xref: /freebsd/sys/kern/uipc_socket.c (revision c96ae1968a6ab7056427a739bce81bf07447c2d4)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2006 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_mac.h"
102 #include "opt_zero.h"
103 #include "opt_compat.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/fcntl.h>
108 #include <sys/limits.h>
109 #include <sys/lock.h>
110 #include <sys/mac.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/domain.h>
115 #include <sys/file.h>			/* for struct knote */
116 #include <sys/kernel.h>
117 #include <sys/event.h>
118 #include <sys/eventhandler.h>
119 #include <sys/poll.h>
120 #include <sys/proc.h>
121 #include <sys/protosw.h>
122 #include <sys/socket.h>
123 #include <sys/socketvar.h>
124 #include <sys/resourcevar.h>
125 #include <sys/signalvar.h>
126 #include <sys/sysctl.h>
127 #include <sys/uio.h>
128 #include <sys/jail.h>
129 
130 #include <security/mac/mac_framework.h>
131 
132 #include <vm/uma.h>
133 
134 #ifdef COMPAT_IA32
135 #include <sys/mount.h>
136 #include <compat/freebsd32/freebsd32.h>
137 
138 extern struct sysentvec ia32_freebsd_sysvec;
139 #endif
140 
141 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
142 		    int flags);
143 
144 static void	filt_sordetach(struct knote *kn);
145 static int	filt_soread(struct knote *kn, long hint);
146 static void	filt_sowdetach(struct knote *kn);
147 static int	filt_sowrite(struct knote *kn, long hint);
148 static int	filt_solisten(struct knote *kn, long hint);
149 
150 static struct filterops solisten_filtops =
151 	{ 1, NULL, filt_sordetach, filt_solisten };
152 static struct filterops soread_filtops =
153 	{ 1, NULL, filt_sordetach, filt_soread };
154 static struct filterops sowrite_filtops =
155 	{ 1, NULL, filt_sowdetach, filt_sowrite };
156 
157 uma_zone_t socket_zone;
158 so_gen_t	so_gencnt;	/* generation count for sockets */
159 
160 int	maxsockets;
161 
162 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
163 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
164 
165 static int somaxconn = SOMAXCONN;
166 static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS);
167 /* XXX: we dont have SYSCTL_USHORT */
168 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
169     0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection "
170     "queue size");
171 static int numopensockets;
172 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
173     &numopensockets, 0, "Number of open sockets");
174 #ifdef ZERO_COPY_SOCKETS
175 /* These aren't static because they're used in other files. */
176 int so_zero_copy_send = 1;
177 int so_zero_copy_receive = 1;
178 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
179     "Zero copy controls");
180 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
181     &so_zero_copy_receive, 0, "Enable zero copy receive");
182 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
183     &so_zero_copy_send, 0, "Enable zero copy send");
184 #endif /* ZERO_COPY_SOCKETS */
185 
186 /*
187  * accept_mtx locks down per-socket fields relating to accept queues.  See
188  * socketvar.h for an annotation of the protected fields of struct socket.
189  */
190 struct mtx accept_mtx;
191 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
192 
193 /*
194  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
195  * so_gencnt field.
196  */
197 static struct mtx so_global_mtx;
198 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
199 
200 /*
201  * General IPC sysctl name space, used by sockets and a variety of other IPC
202  * types.
203  */
204 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
205 
206 /*
207  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
208  * of the change so that they can update their dependent limits as required.
209  */
210 static int
211 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
212 {
213 	int error, newmaxsockets;
214 
215 	newmaxsockets = maxsockets;
216 	error = sysctl_handle_int(oidp, &newmaxsockets, sizeof(int), req);
217 	if (error == 0 && req->newptr) {
218 		if (newmaxsockets > maxsockets) {
219 			maxsockets = newmaxsockets;
220 			if (maxsockets > ((maxfiles / 4) * 3)) {
221 				maxfiles = (maxsockets * 5) / 4;
222 				maxfilesperproc = (maxfiles * 9) / 10;
223 			}
224 			EVENTHANDLER_INVOKE(maxsockets_change);
225 		} else
226 			error = EINVAL;
227 	}
228 	return (error);
229 }
230 
231 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
232     &maxsockets, 0, sysctl_maxsockets, "IU",
233     "Maximum number of sockets avaliable");
234 
235 /*
236  * Initialise maxsockets.
237  */
238 static void init_maxsockets(void *ignored)
239 {
240 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
241 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
242 }
243 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
244 
245 /*
246  * Socket operation routines.  These routines are called by the routines in
247  * sys_socket.c or from a system process, and implement the semantics of
248  * socket operations by switching out to the protocol specific routines.
249  */
250 
251 /*
252  * Get a socket structure from our zone, and initialize it.  Note that it
253  * would probably be better to allocate socket and PCB at the same time, but
254  * I'm not convinced that all the protocols can be easily modified to do
255  * this.
256  *
257  * soalloc() returns a socket with a ref count of 0.
258  */
259 static struct socket *
260 soalloc(int mflags)
261 {
262 	struct socket *so;
263 
264 	so = uma_zalloc(socket_zone, mflags | M_ZERO);
265 	if (so == NULL)
266 		return (NULL);
267 #ifdef MAC
268 	if (mac_init_socket(so, mflags) != 0) {
269 		uma_zfree(socket_zone, so);
270 		return (NULL);
271 	}
272 #endif
273 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
274 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
275 	TAILQ_INIT(&so->so_aiojobq);
276 	mtx_lock(&so_global_mtx);
277 	so->so_gencnt = ++so_gencnt;
278 	++numopensockets;
279 	mtx_unlock(&so_global_mtx);
280 	return (so);
281 }
282 
283 /*
284  * Free the storage associated with a socket at the socket layer, tear down
285  * locks, labels, etc.  All protocol state is assumed already to have been
286  * torn down (and possibly never set up) by the caller.
287  */
288 static void
289 sodealloc(struct socket *so)
290 {
291 
292 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
293 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
294 
295 	mtx_lock(&so_global_mtx);
296 	so->so_gencnt = ++so_gencnt;
297 	--numopensockets;	/* Could be below, but faster here. */
298 	mtx_unlock(&so_global_mtx);
299 	if (so->so_rcv.sb_hiwat)
300 		(void)chgsbsize(so->so_cred->cr_uidinfo,
301 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
302 	if (so->so_snd.sb_hiwat)
303 		(void)chgsbsize(so->so_cred->cr_uidinfo,
304 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
305 #ifdef INET
306 	/* remove acccept filter if one is present. */
307 	if (so->so_accf != NULL)
308 		do_setopt_accept_filter(so, NULL);
309 #endif
310 #ifdef MAC
311 	mac_destroy_socket(so);
312 #endif
313 	crfree(so->so_cred);
314 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
315 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
316 	uma_zfree(socket_zone, so);
317 }
318 
319 /*
320  * socreate returns a socket with a ref count of 1.  The socket should be
321  * closed with soclose().
322  */
323 int
324 socreate(dom, aso, type, proto, cred, td)
325 	int dom;
326 	struct socket **aso;
327 	int type;
328 	int proto;
329 	struct ucred *cred;
330 	struct thread *td;
331 {
332 	struct protosw *prp;
333 	struct socket *so;
334 	int error;
335 
336 	if (proto)
337 		prp = pffindproto(dom, proto, type);
338 	else
339 		prp = pffindtype(dom, type);
340 
341 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
342 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
343 		return (EPROTONOSUPPORT);
344 
345 	if (jailed(cred) && jail_socket_unixiproute_only &&
346 	    prp->pr_domain->dom_family != PF_LOCAL &&
347 	    prp->pr_domain->dom_family != PF_INET &&
348 	    prp->pr_domain->dom_family != PF_ROUTE) {
349 		return (EPROTONOSUPPORT);
350 	}
351 
352 	if (prp->pr_type != type)
353 		return (EPROTOTYPE);
354 	so = soalloc(M_WAITOK);
355 	if (so == NULL)
356 		return (ENOBUFS);
357 
358 	TAILQ_INIT(&so->so_incomp);
359 	TAILQ_INIT(&so->so_comp);
360 	so->so_type = type;
361 	so->so_cred = crhold(cred);
362 	so->so_proto = prp;
363 #ifdef MAC
364 	mac_create_socket(cred, so);
365 #endif
366 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
367 	    NULL, NULL, NULL);
368 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
369 	    NULL, NULL, NULL);
370 	so->so_count = 1;
371 	/*
372 	 * Auto-sizing of socket buffers is managed by the protocols and
373 	 * the appropriate flags must be set in the pru_attach function.
374 	 */
375 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
376 	if (error) {
377 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
378 		    so->so_count));
379 		so->so_count = 0;
380 		sodealloc(so);
381 		return (error);
382 	}
383 	*aso = so;
384 	return (0);
385 }
386 
387 #ifdef REGRESSION
388 static int regression_sonewconn_earlytest = 1;
389 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
390     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
391 #endif
392 
393 /*
394  * When an attempt at a new connection is noted on a socket which accepts
395  * connections, sonewconn is called.  If the connection is possible (subject
396  * to space constraints, etc.) then we allocate a new structure, propoerly
397  * linked into the data structure of the original socket, and return this.
398  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
399  *
400  * Note: the ref count on the socket is 0 on return.
401  */
402 struct socket *
403 sonewconn(head, connstatus)
404 	register struct socket *head;
405 	int connstatus;
406 {
407 	register struct socket *so;
408 	int over;
409 
410 	ACCEPT_LOCK();
411 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
412 	ACCEPT_UNLOCK();
413 #ifdef REGRESSION
414 	if (regression_sonewconn_earlytest && over)
415 #else
416 	if (over)
417 #endif
418 		return (NULL);
419 	so = soalloc(M_NOWAIT);
420 	if (so == NULL)
421 		return (NULL);
422 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
423 		connstatus = 0;
424 	so->so_head = head;
425 	so->so_type = head->so_type;
426 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
427 	so->so_linger = head->so_linger;
428 	so->so_state = head->so_state | SS_NOFDREF;
429 	so->so_proto = head->so_proto;
430 	so->so_cred = crhold(head->so_cred);
431 #ifdef MAC
432 	SOCK_LOCK(head);
433 	mac_create_socket_from_socket(head, so);
434 	SOCK_UNLOCK(head);
435 #endif
436 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
437 	    NULL, NULL, NULL);
438 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
439 	    NULL, NULL, NULL);
440 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
441 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
442 		sodealloc(so);
443 		return (NULL);
444 	}
445 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
446 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
447 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
448 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
449 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
450 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
451 	so->so_state |= connstatus;
452 	ACCEPT_LOCK();
453 	if (connstatus) {
454 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
455 		so->so_qstate |= SQ_COMP;
456 		head->so_qlen++;
457 	} else {
458 		/*
459 		 * Keep removing sockets from the head until there's room for
460 		 * us to insert on the tail.  In pre-locking revisions, this
461 		 * was a simple if(), but as we could be racing with other
462 		 * threads and soabort() requires dropping locks, we must
463 		 * loop waiting for the condition to be true.
464 		 */
465 		while (head->so_incqlen > head->so_qlimit) {
466 			struct socket *sp;
467 			sp = TAILQ_FIRST(&head->so_incomp);
468 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
469 			head->so_incqlen--;
470 			sp->so_qstate &= ~SQ_INCOMP;
471 			sp->so_head = NULL;
472 			ACCEPT_UNLOCK();
473 			soabort(sp);
474 			ACCEPT_LOCK();
475 		}
476 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
477 		so->so_qstate |= SQ_INCOMP;
478 		head->so_incqlen++;
479 	}
480 	ACCEPT_UNLOCK();
481 	if (connstatus) {
482 		sorwakeup(head);
483 		wakeup_one(&head->so_timeo);
484 	}
485 	return (so);
486 }
487 
488 int
489 sobind(so, nam, td)
490 	struct socket *so;
491 	struct sockaddr *nam;
492 	struct thread *td;
493 {
494 
495 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
496 }
497 
498 /*
499  * solisten() transitions a socket from a non-listening state to a listening
500  * state, but can also be used to update the listen queue depth on an
501  * existing listen socket.  The protocol will call back into the sockets
502  * layer using solisten_proto_check() and solisten_proto() to check and set
503  * socket-layer listen state.  Call backs are used so that the protocol can
504  * acquire both protocol and socket layer locks in whatever order is required
505  * by the protocol.
506  *
507  * Protocol implementors are advised to hold the socket lock across the
508  * socket-layer test and set to avoid races at the socket layer.
509  */
510 int
511 solisten(so, backlog, td)
512 	struct socket *so;
513 	int backlog;
514 	struct thread *td;
515 {
516 
517 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
518 }
519 
520 int
521 solisten_proto_check(so)
522 	struct socket *so;
523 {
524 
525 	SOCK_LOCK_ASSERT(so);
526 
527 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
528 	    SS_ISDISCONNECTING))
529 		return (EINVAL);
530 	return (0);
531 }
532 
533 void
534 solisten_proto(so, backlog)
535 	struct socket *so;
536 	int backlog;
537 {
538 
539 	SOCK_LOCK_ASSERT(so);
540 
541 	if (backlog < 0 || backlog > somaxconn)
542 		backlog = somaxconn;
543 	so->so_qlimit = backlog;
544 	so->so_options |= SO_ACCEPTCONN;
545 }
546 
547 /*
548  * Attempt to free a socket.  This should really be sotryfree().
549  *
550  * sofree() will succeed if:
551  *
552  * - There are no outstanding file descriptor references or related consumers
553  *   (so_count == 0).
554  *
555  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
556  *
557  * - The protocol does not have an outstanding strong reference on the socket
558  *   (SS_PROTOREF).
559  *
560  * - The socket is not in a completed connection queue, so a process has been
561  *   notified that it is present.  If it is removed, the user process may
562  *   block in accept() despite select() saying the socket was ready.
563  *
564  * Otherwise, it will quietly abort so that a future call to sofree(), when
565  * conditions are right, can succeed.
566  */
567 void
568 sofree(so)
569 	struct socket *so;
570 {
571 	struct protosw *pr = so->so_proto;
572 	struct socket *head;
573 
574 	ACCEPT_LOCK_ASSERT();
575 	SOCK_LOCK_ASSERT(so);
576 
577 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
578 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
579 		SOCK_UNLOCK(so);
580 		ACCEPT_UNLOCK();
581 		return;
582 	}
583 
584 	head = so->so_head;
585 	if (head != NULL) {
586 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
587 		    (so->so_qstate & SQ_INCOMP) != 0,
588 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
589 		    "SQ_INCOMP"));
590 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
591 		    (so->so_qstate & SQ_INCOMP) == 0,
592 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
593 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
594 		head->so_incqlen--;
595 		so->so_qstate &= ~SQ_INCOMP;
596 		so->so_head = NULL;
597 	}
598 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
599 	    (so->so_qstate & SQ_INCOMP) == 0,
600 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
601 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
602 	if (so->so_options & SO_ACCEPTCONN) {
603 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
604 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
605 	}
606 	SOCK_UNLOCK(so);
607 	ACCEPT_UNLOCK();
608 
609 	/*
610 	 * From this point on, we assume that no other references to this
611 	 * socket exist anywhere else in the stack.  Therefore, no locks need
612 	 * to be acquired or held.
613 	 *
614 	 * We used to do a lot of socket buffer and socket locking here, as
615 	 * well as invoke sorflush() and perform wakeups.  The direct call to
616 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
617 	 * necessary from sorflush().
618 	 *
619 	 * Notice that the socket buffer and kqueue state are torn down
620 	 * before calling pru_detach.  This means that protocols shold not
621 	 * assume they can perform socket wakeups, etc, in their detach
622 	 * code.
623 	 */
624 	KASSERT((so->so_snd.sb_flags & SB_LOCK) == 0, ("sofree: snd sblock"));
625 	KASSERT((so->so_rcv.sb_flags & SB_LOCK) == 0, ("sofree: rcv sblock"));
626 	sbdestroy(&so->so_snd, so);
627 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
628 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
629 	sbdestroy(&so->so_rcv, so);
630 	if (pr->pr_usrreqs->pru_detach != NULL)
631 		(*pr->pr_usrreqs->pru_detach)(so);
632 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
633 	knlist_destroy(&so->so_snd.sb_sel.si_note);
634 	sodealloc(so);
635 }
636 
637 /*
638  * Close a socket on last file table reference removal.  Initiate disconnect
639  * if connected.  Free socket when disconnect complete.
640  *
641  * This function will sorele() the socket.  Note that soclose() may be called
642  * prior to the ref count reaching zero.  The actual socket structure will
643  * not be freed until the ref count reaches zero.
644  */
645 int
646 soclose(so)
647 	struct socket *so;
648 {
649 	int error = 0;
650 
651 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
652 
653 	funsetown(&so->so_sigio);
654 	if (so->so_state & SS_ISCONNECTED) {
655 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
656 			error = sodisconnect(so);
657 			if (error)
658 				goto drop;
659 		}
660 		if (so->so_options & SO_LINGER) {
661 			if ((so->so_state & SS_ISDISCONNECTING) &&
662 			    (so->so_state & SS_NBIO))
663 				goto drop;
664 			while (so->so_state & SS_ISCONNECTED) {
665 				error = tsleep(&so->so_timeo,
666 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
667 				if (error)
668 					break;
669 			}
670 		}
671 	}
672 
673 drop:
674 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
675 		(*so->so_proto->pr_usrreqs->pru_close)(so);
676 	if (so->so_options & SO_ACCEPTCONN) {
677 		struct socket *sp;
678 		ACCEPT_LOCK();
679 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
680 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
681 			so->so_incqlen--;
682 			sp->so_qstate &= ~SQ_INCOMP;
683 			sp->so_head = NULL;
684 			ACCEPT_UNLOCK();
685 			soabort(sp);
686 			ACCEPT_LOCK();
687 		}
688 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
689 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
690 			so->so_qlen--;
691 			sp->so_qstate &= ~SQ_COMP;
692 			sp->so_head = NULL;
693 			ACCEPT_UNLOCK();
694 			soabort(sp);
695 			ACCEPT_LOCK();
696 		}
697 		ACCEPT_UNLOCK();
698 	}
699 	ACCEPT_LOCK();
700 	SOCK_LOCK(so);
701 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
702 	so->so_state |= SS_NOFDREF;
703 	sorele(so);
704 	return (error);
705 }
706 
707 /*
708  * soabort() is used to abruptly tear down a connection, such as when a
709  * resource limit is reached (listen queue depth exceeded), or if a listen
710  * socket is closed while there are sockets waiting to be accepted.
711  *
712  * This interface is tricky, because it is called on an unreferenced socket,
713  * and must be called only by a thread that has actually removed the socket
714  * from the listen queue it was on, or races with other threads are risked.
715  *
716  * This interface will call into the protocol code, so must not be called
717  * with any socket locks held.  Protocols do call it while holding their own
718  * recursible protocol mutexes, but this is something that should be subject
719  * to review in the future.
720  */
721 void
722 soabort(so)
723 	struct socket *so;
724 {
725 
726 	/*
727 	 * In as much as is possible, assert that no references to this
728 	 * socket are held.  This is not quite the same as asserting that the
729 	 * current thread is responsible for arranging for no references, but
730 	 * is as close as we can get for now.
731 	 */
732 	KASSERT(so->so_count == 0, ("soabort: so_count"));
733 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
734 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
735 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
736 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
737 
738 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
739 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
740 	ACCEPT_LOCK();
741 	SOCK_LOCK(so);
742 	sofree(so);
743 }
744 
745 int
746 soaccept(so, nam)
747 	struct socket *so;
748 	struct sockaddr **nam;
749 {
750 	int error;
751 
752 	SOCK_LOCK(so);
753 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
754 	so->so_state &= ~SS_NOFDREF;
755 	SOCK_UNLOCK(so);
756 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
757 	return (error);
758 }
759 
760 int
761 soconnect(so, nam, td)
762 	struct socket *so;
763 	struct sockaddr *nam;
764 	struct thread *td;
765 {
766 	int error;
767 
768 	if (so->so_options & SO_ACCEPTCONN)
769 		return (EOPNOTSUPP);
770 	/*
771 	 * If protocol is connection-based, can only connect once.
772 	 * Otherwise, if connected, try to disconnect first.  This allows
773 	 * user to disconnect by connecting to, e.g., a null address.
774 	 */
775 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
776 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
777 	    (error = sodisconnect(so)))) {
778 		error = EISCONN;
779 	} else {
780 		/*
781 		 * Prevent accumulated error from previous connection from
782 		 * biting us.
783 		 */
784 		so->so_error = 0;
785 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
786 	}
787 
788 	return (error);
789 }
790 
791 int
792 soconnect2(so1, so2)
793 	struct socket *so1;
794 	struct socket *so2;
795 {
796 
797 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
798 }
799 
800 int
801 sodisconnect(so)
802 	struct socket *so;
803 {
804 	int error;
805 
806 	if ((so->so_state & SS_ISCONNECTED) == 0)
807 		return (ENOTCONN);
808 	if (so->so_state & SS_ISDISCONNECTING)
809 		return (EALREADY);
810 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
811 	return (error);
812 }
813 
814 #ifdef ZERO_COPY_SOCKETS
815 struct so_zerocopy_stats{
816 	int size_ok;
817 	int align_ok;
818 	int found_ifp;
819 };
820 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
821 #include <netinet/in.h>
822 #include <net/route.h>
823 #include <netinet/in_pcb.h>
824 #include <vm/vm.h>
825 #include <vm/vm_page.h>
826 #include <vm/vm_object.h>
827 
828 /*
829  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
830  * sosend_dgram() and sosend_generic() use m_uiotombuf().
831  *
832  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
833  * all of the data referenced by the uio.  If desired, it uses zero-copy.
834  * *space will be updated to reflect data copied in.
835  *
836  * NB: If atomic I/O is requested, the caller must already have checked that
837  * space can hold resid bytes.
838  *
839  * NB: In the event of an error, the caller may need to free the partial
840  * chain pointed to by *mpp.  The contents of both *uio and *space may be
841  * modified even in the case of an error.
842  */
843 static int
844 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
845     int flags)
846 {
847 	struct mbuf *m, **mp, *top;
848 	long len, resid;
849 	int error;
850 #ifdef ZERO_COPY_SOCKETS
851 	int cow_send;
852 #endif
853 
854 	*retmp = top = NULL;
855 	mp = &top;
856 	len = 0;
857 	resid = uio->uio_resid;
858 	error = 0;
859 	do {
860 #ifdef ZERO_COPY_SOCKETS
861 		cow_send = 0;
862 #endif /* ZERO_COPY_SOCKETS */
863 		if (resid >= MINCLSIZE) {
864 #ifdef ZERO_COPY_SOCKETS
865 			if (top == NULL) {
866 				MGETHDR(m, M_TRYWAIT, MT_DATA);
867 				if (m == NULL) {
868 					error = ENOBUFS;
869 					goto out;
870 				}
871 				m->m_pkthdr.len = 0;
872 				m->m_pkthdr.rcvif = NULL;
873 			} else {
874 				MGET(m, M_TRYWAIT, MT_DATA);
875 				if (m == NULL) {
876 					error = ENOBUFS;
877 					goto out;
878 				}
879 			}
880 			if (so_zero_copy_send &&
881 			    resid>=PAGE_SIZE &&
882 			    *space>=PAGE_SIZE &&
883 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
884 				so_zerocp_stats.size_ok++;
885 				so_zerocp_stats.align_ok++;
886 				cow_send = socow_setup(m, uio);
887 				len = cow_send;
888 			}
889 			if (!cow_send) {
890 				MCLGET(m, M_TRYWAIT);
891 				if ((m->m_flags & M_EXT) == 0) {
892 					m_free(m);
893 					m = NULL;
894 				} else {
895 					len = min(min(MCLBYTES, resid),
896 					    *space);
897 				}
898 			}
899 #else /* ZERO_COPY_SOCKETS */
900 			if (top == NULL) {
901 				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
902 				m->m_pkthdr.len = 0;
903 				m->m_pkthdr.rcvif = NULL;
904 			} else
905 				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
906 			len = min(min(MCLBYTES, resid), *space);
907 #endif /* ZERO_COPY_SOCKETS */
908 		} else {
909 			if (top == NULL) {
910 				m = m_gethdr(M_TRYWAIT, MT_DATA);
911 				m->m_pkthdr.len = 0;
912 				m->m_pkthdr.rcvif = NULL;
913 
914 				len = min(min(MHLEN, resid), *space);
915 				/*
916 				 * For datagram protocols, leave room
917 				 * for protocol headers in first mbuf.
918 				 */
919 				if (atomic && m && len < MHLEN)
920 					MH_ALIGN(m, len);
921 			} else {
922 				m = m_get(M_TRYWAIT, MT_DATA);
923 				len = min(min(MLEN, resid), *space);
924 			}
925 		}
926 		if (m == NULL) {
927 			error = ENOBUFS;
928 			goto out;
929 		}
930 
931 		*space -= len;
932 #ifdef ZERO_COPY_SOCKETS
933 		if (cow_send)
934 			error = 0;
935 		else
936 #endif /* ZERO_COPY_SOCKETS */
937 		error = uiomove(mtod(m, void *), (int)len, uio);
938 		resid = uio->uio_resid;
939 		m->m_len = len;
940 		*mp = m;
941 		top->m_pkthdr.len += len;
942 		if (error)
943 			goto out;
944 		mp = &m->m_next;
945 		if (resid <= 0) {
946 			if (flags & MSG_EOR)
947 				top->m_flags |= M_EOR;
948 			break;
949 		}
950 	} while (*space > 0 && atomic);
951 out:
952 	*retmp = top;
953 	return (error);
954 }
955 #endif /*ZERO_COPY_SOCKETS*/
956 
957 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
958 
959 int
960 sosend_dgram(so, addr, uio, top, control, flags, td)
961 	struct socket *so;
962 	struct sockaddr *addr;
963 	struct uio *uio;
964 	struct mbuf *top;
965 	struct mbuf *control;
966 	int flags;
967 	struct thread *td;
968 {
969 	long space, resid;
970 	int clen = 0, error, dontroute;
971 #ifdef ZERO_COPY_SOCKETS
972 	int atomic = sosendallatonce(so) || top;
973 #endif
974 
975 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
976 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
977 	    ("sodgram_send: !PR_ATOMIC"));
978 
979 	if (uio != NULL)
980 		resid = uio->uio_resid;
981 	else
982 		resid = top->m_pkthdr.len;
983 	/*
984 	 * In theory resid should be unsigned.  However, space must be
985 	 * signed, as it might be less than 0 if we over-committed, and we
986 	 * must use a signed comparison of space and resid.  On the other
987 	 * hand, a negative resid causes us to loop sending 0-length
988 	 * segments to the protocol.
989 	 *
990 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
991 	 * type sockets since that's an error.
992 	 */
993 	if (resid < 0) {
994 		error = EINVAL;
995 		goto out;
996 	}
997 
998 	dontroute =
999 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1000 	if (td != NULL)
1001 		td->td_proc->p_stats->p_ru.ru_msgsnd++;
1002 	if (control != NULL)
1003 		clen = control->m_len;
1004 
1005 	SOCKBUF_LOCK(&so->so_snd);
1006 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1007 		SOCKBUF_UNLOCK(&so->so_snd);
1008 		error = EPIPE;
1009 		goto out;
1010 	}
1011 	if (so->so_error) {
1012 		error = so->so_error;
1013 		so->so_error = 0;
1014 		SOCKBUF_UNLOCK(&so->so_snd);
1015 		goto out;
1016 	}
1017 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1018 		/*
1019 		 * `sendto' and `sendmsg' is allowed on a connection-based
1020 		 * socket if it supports implied connect.  Return ENOTCONN if
1021 		 * not connected and no address is supplied.
1022 		 */
1023 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1024 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1025 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1026 			    !(resid == 0 && clen != 0)) {
1027 				SOCKBUF_UNLOCK(&so->so_snd);
1028 				error = ENOTCONN;
1029 				goto out;
1030 			}
1031 		} else if (addr == NULL) {
1032 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1033 				error = ENOTCONN;
1034 			else
1035 				error = EDESTADDRREQ;
1036 			SOCKBUF_UNLOCK(&so->so_snd);
1037 			goto out;
1038 		}
1039 	}
1040 
1041 	/*
1042 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1043 	 * problem and need fixing.
1044 	 */
1045 	space = sbspace(&so->so_snd);
1046 	if (flags & MSG_OOB)
1047 		space += 1024;
1048 	space -= clen;
1049 	SOCKBUF_UNLOCK(&so->so_snd);
1050 	if (resid > space) {
1051 		error = EMSGSIZE;
1052 		goto out;
1053 	}
1054 	if (uio == NULL) {
1055 		resid = 0;
1056 		if (flags & MSG_EOR)
1057 			top->m_flags |= M_EOR;
1058 	} else {
1059 #ifdef ZERO_COPY_SOCKETS
1060 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1061 		if (error)
1062 			goto out;
1063 #else
1064 		/*
1065 		 * Copy the data from userland into a mbuf chain.
1066 		 * If no data is to be copied in, a single empty mbuf
1067 		 * is returned.
1068 		 */
1069 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1070 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1071 		if (top == NULL) {
1072 			error = EFAULT;	/* only possible error */
1073 			goto out;
1074 		}
1075 		space -= resid - uio->uio_resid;
1076 #endif
1077 		resid = uio->uio_resid;
1078 	}
1079 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1080 	/*
1081 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1082 	 * than with.
1083 	 */
1084 	if (dontroute) {
1085 		SOCK_LOCK(so);
1086 		so->so_options |= SO_DONTROUTE;
1087 		SOCK_UNLOCK(so);
1088 	}
1089 	/*
1090 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1091 	 * of date.  We could have recieved a reset packet in an interrupt or
1092 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1093 	 * probably recheck again inside the locking protection here, but
1094 	 * there are probably other places that this also happens.  We must
1095 	 * rethink this.
1096 	 */
1097 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1098 	    (flags & MSG_OOB) ? PRUS_OOB :
1099 	/*
1100 	 * If the user set MSG_EOF, the protocol understands this flag and
1101 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1102 	 */
1103 	    ((flags & MSG_EOF) &&
1104 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1105 	     (resid <= 0)) ?
1106 		PRUS_EOF :
1107 		/* If there is more to send set PRUS_MORETOCOME */
1108 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1109 		top, addr, control, td);
1110 	if (dontroute) {
1111 		SOCK_LOCK(so);
1112 		so->so_options &= ~SO_DONTROUTE;
1113 		SOCK_UNLOCK(so);
1114 	}
1115 	clen = 0;
1116 	control = NULL;
1117 	top = NULL;
1118 out:
1119 	if (top != NULL)
1120 		m_freem(top);
1121 	if (control != NULL)
1122 		m_freem(control);
1123 	return (error);
1124 }
1125 
1126 /*
1127  * Send on a socket.  If send must go all at once and message is larger than
1128  * send buffering, then hard error.  Lock against other senders.  If must go
1129  * all at once and not enough room now, then inform user that this would
1130  * block and do nothing.  Otherwise, if nonblocking, send as much as
1131  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1132  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1133  * in mbuf chain must be small enough to send all at once.
1134  *
1135  * Returns nonzero on error, timeout or signal; callers must check for short
1136  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1137  * on return.
1138  */
1139 #define	snderr(errno)	{ error = (errno); goto release; }
1140 int
1141 sosend_generic(so, addr, uio, top, control, flags, td)
1142 	struct socket *so;
1143 	struct sockaddr *addr;
1144 	struct uio *uio;
1145 	struct mbuf *top;
1146 	struct mbuf *control;
1147 	int flags;
1148 	struct thread *td;
1149 {
1150 	long space, resid;
1151 	int clen = 0, error, dontroute;
1152 	int atomic = sosendallatonce(so) || top;
1153 
1154 	if (uio != NULL)
1155 		resid = uio->uio_resid;
1156 	else
1157 		resid = top->m_pkthdr.len;
1158 	/*
1159 	 * In theory resid should be unsigned.  However, space must be
1160 	 * signed, as it might be less than 0 if we over-committed, and we
1161 	 * must use a signed comparison of space and resid.  On the other
1162 	 * hand, a negative resid causes us to loop sending 0-length
1163 	 * segments to the protocol.
1164 	 *
1165 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1166 	 * type sockets since that's an error.
1167 	 */
1168 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1169 		error = EINVAL;
1170 		goto out;
1171 	}
1172 
1173 	dontroute =
1174 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1175 	    (so->so_proto->pr_flags & PR_ATOMIC);
1176 	if (td != NULL)
1177 		td->td_proc->p_stats->p_ru.ru_msgsnd++;
1178 	if (control != NULL)
1179 		clen = control->m_len;
1180 
1181 	SOCKBUF_LOCK(&so->so_snd);
1182 restart:
1183 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1184 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1185 	if (error)
1186 		goto out_locked;
1187 	do {
1188 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
1189 		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
1190 			snderr(EPIPE);
1191 		if (so->so_error) {
1192 			error = so->so_error;
1193 			so->so_error = 0;
1194 			goto release;
1195 		}
1196 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1197 			/*
1198 			 * `sendto' and `sendmsg' is allowed on a connection-
1199 			 * based socket if it supports implied connect.
1200 			 * Return ENOTCONN if not connected and no address is
1201 			 * supplied.
1202 			 */
1203 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1204 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1205 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1206 				    !(resid == 0 && clen != 0))
1207 					snderr(ENOTCONN);
1208 			} else if (addr == NULL)
1209 			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
1210 				   ENOTCONN : EDESTADDRREQ);
1211 		}
1212 		space = sbspace(&so->so_snd);
1213 		if (flags & MSG_OOB)
1214 			space += 1024;
1215 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1216 		    clen > so->so_snd.sb_hiwat)
1217 			snderr(EMSGSIZE);
1218 		if (space < resid + clen &&
1219 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1220 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
1221 				snderr(EWOULDBLOCK);
1222 			sbunlock(&so->so_snd);
1223 			error = sbwait(&so->so_snd);
1224 			if (error)
1225 				goto out_locked;
1226 			goto restart;
1227 		}
1228 		SOCKBUF_UNLOCK(&so->so_snd);
1229 		space -= clen;
1230 		do {
1231 			if (uio == NULL) {
1232 				resid = 0;
1233 				if (flags & MSG_EOR)
1234 					top->m_flags |= M_EOR;
1235 			} else {
1236 #ifdef ZERO_COPY_SOCKETS
1237 				error = sosend_copyin(uio, &top, atomic,
1238 				    &space, flags);
1239 				if (error != 0) {
1240 					SOCKBUF_LOCK(&so->so_snd);
1241 					goto release;
1242 				}
1243 #else
1244 				/*
1245 				 * Copy the data from userland into a mbuf
1246 				 * chain.  If no data is to be copied in,
1247 				 * a single empty mbuf is returned.
1248 				 */
1249 				top = m_uiotombuf(uio, M_WAITOK, space,
1250 				    (atomic ? max_hdr : 0),
1251 				    (atomic ? M_PKTHDR : 0) |
1252 				    ((flags & MSG_EOR) ? M_EOR : 0));
1253 				if (top == NULL) {
1254 					SOCKBUF_LOCK(&so->so_snd);
1255 					error = EFAULT; /* only possible error */
1256 					goto release;
1257 				}
1258 				space -= resid - uio->uio_resid;
1259 #endif
1260 				resid = uio->uio_resid;
1261 			}
1262 			if (dontroute) {
1263 				SOCK_LOCK(so);
1264 				so->so_options |= SO_DONTROUTE;
1265 				SOCK_UNLOCK(so);
1266 			}
1267 			/*
1268 			 * XXX all the SBS_CANTSENDMORE checks previously
1269 			 * done could be out of date.  We could have recieved
1270 			 * a reset packet in an interrupt or maybe we slept
1271 			 * while doing page faults in uiomove() etc.  We
1272 			 * could probably recheck again inside the locking
1273 			 * protection here, but there are probably other
1274 			 * places that this also happens.  We must rethink
1275 			 * this.
1276 			 */
1277 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1278 			    (flags & MSG_OOB) ? PRUS_OOB :
1279 			/*
1280 			 * If the user set MSG_EOF, the protocol understands
1281 			 * this flag and nothing left to send then use
1282 			 * PRU_SEND_EOF instead of PRU_SEND.
1283 			 */
1284 			    ((flags & MSG_EOF) &&
1285 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1286 			     (resid <= 0)) ?
1287 				PRUS_EOF :
1288 			/* If there is more to send set PRUS_MORETOCOME. */
1289 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1290 			    top, addr, control, td);
1291 			if (dontroute) {
1292 				SOCK_LOCK(so);
1293 				so->so_options &= ~SO_DONTROUTE;
1294 				SOCK_UNLOCK(so);
1295 			}
1296 			clen = 0;
1297 			control = NULL;
1298 			top = NULL;
1299 			if (error) {
1300 				SOCKBUF_LOCK(&so->so_snd);
1301 				goto release;
1302 			}
1303 		} while (resid && space > 0);
1304 		SOCKBUF_LOCK(&so->so_snd);
1305 	} while (resid);
1306 
1307 release:
1308 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1309 	sbunlock(&so->so_snd);
1310 out_locked:
1311 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1312 	SOCKBUF_UNLOCK(&so->so_snd);
1313 out:
1314 	if (top != NULL)
1315 		m_freem(top);
1316 	if (control != NULL)
1317 		m_freem(control);
1318 	return (error);
1319 }
1320 #undef snderr
1321 
1322 int
1323 sosend(so, addr, uio, top, control, flags, td)
1324 	struct socket *so;
1325 	struct sockaddr *addr;
1326 	struct uio *uio;
1327 	struct mbuf *top;
1328 	struct mbuf *control;
1329 	int flags;
1330 	struct thread *td;
1331 {
1332 
1333 	/* XXXRW: Temporary debugging. */
1334 	KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend,
1335 	    ("sosend: protocol calls sosend"));
1336 
1337 	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1338 	    control, flags, td));
1339 }
1340 
1341 /*
1342  * The part of soreceive() that implements reading non-inline out-of-band
1343  * data from a socket.  For more complete comments, see soreceive(), from
1344  * which this code originated.
1345  *
1346  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1347  * unable to return an mbuf chain to the caller.
1348  */
1349 static int
1350 soreceive_rcvoob(so, uio, flags)
1351 	struct socket *so;
1352 	struct uio *uio;
1353 	int flags;
1354 {
1355 	struct protosw *pr = so->so_proto;
1356 	struct mbuf *m;
1357 	int error;
1358 
1359 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1360 
1361 	m = m_get(M_TRYWAIT, MT_DATA);
1362 	if (m == NULL)
1363 		return (ENOBUFS);
1364 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1365 	if (error)
1366 		goto bad;
1367 	do {
1368 #ifdef ZERO_COPY_SOCKETS
1369 		if (so_zero_copy_receive) {
1370 			int disposable;
1371 
1372 			if ((m->m_flags & M_EXT)
1373 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1374 				disposable = 1;
1375 			else
1376 				disposable = 0;
1377 
1378 			error = uiomoveco(mtod(m, void *),
1379 					  min(uio->uio_resid, m->m_len),
1380 					  uio, disposable);
1381 		} else
1382 #endif /* ZERO_COPY_SOCKETS */
1383 		error = uiomove(mtod(m, void *),
1384 		    (int) min(uio->uio_resid, m->m_len), uio);
1385 		m = m_free(m);
1386 	} while (uio->uio_resid && error == 0 && m);
1387 bad:
1388 	if (m != NULL)
1389 		m_freem(m);
1390 	return (error);
1391 }
1392 
1393 /*
1394  * Following replacement or removal of the first mbuf on the first mbuf chain
1395  * of a socket buffer, push necessary state changes back into the socket
1396  * buffer so that other consumers see the values consistently.  'nextrecord'
1397  * is the callers locally stored value of the original value of
1398  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1399  * NOTE: 'nextrecord' may be NULL.
1400  */
1401 static __inline void
1402 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1403 {
1404 
1405 	SOCKBUF_LOCK_ASSERT(sb);
1406 	/*
1407 	 * First, update for the new value of nextrecord.  If necessary, make
1408 	 * it the first record.
1409 	 */
1410 	if (sb->sb_mb != NULL)
1411 		sb->sb_mb->m_nextpkt = nextrecord;
1412 	else
1413 		sb->sb_mb = nextrecord;
1414 
1415         /*
1416          * Now update any dependent socket buffer fields to reflect the new
1417          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1418 	 * addition of a second clause that takes care of the case where
1419 	 * sb_mb has been updated, but remains the last record.
1420          */
1421         if (sb->sb_mb == NULL) {
1422                 sb->sb_mbtail = NULL;
1423                 sb->sb_lastrecord = NULL;
1424         } else if (sb->sb_mb->m_nextpkt == NULL)
1425                 sb->sb_lastrecord = sb->sb_mb;
1426 }
1427 
1428 
1429 /*
1430  * Implement receive operations on a socket.  We depend on the way that
1431  * records are added to the sockbuf by sbappend.  In particular, each record
1432  * (mbufs linked through m_next) must begin with an address if the protocol
1433  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1434  * data, and then zero or more mbufs of data.  In order to allow parallelism
1435  * between network receive and copying to user space, as well as avoid
1436  * sleeping with a mutex held, we release the socket buffer mutex during the
1437  * user space copy.  Although the sockbuf is locked, new data may still be
1438  * appended, and thus we must maintain consistency of the sockbuf during that
1439  * time.
1440  *
1441  * The caller may receive the data as a single mbuf chain by supplying an
1442  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1443  * the count in uio_resid.
1444  */
1445 int
1446 soreceive_generic(so, psa, uio, mp0, controlp, flagsp)
1447 	struct socket *so;
1448 	struct sockaddr **psa;
1449 	struct uio *uio;
1450 	struct mbuf **mp0;
1451 	struct mbuf **controlp;
1452 	int *flagsp;
1453 {
1454 	struct mbuf *m, **mp;
1455 	int flags, len, error, offset;
1456 	struct protosw *pr = so->so_proto;
1457 	struct mbuf *nextrecord;
1458 	int moff, type = 0;
1459 	int orig_resid = uio->uio_resid;
1460 
1461 	mp = mp0;
1462 	if (psa != NULL)
1463 		*psa = NULL;
1464 	if (controlp != NULL)
1465 		*controlp = NULL;
1466 	if (flagsp != NULL)
1467 		flags = *flagsp &~ MSG_EOR;
1468 	else
1469 		flags = 0;
1470 	if (flags & MSG_OOB)
1471 		return (soreceive_rcvoob(so, uio, flags));
1472 	if (mp != NULL)
1473 		*mp = NULL;
1474 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1475 	    && uio->uio_resid)
1476 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1477 
1478 	SOCKBUF_LOCK(&so->so_rcv);
1479 restart:
1480 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1481 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1482 	if (error)
1483 		goto out;
1484 
1485 	m = so->so_rcv.sb_mb;
1486 	/*
1487 	 * If we have less data than requested, block awaiting more (subject
1488 	 * to any timeout) if:
1489 	 *   1. the current count is less than the low water mark, or
1490 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1491 	 *	receive operation at once if we block (resid <= hiwat).
1492 	 *   3. MSG_DONTWAIT is not set
1493 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1494 	 * we have to do the receive in sections, and thus risk returning a
1495 	 * short count if a timeout or signal occurs after we start.
1496 	 */
1497 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1498 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1499 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1500 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1501 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1502 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1503 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1504 		    m, so->so_rcv.sb_cc));
1505 		if (so->so_error) {
1506 			if (m != NULL)
1507 				goto dontblock;
1508 			error = so->so_error;
1509 			if ((flags & MSG_PEEK) == 0)
1510 				so->so_error = 0;
1511 			goto release;
1512 		}
1513 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1514 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1515 			if (m)
1516 				goto dontblock;
1517 			else
1518 				goto release;
1519 		}
1520 		for (; m != NULL; m = m->m_next)
1521 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1522 				m = so->so_rcv.sb_mb;
1523 				goto dontblock;
1524 			}
1525 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1526 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1527 			error = ENOTCONN;
1528 			goto release;
1529 		}
1530 		if (uio->uio_resid == 0)
1531 			goto release;
1532 		if ((so->so_state & SS_NBIO) ||
1533 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1534 			error = EWOULDBLOCK;
1535 			goto release;
1536 		}
1537 		SBLASTRECORDCHK(&so->so_rcv);
1538 		SBLASTMBUFCHK(&so->so_rcv);
1539 		sbunlock(&so->so_rcv);
1540 		error = sbwait(&so->so_rcv);
1541 		if (error)
1542 			goto out;
1543 		goto restart;
1544 	}
1545 dontblock:
1546 	/*
1547 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1548 	 * pointer to the next record in the socket buffer.  We must keep the
1549 	 * various socket buffer pointers and local stack versions of the
1550 	 * pointers in sync, pushing out modifications before dropping the
1551 	 * socket buffer mutex, and re-reading them when picking it up.
1552 	 *
1553 	 * Otherwise, we will race with the network stack appending new data
1554 	 * or records onto the socket buffer by using inconsistent/stale
1555 	 * versions of the field, possibly resulting in socket buffer
1556 	 * corruption.
1557 	 *
1558 	 * By holding the high-level sblock(), we prevent simultaneous
1559 	 * readers from pulling off the front of the socket buffer.
1560 	 */
1561 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1562 	if (uio->uio_td)
1563 		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1564 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1565 	SBLASTRECORDCHK(&so->so_rcv);
1566 	SBLASTMBUFCHK(&so->so_rcv);
1567 	nextrecord = m->m_nextpkt;
1568 	if (pr->pr_flags & PR_ADDR) {
1569 		KASSERT(m->m_type == MT_SONAME,
1570 		    ("m->m_type == %d", m->m_type));
1571 		orig_resid = 0;
1572 		if (psa != NULL)
1573 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1574 			    M_NOWAIT);
1575 		if (flags & MSG_PEEK) {
1576 			m = m->m_next;
1577 		} else {
1578 			sbfree(&so->so_rcv, m);
1579 			so->so_rcv.sb_mb = m_free(m);
1580 			m = so->so_rcv.sb_mb;
1581 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1582 		}
1583 	}
1584 
1585 	/*
1586 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1587 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1588 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1589 	 * perform externalization (or freeing if controlp == NULL).
1590 	 */
1591 	if (m != NULL && m->m_type == MT_CONTROL) {
1592 		struct mbuf *cm = NULL, *cmn;
1593 		struct mbuf **cme = &cm;
1594 
1595 		do {
1596 			if (flags & MSG_PEEK) {
1597 				if (controlp != NULL) {
1598 					*controlp = m_copy(m, 0, m->m_len);
1599 					controlp = &(*controlp)->m_next;
1600 				}
1601 				m = m->m_next;
1602 			} else {
1603 				sbfree(&so->so_rcv, m);
1604 				so->so_rcv.sb_mb = m->m_next;
1605 				m->m_next = NULL;
1606 				*cme = m;
1607 				cme = &(*cme)->m_next;
1608 				m = so->so_rcv.sb_mb;
1609 			}
1610 		} while (m != NULL && m->m_type == MT_CONTROL);
1611 		if ((flags & MSG_PEEK) == 0)
1612 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1613 		while (cm != NULL) {
1614 			cmn = cm->m_next;
1615 			cm->m_next = NULL;
1616 			if (pr->pr_domain->dom_externalize != NULL) {
1617 				SOCKBUF_UNLOCK(&so->so_rcv);
1618 				error = (*pr->pr_domain->dom_externalize)
1619 				    (cm, controlp);
1620 				SOCKBUF_LOCK(&so->so_rcv);
1621 			} else if (controlp != NULL)
1622 				*controlp = cm;
1623 			else
1624 				m_freem(cm);
1625 			if (controlp != NULL) {
1626 				orig_resid = 0;
1627 				while (*controlp != NULL)
1628 					controlp = &(*controlp)->m_next;
1629 			}
1630 			cm = cmn;
1631 		}
1632 		if (m != NULL)
1633 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1634 		else
1635 			nextrecord = so->so_rcv.sb_mb;
1636 		orig_resid = 0;
1637 	}
1638 	if (m != NULL) {
1639 		if ((flags & MSG_PEEK) == 0) {
1640 			KASSERT(m->m_nextpkt == nextrecord,
1641 			    ("soreceive: post-control, nextrecord !sync"));
1642 			if (nextrecord == NULL) {
1643 				KASSERT(so->so_rcv.sb_mb == m,
1644 				    ("soreceive: post-control, sb_mb!=m"));
1645 				KASSERT(so->so_rcv.sb_lastrecord == m,
1646 				    ("soreceive: post-control, lastrecord!=m"));
1647 			}
1648 		}
1649 		type = m->m_type;
1650 		if (type == MT_OOBDATA)
1651 			flags |= MSG_OOB;
1652 	} else {
1653 		if ((flags & MSG_PEEK) == 0) {
1654 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1655 			    ("soreceive: sb_mb != nextrecord"));
1656 			if (so->so_rcv.sb_mb == NULL) {
1657 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1658 				    ("soreceive: sb_lastercord != NULL"));
1659 			}
1660 		}
1661 	}
1662 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1663 	SBLASTRECORDCHK(&so->so_rcv);
1664 	SBLASTMBUFCHK(&so->so_rcv);
1665 
1666 	/*
1667 	 * Now continue to read any data mbufs off of the head of the socket
1668 	 * buffer until the read request is satisfied.  Note that 'type' is
1669 	 * used to store the type of any mbuf reads that have happened so far
1670 	 * such that soreceive() can stop reading if the type changes, which
1671 	 * causes soreceive() to return only one of regular data and inline
1672 	 * out-of-band data in a single socket receive operation.
1673 	 */
1674 	moff = 0;
1675 	offset = 0;
1676 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1677 		/*
1678 		 * If the type of mbuf has changed since the last mbuf
1679 		 * examined ('type'), end the receive operation.
1680 	 	 */
1681 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1682 		if (m->m_type == MT_OOBDATA) {
1683 			if (type != MT_OOBDATA)
1684 				break;
1685 		} else if (type == MT_OOBDATA)
1686 			break;
1687 		else
1688 		    KASSERT(m->m_type == MT_DATA,
1689 			("m->m_type == %d", m->m_type));
1690 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1691 		len = uio->uio_resid;
1692 		if (so->so_oobmark && len > so->so_oobmark - offset)
1693 			len = so->so_oobmark - offset;
1694 		if (len > m->m_len - moff)
1695 			len = m->m_len - moff;
1696 		/*
1697 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1698 		 * them out via the uio, then free.  Sockbuf must be
1699 		 * consistent here (points to current mbuf, it points to next
1700 		 * record) when we drop priority; we must note any additions
1701 		 * to the sockbuf when we block interrupts again.
1702 		 */
1703 		if (mp == NULL) {
1704 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1705 			SBLASTRECORDCHK(&so->so_rcv);
1706 			SBLASTMBUFCHK(&so->so_rcv);
1707 			SOCKBUF_UNLOCK(&so->so_rcv);
1708 #ifdef ZERO_COPY_SOCKETS
1709 			if (so_zero_copy_receive) {
1710 				int disposable;
1711 
1712 				if ((m->m_flags & M_EXT)
1713 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1714 					disposable = 1;
1715 				else
1716 					disposable = 0;
1717 
1718 				error = uiomoveco(mtod(m, char *) + moff,
1719 						  (int)len, uio,
1720 						  disposable);
1721 			} else
1722 #endif /* ZERO_COPY_SOCKETS */
1723 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1724 			SOCKBUF_LOCK(&so->so_rcv);
1725 			if (error) {
1726 				/*
1727 				 * The MT_SONAME mbuf has already been removed
1728 				 * from the record, so it is necessary to
1729 				 * remove the data mbufs, if any, to preserve
1730 				 * the invariant in the case of PR_ADDR that
1731 				 * requires MT_SONAME mbufs at the head of
1732 				 * each record.
1733 				 */
1734 				if (m && pr->pr_flags & PR_ATOMIC &&
1735 				    ((flags & MSG_PEEK) == 0))
1736 					(void)sbdroprecord_locked(&so->so_rcv);
1737 				goto release;
1738 			}
1739 		} else
1740 			uio->uio_resid -= len;
1741 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1742 		if (len == m->m_len - moff) {
1743 			if (m->m_flags & M_EOR)
1744 				flags |= MSG_EOR;
1745 			if (flags & MSG_PEEK) {
1746 				m = m->m_next;
1747 				moff = 0;
1748 			} else {
1749 				nextrecord = m->m_nextpkt;
1750 				sbfree(&so->so_rcv, m);
1751 				if (mp != NULL) {
1752 					*mp = m;
1753 					mp = &m->m_next;
1754 					so->so_rcv.sb_mb = m = m->m_next;
1755 					*mp = NULL;
1756 				} else {
1757 					so->so_rcv.sb_mb = m_free(m);
1758 					m = so->so_rcv.sb_mb;
1759 				}
1760 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1761 				SBLASTRECORDCHK(&so->so_rcv);
1762 				SBLASTMBUFCHK(&so->so_rcv);
1763 			}
1764 		} else {
1765 			if (flags & MSG_PEEK)
1766 				moff += len;
1767 			else {
1768 				if (mp != NULL) {
1769 					int copy_flag;
1770 
1771 					if (flags & MSG_DONTWAIT)
1772 						copy_flag = M_DONTWAIT;
1773 					else
1774 						copy_flag = M_TRYWAIT;
1775 					if (copy_flag == M_TRYWAIT)
1776 						SOCKBUF_UNLOCK(&so->so_rcv);
1777 					*mp = m_copym(m, 0, len, copy_flag);
1778 					if (copy_flag == M_TRYWAIT)
1779 						SOCKBUF_LOCK(&so->so_rcv);
1780  					if (*mp == NULL) {
1781  						/*
1782  						 * m_copym() couldn't
1783 						 * allocate an mbuf.  Adjust
1784 						 * uio_resid back (it was
1785 						 * adjusted down by len
1786 						 * bytes, which we didn't end
1787 						 * up "copying" over).
1788  						 */
1789  						uio->uio_resid += len;
1790  						break;
1791  					}
1792 				}
1793 				m->m_data += len;
1794 				m->m_len -= len;
1795 				so->so_rcv.sb_cc -= len;
1796 			}
1797 		}
1798 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1799 		if (so->so_oobmark) {
1800 			if ((flags & MSG_PEEK) == 0) {
1801 				so->so_oobmark -= len;
1802 				if (so->so_oobmark == 0) {
1803 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1804 					break;
1805 				}
1806 			} else {
1807 				offset += len;
1808 				if (offset == so->so_oobmark)
1809 					break;
1810 			}
1811 		}
1812 		if (flags & MSG_EOR)
1813 			break;
1814 		/*
1815 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1816 		 * must not quit until "uio->uio_resid == 0" or an error
1817 		 * termination.  If a signal/timeout occurs, return with a
1818 		 * short count but without error.  Keep sockbuf locked
1819 		 * against other readers.
1820 		 */
1821 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1822 		    !sosendallatonce(so) && nextrecord == NULL) {
1823 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1824 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1825 				break;
1826 			/*
1827 			 * Notify the protocol that some data has been
1828 			 * drained before blocking.
1829 			 */
1830 			if (pr->pr_flags & PR_WANTRCVD) {
1831 				SOCKBUF_UNLOCK(&so->so_rcv);
1832 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1833 				SOCKBUF_LOCK(&so->so_rcv);
1834 			}
1835 			SBLASTRECORDCHK(&so->so_rcv);
1836 			SBLASTMBUFCHK(&so->so_rcv);
1837 			error = sbwait(&so->so_rcv);
1838 			if (error)
1839 				goto release;
1840 			m = so->so_rcv.sb_mb;
1841 			if (m != NULL)
1842 				nextrecord = m->m_nextpkt;
1843 		}
1844 	}
1845 
1846 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1847 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1848 		flags |= MSG_TRUNC;
1849 		if ((flags & MSG_PEEK) == 0)
1850 			(void) sbdroprecord_locked(&so->so_rcv);
1851 	}
1852 	if ((flags & MSG_PEEK) == 0) {
1853 		if (m == NULL) {
1854 			/*
1855 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1856 			 * part makes sure sb_lastrecord is up-to-date if
1857 			 * there is still data in the socket buffer.
1858 			 */
1859 			so->so_rcv.sb_mb = nextrecord;
1860 			if (so->so_rcv.sb_mb == NULL) {
1861 				so->so_rcv.sb_mbtail = NULL;
1862 				so->so_rcv.sb_lastrecord = NULL;
1863 			} else if (nextrecord->m_nextpkt == NULL)
1864 				so->so_rcv.sb_lastrecord = nextrecord;
1865 		}
1866 		SBLASTRECORDCHK(&so->so_rcv);
1867 		SBLASTMBUFCHK(&so->so_rcv);
1868 		/*
1869 		 * If soreceive() is being done from the socket callback,
1870 		 * then don't need to generate ACK to peer to update window,
1871 		 * since ACK will be generated on return to TCP.
1872 		 */
1873 		if (!(flags & MSG_SOCALLBCK) &&
1874 		    (pr->pr_flags & PR_WANTRCVD)) {
1875 			SOCKBUF_UNLOCK(&so->so_rcv);
1876 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1877 			SOCKBUF_LOCK(&so->so_rcv);
1878 		}
1879 	}
1880 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1881 	if (orig_resid == uio->uio_resid && orig_resid &&
1882 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1883 		sbunlock(&so->so_rcv);
1884 		goto restart;
1885 	}
1886 
1887 	if (flagsp != NULL)
1888 		*flagsp |= flags;
1889 release:
1890 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1891 	sbunlock(&so->so_rcv);
1892 out:
1893 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1894 	SOCKBUF_UNLOCK(&so->so_rcv);
1895 	return (error);
1896 }
1897 
1898 int
1899 soreceive(so, psa, uio, mp0, controlp, flagsp)
1900 	struct socket *so;
1901 	struct sockaddr **psa;
1902 	struct uio *uio;
1903 	struct mbuf **mp0;
1904 	struct mbuf **controlp;
1905 	int *flagsp;
1906 {
1907 
1908 	/* XXXRW: Temporary debugging. */
1909 	KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive,
1910 	    ("soreceive: protocol calls soreceive"));
1911 
1912 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
1913 	    controlp, flagsp));
1914 }
1915 
1916 int
1917 soshutdown(so, how)
1918 	struct socket *so;
1919 	int how;
1920 {
1921 	struct protosw *pr = so->so_proto;
1922 
1923 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1924 		return (EINVAL);
1925 
1926 	if (how != SHUT_WR)
1927 		sorflush(so);
1928 	if (how != SHUT_RD)
1929 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1930 	return (0);
1931 }
1932 
1933 void
1934 sorflush(so)
1935 	struct socket *so;
1936 {
1937 	struct sockbuf *sb = &so->so_rcv;
1938 	struct protosw *pr = so->so_proto;
1939 	struct sockbuf asb;
1940 
1941 	/*
1942 	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1943 	 * the socket buffer, then zero'd the original to clear the buffer
1944 	 * fields.  However, with mutexes in the socket buffer, this causes
1945 	 * problems.  We only clear the zeroable bits of the original;
1946 	 * however, we have to initialize and destroy the mutex in the copy
1947 	 * so that dom_dispose() and sbrelease() can lock t as needed.
1948 	 */
1949 	SOCKBUF_LOCK(sb);
1950 	sb->sb_flags |= SB_NOINTR;
1951 	(void) sblock(sb, M_WAITOK);
1952 	/*
1953 	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1954 	 * can safely perform wakeups.  Re-acquire the mutex before
1955 	 * continuing.
1956 	 */
1957 	socantrcvmore_locked(so);
1958 	SOCKBUF_LOCK(sb);
1959 	sbunlock(sb);
1960 	/*
1961 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
1962 	 * and mutex data unchanged.
1963 	 */
1964 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1965 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1966 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1967 	bzero(&sb->sb_startzero,
1968 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1969 	SOCKBUF_UNLOCK(sb);
1970 
1971 	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1972 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1973 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1974 	sbrelease(&asb, so);
1975 	SOCKBUF_LOCK_DESTROY(&asb);
1976 }
1977 
1978 /*
1979  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
1980  * additional variant to handle the case where the option value needs to be
1981  * some kind of integer, but not a specific size.  In addition to their use
1982  * here, these functions are also called by the protocol-level pr_ctloutput()
1983  * routines.
1984  */
1985 int
1986 sooptcopyin(sopt, buf, len, minlen)
1987 	struct	sockopt *sopt;
1988 	void	*buf;
1989 	size_t	len;
1990 	size_t	minlen;
1991 {
1992 	size_t	valsize;
1993 
1994 	/*
1995 	 * If the user gives us more than we wanted, we ignore it, but if we
1996 	 * don't get the minimum length the caller wants, we return EINVAL.
1997 	 * On success, sopt->sopt_valsize is set to however much we actually
1998 	 * retrieved.
1999 	 */
2000 	if ((valsize = sopt->sopt_valsize) < minlen)
2001 		return EINVAL;
2002 	if (valsize > len)
2003 		sopt->sopt_valsize = valsize = len;
2004 
2005 	if (sopt->sopt_td != NULL)
2006 		return (copyin(sopt->sopt_val, buf, valsize));
2007 
2008 	bcopy(sopt->sopt_val, buf, valsize);
2009 	return (0);
2010 }
2011 
2012 /*
2013  * Kernel version of setsockopt(2).
2014  *
2015  * XXX: optlen is size_t, not socklen_t
2016  */
2017 int
2018 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2019     size_t optlen)
2020 {
2021 	struct sockopt sopt;
2022 
2023 	sopt.sopt_level = level;
2024 	sopt.sopt_name = optname;
2025 	sopt.sopt_dir = SOPT_SET;
2026 	sopt.sopt_val = optval;
2027 	sopt.sopt_valsize = optlen;
2028 	sopt.sopt_td = NULL;
2029 	return (sosetopt(so, &sopt));
2030 }
2031 
2032 int
2033 sosetopt(so, sopt)
2034 	struct socket *so;
2035 	struct sockopt *sopt;
2036 {
2037 	int	error, optval;
2038 	struct	linger l;
2039 	struct	timeval tv;
2040 	u_long  val;
2041 #ifdef MAC
2042 	struct mac extmac;
2043 #endif
2044 
2045 	error = 0;
2046 	if (sopt->sopt_level != SOL_SOCKET) {
2047 		if (so->so_proto && so->so_proto->pr_ctloutput)
2048 			return ((*so->so_proto->pr_ctloutput)
2049 				  (so, sopt));
2050 		error = ENOPROTOOPT;
2051 	} else {
2052 		switch (sopt->sopt_name) {
2053 #ifdef INET
2054 		case SO_ACCEPTFILTER:
2055 			error = do_setopt_accept_filter(so, sopt);
2056 			if (error)
2057 				goto bad;
2058 			break;
2059 #endif
2060 		case SO_LINGER:
2061 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2062 			if (error)
2063 				goto bad;
2064 
2065 			SOCK_LOCK(so);
2066 			so->so_linger = l.l_linger;
2067 			if (l.l_onoff)
2068 				so->so_options |= SO_LINGER;
2069 			else
2070 				so->so_options &= ~SO_LINGER;
2071 			SOCK_UNLOCK(so);
2072 			break;
2073 
2074 		case SO_DEBUG:
2075 		case SO_KEEPALIVE:
2076 		case SO_DONTROUTE:
2077 		case SO_USELOOPBACK:
2078 		case SO_BROADCAST:
2079 		case SO_REUSEADDR:
2080 		case SO_REUSEPORT:
2081 		case SO_OOBINLINE:
2082 		case SO_TIMESTAMP:
2083 		case SO_BINTIME:
2084 		case SO_NOSIGPIPE:
2085 			error = sooptcopyin(sopt, &optval, sizeof optval,
2086 					    sizeof optval);
2087 			if (error)
2088 				goto bad;
2089 			SOCK_LOCK(so);
2090 			if (optval)
2091 				so->so_options |= sopt->sopt_name;
2092 			else
2093 				so->so_options &= ~sopt->sopt_name;
2094 			SOCK_UNLOCK(so);
2095 			break;
2096 
2097 		case SO_SNDBUF:
2098 		case SO_RCVBUF:
2099 		case SO_SNDLOWAT:
2100 		case SO_RCVLOWAT:
2101 			error = sooptcopyin(sopt, &optval, sizeof optval,
2102 					    sizeof optval);
2103 			if (error)
2104 				goto bad;
2105 
2106 			/*
2107 			 * Values < 1 make no sense for any of these options,
2108 			 * so disallow them.
2109 			 */
2110 			if (optval < 1) {
2111 				error = EINVAL;
2112 				goto bad;
2113 			}
2114 
2115 			switch (sopt->sopt_name) {
2116 			case SO_SNDBUF:
2117 			case SO_RCVBUF:
2118 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2119 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2120 				    so, curthread) == 0) {
2121 					error = ENOBUFS;
2122 					goto bad;
2123 				}
2124 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2125 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2126 				break;
2127 
2128 			/*
2129 			 * Make sure the low-water is never greater than the
2130 			 * high-water.
2131 			 */
2132 			case SO_SNDLOWAT:
2133 				SOCKBUF_LOCK(&so->so_snd);
2134 				so->so_snd.sb_lowat =
2135 				    (optval > so->so_snd.sb_hiwat) ?
2136 				    so->so_snd.sb_hiwat : optval;
2137 				SOCKBUF_UNLOCK(&so->so_snd);
2138 				break;
2139 			case SO_RCVLOWAT:
2140 				SOCKBUF_LOCK(&so->so_rcv);
2141 				so->so_rcv.sb_lowat =
2142 				    (optval > so->so_rcv.sb_hiwat) ?
2143 				    so->so_rcv.sb_hiwat : optval;
2144 				SOCKBUF_UNLOCK(&so->so_rcv);
2145 				break;
2146 			}
2147 			break;
2148 
2149 		case SO_SNDTIMEO:
2150 		case SO_RCVTIMEO:
2151 #ifdef COMPAT_IA32
2152 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2153 				struct timeval32 tv32;
2154 
2155 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2156 				    sizeof tv32);
2157 				CP(tv32, tv, tv_sec);
2158 				CP(tv32, tv, tv_usec);
2159 			} else
2160 #endif
2161 				error = sooptcopyin(sopt, &tv, sizeof tv,
2162 				    sizeof tv);
2163 			if (error)
2164 				goto bad;
2165 
2166 			/* assert(hz > 0); */
2167 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2168 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2169 				error = EDOM;
2170 				goto bad;
2171 			}
2172 			/* assert(tick > 0); */
2173 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2174 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2175 			if (val > INT_MAX) {
2176 				error = EDOM;
2177 				goto bad;
2178 			}
2179 			if (val == 0 && tv.tv_usec != 0)
2180 				val = 1;
2181 
2182 			switch (sopt->sopt_name) {
2183 			case SO_SNDTIMEO:
2184 				so->so_snd.sb_timeo = val;
2185 				break;
2186 			case SO_RCVTIMEO:
2187 				so->so_rcv.sb_timeo = val;
2188 				break;
2189 			}
2190 			break;
2191 
2192 		case SO_LABEL:
2193 #ifdef MAC
2194 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2195 			    sizeof extmac);
2196 			if (error)
2197 				goto bad;
2198 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2199 			    so, &extmac);
2200 #else
2201 			error = EOPNOTSUPP;
2202 #endif
2203 			break;
2204 
2205 		default:
2206 			error = ENOPROTOOPT;
2207 			break;
2208 		}
2209 		if (error == 0 && so->so_proto != NULL &&
2210 		    so->so_proto->pr_ctloutput != NULL) {
2211 			(void) ((*so->so_proto->pr_ctloutput)
2212 				  (so, sopt));
2213 		}
2214 	}
2215 bad:
2216 	return (error);
2217 }
2218 
2219 /*
2220  * Helper routine for getsockopt.
2221  */
2222 int
2223 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2224 {
2225 	int	error;
2226 	size_t	valsize;
2227 
2228 	error = 0;
2229 
2230 	/*
2231 	 * Documented get behavior is that we always return a value, possibly
2232 	 * truncated to fit in the user's buffer.  Traditional behavior is
2233 	 * that we always tell the user precisely how much we copied, rather
2234 	 * than something useful like the total amount we had available for
2235 	 * her.  Note that this interface is not idempotent; the entire
2236 	 * answer must generated ahead of time.
2237 	 */
2238 	valsize = min(len, sopt->sopt_valsize);
2239 	sopt->sopt_valsize = valsize;
2240 	if (sopt->sopt_val != NULL) {
2241 		if (sopt->sopt_td != NULL)
2242 			error = copyout(buf, sopt->sopt_val, valsize);
2243 		else
2244 			bcopy(buf, sopt->sopt_val, valsize);
2245 	}
2246 	return (error);
2247 }
2248 
2249 int
2250 sogetopt(so, sopt)
2251 	struct socket *so;
2252 	struct sockopt *sopt;
2253 {
2254 	int	error, optval;
2255 	struct	linger l;
2256 	struct	timeval tv;
2257 #ifdef MAC
2258 	struct mac extmac;
2259 #endif
2260 
2261 	error = 0;
2262 	if (sopt->sopt_level != SOL_SOCKET) {
2263 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2264 			return ((*so->so_proto->pr_ctloutput)
2265 				  (so, sopt));
2266 		} else
2267 			return (ENOPROTOOPT);
2268 	} else {
2269 		switch (sopt->sopt_name) {
2270 #ifdef INET
2271 		case SO_ACCEPTFILTER:
2272 			error = do_getopt_accept_filter(so, sopt);
2273 			break;
2274 #endif
2275 		case SO_LINGER:
2276 			SOCK_LOCK(so);
2277 			l.l_onoff = so->so_options & SO_LINGER;
2278 			l.l_linger = so->so_linger;
2279 			SOCK_UNLOCK(so);
2280 			error = sooptcopyout(sopt, &l, sizeof l);
2281 			break;
2282 
2283 		case SO_USELOOPBACK:
2284 		case SO_DONTROUTE:
2285 		case SO_DEBUG:
2286 		case SO_KEEPALIVE:
2287 		case SO_REUSEADDR:
2288 		case SO_REUSEPORT:
2289 		case SO_BROADCAST:
2290 		case SO_OOBINLINE:
2291 		case SO_ACCEPTCONN:
2292 		case SO_TIMESTAMP:
2293 		case SO_BINTIME:
2294 		case SO_NOSIGPIPE:
2295 			optval = so->so_options & sopt->sopt_name;
2296 integer:
2297 			error = sooptcopyout(sopt, &optval, sizeof optval);
2298 			break;
2299 
2300 		case SO_TYPE:
2301 			optval = so->so_type;
2302 			goto integer;
2303 
2304 		case SO_ERROR:
2305 			SOCK_LOCK(so);
2306 			optval = so->so_error;
2307 			so->so_error = 0;
2308 			SOCK_UNLOCK(so);
2309 			goto integer;
2310 
2311 		case SO_SNDBUF:
2312 			optval = so->so_snd.sb_hiwat;
2313 			goto integer;
2314 
2315 		case SO_RCVBUF:
2316 			optval = so->so_rcv.sb_hiwat;
2317 			goto integer;
2318 
2319 		case SO_SNDLOWAT:
2320 			optval = so->so_snd.sb_lowat;
2321 			goto integer;
2322 
2323 		case SO_RCVLOWAT:
2324 			optval = so->so_rcv.sb_lowat;
2325 			goto integer;
2326 
2327 		case SO_SNDTIMEO:
2328 		case SO_RCVTIMEO:
2329 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2330 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2331 
2332 			tv.tv_sec = optval / hz;
2333 			tv.tv_usec = (optval % hz) * tick;
2334 #ifdef COMPAT_IA32
2335 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2336 				struct timeval32 tv32;
2337 
2338 				CP(tv, tv32, tv_sec);
2339 				CP(tv, tv32, tv_usec);
2340 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2341 			} else
2342 #endif
2343 				error = sooptcopyout(sopt, &tv, sizeof tv);
2344 			break;
2345 
2346 		case SO_LABEL:
2347 #ifdef MAC
2348 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2349 			    sizeof(extmac));
2350 			if (error)
2351 				return (error);
2352 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2353 			    so, &extmac);
2354 			if (error)
2355 				return (error);
2356 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2357 #else
2358 			error = EOPNOTSUPP;
2359 #endif
2360 			break;
2361 
2362 		case SO_PEERLABEL:
2363 #ifdef MAC
2364 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2365 			    sizeof(extmac));
2366 			if (error)
2367 				return (error);
2368 			error = mac_getsockopt_peerlabel(
2369 			    sopt->sopt_td->td_ucred, so, &extmac);
2370 			if (error)
2371 				return (error);
2372 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2373 #else
2374 			error = EOPNOTSUPP;
2375 #endif
2376 			break;
2377 
2378 		case SO_LISTENQLIMIT:
2379 			optval = so->so_qlimit;
2380 			goto integer;
2381 
2382 		case SO_LISTENQLEN:
2383 			optval = so->so_qlen;
2384 			goto integer;
2385 
2386 		case SO_LISTENINCQLEN:
2387 			optval = so->so_incqlen;
2388 			goto integer;
2389 
2390 		default:
2391 			error = ENOPROTOOPT;
2392 			break;
2393 		}
2394 		return (error);
2395 	}
2396 }
2397 
2398 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2399 int
2400 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2401 {
2402 	struct mbuf *m, *m_prev;
2403 	int sopt_size = sopt->sopt_valsize;
2404 
2405 	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2406 	if (m == NULL)
2407 		return ENOBUFS;
2408 	if (sopt_size > MLEN) {
2409 		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
2410 		if ((m->m_flags & M_EXT) == 0) {
2411 			m_free(m);
2412 			return ENOBUFS;
2413 		}
2414 		m->m_len = min(MCLBYTES, sopt_size);
2415 	} else {
2416 		m->m_len = min(MLEN, sopt_size);
2417 	}
2418 	sopt_size -= m->m_len;
2419 	*mp = m;
2420 	m_prev = m;
2421 
2422 	while (sopt_size) {
2423 		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2424 		if (m == NULL) {
2425 			m_freem(*mp);
2426 			return ENOBUFS;
2427 		}
2428 		if (sopt_size > MLEN) {
2429 			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
2430 			    M_DONTWAIT);
2431 			if ((m->m_flags & M_EXT) == 0) {
2432 				m_freem(m);
2433 				m_freem(*mp);
2434 				return ENOBUFS;
2435 			}
2436 			m->m_len = min(MCLBYTES, sopt_size);
2437 		} else {
2438 			m->m_len = min(MLEN, sopt_size);
2439 		}
2440 		sopt_size -= m->m_len;
2441 		m_prev->m_next = m;
2442 		m_prev = m;
2443 	}
2444 	return (0);
2445 }
2446 
2447 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2448 int
2449 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2450 {
2451 	struct mbuf *m0 = m;
2452 
2453 	if (sopt->sopt_val == NULL)
2454 		return (0);
2455 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2456 		if (sopt->sopt_td != NULL) {
2457 			int error;
2458 
2459 			error = copyin(sopt->sopt_val, mtod(m, char *),
2460 				       m->m_len);
2461 			if (error != 0) {
2462 				m_freem(m0);
2463 				return(error);
2464 			}
2465 		} else
2466 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2467 		sopt->sopt_valsize -= m->m_len;
2468 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2469 		m = m->m_next;
2470 	}
2471 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2472 		panic("ip6_sooptmcopyin");
2473 	return (0);
2474 }
2475 
2476 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2477 int
2478 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2479 {
2480 	struct mbuf *m0 = m;
2481 	size_t valsize = 0;
2482 
2483 	if (sopt->sopt_val == NULL)
2484 		return (0);
2485 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2486 		if (sopt->sopt_td != NULL) {
2487 			int error;
2488 
2489 			error = copyout(mtod(m, char *), sopt->sopt_val,
2490 				       m->m_len);
2491 			if (error != 0) {
2492 				m_freem(m0);
2493 				return(error);
2494 			}
2495 		} else
2496 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2497 	       sopt->sopt_valsize -= m->m_len;
2498 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2499 	       valsize += m->m_len;
2500 	       m = m->m_next;
2501 	}
2502 	if (m != NULL) {
2503 		/* enough soopt buffer should be given from user-land */
2504 		m_freem(m0);
2505 		return(EINVAL);
2506 	}
2507 	sopt->sopt_valsize = valsize;
2508 	return (0);
2509 }
2510 
2511 /*
2512  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2513  * out-of-band data, which will then notify socket consumers.
2514  */
2515 void
2516 sohasoutofband(so)
2517 	struct socket *so;
2518 {
2519 	if (so->so_sigio != NULL)
2520 		pgsigio(&so->so_sigio, SIGURG, 0);
2521 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2522 }
2523 
2524 int
2525 sopoll(struct socket *so, int events, struct ucred *active_cred,
2526     struct thread *td)
2527 {
2528 
2529 	/* XXXRW: Temporary debugging. */
2530 	KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll,
2531 	    ("sopoll: protocol calls sopoll"));
2532 
2533 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2534 	    td));
2535 }
2536 
2537 int
2538 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2539     struct thread *td)
2540 {
2541 	int revents = 0;
2542 
2543 	SOCKBUF_LOCK(&so->so_snd);
2544 	SOCKBUF_LOCK(&so->so_rcv);
2545 	if (events & (POLLIN | POLLRDNORM))
2546 		if (soreadable(so))
2547 			revents |= events & (POLLIN | POLLRDNORM);
2548 
2549 	if (events & POLLINIGNEOF)
2550 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2551 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2552 			revents |= POLLINIGNEOF;
2553 
2554 	if (events & (POLLOUT | POLLWRNORM))
2555 		if (sowriteable(so))
2556 			revents |= events & (POLLOUT | POLLWRNORM);
2557 
2558 	if (events & (POLLPRI | POLLRDBAND))
2559 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2560 			revents |= events & (POLLPRI | POLLRDBAND);
2561 
2562 	if (revents == 0) {
2563 		if (events &
2564 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2565 		     POLLRDBAND)) {
2566 			selrecord(td, &so->so_rcv.sb_sel);
2567 			so->so_rcv.sb_flags |= SB_SEL;
2568 		}
2569 
2570 		if (events & (POLLOUT | POLLWRNORM)) {
2571 			selrecord(td, &so->so_snd.sb_sel);
2572 			so->so_snd.sb_flags |= SB_SEL;
2573 		}
2574 	}
2575 
2576 	SOCKBUF_UNLOCK(&so->so_rcv);
2577 	SOCKBUF_UNLOCK(&so->so_snd);
2578 	return (revents);
2579 }
2580 
2581 int
2582 soo_kqfilter(struct file *fp, struct knote *kn)
2583 {
2584 	struct socket *so = kn->kn_fp->f_data;
2585 	struct sockbuf *sb;
2586 
2587 	switch (kn->kn_filter) {
2588 	case EVFILT_READ:
2589 		if (so->so_options & SO_ACCEPTCONN)
2590 			kn->kn_fop = &solisten_filtops;
2591 		else
2592 			kn->kn_fop = &soread_filtops;
2593 		sb = &so->so_rcv;
2594 		break;
2595 	case EVFILT_WRITE:
2596 		kn->kn_fop = &sowrite_filtops;
2597 		sb = &so->so_snd;
2598 		break;
2599 	default:
2600 		return (EINVAL);
2601 	}
2602 
2603 	SOCKBUF_LOCK(sb);
2604 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2605 	sb->sb_flags |= SB_KNOTE;
2606 	SOCKBUF_UNLOCK(sb);
2607 	return (0);
2608 }
2609 
2610 static void
2611 filt_sordetach(struct knote *kn)
2612 {
2613 	struct socket *so = kn->kn_fp->f_data;
2614 
2615 	SOCKBUF_LOCK(&so->so_rcv);
2616 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2617 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2618 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2619 	SOCKBUF_UNLOCK(&so->so_rcv);
2620 }
2621 
2622 /*ARGSUSED*/
2623 static int
2624 filt_soread(struct knote *kn, long hint)
2625 {
2626 	struct socket *so;
2627 
2628 	so = kn->kn_fp->f_data;
2629 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2630 
2631 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2632 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2633 		kn->kn_flags |= EV_EOF;
2634 		kn->kn_fflags = so->so_error;
2635 		return (1);
2636 	} else if (so->so_error)	/* temporary udp error */
2637 		return (1);
2638 	else if (kn->kn_sfflags & NOTE_LOWAT)
2639 		return (kn->kn_data >= kn->kn_sdata);
2640 	else
2641 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2642 }
2643 
2644 static void
2645 filt_sowdetach(struct knote *kn)
2646 {
2647 	struct socket *so = kn->kn_fp->f_data;
2648 
2649 	SOCKBUF_LOCK(&so->so_snd);
2650 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2651 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2652 		so->so_snd.sb_flags &= ~SB_KNOTE;
2653 	SOCKBUF_UNLOCK(&so->so_snd);
2654 }
2655 
2656 /*ARGSUSED*/
2657 static int
2658 filt_sowrite(struct knote *kn, long hint)
2659 {
2660 	struct socket *so;
2661 
2662 	so = kn->kn_fp->f_data;
2663 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2664 	kn->kn_data = sbspace(&so->so_snd);
2665 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2666 		kn->kn_flags |= EV_EOF;
2667 		kn->kn_fflags = so->so_error;
2668 		return (1);
2669 	} else if (so->so_error)	/* temporary udp error */
2670 		return (1);
2671 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2672 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2673 		return (0);
2674 	else if (kn->kn_sfflags & NOTE_LOWAT)
2675 		return (kn->kn_data >= kn->kn_sdata);
2676 	else
2677 		return (kn->kn_data >= so->so_snd.sb_lowat);
2678 }
2679 
2680 /*ARGSUSED*/
2681 static int
2682 filt_solisten(struct knote *kn, long hint)
2683 {
2684 	struct socket *so = kn->kn_fp->f_data;
2685 
2686 	kn->kn_data = so->so_qlen;
2687 	return (! TAILQ_EMPTY(&so->so_comp));
2688 }
2689 
2690 int
2691 socheckuid(struct socket *so, uid_t uid)
2692 {
2693 
2694 	if (so == NULL)
2695 		return (EPERM);
2696 	if (so->so_cred->cr_uid != uid)
2697 		return (EPERM);
2698 	return (0);
2699 }
2700 
2701 static int
2702 somaxconn_sysctl(SYSCTL_HANDLER_ARGS)
2703 {
2704 	int error;
2705 	int val;
2706 
2707 	val = somaxconn;
2708 	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2709 	if (error || !req->newptr )
2710 		return (error);
2711 
2712 	if (val < 1 || val > USHRT_MAX)
2713 		return (EINVAL);
2714 
2715 	somaxconn = val;
2716 	return (0);
2717 }
2718