1 /*- 2 * Copyright (c) 2004 The FreeBSD Foundation 3 * Copyright (c) 2004-2005 Robert N. M. Watson 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_mac.h" 39 #include "opt_zero.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/fcntl.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/mac.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/mutex.h> 50 #include <sys/domain.h> 51 #include <sys/file.h> /* for struct knote */ 52 #include <sys/kernel.h> 53 #include <sys/event.h> 54 #include <sys/poll.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/resourcevar.h> 60 #include <sys/signalvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/uio.h> 63 #include <sys/jail.h> 64 65 #include <vm/uma.h> 66 67 68 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 69 int flags); 70 71 static void filt_sordetach(struct knote *kn); 72 static int filt_soread(struct knote *kn, long hint); 73 static void filt_sowdetach(struct knote *kn); 74 static int filt_sowrite(struct knote *kn, long hint); 75 static int filt_solisten(struct knote *kn, long hint); 76 77 static struct filterops solisten_filtops = 78 { 1, NULL, filt_sordetach, filt_solisten }; 79 static struct filterops soread_filtops = 80 { 1, NULL, filt_sordetach, filt_soread }; 81 static struct filterops sowrite_filtops = 82 { 1, NULL, filt_sowdetach, filt_sowrite }; 83 84 uma_zone_t socket_zone; 85 so_gen_t so_gencnt; /* generation count for sockets */ 86 87 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 88 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 89 90 SYSCTL_DECL(_kern_ipc); 91 92 static int somaxconn = SOMAXCONN; 93 static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS); 94 /* XXX: we dont have SYSCTL_USHORT */ 95 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 96 0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection " 97 "queue size"); 98 static int numopensockets; 99 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 100 &numopensockets, 0, "Number of open sockets"); 101 #ifdef ZERO_COPY_SOCKETS 102 /* These aren't static because they're used in other files. */ 103 int so_zero_copy_send = 1; 104 int so_zero_copy_receive = 1; 105 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 106 "Zero copy controls"); 107 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 108 &so_zero_copy_receive, 0, "Enable zero copy receive"); 109 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 110 &so_zero_copy_send, 0, "Enable zero copy send"); 111 #endif /* ZERO_COPY_SOCKETS */ 112 113 /* 114 * accept_mtx locks down per-socket fields relating to accept queues. See 115 * socketvar.h for an annotation of the protected fields of struct socket. 116 */ 117 struct mtx accept_mtx; 118 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 119 120 /* 121 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 122 * so_gencnt field. 123 */ 124 static struct mtx so_global_mtx; 125 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 126 127 /* 128 * Socket operation routines. 129 * These routines are called by the routines in 130 * sys_socket.c or from a system process, and 131 * implement the semantics of socket operations by 132 * switching out to the protocol specific routines. 133 */ 134 135 /* 136 * Get a socket structure from our zone, and initialize it. 137 * Note that it would probably be better to allocate socket 138 * and PCB at the same time, but I'm not convinced that all 139 * the protocols can be easily modified to do this. 140 * 141 * soalloc() returns a socket with a ref count of 0. 142 */ 143 struct socket * 144 soalloc(int mflags) 145 { 146 struct socket *so; 147 148 so = uma_zalloc(socket_zone, mflags | M_ZERO); 149 if (so != NULL) { 150 #ifdef MAC 151 if (mac_init_socket(so, mflags) != 0) { 152 uma_zfree(socket_zone, so); 153 return (NULL); 154 } 155 #endif 156 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 157 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 158 TAILQ_INIT(&so->so_aiojobq); 159 mtx_lock(&so_global_mtx); 160 so->so_gencnt = ++so_gencnt; 161 ++numopensockets; 162 mtx_unlock(&so_global_mtx); 163 } 164 return (so); 165 } 166 167 /* 168 * socreate returns a socket with a ref count of 1. The socket should be 169 * closed with soclose(). 170 */ 171 int 172 socreate(dom, aso, type, proto, cred, td) 173 int dom; 174 struct socket **aso; 175 int type; 176 int proto; 177 struct ucred *cred; 178 struct thread *td; 179 { 180 struct protosw *prp; 181 struct socket *so; 182 int error; 183 184 if (proto) 185 prp = pffindproto(dom, proto, type); 186 else 187 prp = pffindtype(dom, type); 188 189 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 190 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 191 return (EPROTONOSUPPORT); 192 193 if (jailed(cred) && jail_socket_unixiproute_only && 194 prp->pr_domain->dom_family != PF_LOCAL && 195 prp->pr_domain->dom_family != PF_INET && 196 prp->pr_domain->dom_family != PF_ROUTE) { 197 return (EPROTONOSUPPORT); 198 } 199 200 if (prp->pr_type != type) 201 return (EPROTOTYPE); 202 so = soalloc(M_WAITOK); 203 if (so == NULL) 204 return (ENOBUFS); 205 206 TAILQ_INIT(&so->so_incomp); 207 TAILQ_INIT(&so->so_comp); 208 so->so_type = type; 209 so->so_cred = crhold(cred); 210 so->so_proto = prp; 211 #ifdef MAC 212 mac_create_socket(cred, so); 213 #endif 214 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 215 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 216 so->so_count = 1; 217 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 218 if (error) { 219 ACCEPT_LOCK(); 220 SOCK_LOCK(so); 221 so->so_state |= SS_NOFDREF; 222 sorele(so); 223 return (error); 224 } 225 *aso = so; 226 return (0); 227 } 228 229 int 230 sobind(so, nam, td) 231 struct socket *so; 232 struct sockaddr *nam; 233 struct thread *td; 234 { 235 236 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 237 } 238 239 void 240 sodealloc(struct socket *so) 241 { 242 243 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 244 mtx_lock(&so_global_mtx); 245 so->so_gencnt = ++so_gencnt; 246 mtx_unlock(&so_global_mtx); 247 if (so->so_rcv.sb_hiwat) 248 (void)chgsbsize(so->so_cred->cr_uidinfo, 249 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 250 if (so->so_snd.sb_hiwat) 251 (void)chgsbsize(so->so_cred->cr_uidinfo, 252 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 253 #ifdef INET 254 /* remove acccept filter if one is present. */ 255 if (so->so_accf != NULL) 256 do_setopt_accept_filter(so, NULL); 257 #endif 258 #ifdef MAC 259 mac_destroy_socket(so); 260 #endif 261 crfree(so->so_cred); 262 SOCKBUF_LOCK_DESTROY(&so->so_snd); 263 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 264 uma_zfree(socket_zone, so); 265 mtx_lock(&so_global_mtx); 266 --numopensockets; 267 mtx_unlock(&so_global_mtx); 268 } 269 270 /* 271 * solisten() transitions a socket from a non-listening state to a listening 272 * state, but can also be used to update the listen queue depth on an 273 * existing listen socket. The protocol will call back into the sockets 274 * layer using solisten_proto_check() and solisten_proto() to check and set 275 * socket-layer listen state. Call backs are used so that the protocol can 276 * acquire both protocol and socket layer locks in whatever order is reuiqred 277 * by the protocol. 278 * 279 * Protocol implementors are advised to hold the socket lock across the 280 * socket-layer test and set to avoid races at the socket layer. 281 */ 282 int 283 solisten(so, backlog, td) 284 struct socket *so; 285 int backlog; 286 struct thread *td; 287 { 288 int error; 289 290 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td); 291 if (error) 292 return (error); 293 294 /* 295 * XXXRW: The following state adjustment should occur in 296 * solisten_proto(), but we don't currently pass the backlog request 297 * to the protocol via pru_listen(). 298 */ 299 if (backlog < 0 || backlog > somaxconn) 300 backlog = somaxconn; 301 so->so_qlimit = backlog; 302 return (0); 303 } 304 305 int 306 solisten_proto_check(so) 307 struct socket *so; 308 { 309 310 SOCK_LOCK_ASSERT(so); 311 312 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 313 SS_ISDISCONNECTING)) 314 return (EINVAL); 315 return (0); 316 } 317 318 void 319 solisten_proto(so) 320 struct socket *so; 321 { 322 323 SOCK_LOCK_ASSERT(so); 324 325 so->so_options |= SO_ACCEPTCONN; 326 } 327 328 /* 329 * Attempt to free a socket. This should really be sotryfree(). 330 * 331 * We free the socket if the protocol is no longer interested in the socket, 332 * there's no file descriptor reference, and the refcount is 0. While the 333 * calling macro sotryfree() tests the refcount, sofree() has to test it 334 * again as it's possible to race with an accept()ing thread if the socket is 335 * in an listen queue of a listen socket, as being in the listen queue 336 * doesn't elevate the reference count. sofree() acquires the accept mutex 337 * early for this test in order to avoid that race. 338 */ 339 void 340 sofree(so) 341 struct socket *so; 342 { 343 struct socket *head; 344 345 ACCEPT_LOCK_ASSERT(); 346 SOCK_LOCK_ASSERT(so); 347 348 if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 || 349 so->so_count != 0) { 350 SOCK_UNLOCK(so); 351 ACCEPT_UNLOCK(); 352 return; 353 } 354 355 head = so->so_head; 356 if (head != NULL) { 357 KASSERT((so->so_qstate & SQ_COMP) != 0 || 358 (so->so_qstate & SQ_INCOMP) != 0, 359 ("sofree: so_head != NULL, but neither SQ_COMP nor " 360 "SQ_INCOMP")); 361 KASSERT((so->so_qstate & SQ_COMP) == 0 || 362 (so->so_qstate & SQ_INCOMP) == 0, 363 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 364 /* 365 * accept(2) is responsible draining the completed 366 * connection queue and freeing those sockets, so 367 * we just return here if this socket is currently 368 * on the completed connection queue. Otherwise, 369 * accept(2) may hang after select(2) has indicating 370 * that a listening socket was ready. If it's an 371 * incomplete connection, we remove it from the queue 372 * and free it; otherwise, it won't be released until 373 * the listening socket is closed. 374 */ 375 if ((so->so_qstate & SQ_COMP) != 0) { 376 SOCK_UNLOCK(so); 377 ACCEPT_UNLOCK(); 378 return; 379 } 380 TAILQ_REMOVE(&head->so_incomp, so, so_list); 381 head->so_incqlen--; 382 so->so_qstate &= ~SQ_INCOMP; 383 so->so_head = NULL; 384 } 385 KASSERT((so->so_qstate & SQ_COMP) == 0 && 386 (so->so_qstate & SQ_INCOMP) == 0, 387 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 388 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 389 SOCK_UNLOCK(so); 390 ACCEPT_UNLOCK(); 391 SOCKBUF_LOCK(&so->so_snd); 392 so->so_snd.sb_flags |= SB_NOINTR; 393 (void)sblock(&so->so_snd, M_WAITOK); 394 /* 395 * socantsendmore_locked() drops the socket buffer mutex so that it 396 * can safely perform wakeups. Re-acquire the mutex before 397 * continuing. 398 */ 399 socantsendmore_locked(so); 400 SOCKBUF_LOCK(&so->so_snd); 401 sbunlock(&so->so_snd); 402 sbrelease_locked(&so->so_snd, so); 403 SOCKBUF_UNLOCK(&so->so_snd); 404 sorflush(so); 405 knlist_destroy(&so->so_rcv.sb_sel.si_note); 406 knlist_destroy(&so->so_snd.sb_sel.si_note); 407 sodealloc(so); 408 } 409 410 /* 411 * Close a socket on last file table reference removal. 412 * Initiate disconnect if connected. 413 * Free socket when disconnect complete. 414 * 415 * This function will sorele() the socket. Note that soclose() may be 416 * called prior to the ref count reaching zero. The actual socket 417 * structure will not be freed until the ref count reaches zero. 418 */ 419 int 420 soclose(so) 421 struct socket *so; 422 { 423 int error = 0; 424 425 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 426 427 funsetown(&so->so_sigio); 428 if (so->so_options & SO_ACCEPTCONN) { 429 struct socket *sp; 430 ACCEPT_LOCK(); 431 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 432 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 433 so->so_incqlen--; 434 sp->so_qstate &= ~SQ_INCOMP; 435 sp->so_head = NULL; 436 ACCEPT_UNLOCK(); 437 (void) soabort(sp); 438 ACCEPT_LOCK(); 439 } 440 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 441 TAILQ_REMOVE(&so->so_comp, sp, so_list); 442 so->so_qlen--; 443 sp->so_qstate &= ~SQ_COMP; 444 sp->so_head = NULL; 445 ACCEPT_UNLOCK(); 446 (void) soabort(sp); 447 ACCEPT_LOCK(); 448 } 449 ACCEPT_UNLOCK(); 450 } 451 if (so->so_pcb == NULL) 452 goto discard; 453 if (so->so_state & SS_ISCONNECTED) { 454 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 455 error = sodisconnect(so); 456 if (error) 457 goto drop; 458 } 459 if (so->so_options & SO_LINGER) { 460 if ((so->so_state & SS_ISDISCONNECTING) && 461 (so->so_state & SS_NBIO)) 462 goto drop; 463 while (so->so_state & SS_ISCONNECTED) { 464 error = tsleep(&so->so_timeo, 465 PSOCK | PCATCH, "soclos", so->so_linger * hz); 466 if (error) 467 break; 468 } 469 } 470 } 471 drop: 472 if (so->so_pcb != NULL) { 473 int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); 474 if (error == 0) 475 error = error2; 476 } 477 discard: 478 ACCEPT_LOCK(); 479 SOCK_LOCK(so); 480 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 481 so->so_state |= SS_NOFDREF; 482 sorele(so); 483 return (error); 484 } 485 486 /* 487 * soabort() must not be called with any socket locks held, as it calls 488 * into the protocol, which will call back into the socket code causing 489 * it to acquire additional socket locks that may cause recursion or lock 490 * order reversals. 491 */ 492 int 493 soabort(so) 494 struct socket *so; 495 { 496 int error; 497 498 error = (*so->so_proto->pr_usrreqs->pru_abort)(so); 499 if (error) { 500 ACCEPT_LOCK(); 501 SOCK_LOCK(so); 502 sotryfree(so); /* note: does not decrement the ref count */ 503 return error; 504 } 505 return (0); 506 } 507 508 int 509 soaccept(so, nam) 510 struct socket *so; 511 struct sockaddr **nam; 512 { 513 int error; 514 515 SOCK_LOCK(so); 516 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 517 so->so_state &= ~SS_NOFDREF; 518 SOCK_UNLOCK(so); 519 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 520 return (error); 521 } 522 523 int 524 soconnect(so, nam, td) 525 struct socket *so; 526 struct sockaddr *nam; 527 struct thread *td; 528 { 529 int error; 530 531 if (so->so_options & SO_ACCEPTCONN) 532 return (EOPNOTSUPP); 533 /* 534 * If protocol is connection-based, can only connect once. 535 * Otherwise, if connected, try to disconnect first. 536 * This allows user to disconnect by connecting to, e.g., 537 * a null address. 538 */ 539 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 540 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 541 (error = sodisconnect(so)))) { 542 error = EISCONN; 543 } else { 544 /* 545 * Prevent accumulated error from previous connection 546 * from biting us. 547 */ 548 so->so_error = 0; 549 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 550 } 551 552 return (error); 553 } 554 555 int 556 soconnect2(so1, so2) 557 struct socket *so1; 558 struct socket *so2; 559 { 560 561 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 562 } 563 564 int 565 sodisconnect(so) 566 struct socket *so; 567 { 568 int error; 569 570 if ((so->so_state & SS_ISCONNECTED) == 0) 571 return (ENOTCONN); 572 if (so->so_state & SS_ISDISCONNECTING) 573 return (EALREADY); 574 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 575 return (error); 576 } 577 578 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 579 /* 580 * Send on a socket. 581 * If send must go all at once and message is larger than 582 * send buffering, then hard error. 583 * Lock against other senders. 584 * If must go all at once and not enough room now, then 585 * inform user that this would block and do nothing. 586 * Otherwise, if nonblocking, send as much as possible. 587 * The data to be sent is described by "uio" if nonzero, 588 * otherwise by the mbuf chain "top" (which must be null 589 * if uio is not). Data provided in mbuf chain must be small 590 * enough to send all at once. 591 * 592 * Returns nonzero on error, timeout or signal; callers 593 * must check for short counts if EINTR/ERESTART are returned. 594 * Data and control buffers are freed on return. 595 */ 596 597 #ifdef ZERO_COPY_SOCKETS 598 struct so_zerocopy_stats{ 599 int size_ok; 600 int align_ok; 601 int found_ifp; 602 }; 603 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 604 #include <netinet/in.h> 605 #include <net/route.h> 606 #include <netinet/in_pcb.h> 607 #include <vm/vm.h> 608 #include <vm/vm_page.h> 609 #include <vm/vm_object.h> 610 #endif /*ZERO_COPY_SOCKETS*/ 611 612 int 613 sosend(so, addr, uio, top, control, flags, td) 614 struct socket *so; 615 struct sockaddr *addr; 616 struct uio *uio; 617 struct mbuf *top; 618 struct mbuf *control; 619 int flags; 620 struct thread *td; 621 { 622 struct mbuf **mp; 623 struct mbuf *m; 624 long space, len = 0, resid; 625 int clen = 0, error, dontroute; 626 int atomic = sosendallatonce(so) || top; 627 #ifdef ZERO_COPY_SOCKETS 628 int cow_send; 629 #endif /* ZERO_COPY_SOCKETS */ 630 631 if (uio != NULL) 632 resid = uio->uio_resid; 633 else 634 resid = top->m_pkthdr.len; 635 /* 636 * In theory resid should be unsigned. 637 * However, space must be signed, as it might be less than 0 638 * if we over-committed, and we must use a signed comparison 639 * of space and resid. On the other hand, a negative resid 640 * causes us to loop sending 0-length segments to the protocol. 641 * 642 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 643 * type sockets since that's an error. 644 */ 645 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 646 error = EINVAL; 647 goto out; 648 } 649 650 dontroute = 651 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 652 (so->so_proto->pr_flags & PR_ATOMIC); 653 if (td != NULL) 654 td->td_proc->p_stats->p_ru.ru_msgsnd++; 655 if (control != NULL) 656 clen = control->m_len; 657 #define snderr(errno) { error = (errno); goto release; } 658 659 SOCKBUF_LOCK(&so->so_snd); 660 restart: 661 SOCKBUF_LOCK_ASSERT(&so->so_snd); 662 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 663 if (error) 664 goto out_locked; 665 do { 666 SOCKBUF_LOCK_ASSERT(&so->so_snd); 667 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 668 snderr(EPIPE); 669 if (so->so_error) { 670 error = so->so_error; 671 so->so_error = 0; 672 goto release; 673 } 674 if ((so->so_state & SS_ISCONNECTED) == 0) { 675 /* 676 * `sendto' and `sendmsg' is allowed on a connection- 677 * based socket if it supports implied connect. 678 * Return ENOTCONN if not connected and no address is 679 * supplied. 680 */ 681 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 682 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 683 if ((so->so_state & SS_ISCONFIRMING) == 0 && 684 !(resid == 0 && clen != 0)) 685 snderr(ENOTCONN); 686 } else if (addr == NULL) 687 snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 688 ENOTCONN : EDESTADDRREQ); 689 } 690 space = sbspace(&so->so_snd); 691 if (flags & MSG_OOB) 692 space += 1024; 693 if ((atomic && resid > so->so_snd.sb_hiwat) || 694 clen > so->so_snd.sb_hiwat) 695 snderr(EMSGSIZE); 696 if (space < resid + clen && 697 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 698 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) 699 snderr(EWOULDBLOCK); 700 sbunlock(&so->so_snd); 701 error = sbwait(&so->so_snd); 702 if (error) 703 goto out_locked; 704 goto restart; 705 } 706 SOCKBUF_UNLOCK(&so->so_snd); 707 mp = ⊤ 708 space -= clen; 709 do { 710 if (uio == NULL) { 711 /* 712 * Data is prepackaged in "top". 713 */ 714 resid = 0; 715 if (flags & MSG_EOR) 716 top->m_flags |= M_EOR; 717 } else do { 718 #ifdef ZERO_COPY_SOCKETS 719 cow_send = 0; 720 #endif /* ZERO_COPY_SOCKETS */ 721 if (resid >= MINCLSIZE) { 722 #ifdef ZERO_COPY_SOCKETS 723 if (top == NULL) { 724 MGETHDR(m, M_TRYWAIT, MT_DATA); 725 if (m == NULL) { 726 error = ENOBUFS; 727 SOCKBUF_LOCK(&so->so_snd); 728 goto release; 729 } 730 m->m_pkthdr.len = 0; 731 m->m_pkthdr.rcvif = (struct ifnet *)0; 732 } else { 733 MGET(m, M_TRYWAIT, MT_DATA); 734 if (m == NULL) { 735 error = ENOBUFS; 736 SOCKBUF_LOCK(&so->so_snd); 737 goto release; 738 } 739 } 740 if (so_zero_copy_send && 741 resid>=PAGE_SIZE && 742 space>=PAGE_SIZE && 743 uio->uio_iov->iov_len>=PAGE_SIZE) { 744 so_zerocp_stats.size_ok++; 745 if (!((vm_offset_t) 746 uio->uio_iov->iov_base & PAGE_MASK)){ 747 so_zerocp_stats.align_ok++; 748 cow_send = socow_setup(m, uio); 749 } 750 } 751 if (!cow_send) { 752 MCLGET(m, M_TRYWAIT); 753 if ((m->m_flags & M_EXT) == 0) { 754 m_free(m); 755 m = NULL; 756 } else { 757 len = min(min(MCLBYTES, resid), space); 758 } 759 } else 760 len = PAGE_SIZE; 761 #else /* ZERO_COPY_SOCKETS */ 762 if (top == NULL) { 763 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 764 m->m_pkthdr.len = 0; 765 m->m_pkthdr.rcvif = (struct ifnet *)0; 766 } else 767 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 768 len = min(min(MCLBYTES, resid), space); 769 #endif /* ZERO_COPY_SOCKETS */ 770 } else { 771 if (top == NULL) { 772 m = m_gethdr(M_TRYWAIT, MT_DATA); 773 m->m_pkthdr.len = 0; 774 m->m_pkthdr.rcvif = (struct ifnet *)0; 775 776 len = min(min(MHLEN, resid), space); 777 /* 778 * For datagram protocols, leave room 779 * for protocol headers in first mbuf. 780 */ 781 if (atomic && m && len < MHLEN) 782 MH_ALIGN(m, len); 783 } else { 784 m = m_get(M_TRYWAIT, MT_DATA); 785 len = min(min(MLEN, resid), space); 786 } 787 } 788 if (m == NULL) { 789 error = ENOBUFS; 790 SOCKBUF_LOCK(&so->so_snd); 791 goto release; 792 } 793 794 space -= len; 795 #ifdef ZERO_COPY_SOCKETS 796 if (cow_send) 797 error = 0; 798 else 799 #endif /* ZERO_COPY_SOCKETS */ 800 error = uiomove(mtod(m, void *), (int)len, uio); 801 resid = uio->uio_resid; 802 m->m_len = len; 803 *mp = m; 804 top->m_pkthdr.len += len; 805 if (error) { 806 SOCKBUF_LOCK(&so->so_snd); 807 goto release; 808 } 809 mp = &m->m_next; 810 if (resid <= 0) { 811 if (flags & MSG_EOR) 812 top->m_flags |= M_EOR; 813 break; 814 } 815 } while (space > 0 && atomic); 816 if (dontroute) { 817 SOCK_LOCK(so); 818 so->so_options |= SO_DONTROUTE; 819 SOCK_UNLOCK(so); 820 } 821 /* 822 * XXX all the SBS_CANTSENDMORE checks previously 823 * done could be out of date. We could have recieved 824 * a reset packet in an interrupt or maybe we slept 825 * while doing page faults in uiomove() etc. We could 826 * probably recheck again inside the locking protection 827 * here, but there are probably other places that this 828 * also happens. We must rethink this. 829 */ 830 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 831 (flags & MSG_OOB) ? PRUS_OOB : 832 /* 833 * If the user set MSG_EOF, the protocol 834 * understands this flag and nothing left to 835 * send then use PRU_SEND_EOF instead of PRU_SEND. 836 */ 837 ((flags & MSG_EOF) && 838 (so->so_proto->pr_flags & PR_IMPLOPCL) && 839 (resid <= 0)) ? 840 PRUS_EOF : 841 /* If there is more to send set PRUS_MORETOCOME */ 842 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 843 top, addr, control, td); 844 if (dontroute) { 845 SOCK_LOCK(so); 846 so->so_options &= ~SO_DONTROUTE; 847 SOCK_UNLOCK(so); 848 } 849 clen = 0; 850 control = NULL; 851 top = NULL; 852 mp = ⊤ 853 if (error) { 854 SOCKBUF_LOCK(&so->so_snd); 855 goto release; 856 } 857 } while (resid && space > 0); 858 SOCKBUF_LOCK(&so->so_snd); 859 } while (resid); 860 861 release: 862 SOCKBUF_LOCK_ASSERT(&so->so_snd); 863 sbunlock(&so->so_snd); 864 out_locked: 865 SOCKBUF_LOCK_ASSERT(&so->so_snd); 866 SOCKBUF_UNLOCK(&so->so_snd); 867 out: 868 if (top != NULL) 869 m_freem(top); 870 if (control != NULL) 871 m_freem(control); 872 return (error); 873 } 874 875 /* 876 * The part of soreceive() that implements reading non-inline out-of-band 877 * data from a socket. For more complete comments, see soreceive(), from 878 * which this code originated. 879 * 880 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 881 * unable to return an mbuf chain to the caller. 882 */ 883 static int 884 soreceive_rcvoob(so, uio, flags) 885 struct socket *so; 886 struct uio *uio; 887 int flags; 888 { 889 struct protosw *pr = so->so_proto; 890 struct mbuf *m; 891 int error; 892 893 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 894 895 m = m_get(M_TRYWAIT, MT_DATA); 896 if (m == NULL) 897 return (ENOBUFS); 898 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 899 if (error) 900 goto bad; 901 do { 902 #ifdef ZERO_COPY_SOCKETS 903 if (so_zero_copy_receive) { 904 int disposable; 905 906 if ((m->m_flags & M_EXT) 907 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 908 disposable = 1; 909 else 910 disposable = 0; 911 912 error = uiomoveco(mtod(m, void *), 913 min(uio->uio_resid, m->m_len), 914 uio, disposable); 915 } else 916 #endif /* ZERO_COPY_SOCKETS */ 917 error = uiomove(mtod(m, void *), 918 (int) min(uio->uio_resid, m->m_len), uio); 919 m = m_free(m); 920 } while (uio->uio_resid && error == 0 && m); 921 bad: 922 if (m != NULL) 923 m_freem(m); 924 return (error); 925 } 926 927 /* 928 * Following replacement or removal of the first mbuf on the first mbuf chain 929 * of a socket buffer, push necessary state changes back into the socket 930 * buffer so that other consumers see the values consistently. 'nextrecord' 931 * is the callers locally stored value of the original value of 932 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 933 * NOTE: 'nextrecord' may be NULL. 934 */ 935 static __inline void 936 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 937 { 938 939 SOCKBUF_LOCK_ASSERT(sb); 940 /* 941 * First, update for the new value of nextrecord. If necessary, make 942 * it the first record. 943 */ 944 if (sb->sb_mb != NULL) 945 sb->sb_mb->m_nextpkt = nextrecord; 946 else 947 sb->sb_mb = nextrecord; 948 949 /* 950 * Now update any dependent socket buffer fields to reflect the new 951 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 952 * addition of a second clause that takes care of the case where 953 * sb_mb has been updated, but remains the last record. 954 */ 955 if (sb->sb_mb == NULL) { 956 sb->sb_mbtail = NULL; 957 sb->sb_lastrecord = NULL; 958 } else if (sb->sb_mb->m_nextpkt == NULL) 959 sb->sb_lastrecord = sb->sb_mb; 960 } 961 962 963 /* 964 * Implement receive operations on a socket. 965 * We depend on the way that records are added to the sockbuf 966 * by sbappend*. In particular, each record (mbufs linked through m_next) 967 * must begin with an address if the protocol so specifies, 968 * followed by an optional mbuf or mbufs containing ancillary data, 969 * and then zero or more mbufs of data. 970 * In order to avoid blocking network interrupts for the entire time here, 971 * we splx() while doing the actual copy to user space. 972 * Although the sockbuf is locked, new data may still be appended, 973 * and thus we must maintain consistency of the sockbuf during that time. 974 * 975 * The caller may receive the data as a single mbuf chain by supplying 976 * an mbuf **mp0 for use in returning the chain. The uio is then used 977 * only for the count in uio_resid. 978 */ 979 int 980 soreceive(so, psa, uio, mp0, controlp, flagsp) 981 struct socket *so; 982 struct sockaddr **psa; 983 struct uio *uio; 984 struct mbuf **mp0; 985 struct mbuf **controlp; 986 int *flagsp; 987 { 988 struct mbuf *m, **mp; 989 int flags, len, error, offset; 990 struct protosw *pr = so->so_proto; 991 struct mbuf *nextrecord; 992 int moff, type = 0; 993 int orig_resid = uio->uio_resid; 994 995 mp = mp0; 996 if (psa != NULL) 997 *psa = NULL; 998 if (controlp != NULL) 999 *controlp = NULL; 1000 if (flagsp != NULL) 1001 flags = *flagsp &~ MSG_EOR; 1002 else 1003 flags = 0; 1004 if (flags & MSG_OOB) 1005 return (soreceive_rcvoob(so, uio, flags)); 1006 if (mp != NULL) 1007 *mp = NULL; 1008 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1009 && uio->uio_resid) 1010 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1011 1012 SOCKBUF_LOCK(&so->so_rcv); 1013 restart: 1014 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1015 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1016 if (error) 1017 goto out; 1018 1019 m = so->so_rcv.sb_mb; 1020 /* 1021 * If we have less data than requested, block awaiting more 1022 * (subject to any timeout) if: 1023 * 1. the current count is less than the low water mark, or 1024 * 2. MSG_WAITALL is set, and it is possible to do the entire 1025 * receive operation at once if we block (resid <= hiwat). 1026 * 3. MSG_DONTWAIT is not set 1027 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1028 * we have to do the receive in sections, and thus risk returning 1029 * a short count if a timeout or signal occurs after we start. 1030 */ 1031 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1032 so->so_rcv.sb_cc < uio->uio_resid) && 1033 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1034 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1035 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1036 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1037 ("receive: m == %p so->so_rcv.sb_cc == %u", 1038 m, so->so_rcv.sb_cc)); 1039 if (so->so_error) { 1040 if (m != NULL) 1041 goto dontblock; 1042 error = so->so_error; 1043 if ((flags & MSG_PEEK) == 0) 1044 so->so_error = 0; 1045 goto release; 1046 } 1047 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1048 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1049 if (m) 1050 goto dontblock; 1051 else 1052 goto release; 1053 } 1054 for (; m != NULL; m = m->m_next) 1055 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1056 m = so->so_rcv.sb_mb; 1057 goto dontblock; 1058 } 1059 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1060 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1061 error = ENOTCONN; 1062 goto release; 1063 } 1064 if (uio->uio_resid == 0) 1065 goto release; 1066 if ((so->so_state & SS_NBIO) || 1067 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1068 error = EWOULDBLOCK; 1069 goto release; 1070 } 1071 SBLASTRECORDCHK(&so->so_rcv); 1072 SBLASTMBUFCHK(&so->so_rcv); 1073 sbunlock(&so->so_rcv); 1074 error = sbwait(&so->so_rcv); 1075 if (error) 1076 goto out; 1077 goto restart; 1078 } 1079 dontblock: 1080 /* 1081 * From this point onward, we maintain 'nextrecord' as a cache of the 1082 * pointer to the next record in the socket buffer. We must keep the 1083 * various socket buffer pointers and local stack versions of the 1084 * pointers in sync, pushing out modifications before dropping the 1085 * socket buffer mutex, and re-reading them when picking it up. 1086 * 1087 * Otherwise, we will race with the network stack appending new data 1088 * or records onto the socket buffer by using inconsistent/stale 1089 * versions of the field, possibly resulting in socket buffer 1090 * corruption. 1091 * 1092 * By holding the high-level sblock(), we prevent simultaneous 1093 * readers from pulling off the front of the socket buffer. 1094 */ 1095 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1096 if (uio->uio_td) 1097 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 1098 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1099 SBLASTRECORDCHK(&so->so_rcv); 1100 SBLASTMBUFCHK(&so->so_rcv); 1101 nextrecord = m->m_nextpkt; 1102 if (pr->pr_flags & PR_ADDR) { 1103 KASSERT(m->m_type == MT_SONAME, 1104 ("m->m_type == %d", m->m_type)); 1105 orig_resid = 0; 1106 if (psa != NULL) 1107 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1108 M_NOWAIT); 1109 if (flags & MSG_PEEK) { 1110 m = m->m_next; 1111 } else { 1112 sbfree(&so->so_rcv, m); 1113 so->so_rcv.sb_mb = m_free(m); 1114 m = so->so_rcv.sb_mb; 1115 sockbuf_pushsync(&so->so_rcv, nextrecord); 1116 } 1117 } 1118 1119 /* 1120 * Process one or more MT_CONTROL mbufs present before any data mbufs 1121 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1122 * just copy the data; if !MSG_PEEK, we call into the protocol to 1123 * perform externalization (or freeing if controlp == NULL). 1124 */ 1125 if (m != NULL && m->m_type == MT_CONTROL) { 1126 struct mbuf *cm = NULL, *cmn; 1127 struct mbuf **cme = &cm; 1128 1129 do { 1130 if (flags & MSG_PEEK) { 1131 if (controlp != NULL) { 1132 *controlp = m_copy(m, 0, m->m_len); 1133 controlp = &(*controlp)->m_next; 1134 } 1135 m = m->m_next; 1136 } else { 1137 sbfree(&so->so_rcv, m); 1138 so->so_rcv.sb_mb = m->m_next; 1139 m->m_next = NULL; 1140 *cme = m; 1141 cme = &(*cme)->m_next; 1142 m = so->so_rcv.sb_mb; 1143 } 1144 } while (m != NULL && m->m_type == MT_CONTROL); 1145 if ((flags & MSG_PEEK) == 0) 1146 sockbuf_pushsync(&so->so_rcv, nextrecord); 1147 while (cm != NULL) { 1148 cmn = cm->m_next; 1149 cm->m_next = NULL; 1150 if (pr->pr_domain->dom_externalize != NULL) { 1151 SOCKBUF_UNLOCK(&so->so_rcv); 1152 error = (*pr->pr_domain->dom_externalize) 1153 (cm, controlp); 1154 SOCKBUF_LOCK(&so->so_rcv); 1155 } else if (controlp != NULL) 1156 *controlp = cm; 1157 else 1158 m_freem(cm); 1159 if (controlp != NULL) { 1160 orig_resid = 0; 1161 while (*controlp != NULL) 1162 controlp = &(*controlp)->m_next; 1163 } 1164 cm = cmn; 1165 } 1166 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1167 orig_resid = 0; 1168 } 1169 if (m != NULL) { 1170 if ((flags & MSG_PEEK) == 0) { 1171 KASSERT(m->m_nextpkt == nextrecord, 1172 ("soreceive: post-control, nextrecord !sync")); 1173 if (nextrecord == NULL) { 1174 KASSERT(so->so_rcv.sb_mb == m, 1175 ("soreceive: post-control, sb_mb!=m")); 1176 KASSERT(so->so_rcv.sb_lastrecord == m, 1177 ("soreceive: post-control, lastrecord!=m")); 1178 } 1179 } 1180 type = m->m_type; 1181 if (type == MT_OOBDATA) 1182 flags |= MSG_OOB; 1183 } else { 1184 if ((flags & MSG_PEEK) == 0) { 1185 KASSERT(so->so_rcv.sb_mb == nextrecord, 1186 ("soreceive: sb_mb != nextrecord")); 1187 if (so->so_rcv.sb_mb == NULL) { 1188 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1189 ("soreceive: sb_lastercord != NULL")); 1190 } 1191 } 1192 } 1193 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1194 SBLASTRECORDCHK(&so->so_rcv); 1195 SBLASTMBUFCHK(&so->so_rcv); 1196 1197 /* 1198 * Now continue to read any data mbufs off of the head of the socket 1199 * buffer until the read request is satisfied. Note that 'type' is 1200 * used to store the type of any mbuf reads that have happened so far 1201 * such that soreceive() can stop reading if the type changes, which 1202 * causes soreceive() to return only one of regular data and inline 1203 * out-of-band data in a single socket receive operation. 1204 */ 1205 moff = 0; 1206 offset = 0; 1207 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1208 /* 1209 * If the type of mbuf has changed since the last mbuf 1210 * examined ('type'), end the receive operation. 1211 */ 1212 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1213 if (m->m_type == MT_OOBDATA) { 1214 if (type != MT_OOBDATA) 1215 break; 1216 } else if (type == MT_OOBDATA) 1217 break; 1218 else 1219 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 1220 ("m->m_type == %d", m->m_type)); 1221 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1222 len = uio->uio_resid; 1223 if (so->so_oobmark && len > so->so_oobmark - offset) 1224 len = so->so_oobmark - offset; 1225 if (len > m->m_len - moff) 1226 len = m->m_len - moff; 1227 /* 1228 * If mp is set, just pass back the mbufs. 1229 * Otherwise copy them out via the uio, then free. 1230 * Sockbuf must be consistent here (points to current mbuf, 1231 * it points to next record) when we drop priority; 1232 * we must note any additions to the sockbuf when we 1233 * block interrupts again. 1234 */ 1235 if (mp == NULL) { 1236 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1237 SBLASTRECORDCHK(&so->so_rcv); 1238 SBLASTMBUFCHK(&so->so_rcv); 1239 SOCKBUF_UNLOCK(&so->so_rcv); 1240 #ifdef ZERO_COPY_SOCKETS 1241 if (so_zero_copy_receive) { 1242 int disposable; 1243 1244 if ((m->m_flags & M_EXT) 1245 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1246 disposable = 1; 1247 else 1248 disposable = 0; 1249 1250 error = uiomoveco(mtod(m, char *) + moff, 1251 (int)len, uio, 1252 disposable); 1253 } else 1254 #endif /* ZERO_COPY_SOCKETS */ 1255 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1256 SOCKBUF_LOCK(&so->so_rcv); 1257 if (error) 1258 goto release; 1259 } else 1260 uio->uio_resid -= len; 1261 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1262 if (len == m->m_len - moff) { 1263 if (m->m_flags & M_EOR) 1264 flags |= MSG_EOR; 1265 if (flags & MSG_PEEK) { 1266 m = m->m_next; 1267 moff = 0; 1268 } else { 1269 nextrecord = m->m_nextpkt; 1270 sbfree(&so->so_rcv, m); 1271 if (mp != NULL) { 1272 *mp = m; 1273 mp = &m->m_next; 1274 so->so_rcv.sb_mb = m = m->m_next; 1275 *mp = NULL; 1276 } else { 1277 so->so_rcv.sb_mb = m_free(m); 1278 m = so->so_rcv.sb_mb; 1279 } 1280 if (m != NULL) { 1281 m->m_nextpkt = nextrecord; 1282 if (nextrecord == NULL) 1283 so->so_rcv.sb_lastrecord = m; 1284 } else { 1285 so->so_rcv.sb_mb = nextrecord; 1286 SB_EMPTY_FIXUP(&so->so_rcv); 1287 } 1288 SBLASTRECORDCHK(&so->so_rcv); 1289 SBLASTMBUFCHK(&so->so_rcv); 1290 } 1291 } else { 1292 if (flags & MSG_PEEK) 1293 moff += len; 1294 else { 1295 if (mp != NULL) { 1296 int copy_flag; 1297 1298 if (flags & MSG_DONTWAIT) 1299 copy_flag = M_DONTWAIT; 1300 else 1301 copy_flag = M_TRYWAIT; 1302 if (copy_flag == M_TRYWAIT) 1303 SOCKBUF_UNLOCK(&so->so_rcv); 1304 *mp = m_copym(m, 0, len, copy_flag); 1305 if (copy_flag == M_TRYWAIT) 1306 SOCKBUF_LOCK(&so->so_rcv); 1307 if (*mp == NULL) { 1308 /* 1309 * m_copym() couldn't allocate an mbuf. 1310 * Adjust uio_resid back (it was adjusted 1311 * down by len bytes, which we didn't end 1312 * up "copying" over). 1313 */ 1314 uio->uio_resid += len; 1315 break; 1316 } 1317 } 1318 m->m_data += len; 1319 m->m_len -= len; 1320 so->so_rcv.sb_cc -= len; 1321 } 1322 } 1323 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1324 if (so->so_oobmark) { 1325 if ((flags & MSG_PEEK) == 0) { 1326 so->so_oobmark -= len; 1327 if (so->so_oobmark == 0) { 1328 so->so_rcv.sb_state |= SBS_RCVATMARK; 1329 break; 1330 } 1331 } else { 1332 offset += len; 1333 if (offset == so->so_oobmark) 1334 break; 1335 } 1336 } 1337 if (flags & MSG_EOR) 1338 break; 1339 /* 1340 * If the MSG_WAITALL flag is set (for non-atomic socket), 1341 * we must not quit until "uio->uio_resid == 0" or an error 1342 * termination. If a signal/timeout occurs, return 1343 * with a short count but without error. 1344 * Keep sockbuf locked against other readers. 1345 */ 1346 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1347 !sosendallatonce(so) && nextrecord == NULL) { 1348 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1349 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1350 break; 1351 /* 1352 * Notify the protocol that some data has been 1353 * drained before blocking. 1354 */ 1355 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) { 1356 SOCKBUF_UNLOCK(&so->so_rcv); 1357 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1358 SOCKBUF_LOCK(&so->so_rcv); 1359 } 1360 SBLASTRECORDCHK(&so->so_rcv); 1361 SBLASTMBUFCHK(&so->so_rcv); 1362 error = sbwait(&so->so_rcv); 1363 if (error) 1364 goto release; 1365 m = so->so_rcv.sb_mb; 1366 if (m != NULL) 1367 nextrecord = m->m_nextpkt; 1368 } 1369 } 1370 1371 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1372 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1373 flags |= MSG_TRUNC; 1374 if ((flags & MSG_PEEK) == 0) 1375 (void) sbdroprecord_locked(&so->so_rcv); 1376 } 1377 if ((flags & MSG_PEEK) == 0) { 1378 if (m == NULL) { 1379 /* 1380 * First part is an inline SB_EMPTY_FIXUP(). Second 1381 * part makes sure sb_lastrecord is up-to-date if 1382 * there is still data in the socket buffer. 1383 */ 1384 so->so_rcv.sb_mb = nextrecord; 1385 if (so->so_rcv.sb_mb == NULL) { 1386 so->so_rcv.sb_mbtail = NULL; 1387 so->so_rcv.sb_lastrecord = NULL; 1388 } else if (nextrecord->m_nextpkt == NULL) 1389 so->so_rcv.sb_lastrecord = nextrecord; 1390 } 1391 SBLASTRECORDCHK(&so->so_rcv); 1392 SBLASTMBUFCHK(&so->so_rcv); 1393 /* 1394 * If soreceive() is being done from the socket callback, then 1395 * don't need to generate ACK to peer to update window, since 1396 * ACK will be generated on return to TCP. 1397 */ 1398 if (!(flags & MSG_SOCALLBCK) && 1399 (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) { 1400 SOCKBUF_UNLOCK(&so->so_rcv); 1401 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1402 SOCKBUF_LOCK(&so->so_rcv); 1403 } 1404 } 1405 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1406 if (orig_resid == uio->uio_resid && orig_resid && 1407 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1408 sbunlock(&so->so_rcv); 1409 goto restart; 1410 } 1411 1412 if (flagsp != NULL) 1413 *flagsp |= flags; 1414 release: 1415 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1416 sbunlock(&so->so_rcv); 1417 out: 1418 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1419 SOCKBUF_UNLOCK(&so->so_rcv); 1420 return (error); 1421 } 1422 1423 int 1424 soshutdown(so, how) 1425 struct socket *so; 1426 int how; 1427 { 1428 struct protosw *pr = so->so_proto; 1429 1430 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1431 return (EINVAL); 1432 1433 if (how != SHUT_WR) 1434 sorflush(so); 1435 if (how != SHUT_RD) 1436 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1437 return (0); 1438 } 1439 1440 void 1441 sorflush(so) 1442 struct socket *so; 1443 { 1444 struct sockbuf *sb = &so->so_rcv; 1445 struct protosw *pr = so->so_proto; 1446 struct sockbuf asb; 1447 1448 /* 1449 * XXXRW: This is quite ugly. Previously, this code made a copy of 1450 * the socket buffer, then zero'd the original to clear the buffer 1451 * fields. However, with mutexes in the socket buffer, this causes 1452 * problems. We only clear the zeroable bits of the original; 1453 * however, we have to initialize and destroy the mutex in the copy 1454 * so that dom_dispose() and sbrelease() can lock t as needed. 1455 */ 1456 SOCKBUF_LOCK(sb); 1457 sb->sb_flags |= SB_NOINTR; 1458 (void) sblock(sb, M_WAITOK); 1459 /* 1460 * socantrcvmore_locked() drops the socket buffer mutex so that it 1461 * can safely perform wakeups. Re-acquire the mutex before 1462 * continuing. 1463 */ 1464 socantrcvmore_locked(so); 1465 SOCKBUF_LOCK(sb); 1466 sbunlock(sb); 1467 /* 1468 * Invalidate/clear most of the sockbuf structure, but leave 1469 * selinfo and mutex data unchanged. 1470 */ 1471 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1472 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1473 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1474 bzero(&sb->sb_startzero, 1475 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1476 SOCKBUF_UNLOCK(sb); 1477 1478 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1479 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1480 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1481 sbrelease(&asb, so); 1482 SOCKBUF_LOCK_DESTROY(&asb); 1483 } 1484 1485 /* 1486 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1487 * an additional variant to handle the case where the option value needs 1488 * to be some kind of integer, but not a specific size. 1489 * In addition to their use here, these functions are also called by the 1490 * protocol-level pr_ctloutput() routines. 1491 */ 1492 int 1493 sooptcopyin(sopt, buf, len, minlen) 1494 struct sockopt *sopt; 1495 void *buf; 1496 size_t len; 1497 size_t minlen; 1498 { 1499 size_t valsize; 1500 1501 /* 1502 * If the user gives us more than we wanted, we ignore it, 1503 * but if we don't get the minimum length the caller 1504 * wants, we return EINVAL. On success, sopt->sopt_valsize 1505 * is set to however much we actually retrieved. 1506 */ 1507 if ((valsize = sopt->sopt_valsize) < minlen) 1508 return EINVAL; 1509 if (valsize > len) 1510 sopt->sopt_valsize = valsize = len; 1511 1512 if (sopt->sopt_td != NULL) 1513 return (copyin(sopt->sopt_val, buf, valsize)); 1514 1515 bcopy(sopt->sopt_val, buf, valsize); 1516 return 0; 1517 } 1518 1519 /* 1520 * Kernel version of setsockopt(2)/ 1521 * XXX: optlen is size_t, not socklen_t 1522 */ 1523 int 1524 so_setsockopt(struct socket *so, int level, int optname, void *optval, 1525 size_t optlen) 1526 { 1527 struct sockopt sopt; 1528 1529 sopt.sopt_level = level; 1530 sopt.sopt_name = optname; 1531 sopt.sopt_dir = SOPT_SET; 1532 sopt.sopt_val = optval; 1533 sopt.sopt_valsize = optlen; 1534 sopt.sopt_td = NULL; 1535 return (sosetopt(so, &sopt)); 1536 } 1537 1538 int 1539 sosetopt(so, sopt) 1540 struct socket *so; 1541 struct sockopt *sopt; 1542 { 1543 int error, optval; 1544 struct linger l; 1545 struct timeval tv; 1546 u_long val; 1547 #ifdef MAC 1548 struct mac extmac; 1549 #endif 1550 1551 error = 0; 1552 if (sopt->sopt_level != SOL_SOCKET) { 1553 if (so->so_proto && so->so_proto->pr_ctloutput) 1554 return ((*so->so_proto->pr_ctloutput) 1555 (so, sopt)); 1556 error = ENOPROTOOPT; 1557 } else { 1558 switch (sopt->sopt_name) { 1559 #ifdef INET 1560 case SO_ACCEPTFILTER: 1561 error = do_setopt_accept_filter(so, sopt); 1562 if (error) 1563 goto bad; 1564 break; 1565 #endif 1566 case SO_LINGER: 1567 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1568 if (error) 1569 goto bad; 1570 1571 SOCK_LOCK(so); 1572 so->so_linger = l.l_linger; 1573 if (l.l_onoff) 1574 so->so_options |= SO_LINGER; 1575 else 1576 so->so_options &= ~SO_LINGER; 1577 SOCK_UNLOCK(so); 1578 break; 1579 1580 case SO_DEBUG: 1581 case SO_KEEPALIVE: 1582 case SO_DONTROUTE: 1583 case SO_USELOOPBACK: 1584 case SO_BROADCAST: 1585 case SO_REUSEADDR: 1586 case SO_REUSEPORT: 1587 case SO_OOBINLINE: 1588 case SO_TIMESTAMP: 1589 case SO_BINTIME: 1590 case SO_NOSIGPIPE: 1591 error = sooptcopyin(sopt, &optval, sizeof optval, 1592 sizeof optval); 1593 if (error) 1594 goto bad; 1595 SOCK_LOCK(so); 1596 if (optval) 1597 so->so_options |= sopt->sopt_name; 1598 else 1599 so->so_options &= ~sopt->sopt_name; 1600 SOCK_UNLOCK(so); 1601 break; 1602 1603 case SO_SNDBUF: 1604 case SO_RCVBUF: 1605 case SO_SNDLOWAT: 1606 case SO_RCVLOWAT: 1607 error = sooptcopyin(sopt, &optval, sizeof optval, 1608 sizeof optval); 1609 if (error) 1610 goto bad; 1611 1612 /* 1613 * Values < 1 make no sense for any of these 1614 * options, so disallow them. 1615 */ 1616 if (optval < 1) { 1617 error = EINVAL; 1618 goto bad; 1619 } 1620 1621 switch (sopt->sopt_name) { 1622 case SO_SNDBUF: 1623 case SO_RCVBUF: 1624 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1625 &so->so_snd : &so->so_rcv, (u_long)optval, 1626 so, curthread) == 0) { 1627 error = ENOBUFS; 1628 goto bad; 1629 } 1630 break; 1631 1632 /* 1633 * Make sure the low-water is never greater than 1634 * the high-water. 1635 */ 1636 case SO_SNDLOWAT: 1637 SOCKBUF_LOCK(&so->so_snd); 1638 so->so_snd.sb_lowat = 1639 (optval > so->so_snd.sb_hiwat) ? 1640 so->so_snd.sb_hiwat : optval; 1641 SOCKBUF_UNLOCK(&so->so_snd); 1642 break; 1643 case SO_RCVLOWAT: 1644 SOCKBUF_LOCK(&so->so_rcv); 1645 so->so_rcv.sb_lowat = 1646 (optval > so->so_rcv.sb_hiwat) ? 1647 so->so_rcv.sb_hiwat : optval; 1648 SOCKBUF_UNLOCK(&so->so_rcv); 1649 break; 1650 } 1651 break; 1652 1653 case SO_SNDTIMEO: 1654 case SO_RCVTIMEO: 1655 error = sooptcopyin(sopt, &tv, sizeof tv, 1656 sizeof tv); 1657 if (error) 1658 goto bad; 1659 1660 /* assert(hz > 0); */ 1661 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 1662 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1663 error = EDOM; 1664 goto bad; 1665 } 1666 /* assert(tick > 0); */ 1667 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 1668 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1669 if (val > INT_MAX) { 1670 error = EDOM; 1671 goto bad; 1672 } 1673 if (val == 0 && tv.tv_usec != 0) 1674 val = 1; 1675 1676 switch (sopt->sopt_name) { 1677 case SO_SNDTIMEO: 1678 so->so_snd.sb_timeo = val; 1679 break; 1680 case SO_RCVTIMEO: 1681 so->so_rcv.sb_timeo = val; 1682 break; 1683 } 1684 break; 1685 case SO_LABEL: 1686 #ifdef MAC 1687 error = sooptcopyin(sopt, &extmac, sizeof extmac, 1688 sizeof extmac); 1689 if (error) 1690 goto bad; 1691 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 1692 so, &extmac); 1693 #else 1694 error = EOPNOTSUPP; 1695 #endif 1696 break; 1697 default: 1698 error = ENOPROTOOPT; 1699 break; 1700 } 1701 if (error == 0 && so->so_proto != NULL && 1702 so->so_proto->pr_ctloutput != NULL) { 1703 (void) ((*so->so_proto->pr_ctloutput) 1704 (so, sopt)); 1705 } 1706 } 1707 bad: 1708 return (error); 1709 } 1710 1711 /* Helper routine for getsockopt */ 1712 int 1713 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1714 { 1715 int error; 1716 size_t valsize; 1717 1718 error = 0; 1719 1720 /* 1721 * Documented get behavior is that we always return a value, 1722 * possibly truncated to fit in the user's buffer. 1723 * Traditional behavior is that we always tell the user 1724 * precisely how much we copied, rather than something useful 1725 * like the total amount we had available for her. 1726 * Note that this interface is not idempotent; the entire answer must 1727 * generated ahead of time. 1728 */ 1729 valsize = min(len, sopt->sopt_valsize); 1730 sopt->sopt_valsize = valsize; 1731 if (sopt->sopt_val != NULL) { 1732 if (sopt->sopt_td != NULL) 1733 error = copyout(buf, sopt->sopt_val, valsize); 1734 else 1735 bcopy(buf, sopt->sopt_val, valsize); 1736 } 1737 return error; 1738 } 1739 1740 int 1741 sogetopt(so, sopt) 1742 struct socket *so; 1743 struct sockopt *sopt; 1744 { 1745 int error, optval; 1746 struct linger l; 1747 struct timeval tv; 1748 #ifdef MAC 1749 struct mac extmac; 1750 #endif 1751 1752 error = 0; 1753 if (sopt->sopt_level != SOL_SOCKET) { 1754 if (so->so_proto && so->so_proto->pr_ctloutput) { 1755 return ((*so->so_proto->pr_ctloutput) 1756 (so, sopt)); 1757 } else 1758 return (ENOPROTOOPT); 1759 } else { 1760 switch (sopt->sopt_name) { 1761 #ifdef INET 1762 case SO_ACCEPTFILTER: 1763 error = do_getopt_accept_filter(so, sopt); 1764 break; 1765 #endif 1766 case SO_LINGER: 1767 SOCK_LOCK(so); 1768 l.l_onoff = so->so_options & SO_LINGER; 1769 l.l_linger = so->so_linger; 1770 SOCK_UNLOCK(so); 1771 error = sooptcopyout(sopt, &l, sizeof l); 1772 break; 1773 1774 case SO_USELOOPBACK: 1775 case SO_DONTROUTE: 1776 case SO_DEBUG: 1777 case SO_KEEPALIVE: 1778 case SO_REUSEADDR: 1779 case SO_REUSEPORT: 1780 case SO_BROADCAST: 1781 case SO_OOBINLINE: 1782 case SO_TIMESTAMP: 1783 case SO_BINTIME: 1784 case SO_NOSIGPIPE: 1785 optval = so->so_options & sopt->sopt_name; 1786 integer: 1787 error = sooptcopyout(sopt, &optval, sizeof optval); 1788 break; 1789 1790 case SO_TYPE: 1791 optval = so->so_type; 1792 goto integer; 1793 1794 case SO_ERROR: 1795 optval = so->so_error; 1796 so->so_error = 0; 1797 goto integer; 1798 1799 case SO_SNDBUF: 1800 optval = so->so_snd.sb_hiwat; 1801 goto integer; 1802 1803 case SO_RCVBUF: 1804 optval = so->so_rcv.sb_hiwat; 1805 goto integer; 1806 1807 case SO_SNDLOWAT: 1808 optval = so->so_snd.sb_lowat; 1809 goto integer; 1810 1811 case SO_RCVLOWAT: 1812 optval = so->so_rcv.sb_lowat; 1813 goto integer; 1814 1815 case SO_SNDTIMEO: 1816 case SO_RCVTIMEO: 1817 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1818 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1819 1820 tv.tv_sec = optval / hz; 1821 tv.tv_usec = (optval % hz) * tick; 1822 error = sooptcopyout(sopt, &tv, sizeof tv); 1823 break; 1824 case SO_LABEL: 1825 #ifdef MAC 1826 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1827 sizeof(extmac)); 1828 if (error) 1829 return (error); 1830 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 1831 so, &extmac); 1832 if (error) 1833 return (error); 1834 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1835 #else 1836 error = EOPNOTSUPP; 1837 #endif 1838 break; 1839 case SO_PEERLABEL: 1840 #ifdef MAC 1841 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1842 sizeof(extmac)); 1843 if (error) 1844 return (error); 1845 error = mac_getsockopt_peerlabel( 1846 sopt->sopt_td->td_ucred, so, &extmac); 1847 if (error) 1848 return (error); 1849 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1850 #else 1851 error = EOPNOTSUPP; 1852 #endif 1853 break; 1854 default: 1855 error = ENOPROTOOPT; 1856 break; 1857 } 1858 return (error); 1859 } 1860 } 1861 1862 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1863 int 1864 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1865 { 1866 struct mbuf *m, *m_prev; 1867 int sopt_size = sopt->sopt_valsize; 1868 1869 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1870 if (m == NULL) 1871 return ENOBUFS; 1872 if (sopt_size > MLEN) { 1873 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 1874 if ((m->m_flags & M_EXT) == 0) { 1875 m_free(m); 1876 return ENOBUFS; 1877 } 1878 m->m_len = min(MCLBYTES, sopt_size); 1879 } else { 1880 m->m_len = min(MLEN, sopt_size); 1881 } 1882 sopt_size -= m->m_len; 1883 *mp = m; 1884 m_prev = m; 1885 1886 while (sopt_size) { 1887 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1888 if (m == NULL) { 1889 m_freem(*mp); 1890 return ENOBUFS; 1891 } 1892 if (sopt_size > MLEN) { 1893 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 1894 M_DONTWAIT); 1895 if ((m->m_flags & M_EXT) == 0) { 1896 m_freem(m); 1897 m_freem(*mp); 1898 return ENOBUFS; 1899 } 1900 m->m_len = min(MCLBYTES, sopt_size); 1901 } else { 1902 m->m_len = min(MLEN, sopt_size); 1903 } 1904 sopt_size -= m->m_len; 1905 m_prev->m_next = m; 1906 m_prev = m; 1907 } 1908 return 0; 1909 } 1910 1911 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 1912 int 1913 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 1914 { 1915 struct mbuf *m0 = m; 1916 1917 if (sopt->sopt_val == NULL) 1918 return 0; 1919 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1920 if (sopt->sopt_td != NULL) { 1921 int error; 1922 1923 error = copyin(sopt->sopt_val, mtod(m, char *), 1924 m->m_len); 1925 if (error != 0) { 1926 m_freem(m0); 1927 return(error); 1928 } 1929 } else 1930 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 1931 sopt->sopt_valsize -= m->m_len; 1932 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 1933 m = m->m_next; 1934 } 1935 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 1936 panic("ip6_sooptmcopyin"); 1937 return 0; 1938 } 1939 1940 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 1941 int 1942 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 1943 { 1944 struct mbuf *m0 = m; 1945 size_t valsize = 0; 1946 1947 if (sopt->sopt_val == NULL) 1948 return 0; 1949 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1950 if (sopt->sopt_td != NULL) { 1951 int error; 1952 1953 error = copyout(mtod(m, char *), sopt->sopt_val, 1954 m->m_len); 1955 if (error != 0) { 1956 m_freem(m0); 1957 return(error); 1958 } 1959 } else 1960 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 1961 sopt->sopt_valsize -= m->m_len; 1962 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 1963 valsize += m->m_len; 1964 m = m->m_next; 1965 } 1966 if (m != NULL) { 1967 /* enough soopt buffer should be given from user-land */ 1968 m_freem(m0); 1969 return(EINVAL); 1970 } 1971 sopt->sopt_valsize = valsize; 1972 return 0; 1973 } 1974 1975 void 1976 sohasoutofband(so) 1977 struct socket *so; 1978 { 1979 if (so->so_sigio != NULL) 1980 pgsigio(&so->so_sigio, SIGURG, 0); 1981 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 1982 } 1983 1984 int 1985 sopoll(struct socket *so, int events, struct ucred *active_cred, 1986 struct thread *td) 1987 { 1988 int revents = 0; 1989 1990 SOCKBUF_LOCK(&so->so_snd); 1991 SOCKBUF_LOCK(&so->so_rcv); 1992 if (events & (POLLIN | POLLRDNORM)) 1993 if (soreadable(so)) 1994 revents |= events & (POLLIN | POLLRDNORM); 1995 1996 if (events & POLLINIGNEOF) 1997 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 1998 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 1999 revents |= POLLINIGNEOF; 2000 2001 if (events & (POLLOUT | POLLWRNORM)) 2002 if (sowriteable(so)) 2003 revents |= events & (POLLOUT | POLLWRNORM); 2004 2005 if (events & (POLLPRI | POLLRDBAND)) 2006 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2007 revents |= events & (POLLPRI | POLLRDBAND); 2008 2009 if (revents == 0) { 2010 if (events & 2011 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2012 POLLRDBAND)) { 2013 selrecord(td, &so->so_rcv.sb_sel); 2014 so->so_rcv.sb_flags |= SB_SEL; 2015 } 2016 2017 if (events & (POLLOUT | POLLWRNORM)) { 2018 selrecord(td, &so->so_snd.sb_sel); 2019 so->so_snd.sb_flags |= SB_SEL; 2020 } 2021 } 2022 2023 SOCKBUF_UNLOCK(&so->so_rcv); 2024 SOCKBUF_UNLOCK(&so->so_snd); 2025 return (revents); 2026 } 2027 2028 int 2029 soo_kqfilter(struct file *fp, struct knote *kn) 2030 { 2031 struct socket *so = kn->kn_fp->f_data; 2032 struct sockbuf *sb; 2033 2034 switch (kn->kn_filter) { 2035 case EVFILT_READ: 2036 if (so->so_options & SO_ACCEPTCONN) 2037 kn->kn_fop = &solisten_filtops; 2038 else 2039 kn->kn_fop = &soread_filtops; 2040 sb = &so->so_rcv; 2041 break; 2042 case EVFILT_WRITE: 2043 kn->kn_fop = &sowrite_filtops; 2044 sb = &so->so_snd; 2045 break; 2046 default: 2047 return (EINVAL); 2048 } 2049 2050 SOCKBUF_LOCK(sb); 2051 knlist_add(&sb->sb_sel.si_note, kn, 1); 2052 sb->sb_flags |= SB_KNOTE; 2053 SOCKBUF_UNLOCK(sb); 2054 return (0); 2055 } 2056 2057 static void 2058 filt_sordetach(struct knote *kn) 2059 { 2060 struct socket *so = kn->kn_fp->f_data; 2061 2062 SOCKBUF_LOCK(&so->so_rcv); 2063 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2064 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2065 so->so_rcv.sb_flags &= ~SB_KNOTE; 2066 SOCKBUF_UNLOCK(&so->so_rcv); 2067 } 2068 2069 /*ARGSUSED*/ 2070 static int 2071 filt_soread(struct knote *kn, long hint) 2072 { 2073 struct socket *so; 2074 2075 so = kn->kn_fp->f_data; 2076 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2077 2078 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2079 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2080 kn->kn_flags |= EV_EOF; 2081 kn->kn_fflags = so->so_error; 2082 return (1); 2083 } else if (so->so_error) /* temporary udp error */ 2084 return (1); 2085 else if (kn->kn_sfflags & NOTE_LOWAT) 2086 return (kn->kn_data >= kn->kn_sdata); 2087 else 2088 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2089 } 2090 2091 static void 2092 filt_sowdetach(struct knote *kn) 2093 { 2094 struct socket *so = kn->kn_fp->f_data; 2095 2096 SOCKBUF_LOCK(&so->so_snd); 2097 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2098 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2099 so->so_snd.sb_flags &= ~SB_KNOTE; 2100 SOCKBUF_UNLOCK(&so->so_snd); 2101 } 2102 2103 /*ARGSUSED*/ 2104 static int 2105 filt_sowrite(struct knote *kn, long hint) 2106 { 2107 struct socket *so; 2108 2109 so = kn->kn_fp->f_data; 2110 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2111 kn->kn_data = sbspace(&so->so_snd); 2112 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2113 kn->kn_flags |= EV_EOF; 2114 kn->kn_fflags = so->so_error; 2115 return (1); 2116 } else if (so->so_error) /* temporary udp error */ 2117 return (1); 2118 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2119 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2120 return (0); 2121 else if (kn->kn_sfflags & NOTE_LOWAT) 2122 return (kn->kn_data >= kn->kn_sdata); 2123 else 2124 return (kn->kn_data >= so->so_snd.sb_lowat); 2125 } 2126 2127 /*ARGSUSED*/ 2128 static int 2129 filt_solisten(struct knote *kn, long hint) 2130 { 2131 struct socket *so = kn->kn_fp->f_data; 2132 2133 kn->kn_data = so->so_qlen; 2134 return (! TAILQ_EMPTY(&so->so_comp)); 2135 } 2136 2137 int 2138 socheckuid(struct socket *so, uid_t uid) 2139 { 2140 2141 if (so == NULL) 2142 return (EPERM); 2143 if (so->so_cred->cr_uid != uid) 2144 return (EPERM); 2145 return (0); 2146 } 2147 2148 static int 2149 somaxconn_sysctl(SYSCTL_HANDLER_ARGS) 2150 { 2151 int error; 2152 int val; 2153 2154 val = somaxconn; 2155 error = sysctl_handle_int(oidp, &val, sizeof(int), req); 2156 if (error || !req->newptr ) 2157 return (error); 2158 2159 if (val < 1 || val > USHRT_MAX) 2160 return (EINVAL); 2161 2162 somaxconn = val; 2163 return (0); 2164 } 2165