integer;
2460 
2461 		case SO_ERROR:
2462 			SOCK_LOCK(so);
2463 			optval = so->so_error;
2464 			so->so_error = 0;
2465 			SOCK_UNLOCK(so);
2466 			goto integer;
2467 
2468 		case SO_SNDBUF:
2469 			optval = so->so_snd.sb_hiwat;
2470 			goto integer;
2471 
2472 		case SO_RCVBUF:
2473 			optval = so->so_rcv.sb_hiwat;
2474 			goto integer;
2475 
2476 		case SO_SNDLOWAT:
2477 			optval = so->so_snd.sb_lowat;
2478 			goto integer;
2479 
2480 		case SO_RCVLOWAT:
2481 			optval = so->so_rcv.sb_lowat;
2482 			goto integer;
2483 
2484 		case SO_SNDTIMEO:
2485 		case SO_RCVTIMEO:
2486 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2487 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2488 
2489 			tv.tv_sec = optval / hz;
2490 			tv.tv_usec = (optval % hz) * tick;
2491 #ifdef COMPAT_IA32
2492 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2493 				struct timeval32 tv32;
2494 
2495 				CP(tv, tv32, tv_sec);
2496 				CP(tv, tv32, tv_usec);
2497 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2498 			} else
2499 #endif
2500 				error = sooptcopyout(sopt, &tv, sizeof tv);
2501 			break;
2502 
2503 		case SO_LABEL:
2504 #ifdef MAC
2505 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2506 			    sizeof(extmac));
2507 			if (error)
2508 				return (error);
2509 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2510 			    so, &extmac);
2511 			if (error)
2512 				return (error);
2513 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2514 #else
2515 			error = EOPNOTSUPP;
2516 #endif
2517 			break;
2518 
2519 		case SO_PEERLABEL:
2520 #ifdef MAC
2521 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2522 			    sizeof(extmac));
2523 			if (error)
2524 				return (error);
2525 			error = mac_getsockopt_peerlabel(
2526 			    sopt->sopt_td->td_ucred, so, &extmac);
2527 			if (error)
2528 				return (error);
2529 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2530 #else
2531 			error = EOPNOTSUPP;
2532 #endif
2533 			break;
2534 
2535 		case SO_LISTENQLIMIT:
2536 			optval = so->so_qlimit;
2537 			goto integer;
2538 
2539 		case SO_LISTENQLEN:
2540 			optval = so->so_qlen;
2541 			goto integer;
2542 
2543 		case SO_LISTENINCQLEN:
2544 			optval = so->so_incqlen;
2545 			goto integer;
2546 
2547 		default:
2548 			error = ENOPROTOOPT;
2549 			break;
2550 		}
2551 		return (error);
2552 	}
2553 }
2554 
2555 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2556 int
2557 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2558 {
2559 	struct mbuf *m, *m_prev;
2560 	int sopt_size = sopt->sopt_valsize;
2561 
2562 	MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2563 	if (m == NULL)
2564 		return ENOBUFS;
2565 	if (sopt_size > MLEN) {
2566 		MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2567 		if ((m->m_flags & M_EXT) == 0) {
2568 			m_free(m);
2569 			return ENOBUFS;
2570 		}
2571 		m->m_len = min(MCLBYTES, sopt_size);
2572 	} else {
2573 		m->m_len = min(MLEN, sopt_size);
2574 	}
2575 	sopt_size -= m->m_len;
2576 	*mp = m;
2577 	m_prev = m;
2578 
2579 	while (sopt_size) {
2580 		MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2581 		if (m == NULL) {
2582 			m_freem(*mp);
2583 			return ENOBUFS;
2584 		}
2585 		if (sopt_size > MLEN) {
2586 			MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2587 			    M_DONTWAIT);
2588 			if ((m->m_flags & M_EXT) == 0) {
2589 				m_freem(m);
2590 				m_freem(*mp);
2591 				return ENOBUFS;
2592 			}
2593 			m->m_len = min(MCLBYTES, sopt_size);
2594 		} else {
2595 			m->m_len = min(MLEN, sopt_size);
2596 		}
2597 		sopt_size -= m->m_len;
2598 		m_prev->m_next = m;
2599 		m_prev = m;
2600 	}
2601 	return (0);
2602 }
2603 
2604 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2605 int
2606 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2607 {
2608 	struct mbuf *m0 = m;
2609 
2610 	if (sopt->sopt_val == NULL)
2611 		return (0);
2612 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2613 		if (sopt->sopt_td != NULL) {
2614 			int error;
2615 
2616 			error = copyin(sopt->sopt_val, mtod(m, char *),
2617 				       m->m_len);
2618 			if (error != 0) {
2619 				m_freem(m0);
2620 				return(error);
2621 			}
2622 		} else
2623 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2624 		sopt->sopt_valsize -= m->m_len;
2625 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2626 		m = m->m_next;
2627 	}
2628 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2629 		panic("ip6_sooptmcopyin");
2630 	return (0);
2631 }
2632 
2633 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2634 int
2635 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2636 {
2637 	struct mbuf *m0 = m;
2638 	size_t valsize = 0;
2639 
2640 	if (sopt->sopt_val == NULL)
2641 		return (0);
2642 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2643 		if (sopt->sopt_td != NULL) {
2644 			int error;
2645 
2646 			error = copyout(mtod(m, char *), sopt->sopt_val,
2647 				       m->m_len);
2648 			if (error != 0) {
2649 				m_freem(m0);
2650 				return(error);
2651 			}
2652 		} else
2653 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2654 	       sopt->sopt_valsize -= m->m_len;
2655 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2656 	       valsize += m->m_len;
2657 	       m = m->m_next;
2658 	}
2659 	if (m != NULL) {
2660 		/* enough soopt buffer should be given from user-land */
2661 		m_freem(m0);
2662 		return(EINVAL);
2663 	}
2664 	sopt->sopt_valsize = valsize;
2665 	return (0);
2666 }
2667 
2668 /*
2669  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2670  * out-of-band data, which will then notify socket consumers.
2671  */
2672 void
2673 sohasoutofband(struct socket *so)
2674 {
2675 
2676 	if (so->so_sigio != NULL)
2677 		pgsigio(&so->so_sigio, SIGURG, 0);
2678 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2679 }
2680 
2681 int
2682 sopoll(struct socket *so, int events, struct ucred *active_cred,
2683     struct thread *td)
2684 {
2685 
2686 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2687 	    td));
2688 }
2689 
2690 int
2691 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2692     struct thread *td)
2693 {
2694 	int revents = 0;
2695 
2696 	SOCKBUF_LOCK(&so->so_snd);
2697 	SOCKBUF_LOCK(&so->so_rcv);
2698 	if (events & (POLLIN | POLLRDNORM))
2699 		if (soreadable(so))
2700 			revents |= events & (POLLIN | POLLRDNORM);
2701 
2702 	if (events & POLLINIGNEOF)
2703 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2704 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2705 			revents |= POLLINIGNEOF;
2706 
2707 	if (events & (POLLOUT | POLLWRNORM))
2708 		if (sowriteable(so))
2709 			revents |= events & (POLLOUT | POLLWRNORM);
2710 
2711 	if (events & (POLLPRI | POLLRDBAND))
2712 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2713 			revents |= events & (POLLPRI | POLLRDBAND);
2714 
2715 	if (revents == 0) {
2716 		if (events &
2717 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2718 		     POLLRDBAND)) {
2719 			selrecord(td, &so->so_rcv.sb_sel);
2720 			so->so_rcv.sb_flags |= SB_SEL;
2721 		}
2722 
2723 		if (events & (POLLOUT | POLLWRNORM)) {
2724 			selrecord(td, &so->so_snd.sb_sel);
2725 			so->so_snd.sb_flags |= SB_SEL;
2726 		}
2727 	}
2728 
2729 	SOCKBUF_UNLOCK(&so->so_rcv);
2730 	SOCKBUF_UNLOCK(&so->so_snd);
2731 	return (revents);
2732 }
2733 
2734 int
2735 soo_kqfilter(struct file *fp, struct knote *kn)
2736 {
2737 	struct socket *so = kn->kn_fp->f_data;
2738 	struct sockbuf *sb;
2739 
2740 	switch (kn->kn_filter) {
2741 	case EVFILT_READ:
2742 		if (so->so_options & SO_ACCEPTCONN)
2743 			kn->kn_fop = &solisten_filtops;
2744 		else
2745 			kn->kn_fop = &soread_filtops;
2746 		sb = &so->so_rcv;
2747 		break;
2748 	case EVFILT_WRITE:
2749 		kn->kn_fop = &sowrite_filtops;
2750 		sb = &so->so_snd;
2751 		break;
2752 	default:
2753 		return (EINVAL);
2754 	}
2755 
2756 	SOCKBUF_LOCK(sb);
2757 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2758 	sb->sb_flags |= SB_KNOTE;
2759 	SOCKBUF_UNLOCK(sb);
2760 	return (0);
2761 }
2762 
2763 /*
2764  * Some routines that return EOPNOTSUPP for entry points that are not
2765  * supported by a protocol.  Fill in as needed.
2766  */
2767 int
2768 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2769 {
2770 
2771 	return EOPNOTSUPP;
2772 }
2773 
2774 int
2775 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2776 {
2777 
2778 	return EOPNOTSUPP;
2779 }
2780 
2781 int
2782 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2783 {
2784 
2785 	return EOPNOTSUPP;
2786 }
2787 
2788 int
2789 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2790 {
2791 
2792 	return EOPNOTSUPP;
2793 }
2794 
2795 int
2796 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2797 {
2798 
2799 	return EOPNOTSUPP;
2800 }
2801 
2802 int
2803 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2804     struct ifnet *ifp, struct thread *td)
2805 {
2806 
2807 	return EOPNOTSUPP;
2808 }
2809 
2810 int
2811 pru_disconnect_notsupp(struct socket *so)
2812 {
2813 
2814 	return EOPNOTSUPP;
2815 }
2816 
2817 int
2818 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
2819 {
2820 
2821 	return EOPNOTSUPP;
2822 }
2823 
2824 int
2825 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2826 {
2827 
2828 	return EOPNOTSUPP;
2829 }
2830 
2831 int
2832 pru_rcvd_notsupp(struct socket *so, int flags)
2833 {
2834 
2835 	return EOPNOTSUPP;
2836 }
2837 
2838 int
2839 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2840 {
2841 
2842 	return EOPNOTSUPP;
2843 }
2844 
2845 int
2846 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2847     struct sockaddr *addr, struct mbuf *control, struct thread *td)
2848 {
2849 
2850 	return EOPNOTSUPP;
2851 }
2852 
2853 /*
2854  * This isn't really a ``null'' operation, but it's the default one and
2855  * doesn't do anything destructive.
2856  */
2857 int
2858 pru_sense_null(struct socket *so, struct stat *sb)
2859 {
2860 
2861 	sb->st_blksize = so->so_snd.sb_hiwat;
2862 	return 0;
2863 }
2864 
2865 int
2866 pru_shutdown_notsupp(struct socket *so)
2867 {
2868 
2869 	return EOPNOTSUPP;
2870 }
2871 
2872 int
2873 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2874 {
2875 
2876 	return EOPNOTSUPP;
2877 }
2878 
2879 int
2880 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2881     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2882 {
2883 
2884 	return EOPNOTSUPP;
2885 }
2886 
2887 int
2888 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2889     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2890 {
2891 
2892 	return EOPNOTSUPP;
2893 }
2894 
2895 int
2896 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
2897     struct thread *td)
2898 {
2899 
2900 	return EOPNOTSUPP;
2901 }
2902 
2903 static void
2904 filt_sordetach(struct knote *kn)
2905 {
2906 	struct socket *so = kn->kn_fp->f_data;
2907 
2908 	SOCKBUF_LOCK(&so->so_rcv);
2909 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2910 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2911 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2912 	SOCKBUF_UNLOCK(&so->so_rcv);
2913 }
2914 
2915 /*ARGSUSED*/
2916 static int
2917 filt_soread(struct knote *kn, long hint)
2918 {
2919 	struct socket *so;
2920 
2921 	so = kn->kn_fp->f_data;
2922 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2923 
2924 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2925 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2926 		kn->kn_flags |= EV_EOF;
2927 		kn->kn_fflags = so->so_error;
2928 		return (1);
2929 	} else if (so->so_error)	/* temporary udp error */
2930 		return (1);
2931 	else if (kn->kn_sfflags & NOTE_LOWAT)
2932 		return (kn->kn_data >= kn->kn_sdata);
2933 	else
2934 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2935 }
2936 
2937 static void
2938 filt_sowdetach(struct knote *kn)
2939 {
2940 	struct socket *so = kn->kn_fp->f_data;
2941 
2942 	SOCKBUF_LOCK(&so->so_snd);
2943 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2944 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2945 		so->so_snd.sb_flags &= ~SB_KNOTE;
2946 	SOCKBUF_UNLOCK(&so->so_snd);
2947 }
2948 
2949 /*ARGSUSED*/
2950 static int
2951 filt_sowrite(struct knote *kn, long hint)
2952 {
2953 	struct socket *so;
2954 
2955 	so = kn->kn_fp->f_data;
2956 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2957 	kn->kn_data = sbspace(&so->so_snd);
2958 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2959 		kn->kn_flags |= EV_EOF;
2960 		kn->kn_fflags = so->so_error;
2961 		return (1);
2962 	} else if (so->so_error)	/* temporary udp error */
2963 		return (1);
2964 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2965 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2966 		return (0);
2967 	else if (kn->kn_sfflags & NOTE_LOWAT)
2968 		return (kn->kn_data >= kn->kn_sdata);
2969 	else
2970 		return (kn->kn_data >= so->so_snd.sb_lowat);
2971 }
2972 
2973 /*ARGSUSED*/
2974 static int
2975 filt_solisten(struct knote *kn, long hint)
2976 {
2977 	struct socket *so = kn->kn_fp->f_data;
2978 
2979 	kn->kn_data = so->so_qlen;
2980 	return (! TAILQ_EMPTY(&so->so_comp));
2981 }
2982 
2983 int
2984 socheckuid(struct socket *so, uid_t uid)
2985 {
2986 
2987 	if (so == NULL)
2988 		return (EPERM);
2989 	if (so->so_cred->cr_uid != uid)
2990 		return (EPERM);
2991 	return (0);
2992 }
2993 
2994 static int
2995 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2996 {
2997 	int error;
2998 	int val;
2999 
3000 	val = somaxconn;
3001 	error = sysctl_handle_int(oidp, &val, 0, req);
3002 	if (error || !req->newptr )
3003 		return (error);
3004 
3005 	if (val < 1 || val > USHRT_MAX)
3006 		return (EINVAL);
3007 
3008 	somaxconn = val;
3009 	return (0);
3010 }
3011 
3012 /*
3013  * These functions are used by protocols to notify the socket layer (and its
3014  * consumers) of state changes in the sockets driven by protocol-side events.
3015  */
3016 
3017 /*
3018  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3019  *
3020  * Normal sequence from the active (originating) side is that
3021  * soisconnecting() is called during processing of connect() call, resulting
3022  * in an eventual call to soisconnected() if/when the connection is
3023  * established.  When the connection is torn down soisdisconnecting() is
3024  * called during processing of disconnect() call, and soisdisconnected() is
3025  * called when the connection to the peer is totally severed.  The semantics
3026  * of these routines are such that connectionless protocols can call
3027  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3028  * calls when setting up a ``connection'' takes no time.
3029  *
3030  * From the passive side, a socket is created with two queues of sockets:
3031  * so_incomp for connections in progress and so_comp for connections already
3032  * made and awaiting user acceptance.  As a protocol is preparing incoming
3033  * connections, it creates a socket structure queued on so_incomp by calling
3034  * sonewconn().  When the connection is established, soisconnected() is
3035  * called, and transfers the socket structure to so_comp, making it available
3036  * to accept().
3037  *
3038  * If a socket is closed with sockets on either so_incomp or so_comp, these
3039  * sockets are dropped.
3040  *
3041  * If higher-level protocols are implemented in the kernel, the wakeups done
3042  * here will sometimes cause software-interrupt process scheduling.
3043  */
3044 void
3045 soisconnecting(struct socket *so)
3046 {
3047 
3048 	SOCK_LOCK(so);
3049 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3050 	so->so_state |= SS_ISCONNECTING;
3051 	SOCK_UNLOCK(so);
3052 }
3053 
3054 void
3055 soisconnected(struct socket *so)
3056 {
3057 	struct socket *head;
3058 
3059 	ACCEPT_LOCK();
3060 	SOCK_LOCK(so);
3061 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3062 	so->so_state |= SS_ISCONNECTED;
3063 	head = so->so_head;
3064 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3065 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3066 			SOCK_UNLOCK(so);
3067 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3068 			head->so_incqlen--;
3069 			so->so_qstate &= ~SQ_INCOMP;
3070 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3071 			head->so_qlen++;
3072 			so->so_qstate |= SQ_COMP;
3073 			ACCEPT_UNLOCK();
3074 			sorwakeup(head);
3075 			wakeup_one(&head->so_timeo);
3076 		} else {
3077 			ACCEPT_UNLOCK();
3078 			so->so_upcall =
3079 			    head->so_accf->so_accept_filter->accf_callback;
3080 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
3081 			so->so_rcv.sb_flags |= SB_UPCALL;
3082 			so->so_options &= ~SO_ACCEPTFILTER;
3083 			SOCK_UNLOCK(so);
3084 			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
3085 		}
3086 		return;
3087 	}
3088 	SOCK_UNLOCK(so);
3089 	ACCEPT_UNLOCK();
3090 	wakeup(&so->so_timeo);
3091 	sorwakeup(so);
3092 	sowwakeup(so);
3093 }
3094 
3095 void
3096 soisdisconnecting(struct socket *so)
3097 {
3098 
3099 	/*
3100 	 * Note: This code assumes that SOCK_LOCK(so) and
3101 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3102 	 */
3103 	SOCKBUF_LOCK(&so->so_rcv);
3104 	so->so_state &= ~SS_ISCONNECTING;
3105 	so->so_state |= SS_ISDISCONNECTING;
3106 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3107 	sorwakeup_locked(so);
3108 	SOCKBUF_LOCK(&so->so_snd);
3109 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3110 	sowwakeup_locked(so);
3111 	wakeup(&so->so_timeo);
3112 }
3113 
3114 void
3115 soisdisconnected(struct socket *so)
3116 {
3117 
3118 	/*
3119 	 * Note: This code assumes that SOCK_LOCK(so) and
3120 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3121 	 */
3122 	SOCKBUF_LOCK(&so->so_rcv);
3123 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3124 	so->so_state |= SS_ISDISCONNECTED;
3125 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3126 	sorwakeup_locked(so);
3127 	SOCKBUF_LOCK(&so->so_snd);
3128 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3129 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3130 	sowwakeup_locked(so);
3131 	wakeup(&so->so_timeo);
3132 }
3133 
3134 /*
3135  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3136  */
3137 struct sockaddr *
3138 sodupsockaddr(const struct sockaddr *sa, int mflags)
3139 {
3140 	struct sockaddr *sa2;
3141 
3142 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3143 	if (sa2)
3144 		bcopy(sa, sa2, sa->sa_len);
3145 	return sa2;
3146 }
3147 
3148 /*
3149  * Create an external-format (``xsocket'') structure using the information in
3150  * the kernel-format socket structure pointed to by so.  This is done to
3151  * reduce the spew of irrelevant information over this interface, to isolate
3152  * user code from changes in the kernel structure, and potentially to provide
3153  * information-hiding if we decide that some of this information should be
3154  * hidden from users.
3155  */
3156 void
3157 sotoxsocket(struct socket *so, struct xsocket *xso)
3158 {
3159 
3160 	xso->xso_len = sizeof *xso;
3161 	xso->xso_so = so;
3162 	xso->so_type = so->so_type;
3163 	xso->so_options = so->so_options;
3164 	xso->so_linger = so->so_linger;
3165 	xso->so_state = so->so_state;
3166 	xso->so_pcb = so->so_pcb;
3167 	xso->xso_protocol = so->so_proto->pr_protocol;
3168 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3169 	xso->so_qlen = so->so_qlen;
3170 	xso->so_incqlen = so->so_incqlen;
3171 	xso->so_qlimit = so->so_qlimit;
3172 	xso->so_timeo = so->so_timeo;
3173 	xso->so_error = so->so_error;
3174 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3175 	xso->so_oobmark = so->so_oobmark;
3176 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3177 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3178 	xso->so_uid = so->so_cred->cr_uid;
3179 }
3180 
3181 
3182 /*
3183  * Socket accessor functions to provide external consumers with
3184  * a safe interface to socket state
3185  *
3186  */
3187 
3188 void
3189 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3190 {
3191 
3192 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3193 		func(so, arg);
3194 }
3195 
3196 struct sockbuf *
3197 so_sockbuf_rcv(struct socket *so)
3198 {
3199 
3200 	return (&so->so_rcv);
3201 }
3202 
3203 struct sockbuf *
3204 so_sockbuf_snd(struct socket *so)
3205 {
3206 
3207 	return (&so->so_snd);
3208 }
3209 
3210 int
3211 so_state_get(const struct socket *so)
3212 {
3213 
3214 	return (so->so_state);
3215 }
3216 
3217 void
3218 so_state_set(struct socket *so, int val)
3219 {
3220 
3221 	so->so_state = val;
3222 }
3223 
3224 int
3225 so_options_get(const struct socket *so)
3226 {
3227 
3228 	return (so->so_options);
3229 }
3230 
3231 void
3232 so_options_set(struct socket *so, int val)
3233 {
3234 
3235 	so->so_options = val;
3236 }
3237 
3238 int
3239 so_error_get(const struct socket *so)
3240 {
3241 
3242 	return (so->so_error);
3243 }
3244 
3245 void
3246 so_error_set(struct socket *so, int val)
3247 {
3248 
3249 	so->so_error = val;
3250 }
3251 
3252 int
3253 so_linger_get(const struct socket *so)
3254 {
3255 
3256 	return (so->so_linger);
3257 }
3258 
3259 void
3260 so_linger_set(struct socket *so, int val)
3261 {
3262 
3263 	so->so_linger = val;
3264 }
3265 
3266 struct protosw *
3267 so_protosw_get(const struct socket *so)
3268 {
3269 
3270 	return (so->so_proto);
3271 }
3272 
3273 void
3274 so_protosw_set(struct socket *so, struct protosw *val)
3275 {
3276 
3277 	so->so_proto = val;
3278 }
3279 
3280 void
3281 so_sorwakeup(struct socket *so)
3282 {
3283 
3284 	sorwakeup(so);
3285 }
3286 
3287 void
3288 so_sowwakeup(struct socket *so)
3289 {
3290 
3291 	sowwakeup(so);
3292 }
3293 
3294 void
3295 so_sorwakeup_locked(struct socket *so)
3296 {
3297 
3298 	sorwakeup_locked(so);
3299 }
3300 
3301 void
3302 so_sowwakeup_locked(struct socket *so)
3303 {
3304 
3305 	sowwakeup_locked(so);
3306 }
3307 
3308 void
3309 so_lock(struct socket *so)
3310 {
3311 	SOCK_LOCK(so);
3312 }
3313 
3314 void
3315 so_unlock(struct socket *so)
3316 {
3317 	SOCK_UNLOCK(so);
3318 }
3319