1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called 99 * from a pre-set VNET context. sopoll() currently does not need a VNET 100 * context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 #include "opt_inet.h" 105 #include "opt_inet6.h" 106 #include "opt_kern_tls.h" 107 #include "opt_sctp.h" 108 109 #include <sys/param.h> 110 #include <sys/systm.h> 111 #include <sys/capsicum.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/ktls.h> 125 #include <sys/event.h> 126 #include <sys/eventhandler.h> 127 #include <sys/poll.h> 128 #include <sys/proc.h> 129 #include <sys/protosw.h> 130 #include <sys/sbuf.h> 131 #include <sys/socket.h> 132 #include <sys/socketvar.h> 133 #include <sys/resourcevar.h> 134 #include <net/route.h> 135 #include <sys/signalvar.h> 136 #include <sys/stat.h> 137 #include <sys/sx.h> 138 #include <sys/sysctl.h> 139 #include <sys/taskqueue.h> 140 #include <sys/uio.h> 141 #include <sys/un.h> 142 #include <sys/unpcb.h> 143 #include <sys/jail.h> 144 #include <sys/syslog.h> 145 #include <netinet/in.h> 146 #include <netinet/in_pcb.h> 147 #include <netinet/tcp.h> 148 149 #include <net/vnet.h> 150 151 #include <security/mac/mac_framework.h> 152 153 #include <vm/uma.h> 154 155 #ifdef COMPAT_FREEBSD32 156 #include <sys/mount.h> 157 #include <sys/sysent.h> 158 #include <compat/freebsd32/freebsd32.h> 159 #endif 160 161 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 162 int flags); 163 static void so_rdknl_lock(void *); 164 static void so_rdknl_unlock(void *); 165 static void so_rdknl_assert_lock(void *, int); 166 static void so_wrknl_lock(void *); 167 static void so_wrknl_unlock(void *); 168 static void so_wrknl_assert_lock(void *, int); 169 170 static void filt_sordetach(struct knote *kn); 171 static int filt_soread(struct knote *kn, long hint); 172 static void filt_sowdetach(struct knote *kn); 173 static int filt_sowrite(struct knote *kn, long hint); 174 static int filt_soempty(struct knote *kn, long hint); 175 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 176 fo_kqfilter_t soo_kqfilter; 177 178 static struct filterops soread_filtops = { 179 .f_isfd = 1, 180 .f_detach = filt_sordetach, 181 .f_event = filt_soread, 182 }; 183 static struct filterops sowrite_filtops = { 184 .f_isfd = 1, 185 .f_detach = filt_sowdetach, 186 .f_event = filt_sowrite, 187 }; 188 static struct filterops soempty_filtops = { 189 .f_isfd = 1, 190 .f_detach = filt_sowdetach, 191 .f_event = filt_soempty, 192 }; 193 194 so_gen_t so_gencnt; /* generation count for sockets */ 195 196 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 197 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 198 199 #define VNET_SO_ASSERT(so) \ 200 VNET_ASSERT(curvnet != NULL, \ 201 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 202 203 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 204 #define V_socket_hhh VNET(socket_hhh) 205 206 /* 207 * Limit on the number of connections in the listen queue waiting 208 * for accept(2). 209 * NB: The original sysctl somaxconn is still available but hidden 210 * to prevent confusion about the actual purpose of this number. 211 */ 212 static u_int somaxconn = SOMAXCONN; 213 214 static int 215 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 216 { 217 int error; 218 int val; 219 220 val = somaxconn; 221 error = sysctl_handle_int(oidp, &val, 0, req); 222 if (error || !req->newptr ) 223 return (error); 224 225 /* 226 * The purpose of the UINT_MAX / 3 limit, is so that the formula 227 * 3 * so_qlimit / 2 228 * below, will not overflow. 229 */ 230 231 if (val < 1 || val > UINT_MAX / 3) 232 return (EINVAL); 233 234 somaxconn = val; 235 return (0); 236 } 237 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 238 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 239 sysctl_somaxconn, "I", 240 "Maximum listen socket pending connection accept queue size"); 241 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 243 sizeof(int), sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size (compat)"); 245 246 static int numopensockets; 247 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 248 &numopensockets, 0, "Number of open sockets"); 249 250 /* 251 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 252 * so_gencnt field. 253 */ 254 static struct mtx so_global_mtx; 255 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 256 257 /* 258 * General IPC sysctl name space, used by sockets and a variety of other IPC 259 * types. 260 */ 261 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 262 "IPC"); 263 264 /* 265 * Initialize the socket subsystem and set up the socket 266 * memory allocator. 267 */ 268 static uma_zone_t socket_zone; 269 int maxsockets; 270 271 static void 272 socket_zone_change(void *tag) 273 { 274 275 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 276 } 277 278 static void 279 socket_hhook_register(int subtype) 280 { 281 282 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 283 &V_socket_hhh[subtype], 284 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 285 printf("%s: WARNING: unable to register hook\n", __func__); 286 } 287 288 static void 289 socket_hhook_deregister(int subtype) 290 { 291 292 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 293 printf("%s: WARNING: unable to deregister hook\n", __func__); 294 } 295 296 static void 297 socket_init(void *tag) 298 { 299 300 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 301 NULL, NULL, UMA_ALIGN_PTR, 0); 302 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 303 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 304 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 305 EVENTHANDLER_PRI_FIRST); 306 } 307 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 308 309 static void 310 socket_vnet_init(const void *unused __unused) 311 { 312 int i; 313 314 /* We expect a contiguous range */ 315 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 316 socket_hhook_register(i); 317 } 318 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 319 socket_vnet_init, NULL); 320 321 static void 322 socket_vnet_uninit(const void *unused __unused) 323 { 324 int i; 325 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_deregister(i); 328 } 329 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_uninit, NULL); 331 332 /* 333 * Initialise maxsockets. This SYSINIT must be run after 334 * tunable_mbinit(). 335 */ 336 static void 337 init_maxsockets(void *ignored) 338 { 339 340 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 341 maxsockets = imax(maxsockets, maxfiles); 342 } 343 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 344 345 /* 346 * Sysctl to get and set the maximum global sockets limit. Notify protocols 347 * of the change so that they can update their dependent limits as required. 348 */ 349 static int 350 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 351 { 352 int error, newmaxsockets; 353 354 newmaxsockets = maxsockets; 355 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 356 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 357 if (newmaxsockets > maxsockets && 358 newmaxsockets <= maxfiles) { 359 maxsockets = newmaxsockets; 360 EVENTHANDLER_INVOKE(maxsockets_change); 361 } else 362 error = EINVAL; 363 } 364 return (error); 365 } 366 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 367 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 368 &maxsockets, 0, sysctl_maxsockets, "IU", 369 "Maximum number of sockets available"); 370 371 /* 372 * Socket operation routines. These routines are called by the routines in 373 * sys_socket.c or from a system process, and implement the semantics of 374 * socket operations by switching out to the protocol specific routines. 375 */ 376 377 /* 378 * Get a socket structure from our zone, and initialize it. Note that it 379 * would probably be better to allocate socket and PCB at the same time, but 380 * I'm not convinced that all the protocols can be easily modified to do 381 * this. 382 * 383 * soalloc() returns a socket with a ref count of 0. 384 */ 385 static struct socket * 386 soalloc(struct vnet *vnet) 387 { 388 struct socket *so; 389 390 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 391 if (so == NULL) 392 return (NULL); 393 #ifdef MAC 394 if (mac_socket_init(so, M_NOWAIT) != 0) { 395 uma_zfree(socket_zone, so); 396 return (NULL); 397 } 398 #endif 399 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 400 uma_zfree(socket_zone, so); 401 return (NULL); 402 } 403 404 /* 405 * The socket locking protocol allows to lock 2 sockets at a time, 406 * however, the first one must be a listening socket. WITNESS lacks 407 * a feature to change class of an existing lock, so we use DUPOK. 408 */ 409 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 410 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 411 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 412 so->so_rcv.sb_sel = &so->so_rdsel; 413 so->so_snd.sb_sel = &so->so_wrsel; 414 sx_init(&so->so_snd_sx, "so_snd_sx"); 415 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 416 TAILQ_INIT(&so->so_snd.sb_aiojobq); 417 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 418 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 419 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 420 #ifdef VIMAGE 421 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 422 __func__, __LINE__, so)); 423 so->so_vnet = vnet; 424 #endif 425 /* We shouldn't need the so_global_mtx */ 426 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 427 /* Do we need more comprehensive error returns? */ 428 uma_zfree(socket_zone, so); 429 return (NULL); 430 } 431 mtx_lock(&so_global_mtx); 432 so->so_gencnt = ++so_gencnt; 433 ++numopensockets; 434 #ifdef VIMAGE 435 vnet->vnet_sockcnt++; 436 #endif 437 mtx_unlock(&so_global_mtx); 438 439 return (so); 440 } 441 442 /* 443 * Free the storage associated with a socket at the socket layer, tear down 444 * locks, labels, etc. All protocol state is assumed already to have been 445 * torn down (and possibly never set up) by the caller. 446 */ 447 void 448 sodealloc(struct socket *so) 449 { 450 451 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 452 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 453 454 mtx_lock(&so_global_mtx); 455 so->so_gencnt = ++so_gencnt; 456 --numopensockets; /* Could be below, but faster here. */ 457 #ifdef VIMAGE 458 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 459 __func__, __LINE__, so)); 460 so->so_vnet->vnet_sockcnt--; 461 #endif 462 mtx_unlock(&so_global_mtx); 463 #ifdef MAC 464 mac_socket_destroy(so); 465 #endif 466 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 467 468 khelp_destroy_osd(&so->osd); 469 if (SOLISTENING(so)) { 470 if (so->sol_accept_filter != NULL) 471 accept_filt_setopt(so, NULL); 472 } else { 473 if (so->so_rcv.sb_hiwat) 474 (void)chgsbsize(so->so_cred->cr_uidinfo, 475 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 476 if (so->so_snd.sb_hiwat) 477 (void)chgsbsize(so->so_cred->cr_uidinfo, 478 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 479 sx_destroy(&so->so_snd_sx); 480 sx_destroy(&so->so_rcv_sx); 481 mtx_destroy(&so->so_snd_mtx); 482 mtx_destroy(&so->so_rcv_mtx); 483 } 484 crfree(so->so_cred); 485 mtx_destroy(&so->so_lock); 486 uma_zfree(socket_zone, so); 487 } 488 489 /* 490 * socreate returns a socket with a ref count of 1 and a file descriptor 491 * reference. The socket should be closed with soclose(). 492 */ 493 int 494 socreate(int dom, struct socket **aso, int type, int proto, 495 struct ucred *cred, struct thread *td) 496 { 497 struct protosw *prp; 498 struct socket *so; 499 int error; 500 501 /* 502 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 503 * shim until all applications have been updated. 504 */ 505 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 506 proto == IPPROTO_DIVERT)) { 507 dom = PF_DIVERT; 508 printf("%s uses obsolete way to create divert(4) socket\n", 509 td->td_proc->p_comm); 510 } 511 512 prp = pffindproto(dom, type, proto); 513 if (prp == NULL) { 514 /* No support for domain. */ 515 if (pffinddomain(dom) == NULL) 516 return (EAFNOSUPPORT); 517 /* No support for socket type. */ 518 if (proto == 0 && type != 0) 519 return (EPROTOTYPE); 520 return (EPROTONOSUPPORT); 521 } 522 523 MPASS(prp->pr_attach); 524 525 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 526 return (ECAPMODE); 527 528 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 529 return (EPROTONOSUPPORT); 530 531 so = soalloc(CRED_TO_VNET(cred)); 532 if (so == NULL) 533 return (ENOBUFS); 534 535 so->so_type = type; 536 so->so_cred = crhold(cred); 537 if ((prp->pr_domain->dom_family == PF_INET) || 538 (prp->pr_domain->dom_family == PF_INET6) || 539 (prp->pr_domain->dom_family == PF_ROUTE)) 540 so->so_fibnum = td->td_proc->p_fibnum; 541 else 542 so->so_fibnum = 0; 543 so->so_proto = prp; 544 #ifdef MAC 545 mac_socket_create(cred, so); 546 #endif 547 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 548 so_rdknl_assert_lock); 549 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 550 so_wrknl_assert_lock); 551 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 552 so->so_snd.sb_mtx = &so->so_snd_mtx; 553 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 554 } 555 /* 556 * Auto-sizing of socket buffers is managed by the protocols and 557 * the appropriate flags must be set in the pru_attach function. 558 */ 559 CURVNET_SET(so->so_vnet); 560 error = prp->pr_attach(so, proto, td); 561 CURVNET_RESTORE(); 562 if (error) { 563 sodealloc(so); 564 return (error); 565 } 566 soref(so); 567 *aso = so; 568 return (0); 569 } 570 571 #ifdef REGRESSION 572 static int regression_sonewconn_earlytest = 1; 573 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 574 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 575 #endif 576 577 static int sooverprio = LOG_DEBUG; 578 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, 579 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); 580 581 static struct timeval overinterval = { 60, 0 }; 582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 583 &overinterval, 584 "Delay in seconds between warnings for listen socket overflows"); 585 586 /* 587 * When an attempt at a new connection is noted on a socket which supports 588 * accept(2), the protocol has two options: 589 * 1) Call legacy sonewconn() function, which would call protocol attach 590 * method, same as used for socket(2). 591 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 592 * and then call solisten_enqueue(). 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 solisten_clone(struct socket *head) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = (sooverprio >= 0) && 621 !!ratecheck(&head->sol_lastover, &overinterval); 622 623 /* 624 * If we're going to log, copy the overflow count and queue 625 * length from the listen socket before dropping the lock. 626 * Also, reset the overflow count. 627 */ 628 if (dolog) { 629 overcount = head->sol_overcount; 630 head->sol_overcount = 0; 631 qlen = head->sol_qlen; 632 } 633 SOLISTEN_UNLOCK(head); 634 635 if (dolog) { 636 /* 637 * Try to print something descriptive about the 638 * socket for the error message. 639 */ 640 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 641 SBUF_FIXEDLEN); 642 switch (head->so_proto->pr_domain->dom_family) { 643 #if defined(INET) || defined(INET6) 644 #ifdef INET 645 case AF_INET: 646 #endif 647 #ifdef INET6 648 case AF_INET6: 649 if (head->so_proto->pr_domain->dom_family == 650 AF_INET6 || 651 (sotoinpcb(head)->inp_inc.inc_flags & 652 INC_ISIPV6)) { 653 ip6_sprintf(addrbuf, 654 &sotoinpcb(head)->inp_inc.inc6_laddr); 655 sbuf_printf(&descrsb, "[%s]", addrbuf); 656 } else 657 #endif 658 { 659 #ifdef INET 660 inet_ntoa_r( 661 sotoinpcb(head)->inp_inc.inc_laddr, 662 addrbuf); 663 sbuf_cat(&descrsb, addrbuf); 664 #endif 665 } 666 sbuf_printf(&descrsb, ":%hu (proto %u)", 667 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 668 head->so_proto->pr_protocol); 669 break; 670 #endif /* INET || INET6 */ 671 case AF_UNIX: 672 sbuf_cat(&descrsb, localprefix); 673 if (sotounpcb(head)->unp_addr != NULL) 674 len = 675 sotounpcb(head)->unp_addr->sun_len - 676 offsetof(struct sockaddr_un, 677 sun_path); 678 else 679 len = 0; 680 if (len > 0) 681 sbuf_bcat(&descrsb, 682 sotounpcb(head)->unp_addr->sun_path, 683 len); 684 else 685 sbuf_cat(&descrsb, "(unknown)"); 686 break; 687 } 688 689 /* 690 * If we can't print something more specific, at least 691 * print the domain name. 692 */ 693 if (sbuf_finish(&descrsb) != 0 || 694 sbuf_len(&descrsb) <= 0) { 695 sbuf_clear(&descrsb); 696 sbuf_cat(&descrsb, 697 head->so_proto->pr_domain->dom_name ?: 698 "unknown"); 699 sbuf_finish(&descrsb); 700 } 701 KASSERT(sbuf_len(&descrsb) > 0, 702 ("%s: sbuf creation failed", __func__)); 703 /* 704 * Preserve the historic listen queue overflow log 705 * message, that starts with "sonewconn:". It has 706 * been known to sysadmins for years and also test 707 * sys/kern/sonewconn_overflow checks for it. 708 */ 709 if (head->so_cred == 0) { 710 log(LOG_PRI(sooverprio), 711 "sonewconn: pcb %p (%s): " 712 "Listen queue overflow: %i already in " 713 "queue awaiting acceptance (%d " 714 "occurrences)\n", head->so_pcb, 715 sbuf_data(&descrsb), 716 qlen, overcount); 717 } else { 718 log(LOG_PRI(sooverprio), 719 "sonewconn: pcb %p (%s): " 720 "Listen queue overflow: " 721 "%i already in queue awaiting acceptance " 722 "(%d occurrences), euid %d, rgid %d, jail %s\n", 723 head->so_pcb, sbuf_data(&descrsb), qlen, 724 overcount, head->so_cred->cr_uid, 725 head->so_cred->cr_rgid, 726 head->so_cred->cr_prison ? 727 head->so_cred->cr_prison->pr_name : 728 "not_jailed"); 729 } 730 sbuf_delete(&descrsb); 731 732 overcount = 0; 733 } 734 735 return (NULL); 736 } 737 SOLISTEN_UNLOCK(head); 738 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 739 __func__, head)); 740 so = soalloc(head->so_vnet); 741 if (so == NULL) { 742 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 743 "limit reached or out of memory\n", 744 __func__, head->so_pcb); 745 return (NULL); 746 } 747 so->so_listen = head; 748 so->so_type = head->so_type; 749 /* 750 * POSIX is ambiguous on what options an accept(2)ed socket should 751 * inherit from the listener. Words "create a new socket" may be 752 * interpreted as not inheriting anything. Best programming practice 753 * for application developers is to not rely on such inheritance. 754 * FreeBSD had historically inherited all so_options excluding 755 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, 756 * including those completely irrelevant to a new born socket. For 757 * compatibility with older versions we will inherit a list of 758 * meaningful options. 759 */ 760 so->so_options = head->so_options & (SO_KEEPALIVE | SO_DONTROUTE | 761 SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); 762 so->so_linger = head->so_linger; 763 so->so_state = head->so_state; 764 so->so_fibnum = head->so_fibnum; 765 so->so_proto = head->so_proto; 766 so->so_cred = crhold(head->so_cred); 767 #ifdef MAC 768 mac_socket_newconn(head, so); 769 #endif 770 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 771 so_rdknl_assert_lock); 772 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 773 so_wrknl_assert_lock); 774 VNET_SO_ASSERT(head); 775 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 776 sodealloc(so); 777 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 778 __func__, head->so_pcb); 779 return (NULL); 780 } 781 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 782 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 783 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 784 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 785 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 786 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 787 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 788 so->so_snd.sb_mtx = &so->so_snd_mtx; 789 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 790 } 791 792 return (so); 793 } 794 795 /* Connstatus may be 0 or SS_ISCONNECTED. */ 796 struct socket * 797 sonewconn(struct socket *head, int connstatus) 798 { 799 struct socket *so; 800 801 if ((so = solisten_clone(head)) == NULL) 802 return (NULL); 803 804 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 805 sodealloc(so); 806 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 807 __func__, head->so_pcb); 808 return (NULL); 809 } 810 811 (void)solisten_enqueue(so, connstatus); 812 813 return (so); 814 } 815 816 /* 817 * Enqueue socket cloned by solisten_clone() to the listen queue of the 818 * listener it has been cloned from. 819 * 820 * Return 'true' if socket landed on complete queue, otherwise 'false'. 821 */ 822 bool 823 solisten_enqueue(struct socket *so, int connstatus) 824 { 825 struct socket *head = so->so_listen; 826 827 MPASS(refcount_load(&so->so_count) == 0); 828 refcount_init(&so->so_count, 1); 829 830 SOLISTEN_LOCK(head); 831 if (head->sol_accept_filter != NULL) 832 connstatus = 0; 833 so->so_state |= connstatus; 834 soref(head); /* A socket on (in)complete queue refs head. */ 835 if (connstatus) { 836 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 837 so->so_qstate = SQ_COMP; 838 head->sol_qlen++; 839 solisten_wakeup(head); /* unlocks */ 840 return (true); 841 } else { 842 /* 843 * Keep removing sockets from the head until there's room for 844 * us to insert on the tail. In pre-locking revisions, this 845 * was a simple if(), but as we could be racing with other 846 * threads and soabort() requires dropping locks, we must 847 * loop waiting for the condition to be true. 848 */ 849 while (head->sol_incqlen > head->sol_qlimit) { 850 struct socket *sp; 851 852 sp = TAILQ_FIRST(&head->sol_incomp); 853 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 854 head->sol_incqlen--; 855 SOCK_LOCK(sp); 856 sp->so_qstate = SQ_NONE; 857 sp->so_listen = NULL; 858 SOCK_UNLOCK(sp); 859 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 860 soabort(sp); 861 SOLISTEN_LOCK(head); 862 } 863 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 864 so->so_qstate = SQ_INCOMP; 865 head->sol_incqlen++; 866 SOLISTEN_UNLOCK(head); 867 return (false); 868 } 869 } 870 871 #if defined(SCTP) || defined(SCTP_SUPPORT) 872 /* 873 * Socket part of sctp_peeloff(). Detach a new socket from an 874 * association. The new socket is returned with a reference. 875 * 876 * XXXGL: reduce copy-paste with solisten_clone(). 877 */ 878 struct socket * 879 sopeeloff(struct socket *head) 880 { 881 struct socket *so; 882 883 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 884 __func__, __LINE__, head)); 885 so = soalloc(head->so_vnet); 886 if (so == NULL) { 887 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 888 "limit reached or out of memory\n", 889 __func__, head->so_pcb); 890 return (NULL); 891 } 892 so->so_type = head->so_type; 893 so->so_options = head->so_options; 894 so->so_linger = head->so_linger; 895 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 896 so->so_fibnum = head->so_fibnum; 897 so->so_proto = head->so_proto; 898 so->so_cred = crhold(head->so_cred); 899 #ifdef MAC 900 mac_socket_newconn(head, so); 901 #endif 902 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 903 so_rdknl_assert_lock); 904 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 905 so_wrknl_assert_lock); 906 VNET_SO_ASSERT(head); 907 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 908 sodealloc(so); 909 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 910 __func__, head->so_pcb); 911 return (NULL); 912 } 913 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 914 sodealloc(so); 915 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 916 __func__, head->so_pcb); 917 return (NULL); 918 } 919 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 920 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 921 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 922 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 923 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 924 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 925 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 926 so->so_snd.sb_mtx = &so->so_snd_mtx; 927 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 928 } 929 930 soref(so); 931 932 return (so); 933 } 934 #endif /* SCTP */ 935 936 int 937 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 938 { 939 int error; 940 941 CURVNET_SET(so->so_vnet); 942 error = so->so_proto->pr_bind(so, nam, td); 943 CURVNET_RESTORE(); 944 return (error); 945 } 946 947 int 948 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 949 { 950 int error; 951 952 CURVNET_SET(so->so_vnet); 953 error = so->so_proto->pr_bindat(fd, so, nam, td); 954 CURVNET_RESTORE(); 955 return (error); 956 } 957 958 /* 959 * solisten() transitions a socket from a non-listening state to a listening 960 * state, but can also be used to update the listen queue depth on an 961 * existing listen socket. The protocol will call back into the sockets 962 * layer using solisten_proto_check() and solisten_proto() to check and set 963 * socket-layer listen state. Call backs are used so that the protocol can 964 * acquire both protocol and socket layer locks in whatever order is required 965 * by the protocol. 966 * 967 * Protocol implementors are advised to hold the socket lock across the 968 * socket-layer test and set to avoid races at the socket layer. 969 */ 970 int 971 solisten(struct socket *so, int backlog, struct thread *td) 972 { 973 int error; 974 975 CURVNET_SET(so->so_vnet); 976 error = so->so_proto->pr_listen(so, backlog, td); 977 CURVNET_RESTORE(); 978 return (error); 979 } 980 981 /* 982 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 983 * order to interlock with socket I/O. 984 */ 985 int 986 solisten_proto_check(struct socket *so) 987 { 988 SOCK_LOCK_ASSERT(so); 989 990 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 991 SS_ISDISCONNECTING)) != 0) 992 return (EINVAL); 993 994 /* 995 * Sleeping is not permitted here, so simply fail if userspace is 996 * attempting to transmit or receive on the socket. This kind of 997 * transient failure is not ideal, but it should occur only if userspace 998 * is misusing the socket interfaces. 999 */ 1000 if (!sx_try_xlock(&so->so_snd_sx)) 1001 return (EAGAIN); 1002 if (!sx_try_xlock(&so->so_rcv_sx)) { 1003 sx_xunlock(&so->so_snd_sx); 1004 return (EAGAIN); 1005 } 1006 mtx_lock(&so->so_snd_mtx); 1007 mtx_lock(&so->so_rcv_mtx); 1008 1009 /* Interlock with soo_aio_queue() and KTLS. */ 1010 if (!SOLISTENING(so)) { 1011 bool ktls; 1012 1013 #ifdef KERN_TLS 1014 ktls = so->so_snd.sb_tls_info != NULL || 1015 so->so_rcv.sb_tls_info != NULL; 1016 #else 1017 ktls = false; 1018 #endif 1019 if (ktls || 1020 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 1021 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 1022 solisten_proto_abort(so); 1023 return (EINVAL); 1024 } 1025 } 1026 1027 return (0); 1028 } 1029 1030 /* 1031 * Undo the setup done by solisten_proto_check(). 1032 */ 1033 void 1034 solisten_proto_abort(struct socket *so) 1035 { 1036 mtx_unlock(&so->so_snd_mtx); 1037 mtx_unlock(&so->so_rcv_mtx); 1038 sx_xunlock(&so->so_snd_sx); 1039 sx_xunlock(&so->so_rcv_sx); 1040 } 1041 1042 void 1043 solisten_proto(struct socket *so, int backlog) 1044 { 1045 int sbrcv_lowat, sbsnd_lowat; 1046 u_int sbrcv_hiwat, sbsnd_hiwat; 1047 short sbrcv_flags, sbsnd_flags; 1048 sbintime_t sbrcv_timeo, sbsnd_timeo; 1049 1050 SOCK_LOCK_ASSERT(so); 1051 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1052 SS_ISDISCONNECTING)) == 0, 1053 ("%s: bad socket state %p", __func__, so)); 1054 1055 if (SOLISTENING(so)) 1056 goto listening; 1057 1058 /* 1059 * Change this socket to listening state. 1060 */ 1061 sbrcv_lowat = so->so_rcv.sb_lowat; 1062 sbsnd_lowat = so->so_snd.sb_lowat; 1063 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1064 sbsnd_hiwat = so->so_snd.sb_hiwat; 1065 sbrcv_flags = so->so_rcv.sb_flags; 1066 sbsnd_flags = so->so_snd.sb_flags; 1067 sbrcv_timeo = so->so_rcv.sb_timeo; 1068 sbsnd_timeo = so->so_snd.sb_timeo; 1069 1070 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) { 1071 sbdestroy(so, SO_SND); 1072 sbdestroy(so, SO_RCV); 1073 } 1074 1075 #ifdef INVARIANTS 1076 bzero(&so->so_rcv, 1077 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1078 #endif 1079 1080 so->sol_sbrcv_lowat = sbrcv_lowat; 1081 so->sol_sbsnd_lowat = sbsnd_lowat; 1082 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1083 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1084 so->sol_sbrcv_flags = sbrcv_flags; 1085 so->sol_sbsnd_flags = sbsnd_flags; 1086 so->sol_sbrcv_timeo = sbrcv_timeo; 1087 so->sol_sbsnd_timeo = sbsnd_timeo; 1088 1089 so->sol_qlen = so->sol_incqlen = 0; 1090 TAILQ_INIT(&so->sol_incomp); 1091 TAILQ_INIT(&so->sol_comp); 1092 1093 so->sol_accept_filter = NULL; 1094 so->sol_accept_filter_arg = NULL; 1095 so->sol_accept_filter_str = NULL; 1096 1097 so->sol_upcall = NULL; 1098 so->sol_upcallarg = NULL; 1099 1100 so->so_options |= SO_ACCEPTCONN; 1101 1102 listening: 1103 if (backlog < 0 || backlog > somaxconn) 1104 backlog = somaxconn; 1105 so->sol_qlimit = backlog; 1106 1107 mtx_unlock(&so->so_snd_mtx); 1108 mtx_unlock(&so->so_rcv_mtx); 1109 sx_xunlock(&so->so_snd_sx); 1110 sx_xunlock(&so->so_rcv_sx); 1111 } 1112 1113 /* 1114 * Wakeup listeners/subsystems once we have a complete connection. 1115 * Enters with lock, returns unlocked. 1116 */ 1117 void 1118 solisten_wakeup(struct socket *sol) 1119 { 1120 1121 if (sol->sol_upcall != NULL) 1122 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1123 else { 1124 selwakeuppri(&sol->so_rdsel, PSOCK); 1125 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1126 } 1127 SOLISTEN_UNLOCK(sol); 1128 wakeup_one(&sol->sol_comp); 1129 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1130 pgsigio(&sol->so_sigio, SIGIO, 0); 1131 } 1132 1133 /* 1134 * Return single connection off a listening socket queue. Main consumer of 1135 * the function is kern_accept4(). Some modules, that do their own accept 1136 * management also use the function. The socket reference held by the 1137 * listen queue is handed to the caller. 1138 * 1139 * Listening socket must be locked on entry and is returned unlocked on 1140 * return. 1141 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1142 */ 1143 int 1144 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1145 { 1146 struct socket *so; 1147 int error; 1148 1149 SOLISTEN_LOCK_ASSERT(head); 1150 1151 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1152 head->so_error == 0) { 1153 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1154 "accept", 0); 1155 if (error != 0) { 1156 SOLISTEN_UNLOCK(head); 1157 return (error); 1158 } 1159 } 1160 if (head->so_error) { 1161 error = head->so_error; 1162 head->so_error = 0; 1163 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1164 error = EWOULDBLOCK; 1165 else 1166 error = 0; 1167 if (error) { 1168 SOLISTEN_UNLOCK(head); 1169 return (error); 1170 } 1171 so = TAILQ_FIRST(&head->sol_comp); 1172 SOCK_LOCK(so); 1173 KASSERT(so->so_qstate == SQ_COMP, 1174 ("%s: so %p not SQ_COMP", __func__, so)); 1175 head->sol_qlen--; 1176 so->so_qstate = SQ_NONE; 1177 so->so_listen = NULL; 1178 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1179 if (flags & ACCEPT4_INHERIT) 1180 so->so_state |= (head->so_state & SS_NBIO); 1181 else 1182 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1183 SOCK_UNLOCK(so); 1184 sorele_locked(head); 1185 1186 *ret = so; 1187 return (0); 1188 } 1189 1190 /* 1191 * Free socket upon release of the very last reference. 1192 */ 1193 static void 1194 sofree(struct socket *so) 1195 { 1196 struct protosw *pr = so->so_proto; 1197 1198 SOCK_LOCK_ASSERT(so); 1199 KASSERT(refcount_load(&so->so_count) == 0, 1200 ("%s: so %p has references", __func__, so)); 1201 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1202 ("%s: so %p is on listen queue", __func__, so)); 1203 1204 SOCK_UNLOCK(so); 1205 1206 if (so->so_dtor != NULL) 1207 so->so_dtor(so); 1208 1209 VNET_SO_ASSERT(so); 1210 if (pr->pr_detach != NULL) 1211 pr->pr_detach(so); 1212 1213 /* 1214 * From this point on, we assume that no other references to this 1215 * socket exist anywhere else in the stack. Therefore, no locks need 1216 * to be acquired or held. 1217 */ 1218 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1219 sbdestroy(so, SO_SND); 1220 sbdestroy(so, SO_RCV); 1221 } 1222 seldrain(&so->so_rdsel); 1223 seldrain(&so->so_wrsel); 1224 knlist_destroy(&so->so_rdsel.si_note); 1225 knlist_destroy(&so->so_wrsel.si_note); 1226 sodealloc(so); 1227 } 1228 1229 /* 1230 * Release a reference on a socket while holding the socket lock. 1231 * Unlocks the socket lock before returning. 1232 */ 1233 void 1234 sorele_locked(struct socket *so) 1235 { 1236 SOCK_LOCK_ASSERT(so); 1237 if (refcount_release(&so->so_count)) 1238 sofree(so); 1239 else 1240 SOCK_UNLOCK(so); 1241 } 1242 1243 /* 1244 * Close a socket on last file table reference removal. Initiate disconnect 1245 * if connected. Free socket when disconnect complete. 1246 * 1247 * This function will sorele() the socket. Note that soclose() may be called 1248 * prior to the ref count reaching zero. The actual socket structure will 1249 * not be freed until the ref count reaches zero. 1250 */ 1251 int 1252 soclose(struct socket *so) 1253 { 1254 struct accept_queue lqueue; 1255 int error = 0; 1256 bool listening, last __diagused; 1257 1258 CURVNET_SET(so->so_vnet); 1259 funsetown(&so->so_sigio); 1260 if (so->so_state & SS_ISCONNECTED) { 1261 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1262 error = sodisconnect(so); 1263 if (error) { 1264 if (error == ENOTCONN) 1265 error = 0; 1266 goto drop; 1267 } 1268 } 1269 1270 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1271 if ((so->so_state & SS_ISDISCONNECTING) && 1272 (so->so_state & SS_NBIO)) 1273 goto drop; 1274 while (so->so_state & SS_ISCONNECTED) { 1275 error = tsleep(&so->so_timeo, 1276 PSOCK | PCATCH, "soclos", 1277 so->so_linger * hz); 1278 if (error) 1279 break; 1280 } 1281 } 1282 } 1283 1284 drop: 1285 if (so->so_proto->pr_close != NULL) 1286 so->so_proto->pr_close(so); 1287 1288 SOCK_LOCK(so); 1289 if ((listening = SOLISTENING(so))) { 1290 struct socket *sp; 1291 1292 TAILQ_INIT(&lqueue); 1293 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1294 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1295 1296 so->sol_qlen = so->sol_incqlen = 0; 1297 1298 TAILQ_FOREACH(sp, &lqueue, so_list) { 1299 SOCK_LOCK(sp); 1300 sp->so_qstate = SQ_NONE; 1301 sp->so_listen = NULL; 1302 SOCK_UNLOCK(sp); 1303 last = refcount_release(&so->so_count); 1304 KASSERT(!last, ("%s: released last reference for %p", 1305 __func__, so)); 1306 } 1307 } 1308 sorele_locked(so); 1309 if (listening) { 1310 struct socket *sp, *tsp; 1311 1312 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1313 soabort(sp); 1314 } 1315 CURVNET_RESTORE(); 1316 return (error); 1317 } 1318 1319 /* 1320 * soabort() is used to abruptly tear down a connection, such as when a 1321 * resource limit is reached (listen queue depth exceeded), or if a listen 1322 * socket is closed while there are sockets waiting to be accepted. 1323 * 1324 * This interface is tricky, because it is called on an unreferenced socket, 1325 * and must be called only by a thread that has actually removed the socket 1326 * from the listen queue it was on. Likely this thread holds the last 1327 * reference on the socket and soabort() will proceed with sofree(). But 1328 * it might be not the last, as the sockets on the listen queues are seen 1329 * from the protocol side. 1330 * 1331 * This interface will call into the protocol code, so must not be called 1332 * with any socket locks held. Protocols do call it while holding their own 1333 * recursible protocol mutexes, but this is something that should be subject 1334 * to review in the future. 1335 * 1336 * Usually socket should have a single reference left, but this is not a 1337 * requirement. In the past, when we have had named references for file 1338 * descriptor and protocol, we asserted that none of them are being held. 1339 */ 1340 void 1341 soabort(struct socket *so) 1342 { 1343 1344 VNET_SO_ASSERT(so); 1345 1346 if (so->so_proto->pr_abort != NULL) 1347 so->so_proto->pr_abort(so); 1348 SOCK_LOCK(so); 1349 sorele_locked(so); 1350 } 1351 1352 int 1353 soaccept(struct socket *so, struct sockaddr *sa) 1354 { 1355 #ifdef INVARIANTS 1356 u_char len = sa->sa_len; 1357 #endif 1358 int error; 1359 1360 CURVNET_SET(so->so_vnet); 1361 error = so->so_proto->pr_accept(so, sa); 1362 KASSERT(sa->sa_len <= len, 1363 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1364 CURVNET_RESTORE(); 1365 return (error); 1366 } 1367 1368 int 1369 sopeeraddr(struct socket *so, struct sockaddr *sa) 1370 { 1371 #ifdef INVARIANTS 1372 u_char len = sa->sa_len; 1373 #endif 1374 int error; 1375 1376 CURVNET_SET(so->so_vnet); 1377 error = so->so_proto->pr_peeraddr(so, sa); 1378 KASSERT(sa->sa_len <= len, 1379 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1380 CURVNET_RESTORE(); 1381 1382 return (error); 1383 } 1384 1385 int 1386 sosockaddr(struct socket *so, struct sockaddr *sa) 1387 { 1388 #ifdef INVARIANTS 1389 u_char len = sa->sa_len; 1390 #endif 1391 int error; 1392 1393 CURVNET_SET(so->so_vnet); 1394 error = so->so_proto->pr_sockaddr(so, sa); 1395 KASSERT(sa->sa_len <= len, 1396 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1397 CURVNET_RESTORE(); 1398 1399 return (error); 1400 } 1401 1402 int 1403 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1404 { 1405 1406 return (soconnectat(AT_FDCWD, so, nam, td)); 1407 } 1408 1409 int 1410 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1411 { 1412 int error; 1413 1414 CURVNET_SET(so->so_vnet); 1415 1416 /* 1417 * If protocol is connection-based, can only connect once. 1418 * Otherwise, if connected, try to disconnect first. This allows 1419 * user to disconnect by connecting to, e.g., a null address. 1420 * 1421 * Note, this check is racy and may need to be re-evaluated at the 1422 * protocol layer. 1423 */ 1424 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1425 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1426 (error = sodisconnect(so)))) { 1427 error = EISCONN; 1428 } else { 1429 /* 1430 * Prevent accumulated error from previous connection from 1431 * biting us. 1432 */ 1433 so->so_error = 0; 1434 if (fd == AT_FDCWD) { 1435 error = so->so_proto->pr_connect(so, nam, td); 1436 } else { 1437 error = so->so_proto->pr_connectat(fd, so, nam, td); 1438 } 1439 } 1440 CURVNET_RESTORE(); 1441 1442 return (error); 1443 } 1444 1445 int 1446 soconnect2(struct socket *so1, struct socket *so2) 1447 { 1448 int error; 1449 1450 CURVNET_SET(so1->so_vnet); 1451 error = so1->so_proto->pr_connect2(so1, so2); 1452 CURVNET_RESTORE(); 1453 return (error); 1454 } 1455 1456 int 1457 sodisconnect(struct socket *so) 1458 { 1459 int error; 1460 1461 if ((so->so_state & SS_ISCONNECTED) == 0) 1462 return (ENOTCONN); 1463 if (so->so_state & SS_ISDISCONNECTING) 1464 return (EALREADY); 1465 VNET_SO_ASSERT(so); 1466 error = so->so_proto->pr_disconnect(so); 1467 return (error); 1468 } 1469 1470 int 1471 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1472 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1473 { 1474 long space; 1475 ssize_t resid; 1476 int clen = 0, error, dontroute; 1477 1478 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1479 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1480 ("sosend_dgram: !PR_ATOMIC")); 1481 1482 if (uio != NULL) 1483 resid = uio->uio_resid; 1484 else 1485 resid = top->m_pkthdr.len; 1486 /* 1487 * In theory resid should be unsigned. However, space must be 1488 * signed, as it might be less than 0 if we over-committed, and we 1489 * must use a signed comparison of space and resid. On the other 1490 * hand, a negative resid causes us to loop sending 0-length 1491 * segments to the protocol. 1492 */ 1493 if (resid < 0) { 1494 error = EINVAL; 1495 goto out; 1496 } 1497 1498 dontroute = 1499 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1500 if (td != NULL) 1501 td->td_ru.ru_msgsnd++; 1502 if (control != NULL) 1503 clen = control->m_len; 1504 1505 SOCKBUF_LOCK(&so->so_snd); 1506 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1507 SOCKBUF_UNLOCK(&so->so_snd); 1508 error = EPIPE; 1509 goto out; 1510 } 1511 if (so->so_error) { 1512 error = so->so_error; 1513 so->so_error = 0; 1514 SOCKBUF_UNLOCK(&so->so_snd); 1515 goto out; 1516 } 1517 if ((so->so_state & SS_ISCONNECTED) == 0) { 1518 /* 1519 * `sendto' and `sendmsg' is allowed on a connection-based 1520 * socket if it supports implied connect. Return ENOTCONN if 1521 * not connected and no address is supplied. 1522 */ 1523 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1524 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1525 if (!(resid == 0 && clen != 0)) { 1526 SOCKBUF_UNLOCK(&so->so_snd); 1527 error = ENOTCONN; 1528 goto out; 1529 } 1530 } else if (addr == NULL) { 1531 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1532 error = ENOTCONN; 1533 else 1534 error = EDESTADDRREQ; 1535 SOCKBUF_UNLOCK(&so->so_snd); 1536 goto out; 1537 } 1538 } 1539 1540 /* 1541 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1542 * problem and need fixing. 1543 */ 1544 space = sbspace(&so->so_snd); 1545 if (flags & MSG_OOB) 1546 space += 1024; 1547 space -= clen; 1548 SOCKBUF_UNLOCK(&so->so_snd); 1549 if (resid > space) { 1550 error = EMSGSIZE; 1551 goto out; 1552 } 1553 if (uio == NULL) { 1554 resid = 0; 1555 if (flags & MSG_EOR) 1556 top->m_flags |= M_EOR; 1557 } else { 1558 /* 1559 * Copy the data from userland into a mbuf chain. 1560 * If no data is to be copied in, a single empty mbuf 1561 * is returned. 1562 */ 1563 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1564 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1565 if (top == NULL) { 1566 error = EFAULT; /* only possible error */ 1567 goto out; 1568 } 1569 space -= resid - uio->uio_resid; 1570 resid = uio->uio_resid; 1571 } 1572 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1573 /* 1574 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1575 * than with. 1576 */ 1577 if (dontroute) { 1578 SOCK_LOCK(so); 1579 so->so_options |= SO_DONTROUTE; 1580 SOCK_UNLOCK(so); 1581 } 1582 /* 1583 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1584 * of date. We could have received a reset packet in an interrupt or 1585 * maybe we slept while doing page faults in uiomove() etc. We could 1586 * probably recheck again inside the locking protection here, but 1587 * there are probably other places that this also happens. We must 1588 * rethink this. 1589 */ 1590 VNET_SO_ASSERT(so); 1591 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1592 /* 1593 * If the user set MSG_EOF, the protocol understands this flag and 1594 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1595 */ 1596 ((flags & MSG_EOF) && 1597 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1598 (resid <= 0)) ? 1599 PRUS_EOF : 1600 /* If there is more to send set PRUS_MORETOCOME */ 1601 (flags & MSG_MORETOCOME) || 1602 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1603 top, addr, control, td); 1604 if (dontroute) { 1605 SOCK_LOCK(so); 1606 so->so_options &= ~SO_DONTROUTE; 1607 SOCK_UNLOCK(so); 1608 } 1609 clen = 0; 1610 control = NULL; 1611 top = NULL; 1612 out: 1613 if (top != NULL) 1614 m_freem(top); 1615 if (control != NULL) 1616 m_freem(control); 1617 return (error); 1618 } 1619 1620 /* 1621 * Send on a socket. If send must go all at once and message is larger than 1622 * send buffering, then hard error. Lock against other senders. If must go 1623 * all at once and not enough room now, then inform user that this would 1624 * block and do nothing. Otherwise, if nonblocking, send as much as 1625 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1626 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1627 * in mbuf chain must be small enough to send all at once. 1628 * 1629 * Returns nonzero on error, timeout or signal; callers must check for short 1630 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1631 * on return. 1632 */ 1633 int 1634 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1635 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1636 { 1637 long space; 1638 ssize_t resid; 1639 int clen = 0, error, dontroute; 1640 int atomic = sosendallatonce(so) || top; 1641 int pr_send_flag; 1642 #ifdef KERN_TLS 1643 struct ktls_session *tls; 1644 int tls_enq_cnt, tls_send_flag; 1645 uint8_t tls_rtype; 1646 1647 tls = NULL; 1648 tls_rtype = TLS_RLTYPE_APP; 1649 #endif 1650 if (uio != NULL) 1651 resid = uio->uio_resid; 1652 else if ((top->m_flags & M_PKTHDR) != 0) 1653 resid = top->m_pkthdr.len; 1654 else 1655 resid = m_length(top, NULL); 1656 /* 1657 * In theory resid should be unsigned. However, space must be 1658 * signed, as it might be less than 0 if we over-committed, and we 1659 * must use a signed comparison of space and resid. On the other 1660 * hand, a negative resid causes us to loop sending 0-length 1661 * segments to the protocol. 1662 * 1663 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1664 * type sockets since that's an error. 1665 */ 1666 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1667 error = EINVAL; 1668 goto out; 1669 } 1670 1671 dontroute = 1672 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1673 (so->so_proto->pr_flags & PR_ATOMIC); 1674 if (td != NULL) 1675 td->td_ru.ru_msgsnd++; 1676 if (control != NULL) 1677 clen = control->m_len; 1678 1679 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1680 if (error) 1681 goto out; 1682 1683 #ifdef KERN_TLS 1684 tls_send_flag = 0; 1685 tls = ktls_hold(so->so_snd.sb_tls_info); 1686 if (tls != NULL) { 1687 if (tls->mode == TCP_TLS_MODE_SW) 1688 tls_send_flag = PRUS_NOTREADY; 1689 1690 if (control != NULL) { 1691 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1692 1693 if (clen >= sizeof(*cm) && 1694 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1695 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1696 clen = 0; 1697 m_freem(control); 1698 control = NULL; 1699 atomic = 1; 1700 } 1701 } 1702 1703 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1704 error = EINVAL; 1705 goto release; 1706 } 1707 } 1708 #endif 1709 1710 restart: 1711 do { 1712 SOCKBUF_LOCK(&so->so_snd); 1713 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1714 SOCKBUF_UNLOCK(&so->so_snd); 1715 error = EPIPE; 1716 goto release; 1717 } 1718 if (so->so_error) { 1719 error = so->so_error; 1720 so->so_error = 0; 1721 SOCKBUF_UNLOCK(&so->so_snd); 1722 goto release; 1723 } 1724 if ((so->so_state & SS_ISCONNECTED) == 0) { 1725 /* 1726 * `sendto' and `sendmsg' is allowed on a connection- 1727 * based socket if it supports implied connect. 1728 * Return ENOTCONN if not connected and no address is 1729 * supplied. 1730 */ 1731 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1732 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1733 if (!(resid == 0 && clen != 0)) { 1734 SOCKBUF_UNLOCK(&so->so_snd); 1735 error = ENOTCONN; 1736 goto release; 1737 } 1738 } else if (addr == NULL) { 1739 SOCKBUF_UNLOCK(&so->so_snd); 1740 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1741 error = ENOTCONN; 1742 else 1743 error = EDESTADDRREQ; 1744 goto release; 1745 } 1746 } 1747 space = sbspace(&so->so_snd); 1748 if (flags & MSG_OOB) 1749 space += 1024; 1750 if ((atomic && resid > so->so_snd.sb_hiwat) || 1751 clen > so->so_snd.sb_hiwat) { 1752 SOCKBUF_UNLOCK(&so->so_snd); 1753 error = EMSGSIZE; 1754 goto release; 1755 } 1756 if (space < resid + clen && 1757 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1758 if ((so->so_state & SS_NBIO) || 1759 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1760 SOCKBUF_UNLOCK(&so->so_snd); 1761 error = EWOULDBLOCK; 1762 goto release; 1763 } 1764 error = sbwait(so, SO_SND); 1765 SOCKBUF_UNLOCK(&so->so_snd); 1766 if (error) 1767 goto release; 1768 goto restart; 1769 } 1770 SOCKBUF_UNLOCK(&so->so_snd); 1771 space -= clen; 1772 do { 1773 if (uio == NULL) { 1774 resid = 0; 1775 if (flags & MSG_EOR) 1776 top->m_flags |= M_EOR; 1777 #ifdef KERN_TLS 1778 if (tls != NULL) { 1779 ktls_frame(top, tls, &tls_enq_cnt, 1780 tls_rtype); 1781 tls_rtype = TLS_RLTYPE_APP; 1782 } 1783 #endif 1784 } else { 1785 /* 1786 * Copy the data from userland into a mbuf 1787 * chain. If resid is 0, which can happen 1788 * only if we have control to send, then 1789 * a single empty mbuf is returned. This 1790 * is a workaround to prevent protocol send 1791 * methods to panic. 1792 */ 1793 #ifdef KERN_TLS 1794 if (tls != NULL) { 1795 top = m_uiotombuf(uio, M_WAITOK, space, 1796 tls->params.max_frame_len, 1797 M_EXTPG | 1798 ((flags & MSG_EOR) ? M_EOR : 0)); 1799 if (top != NULL) { 1800 ktls_frame(top, tls, 1801 &tls_enq_cnt, tls_rtype); 1802 } 1803 tls_rtype = TLS_RLTYPE_APP; 1804 } else 1805 #endif 1806 top = m_uiotombuf(uio, M_WAITOK, space, 1807 (atomic ? max_hdr : 0), 1808 (atomic ? M_PKTHDR : 0) | 1809 ((flags & MSG_EOR) ? M_EOR : 0)); 1810 if (top == NULL) { 1811 error = EFAULT; /* only possible error */ 1812 goto release; 1813 } 1814 space -= resid - uio->uio_resid; 1815 resid = uio->uio_resid; 1816 } 1817 if (dontroute) { 1818 SOCK_LOCK(so); 1819 so->so_options |= SO_DONTROUTE; 1820 SOCK_UNLOCK(so); 1821 } 1822 /* 1823 * XXX all the SBS_CANTSENDMORE checks previously 1824 * done could be out of date. We could have received 1825 * a reset packet in an interrupt or maybe we slept 1826 * while doing page faults in uiomove() etc. We 1827 * could probably recheck again inside the locking 1828 * protection here, but there are probably other 1829 * places that this also happens. We must rethink 1830 * this. 1831 */ 1832 VNET_SO_ASSERT(so); 1833 1834 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1835 /* 1836 * If the user set MSG_EOF, the protocol understands 1837 * this flag and nothing left to send then use 1838 * PRU_SEND_EOF instead of PRU_SEND. 1839 */ 1840 ((flags & MSG_EOF) && 1841 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1842 (resid <= 0)) ? 1843 PRUS_EOF : 1844 /* If there is more to send set PRUS_MORETOCOME. */ 1845 (flags & MSG_MORETOCOME) || 1846 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1847 1848 #ifdef KERN_TLS 1849 pr_send_flag |= tls_send_flag; 1850 #endif 1851 1852 error = so->so_proto->pr_send(so, pr_send_flag, top, 1853 addr, control, td); 1854 1855 if (dontroute) { 1856 SOCK_LOCK(so); 1857 so->so_options &= ~SO_DONTROUTE; 1858 SOCK_UNLOCK(so); 1859 } 1860 1861 #ifdef KERN_TLS 1862 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1863 if (error != 0) { 1864 m_freem(top); 1865 top = NULL; 1866 } else { 1867 soref(so); 1868 ktls_enqueue(top, so, tls_enq_cnt); 1869 } 1870 } 1871 #endif 1872 clen = 0; 1873 control = NULL; 1874 top = NULL; 1875 if (error) 1876 goto release; 1877 } while (resid && space > 0); 1878 } while (resid); 1879 1880 release: 1881 SOCK_IO_SEND_UNLOCK(so); 1882 out: 1883 #ifdef KERN_TLS 1884 if (tls != NULL) 1885 ktls_free(tls); 1886 #endif 1887 if (top != NULL) 1888 m_freem(top); 1889 if (control != NULL) 1890 m_freem(control); 1891 return (error); 1892 } 1893 1894 /* 1895 * Send to a socket from a kernel thread. 1896 * 1897 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 1898 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 1899 * to be set at all. This function should just boil down to a static inline 1900 * calling the protocol method. 1901 */ 1902 int 1903 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1904 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1905 { 1906 int error; 1907 1908 CURVNET_SET(so->so_vnet); 1909 error = so->so_proto->pr_sosend(so, addr, uio, 1910 top, control, flags, td); 1911 CURVNET_RESTORE(); 1912 return (error); 1913 } 1914 1915 /* 1916 * send(2), write(2) or aio_write(2) on a socket. 1917 */ 1918 int 1919 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1920 struct mbuf *control, int flags, struct proc *userproc) 1921 { 1922 struct thread *td; 1923 ssize_t len; 1924 int error; 1925 1926 td = uio->uio_td; 1927 len = uio->uio_resid; 1928 CURVNET_SET(so->so_vnet); 1929 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 1930 td); 1931 CURVNET_RESTORE(); 1932 if (error != 0) { 1933 /* 1934 * Clear transient errors for stream protocols if they made 1935 * some progress. Make exclusion for aio(4) that would 1936 * schedule a new write in case of EWOULDBLOCK and clear 1937 * error itself. See soaio_process_job(). 1938 */ 1939 if (uio->uio_resid != len && 1940 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 1941 userproc == NULL && 1942 (error == ERESTART || error == EINTR || 1943 error == EWOULDBLOCK)) 1944 error = 0; 1945 /* Generation of SIGPIPE can be controlled per socket. */ 1946 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 1947 (flags & MSG_NOSIGNAL) == 0) { 1948 if (userproc != NULL) { 1949 /* aio(4) job */ 1950 PROC_LOCK(userproc); 1951 kern_psignal(userproc, SIGPIPE); 1952 PROC_UNLOCK(userproc); 1953 } else { 1954 PROC_LOCK(td->td_proc); 1955 tdsignal(td, SIGPIPE); 1956 PROC_UNLOCK(td->td_proc); 1957 } 1958 } 1959 } 1960 return (error); 1961 } 1962 1963 /* 1964 * The part of soreceive() that implements reading non-inline out-of-band 1965 * data from a socket. For more complete comments, see soreceive(), from 1966 * which this code originated. 1967 * 1968 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1969 * unable to return an mbuf chain to the caller. 1970 */ 1971 static int 1972 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1973 { 1974 struct protosw *pr = so->so_proto; 1975 struct mbuf *m; 1976 int error; 1977 1978 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1979 VNET_SO_ASSERT(so); 1980 1981 m = m_get(M_WAITOK, MT_DATA); 1982 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 1983 if (error) 1984 goto bad; 1985 do { 1986 error = uiomove(mtod(m, void *), 1987 (int) min(uio->uio_resid, m->m_len), uio); 1988 m = m_free(m); 1989 } while (uio->uio_resid && error == 0 && m); 1990 bad: 1991 if (m != NULL) 1992 m_freem(m); 1993 return (error); 1994 } 1995 1996 /* 1997 * Following replacement or removal of the first mbuf on the first mbuf chain 1998 * of a socket buffer, push necessary state changes back into the socket 1999 * buffer so that other consumers see the values consistently. 'nextrecord' 2000 * is the callers locally stored value of the original value of 2001 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 2002 * NOTE: 'nextrecord' may be NULL. 2003 */ 2004 static __inline void 2005 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 2006 { 2007 2008 SOCKBUF_LOCK_ASSERT(sb); 2009 /* 2010 * First, update for the new value of nextrecord. If necessary, make 2011 * it the first record. 2012 */ 2013 if (sb->sb_mb != NULL) 2014 sb->sb_mb->m_nextpkt = nextrecord; 2015 else 2016 sb->sb_mb = nextrecord; 2017 2018 /* 2019 * Now update any dependent socket buffer fields to reflect the new 2020 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 2021 * addition of a second clause that takes care of the case where 2022 * sb_mb has been updated, but remains the last record. 2023 */ 2024 if (sb->sb_mb == NULL) { 2025 sb->sb_mbtail = NULL; 2026 sb->sb_lastrecord = NULL; 2027 } else if (sb->sb_mb->m_nextpkt == NULL) 2028 sb->sb_lastrecord = sb->sb_mb; 2029 } 2030 2031 /* 2032 * Implement receive operations on a socket. We depend on the way that 2033 * records are added to the sockbuf by sbappend. In particular, each record 2034 * (mbufs linked through m_next) must begin with an address if the protocol 2035 * so specifies, followed by an optional mbuf or mbufs containing ancillary 2036 * data, and then zero or more mbufs of data. In order to allow parallelism 2037 * between network receive and copying to user space, as well as avoid 2038 * sleeping with a mutex held, we release the socket buffer mutex during the 2039 * user space copy. Although the sockbuf is locked, new data may still be 2040 * appended, and thus we must maintain consistency of the sockbuf during that 2041 * time. 2042 * 2043 * The caller may receive the data as a single mbuf chain by supplying an 2044 * mbuf **mp0 for use in returning the chain. The uio is then used only for 2045 * the count in uio_resid. 2046 */ 2047 int 2048 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 2049 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2050 { 2051 struct mbuf *m, **mp; 2052 int flags, error, offset; 2053 ssize_t len; 2054 struct protosw *pr = so->so_proto; 2055 struct mbuf *nextrecord; 2056 int moff, type = 0; 2057 ssize_t orig_resid = uio->uio_resid; 2058 bool report_real_len = false; 2059 2060 mp = mp0; 2061 if (psa != NULL) 2062 *psa = NULL; 2063 if (controlp != NULL) 2064 *controlp = NULL; 2065 if (flagsp != NULL) { 2066 report_real_len = *flagsp & MSG_TRUNC; 2067 *flagsp &= ~MSG_TRUNC; 2068 flags = *flagsp &~ MSG_EOR; 2069 } else 2070 flags = 0; 2071 if (flags & MSG_OOB) 2072 return (soreceive_rcvoob(so, uio, flags)); 2073 if (mp != NULL) 2074 *mp = NULL; 2075 2076 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2077 if (error) 2078 return (error); 2079 2080 restart: 2081 SOCKBUF_LOCK(&so->so_rcv); 2082 m = so->so_rcv.sb_mb; 2083 /* 2084 * If we have less data than requested, block awaiting more (subject 2085 * to any timeout) if: 2086 * 1. the current count is less than the low water mark, or 2087 * 2. MSG_DONTWAIT is not set 2088 */ 2089 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2090 sbavail(&so->so_rcv) < uio->uio_resid) && 2091 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2092 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2093 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2094 ("receive: m == %p sbavail == %u", 2095 m, sbavail(&so->so_rcv))); 2096 if (so->so_error || so->so_rerror) { 2097 if (m != NULL) 2098 goto dontblock; 2099 if (so->so_error) 2100 error = so->so_error; 2101 else 2102 error = so->so_rerror; 2103 if ((flags & MSG_PEEK) == 0) { 2104 if (so->so_error) 2105 so->so_error = 0; 2106 else 2107 so->so_rerror = 0; 2108 } 2109 SOCKBUF_UNLOCK(&so->so_rcv); 2110 goto release; 2111 } 2112 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2113 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2114 if (m != NULL) 2115 goto dontblock; 2116 #ifdef KERN_TLS 2117 else if (so->so_rcv.sb_tlsdcc == 0 && 2118 so->so_rcv.sb_tlscc == 0) { 2119 #else 2120 else { 2121 #endif 2122 SOCKBUF_UNLOCK(&so->so_rcv); 2123 goto release; 2124 } 2125 } 2126 for (; m != NULL; m = m->m_next) 2127 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2128 m = so->so_rcv.sb_mb; 2129 goto dontblock; 2130 } 2131 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2132 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2133 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2134 SOCKBUF_UNLOCK(&so->so_rcv); 2135 error = ENOTCONN; 2136 goto release; 2137 } 2138 if (uio->uio_resid == 0 && !report_real_len) { 2139 SOCKBUF_UNLOCK(&so->so_rcv); 2140 goto release; 2141 } 2142 if ((so->so_state & SS_NBIO) || 2143 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2144 SOCKBUF_UNLOCK(&so->so_rcv); 2145 error = EWOULDBLOCK; 2146 goto release; 2147 } 2148 SBLASTRECORDCHK(&so->so_rcv); 2149 SBLASTMBUFCHK(&so->so_rcv); 2150 error = sbwait(so, SO_RCV); 2151 SOCKBUF_UNLOCK(&so->so_rcv); 2152 if (error) 2153 goto release; 2154 goto restart; 2155 } 2156 dontblock: 2157 /* 2158 * From this point onward, we maintain 'nextrecord' as a cache of the 2159 * pointer to the next record in the socket buffer. We must keep the 2160 * various socket buffer pointers and local stack versions of the 2161 * pointers in sync, pushing out modifications before dropping the 2162 * socket buffer mutex, and re-reading them when picking it up. 2163 * 2164 * Otherwise, we will race with the network stack appending new data 2165 * or records onto the socket buffer by using inconsistent/stale 2166 * versions of the field, possibly resulting in socket buffer 2167 * corruption. 2168 * 2169 * By holding the high-level sblock(), we prevent simultaneous 2170 * readers from pulling off the front of the socket buffer. 2171 */ 2172 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2173 if (uio->uio_td) 2174 uio->uio_td->td_ru.ru_msgrcv++; 2175 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2176 SBLASTRECORDCHK(&so->so_rcv); 2177 SBLASTMBUFCHK(&so->so_rcv); 2178 nextrecord = m->m_nextpkt; 2179 if (pr->pr_flags & PR_ADDR) { 2180 KASSERT(m->m_type == MT_SONAME, 2181 ("m->m_type == %d", m->m_type)); 2182 orig_resid = 0; 2183 if (psa != NULL) 2184 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2185 M_NOWAIT); 2186 if (flags & MSG_PEEK) { 2187 m = m->m_next; 2188 } else { 2189 sbfree(&so->so_rcv, m); 2190 so->so_rcv.sb_mb = m_free(m); 2191 m = so->so_rcv.sb_mb; 2192 sockbuf_pushsync(&so->so_rcv, nextrecord); 2193 } 2194 } 2195 2196 /* 2197 * Process one or more MT_CONTROL mbufs present before any data mbufs 2198 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2199 * just copy the data; if !MSG_PEEK, we call into the protocol to 2200 * perform externalization (or freeing if controlp == NULL). 2201 */ 2202 if (m != NULL && m->m_type == MT_CONTROL) { 2203 struct mbuf *cm = NULL, *cmn; 2204 struct mbuf **cme = &cm; 2205 #ifdef KERN_TLS 2206 struct cmsghdr *cmsg; 2207 struct tls_get_record tgr; 2208 2209 /* 2210 * For MSG_TLSAPPDATA, check for an alert record. 2211 * If found, return ENXIO without removing 2212 * it from the receive queue. This allows a subsequent 2213 * call without MSG_TLSAPPDATA to receive it. 2214 * Note that, for TLS, there should only be a single 2215 * control mbuf with the TLS_GET_RECORD message in it. 2216 */ 2217 if (flags & MSG_TLSAPPDATA) { 2218 cmsg = mtod(m, struct cmsghdr *); 2219 if (cmsg->cmsg_type == TLS_GET_RECORD && 2220 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2221 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2222 if (__predict_false(tgr.tls_type == 2223 TLS_RLTYPE_ALERT)) { 2224 SOCKBUF_UNLOCK(&so->so_rcv); 2225 error = ENXIO; 2226 goto release; 2227 } 2228 } 2229 } 2230 #endif 2231 2232 do { 2233 if (flags & MSG_PEEK) { 2234 if (controlp != NULL) { 2235 *controlp = m_copym(m, 0, m->m_len, 2236 M_NOWAIT); 2237 controlp = &(*controlp)->m_next; 2238 } 2239 m = m->m_next; 2240 } else { 2241 sbfree(&so->so_rcv, m); 2242 so->so_rcv.sb_mb = m->m_next; 2243 m->m_next = NULL; 2244 *cme = m; 2245 cme = &(*cme)->m_next; 2246 m = so->so_rcv.sb_mb; 2247 } 2248 } while (m != NULL && m->m_type == MT_CONTROL); 2249 if ((flags & MSG_PEEK) == 0) 2250 sockbuf_pushsync(&so->so_rcv, nextrecord); 2251 while (cm != NULL) { 2252 cmn = cm->m_next; 2253 cm->m_next = NULL; 2254 if (pr->pr_domain->dom_externalize != NULL) { 2255 SOCKBUF_UNLOCK(&so->so_rcv); 2256 VNET_SO_ASSERT(so); 2257 error = (*pr->pr_domain->dom_externalize) 2258 (cm, controlp, flags); 2259 SOCKBUF_LOCK(&so->so_rcv); 2260 } else if (controlp != NULL) 2261 *controlp = cm; 2262 else 2263 m_freem(cm); 2264 if (controlp != NULL) { 2265 while (*controlp != NULL) 2266 controlp = &(*controlp)->m_next; 2267 } 2268 cm = cmn; 2269 } 2270 if (m != NULL) 2271 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2272 else 2273 nextrecord = so->so_rcv.sb_mb; 2274 orig_resid = 0; 2275 } 2276 if (m != NULL) { 2277 if ((flags & MSG_PEEK) == 0) { 2278 KASSERT(m->m_nextpkt == nextrecord, 2279 ("soreceive: post-control, nextrecord !sync")); 2280 if (nextrecord == NULL) { 2281 KASSERT(so->so_rcv.sb_mb == m, 2282 ("soreceive: post-control, sb_mb!=m")); 2283 KASSERT(so->so_rcv.sb_lastrecord == m, 2284 ("soreceive: post-control, lastrecord!=m")); 2285 } 2286 } 2287 type = m->m_type; 2288 if (type == MT_OOBDATA) 2289 flags |= MSG_OOB; 2290 } else { 2291 if ((flags & MSG_PEEK) == 0) { 2292 KASSERT(so->so_rcv.sb_mb == nextrecord, 2293 ("soreceive: sb_mb != nextrecord")); 2294 if (so->so_rcv.sb_mb == NULL) { 2295 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2296 ("soreceive: sb_lastercord != NULL")); 2297 } 2298 } 2299 } 2300 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2301 SBLASTRECORDCHK(&so->so_rcv); 2302 SBLASTMBUFCHK(&so->so_rcv); 2303 2304 /* 2305 * Now continue to read any data mbufs off of the head of the socket 2306 * buffer until the read request is satisfied. Note that 'type' is 2307 * used to store the type of any mbuf reads that have happened so far 2308 * such that soreceive() can stop reading if the type changes, which 2309 * causes soreceive() to return only one of regular data and inline 2310 * out-of-band data in a single socket receive operation. 2311 */ 2312 moff = 0; 2313 offset = 0; 2314 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2315 && error == 0) { 2316 /* 2317 * If the type of mbuf has changed since the last mbuf 2318 * examined ('type'), end the receive operation. 2319 */ 2320 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2321 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2322 if (type != m->m_type) 2323 break; 2324 } else if (type == MT_OOBDATA) 2325 break; 2326 else 2327 KASSERT(m->m_type == MT_DATA, 2328 ("m->m_type == %d", m->m_type)); 2329 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2330 len = uio->uio_resid; 2331 if (so->so_oobmark && len > so->so_oobmark - offset) 2332 len = so->so_oobmark - offset; 2333 if (len > m->m_len - moff) 2334 len = m->m_len - moff; 2335 /* 2336 * If mp is set, just pass back the mbufs. Otherwise copy 2337 * them out via the uio, then free. Sockbuf must be 2338 * consistent here (points to current mbuf, it points to next 2339 * record) when we drop priority; we must note any additions 2340 * to the sockbuf when we block interrupts again. 2341 */ 2342 if (mp == NULL) { 2343 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2344 SBLASTRECORDCHK(&so->so_rcv); 2345 SBLASTMBUFCHK(&so->so_rcv); 2346 SOCKBUF_UNLOCK(&so->so_rcv); 2347 if ((m->m_flags & M_EXTPG) != 0) 2348 error = m_unmapped_uiomove(m, moff, uio, 2349 (int)len); 2350 else 2351 error = uiomove(mtod(m, char *) + moff, 2352 (int)len, uio); 2353 SOCKBUF_LOCK(&so->so_rcv); 2354 if (error) { 2355 /* 2356 * The MT_SONAME mbuf has already been removed 2357 * from the record, so it is necessary to 2358 * remove the data mbufs, if any, to preserve 2359 * the invariant in the case of PR_ADDR that 2360 * requires MT_SONAME mbufs at the head of 2361 * each record. 2362 */ 2363 if (pr->pr_flags & PR_ATOMIC && 2364 ((flags & MSG_PEEK) == 0)) 2365 (void)sbdroprecord_locked(&so->so_rcv); 2366 SOCKBUF_UNLOCK(&so->so_rcv); 2367 goto release; 2368 } 2369 } else 2370 uio->uio_resid -= len; 2371 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2372 if (len == m->m_len - moff) { 2373 if (m->m_flags & M_EOR) 2374 flags |= MSG_EOR; 2375 if (flags & MSG_PEEK) { 2376 m = m->m_next; 2377 moff = 0; 2378 } else { 2379 nextrecord = m->m_nextpkt; 2380 sbfree(&so->so_rcv, m); 2381 if (mp != NULL) { 2382 m->m_nextpkt = NULL; 2383 *mp = m; 2384 mp = &m->m_next; 2385 so->so_rcv.sb_mb = m = m->m_next; 2386 *mp = NULL; 2387 } else { 2388 so->so_rcv.sb_mb = m_free(m); 2389 m = so->so_rcv.sb_mb; 2390 } 2391 sockbuf_pushsync(&so->so_rcv, nextrecord); 2392 SBLASTRECORDCHK(&so->so_rcv); 2393 SBLASTMBUFCHK(&so->so_rcv); 2394 } 2395 } else { 2396 if (flags & MSG_PEEK) 2397 moff += len; 2398 else { 2399 if (mp != NULL) { 2400 if (flags & MSG_DONTWAIT) { 2401 *mp = m_copym(m, 0, len, 2402 M_NOWAIT); 2403 if (*mp == NULL) { 2404 /* 2405 * m_copym() couldn't 2406 * allocate an mbuf. 2407 * Adjust uio_resid back 2408 * (it was adjusted 2409 * down by len bytes, 2410 * which we didn't end 2411 * up "copying" over). 2412 */ 2413 uio->uio_resid += len; 2414 break; 2415 } 2416 } else { 2417 SOCKBUF_UNLOCK(&so->so_rcv); 2418 *mp = m_copym(m, 0, len, 2419 M_WAITOK); 2420 SOCKBUF_LOCK(&so->so_rcv); 2421 } 2422 } 2423 sbcut_locked(&so->so_rcv, len); 2424 } 2425 } 2426 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2427 if (so->so_oobmark) { 2428 if ((flags & MSG_PEEK) == 0) { 2429 so->so_oobmark -= len; 2430 if (so->so_oobmark == 0) { 2431 so->so_rcv.sb_state |= SBS_RCVATMARK; 2432 break; 2433 } 2434 } else { 2435 offset += len; 2436 if (offset == so->so_oobmark) 2437 break; 2438 } 2439 } 2440 if (flags & MSG_EOR) 2441 break; 2442 /* 2443 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2444 * must not quit until "uio->uio_resid == 0" or an error 2445 * termination. If a signal/timeout occurs, return with a 2446 * short count but without error. Keep sockbuf locked 2447 * against other readers. 2448 */ 2449 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2450 !sosendallatonce(so) && nextrecord == NULL) { 2451 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2452 if (so->so_error || so->so_rerror || 2453 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2454 break; 2455 /* 2456 * Notify the protocol that some data has been 2457 * drained before blocking. 2458 */ 2459 if (pr->pr_flags & PR_WANTRCVD) { 2460 SOCKBUF_UNLOCK(&so->so_rcv); 2461 VNET_SO_ASSERT(so); 2462 pr->pr_rcvd(so, flags); 2463 SOCKBUF_LOCK(&so->so_rcv); 2464 if (__predict_false(so->so_rcv.sb_mb == NULL && 2465 (so->so_error || so->so_rerror || 2466 so->so_rcv.sb_state & SBS_CANTRCVMORE))) 2467 break; 2468 } 2469 SBLASTRECORDCHK(&so->so_rcv); 2470 SBLASTMBUFCHK(&so->so_rcv); 2471 /* 2472 * We could receive some data while was notifying 2473 * the protocol. Skip blocking in this case. 2474 */ 2475 if (so->so_rcv.sb_mb == NULL) { 2476 error = sbwait(so, SO_RCV); 2477 if (error) { 2478 SOCKBUF_UNLOCK(&so->so_rcv); 2479 goto release; 2480 } 2481 } 2482 m = so->so_rcv.sb_mb; 2483 if (m != NULL) 2484 nextrecord = m->m_nextpkt; 2485 } 2486 } 2487 2488 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2489 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2490 if (report_real_len) 2491 uio->uio_resid -= m_length(m, NULL) - moff; 2492 flags |= MSG_TRUNC; 2493 if ((flags & MSG_PEEK) == 0) 2494 (void) sbdroprecord_locked(&so->so_rcv); 2495 } 2496 if ((flags & MSG_PEEK) == 0) { 2497 if (m == NULL) { 2498 /* 2499 * First part is an inline SB_EMPTY_FIXUP(). Second 2500 * part makes sure sb_lastrecord is up-to-date if 2501 * there is still data in the socket buffer. 2502 */ 2503 so->so_rcv.sb_mb = nextrecord; 2504 if (so->so_rcv.sb_mb == NULL) { 2505 so->so_rcv.sb_mbtail = NULL; 2506 so->so_rcv.sb_lastrecord = NULL; 2507 } else if (nextrecord->m_nextpkt == NULL) 2508 so->so_rcv.sb_lastrecord = nextrecord; 2509 } 2510 SBLASTRECORDCHK(&so->so_rcv); 2511 SBLASTMBUFCHK(&so->so_rcv); 2512 /* 2513 * If soreceive() is being done from the socket callback, 2514 * then don't need to generate ACK to peer to update window, 2515 * since ACK will be generated on return to TCP. 2516 */ 2517 if (!(flags & MSG_SOCALLBCK) && 2518 (pr->pr_flags & PR_WANTRCVD)) { 2519 SOCKBUF_UNLOCK(&so->so_rcv); 2520 VNET_SO_ASSERT(so); 2521 pr->pr_rcvd(so, flags); 2522 SOCKBUF_LOCK(&so->so_rcv); 2523 } 2524 } 2525 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2526 if (orig_resid == uio->uio_resid && orig_resid && 2527 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2528 SOCKBUF_UNLOCK(&so->so_rcv); 2529 goto restart; 2530 } 2531 SOCKBUF_UNLOCK(&so->so_rcv); 2532 2533 if (flagsp != NULL) 2534 *flagsp |= flags; 2535 release: 2536 SOCK_IO_RECV_UNLOCK(so); 2537 return (error); 2538 } 2539 2540 /* 2541 * Optimized version of soreceive() for stream (TCP) sockets. 2542 */ 2543 int 2544 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2545 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2546 { 2547 int len = 0, error = 0, flags, oresid; 2548 struct sockbuf *sb; 2549 struct mbuf *m, *n = NULL; 2550 2551 /* We only do stream sockets. */ 2552 if (so->so_type != SOCK_STREAM) 2553 return (EINVAL); 2554 if (psa != NULL) 2555 *psa = NULL; 2556 if (flagsp != NULL) 2557 flags = *flagsp &~ MSG_EOR; 2558 else 2559 flags = 0; 2560 if (controlp != NULL) 2561 *controlp = NULL; 2562 if (flags & MSG_OOB) 2563 return (soreceive_rcvoob(so, uio, flags)); 2564 if (mp0 != NULL) 2565 *mp0 = NULL; 2566 2567 sb = &so->so_rcv; 2568 2569 #ifdef KERN_TLS 2570 /* 2571 * KTLS store TLS records as records with a control message to 2572 * describe the framing. 2573 * 2574 * We check once here before acquiring locks to optimize the 2575 * common case. 2576 */ 2577 if (sb->sb_tls_info != NULL) 2578 return (soreceive_generic(so, psa, uio, mp0, controlp, 2579 flagsp)); 2580 #endif 2581 2582 /* Prevent other readers from entering the socket. */ 2583 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2584 if (error) 2585 return (error); 2586 SOCKBUF_LOCK(sb); 2587 2588 #ifdef KERN_TLS 2589 if (sb->sb_tls_info != NULL) { 2590 SOCKBUF_UNLOCK(sb); 2591 SOCK_IO_RECV_UNLOCK(so); 2592 return (soreceive_generic(so, psa, uio, mp0, controlp, 2593 flagsp)); 2594 } 2595 #endif 2596 2597 /* Easy one, no space to copyout anything. */ 2598 if (uio->uio_resid == 0) { 2599 error = EINVAL; 2600 goto out; 2601 } 2602 oresid = uio->uio_resid; 2603 2604 /* We will never ever get anything unless we are or were connected. */ 2605 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2606 error = ENOTCONN; 2607 goto out; 2608 } 2609 2610 restart: 2611 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2612 2613 /* Abort if socket has reported problems. */ 2614 if (so->so_error) { 2615 if (sbavail(sb) > 0) 2616 goto deliver; 2617 if (oresid > uio->uio_resid) 2618 goto out; 2619 error = so->so_error; 2620 if (!(flags & MSG_PEEK)) 2621 so->so_error = 0; 2622 goto out; 2623 } 2624 2625 /* Door is closed. Deliver what is left, if any. */ 2626 if (sb->sb_state & SBS_CANTRCVMORE) { 2627 if (sbavail(sb) > 0) 2628 goto deliver; 2629 else 2630 goto out; 2631 } 2632 2633 /* Socket buffer is empty and we shall not block. */ 2634 if (sbavail(sb) == 0 && 2635 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2636 error = EAGAIN; 2637 goto out; 2638 } 2639 2640 /* Socket buffer got some data that we shall deliver now. */ 2641 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2642 ((so->so_state & SS_NBIO) || 2643 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2644 sbavail(sb) >= sb->sb_lowat || 2645 sbavail(sb) >= uio->uio_resid || 2646 sbavail(sb) >= sb->sb_hiwat) ) { 2647 goto deliver; 2648 } 2649 2650 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2651 if ((flags & MSG_WAITALL) && 2652 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2653 goto deliver; 2654 2655 /* 2656 * Wait and block until (more) data comes in. 2657 * NB: Drops the sockbuf lock during wait. 2658 */ 2659 error = sbwait(so, SO_RCV); 2660 if (error) 2661 goto out; 2662 goto restart; 2663 2664 deliver: 2665 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2666 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2667 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2668 2669 /* Statistics. */ 2670 if (uio->uio_td) 2671 uio->uio_td->td_ru.ru_msgrcv++; 2672 2673 /* Fill uio until full or current end of socket buffer is reached. */ 2674 len = min(uio->uio_resid, sbavail(sb)); 2675 if (mp0 != NULL) { 2676 /* Dequeue as many mbufs as possible. */ 2677 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2678 if (*mp0 == NULL) 2679 *mp0 = sb->sb_mb; 2680 else 2681 m_cat(*mp0, sb->sb_mb); 2682 for (m = sb->sb_mb; 2683 m != NULL && m->m_len <= len; 2684 m = m->m_next) { 2685 KASSERT(!(m->m_flags & M_NOTAVAIL), 2686 ("%s: m %p not available", __func__, m)); 2687 len -= m->m_len; 2688 uio->uio_resid -= m->m_len; 2689 sbfree(sb, m); 2690 n = m; 2691 } 2692 n->m_next = NULL; 2693 sb->sb_mb = m; 2694 sb->sb_lastrecord = sb->sb_mb; 2695 if (sb->sb_mb == NULL) 2696 SB_EMPTY_FIXUP(sb); 2697 } 2698 /* Copy the remainder. */ 2699 if (len > 0) { 2700 KASSERT(sb->sb_mb != NULL, 2701 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2702 2703 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2704 if (m == NULL) 2705 len = 0; /* Don't flush data from sockbuf. */ 2706 else 2707 uio->uio_resid -= len; 2708 if (*mp0 != NULL) 2709 m_cat(*mp0, m); 2710 else 2711 *mp0 = m; 2712 if (*mp0 == NULL) { 2713 error = ENOBUFS; 2714 goto out; 2715 } 2716 } 2717 } else { 2718 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2719 SOCKBUF_UNLOCK(sb); 2720 error = m_mbuftouio(uio, sb->sb_mb, len); 2721 SOCKBUF_LOCK(sb); 2722 if (error) 2723 goto out; 2724 } 2725 SBLASTRECORDCHK(sb); 2726 SBLASTMBUFCHK(sb); 2727 2728 /* 2729 * Remove the delivered data from the socket buffer unless we 2730 * were only peeking. 2731 */ 2732 if (!(flags & MSG_PEEK)) { 2733 if (len > 0) 2734 sbdrop_locked(sb, len); 2735 2736 /* Notify protocol that we drained some data. */ 2737 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2738 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2739 !(flags & MSG_SOCALLBCK))) { 2740 SOCKBUF_UNLOCK(sb); 2741 VNET_SO_ASSERT(so); 2742 so->so_proto->pr_rcvd(so, flags); 2743 SOCKBUF_LOCK(sb); 2744 } 2745 } 2746 2747 /* 2748 * For MSG_WAITALL we may have to loop again and wait for 2749 * more data to come in. 2750 */ 2751 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2752 goto restart; 2753 out: 2754 SBLASTRECORDCHK(sb); 2755 SBLASTMBUFCHK(sb); 2756 SOCKBUF_UNLOCK(sb); 2757 SOCK_IO_RECV_UNLOCK(so); 2758 return (error); 2759 } 2760 2761 /* 2762 * Optimized version of soreceive() for simple datagram cases from userspace. 2763 * Unlike in the stream case, we're able to drop a datagram if copyout() 2764 * fails, and because we handle datagrams atomically, we don't need to use a 2765 * sleep lock to prevent I/O interlacing. 2766 */ 2767 int 2768 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2769 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2770 { 2771 struct mbuf *m, *m2; 2772 int flags, error; 2773 ssize_t len; 2774 struct protosw *pr = so->so_proto; 2775 struct mbuf *nextrecord; 2776 2777 if (psa != NULL) 2778 *psa = NULL; 2779 if (controlp != NULL) 2780 *controlp = NULL; 2781 if (flagsp != NULL) 2782 flags = *flagsp &~ MSG_EOR; 2783 else 2784 flags = 0; 2785 2786 /* 2787 * For any complicated cases, fall back to the full 2788 * soreceive_generic(). 2789 */ 2790 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2791 return (soreceive_generic(so, psa, uio, mp0, controlp, 2792 flagsp)); 2793 2794 /* 2795 * Enforce restrictions on use. 2796 */ 2797 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2798 ("soreceive_dgram: wantrcvd")); 2799 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2800 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2801 ("soreceive_dgram: SBS_RCVATMARK")); 2802 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2803 ("soreceive_dgram: P_CONNREQUIRED")); 2804 2805 /* 2806 * Loop blocking while waiting for a datagram. 2807 */ 2808 SOCKBUF_LOCK(&so->so_rcv); 2809 while ((m = so->so_rcv.sb_mb) == NULL) { 2810 KASSERT(sbavail(&so->so_rcv) == 0, 2811 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2812 sbavail(&so->so_rcv))); 2813 if (so->so_error) { 2814 error = so->so_error; 2815 so->so_error = 0; 2816 SOCKBUF_UNLOCK(&so->so_rcv); 2817 return (error); 2818 } 2819 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2820 uio->uio_resid == 0) { 2821 SOCKBUF_UNLOCK(&so->so_rcv); 2822 return (0); 2823 } 2824 if ((so->so_state & SS_NBIO) || 2825 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2826 SOCKBUF_UNLOCK(&so->so_rcv); 2827 return (EWOULDBLOCK); 2828 } 2829 SBLASTRECORDCHK(&so->so_rcv); 2830 SBLASTMBUFCHK(&so->so_rcv); 2831 error = sbwait(so, SO_RCV); 2832 if (error) { 2833 SOCKBUF_UNLOCK(&so->so_rcv); 2834 return (error); 2835 } 2836 } 2837 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2838 2839 if (uio->uio_td) 2840 uio->uio_td->td_ru.ru_msgrcv++; 2841 SBLASTRECORDCHK(&so->so_rcv); 2842 SBLASTMBUFCHK(&so->so_rcv); 2843 nextrecord = m->m_nextpkt; 2844 if (nextrecord == NULL) { 2845 KASSERT(so->so_rcv.sb_lastrecord == m, 2846 ("soreceive_dgram: lastrecord != m")); 2847 } 2848 2849 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2850 ("soreceive_dgram: m_nextpkt != nextrecord")); 2851 2852 /* 2853 * Pull 'm' and its chain off the front of the packet queue. 2854 */ 2855 so->so_rcv.sb_mb = NULL; 2856 sockbuf_pushsync(&so->so_rcv, nextrecord); 2857 2858 /* 2859 * Walk 'm's chain and free that many bytes from the socket buffer. 2860 */ 2861 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2862 sbfree(&so->so_rcv, m2); 2863 2864 /* 2865 * Do a few last checks before we let go of the lock. 2866 */ 2867 SBLASTRECORDCHK(&so->so_rcv); 2868 SBLASTMBUFCHK(&so->so_rcv); 2869 SOCKBUF_UNLOCK(&so->so_rcv); 2870 2871 if (pr->pr_flags & PR_ADDR) { 2872 KASSERT(m->m_type == MT_SONAME, 2873 ("m->m_type == %d", m->m_type)); 2874 if (psa != NULL) 2875 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2876 M_WAITOK); 2877 m = m_free(m); 2878 } 2879 KASSERT(m, ("%s: no data or control after soname", __func__)); 2880 2881 /* 2882 * Packet to copyout() is now in 'm' and it is disconnected from the 2883 * queue. 2884 * 2885 * Process one or more MT_CONTROL mbufs present before any data mbufs 2886 * in the first mbuf chain on the socket buffer. We call into the 2887 * protocol to perform externalization (or freeing if controlp == 2888 * NULL). In some cases there can be only MT_CONTROL mbufs without 2889 * MT_DATA mbufs. 2890 */ 2891 if (m->m_type == MT_CONTROL) { 2892 struct mbuf *cm = NULL, *cmn; 2893 struct mbuf **cme = &cm; 2894 2895 do { 2896 m2 = m->m_next; 2897 m->m_next = NULL; 2898 *cme = m; 2899 cme = &(*cme)->m_next; 2900 m = m2; 2901 } while (m != NULL && m->m_type == MT_CONTROL); 2902 while (cm != NULL) { 2903 cmn = cm->m_next; 2904 cm->m_next = NULL; 2905 if (pr->pr_domain->dom_externalize != NULL) { 2906 error = (*pr->pr_domain->dom_externalize) 2907 (cm, controlp, flags); 2908 } else if (controlp != NULL) 2909 *controlp = cm; 2910 else 2911 m_freem(cm); 2912 if (controlp != NULL) { 2913 while (*controlp != NULL) 2914 controlp = &(*controlp)->m_next; 2915 } 2916 cm = cmn; 2917 } 2918 } 2919 KASSERT(m == NULL || m->m_type == MT_DATA, 2920 ("soreceive_dgram: !data")); 2921 while (m != NULL && uio->uio_resid > 0) { 2922 len = uio->uio_resid; 2923 if (len > m->m_len) 2924 len = m->m_len; 2925 error = uiomove(mtod(m, char *), (int)len, uio); 2926 if (error) { 2927 m_freem(m); 2928 return (error); 2929 } 2930 if (len == m->m_len) 2931 m = m_free(m); 2932 else { 2933 m->m_data += len; 2934 m->m_len -= len; 2935 } 2936 } 2937 if (m != NULL) { 2938 flags |= MSG_TRUNC; 2939 m_freem(m); 2940 } 2941 if (flagsp != NULL) 2942 *flagsp |= flags; 2943 return (0); 2944 } 2945 2946 int 2947 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2948 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2949 { 2950 int error; 2951 2952 CURVNET_SET(so->so_vnet); 2953 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2954 CURVNET_RESTORE(); 2955 return (error); 2956 } 2957 2958 int 2959 soshutdown(struct socket *so, enum shutdown_how how) 2960 { 2961 int error; 2962 2963 CURVNET_SET(so->so_vnet); 2964 error = so->so_proto->pr_shutdown(so, how); 2965 CURVNET_RESTORE(); 2966 2967 return (error); 2968 } 2969 2970 /* 2971 * Used by several pr_shutdown implementations that use generic socket buffers. 2972 */ 2973 void 2974 sorflush(struct socket *so) 2975 { 2976 int error; 2977 2978 VNET_SO_ASSERT(so); 2979 2980 /* 2981 * Dislodge threads currently blocked in receive and wait to acquire 2982 * a lock against other simultaneous readers before clearing the 2983 * socket buffer. Don't let our acquire be interrupted by a signal 2984 * despite any existing socket disposition on interruptable waiting. 2985 * 2986 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive 2987 * methods that read the top of the socket buffer without acquisition 2988 * of the socket buffer mutex, assuming that top of the buffer 2989 * exclusively belongs to the read(2) syscall. This is handy when 2990 * performing MSG_PEEK. 2991 */ 2992 socantrcvmore(so); 2993 2994 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2995 if (error != 0) { 2996 KASSERT(SOLISTENING(so), 2997 ("%s: soiolock(%p) failed", __func__, so)); 2998 return; 2999 } 3000 3001 sbrelease(so, SO_RCV); 3002 SOCK_IO_RECV_UNLOCK(so); 3003 3004 } 3005 3006 /* 3007 * Wrapper for Socket established helper hook. 3008 * Parameters: socket, context of the hook point, hook id. 3009 */ 3010 static int inline 3011 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3012 { 3013 struct socket_hhook_data hhook_data = { 3014 .so = so, 3015 .hctx = hctx, 3016 .m = NULL, 3017 .status = 0 3018 }; 3019 3020 CURVNET_SET(so->so_vnet); 3021 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3022 CURVNET_RESTORE(); 3023 3024 /* Ugly but needed, since hhooks return void for now */ 3025 return (hhook_data.status); 3026 } 3027 3028 /* 3029 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3030 * additional variant to handle the case where the option value needs to be 3031 * some kind of integer, but not a specific size. In addition to their use 3032 * here, these functions are also called by the protocol-level pr_ctloutput() 3033 * routines. 3034 */ 3035 int 3036 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3037 { 3038 size_t valsize; 3039 3040 /* 3041 * If the user gives us more than we wanted, we ignore it, but if we 3042 * don't get the minimum length the caller wants, we return EINVAL. 3043 * On success, sopt->sopt_valsize is set to however much we actually 3044 * retrieved. 3045 */ 3046 if ((valsize = sopt->sopt_valsize) < minlen) 3047 return EINVAL; 3048 if (valsize > len) 3049 sopt->sopt_valsize = valsize = len; 3050 3051 if (sopt->sopt_td != NULL) 3052 return (copyin(sopt->sopt_val, buf, valsize)); 3053 3054 bcopy(sopt->sopt_val, buf, valsize); 3055 return (0); 3056 } 3057 3058 /* 3059 * Kernel version of setsockopt(2). 3060 * 3061 * XXX: optlen is size_t, not socklen_t 3062 */ 3063 int 3064 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3065 size_t optlen) 3066 { 3067 struct sockopt sopt; 3068 3069 sopt.sopt_level = level; 3070 sopt.sopt_name = optname; 3071 sopt.sopt_dir = SOPT_SET; 3072 sopt.sopt_val = optval; 3073 sopt.sopt_valsize = optlen; 3074 sopt.sopt_td = NULL; 3075 return (sosetopt(so, &sopt)); 3076 } 3077 3078 int 3079 sosetopt(struct socket *so, struct sockopt *sopt) 3080 { 3081 int error, optval; 3082 struct linger l; 3083 struct timeval tv; 3084 sbintime_t val, *valp; 3085 uint32_t val32; 3086 #ifdef MAC 3087 struct mac extmac; 3088 #endif 3089 3090 CURVNET_SET(so->so_vnet); 3091 error = 0; 3092 if (sopt->sopt_level != SOL_SOCKET) { 3093 if (so->so_proto->pr_ctloutput != NULL) 3094 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3095 else 3096 error = ENOPROTOOPT; 3097 } else { 3098 switch (sopt->sopt_name) { 3099 case SO_ACCEPTFILTER: 3100 error = accept_filt_setopt(so, sopt); 3101 if (error) 3102 goto bad; 3103 break; 3104 3105 case SO_LINGER: 3106 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3107 if (error) 3108 goto bad; 3109 if (l.l_linger < 0 || 3110 l.l_linger > USHRT_MAX || 3111 l.l_linger > (INT_MAX / hz)) { 3112 error = EDOM; 3113 goto bad; 3114 } 3115 SOCK_LOCK(so); 3116 so->so_linger = l.l_linger; 3117 if (l.l_onoff) 3118 so->so_options |= SO_LINGER; 3119 else 3120 so->so_options &= ~SO_LINGER; 3121 SOCK_UNLOCK(so); 3122 break; 3123 3124 case SO_DEBUG: 3125 case SO_KEEPALIVE: 3126 case SO_DONTROUTE: 3127 case SO_USELOOPBACK: 3128 case SO_BROADCAST: 3129 case SO_REUSEADDR: 3130 case SO_REUSEPORT: 3131 case SO_REUSEPORT_LB: 3132 case SO_OOBINLINE: 3133 case SO_TIMESTAMP: 3134 case SO_BINTIME: 3135 case SO_NOSIGPIPE: 3136 case SO_NO_DDP: 3137 case SO_NO_OFFLOAD: 3138 case SO_RERROR: 3139 error = sooptcopyin(sopt, &optval, sizeof optval, 3140 sizeof optval); 3141 if (error) 3142 goto bad; 3143 SOCK_LOCK(so); 3144 if (optval) 3145 so->so_options |= sopt->sopt_name; 3146 else 3147 so->so_options &= ~sopt->sopt_name; 3148 SOCK_UNLOCK(so); 3149 break; 3150 3151 case SO_SETFIB: 3152 error = sooptcopyin(sopt, &optval, sizeof optval, 3153 sizeof optval); 3154 if (error) 3155 goto bad; 3156 3157 if (optval < 0 || optval >= rt_numfibs) { 3158 error = EINVAL; 3159 goto bad; 3160 } 3161 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3162 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3163 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3164 so->so_fibnum = optval; 3165 else 3166 so->so_fibnum = 0; 3167 break; 3168 3169 case SO_USER_COOKIE: 3170 error = sooptcopyin(sopt, &val32, sizeof val32, 3171 sizeof val32); 3172 if (error) 3173 goto bad; 3174 so->so_user_cookie = val32; 3175 break; 3176 3177 case SO_SNDBUF: 3178 case SO_RCVBUF: 3179 case SO_SNDLOWAT: 3180 case SO_RCVLOWAT: 3181 error = so->so_proto->pr_setsbopt(so, sopt); 3182 if (error) 3183 goto bad; 3184 break; 3185 3186 case SO_SNDTIMEO: 3187 case SO_RCVTIMEO: 3188 #ifdef COMPAT_FREEBSD32 3189 if (SV_CURPROC_FLAG(SV_ILP32)) { 3190 struct timeval32 tv32; 3191 3192 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3193 sizeof tv32); 3194 CP(tv32, tv, tv_sec); 3195 CP(tv32, tv, tv_usec); 3196 } else 3197 #endif 3198 error = sooptcopyin(sopt, &tv, sizeof tv, 3199 sizeof tv); 3200 if (error) 3201 goto bad; 3202 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3203 tv.tv_usec >= 1000000) { 3204 error = EDOM; 3205 goto bad; 3206 } 3207 if (tv.tv_sec > INT32_MAX) 3208 val = SBT_MAX; 3209 else 3210 val = tvtosbt(tv); 3211 SOCK_LOCK(so); 3212 valp = sopt->sopt_name == SO_SNDTIMEO ? 3213 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3214 &so->so_snd.sb_timeo) : 3215 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3216 &so->so_rcv.sb_timeo); 3217 *valp = val; 3218 SOCK_UNLOCK(so); 3219 break; 3220 3221 case SO_LABEL: 3222 #ifdef MAC 3223 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3224 sizeof extmac); 3225 if (error) 3226 goto bad; 3227 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3228 so, &extmac); 3229 #else 3230 error = EOPNOTSUPP; 3231 #endif 3232 break; 3233 3234 case SO_TS_CLOCK: 3235 error = sooptcopyin(sopt, &optval, sizeof optval, 3236 sizeof optval); 3237 if (error) 3238 goto bad; 3239 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3240 error = EINVAL; 3241 goto bad; 3242 } 3243 so->so_ts_clock = optval; 3244 break; 3245 3246 case SO_MAX_PACING_RATE: 3247 error = sooptcopyin(sopt, &val32, sizeof(val32), 3248 sizeof(val32)); 3249 if (error) 3250 goto bad; 3251 so->so_max_pacing_rate = val32; 3252 break; 3253 3254 default: 3255 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3256 error = hhook_run_socket(so, sopt, 3257 HHOOK_SOCKET_OPT); 3258 else 3259 error = ENOPROTOOPT; 3260 break; 3261 } 3262 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3263 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3264 } 3265 bad: 3266 CURVNET_RESTORE(); 3267 return (error); 3268 } 3269 3270 /* 3271 * Helper routine for getsockopt. 3272 */ 3273 int 3274 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3275 { 3276 int error; 3277 size_t valsize; 3278 3279 error = 0; 3280 3281 /* 3282 * Documented get behavior is that we always return a value, possibly 3283 * truncated to fit in the user's buffer. Traditional behavior is 3284 * that we always tell the user precisely how much we copied, rather 3285 * than something useful like the total amount we had available for 3286 * her. Note that this interface is not idempotent; the entire 3287 * answer must be generated ahead of time. 3288 */ 3289 valsize = min(len, sopt->sopt_valsize); 3290 sopt->sopt_valsize = valsize; 3291 if (sopt->sopt_val != NULL) { 3292 if (sopt->sopt_td != NULL) 3293 error = copyout(buf, sopt->sopt_val, valsize); 3294 else 3295 bcopy(buf, sopt->sopt_val, valsize); 3296 } 3297 return (error); 3298 } 3299 3300 int 3301 sogetopt(struct socket *so, struct sockopt *sopt) 3302 { 3303 int error, optval; 3304 struct linger l; 3305 struct timeval tv; 3306 #ifdef MAC 3307 struct mac extmac; 3308 #endif 3309 3310 CURVNET_SET(so->so_vnet); 3311 error = 0; 3312 if (sopt->sopt_level != SOL_SOCKET) { 3313 if (so->so_proto->pr_ctloutput != NULL) 3314 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3315 else 3316 error = ENOPROTOOPT; 3317 CURVNET_RESTORE(); 3318 return (error); 3319 } else { 3320 switch (sopt->sopt_name) { 3321 case SO_ACCEPTFILTER: 3322 error = accept_filt_getopt(so, sopt); 3323 break; 3324 3325 case SO_LINGER: 3326 SOCK_LOCK(so); 3327 l.l_onoff = so->so_options & SO_LINGER; 3328 l.l_linger = so->so_linger; 3329 SOCK_UNLOCK(so); 3330 error = sooptcopyout(sopt, &l, sizeof l); 3331 break; 3332 3333 case SO_USELOOPBACK: 3334 case SO_DONTROUTE: 3335 case SO_DEBUG: 3336 case SO_KEEPALIVE: 3337 case SO_REUSEADDR: 3338 case SO_REUSEPORT: 3339 case SO_REUSEPORT_LB: 3340 case SO_BROADCAST: 3341 case SO_OOBINLINE: 3342 case SO_ACCEPTCONN: 3343 case SO_TIMESTAMP: 3344 case SO_BINTIME: 3345 case SO_NOSIGPIPE: 3346 case SO_NO_DDP: 3347 case SO_NO_OFFLOAD: 3348 case SO_RERROR: 3349 optval = so->so_options & sopt->sopt_name; 3350 integer: 3351 error = sooptcopyout(sopt, &optval, sizeof optval); 3352 break; 3353 3354 case SO_DOMAIN: 3355 optval = so->so_proto->pr_domain->dom_family; 3356 goto integer; 3357 3358 case SO_TYPE: 3359 optval = so->so_type; 3360 goto integer; 3361 3362 case SO_PROTOCOL: 3363 optval = so->so_proto->pr_protocol; 3364 goto integer; 3365 3366 case SO_ERROR: 3367 SOCK_LOCK(so); 3368 if (so->so_error) { 3369 optval = so->so_error; 3370 so->so_error = 0; 3371 } else { 3372 optval = so->so_rerror; 3373 so->so_rerror = 0; 3374 } 3375 SOCK_UNLOCK(so); 3376 goto integer; 3377 3378 case SO_SNDBUF: 3379 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3380 so->so_snd.sb_hiwat; 3381 goto integer; 3382 3383 case SO_RCVBUF: 3384 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3385 so->so_rcv.sb_hiwat; 3386 goto integer; 3387 3388 case SO_SNDLOWAT: 3389 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3390 so->so_snd.sb_lowat; 3391 goto integer; 3392 3393 case SO_RCVLOWAT: 3394 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3395 so->so_rcv.sb_lowat; 3396 goto integer; 3397 3398 case SO_SNDTIMEO: 3399 case SO_RCVTIMEO: 3400 SOCK_LOCK(so); 3401 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3402 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3403 so->so_snd.sb_timeo) : 3404 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3405 so->so_rcv.sb_timeo)); 3406 SOCK_UNLOCK(so); 3407 #ifdef COMPAT_FREEBSD32 3408 if (SV_CURPROC_FLAG(SV_ILP32)) { 3409 struct timeval32 tv32; 3410 3411 CP(tv, tv32, tv_sec); 3412 CP(tv, tv32, tv_usec); 3413 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3414 } else 3415 #endif 3416 error = sooptcopyout(sopt, &tv, sizeof tv); 3417 break; 3418 3419 case SO_LABEL: 3420 #ifdef MAC 3421 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3422 sizeof(extmac)); 3423 if (error) 3424 goto bad; 3425 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3426 so, &extmac); 3427 if (error) 3428 goto bad; 3429 /* Don't copy out extmac, it is unchanged. */ 3430 #else 3431 error = EOPNOTSUPP; 3432 #endif 3433 break; 3434 3435 case SO_PEERLABEL: 3436 #ifdef MAC 3437 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3438 sizeof(extmac)); 3439 if (error) 3440 goto bad; 3441 error = mac_getsockopt_peerlabel( 3442 sopt->sopt_td->td_ucred, so, &extmac); 3443 if (error) 3444 goto bad; 3445 /* Don't copy out extmac, it is unchanged. */ 3446 #else 3447 error = EOPNOTSUPP; 3448 #endif 3449 break; 3450 3451 case SO_LISTENQLIMIT: 3452 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3453 goto integer; 3454 3455 case SO_LISTENQLEN: 3456 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3457 goto integer; 3458 3459 case SO_LISTENINCQLEN: 3460 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3461 goto integer; 3462 3463 case SO_TS_CLOCK: 3464 optval = so->so_ts_clock; 3465 goto integer; 3466 3467 case SO_MAX_PACING_RATE: 3468 optval = so->so_max_pacing_rate; 3469 goto integer; 3470 3471 default: 3472 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3473 error = hhook_run_socket(so, sopt, 3474 HHOOK_SOCKET_OPT); 3475 else 3476 error = ENOPROTOOPT; 3477 break; 3478 } 3479 } 3480 #ifdef MAC 3481 bad: 3482 #endif 3483 CURVNET_RESTORE(); 3484 return (error); 3485 } 3486 3487 int 3488 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3489 { 3490 struct mbuf *m, *m_prev; 3491 int sopt_size = sopt->sopt_valsize; 3492 3493 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3494 if (m == NULL) 3495 return ENOBUFS; 3496 if (sopt_size > MLEN) { 3497 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3498 if ((m->m_flags & M_EXT) == 0) { 3499 m_free(m); 3500 return ENOBUFS; 3501 } 3502 m->m_len = min(MCLBYTES, sopt_size); 3503 } else { 3504 m->m_len = min(MLEN, sopt_size); 3505 } 3506 sopt_size -= m->m_len; 3507 *mp = m; 3508 m_prev = m; 3509 3510 while (sopt_size) { 3511 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3512 if (m == NULL) { 3513 m_freem(*mp); 3514 return ENOBUFS; 3515 } 3516 if (sopt_size > MLEN) { 3517 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3518 M_NOWAIT); 3519 if ((m->m_flags & M_EXT) == 0) { 3520 m_freem(m); 3521 m_freem(*mp); 3522 return ENOBUFS; 3523 } 3524 m->m_len = min(MCLBYTES, sopt_size); 3525 } else { 3526 m->m_len = min(MLEN, sopt_size); 3527 } 3528 sopt_size -= m->m_len; 3529 m_prev->m_next = m; 3530 m_prev = m; 3531 } 3532 return (0); 3533 } 3534 3535 int 3536 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3537 { 3538 struct mbuf *m0 = m; 3539 3540 if (sopt->sopt_val == NULL) 3541 return (0); 3542 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3543 if (sopt->sopt_td != NULL) { 3544 int error; 3545 3546 error = copyin(sopt->sopt_val, mtod(m, char *), 3547 m->m_len); 3548 if (error != 0) { 3549 m_freem(m0); 3550 return(error); 3551 } 3552 } else 3553 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3554 sopt->sopt_valsize -= m->m_len; 3555 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3556 m = m->m_next; 3557 } 3558 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3559 panic("ip6_sooptmcopyin"); 3560 return (0); 3561 } 3562 3563 int 3564 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3565 { 3566 struct mbuf *m0 = m; 3567 size_t valsize = 0; 3568 3569 if (sopt->sopt_val == NULL) 3570 return (0); 3571 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3572 if (sopt->sopt_td != NULL) { 3573 int error; 3574 3575 error = copyout(mtod(m, char *), sopt->sopt_val, 3576 m->m_len); 3577 if (error != 0) { 3578 m_freem(m0); 3579 return(error); 3580 } 3581 } else 3582 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3583 sopt->sopt_valsize -= m->m_len; 3584 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3585 valsize += m->m_len; 3586 m = m->m_next; 3587 } 3588 if (m != NULL) { 3589 /* enough soopt buffer should be given from user-land */ 3590 m_freem(m0); 3591 return(EINVAL); 3592 } 3593 sopt->sopt_valsize = valsize; 3594 return (0); 3595 } 3596 3597 /* 3598 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3599 * out-of-band data, which will then notify socket consumers. 3600 */ 3601 void 3602 sohasoutofband(struct socket *so) 3603 { 3604 3605 if (so->so_sigio != NULL) 3606 pgsigio(&so->so_sigio, SIGURG, 0); 3607 selwakeuppri(&so->so_rdsel, PSOCK); 3608 } 3609 3610 int 3611 sopoll(struct socket *so, int events, struct ucred *active_cred, 3612 struct thread *td) 3613 { 3614 3615 /* 3616 * We do not need to set or assert curvnet as long as everyone uses 3617 * sopoll_generic(). 3618 */ 3619 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3620 } 3621 3622 int 3623 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3624 struct thread *td) 3625 { 3626 int revents; 3627 3628 SOCK_LOCK(so); 3629 if (SOLISTENING(so)) { 3630 if (!(events & (POLLIN | POLLRDNORM))) 3631 revents = 0; 3632 else if (!TAILQ_EMPTY(&so->sol_comp)) 3633 revents = events & (POLLIN | POLLRDNORM); 3634 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3635 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3636 else { 3637 selrecord(td, &so->so_rdsel); 3638 revents = 0; 3639 } 3640 } else { 3641 revents = 0; 3642 SOCK_SENDBUF_LOCK(so); 3643 SOCK_RECVBUF_LOCK(so); 3644 if (events & (POLLIN | POLLRDNORM)) 3645 if (soreadabledata(so)) 3646 revents |= events & (POLLIN | POLLRDNORM); 3647 if (events & (POLLOUT | POLLWRNORM)) 3648 if (sowriteable(so)) 3649 revents |= events & (POLLOUT | POLLWRNORM); 3650 if (events & (POLLPRI | POLLRDBAND)) 3651 if (so->so_oobmark || 3652 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3653 revents |= events & (POLLPRI | POLLRDBAND); 3654 if ((events & POLLINIGNEOF) == 0) { 3655 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3656 revents |= events & (POLLIN | POLLRDNORM); 3657 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3658 revents |= POLLHUP; 3659 } 3660 } 3661 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3662 revents |= events & POLLRDHUP; 3663 if (revents == 0) { 3664 if (events & 3665 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3666 selrecord(td, &so->so_rdsel); 3667 so->so_rcv.sb_flags |= SB_SEL; 3668 } 3669 if (events & (POLLOUT | POLLWRNORM)) { 3670 selrecord(td, &so->so_wrsel); 3671 so->so_snd.sb_flags |= SB_SEL; 3672 } 3673 } 3674 SOCK_RECVBUF_UNLOCK(so); 3675 SOCK_SENDBUF_UNLOCK(so); 3676 } 3677 SOCK_UNLOCK(so); 3678 return (revents); 3679 } 3680 3681 int 3682 soo_kqfilter(struct file *fp, struct knote *kn) 3683 { 3684 struct socket *so = kn->kn_fp->f_data; 3685 struct sockbuf *sb; 3686 sb_which which; 3687 struct knlist *knl; 3688 3689 switch (kn->kn_filter) { 3690 case EVFILT_READ: 3691 kn->kn_fop = &soread_filtops; 3692 knl = &so->so_rdsel.si_note; 3693 sb = &so->so_rcv; 3694 which = SO_RCV; 3695 break; 3696 case EVFILT_WRITE: 3697 kn->kn_fop = &sowrite_filtops; 3698 knl = &so->so_wrsel.si_note; 3699 sb = &so->so_snd; 3700 which = SO_SND; 3701 break; 3702 case EVFILT_EMPTY: 3703 kn->kn_fop = &soempty_filtops; 3704 knl = &so->so_wrsel.si_note; 3705 sb = &so->so_snd; 3706 which = SO_SND; 3707 break; 3708 default: 3709 return (EINVAL); 3710 } 3711 3712 SOCK_LOCK(so); 3713 if (SOLISTENING(so)) { 3714 knlist_add(knl, kn, 1); 3715 } else { 3716 SOCK_BUF_LOCK(so, which); 3717 knlist_add(knl, kn, 1); 3718 sb->sb_flags |= SB_KNOTE; 3719 SOCK_BUF_UNLOCK(so, which); 3720 } 3721 SOCK_UNLOCK(so); 3722 return (0); 3723 } 3724 3725 static void 3726 filt_sordetach(struct knote *kn) 3727 { 3728 struct socket *so = kn->kn_fp->f_data; 3729 3730 so_rdknl_lock(so); 3731 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3732 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3733 so->so_rcv.sb_flags &= ~SB_KNOTE; 3734 so_rdknl_unlock(so); 3735 } 3736 3737 /*ARGSUSED*/ 3738 static int 3739 filt_soread(struct knote *kn, long hint) 3740 { 3741 struct socket *so; 3742 3743 so = kn->kn_fp->f_data; 3744 3745 if (SOLISTENING(so)) { 3746 SOCK_LOCK_ASSERT(so); 3747 kn->kn_data = so->sol_qlen; 3748 if (so->so_error) { 3749 kn->kn_flags |= EV_EOF; 3750 kn->kn_fflags = so->so_error; 3751 return (1); 3752 } 3753 return (!TAILQ_EMPTY(&so->sol_comp)); 3754 } 3755 3756 SOCK_RECVBUF_LOCK_ASSERT(so); 3757 3758 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3759 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3760 kn->kn_flags |= EV_EOF; 3761 kn->kn_fflags = so->so_error; 3762 return (1); 3763 } else if (so->so_error || so->so_rerror) 3764 return (1); 3765 3766 if (kn->kn_sfflags & NOTE_LOWAT) { 3767 if (kn->kn_data >= kn->kn_sdata) 3768 return (1); 3769 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3770 return (1); 3771 3772 /* This hook returning non-zero indicates an event, not error */ 3773 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3774 } 3775 3776 static void 3777 filt_sowdetach(struct knote *kn) 3778 { 3779 struct socket *so = kn->kn_fp->f_data; 3780 3781 so_wrknl_lock(so); 3782 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3783 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3784 so->so_snd.sb_flags &= ~SB_KNOTE; 3785 so_wrknl_unlock(so); 3786 } 3787 3788 /*ARGSUSED*/ 3789 static int 3790 filt_sowrite(struct knote *kn, long hint) 3791 { 3792 struct socket *so; 3793 3794 so = kn->kn_fp->f_data; 3795 3796 if (SOLISTENING(so)) 3797 return (0); 3798 3799 SOCK_SENDBUF_LOCK_ASSERT(so); 3800 kn->kn_data = sbspace(&so->so_snd); 3801 3802 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3803 3804 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3805 kn->kn_flags |= EV_EOF; 3806 kn->kn_fflags = so->so_error; 3807 return (1); 3808 } else if (so->so_error) /* temporary udp error */ 3809 return (1); 3810 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3811 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3812 return (0); 3813 else if (kn->kn_sfflags & NOTE_LOWAT) 3814 return (kn->kn_data >= kn->kn_sdata); 3815 else 3816 return (kn->kn_data >= so->so_snd.sb_lowat); 3817 } 3818 3819 static int 3820 filt_soempty(struct knote *kn, long hint) 3821 { 3822 struct socket *so; 3823 3824 so = kn->kn_fp->f_data; 3825 3826 if (SOLISTENING(so)) 3827 return (1); 3828 3829 SOCK_SENDBUF_LOCK_ASSERT(so); 3830 kn->kn_data = sbused(&so->so_snd); 3831 3832 if (kn->kn_data == 0) 3833 return (1); 3834 else 3835 return (0); 3836 } 3837 3838 int 3839 socheckuid(struct socket *so, uid_t uid) 3840 { 3841 3842 if (so == NULL) 3843 return (EPERM); 3844 if (so->so_cred->cr_uid != uid) 3845 return (EPERM); 3846 return (0); 3847 } 3848 3849 /* 3850 * These functions are used by protocols to notify the socket layer (and its 3851 * consumers) of state changes in the sockets driven by protocol-side events. 3852 */ 3853 3854 /* 3855 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3856 * 3857 * Normal sequence from the active (originating) side is that 3858 * soisconnecting() is called during processing of connect() call, resulting 3859 * in an eventual call to soisconnected() if/when the connection is 3860 * established. When the connection is torn down soisdisconnecting() is 3861 * called during processing of disconnect() call, and soisdisconnected() is 3862 * called when the connection to the peer is totally severed. The semantics 3863 * of these routines are such that connectionless protocols can call 3864 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3865 * calls when setting up a ``connection'' takes no time. 3866 * 3867 * From the passive side, a socket is created with two queues of sockets: 3868 * so_incomp for connections in progress and so_comp for connections already 3869 * made and awaiting user acceptance. As a protocol is preparing incoming 3870 * connections, it creates a socket structure queued on so_incomp by calling 3871 * sonewconn(). When the connection is established, soisconnected() is 3872 * called, and transfers the socket structure to so_comp, making it available 3873 * to accept(). 3874 * 3875 * If a socket is closed with sockets on either so_incomp or so_comp, these 3876 * sockets are dropped. 3877 * 3878 * If higher-level protocols are implemented in the kernel, the wakeups done 3879 * here will sometimes cause software-interrupt process scheduling. 3880 */ 3881 void 3882 soisconnecting(struct socket *so) 3883 { 3884 3885 SOCK_LOCK(so); 3886 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3887 so->so_state |= SS_ISCONNECTING; 3888 SOCK_UNLOCK(so); 3889 } 3890 3891 void 3892 soisconnected(struct socket *so) 3893 { 3894 bool last __diagused; 3895 3896 SOCK_LOCK(so); 3897 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 3898 so->so_state |= SS_ISCONNECTED; 3899 3900 if (so->so_qstate == SQ_INCOMP) { 3901 struct socket *head = so->so_listen; 3902 int ret; 3903 3904 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3905 /* 3906 * Promoting a socket from incomplete queue to complete, we 3907 * need to go through reverse order of locking. We first do 3908 * trylock, and if that doesn't succeed, we go the hard way 3909 * leaving a reference and rechecking consistency after proper 3910 * locking. 3911 */ 3912 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3913 soref(head); 3914 SOCK_UNLOCK(so); 3915 SOLISTEN_LOCK(head); 3916 SOCK_LOCK(so); 3917 if (__predict_false(head != so->so_listen)) { 3918 /* 3919 * The socket went off the listen queue, 3920 * should be lost race to close(2) of sol. 3921 * The socket is about to soabort(). 3922 */ 3923 SOCK_UNLOCK(so); 3924 sorele_locked(head); 3925 return; 3926 } 3927 last = refcount_release(&head->so_count); 3928 KASSERT(!last, ("%s: released last reference for %p", 3929 __func__, head)); 3930 } 3931 again: 3932 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3933 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3934 head->sol_incqlen--; 3935 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3936 head->sol_qlen++; 3937 so->so_qstate = SQ_COMP; 3938 SOCK_UNLOCK(so); 3939 solisten_wakeup(head); /* unlocks */ 3940 } else { 3941 SOCK_RECVBUF_LOCK(so); 3942 soupcall_set(so, SO_RCV, 3943 head->sol_accept_filter->accf_callback, 3944 head->sol_accept_filter_arg); 3945 so->so_options &= ~SO_ACCEPTFILTER; 3946 ret = head->sol_accept_filter->accf_callback(so, 3947 head->sol_accept_filter_arg, M_NOWAIT); 3948 if (ret == SU_ISCONNECTED) { 3949 soupcall_clear(so, SO_RCV); 3950 SOCK_RECVBUF_UNLOCK(so); 3951 goto again; 3952 } 3953 SOCK_RECVBUF_UNLOCK(so); 3954 SOCK_UNLOCK(so); 3955 SOLISTEN_UNLOCK(head); 3956 } 3957 return; 3958 } 3959 SOCK_UNLOCK(so); 3960 wakeup(&so->so_timeo); 3961 sorwakeup(so); 3962 sowwakeup(so); 3963 } 3964 3965 void 3966 soisdisconnecting(struct socket *so) 3967 { 3968 3969 SOCK_LOCK(so); 3970 so->so_state &= ~SS_ISCONNECTING; 3971 so->so_state |= SS_ISDISCONNECTING; 3972 3973 if (!SOLISTENING(so)) { 3974 SOCK_RECVBUF_LOCK(so); 3975 socantrcvmore_locked(so); 3976 SOCK_SENDBUF_LOCK(so); 3977 socantsendmore_locked(so); 3978 } 3979 SOCK_UNLOCK(so); 3980 wakeup(&so->so_timeo); 3981 } 3982 3983 void 3984 soisdisconnected(struct socket *so) 3985 { 3986 3987 SOCK_LOCK(so); 3988 3989 /* 3990 * There is at least one reader of so_state that does not 3991 * acquire socket lock, namely soreceive_generic(). Ensure 3992 * that it never sees all flags that track connection status 3993 * cleared, by ordering the update with a barrier semantic of 3994 * our release thread fence. 3995 */ 3996 so->so_state |= SS_ISDISCONNECTED; 3997 atomic_thread_fence_rel(); 3998 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3999 4000 if (!SOLISTENING(so)) { 4001 SOCK_UNLOCK(so); 4002 SOCK_RECVBUF_LOCK(so); 4003 socantrcvmore_locked(so); 4004 SOCK_SENDBUF_LOCK(so); 4005 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4006 socantsendmore_locked(so); 4007 } else 4008 SOCK_UNLOCK(so); 4009 wakeup(&so->so_timeo); 4010 } 4011 4012 int 4013 soiolock(struct socket *so, struct sx *sx, int flags) 4014 { 4015 int error; 4016 4017 KASSERT((flags & SBL_VALID) == flags, 4018 ("soiolock: invalid flags %#x", flags)); 4019 4020 if ((flags & SBL_WAIT) != 0) { 4021 if ((flags & SBL_NOINTR) != 0) { 4022 sx_xlock(sx); 4023 } else { 4024 error = sx_xlock_sig(sx); 4025 if (error != 0) 4026 return (error); 4027 } 4028 } else if (!sx_try_xlock(sx)) { 4029 return (EWOULDBLOCK); 4030 } 4031 4032 if (__predict_false(SOLISTENING(so))) { 4033 sx_xunlock(sx); 4034 return (ENOTCONN); 4035 } 4036 return (0); 4037 } 4038 4039 void 4040 soiounlock(struct sx *sx) 4041 { 4042 sx_xunlock(sx); 4043 } 4044 4045 /* 4046 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4047 */ 4048 struct sockaddr * 4049 sodupsockaddr(const struct sockaddr *sa, int mflags) 4050 { 4051 struct sockaddr *sa2; 4052 4053 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4054 if (sa2) 4055 bcopy(sa, sa2, sa->sa_len); 4056 return sa2; 4057 } 4058 4059 /* 4060 * Register per-socket destructor. 4061 */ 4062 void 4063 sodtor_set(struct socket *so, so_dtor_t *func) 4064 { 4065 4066 SOCK_LOCK_ASSERT(so); 4067 so->so_dtor = func; 4068 } 4069 4070 /* 4071 * Register per-socket buffer upcalls. 4072 */ 4073 void 4074 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4075 { 4076 struct sockbuf *sb; 4077 4078 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4079 4080 switch (which) { 4081 case SO_RCV: 4082 sb = &so->so_rcv; 4083 break; 4084 case SO_SND: 4085 sb = &so->so_snd; 4086 break; 4087 } 4088 SOCK_BUF_LOCK_ASSERT(so, which); 4089 sb->sb_upcall = func; 4090 sb->sb_upcallarg = arg; 4091 sb->sb_flags |= SB_UPCALL; 4092 } 4093 4094 void 4095 soupcall_clear(struct socket *so, sb_which which) 4096 { 4097 struct sockbuf *sb; 4098 4099 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4100 4101 switch (which) { 4102 case SO_RCV: 4103 sb = &so->so_rcv; 4104 break; 4105 case SO_SND: 4106 sb = &so->so_snd; 4107 break; 4108 } 4109 SOCK_BUF_LOCK_ASSERT(so, which); 4110 KASSERT(sb->sb_upcall != NULL, 4111 ("%s: so %p no upcall to clear", __func__, so)); 4112 sb->sb_upcall = NULL; 4113 sb->sb_upcallarg = NULL; 4114 sb->sb_flags &= ~SB_UPCALL; 4115 } 4116 4117 void 4118 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4119 { 4120 4121 SOLISTEN_LOCK_ASSERT(so); 4122 so->sol_upcall = func; 4123 so->sol_upcallarg = arg; 4124 } 4125 4126 static void 4127 so_rdknl_lock(void *arg) 4128 { 4129 struct socket *so = arg; 4130 4131 retry: 4132 if (SOLISTENING(so)) { 4133 SOLISTEN_LOCK(so); 4134 } else { 4135 SOCK_RECVBUF_LOCK(so); 4136 if (__predict_false(SOLISTENING(so))) { 4137 SOCK_RECVBUF_UNLOCK(so); 4138 goto retry; 4139 } 4140 } 4141 } 4142 4143 static void 4144 so_rdknl_unlock(void *arg) 4145 { 4146 struct socket *so = arg; 4147 4148 if (SOLISTENING(so)) 4149 SOLISTEN_UNLOCK(so); 4150 else 4151 SOCK_RECVBUF_UNLOCK(so); 4152 } 4153 4154 static void 4155 so_rdknl_assert_lock(void *arg, int what) 4156 { 4157 struct socket *so = arg; 4158 4159 if (what == LA_LOCKED) { 4160 if (SOLISTENING(so)) 4161 SOLISTEN_LOCK_ASSERT(so); 4162 else 4163 SOCK_RECVBUF_LOCK_ASSERT(so); 4164 } else { 4165 if (SOLISTENING(so)) 4166 SOLISTEN_UNLOCK_ASSERT(so); 4167 else 4168 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4169 } 4170 } 4171 4172 static void 4173 so_wrknl_lock(void *arg) 4174 { 4175 struct socket *so = arg; 4176 4177 retry: 4178 if (SOLISTENING(so)) { 4179 SOLISTEN_LOCK(so); 4180 } else { 4181 SOCK_SENDBUF_LOCK(so); 4182 if (__predict_false(SOLISTENING(so))) { 4183 SOCK_SENDBUF_UNLOCK(so); 4184 goto retry; 4185 } 4186 } 4187 } 4188 4189 static void 4190 so_wrknl_unlock(void *arg) 4191 { 4192 struct socket *so = arg; 4193 4194 if (SOLISTENING(so)) 4195 SOLISTEN_UNLOCK(so); 4196 else 4197 SOCK_SENDBUF_UNLOCK(so); 4198 } 4199 4200 static void 4201 so_wrknl_assert_lock(void *arg, int what) 4202 { 4203 struct socket *so = arg; 4204 4205 if (what == LA_LOCKED) { 4206 if (SOLISTENING(so)) 4207 SOLISTEN_LOCK_ASSERT(so); 4208 else 4209 SOCK_SENDBUF_LOCK_ASSERT(so); 4210 } else { 4211 if (SOLISTENING(so)) 4212 SOLISTEN_UNLOCK_ASSERT(so); 4213 else 4214 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4215 } 4216 } 4217 4218 /* 4219 * Create an external-format (``xsocket'') structure using the information in 4220 * the kernel-format socket structure pointed to by so. This is done to 4221 * reduce the spew of irrelevant information over this interface, to isolate 4222 * user code from changes in the kernel structure, and potentially to provide 4223 * information-hiding if we decide that some of this information should be 4224 * hidden from users. 4225 */ 4226 void 4227 sotoxsocket(struct socket *so, struct xsocket *xso) 4228 { 4229 4230 bzero(xso, sizeof(*xso)); 4231 xso->xso_len = sizeof *xso; 4232 xso->xso_so = (uintptr_t)so; 4233 xso->so_type = so->so_type; 4234 xso->so_options = so->so_options; 4235 xso->so_linger = so->so_linger; 4236 xso->so_state = so->so_state; 4237 xso->so_pcb = (uintptr_t)so->so_pcb; 4238 xso->xso_protocol = so->so_proto->pr_protocol; 4239 xso->xso_family = so->so_proto->pr_domain->dom_family; 4240 xso->so_timeo = so->so_timeo; 4241 xso->so_error = so->so_error; 4242 xso->so_uid = so->so_cred->cr_uid; 4243 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4244 if (SOLISTENING(so)) { 4245 xso->so_qlen = so->sol_qlen; 4246 xso->so_incqlen = so->sol_incqlen; 4247 xso->so_qlimit = so->sol_qlimit; 4248 xso->so_oobmark = 0; 4249 } else { 4250 xso->so_state |= so->so_qstate; 4251 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4252 xso->so_oobmark = so->so_oobmark; 4253 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4254 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4255 } 4256 } 4257 4258 int 4259 so_options_get(const struct socket *so) 4260 { 4261 4262 return (so->so_options); 4263 } 4264 4265 void 4266 so_options_set(struct socket *so, int val) 4267 { 4268 4269 so->so_options = val; 4270 } 4271 4272 int 4273 so_error_get(const struct socket *so) 4274 { 4275 4276 return (so->so_error); 4277 } 4278 4279 void 4280 so_error_set(struct socket *so, int val) 4281 { 4282 4283 so->so_error = val; 4284 } 4285