xref: /freebsd/sys/kern/uipc_socket.c (revision cacdd70cc751fb68dec4b86c5e5b8c969b6e26ef)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_mac.h"
102 #include "opt_zero.h"
103 #include "opt_compat.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/fcntl.h>
108 #include <sys/limits.h>
109 #include <sys/lock.h>
110 #include <sys/mac.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/domain.h>
115 #include <sys/file.h>			/* for struct knote */
116 #include <sys/kernel.h>
117 #include <sys/event.h>
118 #include <sys/eventhandler.h>
119 #include <sys/poll.h>
120 #include <sys/proc.h>
121 #include <sys/protosw.h>
122 #include <sys/socket.h>
123 #include <sys/socketvar.h>
124 #include <sys/resourcevar.h>
125 #include <net/route.h>
126 #include <sys/signalvar.h>
127 #include <sys/stat.h>
128 #include <sys/sx.h>
129 #include <sys/sysctl.h>
130 #include <sys/uio.h>
131 #include <sys/jail.h>
132 
133 #include <security/mac/mac_framework.h>
134 
135 #include <vm/uma.h>
136 
137 #ifdef COMPAT_IA32
138 #include <sys/mount.h>
139 #include <compat/freebsd32/freebsd32.h>
140 
141 extern struct sysentvec ia32_freebsd_sysvec;
142 #endif
143 
144 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
145 		    int flags);
146 
147 static void	filt_sordetach(struct knote *kn);
148 static int	filt_soread(struct knote *kn, long hint);
149 static void	filt_sowdetach(struct knote *kn);
150 static int	filt_sowrite(struct knote *kn, long hint);
151 static int	filt_solisten(struct knote *kn, long hint);
152 
153 static struct filterops solisten_filtops =
154 	{ 1, NULL, filt_sordetach, filt_solisten };
155 static struct filterops soread_filtops =
156 	{ 1, NULL, filt_sordetach, filt_soread };
157 static struct filterops sowrite_filtops =
158 	{ 1, NULL, filt_sowdetach, filt_sowrite };
159 
160 uma_zone_t socket_zone;
161 so_gen_t	so_gencnt;	/* generation count for sockets */
162 
163 int	maxsockets;
164 
165 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
166 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
167 
168 static int somaxconn = SOMAXCONN;
169 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
170 /* XXX: we dont have SYSCTL_USHORT */
171 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
172     0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
173     "queue size");
174 static int numopensockets;
175 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
176     &numopensockets, 0, "Number of open sockets");
177 #ifdef ZERO_COPY_SOCKETS
178 /* These aren't static because they're used in other files. */
179 int so_zero_copy_send = 1;
180 int so_zero_copy_receive = 1;
181 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
182     "Zero copy controls");
183 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
184     &so_zero_copy_receive, 0, "Enable zero copy receive");
185 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
186     &so_zero_copy_send, 0, "Enable zero copy send");
187 #endif /* ZERO_COPY_SOCKETS */
188 
189 /*
190  * accept_mtx locks down per-socket fields relating to accept queues.  See
191  * socketvar.h for an annotation of the protected fields of struct socket.
192  */
193 struct mtx accept_mtx;
194 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
195 
196 /*
197  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
198  * so_gencnt field.
199  */
200 static struct mtx so_global_mtx;
201 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
202 
203 /*
204  * General IPC sysctl name space, used by sockets and a variety of other IPC
205  * types.
206  */
207 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
208 
209 /*
210  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
211  * of the change so that they can update their dependent limits as required.
212  */
213 static int
214 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
215 {
216 	int error, newmaxsockets;
217 
218 	newmaxsockets = maxsockets;
219 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
220 	if (error == 0 && req->newptr) {
221 		if (newmaxsockets > maxsockets) {
222 			maxsockets = newmaxsockets;
223 			if (maxsockets > ((maxfiles / 4) * 3)) {
224 				maxfiles = (maxsockets * 5) / 4;
225 				maxfilesperproc = (maxfiles * 9) / 10;
226 			}
227 			EVENTHANDLER_INVOKE(maxsockets_change);
228 		} else
229 			error = EINVAL;
230 	}
231 	return (error);
232 }
233 
234 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
235     &maxsockets, 0, sysctl_maxsockets, "IU",
236     "Maximum number of sockets avaliable");
237 
238 /*
239  * Initialise maxsockets.
240  */
241 static void init_maxsockets(void *ignored)
242 {
243 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
244 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
245 }
246 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
247 
248 /*
249  * Socket operation routines.  These routines are called by the routines in
250  * sys_socket.c or from a system process, and implement the semantics of
251  * socket operations by switching out to the protocol specific routines.
252  */
253 
254 /*
255  * Get a socket structure from our zone, and initialize it.  Note that it
256  * would probably be better to allocate socket and PCB at the same time, but
257  * I'm not convinced that all the protocols can be easily modified to do
258  * this.
259  *
260  * soalloc() returns a socket with a ref count of 0.
261  */
262 static struct socket *
263 soalloc(void)
264 {
265 	struct socket *so;
266 
267 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
268 	if (so == NULL)
269 		return (NULL);
270 #ifdef MAC
271 	if (mac_socket_init(so, M_NOWAIT) != 0) {
272 		uma_zfree(socket_zone, so);
273 		return (NULL);
274 	}
275 #endif
276 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
277 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
278 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
279 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
280 	TAILQ_INIT(&so->so_aiojobq);
281 	mtx_lock(&so_global_mtx);
282 	so->so_gencnt = ++so_gencnt;
283 	++numopensockets;
284 	mtx_unlock(&so_global_mtx);
285 	return (so);
286 }
287 
288 /*
289  * Free the storage associated with a socket at the socket layer, tear down
290  * locks, labels, etc.  All protocol state is assumed already to have been
291  * torn down (and possibly never set up) by the caller.
292  */
293 static void
294 sodealloc(struct socket *so)
295 {
296 
297 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
298 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
299 
300 	mtx_lock(&so_global_mtx);
301 	so->so_gencnt = ++so_gencnt;
302 	--numopensockets;	/* Could be below, but faster here. */
303 	mtx_unlock(&so_global_mtx);
304 	if (so->so_rcv.sb_hiwat)
305 		(void)chgsbsize(so->so_cred->cr_uidinfo,
306 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
307 	if (so->so_snd.sb_hiwat)
308 		(void)chgsbsize(so->so_cred->cr_uidinfo,
309 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
310 #ifdef INET
311 	/* remove acccept filter if one is present. */
312 	if (so->so_accf != NULL)
313 		do_setopt_accept_filter(so, NULL);
314 #endif
315 #ifdef MAC
316 	mac_socket_destroy(so);
317 #endif
318 	crfree(so->so_cred);
319 	sx_destroy(&so->so_snd.sb_sx);
320 	sx_destroy(&so->so_rcv.sb_sx);
321 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
322 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
323 	uma_zfree(socket_zone, so);
324 }
325 
326 /*
327  * socreate returns a socket with a ref count of 1.  The socket should be
328  * closed with soclose().
329  */
330 int
331 socreate(int dom, struct socket **aso, int type, int proto,
332     struct ucred *cred, struct thread *td)
333 {
334 	struct protosw *prp;
335 	struct socket *so;
336 	int error;
337 
338 	if (proto)
339 		prp = pffindproto(dom, proto, type);
340 	else
341 		prp = pffindtype(dom, type);
342 
343 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
344 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
345 		return (EPROTONOSUPPORT);
346 
347 	if (jailed(cred) && jail_socket_unixiproute_only &&
348 	    prp->pr_domain->dom_family != PF_LOCAL &&
349 	    prp->pr_domain->dom_family != PF_INET &&
350 	    prp->pr_domain->dom_family != PF_ROUTE) {
351 		return (EPROTONOSUPPORT);
352 	}
353 
354 	if (prp->pr_type != type)
355 		return (EPROTOTYPE);
356 	so = soalloc();
357 	if (so == NULL)
358 		return (ENOBUFS);
359 
360 	TAILQ_INIT(&so->so_incomp);
361 	TAILQ_INIT(&so->so_comp);
362 	so->so_type = type;
363 	so->so_cred = crhold(cred);
364 	if ((prp->pr_domain->dom_family == PF_INET) ||
365 	    (prp->pr_domain->dom_family == PF_ROUTE))
366 		so->so_fibnum = td->td_proc->p_fibnum;
367 	else
368 		so->so_fibnum = 0;
369 	so->so_proto = prp;
370 #ifdef MAC
371 	mac_socket_create(cred, so);
372 #endif
373 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
374 	    NULL, NULL, NULL);
375 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
376 	    NULL, NULL, NULL);
377 	so->so_count = 1;
378 	/*
379 	 * Auto-sizing of socket buffers is managed by the protocols and
380 	 * the appropriate flags must be set in the pru_attach function.
381 	 */
382 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
383 	if (error) {
384 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
385 		    so->so_count));
386 		so->so_count = 0;
387 		sodealloc(so);
388 		return (error);
389 	}
390 	*aso = so;
391 	return (0);
392 }
393 
394 #ifdef REGRESSION
395 static int regression_sonewconn_earlytest = 1;
396 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
397     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
398 #endif
399 
400 /*
401  * When an attempt at a new connection is noted on a socket which accepts
402  * connections, sonewconn is called.  If the connection is possible (subject
403  * to space constraints, etc.) then we allocate a new structure, propoerly
404  * linked into the data structure of the original socket, and return this.
405  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
406  *
407  * Note: the ref count on the socket is 0 on return.
408  */
409 struct socket *
410 sonewconn(struct socket *head, int connstatus)
411 {
412 	struct socket *so;
413 	int over;
414 
415 	ACCEPT_LOCK();
416 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
417 	ACCEPT_UNLOCK();
418 #ifdef REGRESSION
419 	if (regression_sonewconn_earlytest && over)
420 #else
421 	if (over)
422 #endif
423 		return (NULL);
424 	so = soalloc();
425 	if (so == NULL)
426 		return (NULL);
427 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
428 		connstatus = 0;
429 	so->so_head = head;
430 	so->so_type = head->so_type;
431 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
432 	so->so_linger = head->so_linger;
433 	so->so_state = head->so_state | SS_NOFDREF;
434 	so->so_proto = head->so_proto;
435 	so->so_cred = crhold(head->so_cred);
436 #ifdef MAC
437 	SOCK_LOCK(head);
438 	mac_socket_newconn(head, so);
439 	SOCK_UNLOCK(head);
440 #endif
441 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
442 	    NULL, NULL, NULL);
443 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
444 	    NULL, NULL, NULL);
445 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
446 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
447 		sodealloc(so);
448 		return (NULL);
449 	}
450 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
451 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
452 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
453 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
454 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
455 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
456 	so->so_state |= connstatus;
457 	ACCEPT_LOCK();
458 	if (connstatus) {
459 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
460 		so->so_qstate |= SQ_COMP;
461 		head->so_qlen++;
462 	} else {
463 		/*
464 		 * Keep removing sockets from the head until there's room for
465 		 * us to insert on the tail.  In pre-locking revisions, this
466 		 * was a simple if(), but as we could be racing with other
467 		 * threads and soabort() requires dropping locks, we must
468 		 * loop waiting for the condition to be true.
469 		 */
470 		while (head->so_incqlen > head->so_qlimit) {
471 			struct socket *sp;
472 			sp = TAILQ_FIRST(&head->so_incomp);
473 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
474 			head->so_incqlen--;
475 			sp->so_qstate &= ~SQ_INCOMP;
476 			sp->so_head = NULL;
477 			ACCEPT_UNLOCK();
478 			soabort(sp);
479 			ACCEPT_LOCK();
480 		}
481 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
482 		so->so_qstate |= SQ_INCOMP;
483 		head->so_incqlen++;
484 	}
485 	ACCEPT_UNLOCK();
486 	if (connstatus) {
487 		sorwakeup(head);
488 		wakeup_one(&head->so_timeo);
489 	}
490 	return (so);
491 }
492 
493 int
494 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
495 {
496 
497 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
498 }
499 
500 /*
501  * solisten() transitions a socket from a non-listening state to a listening
502  * state, but can also be used to update the listen queue depth on an
503  * existing listen socket.  The protocol will call back into the sockets
504  * layer using solisten_proto_check() and solisten_proto() to check and set
505  * socket-layer listen state.  Call backs are used so that the protocol can
506  * acquire both protocol and socket layer locks in whatever order is required
507  * by the protocol.
508  *
509  * Protocol implementors are advised to hold the socket lock across the
510  * socket-layer test and set to avoid races at the socket layer.
511  */
512 int
513 solisten(struct socket *so, int backlog, struct thread *td)
514 {
515 
516 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
517 }
518 
519 int
520 solisten_proto_check(struct socket *so)
521 {
522 
523 	SOCK_LOCK_ASSERT(so);
524 
525 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
526 	    SS_ISDISCONNECTING))
527 		return (EINVAL);
528 	return (0);
529 }
530 
531 void
532 solisten_proto(struct socket *so, int backlog)
533 {
534 
535 	SOCK_LOCK_ASSERT(so);
536 
537 	if (backlog < 0 || backlog > somaxconn)
538 		backlog = somaxconn;
539 	so->so_qlimit = backlog;
540 	so->so_options |= SO_ACCEPTCONN;
541 }
542 
543 /*
544  * Attempt to free a socket.  This should really be sotryfree().
545  *
546  * sofree() will succeed if:
547  *
548  * - There are no outstanding file descriptor references or related consumers
549  *   (so_count == 0).
550  *
551  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
552  *
553  * - The protocol does not have an outstanding strong reference on the socket
554  *   (SS_PROTOREF).
555  *
556  * - The socket is not in a completed connection queue, so a process has been
557  *   notified that it is present.  If it is removed, the user process may
558  *   block in accept() despite select() saying the socket was ready.
559  *
560  * Otherwise, it will quietly abort so that a future call to sofree(), when
561  * conditions are right, can succeed.
562  */
563 void
564 sofree(struct socket *so)
565 {
566 	struct protosw *pr = so->so_proto;
567 	struct socket *head;
568 
569 	ACCEPT_LOCK_ASSERT();
570 	SOCK_LOCK_ASSERT(so);
571 
572 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
573 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
574 		SOCK_UNLOCK(so);
575 		ACCEPT_UNLOCK();
576 		return;
577 	}
578 
579 	head = so->so_head;
580 	if (head != NULL) {
581 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
582 		    (so->so_qstate & SQ_INCOMP) != 0,
583 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
584 		    "SQ_INCOMP"));
585 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
586 		    (so->so_qstate & SQ_INCOMP) == 0,
587 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
588 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
589 		head->so_incqlen--;
590 		so->so_qstate &= ~SQ_INCOMP;
591 		so->so_head = NULL;
592 	}
593 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
594 	    (so->so_qstate & SQ_INCOMP) == 0,
595 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
596 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
597 	if (so->so_options & SO_ACCEPTCONN) {
598 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
599 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
600 	}
601 	SOCK_UNLOCK(so);
602 	ACCEPT_UNLOCK();
603 
604 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
605 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
606 	if (pr->pr_usrreqs->pru_detach != NULL)
607 		(*pr->pr_usrreqs->pru_detach)(so);
608 
609 	/*
610 	 * From this point on, we assume that no other references to this
611 	 * socket exist anywhere else in the stack.  Therefore, no locks need
612 	 * to be acquired or held.
613 	 *
614 	 * We used to do a lot of socket buffer and socket locking here, as
615 	 * well as invoke sorflush() and perform wakeups.  The direct call to
616 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
617 	 * necessary from sorflush().
618 	 *
619 	 * Notice that the socket buffer and kqueue state are torn down
620 	 * before calling pru_detach.  This means that protocols shold not
621 	 * assume they can perform socket wakeups, etc, in their detach code.
622 	 */
623 	sbdestroy(&so->so_snd, so);
624 	sbdestroy(&so->so_rcv, so);
625 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
626 	knlist_destroy(&so->so_snd.sb_sel.si_note);
627 	sodealloc(so);
628 }
629 
630 /*
631  * Close a socket on last file table reference removal.  Initiate disconnect
632  * if connected.  Free socket when disconnect complete.
633  *
634  * This function will sorele() the socket.  Note that soclose() may be called
635  * prior to the ref count reaching zero.  The actual socket structure will
636  * not be freed until the ref count reaches zero.
637  */
638 int
639 soclose(struct socket *so)
640 {
641 	int error = 0;
642 
643 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
644 
645 	funsetown(&so->so_sigio);
646 	if (so->so_state & SS_ISCONNECTED) {
647 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
648 			error = sodisconnect(so);
649 			if (error)
650 				goto drop;
651 		}
652 		if (so->so_options & SO_LINGER) {
653 			if ((so->so_state & SS_ISDISCONNECTING) &&
654 			    (so->so_state & SS_NBIO))
655 				goto drop;
656 			while (so->so_state & SS_ISCONNECTED) {
657 				error = tsleep(&so->so_timeo,
658 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
659 				if (error)
660 					break;
661 			}
662 		}
663 	}
664 
665 drop:
666 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
667 		(*so->so_proto->pr_usrreqs->pru_close)(so);
668 	if (so->so_options & SO_ACCEPTCONN) {
669 		struct socket *sp;
670 		ACCEPT_LOCK();
671 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
672 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
673 			so->so_incqlen--;
674 			sp->so_qstate &= ~SQ_INCOMP;
675 			sp->so_head = NULL;
676 			ACCEPT_UNLOCK();
677 			soabort(sp);
678 			ACCEPT_LOCK();
679 		}
680 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
681 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
682 			so->so_qlen--;
683 			sp->so_qstate &= ~SQ_COMP;
684 			sp->so_head = NULL;
685 			ACCEPT_UNLOCK();
686 			soabort(sp);
687 			ACCEPT_LOCK();
688 		}
689 		ACCEPT_UNLOCK();
690 	}
691 	ACCEPT_LOCK();
692 	SOCK_LOCK(so);
693 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
694 	so->so_state |= SS_NOFDREF;
695 	sorele(so);
696 	return (error);
697 }
698 
699 /*
700  * soabort() is used to abruptly tear down a connection, such as when a
701  * resource limit is reached (listen queue depth exceeded), or if a listen
702  * socket is closed while there are sockets waiting to be accepted.
703  *
704  * This interface is tricky, because it is called on an unreferenced socket,
705  * and must be called only by a thread that has actually removed the socket
706  * from the listen queue it was on, or races with other threads are risked.
707  *
708  * This interface will call into the protocol code, so must not be called
709  * with any socket locks held.  Protocols do call it while holding their own
710  * recursible protocol mutexes, but this is something that should be subject
711  * to review in the future.
712  */
713 void
714 soabort(struct socket *so)
715 {
716 
717 	/*
718 	 * In as much as is possible, assert that no references to this
719 	 * socket are held.  This is not quite the same as asserting that the
720 	 * current thread is responsible for arranging for no references, but
721 	 * is as close as we can get for now.
722 	 */
723 	KASSERT(so->so_count == 0, ("soabort: so_count"));
724 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
725 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
726 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
727 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
728 
729 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
730 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
731 	ACCEPT_LOCK();
732 	SOCK_LOCK(so);
733 	sofree(so);
734 }
735 
736 int
737 soaccept(struct socket *so, struct sockaddr **nam)
738 {
739 	int error;
740 
741 	SOCK_LOCK(so);
742 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
743 	so->so_state &= ~SS_NOFDREF;
744 	SOCK_UNLOCK(so);
745 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
746 	return (error);
747 }
748 
749 int
750 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
751 {
752 	int error;
753 
754 	if (so->so_options & SO_ACCEPTCONN)
755 		return (EOPNOTSUPP);
756 	/*
757 	 * If protocol is connection-based, can only connect once.
758 	 * Otherwise, if connected, try to disconnect first.  This allows
759 	 * user to disconnect by connecting to, e.g., a null address.
760 	 */
761 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
762 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
763 	    (error = sodisconnect(so)))) {
764 		error = EISCONN;
765 	} else {
766 		/*
767 		 * Prevent accumulated error from previous connection from
768 		 * biting us.
769 		 */
770 		so->so_error = 0;
771 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
772 	}
773 
774 	return (error);
775 }
776 
777 int
778 soconnect2(struct socket *so1, struct socket *so2)
779 {
780 
781 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
782 }
783 
784 int
785 sodisconnect(struct socket *so)
786 {
787 	int error;
788 
789 	if ((so->so_state & SS_ISCONNECTED) == 0)
790 		return (ENOTCONN);
791 	if (so->so_state & SS_ISDISCONNECTING)
792 		return (EALREADY);
793 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
794 	return (error);
795 }
796 
797 #ifdef ZERO_COPY_SOCKETS
798 struct so_zerocopy_stats{
799 	int size_ok;
800 	int align_ok;
801 	int found_ifp;
802 };
803 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
804 #include <netinet/in.h>
805 #include <net/route.h>
806 #include <netinet/in_pcb.h>
807 #include <vm/vm.h>
808 #include <vm/vm_page.h>
809 #include <vm/vm_object.h>
810 
811 /*
812  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
813  * sosend_dgram() and sosend_generic() use m_uiotombuf().
814  *
815  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
816  * all of the data referenced by the uio.  If desired, it uses zero-copy.
817  * *space will be updated to reflect data copied in.
818  *
819  * NB: If atomic I/O is requested, the caller must already have checked that
820  * space can hold resid bytes.
821  *
822  * NB: In the event of an error, the caller may need to free the partial
823  * chain pointed to by *mpp.  The contents of both *uio and *space may be
824  * modified even in the case of an error.
825  */
826 static int
827 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
828     int flags)
829 {
830 	struct mbuf *m, **mp, *top;
831 	long len, resid;
832 	int error;
833 #ifdef ZERO_COPY_SOCKETS
834 	int cow_send;
835 #endif
836 
837 	*retmp = top = NULL;
838 	mp = &top;
839 	len = 0;
840 	resid = uio->uio_resid;
841 	error = 0;
842 	do {
843 #ifdef ZERO_COPY_SOCKETS
844 		cow_send = 0;
845 #endif /* ZERO_COPY_SOCKETS */
846 		if (resid >= MINCLSIZE) {
847 #ifdef ZERO_COPY_SOCKETS
848 			if (top == NULL) {
849 				m = m_gethdr(M_WAITOK, MT_DATA);
850 				m->m_pkthdr.len = 0;
851 				m->m_pkthdr.rcvif = NULL;
852 			} else
853 				m = m_get(M_WAITOK, MT_DATA);
854 			if (so_zero_copy_send &&
855 			    resid>=PAGE_SIZE &&
856 			    *space>=PAGE_SIZE &&
857 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
858 				so_zerocp_stats.size_ok++;
859 				so_zerocp_stats.align_ok++;
860 				cow_send = socow_setup(m, uio);
861 				len = cow_send;
862 			}
863 			if (!cow_send) {
864 				m_clget(m, M_WAITOK);
865 				len = min(min(MCLBYTES, resid), *space);
866 			}
867 #else /* ZERO_COPY_SOCKETS */
868 			if (top == NULL) {
869 				m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
870 				m->m_pkthdr.len = 0;
871 				m->m_pkthdr.rcvif = NULL;
872 			} else
873 				m = m_getcl(M_WAIT, MT_DATA, 0);
874 			len = min(min(MCLBYTES, resid), *space);
875 #endif /* ZERO_COPY_SOCKETS */
876 		} else {
877 			if (top == NULL) {
878 				m = m_gethdr(M_WAIT, MT_DATA);
879 				m->m_pkthdr.len = 0;
880 				m->m_pkthdr.rcvif = NULL;
881 
882 				len = min(min(MHLEN, resid), *space);
883 				/*
884 				 * For datagram protocols, leave room
885 				 * for protocol headers in first mbuf.
886 				 */
887 				if (atomic && m && len < MHLEN)
888 					MH_ALIGN(m, len);
889 			} else {
890 				m = m_get(M_WAIT, MT_DATA);
891 				len = min(min(MLEN, resid), *space);
892 			}
893 		}
894 		if (m == NULL) {
895 			error = ENOBUFS;
896 			goto out;
897 		}
898 
899 		*space -= len;
900 #ifdef ZERO_COPY_SOCKETS
901 		if (cow_send)
902 			error = 0;
903 		else
904 #endif /* ZERO_COPY_SOCKETS */
905 		error = uiomove(mtod(m, void *), (int)len, uio);
906 		resid = uio->uio_resid;
907 		m->m_len = len;
908 		*mp = m;
909 		top->m_pkthdr.len += len;
910 		if (error)
911 			goto out;
912 		mp = &m->m_next;
913 		if (resid <= 0) {
914 			if (flags & MSG_EOR)
915 				top->m_flags |= M_EOR;
916 			break;
917 		}
918 	} while (*space > 0 && atomic);
919 out:
920 	*retmp = top;
921 	return (error);
922 }
923 #endif /*ZERO_COPY_SOCKETS*/
924 
925 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
926 
927 int
928 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
929     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
930 {
931 	long space, resid;
932 	int clen = 0, error, dontroute;
933 #ifdef ZERO_COPY_SOCKETS
934 	int atomic = sosendallatonce(so) || top;
935 #endif
936 
937 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
938 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
939 	    ("sodgram_send: !PR_ATOMIC"));
940 
941 	if (uio != NULL)
942 		resid = uio->uio_resid;
943 	else
944 		resid = top->m_pkthdr.len;
945 	/*
946 	 * In theory resid should be unsigned.  However, space must be
947 	 * signed, as it might be less than 0 if we over-committed, and we
948 	 * must use a signed comparison of space and resid.  On the other
949 	 * hand, a negative resid causes us to loop sending 0-length
950 	 * segments to the protocol.
951 	 *
952 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
953 	 * type sockets since that's an error.
954 	 */
955 	if (resid < 0) {
956 		error = EINVAL;
957 		goto out;
958 	}
959 
960 	dontroute =
961 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
962 	if (td != NULL)
963 		td->td_ru.ru_msgsnd++;
964 	if (control != NULL)
965 		clen = control->m_len;
966 
967 	SOCKBUF_LOCK(&so->so_snd);
968 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
969 		SOCKBUF_UNLOCK(&so->so_snd);
970 		error = EPIPE;
971 		goto out;
972 	}
973 	if (so->so_error) {
974 		error = so->so_error;
975 		so->so_error = 0;
976 		SOCKBUF_UNLOCK(&so->so_snd);
977 		goto out;
978 	}
979 	if ((so->so_state & SS_ISCONNECTED) == 0) {
980 		/*
981 		 * `sendto' and `sendmsg' is allowed on a connection-based
982 		 * socket if it supports implied connect.  Return ENOTCONN if
983 		 * not connected and no address is supplied.
984 		 */
985 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
986 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
987 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
988 			    !(resid == 0 && clen != 0)) {
989 				SOCKBUF_UNLOCK(&so->so_snd);
990 				error = ENOTCONN;
991 				goto out;
992 			}
993 		} else if (addr == NULL) {
994 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
995 				error = ENOTCONN;
996 			else
997 				error = EDESTADDRREQ;
998 			SOCKBUF_UNLOCK(&so->so_snd);
999 			goto out;
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1005 	 * problem and need fixing.
1006 	 */
1007 	space = sbspace(&so->so_snd);
1008 	if (flags & MSG_OOB)
1009 		space += 1024;
1010 	space -= clen;
1011 	SOCKBUF_UNLOCK(&so->so_snd);
1012 	if (resid > space) {
1013 		error = EMSGSIZE;
1014 		goto out;
1015 	}
1016 	if (uio == NULL) {
1017 		resid = 0;
1018 		if (flags & MSG_EOR)
1019 			top->m_flags |= M_EOR;
1020 	} else {
1021 #ifdef ZERO_COPY_SOCKETS
1022 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1023 		if (error)
1024 			goto out;
1025 #else
1026 		/*
1027 		 * Copy the data from userland into a mbuf chain.
1028 		 * If no data is to be copied in, a single empty mbuf
1029 		 * is returned.
1030 		 */
1031 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1032 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1033 		if (top == NULL) {
1034 			error = EFAULT;	/* only possible error */
1035 			goto out;
1036 		}
1037 		space -= resid - uio->uio_resid;
1038 #endif
1039 		resid = uio->uio_resid;
1040 	}
1041 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1042 	/*
1043 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1044 	 * than with.
1045 	 */
1046 	if (dontroute) {
1047 		SOCK_LOCK(so);
1048 		so->so_options |= SO_DONTROUTE;
1049 		SOCK_UNLOCK(so);
1050 	}
1051 	/*
1052 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1053 	 * of date.  We could have recieved a reset packet in an interrupt or
1054 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1055 	 * probably recheck again inside the locking protection here, but
1056 	 * there are probably other places that this also happens.  We must
1057 	 * rethink this.
1058 	 */
1059 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1060 	    (flags & MSG_OOB) ? PRUS_OOB :
1061 	/*
1062 	 * If the user set MSG_EOF, the protocol understands this flag and
1063 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1064 	 */
1065 	    ((flags & MSG_EOF) &&
1066 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1067 	     (resid <= 0)) ?
1068 		PRUS_EOF :
1069 		/* If there is more to send set PRUS_MORETOCOME */
1070 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1071 		top, addr, control, td);
1072 	if (dontroute) {
1073 		SOCK_LOCK(so);
1074 		so->so_options &= ~SO_DONTROUTE;
1075 		SOCK_UNLOCK(so);
1076 	}
1077 	clen = 0;
1078 	control = NULL;
1079 	top = NULL;
1080 out:
1081 	if (top != NULL)
1082 		m_freem(top);
1083 	if (control != NULL)
1084 		m_freem(control);
1085 	return (error);
1086 }
1087 
1088 /*
1089  * Send on a socket.  If send must go all at once and message is larger than
1090  * send buffering, then hard error.  Lock against other senders.  If must go
1091  * all at once and not enough room now, then inform user that this would
1092  * block and do nothing.  Otherwise, if nonblocking, send as much as
1093  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1094  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1095  * in mbuf chain must be small enough to send all at once.
1096  *
1097  * Returns nonzero on error, timeout or signal; callers must check for short
1098  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1099  * on return.
1100  */
1101 int
1102 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1103     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1104 {
1105 	long space, resid;
1106 	int clen = 0, error, dontroute;
1107 	int atomic = sosendallatonce(so) || top;
1108 
1109 	if (uio != NULL)
1110 		resid = uio->uio_resid;
1111 	else
1112 		resid = top->m_pkthdr.len;
1113 	/*
1114 	 * In theory resid should be unsigned.  However, space must be
1115 	 * signed, as it might be less than 0 if we over-committed, and we
1116 	 * must use a signed comparison of space and resid.  On the other
1117 	 * hand, a negative resid causes us to loop sending 0-length
1118 	 * segments to the protocol.
1119 	 *
1120 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1121 	 * type sockets since that's an error.
1122 	 */
1123 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1124 		error = EINVAL;
1125 		goto out;
1126 	}
1127 
1128 	dontroute =
1129 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1130 	    (so->so_proto->pr_flags & PR_ATOMIC);
1131 	if (td != NULL)
1132 		td->td_ru.ru_msgsnd++;
1133 	if (control != NULL)
1134 		clen = control->m_len;
1135 
1136 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1137 	if (error)
1138 		goto out;
1139 
1140 restart:
1141 	do {
1142 		SOCKBUF_LOCK(&so->so_snd);
1143 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1144 			SOCKBUF_UNLOCK(&so->so_snd);
1145 			error = EPIPE;
1146 			goto release;
1147 		}
1148 		if (so->so_error) {
1149 			error = so->so_error;
1150 			so->so_error = 0;
1151 			SOCKBUF_UNLOCK(&so->so_snd);
1152 			goto release;
1153 		}
1154 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1155 			/*
1156 			 * `sendto' and `sendmsg' is allowed on a connection-
1157 			 * based socket if it supports implied connect.
1158 			 * Return ENOTCONN if not connected and no address is
1159 			 * supplied.
1160 			 */
1161 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1162 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1163 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1164 				    !(resid == 0 && clen != 0)) {
1165 					SOCKBUF_UNLOCK(&so->so_snd);
1166 					error = ENOTCONN;
1167 					goto release;
1168 				}
1169 			} else if (addr == NULL) {
1170 				SOCKBUF_UNLOCK(&so->so_snd);
1171 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1172 					error = ENOTCONN;
1173 				else
1174 					error = EDESTADDRREQ;
1175 				goto release;
1176 			}
1177 		}
1178 		space = sbspace(&so->so_snd);
1179 		if (flags & MSG_OOB)
1180 			space += 1024;
1181 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1182 		    clen > so->so_snd.sb_hiwat) {
1183 			SOCKBUF_UNLOCK(&so->so_snd);
1184 			error = EMSGSIZE;
1185 			goto release;
1186 		}
1187 		if (space < resid + clen &&
1188 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1189 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1190 				SOCKBUF_UNLOCK(&so->so_snd);
1191 				error = EWOULDBLOCK;
1192 				goto release;
1193 			}
1194 			error = sbwait(&so->so_snd);
1195 			SOCKBUF_UNLOCK(&so->so_snd);
1196 			if (error)
1197 				goto release;
1198 			goto restart;
1199 		}
1200 		SOCKBUF_UNLOCK(&so->so_snd);
1201 		space -= clen;
1202 		do {
1203 			if (uio == NULL) {
1204 				resid = 0;
1205 				if (flags & MSG_EOR)
1206 					top->m_flags |= M_EOR;
1207 			} else {
1208 #ifdef ZERO_COPY_SOCKETS
1209 				error = sosend_copyin(uio, &top, atomic,
1210 				    &space, flags);
1211 				if (error != 0)
1212 					goto release;
1213 #else
1214 				/*
1215 				 * Copy the data from userland into a mbuf
1216 				 * chain.  If no data is to be copied in,
1217 				 * a single empty mbuf is returned.
1218 				 */
1219 				top = m_uiotombuf(uio, M_WAITOK, space,
1220 				    (atomic ? max_hdr : 0),
1221 				    (atomic ? M_PKTHDR : 0) |
1222 				    ((flags & MSG_EOR) ? M_EOR : 0));
1223 				if (top == NULL) {
1224 					error = EFAULT; /* only possible error */
1225 					goto release;
1226 				}
1227 				space -= resid - uio->uio_resid;
1228 #endif
1229 				resid = uio->uio_resid;
1230 			}
1231 			if (dontroute) {
1232 				SOCK_LOCK(so);
1233 				so->so_options |= SO_DONTROUTE;
1234 				SOCK_UNLOCK(so);
1235 			}
1236 			/*
1237 			 * XXX all the SBS_CANTSENDMORE checks previously
1238 			 * done could be out of date.  We could have recieved
1239 			 * a reset packet in an interrupt or maybe we slept
1240 			 * while doing page faults in uiomove() etc.  We
1241 			 * could probably recheck again inside the locking
1242 			 * protection here, but there are probably other
1243 			 * places that this also happens.  We must rethink
1244 			 * this.
1245 			 */
1246 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1247 			    (flags & MSG_OOB) ? PRUS_OOB :
1248 			/*
1249 			 * If the user set MSG_EOF, the protocol understands
1250 			 * this flag and nothing left to send then use
1251 			 * PRU_SEND_EOF instead of PRU_SEND.
1252 			 */
1253 			    ((flags & MSG_EOF) &&
1254 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1255 			     (resid <= 0)) ?
1256 				PRUS_EOF :
1257 			/* If there is more to send set PRUS_MORETOCOME. */
1258 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1259 			    top, addr, control, td);
1260 			if (dontroute) {
1261 				SOCK_LOCK(so);
1262 				so->so_options &= ~SO_DONTROUTE;
1263 				SOCK_UNLOCK(so);
1264 			}
1265 			clen = 0;
1266 			control = NULL;
1267 			top = NULL;
1268 			if (error)
1269 				goto release;
1270 		} while (resid && space > 0);
1271 	} while (resid);
1272 
1273 release:
1274 	sbunlock(&so->so_snd);
1275 out:
1276 	if (top != NULL)
1277 		m_freem(top);
1278 	if (control != NULL)
1279 		m_freem(control);
1280 	return (error);
1281 }
1282 
1283 int
1284 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1285     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1286 {
1287 
1288 	/* XXXRW: Temporary debugging. */
1289 	KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend,
1290 	    ("sosend: protocol calls sosend"));
1291 
1292 	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1293 	    control, flags, td));
1294 }
1295 
1296 /*
1297  * The part of soreceive() that implements reading non-inline out-of-band
1298  * data from a socket.  For more complete comments, see soreceive(), from
1299  * which this code originated.
1300  *
1301  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1302  * unable to return an mbuf chain to the caller.
1303  */
1304 static int
1305 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1306 {
1307 	struct protosw *pr = so->so_proto;
1308 	struct mbuf *m;
1309 	int error;
1310 
1311 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1312 
1313 	m = m_get(M_WAIT, MT_DATA);
1314 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1315 	if (error)
1316 		goto bad;
1317 	do {
1318 #ifdef ZERO_COPY_SOCKETS
1319 		if (so_zero_copy_receive) {
1320 			int disposable;
1321 
1322 			if ((m->m_flags & M_EXT)
1323 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1324 				disposable = 1;
1325 			else
1326 				disposable = 0;
1327 
1328 			error = uiomoveco(mtod(m, void *),
1329 					  min(uio->uio_resid, m->m_len),
1330 					  uio, disposable);
1331 		} else
1332 #endif /* ZERO_COPY_SOCKETS */
1333 		error = uiomove(mtod(m, void *),
1334 		    (int) min(uio->uio_resid, m->m_len), uio);
1335 		m = m_free(m);
1336 	} while (uio->uio_resid && error == 0 && m);
1337 bad:
1338 	if (m != NULL)
1339 		m_freem(m);
1340 	return (error);
1341 }
1342 
1343 /*
1344  * Following replacement or removal of the first mbuf on the first mbuf chain
1345  * of a socket buffer, push necessary state changes back into the socket
1346  * buffer so that other consumers see the values consistently.  'nextrecord'
1347  * is the callers locally stored value of the original value of
1348  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1349  * NOTE: 'nextrecord' may be NULL.
1350  */
1351 static __inline void
1352 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1353 {
1354 
1355 	SOCKBUF_LOCK_ASSERT(sb);
1356 	/*
1357 	 * First, update for the new value of nextrecord.  If necessary, make
1358 	 * it the first record.
1359 	 */
1360 	if (sb->sb_mb != NULL)
1361 		sb->sb_mb->m_nextpkt = nextrecord;
1362 	else
1363 		sb->sb_mb = nextrecord;
1364 
1365         /*
1366          * Now update any dependent socket buffer fields to reflect the new
1367          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1368 	 * addition of a second clause that takes care of the case where
1369 	 * sb_mb has been updated, but remains the last record.
1370          */
1371         if (sb->sb_mb == NULL) {
1372                 sb->sb_mbtail = NULL;
1373                 sb->sb_lastrecord = NULL;
1374         } else if (sb->sb_mb->m_nextpkt == NULL)
1375                 sb->sb_lastrecord = sb->sb_mb;
1376 }
1377 
1378 
1379 /*
1380  * Implement receive operations on a socket.  We depend on the way that
1381  * records are added to the sockbuf by sbappend.  In particular, each record
1382  * (mbufs linked through m_next) must begin with an address if the protocol
1383  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1384  * data, and then zero or more mbufs of data.  In order to allow parallelism
1385  * between network receive and copying to user space, as well as avoid
1386  * sleeping with a mutex held, we release the socket buffer mutex during the
1387  * user space copy.  Although the sockbuf is locked, new data may still be
1388  * appended, and thus we must maintain consistency of the sockbuf during that
1389  * time.
1390  *
1391  * The caller may receive the data as a single mbuf chain by supplying an
1392  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1393  * the count in uio_resid.
1394  */
1395 int
1396 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1397     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1398 {
1399 	struct mbuf *m, **mp;
1400 	int flags, len, error, offset;
1401 	struct protosw *pr = so->so_proto;
1402 	struct mbuf *nextrecord;
1403 	int moff, type = 0;
1404 	int orig_resid = uio->uio_resid;
1405 
1406 	mp = mp0;
1407 	if (psa != NULL)
1408 		*psa = NULL;
1409 	if (controlp != NULL)
1410 		*controlp = NULL;
1411 	if (flagsp != NULL)
1412 		flags = *flagsp &~ MSG_EOR;
1413 	else
1414 		flags = 0;
1415 	if (flags & MSG_OOB)
1416 		return (soreceive_rcvoob(so, uio, flags));
1417 	if (mp != NULL)
1418 		*mp = NULL;
1419 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1420 	    && uio->uio_resid)
1421 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1422 
1423 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1424 	if (error)
1425 		return (error);
1426 
1427 restart:
1428 	SOCKBUF_LOCK(&so->so_rcv);
1429 	m = so->so_rcv.sb_mb;
1430 	/*
1431 	 * If we have less data than requested, block awaiting more (subject
1432 	 * to any timeout) if:
1433 	 *   1. the current count is less than the low water mark, or
1434 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1435 	 *	receive operation at once if we block (resid <= hiwat).
1436 	 *   3. MSG_DONTWAIT is not set
1437 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1438 	 * we have to do the receive in sections, and thus risk returning a
1439 	 * short count if a timeout or signal occurs after we start.
1440 	 */
1441 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1442 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1443 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1444 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1445 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1446 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1447 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1448 		    m, so->so_rcv.sb_cc));
1449 		if (so->so_error) {
1450 			if (m != NULL)
1451 				goto dontblock;
1452 			error = so->so_error;
1453 			if ((flags & MSG_PEEK) == 0)
1454 				so->so_error = 0;
1455 			SOCKBUF_UNLOCK(&so->so_rcv);
1456 			goto release;
1457 		}
1458 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1459 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1460 			if (m == NULL) {
1461 				SOCKBUF_UNLOCK(&so->so_rcv);
1462 				goto release;
1463 			} else
1464 				goto dontblock;
1465 		}
1466 		for (; m != NULL; m = m->m_next)
1467 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1468 				m = so->so_rcv.sb_mb;
1469 				goto dontblock;
1470 			}
1471 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1472 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1473 			SOCKBUF_UNLOCK(&so->so_rcv);
1474 			error = ENOTCONN;
1475 			goto release;
1476 		}
1477 		if (uio->uio_resid == 0) {
1478 			SOCKBUF_UNLOCK(&so->so_rcv);
1479 			goto release;
1480 		}
1481 		if ((so->so_state & SS_NBIO) ||
1482 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1483 			SOCKBUF_UNLOCK(&so->so_rcv);
1484 			error = EWOULDBLOCK;
1485 			goto release;
1486 		}
1487 		SBLASTRECORDCHK(&so->so_rcv);
1488 		SBLASTMBUFCHK(&so->so_rcv);
1489 		error = sbwait(&so->so_rcv);
1490 		SOCKBUF_UNLOCK(&so->so_rcv);
1491 		if (error)
1492 			goto release;
1493 		goto restart;
1494 	}
1495 dontblock:
1496 	/*
1497 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1498 	 * pointer to the next record in the socket buffer.  We must keep the
1499 	 * various socket buffer pointers and local stack versions of the
1500 	 * pointers in sync, pushing out modifications before dropping the
1501 	 * socket buffer mutex, and re-reading them when picking it up.
1502 	 *
1503 	 * Otherwise, we will race with the network stack appending new data
1504 	 * or records onto the socket buffer by using inconsistent/stale
1505 	 * versions of the field, possibly resulting in socket buffer
1506 	 * corruption.
1507 	 *
1508 	 * By holding the high-level sblock(), we prevent simultaneous
1509 	 * readers from pulling off the front of the socket buffer.
1510 	 */
1511 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1512 	if (uio->uio_td)
1513 		uio->uio_td->td_ru.ru_msgrcv++;
1514 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1515 	SBLASTRECORDCHK(&so->so_rcv);
1516 	SBLASTMBUFCHK(&so->so_rcv);
1517 	nextrecord = m->m_nextpkt;
1518 	if (pr->pr_flags & PR_ADDR) {
1519 		KASSERT(m->m_type == MT_SONAME,
1520 		    ("m->m_type == %d", m->m_type));
1521 		orig_resid = 0;
1522 		if (psa != NULL)
1523 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1524 			    M_NOWAIT);
1525 		if (flags & MSG_PEEK) {
1526 			m = m->m_next;
1527 		} else {
1528 			sbfree(&so->so_rcv, m);
1529 			so->so_rcv.sb_mb = m_free(m);
1530 			m = so->so_rcv.sb_mb;
1531 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1532 		}
1533 	}
1534 
1535 	/*
1536 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1537 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1538 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1539 	 * perform externalization (or freeing if controlp == NULL).
1540 	 */
1541 	if (m != NULL && m->m_type == MT_CONTROL) {
1542 		struct mbuf *cm = NULL, *cmn;
1543 		struct mbuf **cme = &cm;
1544 
1545 		do {
1546 			if (flags & MSG_PEEK) {
1547 				if (controlp != NULL) {
1548 					*controlp = m_copy(m, 0, m->m_len);
1549 					controlp = &(*controlp)->m_next;
1550 				}
1551 				m = m->m_next;
1552 			} else {
1553 				sbfree(&so->so_rcv, m);
1554 				so->so_rcv.sb_mb = m->m_next;
1555 				m->m_next = NULL;
1556 				*cme = m;
1557 				cme = &(*cme)->m_next;
1558 				m = so->so_rcv.sb_mb;
1559 			}
1560 		} while (m != NULL && m->m_type == MT_CONTROL);
1561 		if ((flags & MSG_PEEK) == 0)
1562 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1563 		while (cm != NULL) {
1564 			cmn = cm->m_next;
1565 			cm->m_next = NULL;
1566 			if (pr->pr_domain->dom_externalize != NULL) {
1567 				SOCKBUF_UNLOCK(&so->so_rcv);
1568 				error = (*pr->pr_domain->dom_externalize)
1569 				    (cm, controlp);
1570 				SOCKBUF_LOCK(&so->so_rcv);
1571 			} else if (controlp != NULL)
1572 				*controlp = cm;
1573 			else
1574 				m_freem(cm);
1575 			if (controlp != NULL) {
1576 				orig_resid = 0;
1577 				while (*controlp != NULL)
1578 					controlp = &(*controlp)->m_next;
1579 			}
1580 			cm = cmn;
1581 		}
1582 		if (m != NULL)
1583 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1584 		else
1585 			nextrecord = so->so_rcv.sb_mb;
1586 		orig_resid = 0;
1587 	}
1588 	if (m != NULL) {
1589 		if ((flags & MSG_PEEK) == 0) {
1590 			KASSERT(m->m_nextpkt == nextrecord,
1591 			    ("soreceive: post-control, nextrecord !sync"));
1592 			if (nextrecord == NULL) {
1593 				KASSERT(so->so_rcv.sb_mb == m,
1594 				    ("soreceive: post-control, sb_mb!=m"));
1595 				KASSERT(so->so_rcv.sb_lastrecord == m,
1596 				    ("soreceive: post-control, lastrecord!=m"));
1597 			}
1598 		}
1599 		type = m->m_type;
1600 		if (type == MT_OOBDATA)
1601 			flags |= MSG_OOB;
1602 	} else {
1603 		if ((flags & MSG_PEEK) == 0) {
1604 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1605 			    ("soreceive: sb_mb != nextrecord"));
1606 			if (so->so_rcv.sb_mb == NULL) {
1607 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1608 				    ("soreceive: sb_lastercord != NULL"));
1609 			}
1610 		}
1611 	}
1612 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1613 	SBLASTRECORDCHK(&so->so_rcv);
1614 	SBLASTMBUFCHK(&so->so_rcv);
1615 
1616 	/*
1617 	 * Now continue to read any data mbufs off of the head of the socket
1618 	 * buffer until the read request is satisfied.  Note that 'type' is
1619 	 * used to store the type of any mbuf reads that have happened so far
1620 	 * such that soreceive() can stop reading if the type changes, which
1621 	 * causes soreceive() to return only one of regular data and inline
1622 	 * out-of-band data in a single socket receive operation.
1623 	 */
1624 	moff = 0;
1625 	offset = 0;
1626 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1627 		/*
1628 		 * If the type of mbuf has changed since the last mbuf
1629 		 * examined ('type'), end the receive operation.
1630 	 	 */
1631 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1632 		if (m->m_type == MT_OOBDATA) {
1633 			if (type != MT_OOBDATA)
1634 				break;
1635 		} else if (type == MT_OOBDATA)
1636 			break;
1637 		else
1638 		    KASSERT(m->m_type == MT_DATA,
1639 			("m->m_type == %d", m->m_type));
1640 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1641 		len = uio->uio_resid;
1642 		if (so->so_oobmark && len > so->so_oobmark - offset)
1643 			len = so->so_oobmark - offset;
1644 		if (len > m->m_len - moff)
1645 			len = m->m_len - moff;
1646 		/*
1647 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1648 		 * them out via the uio, then free.  Sockbuf must be
1649 		 * consistent here (points to current mbuf, it points to next
1650 		 * record) when we drop priority; we must note any additions
1651 		 * to the sockbuf when we block interrupts again.
1652 		 */
1653 		if (mp == NULL) {
1654 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1655 			SBLASTRECORDCHK(&so->so_rcv);
1656 			SBLASTMBUFCHK(&so->so_rcv);
1657 			SOCKBUF_UNLOCK(&so->so_rcv);
1658 #ifdef ZERO_COPY_SOCKETS
1659 			if (so_zero_copy_receive) {
1660 				int disposable;
1661 
1662 				if ((m->m_flags & M_EXT)
1663 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1664 					disposable = 1;
1665 				else
1666 					disposable = 0;
1667 
1668 				error = uiomoveco(mtod(m, char *) + moff,
1669 						  (int)len, uio,
1670 						  disposable);
1671 			} else
1672 #endif /* ZERO_COPY_SOCKETS */
1673 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1674 			SOCKBUF_LOCK(&so->so_rcv);
1675 			if (error) {
1676 				/*
1677 				 * The MT_SONAME mbuf has already been removed
1678 				 * from the record, so it is necessary to
1679 				 * remove the data mbufs, if any, to preserve
1680 				 * the invariant in the case of PR_ADDR that
1681 				 * requires MT_SONAME mbufs at the head of
1682 				 * each record.
1683 				 */
1684 				if (m && pr->pr_flags & PR_ATOMIC &&
1685 				    ((flags & MSG_PEEK) == 0))
1686 					(void)sbdroprecord_locked(&so->so_rcv);
1687 				SOCKBUF_UNLOCK(&so->so_rcv);
1688 				goto release;
1689 			}
1690 		} else
1691 			uio->uio_resid -= len;
1692 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1693 		if (len == m->m_len - moff) {
1694 			if (m->m_flags & M_EOR)
1695 				flags |= MSG_EOR;
1696 			if (flags & MSG_PEEK) {
1697 				m = m->m_next;
1698 				moff = 0;
1699 			} else {
1700 				nextrecord = m->m_nextpkt;
1701 				sbfree(&so->so_rcv, m);
1702 				if (mp != NULL) {
1703 					*mp = m;
1704 					mp = &m->m_next;
1705 					so->so_rcv.sb_mb = m = m->m_next;
1706 					*mp = NULL;
1707 				} else {
1708 					so->so_rcv.sb_mb = m_free(m);
1709 					m = so->so_rcv.sb_mb;
1710 				}
1711 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1712 				SBLASTRECORDCHK(&so->so_rcv);
1713 				SBLASTMBUFCHK(&so->so_rcv);
1714 			}
1715 		} else {
1716 			if (flags & MSG_PEEK)
1717 				moff += len;
1718 			else {
1719 				if (mp != NULL) {
1720 					int copy_flag;
1721 
1722 					if (flags & MSG_DONTWAIT)
1723 						copy_flag = M_DONTWAIT;
1724 					else
1725 						copy_flag = M_WAIT;
1726 					if (copy_flag == M_WAIT)
1727 						SOCKBUF_UNLOCK(&so->so_rcv);
1728 					*mp = m_copym(m, 0, len, copy_flag);
1729 					if (copy_flag == M_WAIT)
1730 						SOCKBUF_LOCK(&so->so_rcv);
1731  					if (*mp == NULL) {
1732  						/*
1733  						 * m_copym() couldn't
1734 						 * allocate an mbuf.  Adjust
1735 						 * uio_resid back (it was
1736 						 * adjusted down by len
1737 						 * bytes, which we didn't end
1738 						 * up "copying" over).
1739  						 */
1740  						uio->uio_resid += len;
1741  						break;
1742  					}
1743 				}
1744 				m->m_data += len;
1745 				m->m_len -= len;
1746 				so->so_rcv.sb_cc -= len;
1747 			}
1748 		}
1749 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1750 		if (so->so_oobmark) {
1751 			if ((flags & MSG_PEEK) == 0) {
1752 				so->so_oobmark -= len;
1753 				if (so->so_oobmark == 0) {
1754 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1755 					break;
1756 				}
1757 			} else {
1758 				offset += len;
1759 				if (offset == so->so_oobmark)
1760 					break;
1761 			}
1762 		}
1763 		if (flags & MSG_EOR)
1764 			break;
1765 		/*
1766 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1767 		 * must not quit until "uio->uio_resid == 0" or an error
1768 		 * termination.  If a signal/timeout occurs, return with a
1769 		 * short count but without error.  Keep sockbuf locked
1770 		 * against other readers.
1771 		 */
1772 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1773 		    !sosendallatonce(so) && nextrecord == NULL) {
1774 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1775 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1776 				break;
1777 			/*
1778 			 * Notify the protocol that some data has been
1779 			 * drained before blocking.
1780 			 */
1781 			if (pr->pr_flags & PR_WANTRCVD) {
1782 				SOCKBUF_UNLOCK(&so->so_rcv);
1783 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1784 				SOCKBUF_LOCK(&so->so_rcv);
1785 			}
1786 			SBLASTRECORDCHK(&so->so_rcv);
1787 			SBLASTMBUFCHK(&so->so_rcv);
1788 			error = sbwait(&so->so_rcv);
1789 			if (error) {
1790 				SOCKBUF_UNLOCK(&so->so_rcv);
1791 				goto release;
1792 			}
1793 			m = so->so_rcv.sb_mb;
1794 			if (m != NULL)
1795 				nextrecord = m->m_nextpkt;
1796 		}
1797 	}
1798 
1799 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1800 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1801 		flags |= MSG_TRUNC;
1802 		if ((flags & MSG_PEEK) == 0)
1803 			(void) sbdroprecord_locked(&so->so_rcv);
1804 	}
1805 	if ((flags & MSG_PEEK) == 0) {
1806 		if (m == NULL) {
1807 			/*
1808 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1809 			 * part makes sure sb_lastrecord is up-to-date if
1810 			 * there is still data in the socket buffer.
1811 			 */
1812 			so->so_rcv.sb_mb = nextrecord;
1813 			if (so->so_rcv.sb_mb == NULL) {
1814 				so->so_rcv.sb_mbtail = NULL;
1815 				so->so_rcv.sb_lastrecord = NULL;
1816 			} else if (nextrecord->m_nextpkt == NULL)
1817 				so->so_rcv.sb_lastrecord = nextrecord;
1818 		}
1819 		SBLASTRECORDCHK(&so->so_rcv);
1820 		SBLASTMBUFCHK(&so->so_rcv);
1821 		/*
1822 		 * If soreceive() is being done from the socket callback,
1823 		 * then don't need to generate ACK to peer to update window,
1824 		 * since ACK will be generated on return to TCP.
1825 		 */
1826 		if (!(flags & MSG_SOCALLBCK) &&
1827 		    (pr->pr_flags & PR_WANTRCVD)) {
1828 			SOCKBUF_UNLOCK(&so->so_rcv);
1829 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1830 			SOCKBUF_LOCK(&so->so_rcv);
1831 		}
1832 	}
1833 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1834 	if (orig_resid == uio->uio_resid && orig_resid &&
1835 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1836 		SOCKBUF_UNLOCK(&so->so_rcv);
1837 		goto restart;
1838 	}
1839 	SOCKBUF_UNLOCK(&so->so_rcv);
1840 
1841 	if (flagsp != NULL)
1842 		*flagsp |= flags;
1843 release:
1844 	sbunlock(&so->so_rcv);
1845 	return (error);
1846 }
1847 
1848 /*
1849  * Optimized version of soreceive() for simple datagram cases from userspace;
1850  * this is experimental, and while heavily tested, may contain errors.
1851  */
1852 int
1853 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1854     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1855 {
1856 	struct mbuf *m, *m2;
1857 	int flags, len, error, offset;
1858 	struct protosw *pr = so->so_proto;
1859 	struct mbuf *nextrecord;
1860 	int orig_resid = uio->uio_resid;
1861 
1862 	if (psa != NULL)
1863 		*psa = NULL;
1864 	if (controlp != NULL)
1865 		*controlp = NULL;
1866 	if (flagsp != NULL)
1867 		flags = *flagsp &~ MSG_EOR;
1868 	else
1869 		flags = 0;
1870 
1871 	/*
1872 	 * For any complicated cases, fall back to the full
1873 	 * soreceive_generic().
1874 	 */
1875 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
1876 		return (soreceive_generic(so, psa, uio, mp0, controlp,
1877 		    flagsp));
1878 
1879 	/*
1880 	 * Enforce restrictions on use.
1881 	 */
1882 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
1883 	    ("soreceive_dgram: wantrcvd"));
1884 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
1885 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
1886 	    ("soreceive_dgram: SBS_RCVATMARK"));
1887 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
1888 	    ("soreceive_dgram: P_CONNREQUIRED"));
1889 
1890 restart:
1891 	SOCKBUF_LOCK(&so->so_rcv);
1892 	m = so->so_rcv.sb_mb;
1893 
1894 	/*
1895 	 * If we have less data than requested, block awaiting more (subject
1896 	 * to any timeout) if:
1897 	 *   1. the current count is less than the low water mark, or
1898 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1899 	 *	receive operation at once if we block (resid <= hiwat).
1900 	 *   3. MSG_DONTWAIT is not set
1901 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1902 	 * we have to do the receive in sections, and thus risk returning a
1903 	 * short count if a timeout or signal occurs after we start.
1904 	 */
1905 	if (m == NULL) {
1906 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1907 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1908 		    m, so->so_rcv.sb_cc));
1909 		if (so->so_error) {
1910 			if (m != NULL)
1911 				goto dontblock;
1912 			error = so->so_error;
1913 			so->so_error = 0;
1914 			SOCKBUF_UNLOCK(&so->so_rcv);
1915 			return (error);
1916 		}
1917 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1918 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1919 			if (m == NULL) {
1920 				SOCKBUF_UNLOCK(&so->so_rcv);
1921 				return (0);
1922 			} else
1923 				goto dontblock;
1924 		}
1925 		if (uio->uio_resid == 0) {
1926 			SOCKBUF_UNLOCK(&so->so_rcv);
1927 			return (0);
1928 		}
1929 		if ((so->so_state & SS_NBIO) ||
1930 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1931 			SOCKBUF_UNLOCK(&so->so_rcv);
1932 			error = EWOULDBLOCK;
1933 			return (error);
1934 		}
1935 		SBLASTRECORDCHK(&so->so_rcv);
1936 		SBLASTMBUFCHK(&so->so_rcv);
1937 
1938 		/* XXXRW: sbwait() may not be as happy without sblock(). */
1939 		error = sbwait(&so->so_rcv);
1940 		SOCKBUF_UNLOCK(&so->so_rcv);
1941 		if (error)
1942 			return (error);
1943 		goto restart;
1944 	}
1945 dontblock:
1946 	/*
1947 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1948 	 * pointer to the next record in the socket buffer.  We must keep the
1949 	 * various socket buffer pointers and local stack versions of the
1950 	 * pointers in sync, pushing out modifications before dropping the
1951 	 * socket buffer mutex, and re-reading them when picking it up.
1952 	 *
1953 	 * Otherwise, we will race with the network stack appending new data
1954 	 * or records onto the socket buffer by using inconsistent/stale
1955 	 * versions of the field, possibly resulting in socket buffer
1956 	 * corruption.
1957 	 *
1958 	 * By holding the high-level sblock(), we prevent simultaneous
1959 	 * readers from pulling off the front of the socket buffer.
1960 	 */
1961 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1962 	if (uio->uio_td)
1963 		uio->uio_td->td_ru.ru_msgrcv++;
1964 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1965 	SBLASTRECORDCHK(&so->so_rcv);
1966 	SBLASTMBUFCHK(&so->so_rcv);
1967 	nextrecord = m->m_nextpkt;
1968 	if (pr->pr_flags & PR_ADDR) {
1969 		KASSERT(m->m_type == MT_SONAME,
1970 		    ("m->m_type == %d", m->m_type));
1971 		orig_resid = 0;
1972 		if (psa != NULL)
1973 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1974 			    M_NOWAIT);
1975 		sbfree(&so->so_rcv, m);
1976 		so->so_rcv.sb_mb = m_free(m);
1977 		m = so->so_rcv.sb_mb;
1978 		sockbuf_pushsync(&so->so_rcv, nextrecord);
1979 	}
1980 	if (m == NULL) {
1981 		/* XXXRW: Can this happen? */
1982 		SOCKBUF_UNLOCK(&so->so_rcv);
1983 		return (0);
1984 	}
1985 	KASSERT(m->m_nextpkt == nextrecord,
1986 	    ("soreceive: post-control, nextrecord !sync"));
1987 	if (nextrecord == NULL) {
1988 		KASSERT(so->so_rcv.sb_mb == m,
1989 		    ("soreceive: post-control, sb_mb!=m"));
1990 		KASSERT(so->so_rcv.sb_lastrecord == m,
1991 		    ("soreceive: post-control, lastrecord!=m"));
1992 	}
1993 
1994 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1995 	SBLASTRECORDCHK(&so->so_rcv);
1996 	SBLASTMBUFCHK(&so->so_rcv);
1997 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive_dgram: m not sb_mb"));
1998 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
1999 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2000 
2001 	/*
2002 	 * Pull 'm' and its chain off the front of the packet queue.
2003 	 */
2004 	so->so_rcv.sb_mb = NULL;
2005 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2006 
2007 	/*
2008 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2009 	 */
2010 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2011 		sbfree(&so->so_rcv, m2);
2012 
2013 	/*
2014 	 * Do a few last checks before we let go of the lock.
2015 	 */
2016 	SBLASTRECORDCHK(&so->so_rcv);
2017 	SBLASTMBUFCHK(&so->so_rcv);
2018 	SOCKBUF_UNLOCK(&so->so_rcv);
2019 
2020 	/*
2021 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2022 	 * queue.
2023 	 *
2024 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2025 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2026 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2027 	 * perform externalization (or freeing if controlp == NULL).
2028 	 */
2029 	if (m->m_type == MT_CONTROL) {
2030 		struct mbuf *cm = NULL, *cmn;
2031 		struct mbuf **cme = &cm;
2032 
2033 		do {
2034 			m2 = m->m_next;
2035 			m->m_next = NULL;
2036 			*cme = m;
2037 			cme = &(*cme)->m_next;
2038 			m = m2;
2039 		} while (m != NULL && m->m_type == MT_CONTROL);
2040 		while (cm != NULL) {
2041 			cmn = cm->m_next;
2042 			cm->m_next = NULL;
2043 			if (pr->pr_domain->dom_externalize != NULL) {
2044 				error = (*pr->pr_domain->dom_externalize)
2045 				    (cm, controlp);
2046 			} else if (controlp != NULL)
2047 				*controlp = cm;
2048 			else
2049 				m_freem(cm);
2050 			if (controlp != NULL) {
2051 				orig_resid = 0;
2052 				while (*controlp != NULL)
2053 					controlp = &(*controlp)->m_next;
2054 			}
2055 			cm = cmn;
2056 		}
2057 		orig_resid = 0;	/* XXXRW: why this? */
2058 	}
2059 
2060 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2061 
2062 	offset = 0;
2063 	while (m != NULL && uio->uio_resid > 0) {
2064 		len = uio->uio_resid;
2065 		if (len > m->m_len)
2066 			len = m->m_len;
2067 		error = uiomove(mtod(m, char *), (int)len, uio);
2068 		if (error) {
2069 			m_freem(m);
2070 			return (error);
2071 		}
2072 		m = m_free(m);
2073 	}
2074 	if (m != NULL && pr->pr_flags & PR_ATOMIC)
2075 		flags |= MSG_TRUNC;
2076 	m_freem(m);
2077 	if (flagsp != NULL)
2078 		*flagsp |= flags;
2079 	return (0);
2080 }
2081 
2082 int
2083 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2084     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2085 {
2086 
2087 	/* XXXRW: Temporary debugging. */
2088 	KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive,
2089 	    ("soreceive: protocol calls soreceive"));
2090 
2091 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2092 	    controlp, flagsp));
2093 }
2094 
2095 int
2096 soshutdown(struct socket *so, int how)
2097 {
2098 	struct protosw *pr = so->so_proto;
2099 
2100 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2101 		return (EINVAL);
2102 	if (pr->pr_usrreqs->pru_flush != NULL) {
2103 	        (*pr->pr_usrreqs->pru_flush)(so, how);
2104 	}
2105 	if (how != SHUT_WR)
2106 		sorflush(so);
2107 	if (how != SHUT_RD)
2108 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
2109 	return (0);
2110 }
2111 
2112 void
2113 sorflush(struct socket *so)
2114 {
2115 	struct sockbuf *sb = &so->so_rcv;
2116 	struct protosw *pr = so->so_proto;
2117 	struct sockbuf asb;
2118 
2119 	/*
2120 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2121 	 * held, and in order to generally avoid holding the lock for a long
2122 	 * time, we make a copy of the socket buffer and clear the original
2123 	 * (except locks, state).  The new socket buffer copy won't have
2124 	 * initialized locks so we can only call routines that won't use or
2125 	 * assert those locks.
2126 	 *
2127 	 * Dislodge threads currently blocked in receive and wait to acquire
2128 	 * a lock against other simultaneous readers before clearing the
2129 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2130 	 * despite any existing socket disposition on interruptable waiting.
2131 	 */
2132 	socantrcvmore(so);
2133 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2134 
2135 	/*
2136 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2137 	 * and mutex data unchanged.
2138 	 */
2139 	SOCKBUF_LOCK(sb);
2140 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2141 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2142 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2143 	bzero(&sb->sb_startzero,
2144 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2145 	SOCKBUF_UNLOCK(sb);
2146 	sbunlock(sb);
2147 
2148 	/*
2149 	 * Dispose of special rights and flush the socket buffer.  Don't call
2150 	 * any unsafe routines (that rely on locks being initialized) on asb.
2151 	 */
2152 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2153 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2154 	sbrelease_internal(&asb, so);
2155 }
2156 
2157 /*
2158  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2159  * additional variant to handle the case where the option value needs to be
2160  * some kind of integer, but not a specific size.  In addition to their use
2161  * here, these functions are also called by the protocol-level pr_ctloutput()
2162  * routines.
2163  */
2164 int
2165 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2166 {
2167 	size_t	valsize;
2168 
2169 	/*
2170 	 * If the user gives us more than we wanted, we ignore it, but if we
2171 	 * don't get the minimum length the caller wants, we return EINVAL.
2172 	 * On success, sopt->sopt_valsize is set to however much we actually
2173 	 * retrieved.
2174 	 */
2175 	if ((valsize = sopt->sopt_valsize) < minlen)
2176 		return EINVAL;
2177 	if (valsize > len)
2178 		sopt->sopt_valsize = valsize = len;
2179 
2180 	if (sopt->sopt_td != NULL)
2181 		return (copyin(sopt->sopt_val, buf, valsize));
2182 
2183 	bcopy(sopt->sopt_val, buf, valsize);
2184 	return (0);
2185 }
2186 
2187 /*
2188  * Kernel version of setsockopt(2).
2189  *
2190  * XXX: optlen is size_t, not socklen_t
2191  */
2192 int
2193 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2194     size_t optlen)
2195 {
2196 	struct sockopt sopt;
2197 
2198 	sopt.sopt_level = level;
2199 	sopt.sopt_name = optname;
2200 	sopt.sopt_dir = SOPT_SET;
2201 	sopt.sopt_val = optval;
2202 	sopt.sopt_valsize = optlen;
2203 	sopt.sopt_td = NULL;
2204 	return (sosetopt(so, &sopt));
2205 }
2206 
2207 int
2208 sosetopt(struct socket *so, struct sockopt *sopt)
2209 {
2210 	int	error, optval;
2211 	struct	linger l;
2212 	struct	timeval tv;
2213 	u_long  val;
2214 #ifdef MAC
2215 	struct mac extmac;
2216 #endif
2217 
2218 	error = 0;
2219 	if (sopt->sopt_level != SOL_SOCKET) {
2220 		if (so->so_proto && so->so_proto->pr_ctloutput)
2221 			return ((*so->so_proto->pr_ctloutput)
2222 				  (so, sopt));
2223 		error = ENOPROTOOPT;
2224 	} else {
2225 		switch (sopt->sopt_name) {
2226 #ifdef INET
2227 		case SO_ACCEPTFILTER:
2228 			error = do_setopt_accept_filter(so, sopt);
2229 			if (error)
2230 				goto bad;
2231 			break;
2232 #endif
2233 		case SO_LINGER:
2234 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2235 			if (error)
2236 				goto bad;
2237 
2238 			SOCK_LOCK(so);
2239 			so->so_linger = l.l_linger;
2240 			if (l.l_onoff)
2241 				so->so_options |= SO_LINGER;
2242 			else
2243 				so->so_options &= ~SO_LINGER;
2244 			SOCK_UNLOCK(so);
2245 			break;
2246 
2247 		case SO_DEBUG:
2248 		case SO_KEEPALIVE:
2249 		case SO_DONTROUTE:
2250 		case SO_USELOOPBACK:
2251 		case SO_BROADCAST:
2252 		case SO_REUSEADDR:
2253 		case SO_REUSEPORT:
2254 		case SO_OOBINLINE:
2255 		case SO_TIMESTAMP:
2256 		case SO_BINTIME:
2257 		case SO_NOSIGPIPE:
2258 			error = sooptcopyin(sopt, &optval, sizeof optval,
2259 					    sizeof optval);
2260 			if (error)
2261 				goto bad;
2262 			SOCK_LOCK(so);
2263 			if (optval)
2264 				so->so_options |= sopt->sopt_name;
2265 			else
2266 				so->so_options &= ~sopt->sopt_name;
2267 			SOCK_UNLOCK(so);
2268 			break;
2269 
2270 		case SO_SETFIB:
2271 			error = sooptcopyin(sopt, &optval, sizeof optval,
2272 					    sizeof optval);
2273 			if (optval < 1 || optval > rt_numfibs) {
2274 				error = EINVAL;
2275 				goto bad;
2276 			}
2277 			if ((so->so_proto->pr_domain->dom_family == PF_INET) ||
2278 			    (so->so_proto->pr_domain->dom_family == PF_ROUTE)) {
2279 				so->so_fibnum = optval;
2280 			} else {
2281 				so->so_fibnum = 0;
2282 			}
2283 			break;
2284 		case SO_SNDBUF:
2285 		case SO_RCVBUF:
2286 		case SO_SNDLOWAT:
2287 		case SO_RCVLOWAT:
2288 			error = sooptcopyin(sopt, &optval, sizeof optval,
2289 					    sizeof optval);
2290 			if (error)
2291 				goto bad;
2292 
2293 			/*
2294 			 * Values < 1 make no sense for any of these options,
2295 			 * so disallow them.
2296 			 */
2297 			if (optval < 1) {
2298 				error = EINVAL;
2299 				goto bad;
2300 			}
2301 
2302 			switch (sopt->sopt_name) {
2303 			case SO_SNDBUF:
2304 			case SO_RCVBUF:
2305 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2306 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2307 				    so, curthread) == 0) {
2308 					error = ENOBUFS;
2309 					goto bad;
2310 				}
2311 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2312 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2313 				break;
2314 
2315 			/*
2316 			 * Make sure the low-water is never greater than the
2317 			 * high-water.
2318 			 */
2319 			case SO_SNDLOWAT:
2320 				SOCKBUF_LOCK(&so->so_snd);
2321 				so->so_snd.sb_lowat =
2322 				    (optval > so->so_snd.sb_hiwat) ?
2323 				    so->so_snd.sb_hiwat : optval;
2324 				SOCKBUF_UNLOCK(&so->so_snd);
2325 				break;
2326 			case SO_RCVLOWAT:
2327 				SOCKBUF_LOCK(&so->so_rcv);
2328 				so->so_rcv.sb_lowat =
2329 				    (optval > so->so_rcv.sb_hiwat) ?
2330 				    so->so_rcv.sb_hiwat : optval;
2331 				SOCKBUF_UNLOCK(&so->so_rcv);
2332 				break;
2333 			}
2334 			break;
2335 
2336 		case SO_SNDTIMEO:
2337 		case SO_RCVTIMEO:
2338 #ifdef COMPAT_IA32
2339 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2340 				struct timeval32 tv32;
2341 
2342 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2343 				    sizeof tv32);
2344 				CP(tv32, tv, tv_sec);
2345 				CP(tv32, tv, tv_usec);
2346 			} else
2347 #endif
2348 				error = sooptcopyin(sopt, &tv, sizeof tv,
2349 				    sizeof tv);
2350 			if (error)
2351 				goto bad;
2352 
2353 			/* assert(hz > 0); */
2354 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2355 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2356 				error = EDOM;
2357 				goto bad;
2358 			}
2359 			/* assert(tick > 0); */
2360 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2361 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2362 			if (val > INT_MAX) {
2363 				error = EDOM;
2364 				goto bad;
2365 			}
2366 			if (val == 0 && tv.tv_usec != 0)
2367 				val = 1;
2368 
2369 			switch (sopt->sopt_name) {
2370 			case SO_SNDTIMEO:
2371 				so->so_snd.sb_timeo = val;
2372 				break;
2373 			case SO_RCVTIMEO:
2374 				so->so_rcv.sb_timeo = val;
2375 				break;
2376 			}
2377 			break;
2378 
2379 		case SO_LABEL:
2380 #ifdef MAC
2381 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2382 			    sizeof extmac);
2383 			if (error)
2384 				goto bad;
2385 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2386 			    so, &extmac);
2387 #else
2388 			error = EOPNOTSUPP;
2389 #endif
2390 			break;
2391 
2392 		default:
2393 			error = ENOPROTOOPT;
2394 			break;
2395 		}
2396 		if (error == 0 && so->so_proto != NULL &&
2397 		    so->so_proto->pr_ctloutput != NULL) {
2398 			(void) ((*so->so_proto->pr_ctloutput)
2399 				  (so, sopt));
2400 		}
2401 	}
2402 bad:
2403 	return (error);
2404 }
2405 
2406 /*
2407  * Helper routine for getsockopt.
2408  */
2409 int
2410 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2411 {
2412 	int	error;
2413 	size_t	valsize;
2414 
2415 	error = 0;
2416 
2417 	/*
2418 	 * Documented get behavior is that we always return a value, possibly
2419 	 * truncated to fit in the user's buffer.  Traditional behavior is
2420 	 * that we always tell the user precisely how much we copied, rather
2421 	 * than something useful like the total amount we had available for
2422 	 * her.  Note that this interface is not idempotent; the entire
2423 	 * answer must generated ahead of time.
2424 	 */
2425 	valsize = min(len, sopt->sopt_valsize);
2426 	sopt->sopt_valsize = valsize;
2427 	if (sopt->sopt_val != NULL) {
2428 		if (sopt->sopt_td != NULL)
2429 			error = copyout(buf, sopt->sopt_val, valsize);
2430 		else
2431 			bcopy(buf, sopt->sopt_val, valsize);
2432 	}
2433 	return (error);
2434 }
2435 
2436 int
2437 sogetopt(struct socket *so, struct sockopt *sopt)
2438 {
2439 	int	error, optval;
2440 	struct	linger l;
2441 	struct	timeval tv;
2442 #ifdef MAC
2443 	struct mac extmac;
2444 #endif
2445 
2446 	error = 0;
2447 	if (sopt->sopt_level != SOL_SOCKET) {
2448 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2449 			return ((*so->so_proto->pr_ctloutput)
2450 				  (so, sopt));
2451 		} else
2452 			return (ENOPROTOOPT);
2453 	} else {
2454 		switch (sopt->sopt_name) {
2455 #ifdef INET
2456 		case SO_ACCEPTFILTER:
2457 			error = do_getopt_accept_filter(so, sopt);
2458 			break;
2459 #endif
2460 		case SO_LINGER:
2461 			SOCK_LOCK(so);
2462 			l.l_onoff = so->so_options & SO_LINGER;
2463 			l.l_linger = so->so_linger;
2464 			SOCK_UNLOCK(so);
2465 			error = sooptcopyout(sopt, &l, sizeof l);
2466 			break;
2467 
2468 		case SO_USELOOPBACK:
2469 		case SO_DONTROUTE:
2470 		case SO_DEBUG:
2471 		case SO_KEEPALIVE:
2472 		case SO_REUSEADDR:
2473 		case SO_REUSEPORT:
2474 		case SO_BROADCAST:
2475 		case SO_OOBINLINE:
2476 		case SO_ACCEPTCONN:
2477 		case SO_TIMESTAMP:
2478 		case SO_BINTIME:
2479 		case SO_NOSIGPIPE:
2480 			optval = so->so_options & sopt->sopt_name;
2481 integer:
2482 			error = sooptcopyout(sopt, &optval, sizeof optval);
2483 			break;
2484 
2485 		case SO_TYPE:
2486 			optval = so->so_type;
2487 			goto integer;
2488 
2489 		case SO_ERROR:
2490 			SOCK_LOCK(so);
2491 			optval = so->so_error;
2492 			so->so_error = 0;
2493 			SOCK_UNLOCK(so);
2494 			goto integer;
2495 
2496 		case SO_SNDBUF:
2497 			optval = so->so_snd.sb_hiwat;
2498 			goto integer;
2499 
2500 		case SO_RCVBUF:
2501 			optval = so->so_rcv.sb_hiwat;
2502 			goto integer;
2503 
2504 		case SO_SNDLOWAT:
2505 			optval = so->so_snd.sb_lowat;
2506 			goto integer;
2507 
2508 		case SO_RCVLOWAT:
2509 			optval = so->so_rcv.sb_lowat;
2510 			goto integer;
2511 
2512 		case SO_SNDTIMEO:
2513 		case SO_RCVTIMEO:
2514 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2515 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2516 
2517 			tv.tv_sec = optval / hz;
2518 			tv.tv_usec = (optval % hz) * tick;
2519 #ifdef COMPAT_IA32
2520 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2521 				struct timeval32 tv32;
2522 
2523 				CP(tv, tv32, tv_sec);
2524 				CP(tv, tv32, tv_usec);
2525 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2526 			} else
2527 #endif
2528 				error = sooptcopyout(sopt, &tv, sizeof tv);
2529 			break;
2530 
2531 		case SO_LABEL:
2532 #ifdef MAC
2533 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2534 			    sizeof(extmac));
2535 			if (error)
2536 				return (error);
2537 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2538 			    so, &extmac);
2539 			if (error)
2540 				return (error);
2541 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2542 #else
2543 			error = EOPNOTSUPP;
2544 #endif
2545 			break;
2546 
2547 		case SO_PEERLABEL:
2548 #ifdef MAC
2549 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2550 			    sizeof(extmac));
2551 			if (error)
2552 				return (error);
2553 			error = mac_getsockopt_peerlabel(
2554 			    sopt->sopt_td->td_ucred, so, &extmac);
2555 			if (error)
2556 				return (error);
2557 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2558 #else
2559 			error = EOPNOTSUPP;
2560 #endif
2561 			break;
2562 
2563 		case SO_LISTENQLIMIT:
2564 			optval = so->so_qlimit;
2565 			goto integer;
2566 
2567 		case SO_LISTENQLEN:
2568 			optval = so->so_qlen;
2569 			goto integer;
2570 
2571 		case SO_LISTENINCQLEN:
2572 			optval = so->so_incqlen;
2573 			goto integer;
2574 
2575 		default:
2576 			error = ENOPROTOOPT;
2577 			break;
2578 		}
2579 		return (error);
2580 	}
2581 }
2582 
2583 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2584 int
2585 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2586 {
2587 	struct mbuf *m, *m_prev;
2588 	int sopt_size = sopt->sopt_valsize;
2589 
2590 	MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2591 	if (m == NULL)
2592 		return ENOBUFS;
2593 	if (sopt_size > MLEN) {
2594 		MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2595 		if ((m->m_flags & M_EXT) == 0) {
2596 			m_free(m);
2597 			return ENOBUFS;
2598 		}
2599 		m->m_len = min(MCLBYTES, sopt_size);
2600 	} else {
2601 		m->m_len = min(MLEN, sopt_size);
2602 	}
2603 	sopt_size -= m->m_len;
2604 	*mp = m;
2605 	m_prev = m;
2606 
2607 	while (sopt_size) {
2608 		MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2609 		if (m == NULL) {
2610 			m_freem(*mp);
2611 			return ENOBUFS;
2612 		}
2613 		if (sopt_size > MLEN) {
2614 			MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2615 			    M_DONTWAIT);
2616 			if ((m->m_flags & M_EXT) == 0) {
2617 				m_freem(m);
2618 				m_freem(*mp);
2619 				return ENOBUFS;
2620 			}
2621 			m->m_len = min(MCLBYTES, sopt_size);
2622 		} else {
2623 			m->m_len = min(MLEN, sopt_size);
2624 		}
2625 		sopt_size -= m->m_len;
2626 		m_prev->m_next = m;
2627 		m_prev = m;
2628 	}
2629 	return (0);
2630 }
2631 
2632 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2633 int
2634 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2635 {
2636 	struct mbuf *m0 = m;
2637 
2638 	if (sopt->sopt_val == NULL)
2639 		return (0);
2640 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2641 		if (sopt->sopt_td != NULL) {
2642 			int error;
2643 
2644 			error = copyin(sopt->sopt_val, mtod(m, char *),
2645 				       m->m_len);
2646 			if (error != 0) {
2647 				m_freem(m0);
2648 				return(error);
2649 			}
2650 		} else
2651 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2652 		sopt->sopt_valsize -= m->m_len;
2653 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2654 		m = m->m_next;
2655 	}
2656 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2657 		panic("ip6_sooptmcopyin");
2658 	return (0);
2659 }
2660 
2661 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2662 int
2663 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2664 {
2665 	struct mbuf *m0 = m;
2666 	size_t valsize = 0;
2667 
2668 	if (sopt->sopt_val == NULL)
2669 		return (0);
2670 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2671 		if (sopt->sopt_td != NULL) {
2672 			int error;
2673 
2674 			error = copyout(mtod(m, char *), sopt->sopt_val,
2675 				       m->m_len);
2676 			if (error != 0) {
2677 				m_freem(m0);
2678 				return(error);
2679 			}
2680 		} else
2681 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2682 	       sopt->sopt_valsize -= m->m_len;
2683 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2684 	       valsize += m->m_len;
2685 	       m = m->m_next;
2686 	}
2687 	if (m != NULL) {
2688 		/* enough soopt buffer should be given from user-land */
2689 		m_freem(m0);
2690 		return(EINVAL);
2691 	}
2692 	sopt->sopt_valsize = valsize;
2693 	return (0);
2694 }
2695 
2696 /*
2697  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2698  * out-of-band data, which will then notify socket consumers.
2699  */
2700 void
2701 sohasoutofband(struct socket *so)
2702 {
2703 
2704 	if (so->so_sigio != NULL)
2705 		pgsigio(&so->so_sigio, SIGURG, 0);
2706 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2707 }
2708 
2709 int
2710 sopoll(struct socket *so, int events, struct ucred *active_cred,
2711     struct thread *td)
2712 {
2713 
2714 	/* XXXRW: Temporary debugging. */
2715 	KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll,
2716 	    ("sopoll: protocol calls sopoll"));
2717 
2718 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2719 	    td));
2720 }
2721 
2722 int
2723 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2724     struct thread *td)
2725 {
2726 	int revents = 0;
2727 
2728 	SOCKBUF_LOCK(&so->so_snd);
2729 	SOCKBUF_LOCK(&so->so_rcv);
2730 	if (events & (POLLIN | POLLRDNORM))
2731 		if (soreadable(so))
2732 			revents |= events & (POLLIN | POLLRDNORM);
2733 
2734 	if (events & POLLINIGNEOF)
2735 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2736 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2737 			revents |= POLLINIGNEOF;
2738 
2739 	if (events & (POLLOUT | POLLWRNORM))
2740 		if (sowriteable(so))
2741 			revents |= events & (POLLOUT | POLLWRNORM);
2742 
2743 	if (events & (POLLPRI | POLLRDBAND))
2744 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2745 			revents |= events & (POLLPRI | POLLRDBAND);
2746 
2747 	if (revents == 0) {
2748 		if (events &
2749 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2750 		     POLLRDBAND)) {
2751 			selrecord(td, &so->so_rcv.sb_sel);
2752 			so->so_rcv.sb_flags |= SB_SEL;
2753 		}
2754 
2755 		if (events & (POLLOUT | POLLWRNORM)) {
2756 			selrecord(td, &so->so_snd.sb_sel);
2757 			so->so_snd.sb_flags |= SB_SEL;
2758 		}
2759 	}
2760 
2761 	SOCKBUF_UNLOCK(&so->so_rcv);
2762 	SOCKBUF_UNLOCK(&so->so_snd);
2763 	return (revents);
2764 }
2765 
2766 int
2767 soo_kqfilter(struct file *fp, struct knote *kn)
2768 {
2769 	struct socket *so = kn->kn_fp->f_data;
2770 	struct sockbuf *sb;
2771 
2772 	switch (kn->kn_filter) {
2773 	case EVFILT_READ:
2774 		if (so->so_options & SO_ACCEPTCONN)
2775 			kn->kn_fop = &solisten_filtops;
2776 		else
2777 			kn->kn_fop = &soread_filtops;
2778 		sb = &so->so_rcv;
2779 		break;
2780 	case EVFILT_WRITE:
2781 		kn->kn_fop = &sowrite_filtops;
2782 		sb = &so->so_snd;
2783 		break;
2784 	default:
2785 		return (EINVAL);
2786 	}
2787 
2788 	SOCKBUF_LOCK(sb);
2789 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2790 	sb->sb_flags |= SB_KNOTE;
2791 	SOCKBUF_UNLOCK(sb);
2792 	return (0);
2793 }
2794 
2795 /*
2796  * Some routines that return EOPNOTSUPP for entry points that are not
2797  * supported by a protocol.  Fill in as needed.
2798  */
2799 int
2800 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2801 {
2802 
2803 	return EOPNOTSUPP;
2804 }
2805 
2806 int
2807 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2808 {
2809 
2810 	return EOPNOTSUPP;
2811 }
2812 
2813 int
2814 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2815 {
2816 
2817 	return EOPNOTSUPP;
2818 }
2819 
2820 int
2821 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2822 {
2823 
2824 	return EOPNOTSUPP;
2825 }
2826 
2827 int
2828 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2829 {
2830 
2831 	return EOPNOTSUPP;
2832 }
2833 
2834 int
2835 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2836     struct ifnet *ifp, struct thread *td)
2837 {
2838 
2839 	return EOPNOTSUPP;
2840 }
2841 
2842 int
2843 pru_disconnect_notsupp(struct socket *so)
2844 {
2845 
2846 	return EOPNOTSUPP;
2847 }
2848 
2849 int
2850 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
2851 {
2852 
2853 	return EOPNOTSUPP;
2854 }
2855 
2856 int
2857 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2858 {
2859 
2860 	return EOPNOTSUPP;
2861 }
2862 
2863 int
2864 pru_rcvd_notsupp(struct socket *so, int flags)
2865 {
2866 
2867 	return EOPNOTSUPP;
2868 }
2869 
2870 int
2871 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2872 {
2873 
2874 	return EOPNOTSUPP;
2875 }
2876 
2877 int
2878 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2879     struct sockaddr *addr, struct mbuf *control, struct thread *td)
2880 {
2881 
2882 	return EOPNOTSUPP;
2883 }
2884 
2885 /*
2886  * This isn't really a ``null'' operation, but it's the default one and
2887  * doesn't do anything destructive.
2888  */
2889 int
2890 pru_sense_null(struct socket *so, struct stat *sb)
2891 {
2892 
2893 	sb->st_blksize = so->so_snd.sb_hiwat;
2894 	return 0;
2895 }
2896 
2897 int
2898 pru_shutdown_notsupp(struct socket *so)
2899 {
2900 
2901 	return EOPNOTSUPP;
2902 }
2903 
2904 int
2905 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2906 {
2907 
2908 	return EOPNOTSUPP;
2909 }
2910 
2911 int
2912 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2913     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2914 {
2915 
2916 	return EOPNOTSUPP;
2917 }
2918 
2919 int
2920 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2921     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2922 {
2923 
2924 	return EOPNOTSUPP;
2925 }
2926 
2927 int
2928 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
2929     struct thread *td)
2930 {
2931 
2932 	return EOPNOTSUPP;
2933 }
2934 
2935 static void
2936 filt_sordetach(struct knote *kn)
2937 {
2938 	struct socket *so = kn->kn_fp->f_data;
2939 
2940 	SOCKBUF_LOCK(&so->so_rcv);
2941 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2942 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2943 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2944 	SOCKBUF_UNLOCK(&so->so_rcv);
2945 }
2946 
2947 /*ARGSUSED*/
2948 static int
2949 filt_soread(struct knote *kn, long hint)
2950 {
2951 	struct socket *so;
2952 
2953 	so = kn->kn_fp->f_data;
2954 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2955 
2956 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2957 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2958 		kn->kn_flags |= EV_EOF;
2959 		kn->kn_fflags = so->so_error;
2960 		return (1);
2961 	} else if (so->so_error)	/* temporary udp error */
2962 		return (1);
2963 	else if (kn->kn_sfflags & NOTE_LOWAT)
2964 		return (kn->kn_data >= kn->kn_sdata);
2965 	else
2966 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2967 }
2968 
2969 static void
2970 filt_sowdetach(struct knote *kn)
2971 {
2972 	struct socket *so = kn->kn_fp->f_data;
2973 
2974 	SOCKBUF_LOCK(&so->so_snd);
2975 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2976 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2977 		so->so_snd.sb_flags &= ~SB_KNOTE;
2978 	SOCKBUF_UNLOCK(&so->so_snd);
2979 }
2980 
2981 /*ARGSUSED*/
2982 static int
2983 filt_sowrite(struct knote *kn, long hint)
2984 {
2985 	struct socket *so;
2986 
2987 	so = kn->kn_fp->f_data;
2988 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2989 	kn->kn_data = sbspace(&so->so_snd);
2990 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2991 		kn->kn_flags |= EV_EOF;
2992 		kn->kn_fflags = so->so_error;
2993 		return (1);
2994 	} else if (so->so_error)	/* temporary udp error */
2995 		return (1);
2996 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2997 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2998 		return (0);
2999 	else if (kn->kn_sfflags & NOTE_LOWAT)
3000 		return (kn->kn_data >= kn->kn_sdata);
3001 	else
3002 		return (kn->kn_data >= so->so_snd.sb_lowat);
3003 }
3004 
3005 /*ARGSUSED*/
3006 static int
3007 filt_solisten(struct knote *kn, long hint)
3008 {
3009 	struct socket *so = kn->kn_fp->f_data;
3010 
3011 	kn->kn_data = so->so_qlen;
3012 	return (! TAILQ_EMPTY(&so->so_comp));
3013 }
3014 
3015 int
3016 socheckuid(struct socket *so, uid_t uid)
3017 {
3018 
3019 	if (so == NULL)
3020 		return (EPERM);
3021 	if (so->so_cred->cr_uid != uid)
3022 		return (EPERM);
3023 	return (0);
3024 }
3025 
3026 static int
3027 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
3028 {
3029 	int error;
3030 	int val;
3031 
3032 	val = somaxconn;
3033 	error = sysctl_handle_int(oidp, &val, 0, req);
3034 	if (error || !req->newptr )
3035 		return (error);
3036 
3037 	if (val < 1 || val > USHRT_MAX)
3038 		return (EINVAL);
3039 
3040 	somaxconn = val;
3041 	return (0);
3042 }
3043 
3044 /*
3045  * These functions are used by protocols to notify the socket layer (and its
3046  * consumers) of state changes in the sockets driven by protocol-side events.
3047  */
3048 
3049 /*
3050  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3051  *
3052  * Normal sequence from the active (originating) side is that
3053  * soisconnecting() is called during processing of connect() call, resulting
3054  * in an eventual call to soisconnected() if/when the connection is
3055  * established.  When the connection is torn down soisdisconnecting() is
3056  * called during processing of disconnect() call, and soisdisconnected() is
3057  * called when the connection to the peer is totally severed.  The semantics
3058  * of these routines are such that connectionless protocols can call
3059  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3060  * calls when setting up a ``connection'' takes no time.
3061  *
3062  * From the passive side, a socket is created with two queues of sockets:
3063  * so_incomp for connections in progress and so_comp for connections already
3064  * made and awaiting user acceptance.  As a protocol is preparing incoming
3065  * connections, it creates a socket structure queued on so_incomp by calling
3066  * sonewconn().  When the connection is established, soisconnected() is
3067  * called, and transfers the socket structure to so_comp, making it available
3068  * to accept().
3069  *
3070  * If a socket is closed with sockets on either so_incomp or so_comp, these
3071  * sockets are dropped.
3072  *
3073  * If higher-level protocols are implemented in the kernel, the wakeups done
3074  * here will sometimes cause software-interrupt process scheduling.
3075  */
3076 void
3077 soisconnecting(struct socket *so)
3078 {
3079 
3080 	SOCK_LOCK(so);
3081 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3082 	so->so_state |= SS_ISCONNECTING;
3083 	SOCK_UNLOCK(so);
3084 }
3085 
3086 void
3087 soisconnected(struct socket *so)
3088 {
3089 	struct socket *head;
3090 
3091 	ACCEPT_LOCK();
3092 	SOCK_LOCK(so);
3093 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3094 	so->so_state |= SS_ISCONNECTED;
3095 	head = so->so_head;
3096 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3097 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3098 			SOCK_UNLOCK(so);
3099 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3100 			head->so_incqlen--;
3101 			so->so_qstate &= ~SQ_INCOMP;
3102 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3103 			head->so_qlen++;
3104 			so->so_qstate |= SQ_COMP;
3105 			ACCEPT_UNLOCK();
3106 			sorwakeup(head);
3107 			wakeup_one(&head->so_timeo);
3108 		} else {
3109 			ACCEPT_UNLOCK();
3110 			so->so_upcall =
3111 			    head->so_accf->so_accept_filter->accf_callback;
3112 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
3113 			so->so_rcv.sb_flags |= SB_UPCALL;
3114 			so->so_options &= ~SO_ACCEPTFILTER;
3115 			SOCK_UNLOCK(so);
3116 			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
3117 		}
3118 		return;
3119 	}
3120 	SOCK_UNLOCK(so);
3121 	ACCEPT_UNLOCK();
3122 	wakeup(&so->so_timeo);
3123 	sorwakeup(so);
3124 	sowwakeup(so);
3125 }
3126 
3127 void
3128 soisdisconnecting(struct socket *so)
3129 {
3130 
3131 	/*
3132 	 * Note: This code assumes that SOCK_LOCK(so) and
3133 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3134 	 */
3135 	SOCKBUF_LOCK(&so->so_rcv);
3136 	so->so_state &= ~SS_ISCONNECTING;
3137 	so->so_state |= SS_ISDISCONNECTING;
3138 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3139 	sorwakeup_locked(so);
3140 	SOCKBUF_LOCK(&so->so_snd);
3141 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3142 	sowwakeup_locked(so);
3143 	wakeup(&so->so_timeo);
3144 }
3145 
3146 void
3147 soisdisconnected(struct socket *so)
3148 {
3149 
3150 	/*
3151 	 * Note: This code assumes that SOCK_LOCK(so) and
3152 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3153 	 */
3154 	SOCKBUF_LOCK(&so->so_rcv);
3155 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3156 	so->so_state |= SS_ISDISCONNECTED;
3157 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3158 	sorwakeup_locked(so);
3159 	SOCKBUF_LOCK(&so->so_snd);
3160 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3161 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3162 	sowwakeup_locked(so);
3163 	wakeup(&so->so_timeo);
3164 }
3165 
3166 /*
3167  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3168  */
3169 struct sockaddr *
3170 sodupsockaddr(const struct sockaddr *sa, int mflags)
3171 {
3172 	struct sockaddr *sa2;
3173 
3174 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3175 	if (sa2)
3176 		bcopy(sa, sa2, sa->sa_len);
3177 	return sa2;
3178 }
3179 
3180 /*
3181  * Create an external-format (``xsocket'') structure using the information in
3182  * the kernel-format socket structure pointed to by so.  This is done to
3183  * reduce the spew of irrelevant information over this interface, to isolate
3184  * user code from changes in the kernel structure, and potentially to provide
3185  * information-hiding if we decide that some of this information should be
3186  * hidden from users.
3187  */
3188 void
3189 sotoxsocket(struct socket *so, struct xsocket *xso)
3190 {
3191 
3192 	xso->xso_len = sizeof *xso;
3193 	xso->xso_so = so;
3194 	xso->so_type = so->so_type;
3195 	xso->so_options = so->so_options;
3196 	xso->so_linger = so->so_linger;
3197 	xso->so_state = so->so_state;
3198 	xso->so_pcb = so->so_pcb;
3199 	xso->xso_protocol = so->so_proto->pr_protocol;
3200 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3201 	xso->so_qlen = so->so_qlen;
3202 	xso->so_incqlen = so->so_incqlen;
3203 	xso->so_qlimit = so->so_qlimit;
3204 	xso->so_timeo = so->so_timeo;
3205 	xso->so_error = so->so_error;
3206 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3207 	xso->so_oobmark = so->so_oobmark;
3208 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3209 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3210 	xso->so_uid = so->so_cred->cr_uid;
3211 }
3212 
3213 
3214 /*
3215  * Socket accessor functions to provide external consumers with
3216  * a safe interface to socket state
3217  *
3218  */
3219 
3220 void
3221 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3222 {
3223 
3224 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3225 		func(so, arg);
3226 }
3227 
3228 struct sockbuf *
3229 so_sockbuf_rcv(struct socket *so)
3230 {
3231 
3232 	return (&so->so_rcv);
3233 }
3234 
3235 struct sockbuf *
3236 so_sockbuf_snd(struct socket *so)
3237 {
3238 
3239 	return (&so->so_snd);
3240 }
3241 
3242 int
3243 so_state_get(const struct socket *so)
3244 {
3245 
3246 	return (so->so_state);
3247 }
3248 
3249 void
3250 so_state_set(struct socket *so, int val)
3251 {
3252 
3253 	so->so_state = val;
3254 }
3255 
3256 int
3257 so_options_get(const struct socket *so)
3258 {
3259 
3260 	return (so->so_options);
3261 }
3262 
3263 void
3264 so_options_set(struct socket *so, int val)
3265 {
3266 
3267 	so->so_options = val;
3268 }
3269 
3270 int
3271 so_error_get(const struct socket *so)
3272 {
3273 
3274 	return (so->so_error);
3275 }
3276 
3277 void
3278 so_error_set(struct socket *so, int val)
3279 {
3280 
3281 	so->so_error = val;
3282 }
3283 
3284 int
3285 so_linger_get(const struct socket *so)
3286 {
3287 
3288 	return (so->so_linger);
3289 }
3290 
3291 void
3292 so_linger_set(struct socket *so, int val)
3293 {
3294 
3295 	so->so_linger = val;
3296 }
3297 
3298 struct protosw *
3299 so_protosw_get(const struct socket *so)
3300 {
3301 
3302 	return (so->so_proto);
3303 }
3304 
3305 void
3306 so_protosw_set(struct socket *so, struct protosw *val)
3307 {
3308 
3309 	so->so_proto = val;
3310 }
3311 
3312 void
3313 so_sorwakeup(struct socket *so)
3314 {
3315 
3316 	sorwakeup(so);
3317 }
3318 
3319 void
3320 so_sowwakeup(struct socket *so)
3321 {
3322 
3323 	sowwakeup(so);
3324 }
3325 
3326 void
3327 so_sorwakeup_locked(struct socket *so)
3328 {
3329 
3330 	sorwakeup_locked(so);
3331 }
3332 
3333 void
3334 so_sowwakeup_locked(struct socket *so)
3335 {
3336 
3337 	sowwakeup_locked(so);
3338 }
3339 
3340 void
3341 so_lock(struct socket *so)
3342 {
3343 	SOCK_LOCK(so);
3344 }
3345 
3346 void
3347 so_unlock(struct socket *so)
3348 {
3349 	SOCK_UNLOCK(so);
3350 }
3351