xref: /freebsd/sys/kern/uipc_socket.c (revision c6989859ae9388eeb46a24fe88f9b8d07101c710)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/fcntl.h>
116 #include <sys/limits.h>
117 #include <sys/lock.h>
118 #include <sys/mac.h>
119 #include <sys/malloc.h>
120 #include <sys/mbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/domain.h>
123 #include <sys/file.h>			/* for struct knote */
124 #include <sys/hhook.h>
125 #include <sys/kernel.h>
126 #include <sys/khelp.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/signalvar.h>
139 #include <sys/stat.h>
140 #include <sys/sx.h>
141 #include <sys/sysctl.h>
142 #include <sys/taskqueue.h>
143 #include <sys/uio.h>
144 #include <sys/un.h>
145 #include <sys/unpcb.h>
146 #include <sys/jail.h>
147 #include <sys/syslog.h>
148 #include <netinet/in.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/tcp.h>
151 
152 #include <net/vnet.h>
153 
154 #include <security/mac/mac_framework.h>
155 
156 #include <vm/uma.h>
157 
158 #ifdef COMPAT_FREEBSD32
159 #include <sys/mount.h>
160 #include <sys/sysent.h>
161 #include <compat/freebsd32/freebsd32.h>
162 #endif
163 
164 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
165 		    int flags);
166 static void	so_rdknl_lock(void *);
167 static void	so_rdknl_unlock(void *);
168 static void	so_rdknl_assert_locked(void *);
169 static void	so_rdknl_assert_unlocked(void *);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_locked(void *);
173 static void	so_wrknl_assert_unlocked(void *);
174 
175 static void	filt_sordetach(struct knote *kn);
176 static int	filt_soread(struct knote *kn, long hint);
177 static void	filt_sowdetach(struct knote *kn);
178 static int	filt_sowrite(struct knote *kn, long hint);
179 static int	filt_soempty(struct knote *kn, long hint);
180 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
181 fo_kqfilter_t	soo_kqfilter;
182 
183 static struct filterops soread_filtops = {
184 	.f_isfd = 1,
185 	.f_detach = filt_sordetach,
186 	.f_event = filt_soread,
187 };
188 static struct filterops sowrite_filtops = {
189 	.f_isfd = 1,
190 	.f_detach = filt_sowdetach,
191 	.f_event = filt_sowrite,
192 };
193 static struct filterops soempty_filtops = {
194 	.f_isfd = 1,
195 	.f_detach = filt_sowdetach,
196 	.f_event = filt_soempty,
197 };
198 
199 so_gen_t	so_gencnt;	/* generation count for sockets */
200 
201 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
202 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
203 
204 #define	VNET_SO_ASSERT(so)						\
205 	VNET_ASSERT(curvnet != NULL,					\
206 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
207 
208 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
209 #define	V_socket_hhh		VNET(socket_hhh)
210 
211 /*
212  * Limit on the number of connections in the listen queue waiting
213  * for accept(2).
214  * NB: The original sysctl somaxconn is still available but hidden
215  * to prevent confusion about the actual purpose of this number.
216  */
217 static u_int somaxconn = SOMAXCONN;
218 
219 static int
220 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
221 {
222 	int error;
223 	int val;
224 
225 	val = somaxconn;
226 	error = sysctl_handle_int(oidp, &val, 0, req);
227 	if (error || !req->newptr )
228 		return (error);
229 
230 	/*
231 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
232 	 *   3 * so_qlimit / 2
233 	 * below, will not overflow.
234          */
235 
236 	if (val < 1 || val > UINT_MAX / 3)
237 		return (EINVAL);
238 
239 	somaxconn = val;
240 	return (0);
241 }
242 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
243     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
244     sysctl_somaxconn, "I",
245     "Maximum listen socket pending connection accept queue size");
246 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
247     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
248     sizeof(int), sysctl_somaxconn, "I",
249     "Maximum listen socket pending connection accept queue size (compat)");
250 
251 static int numopensockets;
252 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
253     &numopensockets, 0, "Number of open sockets");
254 
255 /*
256  * accept_mtx locks down per-socket fields relating to accept queues.  See
257  * socketvar.h for an annotation of the protected fields of struct socket.
258  */
259 struct mtx accept_mtx;
260 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
261 
262 /*
263  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
264  * so_gencnt field.
265  */
266 static struct mtx so_global_mtx;
267 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
268 
269 /*
270  * General IPC sysctl name space, used by sockets and a variety of other IPC
271  * types.
272  */
273 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
274     "IPC");
275 
276 /*
277  * Initialize the socket subsystem and set up the socket
278  * memory allocator.
279  */
280 static uma_zone_t socket_zone;
281 int	maxsockets;
282 
283 static void
284 socket_zone_change(void *tag)
285 {
286 
287 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
288 }
289 
290 static void
291 socket_hhook_register(int subtype)
292 {
293 
294 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
295 	    &V_socket_hhh[subtype],
296 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
297 		printf("%s: WARNING: unable to register hook\n", __func__);
298 }
299 
300 static void
301 socket_hhook_deregister(int subtype)
302 {
303 
304 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
305 		printf("%s: WARNING: unable to deregister hook\n", __func__);
306 }
307 
308 static void
309 socket_init(void *tag)
310 {
311 
312 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
313 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
314 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
315 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
316 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
317 	    EVENTHANDLER_PRI_FIRST);
318 }
319 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
320 
321 static void
322 socket_vnet_init(const void *unused __unused)
323 {
324 	int i;
325 
326 	/* We expect a contiguous range */
327 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
328 		socket_hhook_register(i);
329 }
330 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
331     socket_vnet_init, NULL);
332 
333 static void
334 socket_vnet_uninit(const void *unused __unused)
335 {
336 	int i;
337 
338 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
339 		socket_hhook_deregister(i);
340 }
341 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
342     socket_vnet_uninit, NULL);
343 
344 /*
345  * Initialise maxsockets.  This SYSINIT must be run after
346  * tunable_mbinit().
347  */
348 static void
349 init_maxsockets(void *ignored)
350 {
351 
352 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
353 	maxsockets = imax(maxsockets, maxfiles);
354 }
355 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
356 
357 /*
358  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
359  * of the change so that they can update their dependent limits as required.
360  */
361 static int
362 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
363 {
364 	int error, newmaxsockets;
365 
366 	newmaxsockets = maxsockets;
367 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
368 	if (error == 0 && req->newptr) {
369 		if (newmaxsockets > maxsockets &&
370 		    newmaxsockets <= maxfiles) {
371 			maxsockets = newmaxsockets;
372 			EVENTHANDLER_INVOKE(maxsockets_change);
373 		} else
374 			error = EINVAL;
375 	}
376 	return (error);
377 }
378 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
379     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
380     sysctl_maxsockets, "IU",
381     "Maximum number of sockets available");
382 
383 /*
384  * Socket operation routines.  These routines are called by the routines in
385  * sys_socket.c or from a system process, and implement the semantics of
386  * socket operations by switching out to the protocol specific routines.
387  */
388 
389 /*
390  * Get a socket structure from our zone, and initialize it.  Note that it
391  * would probably be better to allocate socket and PCB at the same time, but
392  * I'm not convinced that all the protocols can be easily modified to do
393  * this.
394  *
395  * soalloc() returns a socket with a ref count of 0.
396  */
397 static struct socket *
398 soalloc(struct vnet *vnet)
399 {
400 	struct socket *so;
401 
402 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
403 	if (so == NULL)
404 		return (NULL);
405 #ifdef MAC
406 	if (mac_socket_init(so, M_NOWAIT) != 0) {
407 		uma_zfree(socket_zone, so);
408 		return (NULL);
409 	}
410 #endif
411 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
412 		uma_zfree(socket_zone, so);
413 		return (NULL);
414 	}
415 
416 	/*
417 	 * The socket locking protocol allows to lock 2 sockets at a time,
418 	 * however, the first one must be a listening socket.  WITNESS lacks
419 	 * a feature to change class of an existing lock, so we use DUPOK.
420 	 */
421 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
422 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
423 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
424 	so->so_rcv.sb_sel = &so->so_rdsel;
425 	so->so_snd.sb_sel = &so->so_wrsel;
426 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
427 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
428 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
429 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
430 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
431 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
432 #ifdef VIMAGE
433 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
434 	    __func__, __LINE__, so));
435 	so->so_vnet = vnet;
436 #endif
437 	/* We shouldn't need the so_global_mtx */
438 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
439 		/* Do we need more comprehensive error returns? */
440 		uma_zfree(socket_zone, so);
441 		return (NULL);
442 	}
443 	mtx_lock(&so_global_mtx);
444 	so->so_gencnt = ++so_gencnt;
445 	++numopensockets;
446 #ifdef VIMAGE
447 	vnet->vnet_sockcnt++;
448 #endif
449 	mtx_unlock(&so_global_mtx);
450 
451 	return (so);
452 }
453 
454 /*
455  * Free the storage associated with a socket at the socket layer, tear down
456  * locks, labels, etc.  All protocol state is assumed already to have been
457  * torn down (and possibly never set up) by the caller.
458  */
459 static void
460 sodealloc(struct socket *so)
461 {
462 
463 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
464 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
465 
466 	mtx_lock(&so_global_mtx);
467 	so->so_gencnt = ++so_gencnt;
468 	--numopensockets;	/* Could be below, but faster here. */
469 #ifdef VIMAGE
470 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
471 	    __func__, __LINE__, so));
472 	so->so_vnet->vnet_sockcnt--;
473 #endif
474 	mtx_unlock(&so_global_mtx);
475 #ifdef MAC
476 	mac_socket_destroy(so);
477 #endif
478 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
479 
480 	crfree(so->so_cred);
481 	khelp_destroy_osd(&so->osd);
482 	if (SOLISTENING(so)) {
483 		if (so->sol_accept_filter != NULL)
484 			accept_filt_setopt(so, NULL);
485 	} else {
486 		if (so->so_rcv.sb_hiwat)
487 			(void)chgsbsize(so->so_cred->cr_uidinfo,
488 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
489 		if (so->so_snd.sb_hiwat)
490 			(void)chgsbsize(so->so_cred->cr_uidinfo,
491 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
492 		sx_destroy(&so->so_snd.sb_sx);
493 		sx_destroy(&so->so_rcv.sb_sx);
494 		SOCKBUF_LOCK_DESTROY(&so->so_snd);
495 		SOCKBUF_LOCK_DESTROY(&so->so_rcv);
496 	}
497 	mtx_destroy(&so->so_lock);
498 	uma_zfree(socket_zone, so);
499 }
500 
501 /*
502  * socreate returns a socket with a ref count of 1.  The socket should be
503  * closed with soclose().
504  */
505 int
506 socreate(int dom, struct socket **aso, int type, int proto,
507     struct ucred *cred, struct thread *td)
508 {
509 	struct protosw *prp;
510 	struct socket *so;
511 	int error;
512 
513 	if (proto)
514 		prp = pffindproto(dom, proto, type);
515 	else
516 		prp = pffindtype(dom, type);
517 
518 	if (prp == NULL) {
519 		/* No support for domain. */
520 		if (pffinddomain(dom) == NULL)
521 			return (EAFNOSUPPORT);
522 		/* No support for socket type. */
523 		if (proto == 0 && type != 0)
524 			return (EPROTOTYPE);
525 		return (EPROTONOSUPPORT);
526 	}
527 	if (prp->pr_usrreqs->pru_attach == NULL ||
528 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
529 		return (EPROTONOSUPPORT);
530 
531 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
532 		return (EPROTONOSUPPORT);
533 
534 	if (prp->pr_type != type)
535 		return (EPROTOTYPE);
536 	so = soalloc(CRED_TO_VNET(cred));
537 	if (so == NULL)
538 		return (ENOBUFS);
539 
540 	so->so_type = type;
541 	so->so_cred = crhold(cred);
542 	if ((prp->pr_domain->dom_family == PF_INET) ||
543 	    (prp->pr_domain->dom_family == PF_INET6) ||
544 	    (prp->pr_domain->dom_family == PF_ROUTE))
545 		so->so_fibnum = td->td_proc->p_fibnum;
546 	else
547 		so->so_fibnum = 0;
548 	so->so_proto = prp;
549 #ifdef MAC
550 	mac_socket_create(cred, so);
551 #endif
552 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
553 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
554 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
555 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
556 	/*
557 	 * Auto-sizing of socket buffers is managed by the protocols and
558 	 * the appropriate flags must be set in the pru_attach function.
559 	 */
560 	CURVNET_SET(so->so_vnet);
561 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
562 	CURVNET_RESTORE();
563 	if (error) {
564 		sodealloc(so);
565 		return (error);
566 	}
567 	soref(so);
568 	*aso = so;
569 	return (0);
570 }
571 
572 #ifdef REGRESSION
573 static int regression_sonewconn_earlytest = 1;
574 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
575     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
576 #endif
577 
578 static struct timeval overinterval = { 60, 0 };
579 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
580     &overinterval,
581     "Delay in seconds between warnings for listen socket overflows");
582 
583 /*
584  * When an attempt at a new connection is noted on a socket which accepts
585  * connections, sonewconn is called.  If the connection is possible (subject
586  * to space constraints, etc.) then we allocate a new structure, properly
587  * linked into the data structure of the original socket, and return this.
588  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
589  *
590  * Note: the ref count on the socket is 0 on return.
591  */
592 struct socket *
593 sonewconn(struct socket *head, int connstatus)
594 {
595 	struct sbuf descrsb;
596 	struct socket *so;
597 	int len, overcount;
598 	u_int qlen;
599 	const char localprefix[] = "local:";
600 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
601 #if defined(INET6)
602 	char addrbuf[INET6_ADDRSTRLEN];
603 #elif defined(INET)
604 	char addrbuf[INET_ADDRSTRLEN];
605 #endif
606 	bool dolog, over;
607 
608 	SOLISTEN_LOCK(head);
609 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
610 #ifdef REGRESSION
611 	if (regression_sonewconn_earlytest && over) {
612 #else
613 	if (over) {
614 #endif
615 		head->sol_overcount++;
616 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
617 
618 		/*
619 		 * If we're going to log, copy the overflow count and queue
620 		 * length from the listen socket before dropping the lock.
621 		 * Also, reset the overflow count.
622 		 */
623 		if (dolog) {
624 			overcount = head->sol_overcount;
625 			head->sol_overcount = 0;
626 			qlen = head->sol_qlen;
627 		}
628 		SOLISTEN_UNLOCK(head);
629 
630 		if (dolog) {
631 			/*
632 			 * Try to print something descriptive about the
633 			 * socket for the error message.
634 			 */
635 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
636 			    SBUF_FIXEDLEN);
637 			switch (head->so_proto->pr_domain->dom_family) {
638 #if defined(INET) || defined(INET6)
639 #ifdef INET
640 			case AF_INET:
641 #endif
642 #ifdef INET6
643 			case AF_INET6:
644 				if (head->so_proto->pr_domain->dom_family ==
645 				    AF_INET6 ||
646 				    (sotoinpcb(head)->inp_inc.inc_flags &
647 				    INC_ISIPV6)) {
648 					ip6_sprintf(addrbuf,
649 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
650 					sbuf_printf(&descrsb, "[%s]", addrbuf);
651 				} else
652 #endif
653 				{
654 #ifdef INET
655 					inet_ntoa_r(
656 					    sotoinpcb(head)->inp_inc.inc_laddr,
657 					    addrbuf);
658 					sbuf_cat(&descrsb, addrbuf);
659 #endif
660 				}
661 				sbuf_printf(&descrsb, ":%hu (proto %u)",
662 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
663 				    head->so_proto->pr_protocol);
664 				break;
665 #endif /* INET || INET6 */
666 			case AF_UNIX:
667 				sbuf_cat(&descrsb, localprefix);
668 				if (sotounpcb(head)->unp_addr != NULL)
669 					len =
670 					    sotounpcb(head)->unp_addr->sun_len -
671 					    offsetof(struct sockaddr_un,
672 					    sun_path);
673 				else
674 					len = 0;
675 				if (len > 0)
676 					sbuf_bcat(&descrsb,
677 					    sotounpcb(head)->unp_addr->sun_path,
678 					    len);
679 				else
680 					sbuf_cat(&descrsb, "(unknown)");
681 				break;
682 			}
683 
684 			/*
685 			 * If we can't print something more specific, at least
686 			 * print the domain name.
687 			 */
688 			if (sbuf_finish(&descrsb) != 0 ||
689 			    sbuf_len(&descrsb) <= 0) {
690 				sbuf_clear(&descrsb);
691 				sbuf_cat(&descrsb,
692 				    head->so_proto->pr_domain->dom_name ?:
693 				    "unknown");
694 				sbuf_finish(&descrsb);
695 			}
696 			KASSERT(sbuf_len(&descrsb) > 0,
697 			    ("%s: sbuf creation failed", __func__));
698 			log(LOG_DEBUG,
699 			    "%s: pcb %p (%s): Listen queue overflow: "
700 			    "%i already in queue awaiting acceptance "
701 			    "(%d occurrences)\n",
702 			    __func__, head->so_pcb, sbuf_data(&descrsb),
703 			    qlen, overcount);
704 			sbuf_delete(&descrsb);
705 
706 			overcount = 0;
707 		}
708 
709 		return (NULL);
710 	}
711 	SOLISTEN_UNLOCK(head);
712 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
713 	    __func__, head));
714 	so = soalloc(head->so_vnet);
715 	if (so == NULL) {
716 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
717 		    "limit reached or out of memory\n",
718 		    __func__, head->so_pcb);
719 		return (NULL);
720 	}
721 	so->so_listen = head;
722 	so->so_type = head->so_type;
723 	so->so_linger = head->so_linger;
724 	so->so_state = head->so_state | SS_NOFDREF;
725 	so->so_fibnum = head->so_fibnum;
726 	so->so_proto = head->so_proto;
727 	so->so_cred = crhold(head->so_cred);
728 #ifdef MAC
729 	mac_socket_newconn(head, so);
730 #endif
731 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
732 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
733 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
734 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
735 	VNET_SO_ASSERT(head);
736 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
737 		sodealloc(so);
738 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
739 		    __func__, head->so_pcb);
740 		return (NULL);
741 	}
742 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
743 		sodealloc(so);
744 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
745 		    __func__, head->so_pcb);
746 		return (NULL);
747 	}
748 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
749 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
750 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
751 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
752 	so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
753 	so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
754 
755 	SOLISTEN_LOCK(head);
756 	if (head->sol_accept_filter != NULL)
757 		connstatus = 0;
758 	so->so_state |= connstatus;
759 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
760 	soref(head); /* A socket on (in)complete queue refs head. */
761 	if (connstatus) {
762 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
763 		so->so_qstate = SQ_COMP;
764 		head->sol_qlen++;
765 		solisten_wakeup(head);	/* unlocks */
766 	} else {
767 		/*
768 		 * Keep removing sockets from the head until there's room for
769 		 * us to insert on the tail.  In pre-locking revisions, this
770 		 * was a simple if(), but as we could be racing with other
771 		 * threads and soabort() requires dropping locks, we must
772 		 * loop waiting for the condition to be true.
773 		 */
774 		while (head->sol_incqlen > head->sol_qlimit) {
775 			struct socket *sp;
776 
777 			sp = TAILQ_FIRST(&head->sol_incomp);
778 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
779 			head->sol_incqlen--;
780 			SOCK_LOCK(sp);
781 			sp->so_qstate = SQ_NONE;
782 			sp->so_listen = NULL;
783 			SOCK_UNLOCK(sp);
784 			sorele(head);	/* does SOLISTEN_UNLOCK, head stays */
785 			soabort(sp);
786 			SOLISTEN_LOCK(head);
787 		}
788 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
789 		so->so_qstate = SQ_INCOMP;
790 		head->sol_incqlen++;
791 		SOLISTEN_UNLOCK(head);
792 	}
793 	return (so);
794 }
795 
796 #if defined(SCTP) || defined(SCTP_SUPPORT)
797 /*
798  * Socket part of sctp_peeloff().  Detach a new socket from an
799  * association.  The new socket is returned with a reference.
800  */
801 struct socket *
802 sopeeloff(struct socket *head)
803 {
804 	struct socket *so;
805 
806 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
807 	    __func__, __LINE__, head));
808 	so = soalloc(head->so_vnet);
809 	if (so == NULL) {
810 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
811 		    "limit reached or out of memory\n",
812 		    __func__, head->so_pcb);
813 		return (NULL);
814 	}
815 	so->so_type = head->so_type;
816 	so->so_options = head->so_options;
817 	so->so_linger = head->so_linger;
818 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
819 	so->so_fibnum = head->so_fibnum;
820 	so->so_proto = head->so_proto;
821 	so->so_cred = crhold(head->so_cred);
822 #ifdef MAC
823 	mac_socket_newconn(head, so);
824 #endif
825 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
826 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
827 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
828 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
829 	VNET_SO_ASSERT(head);
830 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
831 		sodealloc(so);
832 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
833 		    __func__, head->so_pcb);
834 		return (NULL);
835 	}
836 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
837 		sodealloc(so);
838 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
839 		    __func__, head->so_pcb);
840 		return (NULL);
841 	}
842 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
843 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
844 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
845 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
846 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
847 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
848 
849 	soref(so);
850 
851 	return (so);
852 }
853 #endif	/* SCTP */
854 
855 int
856 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
857 {
858 	int error;
859 
860 	CURVNET_SET(so->so_vnet);
861 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
862 	CURVNET_RESTORE();
863 	return (error);
864 }
865 
866 int
867 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
868 {
869 	int error;
870 
871 	CURVNET_SET(so->so_vnet);
872 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
873 	CURVNET_RESTORE();
874 	return (error);
875 }
876 
877 /*
878  * solisten() transitions a socket from a non-listening state to a listening
879  * state, but can also be used to update the listen queue depth on an
880  * existing listen socket.  The protocol will call back into the sockets
881  * layer using solisten_proto_check() and solisten_proto() to check and set
882  * socket-layer listen state.  Call backs are used so that the protocol can
883  * acquire both protocol and socket layer locks in whatever order is required
884  * by the protocol.
885  *
886  * Protocol implementors are advised to hold the socket lock across the
887  * socket-layer test and set to avoid races at the socket layer.
888  */
889 int
890 solisten(struct socket *so, int backlog, struct thread *td)
891 {
892 	int error;
893 
894 	CURVNET_SET(so->so_vnet);
895 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
896 	CURVNET_RESTORE();
897 	return (error);
898 }
899 
900 int
901 solisten_proto_check(struct socket *so)
902 {
903 
904 	SOCK_LOCK_ASSERT(so);
905 
906 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
907 	    SS_ISDISCONNECTING))
908 		return (EINVAL);
909 	return (0);
910 }
911 
912 void
913 solisten_proto(struct socket *so, int backlog)
914 {
915 	int sbrcv_lowat, sbsnd_lowat;
916 	u_int sbrcv_hiwat, sbsnd_hiwat;
917 	short sbrcv_flags, sbsnd_flags;
918 	sbintime_t sbrcv_timeo, sbsnd_timeo;
919 
920 	SOCK_LOCK_ASSERT(so);
921 
922 	if (SOLISTENING(so))
923 		goto listening;
924 
925 	/*
926 	 * Change this socket to listening state.
927 	 */
928 	sbrcv_lowat = so->so_rcv.sb_lowat;
929 	sbsnd_lowat = so->so_snd.sb_lowat;
930 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
931 	sbsnd_hiwat = so->so_snd.sb_hiwat;
932 	sbrcv_flags = so->so_rcv.sb_flags;
933 	sbsnd_flags = so->so_snd.sb_flags;
934 	sbrcv_timeo = so->so_rcv.sb_timeo;
935 	sbsnd_timeo = so->so_snd.sb_timeo;
936 
937 	sbdestroy(&so->so_snd, so);
938 	sbdestroy(&so->so_rcv, so);
939 	sx_destroy(&so->so_snd.sb_sx);
940 	sx_destroy(&so->so_rcv.sb_sx);
941 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
942 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
943 
944 #ifdef INVARIANTS
945 	bzero(&so->so_rcv,
946 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
947 #endif
948 
949 	so->sol_sbrcv_lowat = sbrcv_lowat;
950 	so->sol_sbsnd_lowat = sbsnd_lowat;
951 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
952 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
953 	so->sol_sbrcv_flags = sbrcv_flags;
954 	so->sol_sbsnd_flags = sbsnd_flags;
955 	so->sol_sbrcv_timeo = sbrcv_timeo;
956 	so->sol_sbsnd_timeo = sbsnd_timeo;
957 
958 	so->sol_qlen = so->sol_incqlen = 0;
959 	TAILQ_INIT(&so->sol_incomp);
960 	TAILQ_INIT(&so->sol_comp);
961 
962 	so->sol_accept_filter = NULL;
963 	so->sol_accept_filter_arg = NULL;
964 	so->sol_accept_filter_str = NULL;
965 
966 	so->sol_upcall = NULL;
967 	so->sol_upcallarg = NULL;
968 
969 	so->so_options |= SO_ACCEPTCONN;
970 
971 listening:
972 	if (backlog < 0 || backlog > somaxconn)
973 		backlog = somaxconn;
974 	so->sol_qlimit = backlog;
975 }
976 
977 /*
978  * Wakeup listeners/subsystems once we have a complete connection.
979  * Enters with lock, returns unlocked.
980  */
981 void
982 solisten_wakeup(struct socket *sol)
983 {
984 
985 	if (sol->sol_upcall != NULL)
986 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
987 	else {
988 		selwakeuppri(&sol->so_rdsel, PSOCK);
989 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
990 	}
991 	SOLISTEN_UNLOCK(sol);
992 	wakeup_one(&sol->sol_comp);
993 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
994 		pgsigio(&sol->so_sigio, SIGIO, 0);
995 }
996 
997 /*
998  * Return single connection off a listening socket queue.  Main consumer of
999  * the function is kern_accept4().  Some modules, that do their own accept
1000  * management also use the function.
1001  *
1002  * Listening socket must be locked on entry and is returned unlocked on
1003  * return.
1004  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1005  */
1006 int
1007 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1008 {
1009 	struct socket *so;
1010 	int error;
1011 
1012 	SOLISTEN_LOCK_ASSERT(head);
1013 
1014 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1015 	    head->so_error == 0) {
1016 		error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
1017 		    "accept", 0);
1018 		if (error != 0) {
1019 			SOLISTEN_UNLOCK(head);
1020 			return (error);
1021 		}
1022 	}
1023 	if (head->so_error) {
1024 		error = head->so_error;
1025 		head->so_error = 0;
1026 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1027 		error = EWOULDBLOCK;
1028 	else
1029 		error = 0;
1030 	if (error) {
1031 		SOLISTEN_UNLOCK(head);
1032 		return (error);
1033 	}
1034 	so = TAILQ_FIRST(&head->sol_comp);
1035 	SOCK_LOCK(so);
1036 	KASSERT(so->so_qstate == SQ_COMP,
1037 	    ("%s: so %p not SQ_COMP", __func__, so));
1038 	soref(so);
1039 	head->sol_qlen--;
1040 	so->so_qstate = SQ_NONE;
1041 	so->so_listen = NULL;
1042 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1043 	if (flags & ACCEPT4_INHERIT)
1044 		so->so_state |= (head->so_state & SS_NBIO);
1045 	else
1046 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1047 	SOCK_UNLOCK(so);
1048 	sorele(head);
1049 
1050 	*ret = so;
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Evaluate the reference count and named references on a socket; if no
1056  * references remain, free it.  This should be called whenever a reference is
1057  * released, such as in sorele(), but also when named reference flags are
1058  * cleared in socket or protocol code.
1059  *
1060  * sofree() will free the socket if:
1061  *
1062  * - There are no outstanding file descriptor references or related consumers
1063  *   (so_count == 0).
1064  *
1065  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
1066  *
1067  * - The protocol does not have an outstanding strong reference on the socket
1068  *   (SS_PROTOREF).
1069  *
1070  * - The socket is not in a completed connection queue, so a process has been
1071  *   notified that it is present.  If it is removed, the user process may
1072  *   block in accept() despite select() saying the socket was ready.
1073  */
1074 void
1075 sofree(struct socket *so)
1076 {
1077 	struct protosw *pr = so->so_proto;
1078 
1079 	SOCK_LOCK_ASSERT(so);
1080 
1081 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
1082 	    (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
1083 		SOCK_UNLOCK(so);
1084 		return;
1085 	}
1086 
1087 	if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
1088 		struct socket *sol;
1089 
1090 		sol = so->so_listen;
1091 		KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
1092 
1093 		/*
1094 		 * To solve race between close of a listening socket and
1095 		 * a socket on its incomplete queue, we need to lock both.
1096 		 * The order is first listening socket, then regular.
1097 		 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
1098 		 * function and the listening socket are the only pointers
1099 		 * to so.  To preserve so and sol, we reference both and then
1100 		 * relock.
1101 		 * After relock the socket may not move to so_comp since it
1102 		 * doesn't have PCB already, but it may be removed from
1103 		 * so_incomp. If that happens, we share responsiblity on
1104 		 * freeing the socket, but soclose() has already removed
1105 		 * it from queue.
1106 		 */
1107 		soref(sol);
1108 		soref(so);
1109 		SOCK_UNLOCK(so);
1110 		SOLISTEN_LOCK(sol);
1111 		SOCK_LOCK(so);
1112 		if (so->so_qstate == SQ_INCOMP) {
1113 			KASSERT(so->so_listen == sol,
1114 			    ("%s: so %p migrated out of sol %p",
1115 			    __func__, so, sol));
1116 			TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1117 			sol->sol_incqlen--;
1118 			/* This is guarenteed not to be the last. */
1119 			refcount_release(&sol->so_count);
1120 			so->so_qstate = SQ_NONE;
1121 			so->so_listen = NULL;
1122 		} else
1123 			KASSERT(so->so_listen == NULL,
1124 			    ("%s: so %p not on (in)comp with so_listen",
1125 			    __func__, so));
1126 		sorele(sol);
1127 		KASSERT(so->so_count == 1,
1128 		    ("%s: so %p count %u", __func__, so, so->so_count));
1129 		so->so_count = 0;
1130 	}
1131 	if (SOLISTENING(so))
1132 		so->so_error = ECONNABORTED;
1133 	SOCK_UNLOCK(so);
1134 
1135 	if (so->so_dtor != NULL)
1136 		so->so_dtor(so);
1137 
1138 	VNET_SO_ASSERT(so);
1139 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1140 		(*pr->pr_domain->dom_dispose)(so);
1141 	if (pr->pr_usrreqs->pru_detach != NULL)
1142 		(*pr->pr_usrreqs->pru_detach)(so);
1143 
1144 	/*
1145 	 * From this point on, we assume that no other references to this
1146 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1147 	 * to be acquired or held.
1148 	 *
1149 	 * We used to do a lot of socket buffer and socket locking here, as
1150 	 * well as invoke sorflush() and perform wakeups.  The direct call to
1151 	 * dom_dispose() and sbdestroy() are an inlining of what was
1152 	 * necessary from sorflush().
1153 	 *
1154 	 * Notice that the socket buffer and kqueue state are torn down
1155 	 * before calling pru_detach.  This means that protocols shold not
1156 	 * assume they can perform socket wakeups, etc, in their detach code.
1157 	 */
1158 	if (!SOLISTENING(so)) {
1159 		sbdestroy(&so->so_snd, so);
1160 		sbdestroy(&so->so_rcv, so);
1161 	}
1162 	seldrain(&so->so_rdsel);
1163 	seldrain(&so->so_wrsel);
1164 	knlist_destroy(&so->so_rdsel.si_note);
1165 	knlist_destroy(&so->so_wrsel.si_note);
1166 	sodealloc(so);
1167 }
1168 
1169 /*
1170  * Close a socket on last file table reference removal.  Initiate disconnect
1171  * if connected.  Free socket when disconnect complete.
1172  *
1173  * This function will sorele() the socket.  Note that soclose() may be called
1174  * prior to the ref count reaching zero.  The actual socket structure will
1175  * not be freed until the ref count reaches zero.
1176  */
1177 int
1178 soclose(struct socket *so)
1179 {
1180 	struct accept_queue lqueue;
1181 	bool listening;
1182 	int error = 0;
1183 
1184 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1185 
1186 	CURVNET_SET(so->so_vnet);
1187 	funsetown(&so->so_sigio);
1188 	if (so->so_state & SS_ISCONNECTED) {
1189 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1190 			error = sodisconnect(so);
1191 			if (error) {
1192 				if (error == ENOTCONN)
1193 					error = 0;
1194 				goto drop;
1195 			}
1196 		}
1197 		if (so->so_options & SO_LINGER) {
1198 			if ((so->so_state & SS_ISDISCONNECTING) &&
1199 			    (so->so_state & SS_NBIO))
1200 				goto drop;
1201 			while (so->so_state & SS_ISCONNECTED) {
1202 				error = tsleep(&so->so_timeo,
1203 				    PSOCK | PCATCH, "soclos",
1204 				    so->so_linger * hz);
1205 				if (error)
1206 					break;
1207 			}
1208 		}
1209 	}
1210 
1211 drop:
1212 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1213 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1214 
1215 	SOCK_LOCK(so);
1216 	if ((listening = (so->so_options & SO_ACCEPTCONN))) {
1217 		struct socket *sp;
1218 
1219 		TAILQ_INIT(&lqueue);
1220 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1221 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1222 
1223 		so->sol_qlen = so->sol_incqlen = 0;
1224 
1225 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1226 			SOCK_LOCK(sp);
1227 			sp->so_qstate = SQ_NONE;
1228 			sp->so_listen = NULL;
1229 			SOCK_UNLOCK(sp);
1230 			/* Guaranteed not to be the last. */
1231 			refcount_release(&so->so_count);
1232 		}
1233 	}
1234 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1235 	so->so_state |= SS_NOFDREF;
1236 	sorele(so);
1237 	if (listening) {
1238 		struct socket *sp, *tsp;
1239 
1240 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
1241 			SOCK_LOCK(sp);
1242 			if (sp->so_count == 0) {
1243 				SOCK_UNLOCK(sp);
1244 				soabort(sp);
1245 			} else
1246 				/* sp is now in sofree() */
1247 				SOCK_UNLOCK(sp);
1248 		}
1249 	}
1250 	CURVNET_RESTORE();
1251 	return (error);
1252 }
1253 
1254 /*
1255  * soabort() is used to abruptly tear down a connection, such as when a
1256  * resource limit is reached (listen queue depth exceeded), or if a listen
1257  * socket is closed while there are sockets waiting to be accepted.
1258  *
1259  * This interface is tricky, because it is called on an unreferenced socket,
1260  * and must be called only by a thread that has actually removed the socket
1261  * from the listen queue it was on, or races with other threads are risked.
1262  *
1263  * This interface will call into the protocol code, so must not be called
1264  * with any socket locks held.  Protocols do call it while holding their own
1265  * recursible protocol mutexes, but this is something that should be subject
1266  * to review in the future.
1267  */
1268 void
1269 soabort(struct socket *so)
1270 {
1271 
1272 	/*
1273 	 * In as much as is possible, assert that no references to this
1274 	 * socket are held.  This is not quite the same as asserting that the
1275 	 * current thread is responsible for arranging for no references, but
1276 	 * is as close as we can get for now.
1277 	 */
1278 	KASSERT(so->so_count == 0, ("soabort: so_count"));
1279 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1280 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1281 	VNET_SO_ASSERT(so);
1282 
1283 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1284 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1285 	SOCK_LOCK(so);
1286 	sofree(so);
1287 }
1288 
1289 int
1290 soaccept(struct socket *so, struct sockaddr **nam)
1291 {
1292 	int error;
1293 
1294 	SOCK_LOCK(so);
1295 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1296 	so->so_state &= ~SS_NOFDREF;
1297 	SOCK_UNLOCK(so);
1298 
1299 	CURVNET_SET(so->so_vnet);
1300 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1301 	CURVNET_RESTORE();
1302 	return (error);
1303 }
1304 
1305 int
1306 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1307 {
1308 
1309 	return (soconnectat(AT_FDCWD, so, nam, td));
1310 }
1311 
1312 int
1313 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1314 {
1315 	int error;
1316 
1317 	if (so->so_options & SO_ACCEPTCONN)
1318 		return (EOPNOTSUPP);
1319 
1320 	CURVNET_SET(so->so_vnet);
1321 	/*
1322 	 * If protocol is connection-based, can only connect once.
1323 	 * Otherwise, if connected, try to disconnect first.  This allows
1324 	 * user to disconnect by connecting to, e.g., a null address.
1325 	 */
1326 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1327 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1328 	    (error = sodisconnect(so)))) {
1329 		error = EISCONN;
1330 	} else {
1331 		/*
1332 		 * Prevent accumulated error from previous connection from
1333 		 * biting us.
1334 		 */
1335 		so->so_error = 0;
1336 		if (fd == AT_FDCWD) {
1337 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1338 			    nam, td);
1339 		} else {
1340 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1341 			    so, nam, td);
1342 		}
1343 	}
1344 	CURVNET_RESTORE();
1345 
1346 	return (error);
1347 }
1348 
1349 int
1350 soconnect2(struct socket *so1, struct socket *so2)
1351 {
1352 	int error;
1353 
1354 	CURVNET_SET(so1->so_vnet);
1355 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1356 	CURVNET_RESTORE();
1357 	return (error);
1358 }
1359 
1360 int
1361 sodisconnect(struct socket *so)
1362 {
1363 	int error;
1364 
1365 	if ((so->so_state & SS_ISCONNECTED) == 0)
1366 		return (ENOTCONN);
1367 	if (so->so_state & SS_ISDISCONNECTING)
1368 		return (EALREADY);
1369 	VNET_SO_ASSERT(so);
1370 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1371 	return (error);
1372 }
1373 
1374 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1375 
1376 int
1377 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1378     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1379 {
1380 	long space;
1381 	ssize_t resid;
1382 	int clen = 0, error, dontroute;
1383 
1384 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1385 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1386 	    ("sosend_dgram: !PR_ATOMIC"));
1387 
1388 	if (uio != NULL)
1389 		resid = uio->uio_resid;
1390 	else
1391 		resid = top->m_pkthdr.len;
1392 	/*
1393 	 * In theory resid should be unsigned.  However, space must be
1394 	 * signed, as it might be less than 0 if we over-committed, and we
1395 	 * must use a signed comparison of space and resid.  On the other
1396 	 * hand, a negative resid causes us to loop sending 0-length
1397 	 * segments to the protocol.
1398 	 */
1399 	if (resid < 0) {
1400 		error = EINVAL;
1401 		goto out;
1402 	}
1403 
1404 	dontroute =
1405 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1406 	if (td != NULL)
1407 		td->td_ru.ru_msgsnd++;
1408 	if (control != NULL)
1409 		clen = control->m_len;
1410 
1411 	SOCKBUF_LOCK(&so->so_snd);
1412 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1413 		SOCKBUF_UNLOCK(&so->so_snd);
1414 		error = EPIPE;
1415 		goto out;
1416 	}
1417 	if (so->so_error) {
1418 		error = so->so_error;
1419 		so->so_error = 0;
1420 		SOCKBUF_UNLOCK(&so->so_snd);
1421 		goto out;
1422 	}
1423 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1424 		/*
1425 		 * `sendto' and `sendmsg' is allowed on a connection-based
1426 		 * socket if it supports implied connect.  Return ENOTCONN if
1427 		 * not connected and no address is supplied.
1428 		 */
1429 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1430 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1431 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1432 			    !(resid == 0 && clen != 0)) {
1433 				SOCKBUF_UNLOCK(&so->so_snd);
1434 				error = ENOTCONN;
1435 				goto out;
1436 			}
1437 		} else if (addr == NULL) {
1438 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1439 				error = ENOTCONN;
1440 			else
1441 				error = EDESTADDRREQ;
1442 			SOCKBUF_UNLOCK(&so->so_snd);
1443 			goto out;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1449 	 * problem and need fixing.
1450 	 */
1451 	space = sbspace(&so->so_snd);
1452 	if (flags & MSG_OOB)
1453 		space += 1024;
1454 	space -= clen;
1455 	SOCKBUF_UNLOCK(&so->so_snd);
1456 	if (resid > space) {
1457 		error = EMSGSIZE;
1458 		goto out;
1459 	}
1460 	if (uio == NULL) {
1461 		resid = 0;
1462 		if (flags & MSG_EOR)
1463 			top->m_flags |= M_EOR;
1464 	} else {
1465 		/*
1466 		 * Copy the data from userland into a mbuf chain.
1467 		 * If no data is to be copied in, a single empty mbuf
1468 		 * is returned.
1469 		 */
1470 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1471 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1472 		if (top == NULL) {
1473 			error = EFAULT;	/* only possible error */
1474 			goto out;
1475 		}
1476 		space -= resid - uio->uio_resid;
1477 		resid = uio->uio_resid;
1478 	}
1479 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1480 	/*
1481 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1482 	 * than with.
1483 	 */
1484 	if (dontroute) {
1485 		SOCK_LOCK(so);
1486 		so->so_options |= SO_DONTROUTE;
1487 		SOCK_UNLOCK(so);
1488 	}
1489 	/*
1490 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1491 	 * of date.  We could have received a reset packet in an interrupt or
1492 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1493 	 * probably recheck again inside the locking protection here, but
1494 	 * there are probably other places that this also happens.  We must
1495 	 * rethink this.
1496 	 */
1497 	VNET_SO_ASSERT(so);
1498 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1499 	    (flags & MSG_OOB) ? PRUS_OOB :
1500 	/*
1501 	 * If the user set MSG_EOF, the protocol understands this flag and
1502 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1503 	 */
1504 	    ((flags & MSG_EOF) &&
1505 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1506 	     (resid <= 0)) ?
1507 		PRUS_EOF :
1508 		/* If there is more to send set PRUS_MORETOCOME */
1509 		(flags & MSG_MORETOCOME) ||
1510 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1511 		top, addr, control, td);
1512 	if (dontroute) {
1513 		SOCK_LOCK(so);
1514 		so->so_options &= ~SO_DONTROUTE;
1515 		SOCK_UNLOCK(so);
1516 	}
1517 	clen = 0;
1518 	control = NULL;
1519 	top = NULL;
1520 out:
1521 	if (top != NULL)
1522 		m_freem(top);
1523 	if (control != NULL)
1524 		m_freem(control);
1525 	return (error);
1526 }
1527 
1528 /*
1529  * Send on a socket.  If send must go all at once and message is larger than
1530  * send buffering, then hard error.  Lock against other senders.  If must go
1531  * all at once and not enough room now, then inform user that this would
1532  * block and do nothing.  Otherwise, if nonblocking, send as much as
1533  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1534  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1535  * in mbuf chain must be small enough to send all at once.
1536  *
1537  * Returns nonzero on error, timeout or signal; callers must check for short
1538  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1539  * on return.
1540  */
1541 int
1542 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1543     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1544 {
1545 	long space;
1546 	ssize_t resid;
1547 	int clen = 0, error, dontroute;
1548 	int atomic = sosendallatonce(so) || top;
1549 	int pru_flag;
1550 #ifdef KERN_TLS
1551 	struct ktls_session *tls;
1552 	int tls_enq_cnt, tls_pruflag;
1553 	uint8_t tls_rtype;
1554 
1555 	tls = NULL;
1556 	tls_rtype = TLS_RLTYPE_APP;
1557 #endif
1558 	if (uio != NULL)
1559 		resid = uio->uio_resid;
1560 	else if ((top->m_flags & M_PKTHDR) != 0)
1561 		resid = top->m_pkthdr.len;
1562 	else
1563 		resid = m_length(top, NULL);
1564 	/*
1565 	 * In theory resid should be unsigned.  However, space must be
1566 	 * signed, as it might be less than 0 if we over-committed, and we
1567 	 * must use a signed comparison of space and resid.  On the other
1568 	 * hand, a negative resid causes us to loop sending 0-length
1569 	 * segments to the protocol.
1570 	 *
1571 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1572 	 * type sockets since that's an error.
1573 	 */
1574 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1575 		error = EINVAL;
1576 		goto out;
1577 	}
1578 
1579 	dontroute =
1580 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1581 	    (so->so_proto->pr_flags & PR_ATOMIC);
1582 	if (td != NULL)
1583 		td->td_ru.ru_msgsnd++;
1584 	if (control != NULL)
1585 		clen = control->m_len;
1586 
1587 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1588 	if (error)
1589 		goto out;
1590 
1591 #ifdef KERN_TLS
1592 	tls_pruflag = 0;
1593 	tls = ktls_hold(so->so_snd.sb_tls_info);
1594 	if (tls != NULL) {
1595 		if (tls->mode == TCP_TLS_MODE_SW)
1596 			tls_pruflag = PRUS_NOTREADY;
1597 
1598 		if (control != NULL) {
1599 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1600 
1601 			if (clen >= sizeof(*cm) &&
1602 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1603 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1604 				clen = 0;
1605 				m_freem(control);
1606 				control = NULL;
1607 				atomic = 1;
1608 			}
1609 		}
1610 	}
1611 #endif
1612 
1613 restart:
1614 	do {
1615 		SOCKBUF_LOCK(&so->so_snd);
1616 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1617 			SOCKBUF_UNLOCK(&so->so_snd);
1618 			error = EPIPE;
1619 			goto release;
1620 		}
1621 		if (so->so_error) {
1622 			error = so->so_error;
1623 			so->so_error = 0;
1624 			SOCKBUF_UNLOCK(&so->so_snd);
1625 			goto release;
1626 		}
1627 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1628 			/*
1629 			 * `sendto' and `sendmsg' is allowed on a connection-
1630 			 * based socket if it supports implied connect.
1631 			 * Return ENOTCONN if not connected and no address is
1632 			 * supplied.
1633 			 */
1634 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1635 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1636 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1637 				    !(resid == 0 && clen != 0)) {
1638 					SOCKBUF_UNLOCK(&so->so_snd);
1639 					error = ENOTCONN;
1640 					goto release;
1641 				}
1642 			} else if (addr == NULL) {
1643 				SOCKBUF_UNLOCK(&so->so_snd);
1644 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1645 					error = ENOTCONN;
1646 				else
1647 					error = EDESTADDRREQ;
1648 				goto release;
1649 			}
1650 		}
1651 		space = sbspace(&so->so_snd);
1652 		if (flags & MSG_OOB)
1653 			space += 1024;
1654 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1655 		    clen > so->so_snd.sb_hiwat) {
1656 			SOCKBUF_UNLOCK(&so->so_snd);
1657 			error = EMSGSIZE;
1658 			goto release;
1659 		}
1660 		if (space < resid + clen &&
1661 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1662 			if ((so->so_state & SS_NBIO) ||
1663 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1664 				SOCKBUF_UNLOCK(&so->so_snd);
1665 				error = EWOULDBLOCK;
1666 				goto release;
1667 			}
1668 			error = sbwait(&so->so_snd);
1669 			SOCKBUF_UNLOCK(&so->so_snd);
1670 			if (error)
1671 				goto release;
1672 			goto restart;
1673 		}
1674 		SOCKBUF_UNLOCK(&so->so_snd);
1675 		space -= clen;
1676 		do {
1677 			if (uio == NULL) {
1678 				resid = 0;
1679 				if (flags & MSG_EOR)
1680 					top->m_flags |= M_EOR;
1681 #ifdef KERN_TLS
1682 				if (tls != NULL) {
1683 					ktls_frame(top, tls, &tls_enq_cnt,
1684 					    tls_rtype);
1685 					tls_rtype = TLS_RLTYPE_APP;
1686 				}
1687 #endif
1688 			} else {
1689 				/*
1690 				 * Copy the data from userland into a mbuf
1691 				 * chain.  If resid is 0, which can happen
1692 				 * only if we have control to send, then
1693 				 * a single empty mbuf is returned.  This
1694 				 * is a workaround to prevent protocol send
1695 				 * methods to panic.
1696 				 */
1697 #ifdef KERN_TLS
1698 				if (tls != NULL) {
1699 					top = m_uiotombuf(uio, M_WAITOK, space,
1700 					    tls->params.max_frame_len,
1701 					    M_EXTPG |
1702 					    ((flags & MSG_EOR) ? M_EOR : 0));
1703 					if (top != NULL) {
1704 						ktls_frame(top, tls,
1705 						    &tls_enq_cnt, tls_rtype);
1706 					}
1707 					tls_rtype = TLS_RLTYPE_APP;
1708 				} else
1709 #endif
1710 					top = m_uiotombuf(uio, M_WAITOK, space,
1711 					    (atomic ? max_hdr : 0),
1712 					    (atomic ? M_PKTHDR : 0) |
1713 					    ((flags & MSG_EOR) ? M_EOR : 0));
1714 				if (top == NULL) {
1715 					error = EFAULT; /* only possible error */
1716 					goto release;
1717 				}
1718 				space -= resid - uio->uio_resid;
1719 				resid = uio->uio_resid;
1720 			}
1721 			if (dontroute) {
1722 				SOCK_LOCK(so);
1723 				so->so_options |= SO_DONTROUTE;
1724 				SOCK_UNLOCK(so);
1725 			}
1726 			/*
1727 			 * XXX all the SBS_CANTSENDMORE checks previously
1728 			 * done could be out of date.  We could have received
1729 			 * a reset packet in an interrupt or maybe we slept
1730 			 * while doing page faults in uiomove() etc.  We
1731 			 * could probably recheck again inside the locking
1732 			 * protection here, but there are probably other
1733 			 * places that this also happens.  We must rethink
1734 			 * this.
1735 			 */
1736 			VNET_SO_ASSERT(so);
1737 
1738 			pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
1739 			/*
1740 			 * If the user set MSG_EOF, the protocol understands
1741 			 * this flag and nothing left to send then use
1742 			 * PRU_SEND_EOF instead of PRU_SEND.
1743 			 */
1744 			    ((flags & MSG_EOF) &&
1745 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1746 			     (resid <= 0)) ?
1747 				PRUS_EOF :
1748 			/* If there is more to send set PRUS_MORETOCOME. */
1749 			    (flags & MSG_MORETOCOME) ||
1750 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1751 
1752 #ifdef KERN_TLS
1753 			pru_flag |= tls_pruflag;
1754 #endif
1755 
1756 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1757 			    pru_flag, top, addr, control, td);
1758 
1759 			if (dontroute) {
1760 				SOCK_LOCK(so);
1761 				so->so_options &= ~SO_DONTROUTE;
1762 				SOCK_UNLOCK(so);
1763 			}
1764 
1765 #ifdef KERN_TLS
1766 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1767 				/*
1768 				 * Note that error is intentionally
1769 				 * ignored.
1770 				 *
1771 				 * Like sendfile(), we rely on the
1772 				 * completion routine (pru_ready())
1773 				 * to free the mbufs in the event that
1774 				 * pru_send() encountered an error and
1775 				 * did not append them to the sockbuf.
1776 				 */
1777 				soref(so);
1778 				ktls_enqueue(top, so, tls_enq_cnt);
1779 			}
1780 #endif
1781 			clen = 0;
1782 			control = NULL;
1783 			top = NULL;
1784 			if (error)
1785 				goto release;
1786 		} while (resid && space > 0);
1787 	} while (resid);
1788 
1789 release:
1790 	sbunlock(&so->so_snd);
1791 out:
1792 #ifdef KERN_TLS
1793 	if (tls != NULL)
1794 		ktls_free(tls);
1795 #endif
1796 	if (top != NULL)
1797 		m_freem(top);
1798 	if (control != NULL)
1799 		m_freem(control);
1800 	return (error);
1801 }
1802 
1803 int
1804 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1805     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1806 {
1807 	int error;
1808 
1809 	CURVNET_SET(so->so_vnet);
1810 	if (!SOLISTENING(so))
1811 		error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1812 		    top, control, flags, td);
1813 	else {
1814 		m_freem(top);
1815 		m_freem(control);
1816 		error = ENOTCONN;
1817 	}
1818 	CURVNET_RESTORE();
1819 	return (error);
1820 }
1821 
1822 /*
1823  * The part of soreceive() that implements reading non-inline out-of-band
1824  * data from a socket.  For more complete comments, see soreceive(), from
1825  * which this code originated.
1826  *
1827  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1828  * unable to return an mbuf chain to the caller.
1829  */
1830 static int
1831 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1832 {
1833 	struct protosw *pr = so->so_proto;
1834 	struct mbuf *m;
1835 	int error;
1836 
1837 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1838 	VNET_SO_ASSERT(so);
1839 
1840 	m = m_get(M_WAITOK, MT_DATA);
1841 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1842 	if (error)
1843 		goto bad;
1844 	do {
1845 		error = uiomove(mtod(m, void *),
1846 		    (int) min(uio->uio_resid, m->m_len), uio);
1847 		m = m_free(m);
1848 	} while (uio->uio_resid && error == 0 && m);
1849 bad:
1850 	if (m != NULL)
1851 		m_freem(m);
1852 	return (error);
1853 }
1854 
1855 /*
1856  * Following replacement or removal of the first mbuf on the first mbuf chain
1857  * of a socket buffer, push necessary state changes back into the socket
1858  * buffer so that other consumers see the values consistently.  'nextrecord'
1859  * is the callers locally stored value of the original value of
1860  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1861  * NOTE: 'nextrecord' may be NULL.
1862  */
1863 static __inline void
1864 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1865 {
1866 
1867 	SOCKBUF_LOCK_ASSERT(sb);
1868 	/*
1869 	 * First, update for the new value of nextrecord.  If necessary, make
1870 	 * it the first record.
1871 	 */
1872 	if (sb->sb_mb != NULL)
1873 		sb->sb_mb->m_nextpkt = nextrecord;
1874 	else
1875 		sb->sb_mb = nextrecord;
1876 
1877 	/*
1878 	 * Now update any dependent socket buffer fields to reflect the new
1879 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1880 	 * addition of a second clause that takes care of the case where
1881 	 * sb_mb has been updated, but remains the last record.
1882 	 */
1883 	if (sb->sb_mb == NULL) {
1884 		sb->sb_mbtail = NULL;
1885 		sb->sb_lastrecord = NULL;
1886 	} else if (sb->sb_mb->m_nextpkt == NULL)
1887 		sb->sb_lastrecord = sb->sb_mb;
1888 }
1889 
1890 /*
1891  * Implement receive operations on a socket.  We depend on the way that
1892  * records are added to the sockbuf by sbappend.  In particular, each record
1893  * (mbufs linked through m_next) must begin with an address if the protocol
1894  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1895  * data, and then zero or more mbufs of data.  In order to allow parallelism
1896  * between network receive and copying to user space, as well as avoid
1897  * sleeping with a mutex held, we release the socket buffer mutex during the
1898  * user space copy.  Although the sockbuf is locked, new data may still be
1899  * appended, and thus we must maintain consistency of the sockbuf during that
1900  * time.
1901  *
1902  * The caller may receive the data as a single mbuf chain by supplying an
1903  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1904  * the count in uio_resid.
1905  */
1906 int
1907 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1908     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1909 {
1910 	struct mbuf *m, **mp;
1911 	int flags, error, offset;
1912 	ssize_t len;
1913 	struct protosw *pr = so->so_proto;
1914 	struct mbuf *nextrecord;
1915 	int moff, type = 0;
1916 	ssize_t orig_resid = uio->uio_resid;
1917 
1918 	mp = mp0;
1919 	if (psa != NULL)
1920 		*psa = NULL;
1921 	if (controlp != NULL)
1922 		*controlp = NULL;
1923 	if (flagsp != NULL)
1924 		flags = *flagsp &~ MSG_EOR;
1925 	else
1926 		flags = 0;
1927 	if (flags & MSG_OOB)
1928 		return (soreceive_rcvoob(so, uio, flags));
1929 	if (mp != NULL)
1930 		*mp = NULL;
1931 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1932 	    && uio->uio_resid) {
1933 		VNET_SO_ASSERT(so);
1934 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1935 	}
1936 
1937 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1938 	if (error)
1939 		return (error);
1940 
1941 restart:
1942 	SOCKBUF_LOCK(&so->so_rcv);
1943 	m = so->so_rcv.sb_mb;
1944 	/*
1945 	 * If we have less data than requested, block awaiting more (subject
1946 	 * to any timeout) if:
1947 	 *   1. the current count is less than the low water mark, or
1948 	 *   2. MSG_DONTWAIT is not set
1949 	 */
1950 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1951 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1952 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1953 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1954 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1955 		    ("receive: m == %p sbavail == %u",
1956 		    m, sbavail(&so->so_rcv)));
1957 		if (so->so_error) {
1958 			if (m != NULL)
1959 				goto dontblock;
1960 			error = so->so_error;
1961 			if ((flags & MSG_PEEK) == 0)
1962 				so->so_error = 0;
1963 			SOCKBUF_UNLOCK(&so->so_rcv);
1964 			goto release;
1965 		}
1966 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1967 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1968 			if (m != NULL)
1969 				goto dontblock;
1970 #ifdef KERN_TLS
1971 			else if (so->so_rcv.sb_tlsdcc == 0 &&
1972 			    so->so_rcv.sb_tlscc == 0) {
1973 #else
1974 			else {
1975 #endif
1976 				SOCKBUF_UNLOCK(&so->so_rcv);
1977 				goto release;
1978 			}
1979 		}
1980 		for (; m != NULL; m = m->m_next)
1981 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1982 				m = so->so_rcv.sb_mb;
1983 				goto dontblock;
1984 			}
1985 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
1986 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
1987 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1988 			SOCKBUF_UNLOCK(&so->so_rcv);
1989 			error = ENOTCONN;
1990 			goto release;
1991 		}
1992 		if (uio->uio_resid == 0) {
1993 			SOCKBUF_UNLOCK(&so->so_rcv);
1994 			goto release;
1995 		}
1996 		if ((so->so_state & SS_NBIO) ||
1997 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1998 			SOCKBUF_UNLOCK(&so->so_rcv);
1999 			error = EWOULDBLOCK;
2000 			goto release;
2001 		}
2002 		SBLASTRECORDCHK(&so->so_rcv);
2003 		SBLASTMBUFCHK(&so->so_rcv);
2004 		error = sbwait(&so->so_rcv);
2005 		SOCKBUF_UNLOCK(&so->so_rcv);
2006 		if (error)
2007 			goto release;
2008 		goto restart;
2009 	}
2010 dontblock:
2011 	/*
2012 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2013 	 * pointer to the next record in the socket buffer.  We must keep the
2014 	 * various socket buffer pointers and local stack versions of the
2015 	 * pointers in sync, pushing out modifications before dropping the
2016 	 * socket buffer mutex, and re-reading them when picking it up.
2017 	 *
2018 	 * Otherwise, we will race with the network stack appending new data
2019 	 * or records onto the socket buffer by using inconsistent/stale
2020 	 * versions of the field, possibly resulting in socket buffer
2021 	 * corruption.
2022 	 *
2023 	 * By holding the high-level sblock(), we prevent simultaneous
2024 	 * readers from pulling off the front of the socket buffer.
2025 	 */
2026 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2027 	if (uio->uio_td)
2028 		uio->uio_td->td_ru.ru_msgrcv++;
2029 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2030 	SBLASTRECORDCHK(&so->so_rcv);
2031 	SBLASTMBUFCHK(&so->so_rcv);
2032 	nextrecord = m->m_nextpkt;
2033 	if (pr->pr_flags & PR_ADDR) {
2034 		KASSERT(m->m_type == MT_SONAME,
2035 		    ("m->m_type == %d", m->m_type));
2036 		orig_resid = 0;
2037 		if (psa != NULL)
2038 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2039 			    M_NOWAIT);
2040 		if (flags & MSG_PEEK) {
2041 			m = m->m_next;
2042 		} else {
2043 			sbfree(&so->so_rcv, m);
2044 			so->so_rcv.sb_mb = m_free(m);
2045 			m = so->so_rcv.sb_mb;
2046 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2047 		}
2048 	}
2049 
2050 	/*
2051 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2052 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2053 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2054 	 * perform externalization (or freeing if controlp == NULL).
2055 	 */
2056 	if (m != NULL && m->m_type == MT_CONTROL) {
2057 		struct mbuf *cm = NULL, *cmn;
2058 		struct mbuf **cme = &cm;
2059 #ifdef KERN_TLS
2060 		struct cmsghdr *cmsg;
2061 		struct tls_get_record tgr;
2062 
2063 		/*
2064 		 * For MSG_TLSAPPDATA, check for a non-application data
2065 		 * record.  If found, return ENXIO without removing
2066 		 * it from the receive queue.  This allows a subsequent
2067 		 * call without MSG_TLSAPPDATA to receive it.
2068 		 * Note that, for TLS, there should only be a single
2069 		 * control mbuf with the TLS_GET_RECORD message in it.
2070 		 */
2071 		if (flags & MSG_TLSAPPDATA) {
2072 			cmsg = mtod(m, struct cmsghdr *);
2073 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2074 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2075 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2076 				/* This will need to change for TLS 1.3. */
2077 				if (tgr.tls_type != TLS_RLTYPE_APP) {
2078 					SOCKBUF_UNLOCK(&so->so_rcv);
2079 					error = ENXIO;
2080 					goto release;
2081 				}
2082 			}
2083 		}
2084 #endif
2085 
2086 		do {
2087 			if (flags & MSG_PEEK) {
2088 				if (controlp != NULL) {
2089 					*controlp = m_copym(m, 0, m->m_len,
2090 					    M_NOWAIT);
2091 					controlp = &(*controlp)->m_next;
2092 				}
2093 				m = m->m_next;
2094 			} else {
2095 				sbfree(&so->so_rcv, m);
2096 				so->so_rcv.sb_mb = m->m_next;
2097 				m->m_next = NULL;
2098 				*cme = m;
2099 				cme = &(*cme)->m_next;
2100 				m = so->so_rcv.sb_mb;
2101 			}
2102 		} while (m != NULL && m->m_type == MT_CONTROL);
2103 		if ((flags & MSG_PEEK) == 0)
2104 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2105 		while (cm != NULL) {
2106 			cmn = cm->m_next;
2107 			cm->m_next = NULL;
2108 			if (pr->pr_domain->dom_externalize != NULL) {
2109 				SOCKBUF_UNLOCK(&so->so_rcv);
2110 				VNET_SO_ASSERT(so);
2111 				error = (*pr->pr_domain->dom_externalize)
2112 				    (cm, controlp, flags);
2113 				SOCKBUF_LOCK(&so->so_rcv);
2114 			} else if (controlp != NULL)
2115 				*controlp = cm;
2116 			else
2117 				m_freem(cm);
2118 			if (controlp != NULL) {
2119 				orig_resid = 0;
2120 				while (*controlp != NULL)
2121 					controlp = &(*controlp)->m_next;
2122 			}
2123 			cm = cmn;
2124 		}
2125 		if (m != NULL)
2126 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2127 		else
2128 			nextrecord = so->so_rcv.sb_mb;
2129 		orig_resid = 0;
2130 	}
2131 	if (m != NULL) {
2132 		if ((flags & MSG_PEEK) == 0) {
2133 			KASSERT(m->m_nextpkt == nextrecord,
2134 			    ("soreceive: post-control, nextrecord !sync"));
2135 			if (nextrecord == NULL) {
2136 				KASSERT(so->so_rcv.sb_mb == m,
2137 				    ("soreceive: post-control, sb_mb!=m"));
2138 				KASSERT(so->so_rcv.sb_lastrecord == m,
2139 				    ("soreceive: post-control, lastrecord!=m"));
2140 			}
2141 		}
2142 		type = m->m_type;
2143 		if (type == MT_OOBDATA)
2144 			flags |= MSG_OOB;
2145 	} else {
2146 		if ((flags & MSG_PEEK) == 0) {
2147 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2148 			    ("soreceive: sb_mb != nextrecord"));
2149 			if (so->so_rcv.sb_mb == NULL) {
2150 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2151 				    ("soreceive: sb_lastercord != NULL"));
2152 			}
2153 		}
2154 	}
2155 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2156 	SBLASTRECORDCHK(&so->so_rcv);
2157 	SBLASTMBUFCHK(&so->so_rcv);
2158 
2159 	/*
2160 	 * Now continue to read any data mbufs off of the head of the socket
2161 	 * buffer until the read request is satisfied.  Note that 'type' is
2162 	 * used to store the type of any mbuf reads that have happened so far
2163 	 * such that soreceive() can stop reading if the type changes, which
2164 	 * causes soreceive() to return only one of regular data and inline
2165 	 * out-of-band data in a single socket receive operation.
2166 	 */
2167 	moff = 0;
2168 	offset = 0;
2169 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2170 	    && error == 0) {
2171 		/*
2172 		 * If the type of mbuf has changed since the last mbuf
2173 		 * examined ('type'), end the receive operation.
2174 		 */
2175 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2176 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2177 			if (type != m->m_type)
2178 				break;
2179 		} else if (type == MT_OOBDATA)
2180 			break;
2181 		else
2182 		    KASSERT(m->m_type == MT_DATA,
2183 			("m->m_type == %d", m->m_type));
2184 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2185 		len = uio->uio_resid;
2186 		if (so->so_oobmark && len > so->so_oobmark - offset)
2187 			len = so->so_oobmark - offset;
2188 		if (len > m->m_len - moff)
2189 			len = m->m_len - moff;
2190 		/*
2191 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2192 		 * them out via the uio, then free.  Sockbuf must be
2193 		 * consistent here (points to current mbuf, it points to next
2194 		 * record) when we drop priority; we must note any additions
2195 		 * to the sockbuf when we block interrupts again.
2196 		 */
2197 		if (mp == NULL) {
2198 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2199 			SBLASTRECORDCHK(&so->so_rcv);
2200 			SBLASTMBUFCHK(&so->so_rcv);
2201 			SOCKBUF_UNLOCK(&so->so_rcv);
2202 			if ((m->m_flags & M_EXTPG) != 0)
2203 				error = m_unmappedtouio(m, moff, uio, (int)len);
2204 			else
2205 				error = uiomove(mtod(m, char *) + moff,
2206 				    (int)len, uio);
2207 			SOCKBUF_LOCK(&so->so_rcv);
2208 			if (error) {
2209 				/*
2210 				 * The MT_SONAME mbuf has already been removed
2211 				 * from the record, so it is necessary to
2212 				 * remove the data mbufs, if any, to preserve
2213 				 * the invariant in the case of PR_ADDR that
2214 				 * requires MT_SONAME mbufs at the head of
2215 				 * each record.
2216 				 */
2217 				if (pr->pr_flags & PR_ATOMIC &&
2218 				    ((flags & MSG_PEEK) == 0))
2219 					(void)sbdroprecord_locked(&so->so_rcv);
2220 				SOCKBUF_UNLOCK(&so->so_rcv);
2221 				goto release;
2222 			}
2223 		} else
2224 			uio->uio_resid -= len;
2225 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2226 		if (len == m->m_len - moff) {
2227 			if (m->m_flags & M_EOR)
2228 				flags |= MSG_EOR;
2229 			if (flags & MSG_PEEK) {
2230 				m = m->m_next;
2231 				moff = 0;
2232 			} else {
2233 				nextrecord = m->m_nextpkt;
2234 				sbfree(&so->so_rcv, m);
2235 				if (mp != NULL) {
2236 					m->m_nextpkt = NULL;
2237 					*mp = m;
2238 					mp = &m->m_next;
2239 					so->so_rcv.sb_mb = m = m->m_next;
2240 					*mp = NULL;
2241 				} else {
2242 					so->so_rcv.sb_mb = m_free(m);
2243 					m = so->so_rcv.sb_mb;
2244 				}
2245 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2246 				SBLASTRECORDCHK(&so->so_rcv);
2247 				SBLASTMBUFCHK(&so->so_rcv);
2248 			}
2249 		} else {
2250 			if (flags & MSG_PEEK)
2251 				moff += len;
2252 			else {
2253 				if (mp != NULL) {
2254 					if (flags & MSG_DONTWAIT) {
2255 						*mp = m_copym(m, 0, len,
2256 						    M_NOWAIT);
2257 						if (*mp == NULL) {
2258 							/*
2259 							 * m_copym() couldn't
2260 							 * allocate an mbuf.
2261 							 * Adjust uio_resid back
2262 							 * (it was adjusted
2263 							 * down by len bytes,
2264 							 * which we didn't end
2265 							 * up "copying" over).
2266 							 */
2267 							uio->uio_resid += len;
2268 							break;
2269 						}
2270 					} else {
2271 						SOCKBUF_UNLOCK(&so->so_rcv);
2272 						*mp = m_copym(m, 0, len,
2273 						    M_WAITOK);
2274 						SOCKBUF_LOCK(&so->so_rcv);
2275 					}
2276 				}
2277 				sbcut_locked(&so->so_rcv, len);
2278 			}
2279 		}
2280 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2281 		if (so->so_oobmark) {
2282 			if ((flags & MSG_PEEK) == 0) {
2283 				so->so_oobmark -= len;
2284 				if (so->so_oobmark == 0) {
2285 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2286 					break;
2287 				}
2288 			} else {
2289 				offset += len;
2290 				if (offset == so->so_oobmark)
2291 					break;
2292 			}
2293 		}
2294 		if (flags & MSG_EOR)
2295 			break;
2296 		/*
2297 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2298 		 * must not quit until "uio->uio_resid == 0" or an error
2299 		 * termination.  If a signal/timeout occurs, return with a
2300 		 * short count but without error.  Keep sockbuf locked
2301 		 * against other readers.
2302 		 */
2303 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2304 		    !sosendallatonce(so) && nextrecord == NULL) {
2305 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2306 			if (so->so_error ||
2307 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2308 				break;
2309 			/*
2310 			 * Notify the protocol that some data has been
2311 			 * drained before blocking.
2312 			 */
2313 			if (pr->pr_flags & PR_WANTRCVD) {
2314 				SOCKBUF_UNLOCK(&so->so_rcv);
2315 				VNET_SO_ASSERT(so);
2316 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2317 				SOCKBUF_LOCK(&so->so_rcv);
2318 			}
2319 			SBLASTRECORDCHK(&so->so_rcv);
2320 			SBLASTMBUFCHK(&so->so_rcv);
2321 			/*
2322 			 * We could receive some data while was notifying
2323 			 * the protocol. Skip blocking in this case.
2324 			 */
2325 			if (so->so_rcv.sb_mb == NULL) {
2326 				error = sbwait(&so->so_rcv);
2327 				if (error) {
2328 					SOCKBUF_UNLOCK(&so->so_rcv);
2329 					goto release;
2330 				}
2331 			}
2332 			m = so->so_rcv.sb_mb;
2333 			if (m != NULL)
2334 				nextrecord = m->m_nextpkt;
2335 		}
2336 	}
2337 
2338 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2339 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2340 		flags |= MSG_TRUNC;
2341 		if ((flags & MSG_PEEK) == 0)
2342 			(void) sbdroprecord_locked(&so->so_rcv);
2343 	}
2344 	if ((flags & MSG_PEEK) == 0) {
2345 		if (m == NULL) {
2346 			/*
2347 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2348 			 * part makes sure sb_lastrecord is up-to-date if
2349 			 * there is still data in the socket buffer.
2350 			 */
2351 			so->so_rcv.sb_mb = nextrecord;
2352 			if (so->so_rcv.sb_mb == NULL) {
2353 				so->so_rcv.sb_mbtail = NULL;
2354 				so->so_rcv.sb_lastrecord = NULL;
2355 			} else if (nextrecord->m_nextpkt == NULL)
2356 				so->so_rcv.sb_lastrecord = nextrecord;
2357 		}
2358 		SBLASTRECORDCHK(&so->so_rcv);
2359 		SBLASTMBUFCHK(&so->so_rcv);
2360 		/*
2361 		 * If soreceive() is being done from the socket callback,
2362 		 * then don't need to generate ACK to peer to update window,
2363 		 * since ACK will be generated on return to TCP.
2364 		 */
2365 		if (!(flags & MSG_SOCALLBCK) &&
2366 		    (pr->pr_flags & PR_WANTRCVD)) {
2367 			SOCKBUF_UNLOCK(&so->so_rcv);
2368 			VNET_SO_ASSERT(so);
2369 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2370 			SOCKBUF_LOCK(&so->so_rcv);
2371 		}
2372 	}
2373 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2374 	if (orig_resid == uio->uio_resid && orig_resid &&
2375 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2376 		SOCKBUF_UNLOCK(&so->so_rcv);
2377 		goto restart;
2378 	}
2379 	SOCKBUF_UNLOCK(&so->so_rcv);
2380 
2381 	if (flagsp != NULL)
2382 		*flagsp |= flags;
2383 release:
2384 	sbunlock(&so->so_rcv);
2385 	return (error);
2386 }
2387 
2388 /*
2389  * Optimized version of soreceive() for stream (TCP) sockets.
2390  */
2391 int
2392 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2393     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2394 {
2395 	int len = 0, error = 0, flags, oresid;
2396 	struct sockbuf *sb;
2397 	struct mbuf *m, *n = NULL;
2398 
2399 	/* We only do stream sockets. */
2400 	if (so->so_type != SOCK_STREAM)
2401 		return (EINVAL);
2402 	if (psa != NULL)
2403 		*psa = NULL;
2404 	if (flagsp != NULL)
2405 		flags = *flagsp &~ MSG_EOR;
2406 	else
2407 		flags = 0;
2408 	if (controlp != NULL)
2409 		*controlp = NULL;
2410 	if (flags & MSG_OOB)
2411 		return (soreceive_rcvoob(so, uio, flags));
2412 	if (mp0 != NULL)
2413 		*mp0 = NULL;
2414 
2415 	sb = &so->so_rcv;
2416 
2417 #ifdef KERN_TLS
2418 	/*
2419 	 * KTLS store TLS records as records with a control message to
2420 	 * describe the framing.
2421 	 *
2422 	 * We check once here before acquiring locks to optimize the
2423 	 * common case.
2424 	 */
2425 	if (sb->sb_tls_info != NULL)
2426 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2427 		    flagsp));
2428 #endif
2429 
2430 	/* Prevent other readers from entering the socket. */
2431 	error = sblock(sb, SBLOCKWAIT(flags));
2432 	if (error)
2433 		return (error);
2434 	SOCKBUF_LOCK(sb);
2435 
2436 #ifdef KERN_TLS
2437 	if (sb->sb_tls_info != NULL) {
2438 		SOCKBUF_UNLOCK(sb);
2439 		sbunlock(sb);
2440 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2441 		    flagsp));
2442 	}
2443 #endif
2444 
2445 	/* Easy one, no space to copyout anything. */
2446 	if (uio->uio_resid == 0) {
2447 		error = EINVAL;
2448 		goto out;
2449 	}
2450 	oresid = uio->uio_resid;
2451 
2452 	/* We will never ever get anything unless we are or were connected. */
2453 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2454 		error = ENOTCONN;
2455 		goto out;
2456 	}
2457 
2458 restart:
2459 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2460 
2461 	/* Abort if socket has reported problems. */
2462 	if (so->so_error) {
2463 		if (sbavail(sb) > 0)
2464 			goto deliver;
2465 		if (oresid > uio->uio_resid)
2466 			goto out;
2467 		error = so->so_error;
2468 		if (!(flags & MSG_PEEK))
2469 			so->so_error = 0;
2470 		goto out;
2471 	}
2472 
2473 	/* Door is closed.  Deliver what is left, if any. */
2474 	if (sb->sb_state & SBS_CANTRCVMORE) {
2475 		if (sbavail(sb) > 0)
2476 			goto deliver;
2477 		else
2478 			goto out;
2479 	}
2480 
2481 	/* Socket buffer is empty and we shall not block. */
2482 	if (sbavail(sb) == 0 &&
2483 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2484 		error = EAGAIN;
2485 		goto out;
2486 	}
2487 
2488 	/* Socket buffer got some data that we shall deliver now. */
2489 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2490 	    ((so->so_state & SS_NBIO) ||
2491 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2492 	     sbavail(sb) >= sb->sb_lowat ||
2493 	     sbavail(sb) >= uio->uio_resid ||
2494 	     sbavail(sb) >= sb->sb_hiwat) ) {
2495 		goto deliver;
2496 	}
2497 
2498 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2499 	if ((flags & MSG_WAITALL) &&
2500 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2501 		goto deliver;
2502 
2503 	/*
2504 	 * Wait and block until (more) data comes in.
2505 	 * NB: Drops the sockbuf lock during wait.
2506 	 */
2507 	error = sbwait(sb);
2508 	if (error)
2509 		goto out;
2510 	goto restart;
2511 
2512 deliver:
2513 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2514 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2515 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2516 
2517 	/* Statistics. */
2518 	if (uio->uio_td)
2519 		uio->uio_td->td_ru.ru_msgrcv++;
2520 
2521 	/* Fill uio until full or current end of socket buffer is reached. */
2522 	len = min(uio->uio_resid, sbavail(sb));
2523 	if (mp0 != NULL) {
2524 		/* Dequeue as many mbufs as possible. */
2525 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2526 			if (*mp0 == NULL)
2527 				*mp0 = sb->sb_mb;
2528 			else
2529 				m_cat(*mp0, sb->sb_mb);
2530 			for (m = sb->sb_mb;
2531 			     m != NULL && m->m_len <= len;
2532 			     m = m->m_next) {
2533 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2534 				    ("%s: m %p not available", __func__, m));
2535 				len -= m->m_len;
2536 				uio->uio_resid -= m->m_len;
2537 				sbfree(sb, m);
2538 				n = m;
2539 			}
2540 			n->m_next = NULL;
2541 			sb->sb_mb = m;
2542 			sb->sb_lastrecord = sb->sb_mb;
2543 			if (sb->sb_mb == NULL)
2544 				SB_EMPTY_FIXUP(sb);
2545 		}
2546 		/* Copy the remainder. */
2547 		if (len > 0) {
2548 			KASSERT(sb->sb_mb != NULL,
2549 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2550 
2551 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2552 			if (m == NULL)
2553 				len = 0;	/* Don't flush data from sockbuf. */
2554 			else
2555 				uio->uio_resid -= len;
2556 			if (*mp0 != NULL)
2557 				m_cat(*mp0, m);
2558 			else
2559 				*mp0 = m;
2560 			if (*mp0 == NULL) {
2561 				error = ENOBUFS;
2562 				goto out;
2563 			}
2564 		}
2565 	} else {
2566 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2567 		SOCKBUF_UNLOCK(sb);
2568 		error = m_mbuftouio(uio, sb->sb_mb, len);
2569 		SOCKBUF_LOCK(sb);
2570 		if (error)
2571 			goto out;
2572 	}
2573 	SBLASTRECORDCHK(sb);
2574 	SBLASTMBUFCHK(sb);
2575 
2576 	/*
2577 	 * Remove the delivered data from the socket buffer unless we
2578 	 * were only peeking.
2579 	 */
2580 	if (!(flags & MSG_PEEK)) {
2581 		if (len > 0)
2582 			sbdrop_locked(sb, len);
2583 
2584 		/* Notify protocol that we drained some data. */
2585 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2586 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2587 		     !(flags & MSG_SOCALLBCK))) {
2588 			SOCKBUF_UNLOCK(sb);
2589 			VNET_SO_ASSERT(so);
2590 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2591 			SOCKBUF_LOCK(sb);
2592 		}
2593 	}
2594 
2595 	/*
2596 	 * For MSG_WAITALL we may have to loop again and wait for
2597 	 * more data to come in.
2598 	 */
2599 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2600 		goto restart;
2601 out:
2602 	SOCKBUF_LOCK_ASSERT(sb);
2603 	SBLASTRECORDCHK(sb);
2604 	SBLASTMBUFCHK(sb);
2605 	SOCKBUF_UNLOCK(sb);
2606 	sbunlock(sb);
2607 	return (error);
2608 }
2609 
2610 /*
2611  * Optimized version of soreceive() for simple datagram cases from userspace.
2612  * Unlike in the stream case, we're able to drop a datagram if copyout()
2613  * fails, and because we handle datagrams atomically, we don't need to use a
2614  * sleep lock to prevent I/O interlacing.
2615  */
2616 int
2617 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2618     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2619 {
2620 	struct mbuf *m, *m2;
2621 	int flags, error;
2622 	ssize_t len;
2623 	struct protosw *pr = so->so_proto;
2624 	struct mbuf *nextrecord;
2625 
2626 	if (psa != NULL)
2627 		*psa = NULL;
2628 	if (controlp != NULL)
2629 		*controlp = NULL;
2630 	if (flagsp != NULL)
2631 		flags = *flagsp &~ MSG_EOR;
2632 	else
2633 		flags = 0;
2634 
2635 	/*
2636 	 * For any complicated cases, fall back to the full
2637 	 * soreceive_generic().
2638 	 */
2639 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2640 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2641 		    flagsp));
2642 
2643 	/*
2644 	 * Enforce restrictions on use.
2645 	 */
2646 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2647 	    ("soreceive_dgram: wantrcvd"));
2648 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2649 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2650 	    ("soreceive_dgram: SBS_RCVATMARK"));
2651 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2652 	    ("soreceive_dgram: P_CONNREQUIRED"));
2653 
2654 	/*
2655 	 * Loop blocking while waiting for a datagram.
2656 	 */
2657 	SOCKBUF_LOCK(&so->so_rcv);
2658 	while ((m = so->so_rcv.sb_mb) == NULL) {
2659 		KASSERT(sbavail(&so->so_rcv) == 0,
2660 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2661 		    sbavail(&so->so_rcv)));
2662 		if (so->so_error) {
2663 			error = so->so_error;
2664 			so->so_error = 0;
2665 			SOCKBUF_UNLOCK(&so->so_rcv);
2666 			return (error);
2667 		}
2668 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2669 		    uio->uio_resid == 0) {
2670 			SOCKBUF_UNLOCK(&so->so_rcv);
2671 			return (0);
2672 		}
2673 		if ((so->so_state & SS_NBIO) ||
2674 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2675 			SOCKBUF_UNLOCK(&so->so_rcv);
2676 			return (EWOULDBLOCK);
2677 		}
2678 		SBLASTRECORDCHK(&so->so_rcv);
2679 		SBLASTMBUFCHK(&so->so_rcv);
2680 		error = sbwait(&so->so_rcv);
2681 		if (error) {
2682 			SOCKBUF_UNLOCK(&so->so_rcv);
2683 			return (error);
2684 		}
2685 	}
2686 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2687 
2688 	if (uio->uio_td)
2689 		uio->uio_td->td_ru.ru_msgrcv++;
2690 	SBLASTRECORDCHK(&so->so_rcv);
2691 	SBLASTMBUFCHK(&so->so_rcv);
2692 	nextrecord = m->m_nextpkt;
2693 	if (nextrecord == NULL) {
2694 		KASSERT(so->so_rcv.sb_lastrecord == m,
2695 		    ("soreceive_dgram: lastrecord != m"));
2696 	}
2697 
2698 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2699 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2700 
2701 	/*
2702 	 * Pull 'm' and its chain off the front of the packet queue.
2703 	 */
2704 	so->so_rcv.sb_mb = NULL;
2705 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2706 
2707 	/*
2708 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2709 	 */
2710 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2711 		sbfree(&so->so_rcv, m2);
2712 
2713 	/*
2714 	 * Do a few last checks before we let go of the lock.
2715 	 */
2716 	SBLASTRECORDCHK(&so->so_rcv);
2717 	SBLASTMBUFCHK(&so->so_rcv);
2718 	SOCKBUF_UNLOCK(&so->so_rcv);
2719 
2720 	if (pr->pr_flags & PR_ADDR) {
2721 		KASSERT(m->m_type == MT_SONAME,
2722 		    ("m->m_type == %d", m->m_type));
2723 		if (psa != NULL)
2724 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2725 			    M_NOWAIT);
2726 		m = m_free(m);
2727 	}
2728 	if (m == NULL) {
2729 		/* XXXRW: Can this happen? */
2730 		return (0);
2731 	}
2732 
2733 	/*
2734 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2735 	 * queue.
2736 	 *
2737 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2738 	 * in the first mbuf chain on the socket buffer.  We call into the
2739 	 * protocol to perform externalization (or freeing if controlp ==
2740 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2741 	 * MT_DATA mbufs.
2742 	 */
2743 	if (m->m_type == MT_CONTROL) {
2744 		struct mbuf *cm = NULL, *cmn;
2745 		struct mbuf **cme = &cm;
2746 
2747 		do {
2748 			m2 = m->m_next;
2749 			m->m_next = NULL;
2750 			*cme = m;
2751 			cme = &(*cme)->m_next;
2752 			m = m2;
2753 		} while (m != NULL && m->m_type == MT_CONTROL);
2754 		while (cm != NULL) {
2755 			cmn = cm->m_next;
2756 			cm->m_next = NULL;
2757 			if (pr->pr_domain->dom_externalize != NULL) {
2758 				error = (*pr->pr_domain->dom_externalize)
2759 				    (cm, controlp, flags);
2760 			} else if (controlp != NULL)
2761 				*controlp = cm;
2762 			else
2763 				m_freem(cm);
2764 			if (controlp != NULL) {
2765 				while (*controlp != NULL)
2766 					controlp = &(*controlp)->m_next;
2767 			}
2768 			cm = cmn;
2769 		}
2770 	}
2771 	KASSERT(m == NULL || m->m_type == MT_DATA,
2772 	    ("soreceive_dgram: !data"));
2773 	while (m != NULL && uio->uio_resid > 0) {
2774 		len = uio->uio_resid;
2775 		if (len > m->m_len)
2776 			len = m->m_len;
2777 		error = uiomove(mtod(m, char *), (int)len, uio);
2778 		if (error) {
2779 			m_freem(m);
2780 			return (error);
2781 		}
2782 		if (len == m->m_len)
2783 			m = m_free(m);
2784 		else {
2785 			m->m_data += len;
2786 			m->m_len -= len;
2787 		}
2788 	}
2789 	if (m != NULL) {
2790 		flags |= MSG_TRUNC;
2791 		m_freem(m);
2792 	}
2793 	if (flagsp != NULL)
2794 		*flagsp |= flags;
2795 	return (0);
2796 }
2797 
2798 int
2799 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2800     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2801 {
2802 	int error;
2803 
2804 	CURVNET_SET(so->so_vnet);
2805 	if (!SOLISTENING(so))
2806 		error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2807 		    mp0, controlp, flagsp));
2808 	else
2809 		error = ENOTCONN;
2810 	CURVNET_RESTORE();
2811 	return (error);
2812 }
2813 
2814 int
2815 soshutdown(struct socket *so, int how)
2816 {
2817 	struct protosw *pr = so->so_proto;
2818 	int error, soerror_enotconn;
2819 
2820 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2821 		return (EINVAL);
2822 
2823 	soerror_enotconn = 0;
2824 	if ((so->so_state &
2825 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2826 		/*
2827 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2828 		 * invoked on a datagram sockets, however historically we would
2829 		 * actually tear socket down. This is known to be leveraged by
2830 		 * some applications to unblock process waiting in recvXXX(2)
2831 		 * by other process that it shares that socket with. Try to meet
2832 		 * both backward-compatibility and POSIX requirements by forcing
2833 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2834 		 */
2835 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
2836 			return (ENOTCONN);
2837 		soerror_enotconn = 1;
2838 	}
2839 
2840 	if (SOLISTENING(so)) {
2841 		if (how != SHUT_WR) {
2842 			SOLISTEN_LOCK(so);
2843 			so->so_error = ECONNABORTED;
2844 			solisten_wakeup(so);	/* unlocks so */
2845 		}
2846 		goto done;
2847 	}
2848 
2849 	CURVNET_SET(so->so_vnet);
2850 	if (pr->pr_usrreqs->pru_flush != NULL)
2851 		(*pr->pr_usrreqs->pru_flush)(so, how);
2852 	if (how != SHUT_WR)
2853 		sorflush(so);
2854 	if (how != SHUT_RD) {
2855 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2856 		wakeup(&so->so_timeo);
2857 		CURVNET_RESTORE();
2858 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2859 	}
2860 	wakeup(&so->so_timeo);
2861 	CURVNET_RESTORE();
2862 
2863 done:
2864 	return (soerror_enotconn ? ENOTCONN : 0);
2865 }
2866 
2867 void
2868 sorflush(struct socket *so)
2869 {
2870 	struct sockbuf *sb = &so->so_rcv;
2871 	struct protosw *pr = so->so_proto;
2872 	struct socket aso;
2873 
2874 	VNET_SO_ASSERT(so);
2875 
2876 	/*
2877 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2878 	 * held, and in order to generally avoid holding the lock for a long
2879 	 * time, we make a copy of the socket buffer and clear the original
2880 	 * (except locks, state).  The new socket buffer copy won't have
2881 	 * initialized locks so we can only call routines that won't use or
2882 	 * assert those locks.
2883 	 *
2884 	 * Dislodge threads currently blocked in receive and wait to acquire
2885 	 * a lock against other simultaneous readers before clearing the
2886 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2887 	 * despite any existing socket disposition on interruptable waiting.
2888 	 */
2889 	socantrcvmore(so);
2890 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2891 
2892 	/*
2893 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2894 	 * and mutex data unchanged.
2895 	 */
2896 	SOCKBUF_LOCK(sb);
2897 	bzero(&aso, sizeof(aso));
2898 	aso.so_pcb = so->so_pcb;
2899 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2900 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2901 	bzero(&sb->sb_startzero,
2902 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2903 	SOCKBUF_UNLOCK(sb);
2904 	sbunlock(sb);
2905 
2906 	/*
2907 	 * Dispose of special rights and flush the copied socket.  Don't call
2908 	 * any unsafe routines (that rely on locks being initialized) on aso.
2909 	 */
2910 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2911 		(*pr->pr_domain->dom_dispose)(&aso);
2912 	sbrelease_internal(&aso.so_rcv, so);
2913 }
2914 
2915 /*
2916  * Wrapper for Socket established helper hook.
2917  * Parameters: socket, context of the hook point, hook id.
2918  */
2919 static int inline
2920 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2921 {
2922 	struct socket_hhook_data hhook_data = {
2923 		.so = so,
2924 		.hctx = hctx,
2925 		.m = NULL,
2926 		.status = 0
2927 	};
2928 
2929 	CURVNET_SET(so->so_vnet);
2930 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2931 	CURVNET_RESTORE();
2932 
2933 	/* Ugly but needed, since hhooks return void for now */
2934 	return (hhook_data.status);
2935 }
2936 
2937 /*
2938  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2939  * additional variant to handle the case where the option value needs to be
2940  * some kind of integer, but not a specific size.  In addition to their use
2941  * here, these functions are also called by the protocol-level pr_ctloutput()
2942  * routines.
2943  */
2944 int
2945 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2946 {
2947 	size_t	valsize;
2948 
2949 	/*
2950 	 * If the user gives us more than we wanted, we ignore it, but if we
2951 	 * don't get the minimum length the caller wants, we return EINVAL.
2952 	 * On success, sopt->sopt_valsize is set to however much we actually
2953 	 * retrieved.
2954 	 */
2955 	if ((valsize = sopt->sopt_valsize) < minlen)
2956 		return EINVAL;
2957 	if (valsize > len)
2958 		sopt->sopt_valsize = valsize = len;
2959 
2960 	if (sopt->sopt_td != NULL)
2961 		return (copyin(sopt->sopt_val, buf, valsize));
2962 
2963 	bcopy(sopt->sopt_val, buf, valsize);
2964 	return (0);
2965 }
2966 
2967 /*
2968  * Kernel version of setsockopt(2).
2969  *
2970  * XXX: optlen is size_t, not socklen_t
2971  */
2972 int
2973 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2974     size_t optlen)
2975 {
2976 	struct sockopt sopt;
2977 
2978 	sopt.sopt_level = level;
2979 	sopt.sopt_name = optname;
2980 	sopt.sopt_dir = SOPT_SET;
2981 	sopt.sopt_val = optval;
2982 	sopt.sopt_valsize = optlen;
2983 	sopt.sopt_td = NULL;
2984 	return (sosetopt(so, &sopt));
2985 }
2986 
2987 int
2988 sosetopt(struct socket *so, struct sockopt *sopt)
2989 {
2990 	int	error, optval;
2991 	struct	linger l;
2992 	struct	timeval tv;
2993 	sbintime_t val;
2994 	uint32_t val32;
2995 #ifdef MAC
2996 	struct mac extmac;
2997 #endif
2998 
2999 	CURVNET_SET(so->so_vnet);
3000 	error = 0;
3001 	if (sopt->sopt_level != SOL_SOCKET) {
3002 		if (so->so_proto->pr_ctloutput != NULL)
3003 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3004 		else
3005 			error = ENOPROTOOPT;
3006 	} else {
3007 		switch (sopt->sopt_name) {
3008 		case SO_ACCEPTFILTER:
3009 			error = accept_filt_setopt(so, sopt);
3010 			if (error)
3011 				goto bad;
3012 			break;
3013 
3014 		case SO_LINGER:
3015 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3016 			if (error)
3017 				goto bad;
3018 			if (l.l_linger < 0 ||
3019 			    l.l_linger > USHRT_MAX ||
3020 			    l.l_linger > (INT_MAX / hz)) {
3021 				error = EDOM;
3022 				goto bad;
3023 			}
3024 			SOCK_LOCK(so);
3025 			so->so_linger = l.l_linger;
3026 			if (l.l_onoff)
3027 				so->so_options |= SO_LINGER;
3028 			else
3029 				so->so_options &= ~SO_LINGER;
3030 			SOCK_UNLOCK(so);
3031 			break;
3032 
3033 		case SO_DEBUG:
3034 		case SO_KEEPALIVE:
3035 		case SO_DONTROUTE:
3036 		case SO_USELOOPBACK:
3037 		case SO_BROADCAST:
3038 		case SO_REUSEADDR:
3039 		case SO_REUSEPORT:
3040 		case SO_REUSEPORT_LB:
3041 		case SO_OOBINLINE:
3042 		case SO_TIMESTAMP:
3043 		case SO_BINTIME:
3044 		case SO_NOSIGPIPE:
3045 		case SO_NO_DDP:
3046 		case SO_NO_OFFLOAD:
3047 			error = sooptcopyin(sopt, &optval, sizeof optval,
3048 			    sizeof optval);
3049 			if (error)
3050 				goto bad;
3051 			SOCK_LOCK(so);
3052 			if (optval)
3053 				so->so_options |= sopt->sopt_name;
3054 			else
3055 				so->so_options &= ~sopt->sopt_name;
3056 			SOCK_UNLOCK(so);
3057 			break;
3058 
3059 		case SO_SETFIB:
3060 			error = sooptcopyin(sopt, &optval, sizeof optval,
3061 			    sizeof optval);
3062 			if (error)
3063 				goto bad;
3064 
3065 			if (optval < 0 || optval >= rt_numfibs) {
3066 				error = EINVAL;
3067 				goto bad;
3068 			}
3069 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3070 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3071 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3072 				so->so_fibnum = optval;
3073 			else
3074 				so->so_fibnum = 0;
3075 			break;
3076 
3077 		case SO_USER_COOKIE:
3078 			error = sooptcopyin(sopt, &val32, sizeof val32,
3079 			    sizeof val32);
3080 			if (error)
3081 				goto bad;
3082 			so->so_user_cookie = val32;
3083 			break;
3084 
3085 		case SO_SNDBUF:
3086 		case SO_RCVBUF:
3087 		case SO_SNDLOWAT:
3088 		case SO_RCVLOWAT:
3089 			error = sooptcopyin(sopt, &optval, sizeof optval,
3090 			    sizeof optval);
3091 			if (error)
3092 				goto bad;
3093 
3094 			/*
3095 			 * Values < 1 make no sense for any of these options,
3096 			 * so disallow them.
3097 			 */
3098 			if (optval < 1) {
3099 				error = EINVAL;
3100 				goto bad;
3101 			}
3102 
3103 			error = sbsetopt(so, sopt->sopt_name, optval);
3104 			break;
3105 
3106 		case SO_SNDTIMEO:
3107 		case SO_RCVTIMEO:
3108 #ifdef COMPAT_FREEBSD32
3109 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3110 				struct timeval32 tv32;
3111 
3112 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3113 				    sizeof tv32);
3114 				CP(tv32, tv, tv_sec);
3115 				CP(tv32, tv, tv_usec);
3116 			} else
3117 #endif
3118 				error = sooptcopyin(sopt, &tv, sizeof tv,
3119 				    sizeof tv);
3120 			if (error)
3121 				goto bad;
3122 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3123 			    tv.tv_usec >= 1000000) {
3124 				error = EDOM;
3125 				goto bad;
3126 			}
3127 			if (tv.tv_sec > INT32_MAX)
3128 				val = SBT_MAX;
3129 			else
3130 				val = tvtosbt(tv);
3131 			switch (sopt->sopt_name) {
3132 			case SO_SNDTIMEO:
3133 				so->so_snd.sb_timeo = val;
3134 				break;
3135 			case SO_RCVTIMEO:
3136 				so->so_rcv.sb_timeo = val;
3137 				break;
3138 			}
3139 			break;
3140 
3141 		case SO_LABEL:
3142 #ifdef MAC
3143 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3144 			    sizeof extmac);
3145 			if (error)
3146 				goto bad;
3147 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3148 			    so, &extmac);
3149 #else
3150 			error = EOPNOTSUPP;
3151 #endif
3152 			break;
3153 
3154 		case SO_TS_CLOCK:
3155 			error = sooptcopyin(sopt, &optval, sizeof optval,
3156 			    sizeof optval);
3157 			if (error)
3158 				goto bad;
3159 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3160 				error = EINVAL;
3161 				goto bad;
3162 			}
3163 			so->so_ts_clock = optval;
3164 			break;
3165 
3166 		case SO_MAX_PACING_RATE:
3167 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3168 			    sizeof(val32));
3169 			if (error)
3170 				goto bad;
3171 			so->so_max_pacing_rate = val32;
3172 			break;
3173 
3174 		default:
3175 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3176 				error = hhook_run_socket(so, sopt,
3177 				    HHOOK_SOCKET_OPT);
3178 			else
3179 				error = ENOPROTOOPT;
3180 			break;
3181 		}
3182 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3183 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3184 	}
3185 bad:
3186 	CURVNET_RESTORE();
3187 	return (error);
3188 }
3189 
3190 /*
3191  * Helper routine for getsockopt.
3192  */
3193 int
3194 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3195 {
3196 	int	error;
3197 	size_t	valsize;
3198 
3199 	error = 0;
3200 
3201 	/*
3202 	 * Documented get behavior is that we always return a value, possibly
3203 	 * truncated to fit in the user's buffer.  Traditional behavior is
3204 	 * that we always tell the user precisely how much we copied, rather
3205 	 * than something useful like the total amount we had available for
3206 	 * her.  Note that this interface is not idempotent; the entire
3207 	 * answer must be generated ahead of time.
3208 	 */
3209 	valsize = min(len, sopt->sopt_valsize);
3210 	sopt->sopt_valsize = valsize;
3211 	if (sopt->sopt_val != NULL) {
3212 		if (sopt->sopt_td != NULL)
3213 			error = copyout(buf, sopt->sopt_val, valsize);
3214 		else
3215 			bcopy(buf, sopt->sopt_val, valsize);
3216 	}
3217 	return (error);
3218 }
3219 
3220 int
3221 sogetopt(struct socket *so, struct sockopt *sopt)
3222 {
3223 	int	error, optval;
3224 	struct	linger l;
3225 	struct	timeval tv;
3226 #ifdef MAC
3227 	struct mac extmac;
3228 #endif
3229 
3230 	CURVNET_SET(so->so_vnet);
3231 	error = 0;
3232 	if (sopt->sopt_level != SOL_SOCKET) {
3233 		if (so->so_proto->pr_ctloutput != NULL)
3234 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3235 		else
3236 			error = ENOPROTOOPT;
3237 		CURVNET_RESTORE();
3238 		return (error);
3239 	} else {
3240 		switch (sopt->sopt_name) {
3241 		case SO_ACCEPTFILTER:
3242 			error = accept_filt_getopt(so, sopt);
3243 			break;
3244 
3245 		case SO_LINGER:
3246 			SOCK_LOCK(so);
3247 			l.l_onoff = so->so_options & SO_LINGER;
3248 			l.l_linger = so->so_linger;
3249 			SOCK_UNLOCK(so);
3250 			error = sooptcopyout(sopt, &l, sizeof l);
3251 			break;
3252 
3253 		case SO_USELOOPBACK:
3254 		case SO_DONTROUTE:
3255 		case SO_DEBUG:
3256 		case SO_KEEPALIVE:
3257 		case SO_REUSEADDR:
3258 		case SO_REUSEPORT:
3259 		case SO_REUSEPORT_LB:
3260 		case SO_BROADCAST:
3261 		case SO_OOBINLINE:
3262 		case SO_ACCEPTCONN:
3263 		case SO_TIMESTAMP:
3264 		case SO_BINTIME:
3265 		case SO_NOSIGPIPE:
3266 		case SO_NO_DDP:
3267 		case SO_NO_OFFLOAD:
3268 			optval = so->so_options & sopt->sopt_name;
3269 integer:
3270 			error = sooptcopyout(sopt, &optval, sizeof optval);
3271 			break;
3272 
3273 		case SO_DOMAIN:
3274 			optval = so->so_proto->pr_domain->dom_family;
3275 			goto integer;
3276 
3277 		case SO_TYPE:
3278 			optval = so->so_type;
3279 			goto integer;
3280 
3281 		case SO_PROTOCOL:
3282 			optval = so->so_proto->pr_protocol;
3283 			goto integer;
3284 
3285 		case SO_ERROR:
3286 			SOCK_LOCK(so);
3287 			optval = so->so_error;
3288 			so->so_error = 0;
3289 			SOCK_UNLOCK(so);
3290 			goto integer;
3291 
3292 		case SO_SNDBUF:
3293 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3294 			    so->so_snd.sb_hiwat;
3295 			goto integer;
3296 
3297 		case SO_RCVBUF:
3298 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3299 			    so->so_rcv.sb_hiwat;
3300 			goto integer;
3301 
3302 		case SO_SNDLOWAT:
3303 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3304 			    so->so_snd.sb_lowat;
3305 			goto integer;
3306 
3307 		case SO_RCVLOWAT:
3308 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3309 			    so->so_rcv.sb_lowat;
3310 			goto integer;
3311 
3312 		case SO_SNDTIMEO:
3313 		case SO_RCVTIMEO:
3314 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3315 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3316 #ifdef COMPAT_FREEBSD32
3317 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3318 				struct timeval32 tv32;
3319 
3320 				CP(tv, tv32, tv_sec);
3321 				CP(tv, tv32, tv_usec);
3322 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3323 			} else
3324 #endif
3325 				error = sooptcopyout(sopt, &tv, sizeof tv);
3326 			break;
3327 
3328 		case SO_LABEL:
3329 #ifdef MAC
3330 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3331 			    sizeof(extmac));
3332 			if (error)
3333 				goto bad;
3334 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3335 			    so, &extmac);
3336 			if (error)
3337 				goto bad;
3338 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3339 #else
3340 			error = EOPNOTSUPP;
3341 #endif
3342 			break;
3343 
3344 		case SO_PEERLABEL:
3345 #ifdef MAC
3346 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3347 			    sizeof(extmac));
3348 			if (error)
3349 				goto bad;
3350 			error = mac_getsockopt_peerlabel(
3351 			    sopt->sopt_td->td_ucred, so, &extmac);
3352 			if (error)
3353 				goto bad;
3354 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3355 #else
3356 			error = EOPNOTSUPP;
3357 #endif
3358 			break;
3359 
3360 		case SO_LISTENQLIMIT:
3361 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3362 			goto integer;
3363 
3364 		case SO_LISTENQLEN:
3365 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3366 			goto integer;
3367 
3368 		case SO_LISTENINCQLEN:
3369 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3370 			goto integer;
3371 
3372 		case SO_TS_CLOCK:
3373 			optval = so->so_ts_clock;
3374 			goto integer;
3375 
3376 		case SO_MAX_PACING_RATE:
3377 			optval = so->so_max_pacing_rate;
3378 			goto integer;
3379 
3380 		default:
3381 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3382 				error = hhook_run_socket(so, sopt,
3383 				    HHOOK_SOCKET_OPT);
3384 			else
3385 				error = ENOPROTOOPT;
3386 			break;
3387 		}
3388 	}
3389 #ifdef MAC
3390 bad:
3391 #endif
3392 	CURVNET_RESTORE();
3393 	return (error);
3394 }
3395 
3396 int
3397 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3398 {
3399 	struct mbuf *m, *m_prev;
3400 	int sopt_size = sopt->sopt_valsize;
3401 
3402 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3403 	if (m == NULL)
3404 		return ENOBUFS;
3405 	if (sopt_size > MLEN) {
3406 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3407 		if ((m->m_flags & M_EXT) == 0) {
3408 			m_free(m);
3409 			return ENOBUFS;
3410 		}
3411 		m->m_len = min(MCLBYTES, sopt_size);
3412 	} else {
3413 		m->m_len = min(MLEN, sopt_size);
3414 	}
3415 	sopt_size -= m->m_len;
3416 	*mp = m;
3417 	m_prev = m;
3418 
3419 	while (sopt_size) {
3420 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3421 		if (m == NULL) {
3422 			m_freem(*mp);
3423 			return ENOBUFS;
3424 		}
3425 		if (sopt_size > MLEN) {
3426 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3427 			    M_NOWAIT);
3428 			if ((m->m_flags & M_EXT) == 0) {
3429 				m_freem(m);
3430 				m_freem(*mp);
3431 				return ENOBUFS;
3432 			}
3433 			m->m_len = min(MCLBYTES, sopt_size);
3434 		} else {
3435 			m->m_len = min(MLEN, sopt_size);
3436 		}
3437 		sopt_size -= m->m_len;
3438 		m_prev->m_next = m;
3439 		m_prev = m;
3440 	}
3441 	return (0);
3442 }
3443 
3444 int
3445 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3446 {
3447 	struct mbuf *m0 = m;
3448 
3449 	if (sopt->sopt_val == NULL)
3450 		return (0);
3451 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3452 		if (sopt->sopt_td != NULL) {
3453 			int error;
3454 
3455 			error = copyin(sopt->sopt_val, mtod(m, char *),
3456 			    m->m_len);
3457 			if (error != 0) {
3458 				m_freem(m0);
3459 				return(error);
3460 			}
3461 		} else
3462 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3463 		sopt->sopt_valsize -= m->m_len;
3464 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3465 		m = m->m_next;
3466 	}
3467 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3468 		panic("ip6_sooptmcopyin");
3469 	return (0);
3470 }
3471 
3472 int
3473 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3474 {
3475 	struct mbuf *m0 = m;
3476 	size_t valsize = 0;
3477 
3478 	if (sopt->sopt_val == NULL)
3479 		return (0);
3480 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3481 		if (sopt->sopt_td != NULL) {
3482 			int error;
3483 
3484 			error = copyout(mtod(m, char *), sopt->sopt_val,
3485 			    m->m_len);
3486 			if (error != 0) {
3487 				m_freem(m0);
3488 				return(error);
3489 			}
3490 		} else
3491 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3492 		sopt->sopt_valsize -= m->m_len;
3493 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3494 		valsize += m->m_len;
3495 		m = m->m_next;
3496 	}
3497 	if (m != NULL) {
3498 		/* enough soopt buffer should be given from user-land */
3499 		m_freem(m0);
3500 		return(EINVAL);
3501 	}
3502 	sopt->sopt_valsize = valsize;
3503 	return (0);
3504 }
3505 
3506 /*
3507  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3508  * out-of-band data, which will then notify socket consumers.
3509  */
3510 void
3511 sohasoutofband(struct socket *so)
3512 {
3513 
3514 	if (so->so_sigio != NULL)
3515 		pgsigio(&so->so_sigio, SIGURG, 0);
3516 	selwakeuppri(&so->so_rdsel, PSOCK);
3517 }
3518 
3519 int
3520 sopoll(struct socket *so, int events, struct ucred *active_cred,
3521     struct thread *td)
3522 {
3523 
3524 	/*
3525 	 * We do not need to set or assert curvnet as long as everyone uses
3526 	 * sopoll_generic().
3527 	 */
3528 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3529 	    td));
3530 }
3531 
3532 int
3533 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3534     struct thread *td)
3535 {
3536 	int revents;
3537 
3538 	SOCK_LOCK(so);
3539 	if (SOLISTENING(so)) {
3540 		if (!(events & (POLLIN | POLLRDNORM)))
3541 			revents = 0;
3542 		else if (!TAILQ_EMPTY(&so->sol_comp))
3543 			revents = events & (POLLIN | POLLRDNORM);
3544 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3545 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3546 		else {
3547 			selrecord(td, &so->so_rdsel);
3548 			revents = 0;
3549 		}
3550 	} else {
3551 		revents = 0;
3552 		SOCKBUF_LOCK(&so->so_snd);
3553 		SOCKBUF_LOCK(&so->so_rcv);
3554 		if (events & (POLLIN | POLLRDNORM))
3555 			if (soreadabledata(so))
3556 				revents |= events & (POLLIN | POLLRDNORM);
3557 		if (events & (POLLOUT | POLLWRNORM))
3558 			if (sowriteable(so))
3559 				revents |= events & (POLLOUT | POLLWRNORM);
3560 		if (events & (POLLPRI | POLLRDBAND))
3561 			if (so->so_oobmark ||
3562 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3563 				revents |= events & (POLLPRI | POLLRDBAND);
3564 		if ((events & POLLINIGNEOF) == 0) {
3565 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3566 				revents |= events & (POLLIN | POLLRDNORM);
3567 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3568 					revents |= POLLHUP;
3569 			}
3570 		}
3571 		if (revents == 0) {
3572 			if (events &
3573 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3574 				selrecord(td, &so->so_rdsel);
3575 				so->so_rcv.sb_flags |= SB_SEL;
3576 			}
3577 			if (events & (POLLOUT | POLLWRNORM)) {
3578 				selrecord(td, &so->so_wrsel);
3579 				so->so_snd.sb_flags |= SB_SEL;
3580 			}
3581 		}
3582 		SOCKBUF_UNLOCK(&so->so_rcv);
3583 		SOCKBUF_UNLOCK(&so->so_snd);
3584 	}
3585 	SOCK_UNLOCK(so);
3586 	return (revents);
3587 }
3588 
3589 int
3590 soo_kqfilter(struct file *fp, struct knote *kn)
3591 {
3592 	struct socket *so = kn->kn_fp->f_data;
3593 	struct sockbuf *sb;
3594 	struct knlist *knl;
3595 
3596 	switch (kn->kn_filter) {
3597 	case EVFILT_READ:
3598 		kn->kn_fop = &soread_filtops;
3599 		knl = &so->so_rdsel.si_note;
3600 		sb = &so->so_rcv;
3601 		break;
3602 	case EVFILT_WRITE:
3603 		kn->kn_fop = &sowrite_filtops;
3604 		knl = &so->so_wrsel.si_note;
3605 		sb = &so->so_snd;
3606 		break;
3607 	case EVFILT_EMPTY:
3608 		kn->kn_fop = &soempty_filtops;
3609 		knl = &so->so_wrsel.si_note;
3610 		sb = &so->so_snd;
3611 		break;
3612 	default:
3613 		return (EINVAL);
3614 	}
3615 
3616 	SOCK_LOCK(so);
3617 	if (SOLISTENING(so)) {
3618 		knlist_add(knl, kn, 1);
3619 	} else {
3620 		SOCKBUF_LOCK(sb);
3621 		knlist_add(knl, kn, 1);
3622 		sb->sb_flags |= SB_KNOTE;
3623 		SOCKBUF_UNLOCK(sb);
3624 	}
3625 	SOCK_UNLOCK(so);
3626 	return (0);
3627 }
3628 
3629 /*
3630  * Some routines that return EOPNOTSUPP for entry points that are not
3631  * supported by a protocol.  Fill in as needed.
3632  */
3633 int
3634 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3635 {
3636 
3637 	return EOPNOTSUPP;
3638 }
3639 
3640 int
3641 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3642 {
3643 
3644 	return EOPNOTSUPP;
3645 }
3646 
3647 int
3648 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3649 {
3650 
3651 	return EOPNOTSUPP;
3652 }
3653 
3654 int
3655 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3656 {
3657 
3658 	return EOPNOTSUPP;
3659 }
3660 
3661 int
3662 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3663     struct thread *td)
3664 {
3665 
3666 	return EOPNOTSUPP;
3667 }
3668 
3669 int
3670 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3671 {
3672 
3673 	return EOPNOTSUPP;
3674 }
3675 
3676 int
3677 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3678     struct thread *td)
3679 {
3680 
3681 	return EOPNOTSUPP;
3682 }
3683 
3684 int
3685 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3686 {
3687 
3688 	return EOPNOTSUPP;
3689 }
3690 
3691 int
3692 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3693     struct ifnet *ifp, struct thread *td)
3694 {
3695 
3696 	return EOPNOTSUPP;
3697 }
3698 
3699 int
3700 pru_disconnect_notsupp(struct socket *so)
3701 {
3702 
3703 	return EOPNOTSUPP;
3704 }
3705 
3706 int
3707 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3708 {
3709 
3710 	return EOPNOTSUPP;
3711 }
3712 
3713 int
3714 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3715 {
3716 
3717 	return EOPNOTSUPP;
3718 }
3719 
3720 int
3721 pru_rcvd_notsupp(struct socket *so, int flags)
3722 {
3723 
3724 	return EOPNOTSUPP;
3725 }
3726 
3727 int
3728 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3729 {
3730 
3731 	return EOPNOTSUPP;
3732 }
3733 
3734 int
3735 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3736     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3737 {
3738 
3739 	return EOPNOTSUPP;
3740 }
3741 
3742 int
3743 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3744 {
3745 
3746 	return (EOPNOTSUPP);
3747 }
3748 
3749 /*
3750  * This isn't really a ``null'' operation, but it's the default one and
3751  * doesn't do anything destructive.
3752  */
3753 int
3754 pru_sense_null(struct socket *so, struct stat *sb)
3755 {
3756 
3757 	sb->st_blksize = so->so_snd.sb_hiwat;
3758 	return 0;
3759 }
3760 
3761 int
3762 pru_shutdown_notsupp(struct socket *so)
3763 {
3764 
3765 	return EOPNOTSUPP;
3766 }
3767 
3768 int
3769 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3770 {
3771 
3772 	return EOPNOTSUPP;
3773 }
3774 
3775 int
3776 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3777     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3778 {
3779 
3780 	return EOPNOTSUPP;
3781 }
3782 
3783 int
3784 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3785     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3786 {
3787 
3788 	return EOPNOTSUPP;
3789 }
3790 
3791 int
3792 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3793     struct thread *td)
3794 {
3795 
3796 	return EOPNOTSUPP;
3797 }
3798 
3799 static void
3800 filt_sordetach(struct knote *kn)
3801 {
3802 	struct socket *so = kn->kn_fp->f_data;
3803 
3804 	so_rdknl_lock(so);
3805 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3806 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3807 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3808 	so_rdknl_unlock(so);
3809 }
3810 
3811 /*ARGSUSED*/
3812 static int
3813 filt_soread(struct knote *kn, long hint)
3814 {
3815 	struct socket *so;
3816 
3817 	so = kn->kn_fp->f_data;
3818 
3819 	if (SOLISTENING(so)) {
3820 		SOCK_LOCK_ASSERT(so);
3821 		kn->kn_data = so->sol_qlen;
3822 		if (so->so_error) {
3823 			kn->kn_flags |= EV_EOF;
3824 			kn->kn_fflags = so->so_error;
3825 			return (1);
3826 		}
3827 		return (!TAILQ_EMPTY(&so->sol_comp));
3828 	}
3829 
3830 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3831 
3832 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3833 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3834 		kn->kn_flags |= EV_EOF;
3835 		kn->kn_fflags = so->so_error;
3836 		return (1);
3837 	} else if (so->so_error)	/* temporary udp error */
3838 		return (1);
3839 
3840 	if (kn->kn_sfflags & NOTE_LOWAT) {
3841 		if (kn->kn_data >= kn->kn_sdata)
3842 			return (1);
3843 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3844 		return (1);
3845 
3846 	/* This hook returning non-zero indicates an event, not error */
3847 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3848 }
3849 
3850 static void
3851 filt_sowdetach(struct knote *kn)
3852 {
3853 	struct socket *so = kn->kn_fp->f_data;
3854 
3855 	so_wrknl_lock(so);
3856 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3857 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3858 		so->so_snd.sb_flags &= ~SB_KNOTE;
3859 	so_wrknl_unlock(so);
3860 }
3861 
3862 /*ARGSUSED*/
3863 static int
3864 filt_sowrite(struct knote *kn, long hint)
3865 {
3866 	struct socket *so;
3867 
3868 	so = kn->kn_fp->f_data;
3869 
3870 	if (SOLISTENING(so))
3871 		return (0);
3872 
3873 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3874 	kn->kn_data = sbspace(&so->so_snd);
3875 
3876 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3877 
3878 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3879 		kn->kn_flags |= EV_EOF;
3880 		kn->kn_fflags = so->so_error;
3881 		return (1);
3882 	} else if (so->so_error)	/* temporary udp error */
3883 		return (1);
3884 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3885 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3886 		return (0);
3887 	else if (kn->kn_sfflags & NOTE_LOWAT)
3888 		return (kn->kn_data >= kn->kn_sdata);
3889 	else
3890 		return (kn->kn_data >= so->so_snd.sb_lowat);
3891 }
3892 
3893 static int
3894 filt_soempty(struct knote *kn, long hint)
3895 {
3896 	struct socket *so;
3897 
3898 	so = kn->kn_fp->f_data;
3899 
3900 	if (SOLISTENING(so))
3901 		return (1);
3902 
3903 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3904 	kn->kn_data = sbused(&so->so_snd);
3905 
3906 	if (kn->kn_data == 0)
3907 		return (1);
3908 	else
3909 		return (0);
3910 }
3911 
3912 int
3913 socheckuid(struct socket *so, uid_t uid)
3914 {
3915 
3916 	if (so == NULL)
3917 		return (EPERM);
3918 	if (so->so_cred->cr_uid != uid)
3919 		return (EPERM);
3920 	return (0);
3921 }
3922 
3923 /*
3924  * These functions are used by protocols to notify the socket layer (and its
3925  * consumers) of state changes in the sockets driven by protocol-side events.
3926  */
3927 
3928 /*
3929  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3930  *
3931  * Normal sequence from the active (originating) side is that
3932  * soisconnecting() is called during processing of connect() call, resulting
3933  * in an eventual call to soisconnected() if/when the connection is
3934  * established.  When the connection is torn down soisdisconnecting() is
3935  * called during processing of disconnect() call, and soisdisconnected() is
3936  * called when the connection to the peer is totally severed.  The semantics
3937  * of these routines are such that connectionless protocols can call
3938  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3939  * calls when setting up a ``connection'' takes no time.
3940  *
3941  * From the passive side, a socket is created with two queues of sockets:
3942  * so_incomp for connections in progress and so_comp for connections already
3943  * made and awaiting user acceptance.  As a protocol is preparing incoming
3944  * connections, it creates a socket structure queued on so_incomp by calling
3945  * sonewconn().  When the connection is established, soisconnected() is
3946  * called, and transfers the socket structure to so_comp, making it available
3947  * to accept().
3948  *
3949  * If a socket is closed with sockets on either so_incomp or so_comp, these
3950  * sockets are dropped.
3951  *
3952  * If higher-level protocols are implemented in the kernel, the wakeups done
3953  * here will sometimes cause software-interrupt process scheduling.
3954  */
3955 void
3956 soisconnecting(struct socket *so)
3957 {
3958 
3959 	SOCK_LOCK(so);
3960 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3961 	so->so_state |= SS_ISCONNECTING;
3962 	SOCK_UNLOCK(so);
3963 }
3964 
3965 void
3966 soisconnected(struct socket *so)
3967 {
3968 
3969 	SOCK_LOCK(so);
3970 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3971 	so->so_state |= SS_ISCONNECTED;
3972 
3973 	if (so->so_qstate == SQ_INCOMP) {
3974 		struct socket *head = so->so_listen;
3975 		int ret;
3976 
3977 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3978 		/*
3979 		 * Promoting a socket from incomplete queue to complete, we
3980 		 * need to go through reverse order of locking.  We first do
3981 		 * trylock, and if that doesn't succeed, we go the hard way
3982 		 * leaving a reference and rechecking consistency after proper
3983 		 * locking.
3984 		 */
3985 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3986 			soref(head);
3987 			SOCK_UNLOCK(so);
3988 			SOLISTEN_LOCK(head);
3989 			SOCK_LOCK(so);
3990 			if (__predict_false(head != so->so_listen)) {
3991 				/*
3992 				 * The socket went off the listen queue,
3993 				 * should be lost race to close(2) of sol.
3994 				 * The socket is about to soabort().
3995 				 */
3996 				SOCK_UNLOCK(so);
3997 				sorele(head);
3998 				return;
3999 			}
4000 			/* Not the last one, as so holds a ref. */
4001 			refcount_release(&head->so_count);
4002 		}
4003 again:
4004 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4005 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4006 			head->sol_incqlen--;
4007 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4008 			head->sol_qlen++;
4009 			so->so_qstate = SQ_COMP;
4010 			SOCK_UNLOCK(so);
4011 			solisten_wakeup(head);	/* unlocks */
4012 		} else {
4013 			SOCKBUF_LOCK(&so->so_rcv);
4014 			soupcall_set(so, SO_RCV,
4015 			    head->sol_accept_filter->accf_callback,
4016 			    head->sol_accept_filter_arg);
4017 			so->so_options &= ~SO_ACCEPTFILTER;
4018 			ret = head->sol_accept_filter->accf_callback(so,
4019 			    head->sol_accept_filter_arg, M_NOWAIT);
4020 			if (ret == SU_ISCONNECTED) {
4021 				soupcall_clear(so, SO_RCV);
4022 				SOCKBUF_UNLOCK(&so->so_rcv);
4023 				goto again;
4024 			}
4025 			SOCKBUF_UNLOCK(&so->so_rcv);
4026 			SOCK_UNLOCK(so);
4027 			SOLISTEN_UNLOCK(head);
4028 		}
4029 		return;
4030 	}
4031 	SOCK_UNLOCK(so);
4032 	wakeup(&so->so_timeo);
4033 	sorwakeup(so);
4034 	sowwakeup(so);
4035 }
4036 
4037 void
4038 soisdisconnecting(struct socket *so)
4039 {
4040 
4041 	SOCK_LOCK(so);
4042 	so->so_state &= ~SS_ISCONNECTING;
4043 	so->so_state |= SS_ISDISCONNECTING;
4044 
4045 	if (!SOLISTENING(so)) {
4046 		SOCKBUF_LOCK(&so->so_rcv);
4047 		socantrcvmore_locked(so);
4048 		SOCKBUF_LOCK(&so->so_snd);
4049 		socantsendmore_locked(so);
4050 	}
4051 	SOCK_UNLOCK(so);
4052 	wakeup(&so->so_timeo);
4053 }
4054 
4055 void
4056 soisdisconnected(struct socket *so)
4057 {
4058 
4059 	SOCK_LOCK(so);
4060 
4061 	/*
4062 	 * There is at least one reader of so_state that does not
4063 	 * acquire socket lock, namely soreceive_generic().  Ensure
4064 	 * that it never sees all flags that track connection status
4065 	 * cleared, by ordering the update with a barrier semantic of
4066 	 * our release thread fence.
4067 	 */
4068 	so->so_state |= SS_ISDISCONNECTED;
4069 	atomic_thread_fence_rel();
4070 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4071 
4072 	if (!SOLISTENING(so)) {
4073 		SOCK_UNLOCK(so);
4074 		SOCKBUF_LOCK(&so->so_rcv);
4075 		socantrcvmore_locked(so);
4076 		SOCKBUF_LOCK(&so->so_snd);
4077 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4078 		socantsendmore_locked(so);
4079 	} else
4080 		SOCK_UNLOCK(so);
4081 	wakeup(&so->so_timeo);
4082 }
4083 
4084 /*
4085  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4086  */
4087 struct sockaddr *
4088 sodupsockaddr(const struct sockaddr *sa, int mflags)
4089 {
4090 	struct sockaddr *sa2;
4091 
4092 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4093 	if (sa2)
4094 		bcopy(sa, sa2, sa->sa_len);
4095 	return sa2;
4096 }
4097 
4098 /*
4099  * Register per-socket destructor.
4100  */
4101 void
4102 sodtor_set(struct socket *so, so_dtor_t *func)
4103 {
4104 
4105 	SOCK_LOCK_ASSERT(so);
4106 	so->so_dtor = func;
4107 }
4108 
4109 /*
4110  * Register per-socket buffer upcalls.
4111  */
4112 void
4113 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
4114 {
4115 	struct sockbuf *sb;
4116 
4117 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4118 
4119 	switch (which) {
4120 	case SO_RCV:
4121 		sb = &so->so_rcv;
4122 		break;
4123 	case SO_SND:
4124 		sb = &so->so_snd;
4125 		break;
4126 	default:
4127 		panic("soupcall_set: bad which");
4128 	}
4129 	SOCKBUF_LOCK_ASSERT(sb);
4130 	sb->sb_upcall = func;
4131 	sb->sb_upcallarg = arg;
4132 	sb->sb_flags |= SB_UPCALL;
4133 }
4134 
4135 void
4136 soupcall_clear(struct socket *so, int which)
4137 {
4138 	struct sockbuf *sb;
4139 
4140 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4141 
4142 	switch (which) {
4143 	case SO_RCV:
4144 		sb = &so->so_rcv;
4145 		break;
4146 	case SO_SND:
4147 		sb = &so->so_snd;
4148 		break;
4149 	default:
4150 		panic("soupcall_clear: bad which");
4151 	}
4152 	SOCKBUF_LOCK_ASSERT(sb);
4153 	KASSERT(sb->sb_upcall != NULL,
4154 	    ("%s: so %p no upcall to clear", __func__, so));
4155 	sb->sb_upcall = NULL;
4156 	sb->sb_upcallarg = NULL;
4157 	sb->sb_flags &= ~SB_UPCALL;
4158 }
4159 
4160 void
4161 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4162 {
4163 
4164 	SOLISTEN_LOCK_ASSERT(so);
4165 	so->sol_upcall = func;
4166 	so->sol_upcallarg = arg;
4167 }
4168 
4169 static void
4170 so_rdknl_lock(void *arg)
4171 {
4172 	struct socket *so = arg;
4173 
4174 	if (SOLISTENING(so))
4175 		SOCK_LOCK(so);
4176 	else
4177 		SOCKBUF_LOCK(&so->so_rcv);
4178 }
4179 
4180 static void
4181 so_rdknl_unlock(void *arg)
4182 {
4183 	struct socket *so = arg;
4184 
4185 	if (SOLISTENING(so))
4186 		SOCK_UNLOCK(so);
4187 	else
4188 		SOCKBUF_UNLOCK(&so->so_rcv);
4189 }
4190 
4191 static void
4192 so_rdknl_assert_locked(void *arg)
4193 {
4194 	struct socket *so = arg;
4195 
4196 	if (SOLISTENING(so))
4197 		SOCK_LOCK_ASSERT(so);
4198 	else
4199 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
4200 }
4201 
4202 static void
4203 so_rdknl_assert_unlocked(void *arg)
4204 {
4205 	struct socket *so = arg;
4206 
4207 	if (SOLISTENING(so))
4208 		SOCK_UNLOCK_ASSERT(so);
4209 	else
4210 		SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
4211 }
4212 
4213 static void
4214 so_wrknl_lock(void *arg)
4215 {
4216 	struct socket *so = arg;
4217 
4218 	if (SOLISTENING(so))
4219 		SOCK_LOCK(so);
4220 	else
4221 		SOCKBUF_LOCK(&so->so_snd);
4222 }
4223 
4224 static void
4225 so_wrknl_unlock(void *arg)
4226 {
4227 	struct socket *so = arg;
4228 
4229 	if (SOLISTENING(so))
4230 		SOCK_UNLOCK(so);
4231 	else
4232 		SOCKBUF_UNLOCK(&so->so_snd);
4233 }
4234 
4235 static void
4236 so_wrknl_assert_locked(void *arg)
4237 {
4238 	struct socket *so = arg;
4239 
4240 	if (SOLISTENING(so))
4241 		SOCK_LOCK_ASSERT(so);
4242 	else
4243 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
4244 }
4245 
4246 static void
4247 so_wrknl_assert_unlocked(void *arg)
4248 {
4249 	struct socket *so = arg;
4250 
4251 	if (SOLISTENING(so))
4252 		SOCK_UNLOCK_ASSERT(so);
4253 	else
4254 		SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
4255 }
4256 
4257 /*
4258  * Create an external-format (``xsocket'') structure using the information in
4259  * the kernel-format socket structure pointed to by so.  This is done to
4260  * reduce the spew of irrelevant information over this interface, to isolate
4261  * user code from changes in the kernel structure, and potentially to provide
4262  * information-hiding if we decide that some of this information should be
4263  * hidden from users.
4264  */
4265 void
4266 sotoxsocket(struct socket *so, struct xsocket *xso)
4267 {
4268 
4269 	bzero(xso, sizeof(*xso));
4270 	xso->xso_len = sizeof *xso;
4271 	xso->xso_so = (uintptr_t)so;
4272 	xso->so_type = so->so_type;
4273 	xso->so_options = so->so_options;
4274 	xso->so_linger = so->so_linger;
4275 	xso->so_state = so->so_state;
4276 	xso->so_pcb = (uintptr_t)so->so_pcb;
4277 	xso->xso_protocol = so->so_proto->pr_protocol;
4278 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4279 	xso->so_timeo = so->so_timeo;
4280 	xso->so_error = so->so_error;
4281 	xso->so_uid = so->so_cred->cr_uid;
4282 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4283 	if (SOLISTENING(so)) {
4284 		xso->so_qlen = so->sol_qlen;
4285 		xso->so_incqlen = so->sol_incqlen;
4286 		xso->so_qlimit = so->sol_qlimit;
4287 		xso->so_oobmark = 0;
4288 	} else {
4289 		xso->so_state |= so->so_qstate;
4290 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4291 		xso->so_oobmark = so->so_oobmark;
4292 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4293 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4294 	}
4295 }
4296 
4297 struct sockbuf *
4298 so_sockbuf_rcv(struct socket *so)
4299 {
4300 
4301 	return (&so->so_rcv);
4302 }
4303 
4304 struct sockbuf *
4305 so_sockbuf_snd(struct socket *so)
4306 {
4307 
4308 	return (&so->so_snd);
4309 }
4310 
4311 int
4312 so_state_get(const struct socket *so)
4313 {
4314 
4315 	return (so->so_state);
4316 }
4317 
4318 void
4319 so_state_set(struct socket *so, int val)
4320 {
4321 
4322 	so->so_state = val;
4323 }
4324 
4325 int
4326 so_options_get(const struct socket *so)
4327 {
4328 
4329 	return (so->so_options);
4330 }
4331 
4332 void
4333 so_options_set(struct socket *so, int val)
4334 {
4335 
4336 	so->so_options = val;
4337 }
4338 
4339 int
4340 so_error_get(const struct socket *so)
4341 {
4342 
4343 	return (so->so_error);
4344 }
4345 
4346 void
4347 so_error_set(struct socket *so, int val)
4348 {
4349 
4350 	so->so_error = val;
4351 }
4352 
4353 int
4354 so_linger_get(const struct socket *so)
4355 {
4356 
4357 	return (so->so_linger);
4358 }
4359 
4360 void
4361 so_linger_set(struct socket *so, int val)
4362 {
4363 
4364 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4365 	    ("%s: val %d out of range", __func__, val));
4366 
4367 	so->so_linger = val;
4368 }
4369 
4370 struct protosw *
4371 so_protosw_get(const struct socket *so)
4372 {
4373 
4374 	return (so->so_proto);
4375 }
4376 
4377 void
4378 so_protosw_set(struct socket *so, struct protosw *val)
4379 {
4380 
4381 	so->so_proto = val;
4382 }
4383 
4384 void
4385 so_sorwakeup(struct socket *so)
4386 {
4387 
4388 	sorwakeup(so);
4389 }
4390 
4391 void
4392 so_sowwakeup(struct socket *so)
4393 {
4394 
4395 	sowwakeup(so);
4396 }
4397 
4398 void
4399 so_sorwakeup_locked(struct socket *so)
4400 {
4401 
4402 	sorwakeup_locked(so);
4403 }
4404 
4405 void
4406 so_sowwakeup_locked(struct socket *so)
4407 {
4408 
4409 	sowwakeup_locked(so);
4410 }
4411 
4412 void
4413 so_lock(struct socket *so)
4414 {
4415 
4416 	SOCK_LOCK(so);
4417 }
4418 
4419 void
4420 so_unlock(struct socket *so)
4421 {
4422 
4423 	SOCK_UNLOCK(so);
4424 }
4425